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ABSTRACT

Theoretical motivation for the preferred representation of
seismic data by ARMA (p,q) models is developed. Reverber-
ations are shown to be AR (p) whereas absorptive earth

filtering effects are shown to be MA (q).

Modelling techniques are applied to both real and synthetic
seismic data. The resultant spectral fits to periodograms
are contrasted, as are deconvolution results. ARMA (p,q)
models are found to provide superior spectral fits compared
with AR (p) models where the seismic spectrum rolls off into
noise, but only marginally improved fits through high signal
frequencies. The consequence is that ARMA (p,q) decon-
volutions boost noise without significantly improving signal
when compared with AR (p) techniques. At high orders all
techniques except Levinson Transient Error ARMA (p,q) and
Levinson AR (p) tend to introduce spikes to the spectrum;

Levinson AR (p) remains the deconvolution of choice.

Oversampling is found to necessitate high model orders and
result in overfitting to spectral roll off and noise.
Improvements in estimation at lower model orders are achieved

on decimated and decimated and demodulated data.

= oiiio-



ACKNOWLEDGMENTS

Dr. S. T. Nichols provided guidance and ideas throughout the
development of this work. Dr. M. J. E. Salami and other
students of the Department of électrical‘Engineering were
generous with providing help and computer programs to effect

the modelling.

Petro-Canada provided data and were understanding in allowing

time to pursue this work.

Ms. Thelma Cameron typed the thesis and implemented changes

with characteristic efficiency and remarkably good humour.

- iv -



TABLE OF CONTENTS

PAGE

Table of Contents | v
List of Tables viii

List of Figures . ix
List of Symbols : Xii
Chapter 1. Introduction 1
Chapter 2. The Reflection Seismic Method 7
2.1 Introduction 7
2.2 Data Acquisition ' © 3
2.3 Reflection Theory 9
2.3.1 Elastic Wave Theory 11

2.3.2 The Convolutional Model | , 17
2.3.3 Wave Propagation in Layered Media 21
2.4 Data Processing , 35
'2.5 Reflection Identification 38
Chapter 3. Wavelet Estimation and Deconvolution 43
3.1 Introduction 7 43
3.2 Wavelet Estimation Techniques | 45
3.2.1 Signature Capture . | 46
3.2.2 Response of Known Layer 43

3.2.3 Wavelet Extraction by Sonic Log Correlation 50

3.3 Deconvolution Techniques ' 54
3.3.1 Least Squares Spiking Deconvolution 56
3.3.2 Frequency Domain Least Squares 54



3.3.3 Hamomorphic Deconvolution
3.3.4 Optimal Deconvolution
Chapter 4. Estimation Techniques Employing.
Linear ARMA (p,q) Models

4.1 Introduction '

4.2 ARMA (p,q) Representation of Seismic Signals
4.2.1 Robinson ARMA (p,q) Seismic Model
4.2.2 Ricker/Feedback ARMA (p,q) Seismic Model

4.3 ARMA (p,q) Parameter Determination
4.3.1 Box—~Jenkins Method’

4.3.2 The Cadzow Method
4.3.3 The Method of Salami
4.3.4 GRT Method

4.4 Deconvolution Using ARMA (p,q) Models
4.4.1 Stability Considerations
4.4.2 Phase Modification

Chapter 5. Results

5.1 Introduction

5.2 Model Input Data
5.2.]1 Seismic Data
5.2.2 Synthetic Data
5.2.3 Decimation and Demodulation

5.3 Spectral Fitting
5.3.1 AR (p) Techniques

5.3.2 ARMA (p,q) Techniques

- vi -

PAGE
66

75

83

83

92
100
108
108
112

123

- 131

134
136
137
138
138

139

139

141
144
146
146

155



5.4 Deconvolution 165
5.4.1 AR (p) Techniques 165
5.4.2 AéMA (p,q) Techniques 170

Chapter 6. Conclusions 176
References ' 7 ” ' 181
Appendix A A ' . 190

- vii -



LIST OF TABLES

TABLE NO. PAGE

4.1 Linear White Noise Models 89
5.1 Comparison of 4th Order Model Coefficients 166

- viii -



LIST OF FIGURES

FIGURE NO. PAGE
2.1 Geometry of CDP Seismic Data Acquisition 10
2.2 Wave Propagatiod in Layered Media 25

2.3 Displacement Relationships Due to Upgoing

and Downgoing Waves A : 25
2.4 Sonic Logging : - 40
2.5 Synthetic Seismogram 42
3.1 Wavelets Extracted by Levinson Deconvolution 62
3.2 Canonic Representation of a Homomorphic System 68
3.3 The Characteristic System D[ ] 68

3.4 The Canonical System Realization of

Homomorphic Deconvolution 71
3.5 Resampling Technigque of\Tribolet 74
3.6 Block Component Diagram of Optimal Deconvolution 80
é.l Linear White Noise Model 84
4.2 Linear Model Types 90
4.3 ARMA Description of the Seismic Process 107
4.4 Iterative GRT Algorithm 132
5.1 Seismic Data - Near and Middle Offsets 140
5.2 Synthetic Data - Spike Sequences T 142
5.3 Periodograms of Primary and Multiple Sequences 143

D



Decimated Seismic Data

Burg Model Fits to Seismic Data

Least Squares Model Fits to Seismic Data

Levinson Model Fits to Seismic Data

Burg Model Fits to Decimated Seismic Data

Least Squares Model'Fits to Decimated Seismic Data
Levinson Model Fits to Decimated Seismic Data

Burg Models on Decimated Data to 32nd Order

Salami Model Fits to Seismic Data

Kay Model Fits to Seismic Data

Salami, Kay, and Cadzow (4,4) Fits to Seismic Data

Salami Model Fits to Decimated Seismic Data

‘Kay Model Fits to Decimated Seismic Data

Transient Error Method Fits to Demodulated
Seismic Data

Transient Error Method and Levinson Fits

to Demodulated Seismic Data

Burg Deconvolution of Seismic Data

Least Squares Deconvolution of Seismic Data
Levinson Deconvqlution of Seismic Data

Salami Deconvolution (2,2) Compared with AR (2)
Techniques .

Salami Deconvolution (4,4) Compared with AR (4)

Techniques

PAGE
145
147
148
149
151
152
153
154
156
157
159
161

162
163
164
167
158
169

171

172



5.24 Salami Deconvolution (16,16) Compared with
AR (16) Techniques
5.25 Salami and Kay Deconvolutions at Order (4,4)

5.26 Salami Deconvolution (2,2) and (4,4)

A.l1 Reflection Coefficients in Time
A.2 Power Spectra of Reflection Coefficients

A.3 Location Map for Wells Used in Measurements

- xi -

PAGE

173
174

175

196
199
202



LIST OF SYMBOLS

A area

Aj amplitude of incident wave

Ap amplitude of reflected wave

Ay amplitude of transmitted wave

AR (p) autoregressive (order p)

ARMA (p,q) autoregressive moving average (order p,q)

ag set of AR (p) coefficients; estimated set of

- AR (p) coefficients
bk set of MA (q) coefficients; estimated set of

MA (q) coefficients

Ck modified MA (q) coefficients

dk, dg , displacement due to downgoing wave
e(n) ‘ error (residual)

eny(n) : traﬁsfer function of N layered earth
F force

g(n) inverse filter

h(n) impulse-response

K modulus of elasticity

ki, ko wave number

My, My communication matrix

MA (q) moving average (order q)

MLSE minimum least squares error

N length of data sequence

- Xxii --



n(t), n(n)
di

Ry (k)

R (k)

Rgy (k)
r(t), r(n)
ri2: rg

Sx (k)

sE (k)

Sk (k)

SVD

s(t), s(n)

t12, tg

w(t), win)

Ax

x(t), x(n)

sampled time

noise ~continuous,

sampled

reflection coefficient position

autocorrelation of x(n)

causal autocorrelation of x(n)

reflection coefficient series
reflection coefficient

power spectrum of x(n)

‘cross correlation of x(n) and y(n)

causal power spectrum of x(n)

anti-causal power spectrum of x(n)

singular value decomposition

seismic trace

transmission coefficient

continuous, sampled

displacement from rest position

displacement due to upgoing wave

velocity of compressional wave propagation
seismic wavelet
Fourier transform of x(n)

Z transform of x(n)

length

change in x

time series

impedance

continuous,

- xiii

continuous,

sampled

continous,

sampled

sampled



kronecker delta

white noise sequence

number of reflection coefficients
variance of noise, density

variance of x{(n)

convolution

- xiv -



Chapter 1. 1Introduction

The application of the techniques of time series analysis to
the processing of seismic data revo;utionized the petroleum
exploration industry during the 1960's [1]. The consequent
improvement in the resolution and reliability of the seismic
method established it as the primary tool for hydrocarbon
exploration. Véry few exploratory wells are drilled now
without prior seismic confirmation [2] and thergeophysical
(seismic) industry has grown to become a major user of

computer power [3].

Perhaps the greatest contribution of time series analysis to
the processing of seismic data is the theory of inverse
filtering, or deconvolution, and the related field of wavelet
estimation. The object of the seismic method is to provide
unambiguous information on the position and relative hardness
of reflectors in the subsurface by echo ranging. The distri-
bution of reflector positions and relative hardnesses in the
subsurface is described as the reflectivity sequence of the
earth and it provides information on the geometry and com-
position of phé various rock types in the subsurface.

Unfortunately, the seismic data recorded in the field do not



depict the desired reflectivity sequence but rather are con-
sidered to be the convolution of the reflectivity sequence
with a seismic "wavelet" which comprises the effects of
source characteristics, earth filtering, reverberationf and
the like [4]. Deconvolution uses an estimate of this wavelet
to design an inverse filter which is convolved with the
recorded seismic data to yield just the desired reflectivity
response. The procedure greatly increases the resolution and

interpretability of seismic data.

Becauée the seismic wavelet in effect filters the reflecti-
vity response, and deconvolution undoes the effect of the
wavelet filter, the theory and practise of deconvolution
evolved in concert with the field of spectral analysis.
Consequently deconvolution has traditionally been motivated
from the point of view of maximizing spectral expansion, or
whitening the spectrum. Modern methods of spectral estima-
tion, however, suggest a more reasoned and satisfying

approach to deconvolution.

In recent years a variety of parameter modelling techniques
have been applied in the estimation of a power spectral
density [5, 6]. These techniques represent the power

spectral density of a stochastic time series in terms of the



magnitude squared of a characteristic rational function of
polynomials. The coefficients of the polynomials are also
the multipliers in a model recursive equation which describes
the time series itself as a linear combination of the past
values of the time series, and the past and present values of
a hypothetical white noise excitatioﬁ series. In other
words, the techniques model a given time series as the
response of a causal time invarient linear“system - whose
transfer function is a characteristic rational function of
polynomials - to a white noise excitation. Consequently
specification of the coefficients in estimating the power
spectral density function provides an analytic character-

ization of the time series.

As mentioned earlier seismic data is considered to be the
convolution of a reflectivity sequence and a seismic wavelet.
If the reflectivity sequence can be considered to be random,
or white, and the wavelet can bé considered to be causal and
time invariant then the seismic data can be modelled as the
response of a white noise input to a filter whose impulse
response is the wavelet. Estimation of the power spectfal
density of the seismic data by modelling téchniques, there-
fore, explicitly specifies the seismic wavelet in analytic
form and it is then straightforward to calculate the inverse

wavelet (by interchanging poles and zeroes in the rational
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polynomial description of the wavelet) for deconvolution.
The techniques, therefore, give not only analytical descrip-
tions of the inverse wavelets but also intuitively satisfying

motivation for their application to deconvolution.

The most general of the rational function models is the auto-
regressive-moving-average or ARMA (p,q) model with a pth
order denominator polynomial (the auto-regressive part) and a
qth order numerator polynomial (the moving-average part).

The power spectral density functions of seismic wavelets are
particularly well described by ARMA (prq) models; the
absorptive earth filtering effects are represented by the
moving-average components in the numerator polynomial and the
reverberations affecting wavelet shape are represented by the”
auto-regressive components in the denominator polynomial.
Furthermore, although the roots of the auto-regressive,
denominator polynomial (the poles of the wavelet) must lie
Ainside the unit circle to ensure a stable inverse, the roots
of thg moving-average, numerator polynomial (the zeroes of
the wavelet) may be reflected out of the unit circle in any
combination to yield a finite number of possible phase
possibilities other than minimum phase using all-pass
networks. Traditional techniques are usually restricted by

the assumption of minimum phase,.



Despite the obvious advantagess only a few deconvolution
techniqués employing rational function models have been
recorded in the geophysical literature to date, other than
Levinson, and those few have used auto-regressive, or AR (p).,
models rather than the more general and preferred ARMA (p,q)
models. One reason for this apparent lack of enthusiasm is
industry inertia fostered by the success of traditional
methods. More serious reasons are that modelling techniques
are sensitive to the specification of model type and model
order, are computationally less efficient than tréditional
methods (pafticulérly in the case of ARMA (p,q) models) and
are more adversely affected by nodise in the data. These
disadvantages, however, must be considered in trade-off
against the obvious merits of the application of AéMA (prq)

models.

In this thesis the application of ARMA (p,q) models to the
deconvolution of seismic signals is considered. The related
topic of estimating seismic wavelets is also discussed.
Chapter 2 provides a brief overview of the seismic reflection
method, reviews the development of the seismic time series
model from wave theory, demonstrating the ARMA (p,q) nature
of the seismic process, and establishes the importance of
wavelet estimation and deconvolution in seismic data

processing.



In Chapter 3 traditional wavelet estimation and deconvolution
techniques are reviewed and a few~of the AR (p) modelling

- techniques are described. The wavelet estimation techniques
range from purely deterministic to purely statistical; the
assumptions and strengths and weaknesses of each technique
are discgssed. Chépter 4 introduces linear modelling tech-
niques and further develops the motivation for the preferred
application of ARMA (p,q) models to the estimation of seismic
wavelets and the deconvolution of ‘seismic data. Several
techniques for determining the parameters of ARMA (prq)
models from time series are then described; in particular the
Box-Jenkins method [7], the Cadzow "high-performance" method,
[8], the method of Gutowski, Robinson, and Trietelr— the GRT
method [9], and the recently developed method of Salami [10,
66]. The strengths and weaknesses of each method are exam-
ined. Chapter 5 presents the results of ARMA (prq) modelling
in seismic wavelet estimation and deconvolution. Chapter 6

provides conclusions.



Chapter 2. The Reflection Seismic Method
2.1. Introduction

The reflection seismic method consists of récording the earth
response to a controlled disturbance as a .function of time.
Both the disturbance and the response recording transducers
are located at, or very near, the earth's surface and the
transit times (from initiation of disturbance) and amplitudes
of the responses provide information on the relative hardness
and position of reflectors in the subsurface. The reflectors
correspond té the interfaces between differing rock types in
the subsurface. Where the seismic reflection method differs
from the seemingly analogous- techniques of sonar and radar
echo rahging is in the complicated nature of the target and
the target response. Subsurface reflectors do not completel§
reflect the imposed disturbances and consequently the
recorded response comprises a complex superposition of
reflected and multiply transmitted and re-reflected signals.
The purpose of seismic data processing is to eﬁhance the
primary reflection information in the recorded signal such
that reflection transit times and amplitudes can be measured
unambiguously, and diminish the contribution of reverberatory

effects and other forms of noise.



2.2 Data Acquisition

Seismic reflection data is obtained by initiating a
controlled source of pressure (seismic) waves at, or near,
the earth's surface and recording the earth response with
respect to time at transduceré positioned on the earth's
surface. The standard source of pressure waves is dynamite
exploded in a 10 - 100 foot deep hole; dropped weights and
vibrators at the surface can also be used but are less
common. The transducers,. or geophones, consist of a magnet
suspended in a coil. The housing of the magnet and coil is
buried or otherwise affixed to the earth with a long spike.
When the earth responds to the reflected pressure waves the
resultant displacement of the housing causes the magnet to
move within the coil and induces a voltage which is
proportional to the velocity of the earth's motion. This
output voltage is amplified, sampled, and recorded time

sequentially on tape.

For a variety of reasons a technique known as "CDP" shooting
is now standard for seismic reflection data acquisition. The
CDP method repeatedly samples the same reflector location by
in effect taking a series of recordings with the shots and

geophones in a variety of positions symmetric about the



reflecéor location along a straight line. This is accom-
plished by laying out many geophones along the straight line
of survey, shooting and recording, then moving the shot loca-
tion and the geophones an incremental distance alohg the line
of survey and repeating the procedure. Bec;use the method
results in the repesated sampling of the same reflector loca-
tions, called common depth points,'the technique is known as
the CDP method. Figure 2.1 illustrates the CDP method of

seismic reflection data acquisition.

