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Abstract

The concept of H-semidirect product structure on an H-group is
introduced. We show that the loop space 2X of any CW-complex X is
the H-semidirect product of the identity path-component of QX with
m X.

The set of free homotopy classes of maps into an H-semidirect
product inherits the structure of a semidirect product of groups.

This leads to new insight concerning the nilpotency of homotopy
classes of maps into an H-group.

In singular homology with suitable coefficients and suitable
bordism theories the Pontryagin algebra of an H-semidirect product
decomposes into a twisted tensor product of the Pontryagin algebras of
the factors. The notion of a twisted tensor product of certain
algebras is introduced and their universal properties are presented.

We make explicit the role played by the H-semidirect product
structure of the loop space of a CW-complex X in the context of

investigating X for nilpotency.
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Introduction

There are various reasons why nilpotent CW-complexes enjoy
special interest in Topology. This thesis evolved out of an attempt
to understand fhe nature of nilpotency of CW-complexes.

A connected CW-complex X 1is called nilpotent, if its
fundamental group n;X is nilpotent and acts nilpotently on the higher
homotopy groups of X or, equivalently, if the Postnikov system of X
admits a principal refinement [B-K], [H-M-R]. If seems it was
Roitberg [R] who was the first to consider the nature of nilpotency of
X from the loop space point of view. He replaces QX by a
homotopically equivalent topological group, a construction due to
Milnor [Ml] for the loop space of a countable CW-complex, and arrives
at the characterization: X is nilpotent if and only if w;(X,%) is
nilpotent and the action of =n;(X,%) on nn_l(ﬂx,*) by loop cdnjugation
is nilpotent.

Closer scrutiny reveals: QX is, up to homotopy, a semidirect
product (RX)g¢s>ew;X, where (2X)o, denotes the path component of X
containing the path that stays constant at the base point. The
concept of an H-semidirect product Wox¢ﬂ is introduced in 81. Here T
denotes a group acting on a path cqnnected H-group Wy by classes of
self homotopy equivalences of Wy which are at the same time H-maps.
We show that the loop space of every based CW-complex is an
H-semidirect product. ‘

Let T be a group -acting on another group G via a homomorphism

¢: M — AutG. From group theory we know thét the semidirect product

s



Gx¢H is nilpotent if and only if T is nilpotent and acts nilpotently
on G [H], [V]. The corresponding notion of H-nilpotency of an
H—-group makes sense, and we show in 82 that an H-semidirect product
Wox¢H is H-nilpotent if and only if W is a nilpotent group and the
action of M on Wy is H-nilpotent.

These considerations are linked up with the nilpotency of a space
X because RX is the H-semidirect product (2X)gsemw;X. The group of
free homotopy classes of maps [s“'l,nx1 inherits from @X the structure
of a semidirect product, [Sn—l,QX] = [Sn_l,(QX)o]xwlx = nn_l(ﬂX)oxnxx,
because (2X)¢ is simple. The action of ;X on ﬂn_l(ﬂx)o inherited
from the H-semidirect product X coincides with the action by loop
conjugation used by Roitberg to characterize the nilpotency of X.
Thus we arrive at the characterization: X is a nilpotent space if
and only if [Sn—l,ﬂX] is a nilpotent group for all n 2 2 (cf. 85).

.

n—l,QX] are contained in 82.

Conditions for the nilpotency of [S
E.g.: if X is H-nilpotent, then [S° 1,0X] is nilpotent for all
n 2 2. The difficglt part of this approach is the problem: Does m;X
act H-nilpotently on (RX)¢? An answer depends crucially on the group
of classes of self homotopy equivalences of (2X)q iﬁduced by
H-conjugation in QX (cf. 85) or, more precisel&, on the homomorphism ¢
from M into this group. E.g. if this homomorphism takes everything in
M to the identity, then X is simple. Unfortunately, it seems like
not much is yet known about this subgroup of the group of self
homotopy equivalences of (2X)g.

We also study singular homology and suitable bordism functors on

an H-semidirect product W = Wgxll. The resulting graded abelian group



inherits from W a graded algebra structure which decomposes to a
twisted tensor product reflecting the H-multiplication in W.

- In 83, we lay the algebraic foundations. Given a commutative
ring R with identity, we introduce the notion of a twisted tensor
product A @g RG of an R-algebra A with an R-group algebra RG and
discuss its universal properties.

In 34, we show that H*(W;R) = H*(WO;R) Gg H*(H;R) and in 86, we
derive a similar result for certain bordism theoriest To avoid
confusion, H*(W;R) denotes the singular homology of the discrete space
T with Pontryagin product coming from the group multiplication in T.

The considerations in 84 enter again into the discussion of
nilpotency of a space X. The actions of T on [Sn_l,(QX)o] and on
Hn_l((ﬂx)o) are both derived from the H-semidirect product structure
on 2X. It follows that the Hurewicz homomorphism is an operator
“ homomorphism. Consequently, if w;X acts nilpotently on [Sn_l,(ﬂX)o],
then #;X also acts nilpotently on the image of wn_l(QX)o in
Hh—l((ﬁx)°) (cf. 384, 5),.

A technical remark: This thesis is self contained in the sense
that the relevant definitions are recalled and that facts not
contained in a standard reference text like Spanier "Algebraic
Topology" [Sp] are stated, without proof, as they are needed. To
avoid confusion as to whether or not a statement labeled as "theorem",
"proposition", "lemma" is taken from a source in print or is believed
to be new, I have marked the known results with an asterisk. Thus
*(5.2) Theorem ..., indicates a known result. Some of these results

are of elementary nature and folklore, in which case no reference is



given, others are implicitly contained in a source in print. A proof
is given if such a result plays a key role in this thesis. All of the

remaining stated facts are accompanied by a precise reference.

