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ABSTRACT 

Theoretical motivation for the preferred representation of 

seismic data by ARMA ( p,q) models is developed. Reverber-

ations are shown to be AR ( p) whereas absorptive earth 

filtering effects are shown to be MA ( q). 

Modelling techniques are applied to both real and synthetic 

seismic data. The resultant spectral fits to periodograms 

are contrasted, as are deconvolution results. ARMA ( p,q) 

models are found to provide superior spectral fits compared 

with AR ( p) models where the seismic spectrum rolls off into 

noise, but only marginally improved fits through high signal 

frequencies. The consequence is that ARMA ( p,q) decon-

volutioris boost noise without significantly improving signal 

when compared with AR ( p) techniques. At high orders all 

techniques except Levinson Transient Error ARMA ( p,q) and 

Levinson AR ( p) tend to introduce spikes to the spectrum. 

Levinson AR ( p) remains the deconvolution of choice. 

Oversampling is found to necessitate high model orders and 

result in overfitting to spectral roll off and noise. 

Improvements in estimation at lower model orders are achieved 

on decimated and decimated and demodulated data. 
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Chapter 1. Introduction 

The application of the techniques of time serie analysis to 

the processing of seismic data revolutionized the petroleum 

exploration industry during the 1960's [ 11. The consequent 

improvement in the resolution and reliability of the seismic 

method established it as the primary tool for hydrocarbon 

exploration. Very few exploratory wells are drilled now 

without prior seismic confirmation [ 2] and the geophysical 

(seismic) indrustry has grown to become a major user of 

computer power [ 3]. 

Perhaps the greatest contribution of time series analysis to 

the processing of seismic data is the theory of inverse 

filtering, or deconvolution, and the related field of wavelet 

estimation. The object of the seismic method is to provide 

unambiguous information on the position and relative hardness 

of reflectors in the subsurface by echo ranging. The distri-

bution of reflector positions and relative hardnesses in the 

subsurface is described as the reflectivity sequence of the 

earth and it provides information on the geometry and com-

position of the' various rock types in the subsurface. 

Unfortunately, the seismic data recorded in the field do not 

- 1 -
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depict the desired reflectivity seq.uence but rather are con-

sidered to be the convolutior\ of the reflectivity sequence 

with a seismic " wavelet" which comprises the effects of 

source characteristics, earth filtering, reverberation, and 

the like [ 4]. Deconvolution uses an estimate of this wavelet 

to design an inverse filter which is convolved with the 

recorded seismic data to yield just the desired reflectivity 

response. The procedure greatly increases the resolution and 

interpretability of seismic data. 

Because the seismic wavelet in effect filters the reflecti-

vity response, and deconvolution undoes the effect of the 

wavelet filter, the theory and practise of deconvolution 

evolved in concert with the field of spectral analysis. 

Consequently deconvolution has traditionally been motirated 

from the point of view of maximizing spectral expansion, or 

whitening the spectrum. Modern methods of spectral estima-

tion, however, suggest a more reasoned and satisfying 

approach to deconvolution. 

In recent years a variety of parameter modelling techniques 

have been applied in the estimation of a power spectral 

density [ 5, 6]. These techniques represent the power 

spectral density of a stochastic time series in terms of the 
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magnitude squared of a characteristic rational function of 

polynomials. The coefficients of the polynomials are also 

the multipliers in a model recursive equation which describes 

the time series itself as a linear combination of the past 

values of the time series, and the past and present values of 

a hypothetical white noise excitation series. In other 

words, the techniques model a given time series as the 

response of a causal time invarient linear system - whose 

transfer function is a characteristic rational function of 

polynomials - to a white noise excitation. Consequently 

specification of the coefficients in estimating the power 

spectral density function provides an analytic character-

ization of the time series. 

As mentioned earlier seismic data is considered to be the 

convolution of a reflectivity sequence and a seismic wavelet. 

If the reflectivity sequence can be considered to be random, 

or white, and the wavelet can be considered to be causal and 

time invariant then the seismic data can be modelled as the 

response of a white noise input to a filter whose impulse 

response is the wavelet. Estimation of the power spectral 

density of the seismic data by modelling techniques, there-

fore, explicitly specifies the seismic wavelet in analytic 

form and it is then straightforward to calculate the inverse 

wavelet ( by interchanging poles and zeroes in the rational 
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polynomial description of the wavelet) for deconvolution. 

The techniques, therefore, give not only analytical descrip-

tions of the inverse wavelets but also intuitively satisfying 

motivation for their application to deconvolution. 

The most general of the rational function models is the auto-

regressive-moving-average or ARLMA (p,q) model with a p th 

order denominator polynomial ( the auto- regressive part) and a 

qth order numerator polynomial ( the moving-average part). 

The power spectral density functions of seismic wavelets are 

particularly well described by ARMA ( p,q) models; the 

absorptive earth filtering effects are represented by the 

moving- average components in the numerator polynomial and the 

reverberations affecting wavelet shape are represented by the 

auto- regressive components in the denominator polynomial. 

Furthermore, although the roots of the auto- regressive, 

denominator polynomial ( the poles of the wavelet) must lie 

inside the unit circle to ensure a stable inverse, the roots 

of the moving-average, numerator polynomial ( the zeroes of 

the wavelet) may be reflected out of the unit circle in any 

combination to yield a finite number of possible phase 

possibilities other tFan minimum phase using all-pass 

networks. Traditional techniques are usually restricted by 

the assumption of minimum phase. 
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Despite the obvious advantages only a few deconvolution 

techniques employing rational function models have been 

recorded in the geophysical literature to date, other than 

Levinson, and those few have used auto-regressive, or AR ( p), 

models rather than the more general and preferred ARMA ( p,q) 

models. One reason for this apparent lack of enthusiasm is 

industry inertia fostered by the success of traditional 

methods. More serious reasons are that modelling techniques 

are sensitive to the specification of model type and model 

order, are computationally less efficient than traditional 

methods ( particularly in the case of ARMA ( p,q) models) and 

are more adversely affected by noise in the data. These 

disadvantages, however, must be considered in trade-off 

against the obvious merits of the application of ARMA ( p,q) 

models. 

In this thesis the application of ARMA ( p,q) models to the 

deconvolution of seismic signals is considered. The related 

topic of estimating seismic wavelets is also discussed. 

Chapter 2 provides a brief overview of the seismic reflection 

method, reviews the development of the seismic time series 

model from wave theory, demonstrating the ARMA ( p,q) nature 

of the seismic process, and establishes the importance of 

wavelet estimation and deconvolution in seismic data 

processing. 
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In Chapter 3 traditional wavelet estimation and deconvolution 

techniques are reviewed and a few of the AR ( p) modelling 

• techniques are described. The wavelet estimation techniques 

range from purely deterministic to purely statistical; the 

assumptions and strengths and weaknesses of each technique 

are discussed. Chapter 4 introduces linear modelling tech-

niques and further develops the motivation for the preferred 

application of ARMA ( p,q) models to the estimation of seismic 

wavelets and the deconvolution of seismic data. Several 

techniques for determining the parameters of ARMA ( p,q) 

models from time series are then described; in particular the 

Box-Jenkins method [ 7], the Cadzow " high-performance" method, 

[8], the method of Gutowski, Robinson, and Trietel - the GRT 

method [ 9] and the recently developed method of Salami [ 10, 

661. The strengths and weaknesses of each method are ' exam-

ined. Chapter 5 presents the results of ARMA ( p,q) modelling 

in seismic wavelet estimation and deconvolution. Chapter 6 

provides conclusions. 



Chapter 2. The Reflection Seismic Method 

2.1. Introduction 

The reflection seismic method consists of recording the earth 

response to a controlled disturbance as a function of time. 

Both the disturbance and the response recording transducers 

are located at, or very near, the earth's surface and the 

transit times ( from initiation of disturbance) and amplitudes 

of the responses provide information on the relative hardness 

and position of reflectors in the subsurface. The reflectors 

correspond to the interfaces between differing rock types in 

the subsurface. Where the seismic reflection method differs 

from the seemingly analogous' techniques of sonar and radar 

echo ranging is in the complicated nature of the target and 

the target response. Subsurface reflectors do not completely 

reflect the imposed disturbances and consequently the 

recorded response comprises a complex superposition of 

reflected and multiply transmitted and re- reflected signals. 

The purpose of seismic data processing is to enhance the 

primary reflection information in the recorded signal such 

that reflection transit times and amplitudes can be measured 

unambiguously, and diminish the contribution of reverberatory 

effects and other forms of noise. 

7 
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2.2 Data Acquisition 

Seismic reflection data is obtained by initiating a 

controlled source of pressure ( seismic) waves at, or near, 

the earth's surface and recording the earth response with 

respect to time at transducers positioned on the earth's 

surface. The standard source of pressure waves is dynamite 

exploded in a 10 - 100 foot deep hole; dropped weights and 

vibrators at the surface can also be used but are less 

common. The transducers, or geophones, consist of a magnet 

suspended in a coil. The housing of the magnet and coil is 

buried or otherwise affixed to the earth with a long spike. 

When the earth responds to the reflected pressure waves the 

resultant displacement of the housing causes the magnet to 

move within the coil and induces a voltage which is 

proportional to the velocity of the earth's motion. This 

output voltage is amplified, sampled, and recorded time 

sequentially on tape. 

For a variety of reasons a technique known as " CDP" shooting 

is now standard for seismic reflection data acquisitioh. The 

COP method repeatedly samples the same reflector location by 

in effect taking a series of recordings with the shots and 

geophones in a variety of positions symmetric about the 
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reflector location along a straight line. This is accom-

plished by laying out many geophones along the straight line 

of survey, shooting and recording, then moving the shot loca-

tion and the geophones an incremental distance along the line 

of survey and repeating the procedure. Because the method 

results in the repeated sampling of the same reflector loca-

tions, called common depth points, the technique is known as 

the CDP method. Figure 2.1 illustrates the CDP method of 

seismic reflection data acquisition. 

The obvious advantage of the CDP method is that the records 

of shot- trace pairs which sample the same common depth point 

can be summed to increase signal to noise ratio where the 

noise is random and uncorrelated between records. A second 

advantage is that the time delay between records for the same 

CDP, due to the increased travel time between the further 

offset shot and receiver pairs, can be related to the average 

velocity of seismic wave propagation down to the subject CDP 

and back. 

2.3 Reflection Theory 

In most areas with hydrocarbon potential the subsurface of 

the earth is composed of large sub- parallel sheets of 
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different sedimentary rock types. The velocity of seismic 

waves is generally different in each different rock type and 

consequently waves incident on the boundary between different 

rock types will be partially reflected and partially 

transmitted in accordance with the results of elastic wave 

theory. 

There are two types of distortion which can be described for 

a given block of material: volumetric strain caused by 

compressive stress and rotational strain caused by shear 

stress. Conventional seismic acquisition techniques 

discriminate against shear stress waves and hence only 

compressive stress waves are of interest. 

2.3.1 Elastic Wave Theory 

Elookets law for perfectly elastic material states that the 

strain a material undergoes is proportional to the stresses 

applied to the material. Considering, without loss of 

generality, one dimensional strain in x, the strain is the 

fractional change in x or Ax/x; the stress is defined as the 

applied force per unit area, F/A so 

K Ax F 

x A 
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where the constant of proportionality, K, is the modulus of 

elasticity. It turns out that the velocity of compressional 

wave propagation is related to K; in the one dimensional case 

for example 

v= K 

P 

where p is the density of the material. 

Continuing with the one dimensional case undergoing strain, let 

Ax be the portion of material under consideration and Au be the 

incremental quantity of the material compression or dilation 

resulting from the force F; the strain is therefore Au/Ax. The 

mass of material under consideration is pAAx where A is.a unit 

area of cross section given to the one dimensional material. 

Newton's second law of motion requires that force equals mass 

times acceleration or F = ma. Denoti,ng displacement from rest 

position as u, acceleration is given by ô2u/ô 2t so the applied 

force is 

ô2u 

F = pAAx 
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The elastic force of the material itself is given by Hooke's 

law at position x 

FKA Au; or F=KAôu 

Ax ox 

in the limit as Ax + o. 

At x + dx an incremented elastic force F + dF is exercised. 

F + dF = F + OF dx = KA Ou + KA 02u dx 

The elastic force acting on the mterial element dx is 

therefoe he difference of the forces exercised at x and 

x + dx or 

F = KA 02u dx 

Ox 2 

Equating the, two forces 

02u = K 

ot2 Ox 2 

or 

Ox 2 

= 1 02u 

V2 t2 
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which is the familiar one dimensional wave equation where v 

is the velocity of wave propagation and 

K 

v= 
p 

as noted earlier. 

D'Alembert's solution to the wave equation is 

u(x,t) = F(x-vt) + G(x+vt) 

which describes waves of fixed shape travelling in opposite 

directions; that is, one toward and one away from the source 

of disturbance. Considering only the wave travelling outward 

from the source 

u(x,t) = F(x-vt) 

and assuming, again without loss of generality, a monotonic 

wave of the form 

u(x,t) = Aexp(j2i(k1x-wt)) 
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impinging on a boundary between two materials ( 1 and 2) at 

perpendicular incidence, part of the wave energy will be 

reflected 

Aexp(j2ic(-k 1x-wt)) 

and part will be transmitted. 

Atexp( j2jt(k2x-wt)) 

Under the restrictions that displacement must be continuous 

across the boundary and that the net stress on the boundary 

is zero it follows that 

Ar + At = A1 

and 

P11Ar - P2V2At = - p1v1A1 

respectively, so that 

= Ar = P2v2 - ply1 

A1 + Ply1 
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which is the definition of the reflection coefficient r12 

where the subscript 1 pertains to properties of material 1 and 

subscript 2 pertains to properties of material 2. 

Similarly the transmission coefficient t12 can be defined as 

t12 = = 2p1V1 

Ai P2V2+ P1 V1 

The above derivations yield reflection and transmission 

coefficients for particle displacement. It can be shown that 

the same coefficient definitions result for particle velocity 

and particle acceleration [ 11]. 

Certain useful relationships between coefficients will be 

exploited in subsequent development and so are explicitly 

stated here as follows: 

r12 = -r21 

= 1 + r12 ; t21 = 1 + r21  r12 

t1221 1 - r12 2 ; t12t21 - r12r21 = 1 

2.1 



17 - 

Obviously the reflection and transmission coefficients can be 

generalized to waves impinging on the boundary between any 

two materialsk and k + 1. For notational convenience only 

the alpha subscript is written and a prime is used to indi-

cate an upgoing wave at the boundary of k + 1 and k, as: 

rk = rkk+1 ; r  rk+lk 

tk = tk,k+1 ; t k = t}ç4 

More complete and comprehensive discussions of wave theory 

abound in the literature [ 2, 12 - 151 but the simplistic one 

dimensional case provides sufficient conceptual background 

for this report. 

2.3.2 The Convolutional Model 

Seismic wave propagation is well described by classical wave 

theory. Diffractions, scattering phenomena, and " wavefront 

healing" can all be modelled using classical theory. But 

even under very restrictive conditions numerical calculations 
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of the differential 

general expressions 

inhomogeneous media 

and integral equations arising 

for spherical wave propagation 

are very involved and solution 

from the 

in 

of the 

inverse problem, that of determining earth properties from 

the output recorded reflection data, is computationally 

infeasible. 

An alternative description of seismic reflection was 

developed in the 1950's and formalized though the 1960's 

employing then recently developed statistical communication 

theory [ 4, 16 - 19]. Under the restriction of normal 

incidence D'Alembert's solution provides that each interface 

transmits a scaled replica of the impinging waveform and 

reflects the complementary scaled replica of the waveform. 

Since the recording transducers are at the surface, only 

ultimately reflected signals are recorded. Furthermore the 

depth relationships of the interfaces can be mapped into time 

relationships using velocity information and the interfaces 

can therefore be represented as a time series of reflection 

coefficients. Consequently seismic reflection data can be 

represented as the superposition of identically shaped 

waveforms scaled and spaced in accordance with the amplitude 

and separation of reflection coefficients on a time axis. 

Equivalently, seismic reflection data can be represented as 

the convolution of a constant waveform with a time series of 

reflection coefficients. 
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Two serious assumptions are evoked in this description: 

firstly that the recorded seismic data is normal incidence, 

secondly that the seismic waveform is time invariant. A 

third assumption not resulting directly from the model 

formulation but important in computational work is that noise 

in the system is uncorrelated and additive. With these 

assumptions the model can be written as 

s(t) = w(t) * r(t) + n(t) 2.2 

where s(t) denotes the recorded seismic trace, w(t) the 

seismic wavelet, r(t) the reflection coefficient series, and 

n(t) the noise. The asterisk denotes the convolution 

operator. Since all subsequent development will assume 

sampled data a standardized notation using integer valued n 

as the discrete time index will be employed such that 2.2 can 

be written as 

s(n) = w(n) * r(n) + n(n) 2.3 

Ironically, Norman Ricker developed a deterministic wave 

theory description of seismic data in the early 1940's which 

invoked reflection coefficients and wavelets but which fell 

just short of explicitly stating the convolutional model and 

therefore missed the all-important next step - deconvolution. 