The obvious advantage of the CDP method‘is that the records
of shot-trace pairs which sample the same common depth point
can be summed to increase signal to noise ratio where the
noise is random and uncorrelated between records. A second
advantage is that the time delay between records for the same
CDP, due to the increased travel time between the further
offset shot and receiver pairs, can be related to the average
yelocity of seismic wave propagation down to the subject CDP

and back.

2.3 Reflection Theory

‘In most areas with hydrocarbon potential the subsurface of

the earth is composed of large sub-parallel sheets of
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X GEOPHONE

£ X=X*
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COP COMMON DEPTH POINT

Figure 2.1 GEOMETRY OF CDP SEISMIC DATA AQUISITION.
SHOTS AND GEOPHONES ARE POSITIONED ALONG THE
SAME LINE OF PROFILE (X=X!).SEPARATION IS
DEPICTED FOR CLARITY IN UPPER DIAGRAM.




different sedimentary rock types. The velocity of seismic
waves“is generally different in each different rock type and
consequently waves incident on the ‘boundary between different
rock types will be partially reflected and partially
transmitted in accordance with the results of elastic wave

theory.

There are two types of distortion which can be describedrfor
a given block of material: volumetric strain caused by
compressive stress and rotational strain cau;ed by shear
stress. Conventional seismic acquisition techniques
discriminate against shear stress waves and hence only

compressive stress waves are of interest.

2.3.1 Elastic Wave Theory

Hooke's law for perfectly elastic material states that the
strain a material undergoes is proportional to the stresses
applied to the material. Considering,'without loss of
generality, one dimensional strain in x, the strain is the
fractional change in x or Ax/x; the stfess is defined as the

applied force per unit area, F/A so
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where the constant of proportionality, K, is the modulus of
elasticity. It turns out that the velocity of compressional
wave propagation is related to K; in the one dimensional case

for example

where p is the density of the material.

Continuing with the one dimensional case undergoing strain, let
Ag be the portion of material under consideration and Au be the
incremental quantity of the material compression or dilation
resulting from the force F; the strain is therefore Au/Ax. The
mass of material under consideration is pAAx where A is.a unit
area of cross section given to the one dimensional material.
Newton's second law of motion requires that force equals mass
times acceleration or F = ma. Dehoting displacement from rest
position as u, acceleration is given by 62u/62t so the applied

force is




The elastic force of the material itself is given by Hooke's

law at position x

F = KA Au; or F = KA 3u
Ax 0Xx

in the limit as Ax =+ o.

At x + dx an incremented elastic force F + dF is exercised.

.ot

F+ dF = F + dF dx = KA du + KA 82u dx

dx dx dx2

The elastic force acting on the material element dx is
therefore the difference of the forces exercised at x and

X + dx or

F = KA d2u dx
bxz

Equating the two forces

p 32u = K 32u or d2u = 1 32u
dt2 dx2 dx2 v2 pt2




which is the familiar one dimensional wave equation where v

is the velocity of wave propagation and

'O|7q

as noted earlier.

D'Alembert's solution to the wave equation is

u(x,t) = F(x-vt) + G(%+v§)

which describes waves of fixed shape travelling in opposite
directions; that is, one toward and one'away from the source
of disturbance. Considering only the wave travelling outward

from the source
u{x,t) = F(x-vt)

and assuming, again without loss of generality, a monotonic

wave of the form

u(x,t) = Ajexp(j2n{kix~wt))



impinging on a boundary between two materials (1 and 2) at
perpendicular incidenée, part of the wave energy will be
reflected

Arexp(j2n(-kix-wt))
and part will be transmitted.

Arexp(j2n(kox—-wt))
Under the restrictions that displacement must be continuous
across the boundary and that the net stress on the boundary
is zero it follows that
and

P1V1Ar — P2V2Ar = = p1ViAj

respectively, so that

£12 = Ay = pgvVy = p1vy
Aj Povy + PV

~
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which is the definition of the reflection coefficient rqo
where the subscript 1 pertains to properties of material 1 and

subscript 2 pertains to properties of material 2.
Similarly the transmission coefficient ty1, can pe defined as

t1o = Bt = 2p1v]
Aj P2V2t+p1vy

The above derivations yield reflection and transmission
coefficients for particle displacement. It can be shown that
the same coefficient definitions result for particle velocity

and particle acceleration [1l1].
Certain useful relationships between coefficients will be

exploited in subsequent development and so are explicitly

stated here as follows:
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Obviously the reflection and transmission coefficients can be
generalized to waves impinging on the boundary between any
two materials -k and k + 1. For notational convenience only
the alpha subscript is written and a prime is used to indi-

cate an upgoing wave at the boundary of k + 1 and k, as:

' = Tk,k+l 7 ¥ k = Fk+1l,k

ct
.
n

tk,k+1 7 t k Er+1,k

More complete and comprehensive discussions of wave theory
abound in the literature [2, 12 - 15] but the simplistic one
dimensional case provides sufficient conceptual background

for this report.

2.3.2 The Convolutional Model

Seismic wave propagation is well described by classical wave
theory. Diffractions, scattering phenomena, and "wavefront
healing" can all be modelled using classical theory. But

even under very restrictive conditions numerical calculations
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of the differential and integral equations arising from the
general expressions for spherical wave propagation in
inhomogeneous media are very i&volved and solution of the
inverse problem, that of determining earth properties from
the output recorded reflection data, is computationall&

infeasible.

An alternative description of seismic reflection was
developed in ghe 1950's and formalized through the 1960's
employing then recently devéloped:statistical éommunication
theory {4, 16 - 19]. Under the restriction of normal
incidence D'Alembert's solution provides that each interface
transmits a scaled replica of the impinging waveform and
reflects the complementary scaled replica of the waveform.
Since the recording:transducers are at the surface, only
ultimately reflected signals are recorded. Furthermoge the
depth relationships of the interfaces can be mapbed into time
relationships usidg velocity information and the interfaces
can therefore be represented as a time series of reflection
coefficients. Consequently seismic reflection data can be
represented as the superposition of identically shaped
waveforms scaled and spaced in accordance with the amplitude
and separation of reflection coefficients on a time axis.
Equivalently, seismic reflection data can be fepresented as
the convolution of a constant waveform with a time series of

reflection coefficients.



Two serious assumptions are evoked in this description:
firstly thét the recorded seismic data is normal incidence,
secondly that the seismic waveform is time invariant. A
third assumption not resulting directly from the model
formulation but important in computational work is that noise
in the system is uncorrelated and additive. With these

. assumptions the model can be written as
s(t) = wl(t) * r(t) + n(t) 2.2

where s(t) denotes the recorded seismic trace, w(t) the
seismic wavelet, r(t) the reflection coefficient series,'and
n(t) the noise. The asterisk denotes the convolution
operator. Since all subsequent de?elopment will assume
sampled data a standardized notation using integer valued n
as the discrete time index will be employed such that 2.2 can

be written as

Ironically, Norman Ricker developed a deterministic wave
theory description of seismic data in the early 1940's which
invoked reflection coefficients énd wavelets but which fell
just short of explicitly stating the convolutional model and
therefore missed the all-important next step - deconvolution.

Ricker's work will be discussed in Chapter 4.
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The convolutional model, expressed in the filter theory
notation of equation 2.3, immediately suggests deconvolution;
inverse filtefing out the wavelet to yield unadulterated
reflection coefficient information. That is, designing a

filter g(n) such that
g(n) * w(n) = &(n)

where the kronecker delta

1 n=0

8(n) = {
0 n#0

Convolving s(n) with the inverse filter g(n) gives

[w(n) * r(n) + n(n)] * g(n)
w(n) * g(n) * r(n) + n(n) * g(n)
r(n) + n'(n)

s{n) * g(n)

A variety of techniques for estimating g(n) and performing
deconvolution are described in Chapter 3. It should be noted
that deconvolution and wavelet estimation are essentially
different specifications of the same basic problem and. as

such the various techniques of deconvolution and wavelet

estimation have evolved hand in hand f201].



In the next section it will be shown that the convolutional

model is complicated by reverberations in a layered system.

2.3.3 . WaQe Propagation in Layered Media

As waves travel outward from the source and encounter each of
the interfaces between differing layers of material, part of
the wave is reflected and part is transmitted. The reflected
waves travel Back toward the surface and are themselves
reflected in part and transmitted in part by each of the
interfaces encountered on their path until they are
eventually recorded at the earth's surfaée. Energy which
transmits directly to an interface and reflects directly back"
is termed primary reflection energy. Energy which reflects
from more than one interface is termed multiple reflection

energy.

The complex process of primary and multiple reflection in a
layered system is particularly well described in terms of
communication theory [1, 11, 21, 22]. Displacement at any
interface can be described by a z-transform of the waves
impinging on -that interface [21] and, under certain plausible
assumptions, the "earth transfer function" can be expressed

as a rational function of polynomials in a complex variable,
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where the numerator polynomial represents the transfer func-
tion for primary reflections and the denominator polynomial
represents the transfer.function for multiple reflections
[36, 1]. This important result forms the basis for the ARMA

(prq) description of seismic data advocated in Chapter 4.

Following Treitel and Robinson [21] assume a horizontally
stratified elastic earth subject to plane harmonic com-
pressional motion at normal incidence. Let each layer be
homogeneous and isotropic with materialyof velocity vg and
density px comprising the kth layer so that the reflection
and transmission coefficients at the interface of the kth and

k + 1 layers are ri and tk respectively.

Further, let the travel time through each layer be constaft
such that, for convenience, the one-way vertical travel t;me
through any given layer is one unit of time. The model can
be generalized to layers of varying travel time by assigning
identical velocities and densities to coneiguous laye;s as

required.

Letting dk,k+2m-l denote the displacement at the top of

the kth layer due tohdowngoing waves at time k + 2m - 1, and
introducing z~1 as a unit deley operator, the displace-

ment at the top of the kth layer can be described by a
z-transform summing the appropriate displacements for all

time, that is:
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z=(k+2m-1)

M8

Dk(z) = dk, k+2m-1

m=o0

Similarly the displacement at the bottom of the kth layer can

be described by the z-transform:

where ﬁk(z) is related to Dy(z) by a unit delay and a

z-transform characteristic of the layer Ax(z), so

~

Dr(z) = Z—lAk(Z)Dk(Z)

In the absorption free case A(z) =1 so that

~

Dk(z) = z~Ipy(z)

The displacements resulting from upgoing waves can be
similarly described. For upgoing waves at the top of layer k

the z-transform description of resulting displacement is

Uk(z) = I up yyopey 27 (kF2m+ 1)

m=o



For upgoing waves at the bottom of layer k the z-transform is

- ~-k+2m
Ug(z) = L up pione1 2

and, assuming no absorption,

Ux(z) = 271 Ug(z) , 2.5
Figure 2.2 illustrates the waves dk, di, ug and ug in
the layered system. Figure 2.3 depicts the relationship of

all four waves at the k, k + 1 interface at time j.

Recognizing from Figure 2.3 that each wave is a composite of
reflected and transmitted waves and recalling the relation-
ships between reflection and transmission coefficients
described in equations 2.1, the interaction at the k, k + 1

interface at time j can be deéescribed by the two equations,

~

tkdk, 5 = Fke1, 5 T TKY%1, 5

kU, 3 T Tk, 3 T Y,y
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Incorporating delays and summing over time index j = k+2m,
m=20,1,2,..., equations 2.6 can be reformulated in terms of the

z-transforms noted earlier, as

EkDk{z) = Dr4+1(2z) + rgUkii(z)

~

txUk(z)

CkDk+1(2) + Uky1(2)

"Assuming no absorption, so that the transforms for the tops
and bottoms of the layers are related by a unit time delay,

as described in equations 2.4 and 2.5, equations 2.7 become

txDk(2z) zZDy4+1(2z) + rkz‘lUk+l(z)

txUk(2) rgzDkyi(z) + z"lUk+1(z)

These may be rewritten in matrix notation as

Dk (z) = Mg Dk+1(2z)
2.8
Uk(2) Uk+1(2)



"where Mg is a matrix described by

1 z rez-1 ]

Mg = — ' 2.9
ti CkZ z'l

Mk is termed the "communication matrix" [21, 22] or "scat-

tering matrix" [11].

The communication matrix Mg is defined for k = 1,2,3.... At
the interface between 0 and 1 there are no delayed waves in

the composite so the communication matrix Mo becomes

By successive substitution the communication matrix yields a
chain matrix description of wave propagation through the

layered system so that

Do(z) | = MoMiMp «.. My | Dpeplz) | 2.10

Uo (2) ~ Uns1(2)

For a system of N + 1 layers, with layer N + 1 an infinite
half space, there will be no upgoing energy impinging on

interface N, therefore, Uy41(z) = 0; furthermore
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Do(z) is generally assumed to be a unit spike, consequently

equations 2.10 can be rewritten [22] as

1| = MoMiMp. ...ty | Dyey(z) ] 2,11

Uo(2) 0

Silvia and Robinson [1] recognize that the seismic method
records upw%rd travelling energy at the top of the first
layer, that is Uj(z)e 1In order to take advantage of the
assuhptions employed in equation 2.11 they also reformulate

the communication matrix equation 2.8 in the form

| U1 (2) ] = My ] ug(z) ]
Dk+1(2z)_| Dk (z)
where
z | 1 r:'kz‘2
M = — , 2.12
t k r ok z~2

Comparing ¥ in 2.12 with Mg in 2.9 only the "directions"

of the coefficients have changed, which is as expected.

Employing M¢ in a chain matrix equation for Uj(z) under
the assumptions Uyti(z) =0, Dy(z) = 1 + r'oUl(z)

yields
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0 u Ui(z)
= A{ _ oooMl '
Dy (%) e 1+r oUi(2)

Separating out the multipliers and defining the product terms

of the chain matrices as follows:

N N = [N -2NpN (z-1)

n = z) mY (z mY (z) z m

ZMM M- oM myq 1502 112 1 ) 1
(t 1t 2...t ) my ¢ ) 5y (2) 51 ¢ ?x 1

td

the following equation can be extracted from 2.13

N
0 = z C mlill(z)ul(z) + z‘-?-Nm[;l(z‘l)(l+r:'oUl(z))_|
t'lt'2.ooth
or
-1

_z-’zN m21(z )
Uij(z) =

m[i]l(z)-r z=2NpN (z-1)

Since Uj(z) is the z-transform of the response at the
geophones of the N layered system excited by a unit impulse,
it follows that the transfer function of the N layered earth

is Ey(z) = U3(z) {1]. This result provides the earth



response in the convolutional model which relates the seismic

wavelet w(n) « W(z) to the seismic trace s(n) « S{(z) so that

s(n) = w(n) * ey(n)

S(z) = W(z) - Ey(2)
The double arrow « denotes transform equivalence.
Provided the N layered earth model is a bounded time-

invariant system, its transfer function can be expressed as a

rational function of polynomials in a complex variable {1].

That is
N
By(2) I bpz™h
= n=1 -
Eny(z) = 2.1%6
Ag(z) ? apz™h
n=0
where
By(z) = -z~2N mgl(z)

>
=
N
[
3
2
N
i
~
(0]
N
1
3]
=z
3
=z
N
I
[
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Recursion formulae can be written for the product terms by

substitution of 2.12 in equations 2.14 [1] yielding

(z) = m T(z) T2 )

m 4 = VA - A

11 11 n 21

T (2 iy v 2 i e 2,3,...N
m 4 = r m zZ 2 m z n = PR
21 n 11 21 T

Using the recursion formulae under the assumption of small

reflection coefficients, Ay(Z) can be expressed as

N
Ag(z) = 5 apz™™ = 1 + gz-1 + ﬁgz'2+...+¢NZ‘N
n=o
where
N .

Similarly, By(z) can be expressed as

[s4]
=4
N
il
it ™M=

baz™ = riz=l + ryz=2 + ... + ryz~ N



By(z) is recognized as the z-transform of the reflection
coefficient series of the earth, r(n), corresponding to the
generating function for primary reflections. Ag(z) is
therefore the z-transform of the reverberation series which
is the generating function for all multiple energy in the N

layefed system.

Recognition of By(z) as the z-transform of the reflection
coefficient series highlights a disrepancy between the con-

volutional models of equations 2.3 and 2.15 rewritten here as

—~

_s(n) = w(n) * r{n) 2.3
and ‘

s(n) = w(n) * eyx(n) 2.15
‘respectively.

Taking z-transforms and substituting r(n) * R(z) for

by(n) = By(z) in equation 2.16, yields

S(z) = W(z)R(z)

R(z)

n
N
I

W(z)

An(z)



Obviously, Ay(z) # 1 except in an idealized non-
reverberatory system since for the layered system described
above Ay(z) is the z-transform of the entire multiple

reflection sequence.