Acknowledgements I thank the Faculty of Graduate Studies and the

Department of Mathematics and Statistics at the University of Calgary
for accepting me into their program and for their support. My most
heartfelt thanks go to Dr. K. Varadarajan for supervising me in this
Ph.D. program and, above all, for fostering my development in
Mathematics in many ways.

Also I wish to thank the followiné mathematicians on the defense
examining committee of this thesis: Dr. H. Farahat who pointed out
that a concept equivalent to the "twisted tensor product", developed
in 83, is known as a "crossed product algebra" [C-R]. Furthermore
Dr. D. Sjerve and‘Dr. P. Zvengrowski for carefully reading the
original version of this thesis and for offering a number of welcome

editorial suggestions.



80 Notation, technicalities, preliminaries on H-spaces

Throughout we shall be working in Steenrod’s "Convenient category

of topological spaces" [Stel] or suitable subcategories or categories

of pairs of it. We use the following symbols.

N, No
z

R

I
(s”,%)
X
f~g
[£]
[X,Y]
[(X,%),(Y,%)]
Cq

SA

positive integers, non-negative integers
integers

reals

{teR: 0=t =<1}

any pair homeomorphic to

({x e mn+1:

Ix] =1}, (1,0,...,0))
loop space of a based space X

f is homotopic to g

homotopy class of f

free homotopy classes of maps
based homotopy classes of maps

reduced mapping cone of a based map a

reduced suspension of the based space (A,%).

For the purposes of Homotopy Theory the concept of a topological group

has been generalized to that of an H-space.

(0.1) Definition

based map.

Let (W,e) be a space, u: (W x W,(e,e)) — (W,e) a

(1) The pair (W,u) is an H-space with homotopy identity e :e the

following diagram commutes up to a homotopy which is constant on the

base point (e,e) of (W,e) v (W,e).



(W x W,(e,e))

B

(W,e).V W,e) — (W,e)
v

Here v denotes the folding map, v(e,w) = v({w,e) = w.
(ii) (W,u) is homotopy associative :e= the following diagram

commutes up to a homotopy which is constant on the point (e,e,e).

Idwx;,(

WXxWxW y WXW
uxIdwl lu
WXxW » W
u

(iii) A map i: (W,e) — (W,e) is a homotopy inverse in the H-space
(W,u) :e=> the following diagram commutes up to homotopies which are

constant on the base point.

(i, Idy)

W » WX W
(Id«w,i) l C l 73
WXW » W
w

Here c¢: W — {e} = W 1is the collapsing map.



(iv): (W,u) is homotopy commutative :e=» the following diagram
commutes ﬁp to a homotopy which is constant on (e,e);

o{w,w') = (w',w).

We shall write ww' for u(w,w') and w™} for i(w) if there is no
risk of confusion. By an H-group we mean a homotoéy associative
H-space with homotopy inverse i. Furthermore, Wy will denote the
path connected cpmponent of W containing the hbmotopy identity e.

Thus every topological group with identity element e is an
H-group with strict homotopy identity e yielding strictly commutative
diagrams (0.1)(i),(ii),(iii). The loop space RX of a based space X
is an H-group with homotopy identity the loop sfaying constantly at
the base point of X. The formation of loop spaces can be iterated;
%X := (2X) is a homotopy commutative H-group.

The following theorem explains the role of H—s£ructure in the

connection with natural group structure in the set of homotopy classes

of maps into a fixed space. [Wh], 116-121.

*(0.2) Theorem If (W,u) is an H-space, then [_,W}, respectively

[_,(W,e)], is a contravariant functor from the category of compactly
generated Hausdorff-spaces, respectively based compaétly generated

Hausdorff spaces into the category of non-associative monoids (monoid:



a set with multiplication satisf&ing x(yz) = (xy)z and existence of
a neutral element uw with xu = x = ux for all x). If (W,u) also
has any of the additional structures (0.1)(ii), (iii),(iv), then
[_,W], respectively [_,(W,e)] inherits the strict analogues of these
structures.

Conversely, if for a space (V,%) the functor [_,(V,%)] from the
category of based spaces to the category of based sets can be enriched
to be a functor into the category of non—associative monoids,
respectively associative monoids, respectively abelian monoids,
respectively any of the above with inverse then (V,%) has the
structure of an H-space, respectively homotopy associative H-space,
respectively homotopy abelian H-space, respectively with homotopy

inverse. ) a

In particular [X,W], [(X,%),(W,e)] are groups if (W,u) is an

H-group.

(0.3) Definition Let (V,u), (W,v) be H-spaces, f: (V,e) — (W,e)

a map. We call “f an H-map :e= the following diagram commutes hp to

a homotopy which is constant on (e,e) € V x V,

fxf*t
LV xV » WXW
u lv
v W
f



*(0.4) Remark (a) An H-map f: (V,e) — (W,e) yields natural

transformations of non associative monoids f*: [_,V] N [_,W] and
£: [L,(V,e)] == [_,(W,e)]. If in addition (V,u), (W,») both have
any of the properties (0.1)(ii),(iii),(iv) then f* is a natural
transformation of algebraic systems having as structures the strict
analogues of (0.1)(ii), (iii), (iv).

(b) We shall frequently work with free homotopy classes of free maps
into an H-group. In this context we may drop the conditions
concerning base points from the definition of an H-space and of an
H-map f and merely require f: V — W to be a map which makes the
diagram in Definition (0.3) commute. This still guarantees that

f*: [_,V] —_— [_,W] is a natural transformation with the properties

stated in (a). o

The following observation will be fundamental on a technical

level. Let (V,u), (W,v) be H-spaces.