Ricker's work will be discussed in Chapter 4. 
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The convolutional model, expressed in the filter theory 

notation of equation 2.3, immediately suggests deconvolution; 

inverse filtering out the wavelet to yield unadulterated 

reflection coefficient information. That is, designing a 

filter g(n) such that 

g(n) * w(n) = ô(n) 

where the kronecker delta 

ô(n) = 1 n=O 

0 nøo 

Convolving s(n) with the inverse filter g(n) gives 

s(n) * g(n) = [ w(n) * r(n) + n(n)] * g(n) 

= w(n) * g(n) * r(n) + n(n) * g(n) 

r(n) + n'(ri) 

A variety of techniques for estimating g(n) and performing 

deconvolution are described in Chapter 3. It should be noted 

that deconvolution and wavelet estimation are essentially 

different specifications of the same basic problem and. as 

such the various techniques of deconvolution and wavelet 

estimation have evolved hand in hand [ 20]. 
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In the next section it will be shown that the convolutional 

model is complicated by reverberations in a layered system. 

2.3.3 Wave Propagation in Layered Media 

As waves travel outward from the source and encounter each of 

the interfaces between differing layers of material, part of 

the wave is reflected and part is transmitted. The reflected 

waves travel back toward the surface and are themselves 

reflected in part and transmitted in part by each of the 

interfaces encountered on their path until they are 

eventually recorded at the earth's surface. Energy which 

transmits directly to an interface and reflects directly back" 

is termed primary reflection energy. Energy which reflects 

from more than one interface is termed multiple reflection 

energy. 

The complex process of primary and multiple reflection in a 

layered system is particularly well described in terms of 

communication theory [ 1, 11, 21, 22]. Displacement at any 

interface can be described by a z- transform of the waves 

impinging on that interface [ 21] and, under certain plausible 

assumptions, the " earth transfer function" can be expressed 

as a rational function of polynomials in a complex variable, 
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where the numerator polynomial represents the transfer func-

tion for primary reflections and the denominator polynomial 

represents the transfer function for multiple reflections 

[36, 1]. This important result forms the basis for the ARMA 

(p,q) description of seismic data advocated in Chapter 4. 

Following Treitel and Robinson [ 21] assume a horizontally 

stratified elastic earth subject to plane harmonic com-

pressional motion at normal incidence. Let each layer be 

homogeneous and isotropic with material of velocity vj and 

density Pk comprising the kth layer so that the reflection 

and transmission coefficients at the interface of the kth and 

k + 1 layers are rk and tk respectively. 

Further, let the travel time through each layer be constant 

such that, for convenience, the one-way vertical travel time 

through any given layer is one unit of time. The model can 

be generalized to layers of varying travel time by assigning 

identical velocities and densities to contiguous layers as 

required. 

Letting dk k+2ml denote the displacement at the top of 

the kth layer due to downgoing wavesat time k + 2m - 1, and 

introducing z 1 as a unit delay operator, the displace-

ment at the top of the kth layer can be described by a 

z- transform summing the appropriate displacements for all 

time, that is: 
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CO 

Dk(z) = E dkk+2m1 

M=O 

Z(k+2m-1) 

Similarly the displacement at the bottom of the kth layer can 

be described by the z- transform: 

= E dkk+2m z(k+2m) 

M=O 

where Dk(z) is related to Dk(z) by a unit delay and a 

z- transform characteristic of the layer Ak(z), so 

Dk(z) = Z'Ak(Z)Dk(Z) 

In the absorption free case A(z) = 1 so that 

2.4 

Dk(z) = Z'Dk(z) 

The displacements resulting from upgoing waves can be 

similarly described. For upgoing waves at the top of layer k 

the z- transform description of resulting displacement is 

CO 

tJk(z) = E Ukk+2m+1 Z(k+2m+ 1) 

M=O 
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For upgoing waves at the bottom of layer k the z- transform is 

= E Uk,k+2m+l z-k+2m 

M=O 

and, assuming no absorption, 

Uk(z) = z' Uj(z) 2.5 

Figure 2.2 illustrates the waves dk, dk, Uk and uk in 

the layered system. Figure 2.3 depicts the relationship of 

all four waves at the k, k + 1 interface at time J. 

Recognizing from Figure 2.3 that each wave is a composite of 

reflected and transmitted waves and recalling the relation-

ships between reflection and transmission coefficients 

described in equations 2.1, the interaction at the k, k + 1 

interface at time j can be described by the two equations, 

tkd = d + ru 
k,j k+1,j k+l,j 

2.6 

tkUk .= rkd 
k+l,j k+1,j 
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Incorporating delays and summing over time index j = k+2m, 

m = 0,1,2,..., equations 2.6 can be reformulated in terms of the 

z- transforms noted earlier, as 

tkDk(Z) = Dk+l(z) + rkUk+1(z) 

2.7 

tkEik(Z) = rkDk+1(z) + 

-Assuming no absorption, so that the transforms for the tops 

and bottoms of the layers are related by a unit time delay, 

as described in equations 2.4 and 2.5, equations 2.7 become 

tkDk(Z) = zDk+1(z) + rkz 10k+1(z) 

tktJk(Z) = rkzDk+1(z) + Z'tik+l(Z) 

These may be rewritten in matrix notation as 

= Mk Dk+1(z) 

Uk+l(Z 
2.8 
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where 4k is a matrix described by 

Mk 1 [ z 
tk rkZ z- 1 

2.9 

Mk is termed the " communication matrix" [ 21, 22] or " scat-

tering matrix" [ 11]. 

The communication matrix Mk is defined for k = 1,2,3.... At 

the interface between 0 and 1 there are no delayed waves in 

the composite so the communication matrix Mn becomes 

1 I 
1 r0 

Mo = -  
tcj ro 

By successive substitution the communication matrix yields a 

chain matrix description of wave propagation through the 

layered system so that 

MoM1M2 ••• Mn Dn+i(z) 

LThn+i 
2.10 

For a system of 1'1 + 1 layers, with layer NI + 1 an infinite 

half space, there will be no upgoing energy impinging on 

interface NI, therefore, tJN+l(z) = 0; furthermore 
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D0 (z) is generally assumed to be a unit spike, consequently 

equations 2.10 can be rewritten [ 22] as 

ji 

L U0 ( z) 
= M0M1M2 .... M D+i(z) 

0 

2.11 

Silvia and Robinson [ 1] recognize that the seismic method 

records upward travelling energy at the top of the first 

layer, that is (Ji(z). In order to take advantage of the 

assumptions employed in equation 2.11 they also reformulate 

the communication matrix equation 2.8 in the form 

where 

U+(z) 

LDk+1z_ 

Mk 

= Uk(z) 

L Dk(z) 

Z I- 1 rz 

tkLrk z2 
2.12 

Comparing 14 in 2.12 with Mk in 2.9 only the " directions" 

of the coefficients have changed, which is as expected. 

Employing Mk in a chain matrix equation for (31(z) under 

the assumptions LJN+1(z) = 0, D1(z) = 1 + r' 0 LJ1(z) 

yields 
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01(z) [ :•1J MN_l•••M1 [ l+r0U1(z)1 

Separating out the multipliers and defining the product terms 

of the chain matrices as follows: 

ztlMnMn_1 ... M1 = rmN (z) MN ( z) 
11 12 

(t'lt'2...t'N)' LmN ( z) MN (z)-1)1 22 

= MN ( z) z 2t'mN ( z- l) — 

MN ( z) z 2NmN ( z'l) 
21 11 - 

the following equation can be extracted from 2.13 

or 

N 

o j m 1(z)0i(Z) + z2NmN 
21 

t' it'.. . t' 

_N  z (z') 
2N m21 

01(z) =   

(z 1) 
21 

Since 01(z) is the z- transform of the response at the 

geophones of the N layered system excited by a unit impulse, 

it follows that the transfer function of the N layered earth 

is EN(Z) = 01(z) [1]. This result provides the earth 

2.14 
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response in the convolutional model which relates the seismic 

wavelet w(n) W(z) to the seismic trace s(n) - S(z) so that 

s(n) = w(n) * eN(n) 

2.15 

S(z) = (z) EN(z) 

The double arrow denotes transform equivalence. 

Provided the N layered earth model is a bounded time-

invariant system, its transfer function can be expressed as a 

rational function of polynomials in a complex variable [ 1]. 

That is 

N 

where 

BN(Z) E bZ 
n=l 

A(z) N az 

n=0 

BN(Z) = -Z-2N 
21 

AN(Z) = m1 (z)_ro 2NmN ( z 1) 
21 

2.16 
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Recursion formulae can be written for the product terms by 

substitution of 2.12 in equations 2.14 [ 1] yielding 

n n-i -2 n-i 

ii 11 n 21 

n n-i -2 n-i 
m ( z) = r m ( z) • z rn ( z) 
21 ii 21 

= 2,3,...N 

Using the recursion formulae under the assumption of small 

reflection coefficients, AN(Z) can be expressed as 

where 

N 

AN(z) = z az 

n=o 

N 

E rnrn+m ; m > 1, N > 1 

n=o 

Similarly, BN(z) can be expressed as 

BN(Z) z bnz = r1z 1 + r2 z-2 + ... + rNzN 

n=i 
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BN(z) is recognized as the z- transform of the reflection 

coefficient series of the earth, r(ri), corresponding to the 

generating function for primary reflections. AN(z) is 

therefore the z- transform of the reverberation series which 

is the generating function for all multiple energy in the N 

layered system. 

Recognition of BN(z) as the z- transform of the reflection 

coefficient series highlights a disreparicy between the con-

volutional models of equations 2.3 and 2.15 rewritten here as 

and 

s(n) = w(n) * r(n) 

s(n) = w(n) * eN(n) 

respectively. 

Taking z- transforms and substituting r(n) R(z) for 

bN(n) BN(z) in equation 2.16, yields 

S(z) = W(z)R(z) 

R(z) 

S(z) = 7(z)   

A(z) 

2.3 

2.15 

2.17 
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Obviously, AN(z) 1 except in an idealized non-

reverberatory system since for the layered system described 

above AN(z) is the z- transform of the entire multiple 

reflection sequence. 

Consequently, the wavelets w(n) W(z) in equation 2.17 must 

differ such that 

S(z) = 1(z)R(z) 

2.18 

R(z) 

S(z) = 7'(z)   

AN ( z) 

where 

(z) 

W(z) =   2.19 

AN (z) 

Equation 2.19 requires that the wavelet employed in the 

convolutional model of seismic data must incorporate all 

multiple reflection information if deconvolution is to recover 

the true reflection coefficient series. This result is not 

widely recognized in the geophysical literature although it 

was stated by Robinson as early as 1954 [ 16, 1]. Industry 
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practice generally fails to distinguish between wavelets J(z) 

and W'(z) in equations 2.18 ( 23] and therefore allows 

implicit bastardization of the " true" reflection coefficient 

such that 

R(z) = 

AN(Z) 

where R'(z) r'(n) represents the true reflection 

coefficient series and R(z), in the industry accepted 

convolutional model, incorporates all multiple reflected 

energy. Under the industry model, then, deconvolution cannot 

yield the true reflection coefficient series; instead 

deconvolutiori is applied only as " wave shaping" to inverse 

filter out the smearing affect of the seismic wavelet. Other 

techniques are deployed to rid the "deconvolved" data of 

multiple reflections. Deconvolution and the rational model 

description of seismic data will be explored further in 

Chapters 3 and 4 respectively. 
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2.4 Data Processing 

The CDP method of seismic acquisition described earlier 

yields multichannel data records with each trace containing 

reflection information from a different point in the sub-

surface. Adjacent records overlap in subsurface sampling and 

the degree of overlap, the number of times each subsurface 

point is included in different records, is called the multi-

plicity or " fold". To achieve the desired output for 

interpretation, the appropriate channels from different 

records which include information from the same subsurface 

point must be collected (" gathered"), corrected by time 

shifts to equate to normal incidence, and summed (" stacked"). 

Much of seismic data processing, therefore, is concerned with 

multichannel techniques employed to compensate for the geo-

metry of acquisition. 

More pertinent to this report are the single channel tech-

niques of scaling, filtering, and deconvolution applied in 

seismic processing. 

Scaling compensates for such effects as spherical divergence 

and absorptive energy loss. The principal purpose of scaling 

is to make the information on the seismic trace, which other-

wise decays rapidly with, time, more visible to the seismic 
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interpreter. Scaling is typically accomplished by appli-

cation of data adaptive multipliers, which normalize energy 

within a given window to some preset value, or by analytic 

time variant multipliers which boost each data sample by some 

function of its time sample value. 

Arguments persist regarding the validity of scaling to pre-

process data for input to subsequent processes. Relevant to 

deconvolution are concerns that scaling destroys the supposed 

minimum phase character of seismic data but that not scaling 

leaves the data time variant. 

Filtering is applied to reduce unwanted noise on seismic 

data. Since there is seldom a discrete frequency cut-off 

separating signal and noise, filter selection requires inter-

pretive judgment of the trade-off between tolerable signal to 

noise levels and desired temporal resolution. Filtering is 

seldom applied prior to deconvolution but again arguments can 

be made both for and against pre- filtering. Clearly decon-

volutions should be designed on signal rather than noise, but 

the previously mentioned trade-off against resolution still 

applies. 

Deconvolution is applied to seismic data to inverse filter 

out the effects of " earth filtering" and yield unambiguous 
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temporally distinct reflection coefficients comprising the 

reflectivity series of the subsurface. The rationale for 

deconvolutiori was described earlier in discussion of the 

convolutional model. Notwithstanding all of the weaknesses 

inherent in the convolutional model, deconvolutiori remains a 

cornerstone of seismic processing and results in improved 

higher resolution seismic data almost without exception. 

Overviews of seismic processing theory and practise are wide-

ly available [ 11, 12, 22, 63, 64]. The literature pertinent 

to deconvolution is more fully referenced in Chapter 3. 
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2.5 Reflection Identification 

For seismic to be useful as an exploration tool it is 

necessary to have some means of equating the appropriate 

reflections to specific geological interfaces of economic 

interest. Geologists ascertain rock units of supposed hydro-

carbon potential from well information and geophysicists then 

attempt to identify the reflections which correspond to the 

selected rock units and correlate these reflections along the 

lines of survey in order to map the distribution of the units 

between points of well control. To effect accurate identifi-

cation synthetic seismograms are generated from well data and 

matched to nearby seismic data. Synthetic seismograms are 

created by determining the reflection coefficient series from 

sonic and density logs and convolving the derived reflection 

coefficient series with a wavelet which approximates the 

seismic wavelet. 

Sonic and density logs are records of the rock velocities and 

densities measured down the well bore with special tools. 

The tools are lowered to the bottom of the well bore and then 

slowly brought up to the surface taking continuous measure-

ments of the adjacent rock properties during the ascent. The 

resultant " log" is the record of the measured rock properties 

as a function of depth. A sonic log, for example, records 
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the variation in the velocity of the adjacent rock with 

depth, yielding a graph of velocity versus depth ( see 

Figure 2.4). Given a relationship between velocity and depth 

at the well it is straightforward to calculate a relationship 

between time and depth which can then be used to relate rock 

units at a given depth with seismic reflections at their 

corresponding times. 

Unfortunately the interference of reflections spaced closer 

in time than the seismic wavelet breadth and the shape of the 

wavelet conspire to make simple time-depth identification 

extremely difficult. Furthermore for practical reasons the 

sonic logs cannot be recorded during the last 100 metres or 

so of the ascent to the surface and consequently a bulk time 

shift to account for the velocity of the near surface must be 

assumed making the time-depth correspondence from surface 

unreliable. 

To overcome these problems in identification synthetic 

seismograms are generated. The sonic and density logs from a 

well are sampled and reflection coefficients are calculated 

with respect to depth as: 

pi+lvi+1 - pivi 
ri = i = 0,1,2, ... N - 1 2.20 
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VELOCITY SURVEY BY RECORDING THE DIFFERENCE 
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PULSE MEASURED AT RECEIVERS 1 AND 2. (t1 ANDta). 
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where N depth samples are assumed. Then using the time-depth 

relationship derived from the velocity log velocity-depth 

plot, ri is mapped into r(n) which is the discrete 

reflection coefficient series with respect to time. 