Consequently, the wavelets w(n) = W(z) in equation 2.17 must

differ such that

S(z) = W(z)R(z)
2.18
R(z)
S(z) = W'(z)
Ay(z)
where
W' (z)
W(z) = 2.19
Ay(z)

Equation 2.19 requires that the wavelet employed in the
convolutional model of seismic data must incorporate all
multiple reflection information if deconvolution is to recover
the true reflection coefficient series. This result is not
widely recognized in the geophysical literature although it

was stated by Robinson as early as 1954 [16, 1]. Industry



practice generally fails to distinguish between wavelets W(z)
and W' (z) in equations 2.18 [23] and therefore allows
implicit bastardization of the "true" reflection coefficient

such that

R'(z)
R(z) =

Ag(z)

where R'(z) = r'(n) represents the true reflection
coefficient serie§ and R(z), in the industry accepted
convolutional model, incorporates all multiple reflected
energy. Under the industry model, then, deconvolution cannot
yield the true reflection coefficient series; instead
deconvolution is applied only as "wave shaping" to inverse
filter out the smearing affect of the seismic wavelet. Other
techniques are deployed to rid the "deconvoived" data of
multiple reflections. Deconvolution and the rational model
description of seismic data will be explored further in

Chapters 3 and 4 respectively.



2.4 Data Processing

The CDP method of seismic acquisition aescribed earlier
yieids multichannel data records with each trace containing
reflection information from a different point in the sub-
surface. Adjacent records overlap in subsurfaqe sampling and
the degree of overlap, the number of times each subsurface
point is included in different records, is called the multi-
plicity or "fold". To achieve the desired output for
interpretation, the appropriate channels from different
records which include information from the same subsurface
point must be collected ("gathered"), corrected by time
shifts to equate to normal incidence, and summed ("stacked").
Much of seismic data processing, therefore, is concerned with
multichannel techniques employed to compensate for the geo-

metry of acquisition.

More pertinent to this report are the single channel tech-
niques of scaling, filtering, and deconvolution applied in

seismic processing.

Scaling compensates for such effects as spherical divergence
and absorptive energy loss. The principal purpose of scaling
is to make the information on the seismic trace, which other-

wise decays rapidly with time, more visible to the seismic



interpreter. Scaling is typically accomplished by appli-
cation of data adaptivé multipliers, which normalize energy
within a given window to some preset value, or by analytic
time variant multipliers which boost éach data sample by some

function of its time sample value.

Arguments persist regarding the validity of scaling to pre-
process data for input to subsequent pfocesses. Relevant to
deconvolution are concerns that scaling destroys the suppoéed
minimum phase character of seismic data but that not scaling
leaves the data time variaﬂt.

Filtering is applied to reduce unwanted noise on seismic
data. Since there is seldom a discrete frequency cut-off
separating signal and noise, filter selection requires inter-
pretive judgment of the trade-off between tolerable signal to
noise levels énd desired temporal resolution. Filtering is
seldom applied prior to deconvolution but again arguments can
be made both for and against pre-filtering. Clearly decon-
volutioné should be designed on signal rather than noise, but
the previously mentioned trade~off against resolution still
applies.

Deconvolution is applied to seismic data to inverse filter

out the effects of "earth filtering" and yield unambiguous
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temporally distinct reflection coefficients comprising the
reflectivity series of the subsurface. The rationale for
deconvolution was described earlier in discussion of the
convolutional model. Notwithstanding all of the weaknesses
inherent in the convolutional model, decoﬁvolution remains a
cornerstone of seismic processing and results in improved

-higher resolution seismic data almost without exception.

Overviews of seismic processing theory and practise are wide-
ly available [11, 12, 22, 63, 64]. The literature pertinent

to deconvolution is more fully referenced in Chapter 3.

'



2.5 Reflection Identification

For seismic to be useful as an exploration tool it is
necessary to have some means of equating the appropriate
reflections to specific geological interfaces of economic
interest. Geologists ascertain rock units of supposed hydro-
carbon potential from well information and geophysicists then
attempt to identify the reflections which correspond to the
selected rock units and correlate these reflections along the
lines of survey in order to map the distribution of the units
between points of well control. - To effect accurate identifi-
cation synthetic seismograms are generated from well data and
matched to nearby seismic data. Synthetic seismograms are
created by determining the reflection coefficient éeries from
sonic and density logs and convolving the derived reflection
coefficient series with a wavelet which approximates the

seismic wavelet.

Sonic and density logs are records of the rock velocities and
densitiés measured down the well bore with special tools.

The tools are lowered to the bottom of the well bore and then
slowly Brought up to the surface taking continuous measure-
ments of the adjacent rock properties during the ascent. The
resultant "log" is the record of the measured‘rock properties

as a function of depth. A sonic log, for example, records
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the variation in the velocity of the adjacent rock with
depth, yielding a graph of velocity versus depth (see

Figure 2.4). :Given a relationship between vélocity and depth
at the well it is straightforward.to calculate a relationship
between time and depth which can then be used-to relate rock
units at a given depthiwith seismic reflections at their

corresponding times.

Unfortunately the interference of reflections spaced closer
in time than the seismic wavelet breadth and the shape of the
wavelet conspire to make simple time—dépth identification
extremely difficult. Furthermore for practical reasons the
sonic logs cannot be recorded during the last 100 metres or
'so of the ascent to the surface and consequently a bulk time
shift to account for the velocity of the near surface must be
assumed making the time-depth correspondence from surface

unreliable.

To overcome these problems in identification synthetic
seismograms are génerated. The sonic and density logs from a
well are sampled and reflection coefficients are calculated

with respect to depth as:

Pi+1Vit+l - Pivy ,
ry = i=0,1,2, «oo N -1 2.20
TPiglviel + Pivy S




- 40 -

RECORDING TRUCK

—————T 0. 0. O NG O. O
usec/m .0;49595 0:0"0:0"0:0'
Ve onolllier e e
Ss%a24l P05
1 1 L 1 1
| I T | | I |
1 T I T
500m M B I N
- [ - TRANSMITTER
1000m
RECEIVER 1
RECEIVER 2
v=ta-t1
=2l
(a) (b) (c)

Figure 2.4 SONIC LOGGING: (a) SONIC LOG . (b ) WELL LOGGING
PROCEDURE . (c) SONIC LOGGING SONDE.
SONIC LOGGING YIELDS A NEARLY CONTINUOUS
VELOCITY SURVEY BY RECORDING THE DIFFERENCE
IN TRAVELTIMES OF A TRANSMITTER
PULSE MEASURED AT RECEIVERS 1 AND 2. (t; AND tz).




- 41 -

where N depth samples are assumed. Then using the time-depth
relationship derived from the velocity log velocity-depth
plot, rij is mapped into r(n) which is the discrete

reflection coefficient series with respect to time.

Convolution of r(n) with an estimated wavelet w(n) yields an
approximation to the seismic trace which is called a synthe-
tic seismogram (illustrated in Figure 2.5). By matching
similar patterns of reflections on the synthetic and true
seismic traces, and relating these back to the well data,

very accurate identification of reflections can be achieved.
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Chapter 3. Wavelet Estimation and Deconvolution
3.1 Introduction

The ultimate goal of the seismic reflection method is to pro-
vide unambiguous information on the relative strengths and
positions of acoustic impedance contrasts in the subsurface.
Deconvolution is an essential step toward the realization of
-this goal. The convolutional model representation of seismic
data describes a process whereby the seismic wavelet smears
the influence of the individual refléction coefficients over
surrounding coefficients resulting in very ambiguous and

generally undecipherable composite reflection response.

Deconvolution attempts to recover the unadulterated
reflection coefficient series by undoing the smoothing filter
effect of the wavelet. 1In the most general sense this is
accomplished by 1) acquiring an estimate of the seismic
wavelet, 2) designing an inverse filter which is the inverse
wavelet,'and 3) convolving the inverse filter with the

seismic data to yield the reflection coefficients.

The relationship between wavelet estimation and deconvolution
is obvious. Deconvolution requires an estimate of the in-

verse seismic wavalet. Given an estimate of the seismic

- 43 -
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wavelet, the corresponding deconvolution operator can be
determined by an inverse technique such as least squares, and

vice versa.

A selection of wavelet estimation and deconvolution
techniques are described-in the following review. The choice
of methods ranges from the deterministic to the purely
statistical with a full spectrum of intermediate techniques,
va?ying widely in the assumptions employed. The following
review, therefore, is not intended to be exhaustive, but .
rather to illustrate the variety of approaches to wavelet

estimation and deconvolution catalogued in the literature.

More detailed and complete reviews are available [1, 11, 20,

23, 27, 55, 63, 65].
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3.2 Wavelet Estimation Techniques

The wavelet estimation problem is just a minor variant of the

deconvolution problem. Given that
s(n) = w(n)*r(n)
and given s(n), find w(n).

The mathematics of the problems are identical; solving one
equation with two unknowns, w(n) and r(n). Clearly any
deconvolution estimation technique which solves for r(n) can
be applied in solving for w(n). Rather than repeat descrip-
tion of generally applicable techniques, those described
below are selected to illustrate approaches unique to the

estimation of w(n).



3.2.1 Signature Capture

The most obvious approach to estimating seismic wavelets is
to record the wavelets directly from the first arrivals at
geophones (or hydrophones) close to the source of seismic
energy. Ideally the first arrivals will travel direct
straight-line paths to the phones and be free from the
interference of reflected and refracted energy superimposing.
Also, if the phones are sufficiently close to the source
absorptive losses and additive noise will be negligible such
that the recorded signature is a good representation of the
actual source pulse or wavelet. This technique is called
signature capture and has been studied exhaustively by White
rand O'Brién for land seismic sources [24] and by the GeoQuest
group and others [20, 25] for marine seismic. Applications
of the technique in the design of inverse filters for
deconvolution are presented by Carrol [26] for marine

seismic, and Barry and Shugart [27] for land seismic.

The problems with the method are several. Routine signature
capture from land sources other than Vibroseis is difficult
because of the need to bury the geophone in proximity to the
source, Furtﬁermore, the near field response of a dynamite
explosion in the earth differs significantly from the far

field response which is really the desired estimated wavelet.



However, while the recorded far field response correctly
includes absorptive losses, it suffers from interference and

noise.

Signature capture from marine sources is léss difficult and
is now routine procedure. The direct arrivals can bé
measured without interference by the neag hydrophones in
average water depths or by an auxiliary hydrobhone inter:
mediate between the source and near hydrophone group 1n
shallow waters or 1n a’ survey. COnducted W1th a partlcularly
far‘offset_dlstance be;ygen the source and near group. If
the recorded sighatureé'aré noisy several can be averége@ to
improve signai to noise ratio [26]. Marine sources yield a
fairly uni form signature and water is essentially isotropic

so that absorptive losses are consistent from shot to shot.

A problem of the technique common to both iand and m&rihe
data concerns the validity or uﬁility of the estimated
wa&eiet. The signature is captured close éo the source to
minimize absorptive losses and interference, but it could be
argued that those very effects, particularly the absorptive
losses, are essential characteristics of the wavelets which
penetrate the earth, convolve with the reflection coefficient
series and result in the seismic trace recorded at the

surface. In other words, the wavelet in the convolutlonal
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model of a seismic trace is not expected to be the source
wavelet per se ‘but a modified version thereof. Deterministic
procedures could be developed to determine the necessary
modifications to the captured source signature but would
require empirical measﬁrements at each source position.
Instead techniques have been developed which estimate the
seismic wavelet from the seismic trace itself thereby
incorporating all the modificaﬁions iﬁherent in far field
measurement_and more particﬁlarly, satisfying the definitioﬁ

of the wgveiet in .the convolutional mode.

Recent and ongoing research is focussed on far field measure-

‘ment and estimation [67].
3.2.2 Response of a Known Layer

An alternative to shot signature capture is to record the
wavelet résponse from a known reflector directly off the
seismic data (28]. In many areas of Western Canada, fof
instance, the Wabamun is a thick uniform carbonate overlain
by shales and provides a strong and consistent reflection.
If the interference effects of overlying reflectiéns and
"multiples on the reflection can be assumed to be negligible
then the wavelet response of the Wabamun can be taken as a

reasonable estimate of the seismic wavelet. This technique;
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like signature capture, makes no assumptions about the phase
of the wavelet. The convolutional model is assumed implicit-
ly since the method is to pick one unchanging wavelet from
one discrete reflection coefficient. The major assumption is
that the wavelet is uniqgely identifiable. A priori know-
ledge of the wavelet shape is required to choose the start
and end points of a wavelet from typically ringing, narrow-

band data.



3.2.3  yavelet Extraction by Sonic log correlation

In instances where seismic data are recorded in close
proximity to a well location, correlation of reflection
coefficients derived from the well sonic and density logs
with the seismic trace provides an estimate of the seismic
wavelet. The observational data are the seismic trace s(n)
and the reflection coefficient series r(n); neglecting

additive noise it is straightforward to determine the

wavelet. Recall that
s(n) = w(n)*r(n)

where s(n) and r(n) are kndwp and w(n) is to be determined.

Cross-correlating r(n) with s(n) yields
s(n)*r(-n) = w(n)*r(n)*r(-n) 3.1

where the notation is such that x(n)*y(-n) denotes

correlation of the series x(n) and y(n); that is

N-1
x(n)*y(-n) = lim 2 x(n)y(n+m) - o <m< w
N> n=o-

Taking Fourier transforms of both sides of Equation 3.1
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S(E£)"R*(£) = W(E)*R(E)*R*(£) = W(E)- [R(£)| 2

where the superscript asterisk * denotes the complex con-

jugate.
On the right hand side of the equation
R(E£)*R*(£) = [R(£)| 2

is recognized to be the Fourier transform of the auto-
correlation of r(n). Obviously the phase of w(n) is pre-
served in the correlation and, better stiil, only the phase
of w(n) persists. Furthermore, if the reflection coefficient
series r(n) can be considered to be white over the correla-

tion interval then |R(f)|2 = K where K is some constant, and
S(£)-R*(f) '= W(E)-K
or, taking inverse transforms
s(n)*r(-n) = w(n)*Ks(n) = kew(n)
So, the correlétion of the seismic trace with the reflection
coefficient series yields a scaled vers;on of the seismic

wavelet preserving all phase information, provided the

reflection coefficient series is white locally.



A related technique is the MLSE shaping filter approach f29].

That is
s(n) = w(n)*r(n)

where the "approximately equals" is properly introduced to
account for additive noise and the possible deviation between

the calculated r(n) from logs and true geological r(n).
Then

e{n) = s(n) - win)*r(n)

and w(t) can be determined such that Ee2(n) is minimized.

These methods have in common the assumptions that w(n) is
stationary, that the additive noise is low.amplitude, random,
and uncorrelated with other components, and that r(n) as
determined from the well logs is a good approximation to the

"true" geological r(n).

It is this latter assumption that gives rise to most of the
problems of the method. The correspondance between the r(n)

derived from well logs and the "true" geological r(n) is



seriously affected by long period multiples (which, ironi-
cally, are present in the "true" r(n) and not the derived
r(n)) and by the accuracy of the log data and the dependant
depth to time conversion. As discussed more fully in
Chapter 2 well logs are recorded in depth and so must be

converted to time prior to correlating with the seismic data.

These sonic log correlation techniques of wavelet extraction
are considered to be semi-deterministic because of their

development from the log data as well as the recorded trace.



3.3 Deconvolution Techniques

The basic deconvolution problem is now familiar. .Given that

s(n) = w(n)*r(n)’

and given s{n), determine r(n).

The obvious approach is to design a wavelet inverse filter

g(n) such that

s(n)*g(n) w(n)*g(n)*r(n)

r(n)

or taking Fourier transforms

S(f) = W(£)R(E)

and solving for R(f)

R(g) = SF)

W(E)

Unfortunately, these are one equation with two unknowns so



certain assumptions must be made in achieving a solution.

‘In the following, selected deconvolution techniques are

described.

Inverting the wavelets output from the previously described
estimation schemes would yield deterministic to semi-
deterministic deconvolutions. The methods described below
are clustered at the statistical end of the spectrum of

techniques.



3.3.1 Least Squares SpikingrDeconvolution

The deconvolution technique most widely used in the geophy-
sical industry remains the original least squares inversion
method proposed by Robinson in 1954 [16]. The approach is to
design a least squares shaping filter g(n) which will convert
a sequence w(n) into a desired output d(n). The discrepancy
between the actual output of the filter c(n) and the desired
output d(n) is called the error e(n). The filter g(n) is

therefore designed so as to minimize the energy of the error.

Typically the input sequence w(n) is assumed to be the seis-
mic wavelet and the desired output sequence d{(n) is chosen to
be a spike situated at the origin d(n) = 8(o), so the filter
g(n) becomes the least squares inverse of the seismic wave-
let. Since the seismic wavelet is generally not known a
priori certain assumptions are made allowing the recorded
seismic data s(n) to be used as the input sequence and modi-
fied in fhe least squares process so that in an indirect way
the least squares spiking deconvolution process implicitly
makes an estimate of the seismic wavelet by calculating its

inverse.