*§0.52 Lemma If f: V— W is a homotopy equivalence and also an
H-map, let g: W-— V be a homotopy inverse of f. Then g is also

an H-map.

Proof In the diagram

fxf gxg fxf

VXV o WXW —m—r 3 VXV —m— 3 WXW

] .

v » W » V » W




we know that the left and right hand diagrams commute up to homotopy
and need to verify homotopy commutativity of the middle diagram.

Commutativity of the right hand diagram yields

T ouo (gxg) ~v ° (fxf) © (gxg) = v((f°g) x (f°g))

u(IdW X Idw)
~ IdW ° p

~fogoy,

/4

Consequently, (g°f) © u © (gxg) ~ (g°f) © g © y. Since g°of = Idv,

homotopy commutativity of the middle diagram follows. o

An H—-equivalence is an H-map which is also a homotopy
equivalence, This terminology is justified by Lemma (0.5).

If (W,u) is an H-space, the set of homotopy classes of self
equivalences of W is a group with mulfipliéation defined by

[f]-[g] := [f°g]. Denote this group by £(W). Lemma (0.5) says

(0.6) Corollary The set HE(W) of homotopy classes of self

H-equivalences of W is a subgroup of £(W). a)

Now let (W,u) be an H-group. For w € W, let w denote the path
connected component of w in W. Let T denote the set of all path

components of #.

*(0.7) Theorem T is a (discrete) group with multiplication

ww =ww'. The identity element of W is the path—component of the

homotopy identity e of W and (w)~! = w™?, a

10



Let (X,%) be a based space. The adjointness homeomorphism

1 1 0 1 0 0
shows
(0.8) Remark In the notation of (0.7), if W = R(X,*),‘then
T (X,%). ‘ o

*50.9) Lemma, Definition Let W be a group acting on another group

G by a homomorphism ¢:T — AutG. Then the set GxT with

multiplication (g,p)(g',p') = (gwp(g'),pp') is a group, called the

semidirect product of G and T with respect to y. Notation waﬁ.

11



81 Construction of H-semidirect products

Let (W,,u) be a path-connected H-group with H-inverse i and
H-identity e. Let T be a group and ¢:7T — HE(W,) aygroup
homomorphism. We define the H-semidirect product of W, with T under
¢ and give conditions under which an H-group is an H-semidirect
product.

For each p € T, fix an H-self homotopy equivalence

? € $¢(p) € HE(W,). Define

m: (WeX) X (WoXTT) 3 (w,p,w',p') = (u(w,cpp(W'),pp') € Woxi

JiWeXTT 3 (w,p) > (¢ _ (i(w)),p ') € WyxT.
P

If wewant m and j to be base point preserving, we take
= I .
@1 dWo

(1.1) Propogition (W,m) := (WoxT,m) is an H-group with H-inverse map

Je

(1.2) lemma For p e W, let ¢p’ ¢é € ¢(p) and denote by
(W,m) := (WeX,m), (W',m') := (WoXTT,m') the correspending H-groups.

Then, the identity map W — W is an H—-equivalence.

Proof of (1.1) Step 1 m restricted to Wv W is homotopic to

the folding map. For £ € W v W (we write ww' for u(w,w')),

(ep,(w'),p')  if &
m(¢) = { 1

(e,1,w',p*')

(w,p,e,1).

(wqop(e) »P) if ¢

‘Let F bea homotopy of P into Idw and, for each p € W, let “p be
. 0 ’

12



a path in W, joining ¢p(e) to e (we must take %y 1= F|{e}xI)° This

yields a homotopy

j (eF(w',t),p') =~ if ¢ = (e,1l,w',p") 1

Ac(Wv W) xI3(g,t) i~ €W
l (wee (t),P) if ¢ = (wpel) J
satisfying
j (u(e,w'),p") if ¢ = (e,1,w',p")
A(%,1) =
1 (H(W,e),P) if ¢ = (W’P’e’l) .

Thus a homotopy of “IW W induces a homotopy of A(-,1), and hence of
oY% ‘

mIWvW’ into the folding map of W.

Step 2 Homotopy associativity of m. We must show that the maps

m(mxId), m(Idxm) : WxWxW — W are homotopic. Computing

m(m(wy ,P1,W2,P2),W3,D3) ((W1¢Pl(Wz))¢P1pz(W3)aP1P2P3)

m(wy ,P1,m(W2,P2,W3,P3)) (W1¢P1(Wz¢p2(Wa)),pxpzpa) R

we see that such a homotopy can be obtained by going through the
following succession of homotopies.
Since ¢ is a homomorphism, we get ¢P1 ¢ % ., This yields a

P2 P1 P2
homotopy between m(mxId) and the map

(W1,P1,W2,P2,W3,P3) > ((wi@_ (wW2))@_ ©°¢ (w3),P1P2P3).
P: P1 P2

Using homotopy associativity in W;, we see that this map is homotopic

to

(Wi1,P1,W2,P2,W3,P3) (Wx(Qpl(W2)¢Pl°¢P2(W3)),P1P2P3)~

13



Since @Pl is an H-map, this latter map is homotopic to m(Idxm).

Step 3 J 1is a homotopy inverse. We must show that the maps

Wi wxw 1, yxw B ow

W4, wxw X1,y L, W

are homotopic to the constant map W - {(e,1)} (d denotes the

diagonal map).