Convolution of r(n) with an estimated wavelet w(n) yields an 

approximation to the seismic trace which is called a synthe-

tic seismogram ( illustrated in Figure 2.5). By matching 

similar patterns of reflections on the synthetic and true 

seismic traces, and relating these back to the well data, 

very accurate identification of reflections can be achieved. 
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Chapter 3. Wavelet Estimation and Deconvolution 

3.1 Introduction 

The ultimate goal of the seismic reflection method is to pro-

vide unambiguous information on the relative strengths and 

positions of acoustic impedance contrasts in the subsurface. 

Deconvolution is an essential step toward the realization of 

this goal. The convolutional model representation of seismic 

data describes a process whereby the seismic wavelet smears 

the influence of the individual reflection coefficients over 

surrounding coefficients resulting in very ambiguous and 

generally undecipherable composite reflection response. 

Deconvolution attempts to recover the unadulterated 

reflection coefficient series by undoing the smoothing filter 

effect of the wavelet. In the most general sense this is 

accomplished by 1) acquiring an estimate of the seismic 

wavelet, 2) designing an inverse filter which is the inverse 

wavelet, and 3) convolving the inverse filter with the 

seismic data to yield the reflection coefficients. 

The relationship between wavelet estimation and decorivolution 

is obvious. Deconvolution requires an estimate of the in-

verse seismic wavelet. Given an estimate of the seismic 

43 - 
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wavelet, the corresponding deconvolution operator can be 

determined by an inverse technique such as least squares, and 

vice versa. 

A selection of wavelet estimation and deconvolution 

techniques are described in the following review. The choice 

of methods ranges from the deterministic to the purely 

statistical with a full spectrum of intermediate techniques, 

varying widely in the assumptions employed. The following 

review, therefore, is not intended to be exhaustive, but 

rather to illustrate the variety of approaches to wavelet 

estimation and deconvolution catalogued in the literature. 

More detailed and complete reviews are available [ 1, 11, 20, 

23, 27, 55, 63, 651. 
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3.2 Wavelet Estimation Techniques 

The wavelet.estimation problem is just a minor variant of the 

deconvolution problem. Given that 

s(n) = w(n)*r( n ) 

and given s(n), find w(n). 

The mathematics of the problems are identical; solving one 

equation with two unknowns, w(n) and r(n). Clearly any 

deconvolutiori estimation technique which solves for r(n) can 

be -applied in solving for w(n). Rather than repeat descrip-

tion of generally applicable techniques, those described 

below are selected to illustrate approaches unique to the 

estimation of w(n). 
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3.2.1 Signature Capture 

The most obvious approach to estimating seismic wavelets is 

to record the wavelets directly from the first arrivals at 

geophones ( or hydrophones) close to the source of seismic 

energy. Ideally the first arrivals will travel direct 

straight-line paths to the phones and be free from the 

interference of reflected and refracted energy superimposing. 

Also, if the phones are sufficiently close to the source 

absorptive losses and additive noise will be negligible such 

that the recorded signature is a good representation of the 

actual source pulse or wavelet. This technique i's called 

signature capture and has been studied exhaustively by white 

and O'Brien for land seismic sources [ 24] and by the GeoQuest 

group and others [ 20, 25] for marine seismic. Applications 

of the technique in the design of inverse filters for 

deconvolution are presented by Carrol [ 26 1 for marine 

seismic, and Barry and Shugart [ 27], for land seismic. 

The problems with the method are several. Routine signature 

capture from land sources other than Vibroseis is difficult 

because of the need to bury the geophone in proximity to the 

source. Furthermore, the near field response of a dynamite 

explosion in the earth differs significantly from the far 

field response which is really the desired estimated wavelet. 
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However, while the recorded far field response correctly 

includes absorptive losses, it suffers from interference and 

noise. 

Signature capture from marine sources is less difficult and 

is now routine procedure. The direct arrivals can be 

measured without interference by the near hydrophones in 

average water depths or by an auxiliary hydrophone inter-

mediate between the source and near hydrophone group in 

shallow waters or in a survey. çriducted w.ith a particularly 

far offset distance betwen the source and near group. If 

the ecorded signatures are noisy several can be averaged to 

improve signal to noise ratio E261. Marine sources yield a 

.fairly uniform signature and water is essentially isotropic 

so that absorptive losses are consistent from shot to shot. 

A problem o,f the technique common to both land and mariie 

data concerns the validity or utility of the estimated 

wavelet. The signature is captured close to the source to 

minimize absorptive losses and interference, but it could be 

argued that those very effects, particularly the absorptive 

losses, are essential characteristics of the wavelets which 

penetrate the earth, convolve with the reflection coefficient 

series and result in the seismic trace recorded at the 

surface. In other words, the wavelet in the convolutional 
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model ok a seismic trace is not expected to be the source 

wavelet per se'but a modified version thereof. Deterministic 

procedures could be developed to determine the necessary 

modifications to the captured source signature but would 

require empirical measurements at each source position. 

Instead techniques have been developed which estimate the 

seismic wavelet from the seismic trace itself thereby 

incorporating all the modifications inherent in far field 

measurement and more particularly, satisfying the definition 

of the wavelet in. .the convolutional mode. 

Recentand ongoing research is focussed on far field measure-

merit and estimation [ 67]. 

3.2.2 Response of a Known Layer 

An alternative to shot signature capture is to record the 

wavelet response from a known reflector directly off the 

seismic data (28]. In many areas of Western Canada, for 

instance, the Wabamun is a thick uniform carbonate overlain 

by shales and provides a strong and consistent reflection. 

If the interference effects of overlying reflections and 

multiples on the reflection can be assumed to be negligible 

then the wavelet response of the Wabamun can be taken as a 

reasonable estimate of the seismic wavelet. This technique; 
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like signature capture, makes no assumptions about the phase 

of the wavelet. The convolutional model is assumed implicit-

ly since the method is to pick one unchanging wavelet from 

one discrete reflection coefficient. The major assumption is 

that the wavelet is uniquely identifiable. A priori know-

ledge of the wavelet shape is required to choose the start 

and end points of a wavelet from typically ringing, narrow-

band data. 
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3.2.3 Wavelet Extraction by Sonic log correlation 

In instances where seismic data are recorded in close 

proximity to a well location, correlation of reflection 

coefficients derived from the well sonic and density logs 

with the seismic trace provides an estimate of the seismic 

wavelet. The observational data are the seismic trace s(n) 

and the reflection coefficient series r(n); neglecting 

additive noise it is straightforward to determine the 

wavelet. Recall that 

s(n) = w(n)*r(n) 

where s(n) and r(n) are known and w(n) is to be determined. 

Cross-correlating r(n) with s(n) yields 

s(n)*r(_n) = w(n)*r(n)*r(_ n ) 3.1 

where the notation is such that x(n)*y(_ rl ) denotes 

correlation of the series x(n) and y(n); that is 

x(n)*y(_n) = lim E x(n)y(n+m) 

n=o 

CO < m < 

Taking Fourier transforms of both sides of Equation 3.1 
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S(f)•R*(f) = 1(f) .R(f).R*(f) = W(f) I'()I 2 

where the superscript asterisk * denotes the complex con-

jugate. 

On the right hand side of the equation 

R(f).R*(f) = IR(f)I 2 

is recognized to be the Fourier transform of the auto-

correlation of r(n). Obviously the phase of w(n) is pre-

served in the correlation and, better still, only the phase 

of w(n) persists. Furthermore, if the reflection coefficient 

series r(n) can be considered to be white over the correla-

tion interval then IR(f) 2 = K where K is some constant, and 

S(f)•R*(f) - 

or, taking inverse transforms 

s(n)* r (_n ) = w(n)*Ko(n) = kw(n) 

So, the correlation of the seismic trace with the reflection 

coefficient series yields a scaled version of the seismic 

wavelet preserving all phase information, provided the 

reflection coefficient series is white locally. 
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A related technique is the MLS6 shaping filter approach [ 29]. 

That is 

s(n) w( n )* r(n ) 

where the "approximately equals" is properly introduced to 

account for additive noise and the possible deviation between 

the calculated r(n) from logs and true geological r(n). 

Then 

e(n) = s(n) - w(n)*r(rl) 

and w(t) can be determined such that e2 (n) is minimized. 

These methods have in common the assumptions that w(n) is 

stationary, that the additive noise is low- amplitude, random, 

and uncorrelated with other components, and that r(n) as 

determined from the well logs is a good approximation to the 

"true" geological r(n). 

It is this latter assumption that gives rise to most of the 

problems of the method. The correspondance between the r(n) 

derived from well logs and the " true " geological r(n) is 
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seriously affected by long period multiples ( which, ironi-

cally, are present in the " true " r(n) and not the derived 

r(n)) and by the accuracy of the log data and the dependant 

depth to time conversion. As discussed more fully in 

Chapter 2 well logs are recorded in depth and so must be 

converted to time prior to correlating with the seismic data. 

These sonic log correlation techniques of wavelet extraction 

are considered to be semi-deterministic because of their 

development from the log data as well as the recorded trace. 
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3.3 Decorivolution Techniques 

The basic decorivolution problem -is now familiar. Given that 

s(n) = w(n)*r(n) 

and given s(n), determine r(n). 

The obvious approach is to design a wavelet inverse filter 

g(n) such that 

s(n)*g(n) = w(n)*g(n)*r( n ) 

= r(n) 

or taking Fourier transforms 

S(f) = '7(f)R(f) 

and solving for R(f) 

R(f) = S(f) 

W ( f) 

Unfortunately, these are one equation with two unknowns so 
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certain assumptions must be made in achieving a solution. 

In the following, selected deconvolution techniques are 

described. 

Inverting the wavelets output from the previously described 

estimation schemes would yield deterministic to semi-

deterministic deconvolutjons. The methods described below 

are clustered at the statistical end of the spectrum of 

techniques. 
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3.3.1 Least Squares Spiking Deconvolution 

The deconvolution technique most widely used in the geophy-

sical industry remains the original least squares inversion 

method proposed by Robinson in 1954 ( 16). The approach is to 

design a least squares shaping filter g(n) which will convert 

a sequence w(n) into a desired output d(n). The discrepancy 

between the actual output of the filter c(n) and the desired 

output d(n) is called the error e(n). The filter g(n) is 

therefore designed so as to minimize the energy of the error. 

Typically the input sequence w(n) is assumed to be the seis-

mic wavelet and the desired output sequence d(n) is chosen to 

be a spike situated at, the origin d(n) = ô(o), so the filter 

g(n) becomes the least squares inverse of the seismic wave-

let. Since the seismic wavelet is generally not known a 

priori certain assumptions are made allowing the recorded 

seismic data s(n) to be used as the input sequence and modi-

fied in the least squares process so that in an indirect way 

the least squares spiking decorivolution process implicitly 

makes an estimate of the seismic wavelet by calculating its 

inverse. 
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The general least squares inversion procedure is straight 

forward. The problem is to design a least squares shaping 

filter g(n) of length £4 which will convert an input sequence 

w(n) of length t1 into a desired output sequence of length 

£4 + N - 1. Denoting c(n) as the actual output of g(n) the 

error is e(n) = d(n) - c(n), or 

['1-1 

e(n) = d(n) - 2 g(k)w(n-k) 

k=c 

The energy of the error is then 

M+t1-2 £4-i 

E = 2 e2 (n) 2 [ d(n) - 2 g(n)w(n-k)] 2 

n=o n=o k=o 

To solve for g(n) so as to minimize the energy of the error 

-partial derivatives are taken with respect to each 

coefficient of g(n) and set to zero; so for coefficient g(i) 

i = 

£4+N-2 £4-i 

2 { 2[d(n)- 2 g(n)w(n-k)](-2(n-i)]} = 0 

n=o k=o 
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or, collecting terms 

tM-i I4+N-2 

E g(k) E w(n-k)w(n-i) = E d(n)w(n-i) 

k=o n=o n=o 

which can be written as 

tM-i 

E g(k)R(i-k) = Rdw (1) 

k=o 

where R(k) is the autocorrelation of w(n) 

tM-i 

Rw(k) = E w(n)w(n+k 

n=o 

and Rdw(k) is the cross-correlation of d(n) and w(n) 

M+N-2 

Rdw(k) = E d(n)w(n+k) 

n=o 

3.2 
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Equations 3.2 are the familiar normal equations which are 

conveniently written in matrix form as 

Rw (0) 
Rw ( 1) 

Rw( 1).... Rw(M- l) 

'w( 1) Rw(M- 2) .... Rw(0) 

g(o) 
g(1) 

g(1-1) 

Rwd (0) 
(1) 

Because of the To,,e,p.litz form of the matrix, g(n)can be solved 

for very efficiently with the Weiner- Levinson algorithm ( 1, 

11, 16]. 

It can be shown that the causal least squares inverse filter 

with finite duration of any causal energy bounded sequence is 

a minimum phase sequence ( 11 1. Seismic wavelets are energy 

bounded sequences and 

therefore if a causal 

the traditional spike 

filter is necessarily 

are generally assumed to be causal, and 

output sequence is desired, for example 

at the origin d(n) = o(o), then the 

minimum phase. Therefore an important 

property of least squares deconvolution is that it harbours 

the tacit assumption of minimum phase. 
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As mentioned earlier the least squares process uses the 

seismic data,s(n) as input and indirectly assumes the wavelet 

w(n) in the design of the inverse wavelet g(n). This follows 

from certain assumptions about the autocorrelation of the 

seismic trace and of the seismic wavelet. 

Assume noise free seismic data s(n) resulting from the 

convolution of the reflection coefficient series r(n) and the 

seismic wavelet w(n), so s(n) = w(n)*r( n ). 

In the least squares procedure the autocorrelation of the 

input sequence is used rather than the actual data so in 

terms of autocorrelatioris 

R5 (k) = Rw (k)*Rr (k) 

Now if the reflection coefficient sequence r(n) is totally 

random or " white" then Rr(k) = Kô(o), that is a spike at 

the origin, so that 

R5 (k) = Rw (k)*Ko(o) = KRw(k) 
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K is a constant related to the energy of the seismic data so 

assuming unit wavelet energy K = R5 (o) and therefore 

R5 (k) 

RS (0) 

= Rw(k) 

Employing the normalized autocorrelat.ion of the seismic 

signal in the spiking least squares procedure, therefore, 

implicitly assumes an estimate of the seismic wavelet and 

explicitly derives its inverse. The actual wavelet can be 

recovered by least squares inversion of the inverse wavelet, 

or by simply convolving the inverse wavelet with a spike. 

Figure 3.1 shows wavelets derived by the Levinson routine 

allowing inverse avelets of varying length. 

The assumptions of the technique are as follows. 

1. The inverse filter is minimum phase. 

2. The reflectjon coefficient series is white. 

3. The noise in the seismic data is negligible. 

4. The seismic wavelet ( or the inverse filter) is time 

invariant. 
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The technique is considered to be purely statistical since no 

observational information is employed in the filter design. 

However empirical evidence for the assumption of white 

reflectivity is easily obtained by transforming reflectivity 

sequences r(n) derived from sonic and density logs at wells 

proximal to the seismic recording. Appendix A discusses the 

validity of the white r(n) assumption and illustrates with 

transforms of eighteen sonic derived reflectivity sequences 

that the assumption of whiteness is not unreasonable. 
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3.3.2 Frequency Domain Least Squares 

Deconvolutions are not commonly designed in the frequency 

domain because of numerical problems. Nevertheless, inverse 

filter design is easily formulated in the frequency domain 

and consequently merits review. 

As stated earlier, the convolutional model can be expressed 

as a simple multiplication in the frequency domain 

S(f) =( f)•R(f) 

Deconvolutiori is therefore accomplished by division and 

inverse transformation back into the time domain. Again 

there is the problem of one equation and two unknowns but 

assuming r(n) to be random, R(f) is white; that is, it has 

constant. magnitude, K. 

So deconvolution can be formulated as 

S( f) 

R(f) = KeJ() - 

W ( f) 

This does not yield the desired R(f) of course, but offers an 

approach to the design of an inverse wavelet, G(f) 
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1 KeJø(f) 

G(f) = 

W(f) S(f) 

Since this equation still has two unknowns, ( K is a constant, 

its value irrelevant), an extra explicit assumption has to be 

made regarding phase. The phase assumption was implicit in 

the least squares spiking inverse technique employing 

Levinson recursion. 

If minimum phase is chosen, for example, j G(f) I is easily 

determined as the quotient of K and JS(f)j and the phase is 

calculated with the Hubert transform. 