The general least squares inversion procedure is straight
forward. The problem is to design a_least squares shaping
filter g(n) of length M which will convert an input sequence
w(n) of length N into a desired output sequence of length

M+ N~ 1. Denoting c(n) as the actual output of g(n) the

error is e(n) = d(n) - c(n), or
M-1

e(n) = d(n) - £ g(k)w(n-k)
k=0

M+N-2 -M+N-2 M-1
E= 2 e2(n)= ® [d(n) - £ g(n)w(n-k)12
n=o , n=o ) k=o

To solve for g(n) so as to minimize the energy of the error
-partial derivatives are taken with respect to each
coefficient of g(n) and set to zero, so for coefficient g(i)

i = (0,1,2,...[‘4"‘1)

M+N=-2 M-1
£ {2[d(n)- £ g(n)w(n-k)1{-2(n-1i)1} = 0
n=o k=0



or, collecting terms

M-1 M+N-2 M+N-2
Z g(k) I w(n-k)w(n-i) = I d(n)w(n-i)
k=0 n=o n=o

which can be written as

M-1
£ g(k)Ry(i~k) = Rdw(-i)
k=0

where Ry(k) is the autocorrelation of w(n)

M-1
Ry(k) = I w(n)w(n+k)
n=o :

and Rdw(k) is the cross-correlation of d(n) and w(n)

M+N-2
(k) = ¢ d(n)w(n+k)



Equations 3.2 are the familiar normal equations which are

conveniently written in matrix form as

Ry(0) Ry(l)e..oRy(M-1) g(o) Rwd(o)
Ry(1)  Ry(0).w..Ry(M-2) g(l) Rygtl)

Because of the Toeplitz form of the matrix, g(n) can be solved
for very efficiently with the Weiner-Levinson algorithm [1,

11, 16].

It can be shown that the causal least squares inverse filter
with finite duration of any causal energy bounded sequence is
a minimum phase sequence [11]. Seismic Qavelets are energy
bounded sequences and are generally assumed to be causal and
therefore if a causal output sequence is desired, for example
the traditional spike at the origin d(n) = &(o), then the
filter is necessarily minimum phase. Therefore an important
property of least squares deconvolution is that it harbours

the tacit assumption of minimum phase.
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As mentioned earlier the least équares process uses the
seismic data.s(n) as input and indirectly assumes the wavelet
w(n) in the design of 'the inverse wavelet g(n). This follows
from certain assumptions about the autocorrelation of the

seismic trace and of the seismic wavelet.

Assume noise free seismic data s(n) resulting from the
convolution of the reflection coefficient series r(n) and the

seismic wavelet w(n), so s{(n) = w(n)*rkn).
In the least squares procedure the autocorrelation of the

input sequence is used rather than the actual data so in

terms of autocorrelations

Rg(k) = Ry(k)*Rp(k)
Now if the reflection coefficient sequence r(n) is totally
random or "white" then Rp(k) = K8(o), that is a spike at

the origin, so that

Rg(k) = Ry(k)*K6(0) = KRy(k)



K is a constant related to the energy of the seismic data so

assuming unit wavelet energy K = Rg(o) and therefore

Rg (k) = Ry(k) .
Rs(o)

Employing the normalized autocorrelation of the seismic
signal in the spiking least squares procedure, therefore,
implicitly assumes an estimate of the seismic wavelet and
explicitly derives its inverse. The actual wavelet can be
recovered by least squares inversion of the inverse wavelet,
or by simply convolving the inverse wavelet with a spike.
Figure 3.1 shows wavelets derived by the Levinson routine

allowing inverse wavelets of varying length.

The assumptions of the technique are as follows.
l. The inverse filter is minimum phase.

2. The reflection coefficient series is white.
3. The noise in the seismic data is negligible.

4. The seismic wavelet (or the inverse filter) is time

invariant.
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The technique is considered to be purely statistical since no
observational information is employed in the filter design.
However empirical evidence for the assumption of white
reflectivity is easily obtained by transforming refléctivity
sequences r(n) derived from sonic and density logs at wells
proximal to the seismic recording. Appendix A discusses the
validity of the white r(n) assﬁmption and illustrates with
transforms of eighteen sonic derived reflectivity sequences

that the assumption of whiteness is not unreasonable.



3.3.2 Frequency Domain Least Squares

Deconvolutions are not commonly designed in the frequency
domain because of numerical problems. Nevertheless, inverse
filter design is easily formulated in the frequency domain

and consequently merits review.

As stated earlier, the convolutional model can be expressead

as a simple multiplication in the frequency domain

S(£) =-W(E)-R(E)
Deconvolution is therefore accomplished by division and
inverse transformation back into the time domain. Again
there is the problem of one equation and two unknowns but
assuming r(n) to be random, R(f) is white; that is, it has

constant magnitude, K.

So deconvolution can be formulated as

R(f) = KelB(£f) =

Thi; does not yield the desired R(f) of course, but offers an

approach to the design of an inverse wavelet, G(f)



Since this equation still has two unknowns, (K is a constant,
its value irrelevant), an extra explicit assumption has to be
made regarding phase. The phase assumption was implicit in
the least squares spiking inverse technique employing

Levinson recursion.

If minimum phase is chosen, for example, IG(f)I is easily
determined as the quotient of K and IS(f)l and the phase is

calculated with the Hilbert transform.

If noise is present, G(f) can be selected so that the mean
square error is a minimum. Tﬁis is accomplished by windowing
G(f) by a non-causal function of the power spectral density
function of the seismic signal s(n) and the noise n{n). The
noise is assumed to be additive and uncorrelated. The window
restricts the gain of the inverse filter in regions where the

signal to noise ratio is small.
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3.3.7 Homomorphic Deconvolution

Homomorphic deconvolution is a non-linear techniqﬁe which
transforms signals combined by convolution into signals
combined by addition, linearly separates the transformed
signals, and then inverse transforms the separated signals
back as deconvolved components Sf the original input data.
The technique requires no knowledge or assumptions about the
phase of the seismic wavelet or the distribution of reflec-
tion coefficients. 1In practice, however, these considerable
advantages are outweighed by computational problems and at
present homomorphic deconvolution is not widely utilized by

the seismic geophysical community.
Homohorphic deconvolution is based on the work of Oppenheim

on generalized superposition [30]. The application to

seismic deconvolution was explored by Ulrych [31], Stoffa

et al [32],-Buttkus’[68], and Triholet ([33], [34]. -

Generalized superposition requires that

Hlc:xy Vv dixg] = Cilxy] A duH[xy] 3.3



where

V is a rule for combining inputs

A is a rule for combining outputs

is a rule for multiplying inputs with scalars
\ is a rule for multiplying outputs with scalars

H{ 1 is a rule for system transformation, vi(n) = Hlxi(n)]

Equation 3.3 defines a homomorphic system H[ ]. Oppenheim
[30] has demonstrated that for such systems the operation
H{ ] can be realized by a canonic representation where'the
output of a characteristic transform D[ ] is input to a
linear time invariant system L[ ] and subsequently inverse
transformed by D‘l[ ] as shown in Figure 3.2. The‘
importance of this decomposition is that the output of
generally non~linear D[ ] can be processed using standard

linear filter techniques.

For seismic signals convolution is the rule for combining
inputs, where the inputs are the seismic wavelet w(n) and the
reflection coefficient series r(n). Homomorphic deconvolu-
tion invokes a characteristic transform D[ ] such that

summation is the rule for combining outputs.
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D{w(n) * r(n)] = D{w(n)] + D[r(n)]

This is achieved by Fourier transforming the convolution of

w(n) and r(n) and taking the complex logarithm of the result.

The inverse Fourier transform is then taken yielding the

complex cepstrum in thé pseudo-time domain,
That is
s(n) = w(n) * r(n)
taking Fourier transforms
S(£) = W(E)R(E)
then taking complex logarithms
log{S(£f)] = log[W(£)] + loglR(f)]

which cén be denoted

finally, taking inverse Fourier transforms

s(n) =W(n) +T(n)

E(n).



The above sequence of operations realize the characteristic

transform D[ ] as depicted in Figure 3.3.

An important characteristic of the cepstral domain is‘that the
cepstra of sequences with smooth amplitude spectra tend to
concentrate around the origin. Since seismic wavelets are
expected to have smooth spectra compared to the reflection
coeffiéient series, low pass filtering of the cepstrum
preserves wavelet information while attenuating raflection
coefficient components. High pass filtering does the
opposite. Homomorphic deconvolution, therefore, achieves
isolation of the seismic wavelet or the reflection coeffi-
cient series by simple linear filtering in the cepstral
domain. The isolated cepstra are then transformed back into
the time domain by D~1[ ]. D-1[ ] involves Fourier
transforming, exponentiating, and then inverse Fourier
transforming to get cepstral coﬁponents from the pseudo-~time
domain to the time domain. The whole canonic system realiz-

ing Homomorphic deconvolution is shown in Figure 3.4.

Homomorphic deconvolution is conceptually appealing. It
requires few explicit assumptions and separately yields both
the seismic wavelet and the reflection coefficient series.
Unfortunately the technique is plagued by computational

problems arising from a variety of implicit assumptions.
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Aside from numeric problems of computing the true complex
logarithm of the transformed data there are three major

concerns.

Firstly, separation of the wavelet components and the reflec-
tion coefficient components in the cepstral domain is not
entirely straightforward. Reflection coeéficient components
generally persist near the origin in the cepstral domain
where the wavelet components c¢luster, so that low-pass
cepstral filtering intended to préserve wavelet components
necessarily includes some reflection components. Ironically
it is necessary that the reflection coefficient series be
minimum phase to realize adequate separation in the cepstral
domain. Stoffa et al [32] recommend exponential weighting to

insure a minimum phase reflection coefficient series.

Secondly, aliasing of the phase spectrum creates uniqueness
problems in specifying the complex logarithm of Fourier

transformed data. That is
S(£) = loglS(£)] = log |s(£)| + B s(f)

where

an-l Im S(£f)
Re S(f)

‘Ds(f) =t



Since the inverse tangent function is multivalued the phase

is necessarily ambiguous.

Several techniques have been prescribed for phase determina-

tion but none are completely effective [33], [34].

Thirdly, oversampling in the time domain creates severe
problems. Inherent in the characteristic system is the
requirement of full band data; zeroes in the frequency domain
become unrealizable infinities in the log-frequency domain.
Tribolet has detailed a time resampling procedure to guaran-
tee against zeroes the frequency domain in consideration of
the severely band-limited nature of seismic signals [33].

The procedure is shown in Figure 3.5,
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3.3.4 "Optimal Deconvolution" Using State Variables

A very involved deconvolution scheme has been developed by

~ Mendel and his students at U.S.C. over the past five years
[35]. Described as optimal deconvolution because of its
affinity to optimal Kalman filtering the technique represents
the seismic process by a state variable model and yields a
maximum likelihood estimate of the reflection coefficient
series via a complicated iterative scheme which requires the
separate but dependant estimation of the statistics of the
reflection coefficients, the position of the reflection
coefficients, the seismic wavelet, and ultimately the magni-
tude and polarity of the respective reflection coefficients.
The method provides a model which can accommodate fewer
constraints than previously described techniques. The
principal advantage is'that time-varying signals can be
handled. The state variable model can also be modified to
incorporate effects such as instrument response and spherical
divergence. The technique assumes a white Bernoulli-Gaussian
sparse spike'reflection coefficient series and an ARMA (p,q)
representation of the seismic wavelet. Other minor assump-
tions will be discussed as they occur in the following

summary description of the method.
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The convolutional model of seismic data can be expressed in
terms of a state variable model. That is, the convolutional

model

s(k) = w(k) * r(k) + n(k)
can be equivalently described by the state equation

x(k + 1) =-@x(k) + o (k)
and the correspénding measurement equation

s(k) = hTx(k) + n(k)
® is an n x n transition matrix, g is an n x 1 input distri-
bution vector, and h is an n x 1 observation matrix. Under-
lined variables denote vectors. The equivalence of the

convolutional and state variable descriptions requires that

x(o) = o, r(o) = o, w(o) = o, and

=
—
~
g
|

=nTet™l o, 2 =1, 2, ....

These conditions specify that the initial state is zero, that
there is no direct reflection, and that the wavelet is not

only causal but zero valued at zero time.
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The appropriate choice of transition matrix &, input
distribution vector ¢ and observation matrix h results in an

ARMA (p,q) model representation of the seismic wavelet w(k),

that is:
x1(k+1) 0 1 0. . .0 x1(k) 0
x9(k+1) 0 0 1 .. .0 X2 (k) 0
. . . . . . + . r(k)
Xp (k+1) ~ap -&,_1 Ta__, ~al xn (k) 1
o S
and
ST(k) = (bn/ bn_l’ b bl) _}_(_(k)
hT

where s7(k) denotes the "true" seismic signal, uncon-

taminated by noise, so that s(k) = sp(k) + n(k).

w(k) can then be expressed in z-transform notation as an ARMA

(p,q) process.
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612071 + 62072 + ... by 1% + by
w(z) =

2zl + agzn-l + .., ap-1% + ap

Note that this description implicitly requires at least one

less zero than poles.

To accomplish deconvolution using this state variable model
of the seismic process, the variance of the state vector x(k)
is minimized with a Kalman optimal smoother. The variance of
the state vector x(k) is equivalent to an estimate of the
reflection coefficient series r(k) under a "sparse spike"
assumption. That is, for any combination of wavelets and
reflection coefficients which convolve to produce the
observational data the reflection coefficient series with the
fewest reflections (but more than one) is considered to be
the best estimate, and its corresponding wavelet is the best
wavelet estimate. The reflection coefficient series is

further assumed to be Bernoulli—Géussian. That is
r(k) = Zpidx, m,
i

Where the mj are randomly occurring integer values of dis-
crete time and 8x,mj = 1 for k = my and &i,my = 0 for k # mj .
i denote a set of identically distributed uncorrelated
Gaussian random variables, statistically independent of the

mj. Under this model E{r2(k)} = égx where M is the



average number of spikes occurring within the subject length
of data. The sparse spike assumption constrains A to the

minimum value compatible with the data.

Optimal deconvolution attempts to simultaneously determine
r{k) and w(k) in an involved updating procedure which inter-
relates the parameters of r(k) and w(k) to effect a jointly
optimal solution. To determine r(k) the number of reflection
coefficients,\, must be determined, so must the position of
the spikes g (related to mj) and their amplitudes p(k). . To
determine w(k) the ARMA coefficients a and b must be deter-
mined. 1In order to accommodate noise in the system, the
variance of the noise p must also be determined. The para-
meters a, b, and p are treated together as a vector of
statistical parameters 6. Parameter g is solved for in loose
conjunction with A in a separats iterative loop. The block
diagram of Figure 3.6 illustrates the overall

computational scheme and some of the components. The hat
symbol "*" denotes an estimate. An initial guess at the

A

parameters 6 initializes the event detector which solves for

A

4, the value A is then updated and fed back into the event
detector. When a converging estimate g is found the algo-

rithm drops to an outer loop in which the parameters 6 are

updated in a maximum likelihood scheme. These updated 6
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estimates are then fed back into the event detector and a new

g and A are obtained. This procedure ensures that overall
likelihood increases. When convergence in both loops is
achieved p(k) can be estimated ;n one pass with the estimated
parameters through a Kalman optimal smoother which provides

the minimum variance estimate of the state equation for which
all the parameters are now provided. This result, R(k),

finally allows for the determination of r(k) by r(k) = u(k)q(k5.
The seismic wavelet is provided by the optimal estimates of a

and b.

The state variable representation of the seismic process
promises fewer constraining assumptions than conventional
least squares techniques and the facility for incorporating
deterministic processes such as spherical divergence directly
into the seismic model. The iterative "olock component"
method of Mendel et al [35] described above has the addi-
tional advantages of providing maximum likelihood estimates
of the wavelet parameters and the placement of the reflection
coefficients, and an optimal estimate of the reflection

coefficient series.

The principle aisadvantage of the method is the required
computational intensity; the maximum-likelihood solution

requires non-linear gradient search optimization.
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The state variable model turns out to be less flexible than
expected in practice. The reétrictive assumptions of the
least-squares technique require the data to be time invariant
and the reflection coefficient series to be Gaussian. The
state variable model allows time variance but only in the
reflection coefficients; it is the wavelet that is expected
to be time variantrin seismic data. The state variable model
also allows relaxation from the requirement of Gaussian
reflection coefficients but only so far as to permit
Bernoulli-Gaussian statistics, which still require the

reflection coefficient series to be white.

One final weakness in the state variable approach is that
rather than minimizing a physically meaningful criterion,
such as mean squared error, the minimization is performed on
the variance of the state variable equation which has no

physically interpretable meaning.