Let (w,p) € W; then

m(Idxj)d(w,p) = ((we_(¢ _ (W ')),1) = (w(p ¢ _ (w *)),1).
P 1 P 1
p p
Since ¢P°¢ a8
p 1%%
with the map (w,p) (ww_l,l). This is homotopic to the constant map

" P = Idwo, we get a homotopy of m(Idxj)A

W — {(e,1)} using the property of the H-inverse i in W,

The other way around we get

m(j x Id) 4 (w,p) = (¢ _ (W Do _ (w),1).
p P

Since ¢ -1 is an H-map, this map is homotopic to
p

(w,p) > (¢ _ (W W),1).
p

Since W, is an H-group, this map is homotopic to
(w,p) = (¢ _ (e),1).
P

Since W, is path connected there is a path in W, Joining ¢ _l(e) to
. P
e. Such a path induces a homotopy of the latter map with the constant

14



map W — {(e,1)}. Hence m(jxId)4d is homotopic to the constant map.

o

Proof of (1.2) In view of Lemma (0.5) we need only check that Idw

is'an H-map. For (w,p), (w',p') € WyxW, we get
I °m(w,p,w',p') = (wp(w'),pp')-
Since ¢p ~ ¢5, this map is homotopic to the map:
(w,p,w',p') (W%(W'),pp') = m'°(Id xId) (w,p,w',p'). o
Proposition (1.1) and Lemma (1.2) suggest the following.

(1.3) Definition Let W, be a path—connected H-group, T a discrete

group, ¢:M — HE(W,) a group homomorphism. An H-group V is an
H-semidirect product of Wy and T under ¢ if an only if V is
H-equivalent to the space W constructed in (1.1). 1In this case, we
write V = W0x¢ﬂ. The subscript "¢" may be deleted if the context is
clear.

Turning to the question as to whether or not a given H-group
(W,M) is an H-semidirect product, let us denote by W, the identity
path component of W and by T the set of pafh—connected components of
W with the canonical structure of a discrete group as explained in

(0.7). Thus, if X denotes the path component of x € W, then

Xy=xy inT.

(1.4) Proposition T acts on W, by classes of free H-equivalences.

15



Proof For each x € T, let ¢(xX) € HE(W,) be represented by the map

Pys

1

P, Wy 3 wisxwx €W .

X

It is clear that Py takes values in W. Since ¢X(e) € W, and W, is
connected, Py actually takes values in Wy,. Then Py is an H-map with

H-inverse ¢ o hence an H-equivalence.
X

To see that ¢(x) is well defined, suppose X = x'. Then x and
x' belong to the same path component of W. Take a path «:I — W

Jjoining x to x'. Then
IXH, 3 (t,w) i «(t)wa(t) ' € Wo

is a homotopy between ¢ _ and ?,1- Thus $(x) is well defined.
The same technique shows that mxy ~ ¢k¢§' Hence,

d(xy) = ¢(x)¢(y) and ¢:T — HE(W,) is a homomorphism. o

Now fix an element x for each path-component X% € M. From the
data in (1.4) we may then form the H-semidirect product w0x¢n in

accordance with (1.1). There is a canonical continuous map
hiWgs, T 3 (w,X) +— wx € W,

(1.5) Lemma (i) h is an H-map.

(ii) Taking different choices X' = X in the various path components

of W yields an H-map h':Wox¢U — W with h s h'.

Proof (i) We claim that the following diagram commutes up to

homotopy.

16



(o = ) X (Ho e M 3 (Wi,K1,Wz,%z) oo (W19, (W2),XiKz) € Wo 2o T
- T
WxQX;(Wz)[Xxle
L =

-1
Wi (X1W2X) )X1X2

! ! @ 7= l

WXxW 3 (wWixy,Wa2x2) PM4 WiX1WaXa € W

hxh

Here [x);x;] denotes the fixed representative for the path component
X1%2 € M. A homotopy (1) in the diagram above is obtained using any
-path joining [x;x;] to x;x, (same ‘technique as in (1.4)). A
homotopy (2) comes from homotopy associativity in W.

(ii) A homotopy of h into h' can be constructed using for each

X € T a path « joining x to x'. o

Representing the path component of the identity W, of T by the

homotopy identity e of W itself, we see that the restriction

is homotopic to Idw (if we identify WOX{E} with W;). Therefore,
0

for any x € T,
hlwox{-x-} : WOX{X} - X

is also a homotopy equivalence. Since 'h establishes a bijection

17



between the path components of WoXTT and those of W, we would like to
assert that the path componentwise homotopy inverses of h combine to
a homotopy inverse k of h. We are then confronted with the
question whether the topoiogy of W is fine enough to admit this.

Elementary point set topology yields

(1.6) Lemma The path componentwise homotopy inverses of h

combine to a homotopy inverse k of h if and only if the path

components of W are open in W. ; o

This result can be utilized as follows. If X 1is a based
CW-complex, Milnor [M2] shows that 2X has the homotopy type of a
CW-complex. The connected components of a CW-complex are open.

Therefore, the path—compohents of X are open. Thus

(1.7) Theorem Let X be a based CW-complex, (2X), the identity

component of QX and W := mX. As in (1.4), let ¢:T — HE(RK), denote
the action of M on (RX), by classes of H-self homotopy equivalences.

Then there is an H-equivalence h:(ﬂX)on¢H — RX.

Proof Obvious from (1.5), (1.6) and the fact that the path-

components of 2X are open in RX. o

Since the path components of a 1ocally‘path connected space are
open, we see that a locally path connected H-group is an H-semidirect
product. Of particular interest here is the case where W is a
locally path connected topological group with identity component Wy

In this case, W, is a normal subgroup of W and the quotient group

18



T := W/W, is the same as the group constructed on the path components

of W in accordance with (1.4).