If noise is present, G(f) can be selected so that the mean 

square error is a minimum. This is accomplished by windowing 

G(f) by a non-causal function of the power spectral density 

function of the seismic signal s(n) and the noise n(n). The 

noise is assumed to be additive and uncorrelated. The window 

restricts the gain of the inverse filter in regions where the 

signal to noise ratio is small. 
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3.3.7 Homomorphic Deconvolution 

Homomorphic deconvolution is a non-linear technique which 

transforms signals combined by convolution into signals 

combined by addition, linearly separates the transformed 

signals, and then inverse transforms the separated signals 

back as deconvolved components of the original input data. 

The technique requires no knowledge or assumptions about the 

phase of the seismic wavelet or the distribution of reflec-

tion coefficients. In practice, however, these considerable 

advantages are outweighed by computational problems and at 

present homomorphic deconvolution is not widely utilized by 

the seismic geophysical community. 

Homomorphic deconvolution is based on the work of Oppenheim 

on generalized superposition [ 30]. The application to 

seismic deconvolution was explored by Qirych [ 31], Stoffa 

et al [ 32], •Buttku '[68], and Triholet [ 331, [ 341. 

Generalized superposition requires that 

H[c:x1 V d:x2] = C1[x1] A djH[x2] 3.3 
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where 

V is a rule for combining inputs 

is a rule for combining outputs 

: is a rule for multiplying inputs with scalars 

1. is a rule for multiplying outputs with scalars 

H( I is a rule for system transformation, yj(n) = H(xi(n)I 

Equation 3.3 defines a homomorphic system H( I. Oppenheim 

(30] has demonstrated that for such systems the operation 

H( I can be realized by a canonic representation where the 

output of a characteristic transform D( I is input to a 

linear time invariant system L( I and subsequently inverse 

transformed by D 1( I as shown in Figure 3.2. The 

importance of this decomposition is that the output of 

generally non-linear D[ ] can be processed using standard 

linear filter techniques. 

For seismic signals convolution is the rule for combining 

inputs, where the inputs are the seismic wavelet w(n) and the 

reflection coefficient series r(ri). Homomorphic deconvolu-

tion invokes a characteristic transform D[ I such that 

summation is the rule for combining outputs. 
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D[w(n) * r(n)] = D[w(n)] + D[r(n)] 

This is achieved by Fourier transforming the convolution of 

w(n) and r(n) and taking the complex logarithm of the result. 

The inverse Fourier transform is then taken yielding the 

complex cepstrum in the pseudo- time domain, '( n). 

That is 

s(n) = w(n) * r(n) 

taking Fourier transforms 

S(f) = W(f)R(f) 

then taking complex logarithms 

log[S(f)] = log[W(f)] + log[R(f)] 

which can be denoted 

5(f) = q(f) + R(f) 

finally, taking inverse Fourier transforms 

s(n) = w(n) + r(n) 
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The above sequence of operations realize the characteristic 

transform D( I as depicted in Figure 3.3. 

An important characteristic of the cepstral domain is that the 

cepstra of sequences with smooth amplitude spectra tend to 

concentrate around the origin. Since seismic wavelets are 

expected to have smooth spectra compared to the reflection 

coefficient series, low pass filtering of the cepstrum 

preserves wavelet information while attenuating reflection 

coefficient components. High pass filtering does the 

opposite. Homomorphic deconvolutiori, therefore, achieves 

isolation of the seismic wavelet or the reflection coeffi-

cient series by simple linear filtering in the cepstral 

domain. The isolated cepstra are then transformed back into 

the time domain by D 1[ I. D 1[ I involves Fourier 

transforming, exponentiating, and then inverse Fourier 

transforming to get cepstral components from the pseudo- time 

domain to the time domain. The whole canonic system realiz-

ing Homomorphic decorivolution is shown in Figure 3.4. 

Homomorphic deconvolution is conceptually appealing. It 

requires few explicit assumptions and separately yields both 

the seismic wavelet and the reflection coefficient series. 

Unfortunately the technique is plagued by computational 

problems arising from a variety of implicit assumptions. 
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Aside from numeric problems of computing the true complex 

logarithm of the transformed data there are three major 

concerns. 

Firstly, separation of the wavelet components and the reflec-

tion coefficient components in the cepstral domain is not 

entirely straightforward. Reflection coefficient components 

generally persist near the origin in the cepstral domain 

where the wavelet components cluster, so that low-pass 

cepstral filtering intended to preserve wavelet components 

necessarily ihcludes some reflection components. Ironically 

it is necessary that the reflection coefficient series be 

minimum phase to realize adequate separation in the cepstral 

domain. Stoffa et al [ 32] recommend exponential weighting to 

insure a minimum phase reflection coefficient series. 

Secondly, aliasing of the phase spectrum creates uniqueness 

problems in specifying the complex logarithm of Fourier 

transformed data. That is 

S(f) = log[S(f)] = log IS(f)I + 

where 

= tan- 1 IM S(f)  

Re S(f) 
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Since the inverse tangent function is multivalued the phase 

is necessarily ambiguous. 

Several techniques have been prescribed for phase determina-

tion but none are completely effective [ 33], [ 34]. 

Thirdly, oversampling in the time domain creates severe 

problems. Inherent in the characteristic system is the 

requirement of full band data; zeroes in the frequency domain 

become unrealizable infinities in the log- frequency domain. 

Tribolet has detailed a time resacnpling procedure to guaran-

tee against zeroes the frequency domain in consideration of 

the severely band- limited nature of seismic signals ( 33]. 

The procedure is shown in Figure 3.5 
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3.3.4 "Optimal Deconvolution" Using State Variables 

A very involved deconvolution scheme has been developed by 

Mendel and his students at U.S.C. over the past five years 

[35]. Described as optimal deconvolution because of its 

affinity to optimal Kalman filtering the technique represents 

the seismic process by a state variable model and yields a 

maximum likelihood estimate of the reflection coefficient 

series via a complicated iterative scheme which requires the 

separate but dependant estimation of the statistics of the 

reflection coefficients, the position of the reflection 

coefficients, the seismic wavelet, and ultimately the magni-

tude and polarity of the respective reflection coefficients. 

The method provides a model which can accommodate fewer 

constraints than previously described techniques. The 

principal advantage is' that time-varying signals can be 

handled. The state variable model can also be modified to 

incorporate effects such as instrument response and spherical 

divergence. The technique assumes a white Bernoulli-Gaussian 

sparse spike reflection coefficient series and an ARMA ( p,q) 

representation of the seismic wavelet. Other minor assump-

tions will be discussed as they occur in the following 

summary description of the method. 



- 76 - 

The convolutional model of seismic data can be expressed in 

terms of a state variable model. That is, the convolutional 

model 

s(k) = w(k) * r(k) + n(k) 

can be equivalently described by the state equation 

x(k + 1) = x(k) + a r(k) 

and the corresponding measurement equation 

s(k) = hTx(k) + n(k) 

is an ri x n transition matrix, a is an n x 1 input distri-

bution vector, and h is an n x 1 observation matrix. Under-

lined variables denote vectors. The equivalence of the 

convolutional and state variable descriptions requires that 

x(o) = o, r(o) = o, w(o) = o, and 

w(l) = hTl a 
, 1 = 1, 2r .... 

These conditions specify that the initial state is zero, that 

there is no direct reflection, and that the wavelet is not 

only causal but zero valued at zero time. 
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The appropriate choice of transition matrix , input 

distribution vector a and observation matrix h results in an 

ARMA ( p,q) model representation of the seismic wavelet w(k), 

that is: 

x1( k+1) 

x2( k+1) 

x( k+1) 

and 

0 1 0...0 

0 0 1.. . 0 

-a _a 1 -a 2 -a1 

CD 

5T() = ( bn, bn_i l ..* 
b) x(k) 

hT 

x(k) 

+ 

0 

0 

1 

where ST(k) denotes the " true " seismic signal, uncon-

taminated by noise, so that s(k) = ST(k) + n(k). 

r( k) 

w(k) can then be expressed in z- transform notation as an ARMA 

(p,cj) process. 
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w(z) 

b1z' 1 + b2zn - 2 + •... b_1Z + b 

n + a1zn1 + .... a_1 + an 

note that this description implicitly requires at least one 

less zero than poles. 

To accomplish deconvolution using this state variable model 

of the seismic process, the variance of the state vector x(k) 

is minimized with a Kalman optimal smoother. The variance of 

the state vector x(k) is equivalent to an estimate of the 

reflection coefficient series r(k) under a " sparse spike" 

assumption. That is, for any combination of wavelets and 

reflection coefficients which convolve to produce the 

observational data the reflection coefficient series with the 

fewest reflections ( but more than one) is considered to be 

the best estimate, and its corresponding wavelet is the best 

wavelet estimate. The reflection coefficient series is 

further assumed to be Bernoulli-Gaussian. That is 

r(k) = EItiôk m 
1 

Where the mi are randomly occurring integer values' of dis-

crete time and 5k,mi = 1 for k = mi and ôk,ml = 0 for k * m 1 . 

denote a set of identically distributed uncorrelated 

Gaussian random variables, statistically independent of the 

m. Under this model E{r 2 (k)} = 5 2 X where X is the 
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average number of spikes occurring within the subject length 

of data. The sparse spike assumption constrains X to the 

minimum value compatible with the data. 

Optimal deconvolutiori attempts to simultaneously determine 

r(k) and w(k) in an involved updating procedure which inter-

relates the parameters of r(k) and w(k) to effect a jointly 

optimal solution. To determine r(k) the number of reflection 

coefficierits,X, must be determined, so must the position of 

the spikes q ( related to rn) and their amplitudes p(k). To 

determine w(k) the AR4A coefficients a and b must be deter-

mined. In order to accommodate noise in the system, the 

variance of the noise p must also be determined. The para-

meters a, b, and p are treated together as a vector of 

statistical parameters 8. Parameter q is solved for in loose 

conjunction with X in a separate iterative loop. The block 

diagram of Figure 3.6 illustrates the overall 

computational scheme and some of the components. The hat 

symbol "''i denotes an estimate. An initial guess at the 

parameters e initializes the event detector which solves for 

q, the value X is then updated and fed back into the event 

detector. When a converging estimate q is found the algo-

rithm drops to an outer loop in which the parameters e are 

updated in a maximum likelihood scheme. These updated 0 
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estimates are then fed back into the event detector and a new 

q and X are obtained. This procedure ensures that overall 

likelihood increases. When convergence in both loops is 

achieved ( k) can be estimated in one pass with the estimated 

parameters through a Kalman optimal smoother which provides 

the minimum variance estimate of the state equation for which 

all the parameters are now provided. This result, P.(k), 

finally allows for the determination of r(k) by r(k) = P(k)q(k). 

The seismic wavelet is provided by the optimal estimates of a 

and b. 

The state variable representation of the seismic process 

promises fewer constraining assumptions than conventional 

least squares techniques and the facility for incorporating 

deterministic processes such as spherical divergence directly 

into the seismic model. The iterative 1t blockcomponentt1 

method of Mendel et al [ 35] described above has the addi-

tional advantages of providing maximum likelihood estimates 

of the wavelet parameters and the placement of the reflection 

coefficients, and an optimal estimate of the reflection 

coefficient series. 

The principle disadvantage of the method is the required 

computational intensity; the maximum-likelihood solution 

requires non-linear gradient search optimization. 
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The state variable model turns out to be less flexible than 

expected in practice. The restrictive assumptions of the 

least- squares technique require the data to be time invariant 

and the reflection coefficient series to be Gaussian. The 

state variable model allows time variance but only in the 

reflection coefficients; it is the wavelet that is expected 

to be time variant in seismic data. The state variable model 

also allows relaxation from the requirement of Gaussian 

reflection coefficients but only so far as to permit 

Bernoulli-Gaussian statistics, which still require the 

reflection coefficient series to. be white. 

One final weakness in the state variable approach is that 

rather than minimizing a physically meaningful criterion, 

such as mean squared error, the minimization is performed on 

the variance of the state variable equation which has no 

physically interpretable meaning. 



Chapter 4. Estimation Techniques Employing Linear ARMA ( p,q) 

Models 

4.1 Introduction 

Much of the recent literature in signal processing and time 

series analysis concerns the estimation of spectra using 

linear models. Linear models represent signals as linear 

combinations of their past values and the past and present 

values of a hypothetical input signal which is generally 

assumed to be white noise with variance The corres-

ponding models in the frequency domain are rational functions 

of polynomials whose coefficients specify the poles and 

zeroes of their spectra. 

It is particularly convenient to consider linear models in 

terms of filter theory. The linear model of an observed time 

series ( e.g. seismic trace) corresponds to the transfer 

function of the filter required to generate the observed 

trace from a white noise input. That is, the linear model is 

the filter, white noise is the filter input, and the observed 

trace is the resultant filter output. This relationship is 

illustrated in Figure 4.1. 

- 83 - 



- 84 - 

INPUT FILTER OUTPUT 

<(n) h(n) (n) 

x(n) * hcn) - y(n) 

X(z) H(z) Y(z) 

xCn) a WHITE NOISE ' INNOVATION' 
OR " SHOCK SEQUENCE 

h(n) a LINEAR TIME INVARIANT 
FILTER IMPULSE RESPONSE 

Figure 4.1 LINEAR WHITE NOISE MODEL 



- 85 - 

Linear models are especially suited to the representation of 

seismic data. As described in Chapter 2 seismic data is 

considered to be the result of seismic wavelet convolved with 

a random reflection coefficient spike series. 

An equivalent description of the process is that the reflec-

tion coefficient spike series is filtered by the seismic 

wavelet. The seismic wavelet is consequently the impulse 

response of the earth filter which comprises all of the 

effects which modify the assumed spike input, resulting in 

the seismic wavelet. Therefore, although geophysicists tend 

to consider the seismic process strictly in terms of the 

seismic wavelet travelling into the earth and encountering 

and responding to the reflection coefficients in a directed 

convolution, it is equivalent to consider the spike series as 

passing through a filter whose impulse response is the 

seismic wavlet and yielding to the seismic trace. As such 

the seismic process is ideally represented by linear model-

ling. The reflection coefficient spike series corresponds to 

the white noise input, the seismic trace corresponds to the 

output, and the seismic wavelet corresponds to the linear 

model filter whose parameters must be determined. 
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Linear models have a number of advantages. Since the 

parameters of th& model specify the transfer function of the 

equivalent filter, calculation of a power spectrum and an 

inverse filter are straightforward once the model parameters 

have been determined. Furthermore, given the correct choice 

of model, it is usually sufficient to estimate a relatively 

small number of parameters and therefore very accurate 

results can often be obtained with short data lengths. 

The disadvantages of linear models are that the model type 

must be known a priori and parameter determination is often 

difficult. Most troublesome is the specification of a model 

order [ 5, 6]. 

The most general of the linear model formulations is the 

pole- zero or auto -regressive- moving-average model with a 

th order demoninator polynomial ( p>o) and a qth 

order numerator polynomial ( q>o). 

B H(z) (z) 
A( z) 

B(z) = b0 + biz - 1 + b2 Z-2 + .... + bqz 

A(z) = 1 + a1z 1 + a2 z-2 + .... + azP 



- 87 - 

This model is conveniently denoted as ARMA ( p,q). The ARMA 

(p,q) model is of particular interest in the representation 

of seismic signals because the seismic process is considered 

to be expressible in this way. Unfortunately, because of the 

difficulty in estimating the coefficients or parameters of 

ARMA ( p,q) models there has been little interest demonstrated 

in the geophysical literature in pursuing the advantages of 

ARMA ( p,q) models in either spectral analysis or seismic 

deconvolution. 

By far the most popular of the linear models is the all- pole 

or auto- regressive model. The auto-regressive model has a 

pth order denominator coefficient ( p>o) and zeroth 

order numerator of unit value. 

A(z) 

A(z) = 1 + a1z 1 + a2 z- 2 + ... azP 

The model is denoted AR ( p). Although use of the AR ( p) 

model in spectral estimation is relatively recent and remains 

the subject of the bulk of the literature in the field of 

modern spectral estimation, its use in geophysics dates back 

to the early days of deconvolution where its application was 

implied in the recursive scheme ofWiener-Levinson advocated 
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by Robinson [ 16]. Most of the recent contributions to the 

methodology of decorivolution are variations on AR ( p) models 

[27, 55, 69]. 

The last of the linear model formulations is the al-1- zero or 

moving-average model which has a qth order numerator 

polynomial ( q>o) and a unit denominator. 

H(z) = B(z) 

B(z) = b0 + b1z 1 + b2 Z-2 + .... + bz 

The moving-average model is denoted MA ( q). Classical lag 

window spectral estimation techniques are expressible as MA 

(q) models as are Ricker seismic wavelets [ 11]. 

Table 4.1 provides a. summary description of the three linear 

model types. In this study the concern is with ARMA ( p,q) 

models and their application to seismic deconvolution and 

-wavelet estimation. 