\

Chapter 4. Estimation Techniques Employing. Linear ARMA (p,q)

Models

4.1 Introduction

Much of the recent literature in signal processing and time
series analysis concerns the estimation of spectra using
linear models. Linear models represent signals as linear
combinations of their past values and the past and present -
values of a hypothetical }nput signal which is generally
assumed to be white noise with variance ¢2. The corres-
ponding models in the frequency domain are rational functions
of polynomiéls whose coefficients specify the poles and

zeroes of their spectra.

It is particularly convenient to consider linear models in
terms of filter theory. The linear model of an observed time
series (e.g. seismic trace) corresponds to the transfer
function of the filter required to generate the observed
trace from a white noise input. That is, the linear model is
the filter, white noise is the filter input, and the observed
trace is the resultant filter output. This relationship is

illustrated in Figure 4.1.
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Linear models are especially suited to the representation of
seismic data. As described in Chapter 2 seismic data is
considered to be the result of seismic wavelet convolved with

a random reflection coefficient spike series.

An equivalent description of the process is that the reflec-
tion coefficient spike series is filtered by the seismic
wavelet. The seismic wavelet is consequently the impulse
response of the earth filter which comprises all of the
effects which modify the assumed spike input, resulting in
the seismic wavelet. Therefore, although geophysicists tend
to consider the seismic process strictly in terms of the
seismic wavelet travelling into the earth and encountering
and responding to the reflection coefficients in a directed
convolution, it is equivalent to consider the spike series as
passing through a filter whose impulse response is the
seismic wavelet and yielding to the seismic trace. As such
the seismic process is ideally represented by linear model-
ling. The reflection coefficient spike series corresponds to
the white noise input, the seismic trace corresponds to the
output, and the seismic wavelet corresponds to the linear

model filter whose parameters must be determined.
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Linear models have a number of advantages. Since the
parametérs of the model specify the transfer function of the
equivalent filter, calculation of a power spectrum and an
inverse filter are straightforward once the model parameters
have been determined. Furthermore, given the correct choice
of model, it is usually sufficient to estimate a relatively
small number of parameters and therefore very accurate

results can often be obtained with short data lengths.

The disadvantages of linear models are that the model type
must be known a priori and parameter determination is often
difficult. Most troublesome is the specification of a model

order [5, 6].

The most general of the linear model formulations is the
pole-zero or auto-regressive-moving-average model with a
pth order demoninator polynomial (p>o) and a qth

order numerator polynomial (g>o).

H(z) = B(Z)

A(z)
B(z) = by + byz™l + byz=2 + ... + bgqz ™
A(z) =1 + ajz~1l + apz=? + .... + apz~P
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This model is conveniently denoted as ARMA (prgq). The ARMA
(prq) model is of particular interest in the representation
of seismic signals because the seismic process is considered
to be expressible in this way. Unfortunately, because of the
difficulty in estimating-the coefficients or parameters of
ARMA (p,q) models there has been little interest demonstrated
in the geophysical literature in pursuing the advantages of
ARMA (p,q) models in either spectral analysis or seismic

deconvolution.

By far the most popular of the linear models is the all-pole
or auto-regressive model. The auto-regressive model has a
pth order denominator coefficient (p>o) and zeroth

order numerator of unit value.

H(z) =

A(z)

1+ ajz”l + anz=2 4+ ., apz™Ph

The model is denoted AR (p). Although use of the AR (p)
model in spectral estimation is relatively recent and remains
the subject of the bulk of the literature in the field of
modern spectral estimation, its use in geophy51cs dates back
to the early days of deconvolution where its appllcatlon was

implied in the recursive scheme of Wiener-Levinson advocated
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by Robinson [16]. Most of the recent contributions to the
methodology of deconvolution are variations on AR (p) models

[27, 55, 69].

The last of the linear model formulations is the all-zero or
moving-average model which has a gqth order numerator

polynomial (g>o0) and a unit denominator.

‘H(z) = B(z)

B(z) = b + byz™l + boz=2 + ..l. + bqz~4

The moving-average model is denoted MA (q). Classical lag
window spectral estimation tachniques are expressible as MA
(q) models as are Ricker seismic wavelets [11].

Table 4.1 provides a. summary descriptidn of the three linear
model types. In this study the concern is with ARMA (prq)
models and their application to seismic deconvolution and

wavelet estimation.



AR (p) oo 1 P

H(z) = y{n) =1 ~- % ajh(n-i)
(all-pole) a(z) 1+alz‘1+a2z‘2+...apz‘9 i=o
MA (q) q

H(z) = B(z) = botb1z l+bpz=2+...bqz"4 y(n) = I bjix(n-i)
(all-zero) i=o
ARMA (p.,q) ) B(z) _ b0+blz‘l+bzz'2+...qu‘q q p

H(z) = ' y(n) = I bijx(n-i) - % ajh(n-i)
(pole-zero) A(z) 1+alz‘l+a22‘2+...apz'9 i i=o i=1

Table 4.1 Linear White Noise Models
y(n) = h(n)*w(n)

x(n) is a white noise innovation sequence

68



AUTOREGRESSIVE (AR) MODEL

x(n) uin)

Yiz)= 1 < X(z)
l+ag 27+ qaz 4. a, 2P

MOVING AVERAGE (MA) MODEL

x{n} yln)

Y(z)= b+ by 2=t + baz=2+veeebgzq * X(2)

AUTOREGRESSIVE - MOVING AVERAGE (ARMA) MODEL

yln)

-1 -2 P -
by + byz™i+ byz2 4. + byz™9

+ X(z)

1+ sz-,""aaz-a"‘"""" qu-p

Figure 4.2 DIRECT FORM REALIZATIONS AND Z-TRANSFORM
DESCRIPTIONS OF THE THREE LINEAR MODEL TYPES




4.2 . ARMA (p,q) Representation of Seismic Signals

The motivation for applying ARMA (prq) models to the analysis
of seismic data is that seismic data is considered to be
expressible as ARMA (p,q) and hence such a model will provide
the most parsimonious parameterization. The only formal
development of the ARMA (p,q) characterization of seismic
data in the literature is by Robinson [36, 37] and is
described below. The Robinson model is considered to be too
reétrictive and of little value in modélling because of its
assumption of lossless transmission and its development from
a unit spike rather than white noise input. A preferred ARMA
(p,q) seismic signal characterization is offered and is
developed descriptively drawing from the work of Ricker on
the properties of seismic wavelets and the work of Robinson
and others on the feedback characteristics of horizontally
stratified media. This Ricker/Feedback model assumes the
reflection coefficient series as a white noise inpgt and
consequently models only the seismic wavelet whereas the
Robinson model models the enéire seismic trace. Gutowski and
Frisillo [38] devéloped a model similar to the Ricker/
Feedback model for analysing the absorptive properties of

rocks under ultrasonic excitation.



4.2.1 Robinson ARMA (p,q) Seismic Model

Assuming a lossless horizontally stratified earth model
Robinson [36] demonstrated that a seismic trace can be
expressed as an ARMA (p,q) model (p = q) with a z-transform

given by

where C(z) the moving-average component represents the
desired primary events on the ssismic tréce, corresponding to
reflections from geologically meaningful interfaces between
rock types, and D(z) the auto-regressive componént represents

the reverberation characteristic waveform shape.

Using the seismic model of a horizontally layered elastic
medium with homogeneous and isotropic layers subject to plane
compressional motion at normal incidence (see Chapter 2)
Robinson's development invokes energy considerations; since
the system is lossless the energy input to the system must
equal the output from the system. Given a unit spike input
and characteristic impedances of Z, and ZN+1 respect-

ively for the air and the basement rock

Zo = Zo R(z)R(z-1) + Zy;1T(2)T(2-1)
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where R(z) is the z-transform of the reflected (upgoing)
wavetrain and T(z) is the z-transform of the transmitted
(downgoing) wavetrain. The reflected wavetrain R(z) is the
seismic trace which is recorded at the surface. Isolating

R(z), therefore,

In+1
1 - R(z)R(z-1) = 72, T(z)T(z-1) 4.1

The characteristic impedances are related to the transmission

coefficients as demonstrated in Chapter 2

th = 2%n ! A 2%n+1
Zn * Zn+l n Zn * In4)
and consequently
t'n = Zn+1l and t'ot'yeeet'y = 232200020y = IN+1
th Iy totle .ty ZoZ1es %y Zo 4.2

Using an earlier argument that the sedimentary system acts as
a pure feedback system in producing the transmitted wave,

T(z) must be proportional to the reciprocal of a polynomial
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D(z). Choosing D(z) so _that its leading coefficient is unity,
the proportionality factor is equal to the downward
transmission factor. Therefore the transmitted wave can be

expressed as

T(Z) = totlo.-TN 7 403
D(z)

Substituting the results of 4.2 and 4.3.in 4.1

R b ...t (Eabqen..ty)2
1 - R(z)R(z-1) = £ot'l N ot1 N

totieeeoty D(z)D(z-1) 4.4
= o) 2
D(z)D(zfl)
where
N = t'otot'ltl°°-~t'NtN = (1-r25) (1-r27). ... (1-r2y)

Since R(z) is the reflected wave recorded at the surface and
6N2 is a constant, D(z) and the value of 6N2 can be

determined as follows.



- 95 -

The autocorrelation of the seismic trace is computed

Rg(k) = T s(n+k) s(n)

then since the source is assumed to be a unit spike input its
autocorrelation is a unit spike at zero lag and the difference
between the source and trace autocorrelations, which is also an

autocorrelation, is given by
Ry(0) = 1-Rg(0)

Ry (k)

Note that the z-transform of this autocorrelation function is
formed by the left hand side of equation 4.4. That is, taking

Z-transforms

g

Z{Rg(k); k = o, +1,...+M} = 1-R(z)R(z-1) = D(z)D(z-1)

where Z{ } denotes the z-transform operation:

[eo]

ij(n)} = I xpz™h

=«



The coefficients of D(z) are calculated by solving the normal

equations

M =2

di Rgyx(-k) for k = 1,2,....N

=
u
o

The constant °N2 can then be determined by

™M 2

di Rg(i)

=
i
o

An important feature of D(z) is that because from 4.3
D(z)T(2) = totj...ty = constant

D(z) must be the z-transform of the prediction error filter

which compresses the transmitted wave T(z) to a spike.

The feedforward or moving-average component of the reflected
seismic trace isiinvoked by similar means. The reflected
seismic trace comprises direct reflections and delayed
reverberated reflections increasing in abundance and variety
with each suécessive layer. For the nth layer the

contributions can be described by

R(z)% = . 'y + tpRy-1t'nz + tpRy-1r'pRu-1tnz2 +...



which can be factored to yield

R(z) = r'y + thRy-1t'pz [l+r'nRp_12+(r'qe12)2 +...]

Using the geometric series the expression for R(z) becomes

the more manageable

r'n+ thRp-j1t'pz

n =

The reflected seismic trace R(z) which comprises all of the
R(z)M for n = 0,1,2,...N is therefore composed éf a melange
of purely reverberatory transmitted waves, characterized oy
the reciprocal of the polynomial D(z), and the purely feed-
forward reflected energy which can be characterized by the
polynomial C(z) resulting in the total reflected seismic

trace R(z) characterized by

Hubral et al subsequently demonstrated that this result is
equivalent to a sum auto-regressive characterization of the

seismic process with higher order auto-regressive terms [39].
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It is recognized that this discussion does not constitute a
proof of the ARMA (p,q) model characterization of the seismic
reflection trace. It is intended only to provide motivation
for the preferred application of ARMA (prg) models in the
,fepresentation and analysis of seismic data. Ironically the
ARMA (p,q) characterization developed by Robinson argues
against the use of ARMA (p,q) models in the analysis of
seismic data. The model intimates a correspondence between
the coefficients of the numerator feedforward polynomial and

the reflection coefficient series,
(cor Clreeeecy) = (rg, Llreessly)

Consequently the ARMA (p,q) representation of the data
includes the entire trace and not just the wavelet. Decon-
volution with the ARMA (p,q) model would yield not the
desired reflection coefficient series but the source spike
alone. This, however, is consistent with the assumptions on
which Robinson's development is based. Generally in linear
modelling a white noise input.is assumed an§ in applications
to seismic data the reflection coefficient series is |
typically considered to constitute the white noise excitation
so that the model parameterizes the source wavelet and
subsequent modifying influences such as earth filtering. But

Robinson's model was developed with a unit spike excitation
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representing the source wavelet. The model, therefore, had
to include all modifying influences between that spike source
wavelet and the resultant reflected seismic trace and
predominant amongst those modifiers are the reflection

coefficients.

It would seem then that an AR (p) model with an assumed white
noise excitation corresponding to the reflection coefficient
series should provide as useful an analytical tool as an ARMA
(prq) model with a unit spike input for handling seismic,
daté. The ARMA (p,q) model of Robinson, however, makes no
assumptions about the statistical properties of the reflec-
tion coefficient series. The AR (p) models will overfit to
compensate for a non-white reflection coefficient series and
may thereby incorporate geological information in the model.
AR (p) deconvolution, therefore, has an undesirable potential
for deconvolving geology. The AR (p) component of the
Robinson ARMA (p,q) model would not suffer the same
overfitting problems and if isolated should provide a

superior model for the design of deconvolution operators.
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4.2.2 Ricker/Feedback ARMA (p,q) Seismic Model

The Ricker/Feedback model depicts the absorptive earth
filtering effect as a moving-average process, the reverbera-
tory feedback characteristics of multiple reflectors as an
auto-regressive process, the reflection coefficient series as
white noise input to the model and the recorded seismic data
as the model output. The result is a more general and useful
model representation of seismic data than offered by

Robinson.

The moving-average description of the absorptive earth
filtering process is derived from the work of Ricker on wave-
let theory. The auto-regressive descriptiop of the feedback
process is familiar from Chapter 2 and was employed in the

Robinson model.

In the early 1940's Norman Ricker developed the "Wavelet
Theory of Seismogram Structure [40 - 43]. His work was
motivated by the failure of classical wave theory to describe
observed seismic data, and was revolutionary in its descrip-
tion of the seismogram as a ;uperposition of transient wave-
forms varying in amplitude but deterministic in shape, or
character. Ricker's work implied but fell just short of

stating the convolutional model of the seismogram as a
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wavelet convolved with a reflection coefficient series.
Robinson and others at MIT in the eariy 1950's formally
recognized the convolutional model implied in the work of
Ricker and brought the then recently developed field of
signal processing to bear on the enhancement of seismic

data - the most important result of which was developmedt of

the process of seismic deconvolution.

Although in retrospect providing the foundation for the
development of the convolutional model is the most important
result of Ricker's work, what Ricker developed was a theory
describing transient waves in visco-elastic media. Claésical
wave theory does not allow for the absorptive effects of
internal friction as wave passes through the earth so Ricker
used‘Stoke‘s wave.equation which incorporates a dissipation

term.

Assuming, without loss of generality, plane waves travelling

along the positive x-axis the classical wave equation is

% (x,t) = 2 3% (x,t)
—_— —_— — 4.5

where ¥ (x,t) is the elastic displacement, and v is longi-

tudinal wave velocity. The general solution of 4.5 is
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x(x,t) = £1(x-vt) + £o(x+vt)

where f; and f, are arbitfary functions, or wavelets,

f1 travelling in the direction of the positive x-axis and

£o traveiling in the direction of the negative x-axis.

Both £ nd £y tr%vel at velocity v and remain unchanged

in shape with respect to time and distance. Observational
data, howevep, suggest Ehat wavelets change dramatically with

time and distance.

Asuming absorption to be the major inflouence on the
modification of wavelet shape Ricker used Stoke's wave

equation, namely:

82(x(x,t) + 4n dx(x,t)) = 1 @82x(x,t)

0y 2 3pv2 ot v2 o 2

where (4n/3pv2)(6/at) is a dissipétion term which takes
into account losses due to viscosity. 7 denotes viscosity

and p denotes density.

The solution of wave equation proposed by Ricker is

EY

Ad
x(ix,t) = — &(x,t):
ot

Ab(x,t)
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where A is a constant and

®(x,t) = Su) = I (2)(n+l)/2 ¥ (u)

and where

u = t - x

(x/2)1/2

The ®(u) are termed generating functions. The ¥, (u) Ricker
described as wavelet functions, and are defined in terms of

Hermite functions{

¥S(u) = ¢ exp(—uz)

¥ (u) am g (u)

dum

Ricker's solution in spherical coordinates is written as

®u) = T (2)n+3)/2 ¥ (y)
h=o *
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‘where R is a dimensionless radial distance number.

Since geophones typically record the velocity of the earth's
motion, however, it is necessary to determine i(R,t) = ®(u),

the velocity function

®(u) = (2)(n+5)/2 ¥p2(y) 1 (2)5/2 y(u/R)

2 2
R R

n=o

where notation used is such that

am ¥ (u) = ¥7(u)

dumn

and a dot denotes a derivative with respect to time.