(1.8) Theorem (i) The action of T on Wo as defined in (1.4) is
by homotopy classes of inner automorphisms of W restricted to W,.

(ii) There is an H~homeomorphism hiWgsll — W.

Proof (1) is immediate from the definition of ¢:W — HE(Wy): If

X € T, then ¢(X) is represented by the map

-1
¢X.W0 D Wi xXwx € W,.

(ii) As in (1.5), fix an element x for each path-component X € T
and define

hiWge, T 3 (w,X) - wx € W.

From (1.5) and (1.6) we know that h is an H-equivalence.
Furthermore, for each X € T, the map W¢x{X} 3 (W,X) ++ wx € X has
an inverse X 3 y i yx € Wox{x}. Thus h is even a homeomorphism.

o
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82 Nilpotency of mapbings into H-groups

Throughout this section W will denote an H-group obtained by
taking the H-semidirect product of a path—connected H-group W, with a
discrete group W under ¢:T — HE(W,).

In (Wh], [Whl] G.W. Whitehead showed that for a path-connected
space X the groupv[X,Wo] is nilpotent .if X has finite category.
Here, we give conditions for [X,W] (free homotopy classes) to be
hnilpotent: This goal will be approached by considering (a) suitable
properties of the range space, (b) suitable properties of the domain
space., We shall respectively show:

(a) If X is arbitrary and W itself is Hﬁnilpétent, then [X,W]
will be nilpotent.

(b) If W is arbitrary and X is the mapping cone of a map

f:A — Y, then the Puppe sequence of f can be used to give
éonditions for the nilpotency index of [X,W] in terms of the
nilpotency indices of [Y,W] and [SA,W].

We begin by stipulating some no£ation.

(i) Let o = Y1:wa 3 (wWy,wW1) wowlwglwf1 € Wand, for n2>1,
Yn+1:wan-—+1 3 (wo,wt,...,wn_,_l) — Yl(Wo,'Yn(Wh--an_,,l) €W
denote the commﬁtator maps of W.

(ii) Let v, = wy: (WoXM)xH, 3 (Wo,p,w1) Wo‘PP(Wx)w;‘wI‘ € W,

and, for n2 1,

«Tl: (W XTT) X (Wy T "5ty —— W,
(Wo’Po’wl,'°"Pn’wn+1) — 'Yé(woapo"fg(wlt"~"pn’wn+1))

denote the ¢~commutator maps of W, .
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(2.1) Definition (i) W is H-nilpotent of nilpotency index

nilw € ¢ (e yc is homotopic to a constant map.
(ii) W, is ¢H-nilpotent of nilpotency index nil¢Wo £C e Y§ is

homotopic to a constant map.

Note that the above commutators, when formally applied to a
(discrete) group G (resp. W acting on G by ¢:T — AutG), agree
with the usual commutators (resp. g-commutators). Here for Yc (resp.
Y;) to be homotopically trivial means that all c~fold commutators
(resp. y—commutators) of G are equal to the identity element of G.
Furthermore, the image set of Yn (resp. Yz) generates the usual n—-th
central series group rg {(resp. FzH). In this sense the H-nilpotency
indices of (2.1) agree with the usual group theoretic nilpotency
indices.

For the reader’s convenience, we include the following notions on
y-nilpotent groups and y-central series. The knowledgeable reader may
continue reading after Lemma (2.3).

Let G, T be groups, y:M — AutG a homomorphism. Define the
n-th y—central series group by

roG:= G
Yy

F$+1G:= grp{gwp(h)g—lh_lz g€G, pemW, he FEG} for ne N,

We say G is y-nilpotent of nilpotency index nile £c e
F$G = {1}. 1In case y is the homomorphism sending T into {1}, the

notion of y-nilpotency reduces to the standard notion of nilpotency.
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,*(2.2) Lemma (i) FzG is a y-invariant normal subgroup of G.

(ii) For all n, ™1

n
G <G,
Y
Proof (i) The statement is true for n = 0. Suppose FEG is

y—invariant. A generator of F$+1G is of the form gwp(h)gﬁlh_l with

ged peTm, he FEG. Let q € T, then

~1, -1 -1 —-1.
wq(gwp(h)g h ") wq(g)wqu(h)wq(g )wq(h )

-1 -1 n+1
\ wq(g)wqpq_lwq(h)wq(g) () = e, 76,

because mq(h) € FEG, by induction hypothesis.

Suppose that FEG is normal in G. We show that any conjugate of
a generator of F3+1G is in F$+1G. So let g' € G, then

1

—_ - - — - —_ - -1 -
g'gy (g Wl = g'gv,(g") 1tpp(g'hg' l)wp(g')g ‘gt grhg

1

awp(b)a—lb_

1

with a = g'gwp(g')—1 and b = g'hg' = € r:G by induction hypothesis.

(ii) Follows from (i) by an obvious induction argument. ]

*(2.3) ‘Lemma If F$G is contained in the center of @G, then

F$+aG = r:(rze) for all a < N.

Proof The statement is true for a = 0. So let us assume

F$+aG = ry(Ty®).  Then
PG = grptgy (g 'Kt g € 6, hoe M%),
Y P . Y
But (2.2) says that wp(h) € r$+aG < center of G. Hence, F:+a+1G is
equal tq
grp(loy, (WIh s 1 erhe, he rarie) = r e la). o
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Concerning nilW, ni1¢Wo, we have the following results.