AR ( p) 
H(z) = 

(all- pole) 

1 = 1 

A(z) 1+aiz 1+a2z 2+...azP 

p 
y(n) = 1 - E a1h(n-i) 

i=o 

MA ( q) 

(all- zero) 
R(z) = B(z) = bo+bil+b2z 2+...b qz Y(n) = E b.x(n-i) 

1=0 

ARMA ( p,q) 
H(z) = 

(pole-zero) 

B(z) = bo+biz1+b2z 2+...bqz 

A(z) 1+a1z 1+a2z 2+. . azP 

q p 
y(n) = E bx(n- i) - 2 ah(n-i) 

i=o i=1 

Table 4.1 Linear white Noise Models 

y(n) = h(n)*w( n ) 

x(n) is a white noise innovation sequence 
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AUTOREGRESSIVE ( AR) MODEL 

x(n) 

1  X(z) 
l+atzt+aaze+. . . azP 

MOVING AVERAGE ( MA) MODEL 

x(n 

Y(z)- b0 + btz 1 + baZ 2+•••bq zQ X(z) 

AUTOREGRESSIVE - MOVING AVERAGE ( ARMA) MODEL 

x(n) 

Y(z) b0 + bz i + b2z+" I- bz X(z) 

+ at Z + O Z +•• • + a z 

y( n) 

W( n) 

y(n) 

Figure 4.2 DIRECT FORM REALIZATIONS AND Z-TRANSFORM 

DESCRIPTIONS OF THE THREE LINEAR MODEL TYPES 
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4.2 ARMA ( p,q) Representation of Seismic Signals 

The motivation for applying ARMA ( p,q) models to the analysis 

of seismic data is that seismic data is considered to be 

expressible as ARMA ( p,q) and hence such a model will provide 

the most parsimonious parameterization. The only formal 

development of the ARMA ( p,q) characterization of seismic 

data in the literature is by Robinson [ 36, 37] and is 

described below. The Robinson model is considered to be too 

restrictive and of little value in modelling because of its 

assumption of lossless transmission and its development from 

a unit spike rather than white noise input. A preferred ARMA 

(p,q) seismic signal characterization is offered and is 

developed descriptively drawing from the work of Ricker on 

the properties of seismic wavelets and the work of Robinson 

and others on the feedback characteristics of horizontally 

stratified media. This Ricker/Feedback model assumes the 

reflection coefficient series as a white noise input and 

consequently models only the seismic wavelet whereas the 

Robinson model models the entire seismic trace. Gutowski and 

Frisillo [ 38] developed a model similar to the Ricker/ 

Feedback model for analysing the absorptive properties of 

rocks under ultrasonic excitation. 
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4.2.1 Robinson ARMA ( p,q) Seismic Model 

Assuming a lossless horizontally stratified earth model 

Robinson (361 demonstrated that a seismic trace can be 

expressed as an ARMA ( p,q) model ( p = q) with a z- transform 

given by 

R(z) = D(z) 
C(z) 

where C(z) the moving-average component represents the 

desired primary events on the seismic trace, corresponding to 

reflections from geologically meaningful interfaces between 

rock types, and D(z) the auto- regressive component represents 

the reverberation characteristic waveform shape. 

Using the seismic model of a horizontally layered elastic 

medium with homogeneous and isotropic layers subject to plane 

compressional motion at normal incidence ( see Chapter 2) 

Robinson's development invokes energy considerations; since 

the system is lossless the energy input to the system must 

equal the output from the, system. Given a unit spike input 

and characteristic impedances of Z0 and Z1 respect-

ively for the air and the basement rock 

Z0 = Z0 R(z)R(z- 1) + Z1T(z)T(z-l) 
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where R(z) is the z- transform of the reflected ( upgoing) 

wavetrain and T(z) is the z- transform of the transmitted 

(downgoing) wavetrain. The reflected wavetrain R(z) is the 

seismic trace which is recorded at the surface. Isolating 

R(z), therefore, 

Z1j1 

1 - R(z)R(z- 1) = z0 T(z)T(z- 1) 4.1 

The characteristic impedances are related to the transmission 

coefficients as demonstrated in Chapter 2 

tn = 
2Z 

Zn + Zn+1 

and consequently 

t n 
2Zn+i 

Zn + Zn+1 

t' = Z1 and t't'1 ... t' = Z1Z2...ZN = Z1 

t ZN ZO Z1 ... ZN Z0 4.2 

Using an earlier argument that the sedimentary system acts as 

a pure feedback system in producing the transmitted wave, 

T(z) must be proportional to the reciprocal of a polynomial 
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D(z). Choosing D(z) sothat its leading coefficient is unity, 

the proportionality factor is equal to the downward 

transmission factor. Therefore the transmitted wave can be 

expressed as 

T(z) = t0 t1 ... T 4.3 

D(z) 

Substituting the results of -4.2 and 4.3- in 4.1 

where 

1- R(z)R(z-1) = t'ot'l .... t'N 

to t 1 .. .. tN 

= 

D(z)D(z- 1) 

(t0 t1 ..... tN) 2 

D(z)D(z- 1 ) 4.4 

= t'Qtot'ltl .... t'NtN = (1_r 20)(1_r 21)....(1_r 2N) 

Since R(z) is the reflected wave recorded at the surface and 

N2 is a constant, D(z) and the value of aN2 can be 

determined as follows. 
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The autocorrelation of the seismic trace is computed 

M 

Rs(k) = E s(n+k) s(n) 

k=o 

then since the source is assumed to be a unit spike input its 

autocorrelation is a unit spike at zero lag and the difference 

between the source and trace autocorrelations, which is also an 

autocorrelation, is given by 

Rx(0) = 1-RS (0) 

Rx(k) = 5 (k) , k 0 0 

Note that the z- transform of this autocorrelation function is 

formed by the left hand side of equation 4.4. That is, taking 

z- transforms 

z{Rx(k); k = o, ± l,...+M} = l-R(z)R(z-1) = D a N2 
(z)D(z- 1) 

where z{ } denotes the z- transform operation: 

CO 

Z{x(n)} = E XnZ 

n=-co 
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The coefficients of D(z) are calculated by solving the normal 

equations 

N 

E di Rdx(-k) 
i = o 

for k = 1,2,....N 

The constant Y 2 can then be determined by 

N 

= E di R5 (i) 

i = 0 

An important feature of D(z) is that because from 4.3 

D(z)T(z) = t0t1 ... t = constant 

D(z) must be the z- transform of the prediction error filter 

which compresses the transmitted wave T(z) to a spike. 

The feedforward or moving-average component of the reflected 

seismic trace is invoked by similar means. The reflected 

seismic trace comprises direct reflections and delayed 

reverberated reflections increasing in abundance and variety 

with each successive layer. For the nth layer the 

contributions can be described by 

= - rIn + tnRn_lt'nZ + tnRn_1r'nRn_1tnz 2 +... 
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which can be factored to yield 

r' + tnRnit'nz [ l+r'nRn_lz+(r tn_iz) 2 +...] 

Using the geometric series the expression for R(z) becomes 

the more manageable 

r'+ tnRn_lt' nz 
= 

1 - rR_iz 

The reflected seismic trace R(z) which comprises all of the 

R(z)fl for n = O,1,2 .... N is, therefore composed of a melange 

of purely reverberatory transmitted waves, characterized by 

the reciprocal of the polynomial D(z), and the purely feed-

forward reflected energy which can be characterized by the 

polynomial C(z) resulting in the total reflected seismic 

trace R(z) characterized by 

C(z) 

R(z) = D(z) 

flubral et al subsequently demonstrated that this result is 

equivalent to a sum auto-regressive characterization of the 

seismic process with higher order auto- regressive terms [ 39]. 
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It is recognized that this discussion does not constitute a 

proof of the ARMA ( p,q) model characterization of the seismic 

reflection trace. It is intended only to provide motivation 

for the preferred application of ARMA ( p,q) models in the 

representation and analysis of seismic data. Ironically the 

ARMA ( p,q) characterization developed by Robinson argues 

against the use of ARMA ( p,q) models in the analysis of 

seismic data. The model intimates a correspondence between 

the coefficients of the numerator feedforward polynomial and 

the reflection coefficient series, 

(c0, c1 ..... c) 5 ( rg, r1 ..... rN) 

Consequently the ARMA ( p,q) representation of the data 

includes the entire trace and not just the wavelet. Decon-

volution with the ARMA ( p,q) model would yield not the 

desired reflection coefficient series but the source spike 

alone. This, however, is consistent with the assumptions on 

which Robinson's development is based. Generally in linear 

modelling a white noise input is assumed and in applications 

to seismic data the reflection coefficient series is 

typically considered to constitute the white noise excitation 

so that the model parameterizes the source wavelet and 

subsequent modifying influences such as earth filtering. But 

Robinson's model was developed with a unit spike excitation 
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representing the source wavelet. The model, therefore, had 

to include all modifying influences between that spike source 

wavelet and the resultant reflected seismic trace and 

predominant amongst those modifiers are the reflection 

coefficients. 

It would seem then that an AR ( p) model with an assumed white 

noise excitation corresponding to the 'ef1ection coefficient 

series should provide as useful an analytical tool as an ARMA 

(p,q) model with a unit spike input for handling seismic, 

data. The ARMA ( p,q) model of Robinson, however, makes no 

assumptions about the statistical properties of the reflec-

tion coefficient series. The AR ( p) models will overfit to 

compensate for a non-white reflection coefficient series and 

may thereby incorporate geological information in the model. 

AR ( p) deconvolution, therefore, has an undesirable potential 

for deconvolvirig geology. The AR ( p) component of the 

Robinson ARMA ( p,q) model would not suffer the same 

overfitting problems and if isolated should provide a 

superior model for the design of deconvolution operators. 
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4.2.2 Ricker/Feedback ARMA (p,q) Seismic Model 

The Ricker/Feedback model depicts the absorptive earth 

filtering effect as a moving-average process, the reverbera-

tory feedback characteristics of multiple reflectors as an 

auto-regressive process, the reflection coefficient series as 

white noise input to the model and the recorded seismic data 

as the model output. The result is a more general and useful 

model representation of seismic data than offered by 

Robinson. 

The moving-average description of the absorptive earth 

filtering process is derived from the work of Ricker on wave-

let theory. The auto-regressive description of the feedback 

process is familiar from Chapter 2 and was employed in the 

Robinson model. 

In the early 1940t5 Norman Ricker developed the " Wavelet 

Theory of Seismogram Structure [ 40 - 43]. His work was 

motivated by the failure of classical wave theory to describe 

observed seismic data, and was revolutionary in its descrip-

tion of the seismogram as a superposition of transient wave-

forms varying in amplitude but deterministic in shape, or 

character. Ricker's work implied but fell just short of 

stating the convolutional model of the seismogram as a 



- 101 - 

wavelet convolved with a reflection coefficient series. 

Robinson and others at MIT in the early 1950's formally 

recognized the convolutional model implied in the work of 

Ricker and brought the then recently developed field of 

signal processing to bear on the enhancement of seismic 

data - the most important result of which was development of 

the process of seismic deconvolution. 

Although in retrospect providing the foundation for the 

development of the convolutional model is the most important 

result of Ricker's work, what Ricker developed was a theory 

describing transient waves in visco-elastic media. Classical 

wave theory does not allow for the absorptive effects of 

internal friction as wave passes through the earth so Ricker 

used Stoke's wave equation which incorporates a dissipation 

term. 

Assuming, without loss of generality, plane waves travelling 

along the positive x-axis the classical wave equation is 

ô(x,t) = 2 ô(x,t) 
4.5 

V2 o 

where X ( x,t) is the elastic displacement, and v is longi-

tudinal wave velocity. The general solution of 4.5 is 
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X(x,t) = f1(x-vt) + f2(x+vt) 

where f1 and f2 are arbitrary functions, or wavelets, 

f1 travelling in the direction of the positive x-axis and 

2 travelling in the direction of the negative x-axis. 

Both f1 nd f2 travel at velocity v and remain unchanged 

in shape with respect to time and distance. Observational 

data, however, suggest that wavelets change dramatically with 

time and distance. 

Asuming absorption to be the major inflouence on the 

modification of wavelet shape Ricker used Stoke's wave 

equation, namely: 

+ 411 ÔX(x,t)) 1 ô2 (x,t) 

3pv 2 ôt V2 FJ t 2 

where ( 4i/3pv2)(o/ot) is a dissipation term which takes 

into account losses due to viscosity. TI denotes viscosity 

and p denotes density. 

The solution of wave equation proposed by Ricker is 

Aô 

x(x,t) = —(x,t) A(x,t) 

at 
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where A is a constant and 

CO 

E (2)(fl+1)/2 'i(u) 

n=o x 

and where 

u= t - x 

(x/2) 1/2 
. 

The ( u) are termed generating functions. The !( u) Ricker 

described as wavelet functions, and are defined in terms of 

Hermite functions. 

E it exp(-u 2) 

2 4 

dm Jfg(u)dum 

Ricker's solution in spherical coordinates is written as 

CO 
E (2)(n+3)/2 n(u) 

R 
n=o 
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where R is a dimensionless radial distance number. 

Since geophones typically record the velocity of the earth's 

motion, however, it is necessary to determine x(R,t) = 

the velocity function 

CO 

(u) = E (2)(n+5)/2 !n2 (u) 11 ( 2)5/2 y(u/R) 

R R 
n=o 

where notation used is such that 

dm 'n(U) = 

dum 

and a dot denotes a derivative with respect to time. 

Y(u/R) is called the velocity wavelet form function which 

specifies the shape of the wavelet. At 'y(u/R) 

that is the wavelet assumes a constant shape with distance 

travelled and further absorptive effects have negligible 

influence. 

The steady state velocity wavelet form function is therefore 
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Y(u/) = T2(u) = K(u 2- 2) it exp(-u 2) 

where K is a gain constant. 

Since R is fixed u becomes a function of time alone and so 

for discrete time samples a moving average process can be 

defined in terms of z- transforms as 

= Kit E ( n2-2) exp(-n 2) 

2n=o 4 

But the term exp(fl) rapidly becomes negligible 

4 
with increasing n such that, to good approxirhation, the 

summation can be considered to range over M, where r4 is 

finite. Furthermore the exponential is an analytic function 

so that the z- transform is analytic. 

The seismic wavelet shape due to travel through an absorptive 

media is therefore expressible as a moving-average process 

with z- transform N(z). The wavelet -shape due to the super-

position- of reverberated impulse reflections has already been 

demonstrated to be expressible as an auto-regressive process 
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with z- transform 1/D(z). An ARMA description of seismic data 

consequently models both the earth filtering and multiple 

feedback facets of impulse wavelet modification. Figure 4.3 

illustrates this result. 

As mentioned' earlier these descriptions are only intended to 

provide motivation for the use of ARMA ( p,cj) models in the 

analysis of seismic data. However, whereas the Robinson 

model suggested that only the auto-regressive component, the 

undesirable reverberation characteristics should be decon-

volved out of the data, the Ricker/Feedback model indicates 

that a full ARMA ( p,q) deconvolutiori operator should be used 

to get rid of the undesirable effects of both feedback and 

absorbtion. 
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ARMA 

r(n) 

rcn) 

H1 (z) BCz) 

Figure 4.3 

 W.  [--
H(z) 

MA 

ABSORPTION 
DISPERSION 

B(z) 
R(z) 

AR 

Ha (Z) "Fii 

REVERBERATION 

H(z) H(Z)-H8(z) 

I 

8(n) 

EQUIVALENT SYSTEMS DEMONSTRATING THE 
ARMA DESCRIPTION OF THE SEISMIC PROCESS 
r(n) $ h(n) s(n) 

WHERE h(n) COMPRISES SOURCE SIGNATURE AND 
EARTH FILTERING EFFECTS - GENERALLY CONSIDERED 
TOGETHER AS THE SEISMIC WAVELET" w(n). 
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4.3 AR4A ( p,q) Parameter Determination 

4.3.1 Box-Jenkins Method [ 7] 

The characteristic difference equation for an ARMA model 

excited by a white noise sequence { E(ul)} with variance c5e 2 

is: 

p q 

x(n) = -E ai x(ri-i) + E b1 ( n-i) 

i=1 i = o 

multiplying both sides of the characteristic equation by 

x*(n_m) and taking expectations 

p q 
E{x(n)x*(n_m)}=E{_E ai x(n_i)x*(n_m)}+E{E b1 ( n_i)x*(n_m)} 

i=I i = o 

or 

p 

Rx(Ifl) = - ai R(m- i) + Z biRxc(mi) 

i=1 i=o 

where R(k) denotes the autocovariance of the sequence { x(n)} 

and Re(k) denotes the cross covariance between { x(n)} and 

{c(n)}. Since Rc(k) = E{x(n-k)c(n)}, and x(n-k) depends 
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only on inputs which have occurred up to time n- k it follows 

that 

Rx(k) = 0 k>0 

Rxc(k) * 0 k0 

q 

Consequently 2 bkRx(rn- i) = 0 for m- i>0 or rnq+l 

1=0 

and so the previous expression for R(m) can be rewritten as 

p 
Rx(m) = _E ajR(m- i) for mq+l 

i=1 

which can conveniently be written in matrix form as 

R(q)  R(q-p+1) 

R(q+p-1) .... R(q) 

a1 R(q+l) 

R,( q+p) 
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The auto- regressive parameters ai i=1,2 .... p are then 

determined using the recursive formulae of Durbin. 