Y(u/R) is called the velocity wavelet form function which
specifies the shape of the wavelet. At R*® y(u/R) = Y%(u),
that is the wavelet assumes a constant shape with distance

travelled and further absorptive effects have negligible

influence.

The steady state velocity wavelet form function is therefore



where X is a gain constant.

Since R is fixed u becomes a function of time alone and so
for discrete time samples a moving average process can be

defined in terms of z-transforms as

km L (n2-2) exp(-n2) z™n

z{Y (n/=)}
2 n=0 4

. 5 ‘
But the term exp(~0 ) rapidly becomes negligible

4
with increasing n such that, to good approximation, the
summation can be considered to range over M, where M is

finite. Furthermore the exponential is an analytic function

so that the z-transform is analytic.

The seismic wavelet shape due to travel through an absorptive
media is therefore expressible as a moving-average process

with z-transform N(z). The wavelet shape due to the super-
position.of reverberated impulse reflections has already been

demonstrated to be expressible as an auto-regressive process
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with z-transform 1/D(z). An ARMA description of seismic data
consequently models both the earth filtering and multiple
feedback facets of impulse wavelet modification. "Figure 4.3

illustrates this result.

As mentioned earlier these descriptions are only intended to
provide motivation for the use of ARMA (p,q) models in the
analysis of seismic data. However, whereas the Robinson
model suggested that only the auto-regressive component, the
undesirable reverberation characteristics should be decon-
volved out of the data, the Ricker/Feedback model indicates
that a full ARMA (p,q) deconvolution oberator shohld be used
to get rid of the undesirable effects of both feedback and

absorbtion.
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r(n)Al-‘L-l‘-L[Lr_

rin) ‘Luﬁlﬂ_

Figure 4.3

ARMA

___*.‘J/\/N. I ~)\/41/\Fdwxr——- sin)

B(z)
A(z)

H(z) =

MA E AR
‘Jﬂ\/x\ g \/A\/~ I Jﬂ/ﬂ1/\ﬁJ\,—_.s(n)
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H,(z) = B(z) ;lﬁtz):aé;
g?ggggg%g“ E REVERBERATION
|
H(z) = H, (z)e Hytz)

EQUIVALENT SYSTEMS DEMONSTRATING THE

ARMA DESCRIPTION GF THE SEISMIC PROCESS

rin) X hi(nl) = s(n)

WHERE h(n) COMPRISES SOURCE SIGNATURE AND
EARTH FILTERING EFFECTS - GENERALLY CONSIDERED
TOGETHER AS THE "SEISMIC WAVELET" w(n).
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4.3 ARMA (p,q) Parameter Determination
4.3.1 Box-Jenkins Method [7]
The characteristic difference equation for an ARMA model

excited by a white noise sequence {e(n)} with variance 652

is:

fo}
e o}

bi &(n-1i)

o
]
-
-
n
o

multiplying both sides of the characteristic egquation by

x*(n-m) and taking expectations

p
-z

E{x(n)x*(n-m)}=E{ aj x(n-i)x*(n-m)}+E{
i 1 i

or

o
& .0

=
I
b
=
]
o]

where Ry(k) denotes the autocovariance of the sequence {x(n)}
and Rye (k) denotes the cross covariance between {x(n)} and

{E(n)}. Since Rge (k) = E{x(&-k)s(n)}, and x(n-k) depends
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only on inputs which have occurred up to time n-k it follows

that

Ree (k) = 0 k>0

Rye (k) # 0 k%0

tM.Q

bkRge (m=i) = 0 for m-i>0 or m<qg+l
o]

Consequently
i

and so the previous expression for Rg(m) can be rewritten as

p .
Ry(m) = =X ajRy(m-i) for mq+l
i=1

which can conveniently be written in matrix form as

Ry(d)eeee.Ry(g~p+1) aj R (q+l1)

e« o o o o
.

) o o o o o
O
-

4

QO .

+

e

Rqu+p—l)...:Rx(q)
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The auto-regressive parameters aj i=1,2,...p are then

determined using the recursive formulae of Durbin.

The moving-average parameters are calculated using the
auto-regressive coefficients and the first g+l auto-
covariances. As described earlier the first g+l lags of the
autocovariance function coﬁtain information about béth the
auto-regressive and moving-average parameters whereas the far
lags beyond g+l contain only auto-regressive components,
consequently it is standard practice in ARMA parameter
estimation to determine the auto-regressive parameters at the
far lags of the a;tocovariance function and then use those
information in conjuction with the near lags to determine the

moving-average parameters.

Using the auto-regressive parameters a new sequence {x‘(n)}
is derived, namely x'(n) = x(n)-aix(n—l)—...—apx(n—p).

The autocovariances Ry'(k) (k=0,1,...q) of this derived
sequence are then calculated and the moving-average

components are determined using the iteration

Ry '(0)

"
!

1+b12+. . .bg2
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-(Ry'(k) = bibgsy - bobk+2=- . .~bg-kb])
2

b =
Ox

where bgy=0 and bk k=1,2,...q are set to zero to start the
iteration and the values by and 0y2 to be used in any

subsequent calculation are the most up to date values

available.
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4.3.2 jhe Cadzow Method

Fundamental to Cadzow's approach to determining ARMA model
coefficients is the development of a recursive relationship
between the autocoérrelation function of the model time series

and the coefficients of the model (8, 44-46).

To facilitate this develépment Cadzow splits the

autocorrelation function into its causal and non-causal

images such that ry(n) = r§ + ri(-n)* where
r¥(n) = [0.5 ry(0), n = o
[ rg(n) , N> o
[ o , n < 0

The postscripted asterisk denotes the complex conjugate.

Then, since by definiti;n Sx(w) = F{rx(n)}

Sx(w) = Flrg(n)} = Flrf(n) + r¥(-n)*} = F{rf{(n)} + F{rf(-n)*}
= L ri(n)e IV 4 3 rf(-n)*e” %0
n=- o n=-
= L ri(n)e” IV 4 (3 rf(-n)el¥ )
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[~ @

= L rf(n)e™ IV & (3 rf(n)e”IVN)x = st(w) + sh(w)*

n=-< n=-
= 2Re[Sy(w)]

Now since an ARMA spectral model is assumed, the power spectral
density function is defined as

— -jw -jqw
Sg(w) = ‘bo + bye W o+ bqe Jd |2 = 2Re[s§(w)]
|l + aje” IV 4+, ..+ ape” JP¥ '

Sﬁ(w) is chosen to be a rational function S;(w) = C(w)
D(w)
so if
B(w) [2 = 2Re [C(w)]

Selw) = lB(w) 2 then
W

W BICAN

and C(w) = C(w) . D{w)* = C(w)D(w)*

D(w)  D(w) D(w)*  |D(w) |2
Since
B(w) |2 = | B(w) |2 = 2Re[C(w)D(w)*] then | a(w) |2 = | D(w) |2
A(w) A(w) |2 | D(w) |2
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so that the autoregressive coefficients (i.e. denominator
coefficients) of the ARMA spectral model are identical to the

denominator coefficients of the rational model for S§(w).

- Looking at the numerators again |B(w)|2 = 2Re[C(w)D(w)*]
B(w) is order g and D(w) is order p so C(w) must be of order
29-p.

Cadzow then restricts p < q for further development.

Under the restriction that p < q and assuming P = q, or

equivalently cqy) = €q+2 = +++ = Cp = 0, then

é;(w) = C(w)
D(w)
: : P s
=Co + c1e7 W + L. 4 cpeTIPY 5 cje” ItV
i=o
: : p .
1+ age”™ ¥ + ...+ ape” PV 1+ 3 aje ItV
i=1
. p .
multiplying both sides by 1 + £ aje”J1V
i=1
p .. p ..
SR(W) Il + £ aje”™JiV] = 5 ¢je~Jiv
i=1 i=o



- 115 -

P . P ..
Zcije It ~[T aje” V] st(w)
i=o i=1

taking inverse z-transforms and re-arranging summations gives

This recursive relationship is the basis for Cadzow's method

of estimating the coefficients of the ARMA model.

The recursive determination of r}(n) is in general

not the same as

ry(n) = 1 £ x(n) x(n+p)
N-p k=1

since the recursive determination of r}(n) does not
suffer end effect or truncation problems. Consequently, if

rﬁ(n) is substituted into the relation for ri(n) as

X P P
rx(n) = % cj &n-i) - =
i=o i=1

A+ .
ajry{n-i)

equality is not to be expected given the same ci and aj

(i=1,2,....p) as in the derived equation. The discrepancy



- 116 -

i p
e(n) = r¥(n) + = ajr¥(n-i) -

i=1 i=o

O &« n<<N-~-11is termed the error and is squared and
minimized with respect to the aj coefficients at lags

q < m < N at which the c¢j coefficients are zero, such that
p
z

e(n) = rM(n) + a;r®(n-1i)

i=1

where r{(n) denotes the autocorrelation of x(n) at

lags exceeding m.

Phrasing the same result in a slightly different way, the
coefficients aj are chosen so as to force a best fit in a
least squares sense of the model autocorrelation to the

estimated autocorrelation.

Cadzow's development arrives at the same end (i.e. the same
error to be minimized) but without specific recourse to the

recursive relation, as follows:

The characteristic difference equation for an ARMA model

excited by a white noise sequence {e(n)} is
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multiplying both sides by x*(n-m) gives

P
x(n)x*(n-m) = [ % ajx(n-i)1x"(n-m) 4.6

i=o i=1

Now €(m) and x{n) aré uncorrelated for m > n so

e e]

bis(n—i)x*(n—m) + 0

for n-i > n-m or i < m, but since o < i < g we tequire g < m.

The arrow is used instead of equality because although e(n-1i)
and x*(n—m) are uncorrelated for i < m and have zéro mean
over the summation for o < i < gq; q < m, the product
s(n-i)x*(n—m) fof any particular value of i in the

summation need not be exactly zero, it is only required that
the products average to zero over the summation. This
opportunity for non-zero products, denoted here by the arrow,
forms the basis for Cadzow's error'term and subsequent'

estimation of the aj coefficients.

Summing equation 4.6 over m < n ¢ N and dividing by N-m
yields

N
1 L x(n)x*(n-m)
N-m n=m+1l
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N q N p
=1 L L bije(n-1)x"(n-m) - 1 z £ ajx(n-i)x"(n-m)
N-m n=m+l i=o N-m n=m+l i=1

recognizing that the estimate of the autocorrelation is

defined as

N
r¥(m) = 1 £ x(n)x*(n-m)
N-m n=m+1

where r¥(m) denotes the estimate of the autocorrelation
of input x(n) for lags exceeding m, and rearranging summations

provides the following relation

N q N p N
rg(m) = Z by[ 1 L e(n-i)x"(n-m)]1- Z a;[ 1 L x(n-i)x*(n-m)]
i=o N-m n=m+1l i=1 N-m n=m+1l
q N P A
= L bil[ 1 £ e(n-i)x"(n-m)] - I ajrP(m-1i)
i=o N-m n=m+1l i=1
R p R q N
or rP(m) + I ajr(m-i) = % by[ 1 I e(n-i)x*(n-m)] where q < m.
i=1 i=o N-m n=m+1l

As mentioned earlier the right hand side should tend to zero
but may not be identically zero for particular values of i.

Cadzow defines this term as the error e(m) such that
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O

e(m) = rf(m) + £ ajrP(m-1i)
i=1

and proposes minimization of this error squared and weighted
as an appropriate method for determining the aj coefficients

(minimization is with respect to the a; coefficients).

Note that this expression for the error is the same as that
which was derived independently directly from the recursive

relation.

By either development then the error relation is

This error relation can be rewritten in terms of matrix

notation to give

where e is the (N-p-1) x 1 vector of error terms, r is the
(N-p-1) x 1 vector of autocorrelation terms, a is the p x 1
vector and autoregressive coefficients and R is the

(N-p-1) x p correlation matrix.
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Cadzow proposes minimization of a quadratic functional f(a)

of e(m) with respect to the coefficients a; defined as

N
f(a) = £ W(m)ezxm)
m=p+1

which can be expressed in matrix notation as the Hermitian

form
f(a) = etiWe 4.8

where ¢rdeﬁotes the complex conjugate transpose operation and
W is a (N-p-1) x (N-p-1) positive semi-definite Hermitian
weighting matrix. Substituting equation 4.7 into 4.8 and
minimizing with respect to the coefficients a yields a set of

p linear equations described by
[R#WR]a = -R#Wr
The selection of appropriate elements in the weighting matrix

W can be accomplished by the iterative technique developed by

Moses [45, 47].
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Finally, the numerator coefficients cj are computed by
substituting the estimated aj coefficients and an estimate

of r;(n) into the recursive relationship

P
% ajri(n-i)
i=o i=1

such that

A0

cid(n-i) = E;(m) + ajrg(n-i)

™ O

where

N-p
1 T x(i)x*(n-1i)
N-p i=1

or
k
z

ck = rx(k) + T rg(k-i) o < k < p.

1=1

Note that at lags k < (p = q) both cg and ayp terms contribute.
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Cadzow's method is computationally efficient and has been
shown to yield high resolution spectral estimates [483].
Ogino [49, 50] has demonstrated that further computational
improvement can be realized by appropriate modification of
the vector and matrix entries in an equivélent but more

general formulation of the error relation when g = p.

The method has two serious shortcomings, however. Firstly,
the MA coefficients are not explicitly determined. The
modified coefficients‘are suitable for spectral estimation
but cannot be related to the MA parameters of the ARMA model.
Secondly, the spectral estimates generated by the method can
be negative. Kay [51] recognized this problem and proposed a
solution which ensures that the autocorrelation function of
the residual "MA" time series obtained from the aj

estimates and the input data yields a positive semi-definite
sequence. Moses [47] proposed two similar solutions also
based on the residual "MA" time series. Recently Salami [10]
proposed an extension of Cadzow's method which yields the
direct MA coefficients and ensures non-negative spectral

estimates. Salami's method is described in section 4.3.3.

Two further problems with Cadzow's method are the requirement
that g < p and the need for a priori knowledge of the model

order (p,q).
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4.3.3 The Method of Salami

Salami has proposed a modified Cadzow algorithm which ensures
positive real power spectral e;timates and provides direct
estimates of the MA coefficients [10, 66]. The method
involves obtaining estimétes of the AR and modified MA
coefficients via the Cadzow method, defining the MA-power
spectral density function in terms of the estimated
coefficients, modifying the coefficients in a purposeful
manner so as to make the MA spectral estimates positive real,
and computing the direct MA coefficients from the MA power
spectral density function using Kolmogorov specﬁral factori-
zation. Salami has also proposed a modified singular valued
decomposition (SVD) technique to determine the order of the
AR polynomial [10]. The SVD technique employs iterative
spectral matching and monitoring of the effective rank of the

covariance matrix to determine the AR sub-model order.

Salami initially uses Cadzow's approach (Section 4.3.2) tq
split the autocorrelation function into its causal and
non-causal images and define causal and non-causal power
spectral density functions by Fourier transform operations on

the autocorrelations.
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That is
rg(n) = rf(n) + rz(n)*; where rx(n)* = rf(-n)*
and
Sx(w) = Sf(w) + Sx(w) ; where Sx(w) = S¥(w)*, and
where
St = ; rf(n)e”J¥n; sz(w) = -; rz(n)*e~Jjwn
n=-o n=e

Defining the causal power spectral density function as the
ratio of two polynomials C(w) and D(w) and recognizing

complex symmetry it follows that

Sg(w) = 2Re[SL(w)] = 2Re [SL¥L; 4.9
D(w)

Employing the ARMA spectral model and rewriting equation 4.9

SX(W) - ‘ B(w) l2 - 2Re[C(w)D(w)*]

| A [ | D(w) |2
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Therefore, assuming D(w) = A(w) such that coefficents

di = aj, i =1,2,....p for AR order p, equaﬁion 4.10 becomes

| BGw) |2 _ 2RelC(w)A(w)]

SX(W)

| acw) |2 | acw) 2

Cadzow's method then develops a recursive relationship for.
the causal image of the autocorrelation function in terms of -

the AR and modified MA parameters [8] as follows.

p
z

cjé(n-i) - ajrf(n-i) 4.12

i=o i=]

Restricting n>m to lags beyond which the ci coefficients
are zero and defining e(n) as the error or non-zero residual
which is present when the causal autocorrelation calculated

from the data, r®(n) is substituted into the recursive

relationship of equation 4.12 to give

Minimization of the squared error yields the AR coefficients.

The modified MA coefficients are then calculated via
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substitution into the recursive definition of the causal
autocorrelation function in equation 4.12 at lags where the

cj coefficients are non-zero.