(2.4) Proposition Let ¢:T — HE(W,) and ¢':T* — HE(W,) be

homomorphisms of groups. Suppose ¢' = ¢°f for some homomorphism
f:M' — W. Then n11¢,wo < nil W,.
Taking W' to be the trivial group and ¢', f the unique

homomorphism, yields

(2.5) Corollary nilW, = nilé,w0 < nilpwo for all ¢: — HE(W,). DO

(2.6) Theorem W = wo”{“ is H-nilpotent if and only if W, is
¢H-nilpotent and T is nilpotent.

Theorem (2.6) is the H-analogue of a known result [H], [V]
concerning nilpotency of a semi-direct product of discrete groups:
Gmwﬂ is nilpotent if and only if G is y-nilpotent and T is
nilpotent. The proof of Theorem (2.6) below yields also a proof for
this result if one makes the necessary adaptations as explained

immediately after Definition (2.1).

Proof of Proposition (2.4) We show that Y:. factors through y:, s0

that a null-homotopy of yﬁ yvields a null-homotopy of Y:.- To factor
Y:,, let us assume that the actions of p' € ' on W, via ¢*' and
f(p') € Ton W, via ¢ are defined by the same element

Ppr = Pepr) € ¢'(p') = ¢f(p') € HC(WO).F Then consider the map

c-1

£ (WX ) x(Wo X ) O oty s (W, X)X (W) L,

(wo sP(‘) sWLyeoo ’PC':’WC) — (wo ’ f(P(;) yWiseeny f(P::) ’WC)

Visibly, Y:, = Y:°fc.
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Proof of Theorem (2.6) Suppose nilW = n11w0x¢n = ¢. Then Yc is null

homotopic so that the image of Yc is contained in the single path—

component of W=l containing Yc(e,l,...,e,l) € Wy x {1}. Inspéction

of the H-multiplication of W shows that for any

c+l

. c
(wo,po,...,wc,pc) € W 7, the second coordinate of « (wo,po,...,wc,pc)

is equal to Yc(po,...,pc) = 1., Thus nilll £ c.
To see that W, is ¢H-nilpotent, observe that there is a homotopy

WoXTIxW,xI — W, deforming y‘(wo,p,wl,l) into (7i(wo,p,w;),l). "For

! (Wo,pywW1,1) = (Wg,p) (W1, 1) (@ _ (Wg ),p ) (W1 ,1)
P

(g%, (W1),B) (@ _, (g ),0 ) (i, 1)
P

= (wo¢P<w1)<mp¢p_1(w;’>>,1>(w7‘,1>.

n

Since ¢P¢ — is homotopic to the identity map on W,, there is a
p

homotopy deforming the latter expression into
(o9, (W1)wg 1) (Wi 1) = (woe (widwg wi',1) = (vh(Wo,pywi),1).

For n 2 1, induction gives a homotopy Wox(ﬂxwo)an — W, deforming
Yn(wo,po,...,wn_l,pn_l,wn,l) into (y:(wo,po,...,wn_l,pn_l,wn),l).
Thus a null homotopy of Yc yields a null homotopy of Y: showing that
n'11¢w0 < c.

Conversely; suppose nilll € a and niléwo < b. Since the second
coordinate of Yn(Wo»Po»-~~:Wn’Pn) is equal to Yn(po,...,pn), it

ats+1

follows that for s 2 0, ya+s(woxﬂ) < Wyx{1l}. Hence, we may

proceed as above and construct a homotopy (for s 2 1),
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(Woxﬂ)sx(woxﬂ)a+lxI — W, deforming

a+s

(WgsPgs-- cesWy 19Pg 13WgsP s e oW ) into

s+a’ s+a

Y¢(W°’P°’""ws—l’Ps—l’“(w PgseeesW )), where

s+a’ s+a

) denotes the first coordinate of
).

Consequently, 7a+b is homotopic to 72 following «, so that a null

«<(w .o
( s'Pg? "Ys+a’Psta

a(w w
Y S’PS’.." 5P

s+a’ " gt+a

homotopy of Yg yields a null homotopy of the composite and hence, of

ya+b. Thus nilWy,-ll < a + b. o

Let (X,*) be a path connected well pointed space (i.e. the
inclusion {¥X} «— X has the homotopy extension property). Then the
canonical map [(X,%),(Wy,e)] — [X,W,] is an isomorphism of groups.
The homotopy group {X,W] inherits information from the H-semidirect

product structure on W and its H-nilpotency in the following way.

(2.7) Proposition If nilW < c, then nil[X,W] <

Furthermore, T acts on [X,W,] by composition, y:T — Aut[X,%,]

being defined by
wp[f] 1= ¢(p)°[f] for p e, [f] e [X,W,].

(2.8) Theorem The function

Rt[X,Wo]”wﬁ 3 ([f],p) = [(f,p)] € [X,Wga,TT]
is an isomorphism.

Proof of Proposition (2.7) Let fo,...,fc € [X,W] be represented by

maps « ,...,«C:X ~—+ W, The commutator of fo,...,fc is represented by

the composite
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4 o+l X0 X owe X e .ctl Yp
X » X > W —_—

which is homotopically trivial, because YC is homotopically trivial.

]

Proof of Theorem (2.8) To see that R is a homomorphism, take

([f]’P),([f']’P') € [X,WO]NH. Then

([£f1,p) ([f'l,p") ([I«l(fﬂpr')],PP')

I !

[(£,p)] [(f*,p")] [u(f,cppf').pp'] .