The moving-average parameters are calculated using the 

auto-regressive coefficients and the first q-i-1 auto--

covariances. As described earlier the first q+1 lags of the 

autocovarjance function contain information about both the 

auto- regressive and moving-average parameters whereas the far 

lags beyond q+l contain only auto-regressive components, 

consequently it is standard practice in ARMA parameter 

estimation to determine the auto- regressive parameters at the 

far lags of the autocovariance function and then use those 

information in conjuction with the near lags to determine the 

moving-average parameters. 

Using the auto-regressive parameters a new sequence { x'(n)} 

is derived, namely x'(n) = x(n)-ax(n-l)-...-ax(n-p). 

The autocovariances R I(k) ( k=0,1,...q) of this derived 

sequence are then calculated and the moving-average 

components are determined using the iteration 

R' ( 0) 

a  = 

.bq2 



bk = 

(Rx'(k) - blbk+l - b2bk+2...bq_kbl) 

where b0 =O and bk k=l,2,...q are et to zero to start the 

iteration and the values bk and ax 2 to be used in any 

subsequent calculation are the most up to date values 

available. 
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4.3.2 The Cadzow Method 

Fundamental to Cadzow's approach to determining ARMA model 

coefficients is the development of a recursive relationship 

between the autocOrrelation function of the model time series 

and the coefficients of the model ( 8, 44-46). 

To facilitate this deve1prrtent Cadzow splits the 

autocorrelation function into its causal and non-causal 

images such that r(n) = r + r(_n)* where 

r(n) = (0.5 r(o), n = 

(r(n) , n>o 

0 , ri<o 

The postscripted asterisk denotes the complex conjugate. 

Then, since by definition S(w) = F{r(n) } 

Sx (W) = F{r(n) } = F{rt(n) + 4(_n)*} = F{r(n)} + 

- E r(n) - jwn 
- e + E r(_n)* e "1 

n=- co n=-

= E r+(n)ejwn + [ E r(_n)eJ]* 

n = - n = -  co 



- 113 - 

= E r(n)eJ' + [ E r(n)eJ]* = 4(w) + 

n=- CO n=  CO 

2Re(S(w)] 

Now since an ARt4A spectral model is assumed, the power sectra1 

density function is defined as 

S(w) = b0 + ble w +. . .+ bqe-jqw l2 = 2Re(S(w) I 

1 + ale - 3w +...+ aeJPW 

4(w) is chosen to be a rational function 4(w) = C(w) 

D(w) 

so if 

S(W) = then 2Re (C(w)] 
(0(w)] 

and C(w) = C(w) . D(w)* = C(w)D(w)* 

D(w) D(w) D(w)* I D(w) 12 

Since 

B(w) 

A(w) 

2- B(w) 

A(w) 

2 = 2Re[C(w)D(w)*I then f A(w) 2 = D(w) 12 

2 1 D(w) 2 
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so that the autoregressive coefficients ( i.e. denominator 

coefficients) of the ARMA spectral model are identical to the 

denominator coefficients of therational model for S(W). 

• Looking at the numerators again j B(w) 12 = 2Re[C(w)D(w)*] 

B(w) is order q and D(w) is order p so C(w) must be of order 

2q-,p. 

Cadzow then restricts p 4 q for further development. 

Under the restriction that p < q and assuming p = q, or 

equivalently Cq+1 = Cq+2 = ... = Cp = o, then 

S(w) = C(w) 

D(w) 

P 
= CO + c1e JW + ... + cpeJPW c1eV 

i o  

p 
1 + ale - 3w + ... + ape JPW 1 + E 

i=1 

p 
multiplying both sides by 1 + E aeJlW 

1=1 

p •, p 

S(w)[1 + Z ajeJ] = E cie_J iw 

i=1 i=o 
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p p 
so 4(w) = E cie_Jiw _[ ajej'i 4(w) 

i=o 1=1 

taking inverse z- transforms and re-arranging summations gives 

p p 

r(n) cio(n- i) - ar(n-i) 

i=o i=1 

This recursive relationship is the basis for Cadzow's method 

of estimating the coefficients of the AR4A model. 

The recursive determination of r(n) is in general 

not the same as 

N-p 

= 1 E x(n) x(n+p) 

N-p k=1 

since the recursive determination of r(n) does not 

suffer end effect or truncation problems. Consequently, if 

r(n) is substituted into the relation for r(n) as 

A P A 

4(n) E cj ô(n-i) - E ai4(n-i) 

i=o i=1 

equality is not to be expected given the same c1 and a 

(i=1,2 ...... p) as in the derived equation. The discrepancy 



- 116 - 

p p 

e(n) = r(n) + E ar(n-i) - E co(n-i) 

i1 10 

o < n < t'T - 1 is termed the error and is squared and 

minimized with respect to the ai coefficients at lags 

q < rn < N at which the c1 coefficients are zero, such that 

p 

e(n) = r(n) • E ar(n-j) 

i=1 

where r(n) denotes the autocorrelation of x(n) at 

lags exceeding m. 

Phrasing the same result in a slightly different way, the 

coefficients ai are chosen so as to force a best fit in a 

least squares sense of the model autocorrelation to the 

estimated autocorrelation. 

Cadzow's development arrives at the same end ( i.e. the same 

error to be minimized) but without specific recourse to the 

recursive relation, as follows: 

The characteristic difference equation for an ARMA model 

excited by a white noise sequence { e(n)} is 

q p 

x(n) = E bi e(n-i) - E ax(n-±) 

i=o i=1 
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multiplying both sides by x*(n_m) gives 

q p 
x(n)x*(n.m) = jE bic(n- m) - Z aix (n_i)] x*( n_rn ) 

i=o i=1 

Now c(m) and x(n) are uncorrelated for m > n so 

q 

E bjc(n_i)x*(n_m) + 0 

=0 

4.6 

for n-i > n-m or i < m, but since o 4 i 4 q we require q < m. 

The arrow is used instead of equality because although c(n-i) 

and x*(n_m) are uncorrelated for i < m and have zero mean 

over the summation for o 4 i 4 q; q < m, the product 

E(n_i)x*(n_m) for any particular value of i in the 

summation need not be exactly zero, it is only required that 

the products average to zero over the summation. This 

opportunity for non- zero products, denoted here by the arrow, 

forms the basis for Cadzow's error term and subsequent 

estimation of the ai coefficients. 

Summing equation 4.6 over m < n < N and dividing by @-m 

yields 
/ 

N 

E x (n )x*( n_m ) 

N-rn n=m-i-1 
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N q N p 

= 1 E E b (n- )x* (n-rn) - 1 Z Z ax(n-i)x * (n-rn) 

N-rn n=m+1 i=o N-rn n=rn+1 i=1 

recognizing that the estimate of the autocorrelation is 

defined as 

N 

= E x (n )x*( n_m ) 

N-rn n=rn+1 

where r(m) denotes the estimate of the autocorrelation 

of input x(n) for lags exceeding m, and rearranging summations 

provides the following relation 

A q N P N 
m • * • * 
r(m) = bj[1 ( n-i)x ( n-rn)]- a1[1 x(n-i)x (ri-rn)] 

i=o N-rn n=rn+1 i=1 N-rn n=m+1 

q N P A 

= E b[1 E c(n-j)x * (n-rn)] - 1.. a±r rn (m- i) 

i=o N-rn n=m+l j=l 

p q N 

or r(m) • E ar(rn-i) = E b[1 c( n_i) x*( n_rn )] where q < rn. 

i=1 i=o N-rn n=rn4-1 

As mentioned earlier the right hand side should tend to zero 

but may not be identically zero for particular values of 1. 

Cadzow defines this term as the error e(m) such that 
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p 

e(m) = r(m) + E ar(m- i) 

i=l 

and proposes minimization of this error squared and weighted 

as an appropriate method for determining the áj coefficients 

(minimization is with respect to the ai coefficients). 

Note that this expression for the error is the same as that 

which was derived independently directly from the recursive 

relation. 

By either development then the error relation is 

p 
e(m) = r(m) + E ar(m-i) 

i=l 

This error relation can be rewritten in terms of matrix 

notation to give 

e = r + Ra 4.7 

where e is the ( N- p-1) x 1 vector of error terms, r is the 

(N- p-1) x 1 vector of autocorrelation terms, a is the p x 1 

vector and autoregressive coefficients and R is the 

(N- p-1) x p correlation matrix. 
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Cadzow proposes minimizationof a quadratic functional f(a) 

of e(m) with respect to the coefficients a1 defined as 

N 

f(a) = E W(m)e 2 (m) 

m=p+i 

which can be expressed in matrix notation as the Hermitian 

form 

f(a) = 4.8 

where 0•denotes the complex conjugate transpose operation and 

1 is a ( N-p-1) x ( N- p-1) positive semi-definite Hermitian 

weighting matrix. Substituting equation 4.7 into 48 and 

minimizing with respect to the coefficients a yields a set of 

p linear equations described by 

[R*1R]a = -R#7r 

The selection of appropriate elements in the weighting matrix 

can be accomplished by the iterative technique developed by 

Moses (45, 47]. 
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Finally, the numerator coefficients cj are computed by 

substituting the estimated a1 coefficients and an estimate 

of r(n) into the recursive relationship 

p p 
r(n) = E c1ô(n-i) - E a1r(n-i) 

i=o i=1 

such that 

p 
AO AO 

E c5(n - i) = r(m) + E ar(n- i) 

i=o i=1 

where 

or 

A0 

r(n) = _j E x (i) x*( rl_i) 

1Y- p i=l 

N-p 

k 
A0 

r(k) + E r(k-i) 0 < k ( p. 

i=1 

Note that at lagsk < ( p = q) both ck and ak terms contribute. 
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Cadzow's method is computationally efficient and has been 

shown to yield high resolution spectral estimates [ 48]. 

Ogino [ 49, 501 has demonstrated that further computational 

improvement can be realized by appropriate modification of 

the vector and matrix entries in an equivalent but more 

general formulation of the error relation when q = p. 

The method has two serious shortcomings, however. Firstly, 

the 4A coefficients are not explicitly determined. The 

modified coefficients are suitable for spectral estimation 

but cannot be related to the MA parameters of the ARMA model. 

Secondly, the spectral estimates generated by the method can 

be negative. Kay [ 51] recognized this problem and proposed a 

solution which ensures that the autocorrelation function of 

the residual " MA° time series obtained from the a1 

estimates and the input data yields a positive semi-definite 

sequence. Moses [ 47] proposed two similar solutions also 

based on the residual " MA" time series. Recently Salami [ 10] 

proposed an extension of Cadzow's method which yields the 

direct MA coefficients and ensures non- negative spectral 

estimates. Salami's method is described in section 4.3.3. 

Two further problems with Cadzow's method are the requirement 

that q < p and the need for a priori knowledge of the model 

order ( p,q). 
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4.3.3 The Method of Salami 

Salami has proposed a modified Cadzow algorithm which ensures 

positive real power spectral estimates and provides direct 

estimates of the MA coefficients [ 10, 66]. The method 

involves obtaining estimates of the AR and modified MA 

coefficients via the Cadzow method, defining the MA power 

spectral density function in trms of the estimated 

coefficients, modifying the 

manner so as to make the MA 

and computing the direct MA 

coefficients in a purposeful 

spectral estimates positive real, 

coefficients from the MA power 

spectral density function using Kolmogorov spectral factori-

zation. Salami has also proposed a modified singular valued 

decomposition ( SVD) technique to determine the order of the 

AR polynomial [ 101. The SVD technique employs iterative 

spectral matching and monitoring of the effective rank of the 

covariance matrix to determine the AR sub- model order. 

Salami initially uses Cadzowts approach ( Section 4.3.2) to 

split the autocorrelation function into its causal and 

non-causal images and define causal and non-ca-usal power 

spectral density functions by Fourier transform operations on 

the autocorrelations. 
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That is 

and 

where 

r(n) = r(n) + r(n)*; where r(n)* = r(_n)* 

3x (W) = S+ (w) + S- (w) ; where S- (w) = S(w)*, and 

-CO 

c-f- - 

x -

fl=- w 

r(n)eJWfl; S(w) = E r (n )* e_jWfl 

Defining the causal power spectral density function as the 

ratio of two polynomials C(w) and D(w) and recognizing 

complex symmetry it follows that 

S(W) = 2Re[S(w)] = 2Re (C(w)] 
D(w) 

4.9 

Employing the ARMA spectral model and rewriting equation 4.9 

Sx(W) - B(w) 12 = 2Re[C(w)D(w)*] 

A(w) 2 D(w) 12 4.10 
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Therefore, assuming D(w) = A(w) such that coefficents 

di = a, i = 1,2 ..... p for AR order p, equation 4.10 becomes 

Sx(W) = B(w) 12 2Re[C(w)A(w)1 

A(w) 12 A(w) 12 
4.11 

Cadzow's method then develops a recursive relationship for 

the causal image of the autocorrelation function in terms of 

the AR and modified MA parameters [ 81 as follows. 

p p 

r(n) = ció(n-i) - Z air(n- i) 

i=o i=1 

4.12 

Restricting n>tn to lags beyond which the ci coefficients 

are zero and defining e(n) as the error or non- zero residual 

which is present when the causal autocorrelation calculated 

from the data, r(n) is substituted into the recursive 

relationship of equation 4.12 to give 

p 
e(n) = r(n) + ar(n-i) 

i=1 

Minimization of the squared error yields the AR coefficients. 

The modified MA coefficients are then calculated via 
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substitution into the recursive definition of the causal 

autocorrelation function in equation 4.12 at lags where the 

c1 coefficients are non- zero. 

k 

= E ar(k-i) ; 0 4 k ( p 

i=1 

4.13 

The method of Salami extends the Cadzow method so as to 

evaluate the actual MA coefficients, b, rather than the 

modified coefficients, c; i = 1,2,..q ( q<p). Salami's 

method also ensures against undesirable negative spectral 

estimates. Salami's method recognizes that rearrangement of 

equation 4.11 isolates the actual MA spectral estimate in 

terms of the AR and modified MA parameters. 

B(w) 12 = A(w)*C(w) + A(w)C(w)* 

Letting G(w) denote the right-hand side of the equation and 

substituting the Fourier transform of equation 4.13 for 0(w) 

yields 

G(w) = A(w)*A(w)R( w ) • A(w)A(w)*R(w)* 

where ( w) denotes the Fourier transform of the causal 

autocorrelatjon r(n). 
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Taking inverse transforms and utilizing complex symmetry 

p p 

g(k) = E E aj*ajrx(k+i_j) 

i=l j=l 

where g(k) is -the inverse Fourier transform of G(w). 

To ensure non-negative MA spectral estimates it is necessary 

that g(k) be positive definite; Salami proposes two methods 

to accomplish this. The first method is to increase the g(o) 

term such that 

g'(k) = g(k) + 

The second method is to apply an exponential weighting 

function C- to the modified MA coefficients cj arid/or the 

AR coefficients ai. 

With g'(k) positive real it follows that B'(w) J2 is 

positive real and spectral factorization can be applied to 

determine the direct MA coefficients b' 1. Unfortunately, 

factorization does not yield a unique set of coefficients 

b'1, since G(w) can be generated by many different series. 
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Only one series bt can be minimum phase, however, and 

Salami determines the unique minimum phase sequence via 

Kolmogorov factorization following Silvia and Robinson [ 1]. 