The method of Salami extends the Cadzow method so as to
evaluate the actual MA coefficients, bj, rather than the
modified coefficients, cj; i = 1,2,....q (q<p). Salami's
method also ensures against undesirable negative spectral
estimates. Salami's method recognizes that rearrangement of
equation 4.11 isolates the actual MA spectral estimate in

terms of the AR and modified MA parameters.
| B(w) |2 = a(w)*C(w) + A(w)C(w)*

Letting G(w) denote the right-hand side of the equation and
substituting the Fourier transform of equation 4.13 for C(w)

yields

G(w) = A(w)*A(w)RE(w) + A(w)A(w)*RE(w)*

)

where Rf(w) denotes the Fourier transform of the causal

~

autocorrelation rf(n).
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Taking inverse transforms and utilizing complex symmetry

P 1% N
g(k) = 2 I aj*ajry(k+i-j)
i=1 j=1

where g(k) is the inverse Fourier transform of G(w).

To ensure non-negative MA spectral estimates it is necessary
that g(k) be positive definite; Salami proposes two methods
to accomplish this. The first method is to increase the g(o)

term such that
g'(k) = g(k) + o2

The second method is to apply an exponential weighting
function ¢l to the modified MA coefficients ci and/or the

AR coefficients aj.

With g'(k) positive real it follows that !B'(w)l2 is
positive real and spectral factorization can be applied to
determine the direct MA coefficients b'i. Unfortunately,
factorization does not yield a unique set of coefficients

b'j, since G(w) can be generated by many different series.
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Only one series b'j can be minimum phase, however, and
Salami determines the unigue minimum phase sequence via

Kolmogorov factorization following Silvia and Robinson [1].

The z-transform of B'(w), denoted by B'(z), can be expressed

in terms of its coefficients b'; as follows:

~M 8

B'(z) = btyz-i ‘ 4.14

As discussed above the b'; are not unique. Imposing a
minimum phase requirement on B'(z), however, dictates that
all the zeroes of the system response lie within the unit
circle in the z-plane: furthermore, MA systems, such as
B'(z), have no poles where values approach infinity and so
outside the unit circle the natural logarithm of B'(z) can be

defined and expressed as a Taylor series expansion. That is,
log B'(z) = Z Bjz=i ; |z]1, 4.15

Rewriting 4.15 letting z = e~J¥, then taking only the

real part and expanding using the complex conjungate yields



log|B'(w) | = Bo + £ p_Y e7I%t 4 5 ge7IW1 4.16

Noting that log|B'(w)| is a periodic function its discrete

Fourier transform can be expressed as

©

log| B'(w) | = ¢ aje”dvi; | 4.17
i:-—-m
“ . 3
8i = _1 [ log|B'(w) |eI¥ aw i=0,%1 ,%2,....
2w -
n L] 0
= 1 [ 1log ¢"(w)el¥'auw i=0,1,2,....
4z

-7

Equating the expressions for long'(w)l in equation 4.15 and
4.17 yields the coefficients Bj of the Taylor series for

log B'(z) in terms of the b'; so that finally the desired
coefficients of the minimum phase MA system B'(z) can be
uniquely determined by comparing equivalent descriptions of
descriptions of B(z) in equations 4.14 and 4.15 and solving

for b'j. That is
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By dividing equation 4.18 into its derivative with respect to
z and rearranging terms, a recursive relation can be

developed to compute the direct minimum phase MA coefficients

b'; [30]

1
(i+1)bli = Z b'n(i+l—n)si+l_n; i = 0,1,2,..;-, n-l

where n is the number of points in the discrete Fourier

transform and b'y = exp{ﬁo}.
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4.3.4 GRT Method

Gutowski, Robinson and Treitel (9, 52, 53) have suggested an
iterative least squares method.of determining the parameters
of an ARMA model. The method is conceptually simple and
easy to implement but has several shortcomings, chief of
which is the requirement of a good initial estimate of the
moving-average parameters of the model to initialize the
iteration. Starting with.an estimate of the moving- average
parameters and the known output series response to a unit
spike excitation, the auto-reéressive parameters are
estimated by a least squares shaping filter {Wiener Filter)
and the shaping filter estimate is then used to refine the

initial estimate as illustrated in Figure 4.4.

The method develops as follows: Consider a sequence x(n)
which is the output response to an ARMA model with input u(n)

where u(n) is a unit spike situa;ed at the origin. Then

_ B(z) U(z) = B(z)

: since U(z) =1
A(z) a(z)
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then A(z) R(z) = B(z) or a * x = b where

|

=a(i), i =0,1,2,....q; b =Db(j), j =0,1,2,...p;

= x(k), k

0,1,2,....8

| >4

Knowing x and making an initial guess at b, a is calculated

as the shaping filter f in the equation x * £ = b

Then, using the previously determined 2, g‘l is deter-
mined as £ by a * £ = 6 where 8 is the kronecker delta.
Similarly the estimate b can be refined as f by g‘l * £ = x.
The procedure is repeated until éénﬁergence occurs. The
method guarantees a minimum phase A(z) becaﬁse oé the

Toeplitz recursion employed in the shaping filter deter-

minations.

The method varies significantly from the previously
described procedures in that it does not work off the
autocovariance function calculating the auto-regressive
parameters first at the far lags and then iteratively
solving for the moving-average parameters. However, the
requirement of a good initial estimate of the moving—average
parameters severely limits the value of the method since
unlike the auto-regressive parameters the moving—average

parameters cannot be conveniently estimated from the data.
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4.4 Deconvolution Using ARMA (p,q) Models

An ARMA (p,q) model of seismic data is expected to vield an
analytic estimate of the seismic wavelet provided the
reflection coefficient series of the earth is white. This
seismic wavelet can therefore be uséd to design an inverse
wavelet for deconvolution. Recall that the wavelet is really
the impulse response of the filter whose transfer function is
described by the ARMA (p,q) model estimate. Given an

ARMA (p,q) model estimate

. botb1z™l + ... + bgzd
H(Z) 1 +

l+aqiz” cee. toapz

A

the wavelet estimate w(n) can be calculated using the direct

method assuming a unit impulse input,

ajw(n-i)

™~ O

The inverse wavelet estimate required for deconvolution must

~ ~ A

have a model estimate G(z) such that G(z)H(z) =1 or

~ A

equivalently G(z) = [H(z)]"l so, obviously
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1+ alz'l

. + .. + apz—p
€{2) = poropz=l + ... + bgz @

Taking the inverse z-transform yields

where g(n) is the inverse wavelet estimate, more often termed
the deconvolution operator. Convolving é(n) with the seismic
trace, s(n), under all of the invoked assumptions of station-
arity of the wavelet, w(n), whiteness of the reflection
coefficient spectra, guassian distribution of reflection
coefficient amplitudes, r(n), no noise, and the appfopriate—
ness of the convolutional model yields the desired estimate

of the reflection coefficient series r(n). That is

s{(n) win)*r(n)

1

;f(n) S(n)*E;(n) H E;(n)*W(n) = §(o)
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4.4.1 Stability Considerations

Since deconvolution requires the realizability of both the
ARMA (p,q) model, ;(z), and its inverse, é(z), it is
necessary that both coefficient series aj; i = 1,2,...p and
bjs i = 1,2,...9 be minimum phase sequences. This

important constraint ensures stability of the wavelet

estimate and of the inverse wavelet estimate {30, 547].

Constraining the coefficient sequences aj and b; to be

minimum phase is equivalent to ensuring that the poles and

A

zeroes of H(z) lie within the unit circle in the z—-plane.

~

The‘expression for H(z) in equation 4.19 can be factored in
terms of the roots of the numerator and denominator
polynomials as follows [54]

1

) (1-z1z" 1) (1-2zp2~ 1

H(2) = K (1-p1271) (1-ppa=1)...(1-ppz~1)

...(1—zqz—

where K is an arbitrary constant and the Zii i =1,2,...q9
and the pj; i = 1,2,...p are called the zeroes and poles
respectively. Note that it is necessary that lpi|<l;

i =1,2,...p to ensure the stability of H(z).
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Recall that G(z) = [H(z)]™ !, it follows that

1 (1—p1z‘1)(1-p2z‘1)...(1—ppz‘1)

G(Z) = K (1—212_1)(1-222-1)...(l—Zqz—.l)

The poles of H(z) are therefore the zeroes of G(z) and the
zeroes are the poles. To ensure the realizability of G(z),

then, it is also necessary that Izi|<l 11 =1,2,...9.
4.4,2 Phase Modification

The poles and zeroes of ﬁ(z) must lie within the unit ciréle
to ensure stability and invertibility during deconvolution
operator design. Once G(2) has been established, however,
only the poles of é(z), zi; 1 = 1;2,...q, must remain

within the unit circle; there is no need to similarly
constrain the zeroes, pj; i = 1,2,...p. The zeroes of é(z)
can be reflected outside the unit circle singly or in
combination by filterfng with the appropriate all pass
networks; This has the effect of leaving the power spectrum
of &(z) unchanged while chahging the phase spectrum in a
systematic way. The procedures yields a finite number of

possible phase spectra for a given estimate.



Chapter 5. Results
5.1 Introduction

Various parametric modelling techniques, both AR (p) and ARMA
(prq), were applied to real and synthetic seismic data. The
quality of the resultant models was assessed qualitatively by
visual comparison with periodogram spectral estimateé of the
source data. The closer the fit of the model to the spectral
shape of the periodogram, the better the model waé judged to

be.

Deconvolutions were performed by convolving the model
inverses with the source data. The results with the most
spiked output and flattest spectra were judged to be best.
These perférmance assessment criteria did not discriminate
again;t undesirable boosting of noise from the low S/N-
portions of the data spectrum, so that ultimately conclusions
were inferred principally from study of spectral fits.
Decimation and demodulation were applied to the seismic data
to alleviate oversampling. The models were re-run, and again

the results were assessed on the basis of closest spectral

match.

Modelling techniques illustrated are Least Squares, Levinson,
and Burg AR (p) parameter estimators and Kay, Cadzow, Salami,

- 138 -
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and Transient Error Method ARMA (p,q) parameter estimators.
The ARMA (p,q) techniques of Box-Jenkins and Gutowski,
Robinson and Treitel (GRT) were tested but did not yield
usable results. The GRT method was particularly sensitive to

the accuracy of an initial guess at the MA (q) parameters.
5.2 Model Input Data

Three data types were utilized as input to the modelling
procedures: 1) seismic data; 2) synthetic seismic data; and
3) decimated seismic data. The seismic data were treated as
the principle data set and the corresponding models are the

focus of the results.
5.2.1 Seismic Data

Two seismic traces from a single shot file were considered.
One a near offset trace, the other a middle offset trace.

The two traces and their corresponding periodograms are
illustrated in Figure 5.1 The near offset trace was studied
extensively as it was considered more problematic and had
already been briefly investigated in the work -of Salami [66].
The data were écquired using a 3 hole pattern of shallow
shots recorded through Mark 14 H; geophones into a DFSV

recording system. The sampling rate was 2 milliseconds. The
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data are considered to be of good quality aithough the near
trace data were dominated by ground roll (low frequency

surface waves).
5.2.2 Synthetic Data

Synthetic data were produced by creating a random sequence of
primary events and generating the corresponding multiple
(reverbération) sequence using a Weunchel algorithm [17].
Figure 5.2 depicts the primary events, the reverberations,
and the resultant spike trace. Theory developed in Chapters
2 and 4 described the primary events as the innovation input
to the white noise model and the multiple sequence as an
autoregressive model response. Comparing the periodograms of
the primary and multiple sequences in Figure 5.3 it is
evident that the AR (p) filter generating the multiples is of
extremely high order such that its parameterization is
indistinguishable from overfitting the variance of the input.
This result has serious implications for the utility of ARMA
(prq) models in seismic deconvolution. The sad fact is that
although seismic data can be characterized as compriéing MA
(q) and AR (p) components which are theoretically distinct,
these same components are not observationally distinct;
consequently ARMA (p,q) models can provide little advantage

over AR (p) or MA (gq) models.
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5.2.3 Decimation and Demodulation

Seismic data is typically oversampled during acquisition to
accommodate useful information which may persist to higher
than anticipated frequencies. The logic is good considering
the high cost of seismic acquisition (up to $20,000/km in the
Alberta foothills) relative to the negligible incremental
cost of oversampling. The same rationale is carried over to
the processing of seismic data. 1In processing, however,
oversampling can be detrimental. The abrupt decay of signal
in the near trace spectrum of Figure 5.1 occurs at 0.1 demon-
strating five times oversampling of the data. Recognizing
that higher order models on the seismic data tended to work

ﬂ at fitting the variance outside of the signal portion of the
oversampled spectrum, a decimated data set was generated by
sampling every fourth value of the seismic data. The deci-
mated seismic data set and its periodogram are:contrasted

with the seismic data in Figure 5.4,

In the expectation that low-pass data requires less fitting
than band pass data, such as seismic, the data were also
demodulated. Demodulation effects a shift of the centre
frequency to tﬁe origin. This was accomplished by windowiné
out the frequency band of interest with a hamming filter and

multiplying by complex exponentials.
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5.3 Spectral Fitting

Although deconvolution. is the focus of this report, spectral
fitting is the focus of the results. There are two reasons
for this. First, the conformity with which model spectra
match the shape of the data periodogram is considered to be
diagnostic of the quality of the model. This inference makes
intuitive sense and has much precedent in £he literature [5,
6, 66]. Second, without the coherancy recognition engendered
by multichannel seismic data, differentiating between spiked
up signal and spiked up noise is questionable. The per-
formance of deconvolution on single channel data sets can
therefore be evaluated more meaningfully with reference to

the spectral fits.
5.3.1 AR (p) Techniques

Burg, Least Squares, and Levinson AR (p) modelling techniques
were run on the various data sets. Figures 5.5 through 5.7

illustrate model fits to the periodograé for the seismic data
at orders 2, 4, 8, and 16. The different techniques yield

almost identical model spectra at these orders. In all éases
the models indiscriminately fit the large magnitude contrast
caused by oversamplingrwhere signal drops off to noise. The

additional fitting allowed in going from 4th order to 8th



Department of Electrical Engineering

Jniversity of Calgary,

147

12 12
o o
< 1«
=] <
R e
tn o 4m o
GRESE o v.m
4 w2 4 1
_ orm C—
g | £
iy {
gds 1 Wq
o 3
ge &
£ )
38 )
H < o
& 4
\
- 5
! t
] }
T
- = g ~
Te H - i T T M S e e +..u.
N :
¢ 1
t H I3
! i !
! ; { :
I, m ! - o’
RUREUE LR L By b SNt B P e R T O Y 55 (R SOy W2 S PP o et 1 Y Lo fotertech o8k 1 § +
3 & 3 P & 5 o © o o o - o o - <
- o o < © - ~ - ~ =3 © © - Ed
- - - - - -
opnyutow Bop . e e e e e SPRUUSRW BO1 ]
o - 2
© o <
e
T
Y e =
Pl
- o= ~
iv —t L%
o e o
-1 2
S S - { T T e
w ﬂ.m.u.ﬂlhﬁl
H EERRTT
‘ .m m lo ! & cogiugli in
H o %2 v % o
H T S
i 2 R RN
' 1 ojm H c 2 o
N - ™ i &
b ] Lo N
T3 g EN
i i gE | PO g
) ) & i R v &
! 1 K] ' - - i
d BRI S +9
H K] - T
m d 3 o 4.
1 H 5
! ] i e N i
H : H
{ H : AT e i
' : e R i
H Al H = o i
3 To m hw.\rm..n.......v....d CPR . .M..O
H 7 : H
{ m . ]
H ‘ i
H H ]
i < H M
) — ' e,
[ Aot e R o L S ST IR S N S S I +..._.TT%D FI e S L R L T X o OO B B R T B e N R B B (S Ot )
) o o © © -3 o < © 1o o © o © -3 o -3
i ~ =3 £ @ - ] { - o = @ @ - ~
- o = ¢ - -
| 1
L spmudow Boy . MV veens CPTAIUODW BD) e o]

i6th order BURG

8th order BURG

BURG MODEL FITS TO SEISMIC DATA

Figure 5.5



- 148 -

Department of Electrical Engineering

Jniversity of Calgary,

—— +9 +9
-~ © °
L P
.
T
PR ]
ST e
e At g
- - «
JUed L ,%
e et -] o
iR
mEme
<
SR TRmo—
=
s TR n
Xy w
o EEETTT m
g L %]
> 4 3 -
o o i@ ° 3
2E .
= Ax g
S, 8 H
P g g | o
AT 1 &y =
i (B dey
e S e {° c
£
~
erEEmm.
A e,
RS
“uNl-llll' Lol Lo
o B e 13 In
=
y o B
Grrermt oped 1T T B 04} § b 8 Julat Jedbefotrtete bofobetatatt O O L T T S B B <]
3 ] T3 & 4 & 2 2 & 4 2
- N o © © -~ N n o ®
- - - - -
opnjjudow Sof epmjubow Bo; N
L2
ts
-
+%
o
)
]
i
3
¢ H
i ~
i 5
ia {
in 3 :
° v'_ 0 !
e &
En 1 £t
© o1
S st
= g
&L ! 4
iw Y &
N B
g ie
K
te
4%
-
.
)
¥
1
H
- oy \ vy 1
.T.t_...—..l..alw. ;._...M. Byl -defeteli dedeh petonid %.v}.fol.o B T Th B b o B T X 5 1 TR RE O SU T WAL B A AN DN P RY B ,TT%.?_..TT—.O
o o (-4 Qa b Q Q o o
- ™~ o «Q 0 -« o~ - N Q ] o - ~
- - - - - -
spnjjubow Bop opnyjubow Boy

16th order LEAST SQUARES

Figure 5.6 LEAST SQUARES MODEL FITS TO SEISMIC DATA

8th order LEAST SQUARES




Department of Electrical Engineering

Jniversity of Calgary,

- 149

+2 +2
] ©
1 L% !
o o
2 7 z
n {2 n (O
Ta t@ To 9
=z z
mE J &
[y W m
-]
=
2% AN
1 3E1 °
-l &=
o o
] o
+8 m S m
b4
e P
< ]
A -
5 e~
b fte et oo 4 edm bt WU s poren Jarom P T s s 2 f s mrfisme Frind i forn e ©
3 & < &~ 3 e
« o o 0n o
- =
N spnjjubow Sof
+9 i
o (=]
4% <
] <
m
i
_ 5 3
{ " "
4 oin 8
m S iz @ iz
i 1 e
: i Hi
4 ol B e
i 2iv 2%
i S5 16
u 15 2 3 is
) S i~ © jo
4% 4 ]
3
TRy 4 ! tfebotoatte
2 S A R PPN R S APRRY IR TS ¥
Q S o ) o <
-+ o o
- -
. epnjiubow Boy . -

Figure 5.7 LEVINSON MODEL FITS TO SEISMIC DATA

<



- 150 =

order is squandered in fitting some arbitrary apparent trend
in the variance of the noise. Only at 16th order does the
model begin to distinguish in the high signal portion of the
spectrum but even then more shape is found (and model order
wasted) in the noise. The trend persists with increasing

order. Models to 64th order were examined.