If (f,p) is homotopic to the map X — {(e,1)}, then p =1 and f is
homotopic to the map X — {e}. Hence R({[f],p) = [(e,1)] imblies
({f],p) = ([e],l), showing that R is mono. It is obvious that R

is onto. g

We shall now enter a discussion of the nilpotency of the groups
[C,Woxéﬂ] & [C’Wo]”wnv where C is a mapping cone. Since [C,W ]l
can only be nilpotent if T is, we shall from now on require W to be
nilpotent. Let us agree that all spaces denoted by symbols A, Y are
based path connected compactly generated Hausdorff spaces. -In ordgr
to get a canonical isomorphism [(Y,%),(W,,e)] — [Y,%,], we require
(Y,%) to be well pointed. Furthermore, we stipulate for the sequel
that mappings and homotopies A — Y are to be based and mappings and

homotopies into Wg or W are to be free.
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So let atA— Y be a map and cdnsider the exact sequence’

, R X
(2.9) [Y,W] «——F— [C,Wg] &3 [5A,W,]

arising from the Puppe sequence

We know that W acts on [Y,W,], [C,W,], [SA,W,]. Denote the

corresponding homomorphisms into the respective éutomorphism groups by

w(Y), w(C), y(8A).

*(2.10) Proposition Let «:Y — Y' be a map, then

«*:[Y',Wo] — [Y,W,] is an operator homomorphism.

Proof Let ([f] € [Y',W,], p € M. Then
K (£ = K)o [£]) = p(¥)_o[£]o[«] = w(¥') (X[£]). @
P P P P

We need the following folklore Lemma. The proof is inspired by [Wh]

Theorem X.3.10.

*(2.11) Lemma The sequence (2.9) is a central extension.

Proof Let [f], [g] € [C,W,] be such that ¢[f] = 1 in [Y,W,] (i.e.
i°f is null homotopic). We show that the commutator ([f],[g]) = 1
in [C,W,].

Recall that the mapping cone C is obtained by identifying the

points (x,0) of the reduced cone over A with a(x) € Y. Denote by
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Yi:={t e€eC:¢e€Y or (£ = (a,t) and t < %)}

C'A:= {(a,t) € C: t 2 %}

and observe that
(i) Y is a strong deformatipn retract of* Y' and {A x {1}} is a
strong deformation retract of B.
(ii) The above deformation retractions can be extended to homotopies
S,T: CxI — C (respectively).
It follows that f°S(-,1) restricted to Y! is null homotopic and
g°T(+,1) restricted to C'A is a constant map. Now consider the

following composition of maps

¢ 4, oo 080, 1) X goT(-,1)

» WoxWy — W,

From (i), (ii) above we see that {f°S(-:,1)xg°T(+,1)}°4 takes values in
WovW,. But 4 restricted to W,vW, is null homotopic. Thus
v([f],[g]) = 1 in [C,W,] showing that ker e is contained in the

center of [C,W,]. | a|

When investigating [C,W] for nilpotency, the following Lemma

plays a key role.

(2.12) Temma [C,W] is nilpotent if and only if there exists s € N

such that

(i) r:(c)[c,wo] c im v, and

S

.. . t -1
(ii) there exists t € N such that rw(SA)(u Fw(c

)[C,Wo]) c ker v.
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(2.13) Corollary Suppose [Y,W] is nilpotent and there exists t € N

such that ri(SA)[SA’W°] < ker v. Then [C,W] is nilpotent.

An immediate consequence of (2.13) is

(2.14) Corollary If [Y,W] and [SA,W] are nilpotent, then [C,W] is

nilpotent. a

Our previous discussion can be extended to iterated mapping cones

as follows., Let 4 = {AA}AGA be a family of spaces. Following

0 k

A-stratification of K if, for n 2> 1, Si is obtained from Si—l as

G.W. Whitehead [Wh], let us call a sequence Y=S,c ... c8, =K an

the mapping cone of a wedge of spaces in A.

(2.15) Theorem ILet [Y,W] be nilpotent and let Y = Sg € ... 8 = K

be an A-stratification for K. Suppose there exists a positive

integer N such that for all A € 4, nil[SA,,W] < N. Then [K,W] is

nilpotent.

Letting 4 be the family of n-spheres S" (n>20) and Y the

l-point space, we obtain

. (2.16) Corollary let Y = SO C ... C Sk = K be a stratification of
a connected CW-complex K by connected subcomplexes Si' Suppose
there exists a positive integer N such that for every n 2 0,

nil[S"™W] < N. Then [K,W] is nilpotent. o

Using the stratification of finite dimensional CW-complexes K

by their skeleta, we obtain
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*(2.17) Corollary [K,W] is nilpotent for all finite dimensional

CW-complexes K if and only if [Sn,W] is nilpotent for all n € N,.
Corollary (2.17) has also been obtained by Scheerer [Sch] by

direct inspection of the homotopy groups in question.

Proof of Lemma (2.12) If nil[C,W] £ a, the choices s:= a and

t:= 0 clearly satisfy conditions (i), (ii).

Conversely, suppose there exist s,t € N such that conditions (i)
and (ii) are satisfied. By (i), FZ(C)[C,WO] is contained in the image
of v and, by Lemma (2.11), in the center of [C,W,]. By Lemma (2.3),

we get for k=20

k+s _ .k s
Fucoy (%ol = My oyFyccy €Wl

Using that v is an operator homomorphism, this implies

t+s . t s
= C
"a(c) 0% = Fy(c)Ty(cy (€ %o
cuort @S, [CW,]) € viker v) = {1}.
w(SA) w(C)-"770
Thus [C,Wg] is y(C)-nilpotent. By (2.8), [C,W] = [C’W°]”w(c)" which
is nilpotent by the remark following (2.6). a

Proof of Corollary (2.13) Suppose nilw(Y)[Y,Wo] < s, then (because e

is an operator homomorphism)

S ] -
3 rw(c)[c,wo] c rw(Y)[Y’w°] = {1}.