The z- transform of B'(w), denoted by B'(z), can be expressed 

in terms of its coefficients b1i as follows: 

Bt(z) = b'z 1 4.14 

i=o 

As discussed above the b1i are not unique. Imposing a 

minimum phase requirement on B'(z), however, dictates that 

all the zeroes of the system response lie within the unit 

circle in the z- plane: furthermore, MA. systems, such as 

B'(z), have no poles where values approach infinity and so 

outside the unit circle the natural logarithm of B1(z) can be 

defined and expressed as a Taylor series expansion. That is, 

Co 

log B' (z) = 1 ; I z 1>1 . 4.15 

i=o 

Rewriting 4.15 letting z = eJW, then taking only the 

real part and expanding using the complex conjungate yields 
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—1 

log BI (w) = + E eJ'j 

j — a z 

CO 

+ E Pie -jwi 

i=1 

4.16 

Noting that log IB'(w)I is a periodic function its discrete 

Fourier transform can be expressed as 

iog BI (w). I = : ôe  iwi 4.17 

i - a 

oi = f log B'(w) Iej widw i = 0,±1 t2,.... 

IC 

=1 f log G1( w )e JWldw i = 0,1,2,.... 

—1t 

Equating the expressions for log IB'(w)I in equation 4.15 and 

4.17 yields the coefficients Pi of the Taylor series for 

log BI(z) in terms of the b1i so that finally the desired 

coefficients of the minimum phase MA system BI(z) can be 

uniquely determined by comparing equivalent descriptions of 

descriptions of B(z) in equations 4.14 and 4.15 and solving 

for b' 1. That is 

E b'z i = exp{ E 

i=o i=o 
4.18 
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By dividing equation 4.18 into its derivative with respect to 

z and rearranging terms, a recursive relation can be 

developed to compute the direct minimum phase 1A coefficients 

b'1 [ 30] 

1 

(i+l)b' Z b'n(i+1n)P i. = 0,1,2 ..... , n-i 
1+1 . 1 n 

n=o 

where n is the number of points in the discrete Fourier 

transform and b' 0 = exp{P0}. 
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4.3.4 GRT Method 

Gutowski, Robinson and Treitel ( 9, 52, 53) have suggested an 

iterative least squares method of determining the parameters 

of an ARMA model. The method is conceptually simple and 

easy to implement but has several shortcomings, chief of 

which is the requirement of a good initial estimate of the 

moving-average parameters of the model to initialize the 

iteration. Starting with an estimate of the moving- average 

parameters and the known output series response to a unit 

spike excitation, the auto-regressive parameters are 

estimated by a least squares shaping filter ( Wiener Filter) 

and the shaping filter estimate is then used to refine the 

initial estimate as illustrated in Figure 4.4. 

The method develops as follows: Consider a sequence x(n) 

which is the output response to an ARMA model with input u(n) 

where u(n) is a unit spike situated at the origin. Then 

p q 

x(n) = - E ax(n-i) + E bu(n-i) 

i=l i=o 

taking z- transforms of both sides 

B(z) U(z) = B(z) 
  since 0(z) = 1 

A(z) A(z) 
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then A(z) Q(z) = B(z) or a * x = b where 

a = a(i), i = 0,1,2,....q; b = b(j), j = 

x = x(k), k = 0,1,2,... 

Knowing x and making an initial guess at b, a is calculated 

as the shaping filter f in the equation x * f = b 

Then, using the previously determined a, a 1 is deter-

mined as f by a * f = ô where ô is the kronecker delta. 

Similarly the estimate b can be refined as f by a1 * f = x. 

The procedure is repeated until convergence occurs. The 

method guarantees a minimum phase A(z) because of the 

Toeplitz recursion employed in the shaping' filter deter-

minations. 

The method varies significantly from the previously 

'described procedures in that it does not work off the 

autocovariance function calculating the auto- regressive 

parameters first at the far lags and then iteratively 

solving for the moving-average parameters. However, the 

requirement of a good initial estimate of the moving-average 

parameters severely limits the value of the method since 

unlike the auto-regressive parameters the moving-average 

parameters cannot be conveniently estimated from the data. 
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4.4 Deconvolution Using ARMA ( p,q) Models 

An ARMA ( p,q) model of seismic data is expected to yield an 

analytic estimate of the seismic wavelet provided the 

reflection coefficient series of the earth is white. This 

seismic wavelet can therefore be used to design an inverse 

wavelet for deconvolution. Recall that the wavelet is really 

the impulse response of the filter whose transfer function is 

described by the ARMA ( p,q) model estimate. Given an 

ARMA ( p,q) model estimate 

A b0+b1z 1 + •.. + bqz 

H(z) = 1+a1z 1 + .... + az 

A 

4.19 

the wavelet estimate w(n) can be calculated using the direct 

method assuming a unit impulse input, 

q p 

w(n) = E bô(ri-i) - E aw(n-i) 

i=o i=1 

The inverse wavelet estimate required for deconvolution must 

have a model estimate G(z) such that G(z)E(z) = 1 or 

quiva1ently G(z) = [EI(z)]1 so, obviously 
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A 

G(z) = b0+b1z 1 + ... + bqZ 

1 + alz' + ... + azP 

Taking the inverse z- transform yields 

A 1 
g(n) = - [o(n) + E ajô(n- i) - bg(n-i)1 

b0 i=1 

p q 

where g(n) is the inverse wavelet estimate, more often termed 

tfte deconvolution operator. Convolving g(n) with th'e seismic 

trace, s(ri), under all of the invoked assumptions of station-

arity of the wavelet, w(n), whiteness ofthe reflection 

coefficient spectra, guassiari distribution of reflection 

coefficient amplitudes, r(n), no noise, and the appropriate-

ness of the convolutional model yields the desired estimate 

of the reflection coefficient series r(n). That is 

s(n) = w(n)*r(n) 

r(n) = s(n)*g(n) ; g(n)*w( n ) = o(o) 
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4.4.1 Stability Considerations 

Since deconvolution requires the realizability of both the 

ARMA ( p,q) model; [-1(z), and its inverse, ( z), it is 

necessary that both coefficient series ai; i = l,2,...p and 

bi; i = l,2 .... q be minimum phase sequences. This 

important constraint ensures stability of the wavelet 

estimate and of the inverse wavelet estimate ( 30, 54]. 

Constraining the coefficient sequences ai and bi to be 

minimum phase is equivalent to ensuring that the poles and 
A 

zeroes of [-1(z) lie within the unit circle in the z- plane. 
A 

The expression for [-1(z) in equation 4.19 can be factored in 

terms of the roots of the numerator and denominator 

polynomials as follows [ 54] 

(1_zlz l )(1_z2z 1) ... 1_z qz_ 1) 

H(z) K ( l_P1zl)(1p2zl)...(1_ppz1) 

where K is an arbitrary constant and the z; i = 1,2,...q 

and the pi; i = 1,2,...p are called the zeroes and poles 

respectively. Note that it is necessary that Pi 1<1; 

i = 1,2,...p to ensure the stability of H(z). 
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A 

Recall that G(z) = [EI(z)]1, it follows that 

A (l-p1z 1 ) ( l-p2z 1 ). . . ( 1-p pz i) 

G(z) = K ( l_zlzl)(l_z2z_ 1)...(1_z qz_l) 

The poles of H(z) are therefore the zeroes of G(z) and the 

zeroes are the poles. To ensure the realizability of G(z), 

then, it is also necessary that zj 1<1 ; I = 1,2,.. . q• 

4.4.2 Phase Modification 

The poles and zeroes of H(z) must lie within the unit circle 

to ensure stability and invertibility during deconvolution 

operator design. Once G(z) has been established, howeve, 
A 

only the poles of G(z), z; I = 1,2,...q, must remain 

within the unit circle; there is no need to similarly 

constrain the zeroes, pi; i = l,2,...p. The zeroes of G(z) 

can be reflected outside the unit circle singly or in 

combination by filtering with the appropriate all pass 

networks. This has the effect of leaving the power spectrum 
A 

of G(z) unchanged while changing the phase spectrum in a 

systematic way. The procedures yields a finite number of 

possible phase spectra for a given estimate. 



Chapter 5. Results 

5.1 Introduction 

Various parametric modelling techniques, both AR ( p) and ARt1A 

(p,q), were applied to real and synthetic seismic data. The 

quality of the resultant models was assessed qualitatively by 

visual comparison with periodogram spectral estimates of the 

source data. The closer the fit of the model to the spectral 

shape of the periodogram, the better the model was judged to 

be. 

Deconvolutions were performed by convolving the model 

inverses with the source data. The results with the most 

spiked output and flattest spectra were judged to be best. 

These performance assessment criteria did not discriminate 

against undesirable boosting of noise from the low SI N. 

portions of the data spectrum, so that ultimately äonclusions 

were inferred principally from study of spectral fits. 

Decimation and demodulation were applied to the seismic data 

to alleviate oversampling. The models were re- run, and again 

the results were assessed on the basis of closest spectral 

match. 

Modelling techniques illustrated are Least Squares, Levinson, 

and Burg AR ( p) parameter estimators and Kay, Cadzow, Salami, 
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and Transient Error Method ARMA ( p,q) parameter estimators. 

The ARMA ( p,q) techniques of Box-Jenkins and Gutowski, 

Robinson and Treitel ( GRT) were tested but did not yield 

usable results. The GRT method was particularly sensitive to 

the accuracy of an initial guess at the MA ( q) parameters. 

5.2 Model Input Data 

Three data types were utilized as input to the modelling 

procedures: 1) seismic data; 2) synthetic seismic data; and 

3) decimated seismic data. The seismic data were treated as 

the principle data set and the corresponding models are the 

focus of the results. 

5.2.1 Seismic Data 

Two seismic traces from a single shot file were considered. 

One a near offset trace, the other a middle offset trace. 

The two traces and their corresponding periodograms are 

illustrated in Figure 5.1 The near offset trace was studied 

extensively as it was considered more problematic and had 

already been briefly investigated in the work -of Salami [ 66]. 

The data were acquired 

shots recorded through 

recording system. The 

using a 3 hole pattern of shallow 

Mark 14 Hz geophones into a DFSV 

sampling rate was 2 milliseconds. The 
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data are considered to be of good quality although the near 

trace data were dominated by ground roll ( low frequency 

surface waves). 

5.2.2 Synthetic Data 

Synthetic data were produced by creating a random sequence of 

primary events and generating the corresponding multiple 

(reverberation) sequence using a Weunchel algorithm [ 17]. 

Figure 5.2 depicts the primary events, the reverberations, 

and the resultant spike trace. Theory developed in Chapters 

2 and 4 described the primary events as the innovation input 

to the white noise model and the multiple sequence as an 

autoregressive model response. Comparing the periodograms of 

the primary and multiple sequences in Figure 5.3 it is 

evident that the AR ( p) filter generating the multiples is of 

extremely high order such that its parameterization is 

indistinguishable from overfitting the variance of the input. 

This result has serious implications for the utility of ARMA 

(p,q) models in seismic deconvolution. The sad fact is that 

although seismic data can be characterized as comprising MA 

(q) and AR ( p) components which are theoretically distinct, 

these same components are not observationally distinct; 

consequently ARMA ( p,q) models can provide little advantage 

over AR ( p) or MA ( q) models. 
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5.2.3 Decimation and Demodulation 

Seismic data is typically oversampled during acquisition to 

accommodate useful information which may persist to higher 

than anticipated frequencies. The logic is good considering 

the high cost of seismic acquisition ( up to $ 20,000/km in the 

Alberta foothills) relative to the negligible incremental 

cost of oversampling. The same rationale is carried over to 

the processing of seismic data. In processing, however, 

oversampling can be detrimental. The abrupt decay of signal 

in the near trace spectrum of Figure 5.1 occurs at 0.1 demon-

strating five times oversampling of the data. Recognizing 

that higher order models on the seismic data tended to work 

at fitting the variance outside of the signal portion of the 

oversampled spectrum, a decimated data set was generated by 

sampling every fourth value of the seismic data. The deci-

mated seismic data set and its periodogram are contrasted 

with the seismic data in Figure 5.4. 

In the expectation that low-pass data requires less fitting 

than band pass data, such as seismic, the data were also 

demodulated. Demodulation effects a shift of the centre 

frequency to the origin. This was accomplished by windowing 

out the frequency band of interest with a hamming filter and 

multiplying by complex exponentials. 
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5.3 Spectral Fitting 

Although deconvolution, is the focus of this report, spectral 

fitting is the focus of the results. There are two reasons 

for this. First, the conformity with which model spectra 

match the shape of the data periodogram is considered to be 

diagnostic of the quality of the model. This inference makes 

intuitive sense and has much precedent in the literature [ 5, 

6, 66]. Second, without the coherancy recognition engendered 

by multichannel seismic data, differentiating between spiked 

up signal and spiked up noise is questionable. The per-

forrnance of deconvolution on single channel data sets can 

therefore be evaluated more meaningfully with reference to 

the spectral fits. 

5.3.1 AR ( p) Techniques 

Burg, Least Squares, and Levinson AR ( p) modelling techniques 

were run on the various data sets. Figures 5.5 through 5.7 

illustrate model fits to the periodogram foç the seismic data 

at orders 2, 4, 8, and 16. The different techniques yield 

almost identical model spectra at these orders. In all cases 

the models indiscriminately fit the large magnitude contrast 

caused by oversampling where signal drops off to noise. The 

additional fitting allowed in going from 4th order to 8th 
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order is squandered in fitting some arbitrary apparent trend 

in the variance of the noise. Only at 16th order does the 

model begin to distinguish in the high.signal portion of the 

spectrum but even then more shape is found ( and model order 

wasted) in the noise. The trend persists with increasing 

order. Models to 64th order were examined. 

It is obvious from the model spectra that there can be little 

difference in the deconvolutions and wavelet estimates output 

from these models. This is confirmed with illustrations in 

Section 5.4 

Figure 5.8 through 5.10 illustrate model fits on the deci-

mated seismic data at the same orders: 2, 4, 8, and 16. 

Without noise constituting 80% of the spectrum the models 

work much more effectively on the signal; shape in the signal 

portion begins to be recognized at 4th order. The results 

for the different techniques are very similar up to 8th 

order. At 16th order the known tendency of the Least Squares 

and Burg algorithms to overspike certain frequencies at 

increasing orders becomes evident. The cause and effect 

relationship between model order and spiking is demonstrated 

in Figure 5.11 where Burg model spectra are presented for 

8th, 16th, and 32nd order. The 32nd order spectrum offers 

little additional frequency differentiation compared with 
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16th order but severely overspikes those frequencies 

previously distinguished by the 16th order fit. 

5.3.2 ARMA ( p,q) Techniques 

Salami, Kay, Cadzow, and Transient Error Method techniques 

were used for ARMA ( p,q) modelling. Box-Jenkins and GRT pro-

cedures were attempted but both techniques were found to be 

extremely unstable on seismic data and sensitive to choice of 

model order. The GRT method was also very sensitive to an 

initial guess at the MA ( q) coefficients. The GRT method 

could be used in conjunction with the method of Salami, since 

Salami outputs a minimum phase MA ( q) sequence suitable for 

input to GRT, but the additional benefit of " tweaking" the 

ARMA ( p,q) coefficients at that stage is expected to be 

minimal. 

Figures 5.12 and 5.13 illustrate the model outputs of the 

methods of Salami and Kay respectively, as applied to the 

seismic data with orders ( 2,2), ( 4,4), ( 8,8), and ( 16,16). 

The models are recognized to distinguish frequencies in the 

signal zone at ( 4,4) yielding results comparable to those of 
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the AR ( p) techniques at 

however, both ARMA ( p,q) 

noise and weaken the fit 

16th order. At increasing orders, 

techniques begin to overfit the 

to the periodogram in the signal 

portion of the spectrum. By order ( 16,16) both Salami and 

Kay models show marked deterioration in spectral matching the 

signal, and meaningless oscillating fits in the noise. 

A concern with the ARMA ( p,q) models is their tendency to fit 

the shape of the roll off from signal to noise. The steep 

slope is fit with the initial consequence, at lower orders, 

of undermodelling the noise, particularly in Kay ( 4,4) and 

Salami ( 2,2). A problem arises, therefore, with 

deconvolution. Particularly at Kay ( 4,4) and Salami ( 2,2) 

the noise is strongly overgained in the deconvolutions. 

These consequences are illustrated in Section 5.4. 

Cadzow fits are not discussed because they fail without fail 

on seismic data. Figure 5.14 illustrates a comparison of 

Salami, Kay, and Cadzow methods on the seismic data at order 

(4,4). Salami modified Kay is included. It differs little 

from Kay except for slight modification of the MA ( q) co-

efficients. Cadzow is recognized to fail with negative 

spectral values. 

The model fits of Salami and Kay on decimated seismic data 
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are presented in. Figures 5.15 and 5.16. Both techniques 

severely overspike the data with increasing model order. 

Salami fits are seen to best honour the shape of the 

periodogram. At orders in excess of ( 8,8) the additional 

parameters seem to do more harm than good. In contrast, 

Figure 5.17 shows excellent fits, improving with order, with 

the Transient Error Method on demodulated data. 