It is obvious from the model spectra that there can be little
difference in the deconvolutions and wavelet estimates output
from these models. This is confirmed with illustrations in

Section 5.4

Figure 5.8 through 5.10 illustrate model fits on the deci-
mated seismic data at the same orders: 2, 4, 8, and 16.
Without noise constituting 80% of the spectrum the models
work much more effectively on the signal; shape in the signal
portion begins to be recognized at 4th order. The results
for the different techniques are very similar up to 8th
order. At 16th order the known tendency of the Least Squares
and Burg algorithms toloverspike certain frequencies at
increasing orders becomes evident. The cause and effect
relationship between model order and spiking is demonstrated
in Figure 5.11 where Burg modél spectra are presented for
8th, 16th, and 32nd order. The 32nd order spectrum offers

little additional frequency differentiation compared with
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léth order but severely overspikes those frequencies

previously distinguished by the 16th order fit.

5.3.2 ARMA (p,q) Techniques

Salami, Kay, Cadzow, and Transient Error Method techniques
were used for ARMA (p,q) modelling. Box-Jenkins and GRT pro-.
cedures were attempted but both techniques were found to be
extremely unstable on seismic data and sensitive to choice of
model order. The CRT method was also very sensitive to an
initial guess at the MA (q) coefficients. The GRT method
could be used in conjunction with the method of Salami, since
Salami outputs a minimum phase MA (q) sequence suitable for
input to GRT, but the additional benefit of "tweaking" the
ARMA (p,q) coeffipients at that stage is expected to be

minimal.

Figures 5.12 and 5.13 illustrate the model outputs of the
methods of Salami and Kay respectively, as applied to the
seismic data with orders (2,2), (4,4), (8,8), and (16,16).
The models are recognized to distinguish frequencies in the

signal zone at (4,4) yielding results comparable to those of
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>

the AR (p) techniques at 16th order. At increasing orders,
however, both ARMA (p,q) techniques begin to overfit the
noise and weaken the fit to the periodogram in the signal
pprtion of the spectrum. By order (16,16) both Salami and
Kay models show marked deterioration in spectral matching the

signal, and meaningless oscillating fits in the noise.

A concern with the ARMA (p,q) models is their tendency to fit
the shape of the roll off from signal to noise. The steep
slope is fit with the initial consequence, at lower orders,
of undermodelling the noise, particularly in Kay (4,4) and
Salami (2,2). A problem arises, therefore, with
deconvolution. Particularly at Kay (4,4) and Salami (2,2)
the noise is strongly overgained in the deconvolutions.

These consequences are illustrated in Section 5.4.

Cadzow fits are not discussed because they fail without fail
on seismic data. Figure 5.14 illustrates a comparison of
Salami, Kay, and Cadzow methods on the seismic data at order
(4,4). Salami modified Kay is included. It differs little
from Kay except for slight modification of the MA (g) co-
efficients. Cadzow is recognized to fail with negative

spectral values.

The model fits of Salami and Kay on decimated seismic data
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are presented in Figures 5.15 and 5.16. Both techniques
severely overspike the data with increasing model order.
Salami fits are seen to best honour the shape of the
periodogram. At orders in excess of (8,8) the additional
parameters seem to do more harm £han good. 1In contrast,
Figure 5.17 shows excellent fits, improving with order, with

the Transient"Error Method on demodulated data.

Demodulation proves to be a powerful technique for pre-
processing the input to modelling programs. The Transient
Error Method is the best behaved of the techniques tested; it.
does not spike with increasing order, but otherwise on
seismic data it provides fits comparable to those of Salami.
Demodulated data, however, greatly enhances the fitting
ability of all techniques. Figure 5.18 is a comparison of
spectral fits modelled with the Transient Error Method and
Levinson routines. With increasing order Levinson closely
rivals the fit of the Transient Error Method and both yield

superb spectral matches to the periodogram.

ARMA (p,q) and AR (p) techniques provided comparable spectral
fits in each data type. ARMA (p,q) fits are better at lower
orders but fit the slope of roll off in the seismic data at
the expense of providing a correct fit to the magnitude of

the noise. With increasing order all techniques excepting
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4

Levinson and the Transient Error Method spike the data.

Model coefficients of order (4,4) are presented in Table 5.1.
At the significant values chosen all AR (p) coefficients are
the same, as are the autoregressive coefficients of the ARMA
(prq) models; the moving average coefficiénts, however, vary

considerably.
5.4 Deconvolution

As mentioned earlier, it is difficult to quantitatively
assess model quality based on deconvolved output. However, a
sense of the effectiveness of the deconvolution can be

achieved by comparison with the original data.
5.4.1 AR (p) Techniques

Figures 5.19 through 5.21 illustrate deconvolution of the
seismic data with Burg, Least Squares, and Levinson
respectively, at model orders of 2, 4, 8, and 16. As
'expected from study of the spectral fits there is little
difference in results between model orders and less between

techniques.



aj an asz ajg bg by by b3 by
Burg -1.53 0.40 0.27 | -0.03
Least Squares | -1.53 0.40 0.27 | ~0.03
Levinson -1.53 0.40 0.27 | -0.03
Salami -3.62 5.14 [ -3.39 0.88 28.23 | -62.79 | 49.97 | -13.78| -0.68
Kay -3.62 5.14 | -3.39 0.88 {123.22 | -48.04 §113.69 |-6.19 | -3.50
Table 5.1 Comparison of 4th Order Model Coefficients
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5.4.2 ARMA (p,q) Techniques

Figures 5.22 through 5.24 illustrate Salami deconvolution at
(2,2), (4,4), and (16,16) respectively in comparison with the
AR (p) techniques, and Figures 5.25 and 5.26 compare Salami

and Kay at (4,4) and Salami a£ (2,2) and (4,4) respectively.

The ARMA (p,q) deconvolutions are seen to produce noisy
results at low orders as anticipated from review of the
spectral plots. The noise is particularly evident on Salami

(2,2) and Kay (4,4).
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Chapter 6. Conclusions

Arguments are developed for the preferred representation of
seismic data by ARMA (p,q) models. ARMA (p,q) modelling
.techniques are applied to both real and synthetic seismic
data and the results of spectral fitting and deconvolution
compared with those of AR (p) techniques. The superiority of
ARMA (p,q) representation is recognized in theory but not
realized in practice, principally because the MA and AR
components of the seismic signal cannot be separated in the
modelling process. The improvement achieved by introducing
MA (q) terms is negligible except in fitting the seismic
spectrum where it rolls off to low to signal noise. Decon-
volution with ARMA (p,q) models, therefore, yields noisy
results without otherwise improving on AR (p) techniques.
Oversampling is found to necessitate higher order models; the

consequences of decimation and demodulation are demonstrated.

Seismic data is shown to be ARMA (p,q) with the AR {p) com~
ponen£ comprising reverberatory (multiple) information and
the MA (g) component comprising primary reflection informa-
tion and earth filtering effects. The AR (p) nature of the
reverberations and the MA (g) nature of the primary reflec-
tions are developed in Chapter 2 from the work of Silvia and
Robinson on the communication theory de§cription of wave

propagation in layered media [1].
- 176 -
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The MA (q) nature of the earth filtering process is developed
in Chapter 4 from the work of Rickar on wave propagation in
visco-elastic media [43]. The ARMA (prq) description of
seismic data has serious implications on the viability of
deconvolution. Necessarily the convolutional model.of the
seismic trace as a wavelet convolved with a primary reflec-
tion coefficient series is inadequate; either the wavelet or
the primary reflectivity series must incorporate rever-
berations. Deconvolution as practiced in the geophysical
industry fails to accomplish rea%ization of the primary
reflection coefficients because traditional methods target

wavelet spiking and dereverberation independently.

Recognizing the problem posed by ARMA (p,q) representation,
however, is not the same as resolving it. 1In practise, the
seismic data is not found to be separable into its AR (p) and
MA (q) components, consequently, ARMA (p,q) models fit the
composite seismic data in much the same way as the tradi-
tional methods, with AR (p) contributions dominating. The
problem is the complex nature of the reverberatory AR (p)
part which has the appearance of randomness and is therefore
not distinguished from the white noise excitation series.
Furthermore, the MA (q) component is expected to be long and
decaying such that it is well represented by a low order AR

process.
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The inseparability of MA (q) and AR (p) coﬁponents and recog-
nized AR (p) dominance renders the supposed benefit of finite
wavelet phase specification conferred by ARMA (p,q) models
essentially ineffective. Meaningful phase modification
through finite options is only achievable if the MA (a)
contribution is strong and has sufficient roots. Swapping
roots out of the unit circle can still be accomplished with
the AR (p) components when they are inverted for decon-

volution, but such is true of traditional techniques.

Results in Chapter 5 illustrate that spectral fitting seismic
data with ARMA (prq) models yields marginally improved fits
at lower orders when compared with AR (p) methods, particu-
larly at the low and high ends of the seismic spectrum where
signal rolls off to noise. Because of lower signal to noise
ratios in these areas the improved fit proves to be a mixed
blessing; decoﬁvolutions based on ARMA (p,q) fits provide a
strong, theoretically correct, compensatory boost to the iow
S/N portions of the spectrum. The poorer fit of Ehe AR (p)
methods has the consequence of limiting boost to these

freguencies.

The ARMA (p,q) techniques of both Kay and Salami are fairly
robust for seismic data. Both methods are sensitive with

increasing model orders, however, and baaly overspike the data



- 179 -

vielding ringing time domain responses unsuitable for seismic
interpretation. The Transient Error Method of Nichols [62, 70]
does not share this problem, and is the most robust of the
techniques tested. The tendency to dverspike is also charac-
teristic of the Burg and Least Squares AR (p) techniques.

The Cadzow ARMA (p,q) procedure fails at all orders yielding

negative spectral estimates.

Levinson provides the closest spectral fits in good signal
areas and makes least attempt at fitting noise, making it the
winner and still champion of seismic modelling methods. An
earlier comparison of deconvolution techniques (not including

ARMA (p,q) methods) resulted in a similar conclusion [55]7.

Oversampling of seismic data forces the models to fit the
roll off to the non-signal portion of the spectrum. Since
the roll off is the dominant magnitude contrast of the
spectrum, the models preferentiallyrexpend orderrin

characterizing it.

Much higher orders are required, therefore, to yield fits
comparable with those on minimally sampled data. High orders
not only ovefsbike data in the signal portion of the - spec-
trum, they overfit the noise. The problem of overfitting

noise is particularly acute with ARMA (prq) methods.
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Seismic data is typically oversampled. To alleviate over-
sampling effects both decimation and decimation followed by
demodulation were applied to the oversampled seismic data.
As expected, lower model orders were found to yield better
spectral fits with less overspiking. Demodulation was

particularly effective in allowing better low order fits.
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Appendix A. Statistics of Reflection Coefficient Series
A.l Introduction . .

The assumption that reﬁlection coefficient series are
stationary with randomly océurring amplitudes conforming to a
Gaussian probability density distribution is implicit in many
deconvolution routines - including the ARMA deconvolution
routines described in this report [55]. Measurements from
well log data, however, indicate that reflection coefficients
are neither Gaussian distributed nor random [56]. This
appendix illustrates some statistics of reflection coeffi-
cient series and considers the implications of deviation from

the Gaussian-random assumption on deconvolution routines.
A.2 Theory

Recall the convolutional model for seismic data

s(n) win)*r(n)

@K

L r(k)w(n-k)

k==
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The convolutional model is obviously a linear time-invariant
system. Seismic data is therefore a statistical time series
generated by a linear operation on the reflection coefficient

series r(n), ‘which can be written as follows

where A is the linear time invarient operator acting on the

term inside the brackets { }.
If r(n) is a random process then the process of taking
expected values is commutative with the linear operation
[57]. That is

E{s(n)} = E{ale(nm)}} = a{E{r(n)}}
where E{ } denotes the expectation operation.

This commutative property fosters two important results [57]:

1. 1If r(n) is a stationary random process then s{(n) will

also be a stationary random process.

2. If r(n) exhibits a Gaussian distribution then s(n) will

also exhibit a Gaussian distribution.
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Two further results from probability theory are pertinent to

the discussion:

3. A stochastic time series can be completely characterized
by its autocovariance and mean if and only if the series
is stationary and has a Gaussian probability density

function [57, 58].

4. A stochastic time series which is the output of a linear
process can be described by the parameters of the linear
process if and only if the series is Gaussian-stationary

[58].

Result 3 reguires that all deconvolution routines based on
the auto-correlation of seismic data pre-suppose stationary
Gaussian data. Result 4 is merely a corollary to 3 specific
to explicit linear modelling deconvolution techniques such as

AR, MA, and ARMA.

Given, therefore, that most of the deconvolution routines
described herein require that the seismic data s(n) be
Gaussian and stationary it follows from results 1 and 2 ﬁhat
. the reflection coefficient series r(n)‘be Gaussian and

stationary.
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A further requirement of most deconvolution routines is that

the speétrdm of the reflection coefficient series be white.
S(f) = W(E)R(E)

If R(f) is white, that is R(£) = .k where k is some

constant, then

S(£) = W(f)k a.l
The spectral shape of the seismic data, therefore, can be
attributed to the filtering =ffect of the seismic wavelet
alone. Deconvolution, then, attempts to whiten the

spectrum of the seismic data assuming that in doing so

only the wavelet spectrum is modified.

That is, the deconvolution operator g(n) is designed such

that
S(£)G(f) = k ; G(f) = [W(f)]1-1

where S(f) is as defined in equation A.1l.
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A.3 Measurements

Reﬁlection coefficients were determined from eighteen wells
in Northern Alberta in the vicinity from which the seismic
data used in this report were collected. Velocity logs from
each well were digitized at .3 m and then mapped from depth
to time and resampled at .002 s. Reflection coefficients
were then calculated using equation 2.20 in tihe and ignoring

density variations.
That is

v(in) - v(n-1)

r(n) = g(n) + v(n-1)

The choice of .002 s time sampling was arbitrary. The .3 m
depth sampling maps to .0002 s time sampling in even the
slowest sedimentary rock. Schoenberger and Levin [59] argue
for finest possible sampling of reflection coefficient series
(<.0005 s) based on their observations of the sensitivity oﬁ
calculated earth transmission filters to sample rate. Hosken
[60] and Rietsch [61], howevar, report that the statistics of

reflection coefficient series appear to be scale invariant.
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The reflection coefficients in time for the eighteen wells
are shown in figufe A.l. Their corresponding power spectra

are shown in figure A.2.
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