Demodulation proves to be a powerful technique for pre-

processing the input to modelling programs. The Transient 

Error Method is the best behaved of the techniques tested; it 

does not spike with increasing order, but otherwise on 

seismic data it provides fits comparable to those of Salami. 

Demodulated data, however, greatly enhances the fitting 

ability of all techniques. Figure 5.18 is a comparison of 

spectral fits modelled with the Transient Error Method and 

Levinson routines. With increasing order Levinson closely 

rivals the fit of the Transient Error Method and both yield 

superb spectral matches to the periodogram. 

ARMA ( p,q) and AR ( p) techniques provided comparable spectral 

fits in each data type. ARMA ( p,q) fits are better at lower 

orders but fit the slope of roll off in the seismic data at 

the expense of providing a correct fit to the magnitude of 

the noise. With increasing order all techniques excepting 



University of Calgary. Department of Electrical Engineering 

I
 

01 
I t I 

it, I I I 

I I I I 
I I 11 

II 

Ii 
II 
ii 

JCEE 0 01 02 0.3 0.4 0.5 
Fro.Luottcy 

2.2 order SALA1JJ I1IPR0VED CWZ0W on dsc!Mctd soitmln 

1
.
0
2
 
Mo
gr
il
tu
do
 

JCEE 0 

—to4 

t "I 
t I vy 

—50+1 I I I EL I SI 5.4 I.4 I El $ 14 I   
- 0.5 0.1 0.2 Fraqualcy 0.3 04 

6.5 order SALAMI PIeR OVEO CADZOW on dsclmct.d ulnm$c 

I _11 4ti1J  
-20— 35 

I I I 
' 

It 

JCE 
—3040 0—,. •. I.. I I-1 0.2.. I-.i--......f..-.. .I..4...I....5.....1....4_-l__-I 4 

Fr.uoisey 

.5 

4.4 order SALAMI IUPROVFD CAXIZOW on doeTmotod o.tmto 

L
o
g
 
M
g
n
i
t
u
d
c
 

01 

—I0.. 

It 

—20.. 

—40 

-J 
.JCEE 0 

'V , t I 
I 
I S 

if 

I \ l••51 5 

0.1 0.2 frequency 0.3 04 0.5 

16.16 cr1.? SAI.AII$ IMPROVED CADZOW on docimoted aTomtc 

Figure 5.15 SALAMI MODEL FITS TO DECIMATED SEISMIC DATA 



University of Calgary, Department of Electrical Engineering 

L
o
g
 

ø
i
i
i
i
i
 

-304 
0 JCE6  

I j 
3I 
1t 

I I...4._.4..... 3 • 3 
0.1 0.2 0.3 0.4 0.5 

Frequency  

2,2 order SALAMI IMPROVED KAY on 4ec1me13 eslemic 

5-

-3-

-15 

5-41 

III 

? -35t-
-4 
-551 

313 
I' 
I II 
I II 
I II 
I II 

II 
13 
U 

.3 

ill 

- 65-l-- ,---.----. —.--- j .-*--.---.--..-----*.--...-. •-f--4-.-*-'-
JCEE 0 0.1 0.2 Frequency 0.3 0.4 0.5 

8,3 order SALAMI IMPROVED KAY on deatmeted u!,m!c 

Figure 

w
u
 

I; 

it; 

—30  0 • -.—.--.-  I— I  

0.1 0.2 
Fr. u.ncy 05 0l.4 0.5 

4,4 order SALAMI IMPROVED KAY on decimated a.InmIc 

L
o
g
 
U
o
g
n
it
ij
dt 

—55 — s--s —I---'—. t---s- t--* -4----, .—t--.----'-- 
JCEE 0 0.1 0.2 0.3 

Frequency  
0.4 

16,16 order SALAMI IMPROVED KAY on decimated ealomic 

5.16' KAY MODEL FITS TO DECIMATED SEISMIC DATA 

0.5 



Jniversity of Calgary. Department of Electrical Engineering 

65± 

55 , 

.2 45-r 

34 

25.jj"AA 

15+ 

... .......... ._ ..,......,.. 

—0.5 —0.25 0 0.25 0.5 
- ....-

ARMA(16,2) an demodulated sclomlc 

65+ 

554 
4 

45 

35— 

& 

a - 

l5.t 

—0.5 —0.25 0 0.25 0.5 

•___j 
ARUA(16.8) on demodulated nolomic 

•1 

I, 

80f 

401 

I 
64 

—0.5 —0.25 0 0.25 0.5 
-..... ... - . -- —. -.. 

ARUA(16.4) ott demodulated seIsmIc 

75 

55+ 

4 

44 

35; 
4 

25-f 

f I 

151.fift 

1 —0.5 —0.25 0 025 0.5 
I. ..... 

ARgA(16.16) on domodulatod seIsmIc 

Figure 5.17 TRANSIENT ERROR METHOD FITS TO DEMODULATED SEISMIC DATA 



Jniversity of Calgary. Department of Electrical Engineering 

I 

-0.5 

4 

-I-...-.I....I.-...4..-.-f I _._ --------__--------

-0.25 0 0.25 0.5 —0.5 -0.25 0 0.25 0.5 
-, -------- friqu __•, - 

ARUA(2.2) AR(2) on demodulated a.IomIc 

80t 

T 

30f 

i 4$ 
E 

25— 

I.-  

51 .., _... 

75+ 

65 

55+ 

45+ 

35+ 

251 

'5+ 

ARUA(4.4) AR(4) on dornoduItd nolomlo 

—0.25 0 0.25 0-5- 1 Ô.5 • 0.25 - 0.25 5 

ARUA(8,6) AR(S) on demodulated inlomlo ARIIA(16.16) AR(16) on demodulated oulumic 

-  LEVINSON   TRANSIENT ERROR METHOD 

Figure 5.1 TRANSIENT ERROR METHOD AND LEVINSON FITS TO DEMODULATED SEISMIC DATA 



- 165 - 

Levinson and the Transient Error Method spike the data. 

Model coefficients of order ( 4,4) are presented in Table 5.1. 

At the significant values chosen all AR ( p) coefficients are 

the same, as are the autoregressive coefficients of the ARMA 

(p,q) models; the moving average coefficients, however, vary 

considerably. 

5.4 Deconvolutiori 

As mentioned earlier, it is difficult to quantitatively 

assess model quality based on deconvolved output. However, a 

sense of the effectiveness of the deconvolutiori can be 

achieved by comparison with the original data. 

5.4.1 AR ( p) Techniques 

Figures 5.19 through 5.21 illustrate decorivolution of the 

seismic data with Burg, Least Squares, and Levinson 

respectively, at model orders of 2, 4, 8, and 16. As 

expected from study of the spectral fits there is little 

difference in results between model orders and less between 

techniques. 



a1 a2 a3 a 4 b0 b1 b2 b3 b4 

Burg -1.53 0.40 0.27 -0.03 

Least Squares -1.53 0.40 0.27 -0.03 

Levinson -1.53 0.40 0.27 -0.03 

Salami -3.62 5.14 -3.39 0.88 28.23 -62.79 49.97 -13.78 -0.68 

Kay -3.62 5.14 -3.39 0.88 123.22 -48.04 13.69 -6.19 -3.50 

Table 5.1 Comparison of 4th Order Model Coefficients 
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5.4.2 AR4A (p,q) Techniques 

Figures 5.22 through 5.24 illustrate Salami deconvolution at 

(2,2), ( 4,4), and ( 16,16) respectively in comparison with the 

AR ( p) techniques,' and Figures 5.25 and 5.26 compare Salami 

and Kay at ( 4,4) and Salami at ( 2,2) and ( 4,4) respectively. 

The ARMA ( p,q) deconvolutions are seen to produce noisy 

results at low orders as anticipated from review of the 

spectral plots. The noise is particularly evident on Salami 

(2,2) and Kay ( 4,4). 
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Chapter 6. Conclusions 

Arguments are developed for the preferred representation of 

seismic data by ARMA ( p,q) models. ARMA ( p,q) modelling 

techniques are applied to both real and synthetic seismic 

data and the results of spectral fitting and deconvolution 

compared with those of AR ( p) techniques. The superiority of 

ARMA ( p,q) representation is recognized in theory but not 

realized in practice, principally because the MA and AR 

components of the seismic signal cannot be separated in the 

modelling process. The improvement achieved by introducing 

MA ( q) terms is negligible except in fitting the seismic 

spectrum where it rolls off to low to signal noise. Decon-

volution with ARMA ( p,q) models, therefore, yields noisy 

results without otherwise improving on AR ( p) techniques. 

Oversampling is found to necessitate higher order models; the 

consequences of decimation and demodulation are demonstrated. 

Seismic data is shown to be ARMA ( p,q) with the AR ( p) com-

ponent comprising reverberatory ( multiple) information and 

the MA ( q) component comprising primary reflection infôrma-

tion and earth filtering effects. The AR ( p) nature of the 

reverberations and the MA ( q) nature of the primary reflec-

tions are developed in Chapter 2 from the work of Silvia and 

Robinson on the communication theory description of wave 

propagation in layered media ( 1]. 

- 176 - 
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The MA ( q) nature of the earth filtering process is developed 

in Chapter 4 from the work of Ricker on wave propagation in 

visco-elastic media [ 43]. The ARMA ( p,q) description of 

seismic data has serious implications on the viability of 

deconvolu'tiori. Necessarily the convolutional model of the 

seismic trace as a wavelet convolved with a primary reflec-

tion coefficient series is inadequate; either the wavelet or 

the primary reflectivity series must incorporate rever-

berations. Deconvolution as practiced in the geophysical 

industry fails to accomplish realization of the primary 

reflection coefficients because traditional methods target 

wavelet spiking and dereverberation independently. 

Recognizing the problem posed by ARMA ( p,q) representation, 

however, is not the same as resolving it. In practise, the 

seismic data is not found to be separable into its AR ( p) and 

MA ( q) components, consequently, ARMA ( p,q) models fit the 

composite seismic data in much the same way as the tradi-

tional methods, with AR ( p) contributions dominating. The 

problem is the complex nature of the reverberatory AR ( p) 

part which has the appearance of randomness and is therefore 

not distinguished from the white noise excitation series. 

Furthermore, the MA ( q) component is expected to be long and 

decaying such that it is well represented by a low order AR 

process. 
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The inseparability of MA ( q) and AR ( p) components and recog-

nized AR ( p) dominance renders the supposed benefit of finite 

wavelet phase specification conferred by ARMA ( p,q) models 

essentially ineffective. Meaningful phase modification 

through finite options is only achievable if the MA ( q) 

contribution is strong and has sufficient -roots. Swapping 

roots out of the unit circle can still be accomplished with 

the AR ( p) components when they are inverted for decon-

volution, but such is true of traditional techniques. 

Results in Chapter 5 illustrate that spectral fitting seismic 

data with ARMA ( p,q) models yields marginally improved fits 

at lower orders when compared with AR ( p) methods, particu-

larly at the low and high ends of the seismic spetrum where 

signal rolls off to noise. Because of lower signal to noise 

ratios in these areas the improved fit proves to be a mixed 

blessing; deconvolutions based on ARMA ( p,q) fits provide a 

strong, theoretically correct, compensatory boost to the low 

SIN portions of the spectrum. The poorer fit of the AR ( p) 

methods has the consequence of limiting boost to these 

frequencies. 

The ARMA ( p,q) tec-hniques of both Kay and Salami are fairly 

robust for seismic data. Both methods are sensitive with 

increasing model orders, however, and badly overspike the data 
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yielding ringing time domain responses unsuitable for seismic 

interpretation. The Transient Error Method of Nichols [ 62, 70] 

does not share this problem, and is the most robust of the 

techniques tested. The tendency to overspike is also charac-

teristic of the Burg and Least Squares AR ( p) techniques. 

The Cadzow ARMA ( p,q) procedure fails at all orders yielding 

negative spectral estimates. 

Levinson provides the closest spectral fits in good signal 

areas and makes least attempt at fitting noise, making it the 

winner and still champion of seismic modelling methods. An 

earlier comparison of deconvolution techniques ( not including 

ARMA (p,q) methods) resulted in a similar conclusion [ 55]. 

Oversamplirig of seismic data forces the models to fit the 

roll off to the non- signal portion of the spectrum. Since 

the roll off is the dominant magnitude contrast of the 

spectrum, the models preferentially expend order in 

characterizing it. 

Much higher orders are required, therefore, to yield fits 

comparable with those on minimally sampled data. High orders 

not only overspike data in the signal portion of thespec-

trum, they overfit the noise. The problem of overfitting 

noise is particularly acute with ARMA ( p,q) methods. 
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Seismic data is typically oversampled. To alleviate over-

sampling effects both decimation and decimation followed by 

demodulation Were applied to the oversampled seismic data. 

As expected, lower model orders were found to yield better 

spectral fits with less overspiking. Demodulation was 

particularly effective in allowing better low order fits. 
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Appendix A. Statistics of Reflection Coefficient Series 

A.1 Introduction 

The assumption that reflection coefficient series are 

stationary with randomly occurring amplitudes conforming to a 

Gaussian probability density distribution is implicit in many 

deconro1ution routines - including the ARMA deconvolution 

routines described in this report [ 55]. Measurements from 

well log data, however, indicate that reflection coefficients 

are neither Gaussian distributed nor random [ 56]. This 

appendix illustrates some statistics of reflection coeffi-

cient series and considers the implications of deviation from 

the Gaussian-random assumption on deconvolution routines. 

A.2 Theory 

Recall the convolutional model for seismic data 

s(n) = w(n)*r(n) 

Im 

= E r(k)w(n-k) 
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The convolutional model is obviously a linear time- invariant 

system. Seismic data is therefore a statistical time series 

generated by a linear operation on the reflection coefficient 

series r(n), which can be written as follows 

s(n) = A{r(n)} 

where A is the linear time invarient operator acting on the 

term inside the brackets { I. 

If r(n) is a random process then the process of taking 

expected values is commutative with the linear operation 

[57]. That is 

E{s(ri)} = E{A(r(n)}} = A{E{r(n)}} 

where E{ } denotes the expectation operation. 

This commutative property fosters two important results [ 57]: 

1. If r(n) is a stationary random process then s(n) will 

also be a stationary random process. 

2. If r(n) exhibits a Gaussian distribution then s(n) will 

also exhibit a Gaussian distribution. 
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Two further results from probability theory are pertinent to 

the discussion: 

3. A stochastic time series can be completely characterized 

by its autocovariance and mean if and only if the series 

is stationary and has, a Gaussian probability density 

function [ 57, 58]. 

4. A stochastic time series which is the output of a linear 

process can be described by the parameters of the linea.r 

process if and only if the series is Gaussian- stationary 

[58]. 

Result 3 requires that all deconvolution routines based on 

the auto-correlation of seismic data pre- suppose stationary 

Gaussian data. Result 4 is merely a corollary to 3 specific 

to explicit linear modelling deconvolution techniques such as 

AR, MA, and ARMA. 

Given, therefore, that most of the deconvolution routines 

described herein require that the seismic data s(n) be 

Gaussian and stationary it follows from results 1 and 2 that 

the reflection coefficient series r(n) be Gaussian and 

stationary. 
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A further requirement of most deconvolution routines is that 

the spectrum of the reflection coefficient series be white. 

S(f) = 7(f)R(f) 

If R(f) is white, that is R(f) =, k where k is some 

constant, then 

S(f) = W(f)k A.1 

The spectral shape of the seismic data, therefore, can be 

attributed to the filtering effect of the seismic wavelet 

alone. Deconvolution, then, attempts to whiten the 

spectrum of the seismic data assuming that in doing so 

only the wavelet spectrum is modified. 

That is, the deconvolution operator g(n) is designed such 

that 

S(f)G(f) = k ; G(f) = [ç7(f)]-1 

where S(f) is as defined in equation A.1. 
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A.3 Measurements 

Reflection coefficients were determined from eighteen wells 

in Northern Alberta in the vibiriity from which the seismic 

data used in this report were collected. Velocity logs from 

each well were digitized at . 3 rn and then mapped from depth 

to time and resampled at . 002 s. Reflection coefficients 

were then calculated using equation 2.20 in time and ignoring 

density variations. 

That is 

v(n) - v(n-1) 

r(n) -- vv(n) + v(n-1) 

The choice of . 002 s time sampling was arbitrary. The . 3 m 

depth sampling maps to . 0002 s time sampling in even the 

slowest sedimentary rock. Schoenberger and Levin [ 59] argue 

for finest possible sampling of reflection coefficient series 

(<.0005 s) based on their observations of the sensitivity of 
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The reflection coefficients in time for the eighteen wells 

are shown in figure A.1. Their corresponding power spectra 

are shown in figure A.2. 
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