Thus ri(c)[c,wo] c ker ¢ = im v and conditions (i) and (ii) of

Lemma (2.12) are satisfied. o
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Proof of Theorem (2.15) Using Corollary (2.14), we show by induction

on the stages of the stratification of K that [K,W,] is
g(K)-nilpotent.

[Sy,Wy] is w(S,) nilpotent by hypothesis. So suppose 0 < i < k
and [Si,Wo] is w(Si)~nilpotent. Let Ai+1 be an indexing set for the
(i + 1)-st wedge corresponding to the A-stratification of K. By
distributivity of wedge and suspension, we get

P:= [S( v AI\)’WO] = [ \") (SAA)’WO] = v [SAI\’wo] =: Q.

Aeh g Aedi g Al g

The isomorphism above is an operator isomorphism. Hence

nlle = nile < N. By (2.14), nilw(Si+1){si+l’w°] < nilw(Y)IY,Wo]

+ (i + 1)N, which completes the induction. Summing up, we obtain

nilw(K)[K,Wo] < nilw(Y)[Y,Wo] + kN. o

Proof of Corollary (2.17) Since 8" is a finite dimensionai

- CW-complex, the direction "=" is trivial. To see that the converse
is also true, let # be an indexing set for the connected components
{Ki}ie;’ By (2.18), [Ki,WO] is w(Ki) nilpotent for every i € g.

Furthermore,

dimK
dimK [8 »We] =: n.

1 M . 1 . .
nlltp(Ki) [Ki’wo] S nlllp(sl)[s ,Wo] + ... * nll )

w(S

Since K is the topological sum of its connected components, we get

[K,W] &= T [Kiaw] - .Tr ([Ki:_wo]"'

m.
ief ieg q,(Ki)
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Since nil[Ki,Wo]nw( T £ nil )[Ki,wo] + nilll £ n + nilm,

K.)

i w(Ki

nil[K,W] < n + nilll. : |

Analogous to Theorem (X.3.10) in [Wh], in the situation of

Theorem (2.15), we may derive the following explicit w(X)-central

series for [K,W,].

(2.18) Proposition ILet Fi be the set of homotopy classes of maps

K — W whose restriction to Si is null homotopic. Let

nllw(so)[soswo] <c eizsi — K the inclusion map and Xi 1= AzA SAA‘
i
Then
X\-1 X.-1_c '
[K,#] > (eg) Ty(g y[SosMol > o0 2 (&) Fo(sy) [SosHol = Fo >

v

(ef)-l (Vlrl:,(xl){xlswol) 2 ... 2 (ef)—l(vlrg(xl)[xl )wo])=F.1 >

.

CO G g ) HieWol) 2 - 2 ()™ (”krﬁ<xk)ka’“°1>=""k

U

={1}
is a y(K)-central series for [K,W;].

Proof In the commuting diagram,
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every sequence Si—l — Si — Xi is a cofibration. Applying the

functor [+,W,] to this diagram yields a commuting diagram of groups

[Xlawo] [Xzawo] [Xkawo]
IRg v (Rt
€1 €2 - ek
!-\\\\\\-* ‘k\\\\\\ « % X
€y ey ez ek
[szo]

in which every sequence [si~1,wo] — [si,wo] — [Xi,Wo] is exact and a
central extension (by Lemma (2.11)). Furthermore, every homoﬁorphism
in this diagram is an operator homomorphism. The claim now follows by
applying the proof of Lemma (2.12) successively to the sequences
[Si~1’w°] — [si,wo] — [xi,wo], beginning with [S,,W;], and taking

. . . . %
inverse images with respect to suitable ei’s. O

Of particular interest is the question whether or not the groups
[Sk,QX] are nilpotent, where X is a based Cw—complek (cf. 85). For
now, we offer a brief discussion of the H-nilpotency of the orthogonal

groups On. This discussion is based on Corollary (3.5) in [V].

¥(2.19) Proposition (i) If n is odd, 0_ =80 x 2.

Consequently, [Sk,On] = [sk,son] ® 2, is abelian.
(ii) If n > 0 is even, 0n = son» 22, where 2, acts nontrivially on
SOn. Furthermore, [Sn—l,on] & [Sn_l,Son]n 22 is not nilpotent.

Consequently, 0n is not H-nilpotent.
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Proof (i) Let In denote the identity map on R™. Then 2, is
isomorphic to the multiplicative group {In’—I#}° Since n is odd,
--In is orientation reversing. Therefore, the inclusion s:2, — On
is a sectiqn of the exact sequence 0 — SOn — On — 22 — 0. Hence,
On = SOnN Z2. But the action of 2, on SOn via s 1is trivial because
conjugation in SOn by —In is the identity on SOn. Thus

On = SOnXZZ. 7

(ii) We use results contained in Steenrod’s book on fibre bundles

e

[Ste2], 823. The tangent bundle of S" is the vector bundle of

n

n-planes associated with the principal fibre bundle SOn—-vSOn+ P ,

1
where p{u) = u(en+1), u € SOn+1, e, the i-th canonical basis vector

n+l n n-1

in R Since S is a suspension, S = SS , this principal

SOn—fibre bundle has a 2-chart atlas giving rise to a single
transition map Tm_l:sn—1 — SOn whose homotopy class completely
characterizes the isomorphism class of p.

Let r denote the reflection of R® at the Rn—lx{O} hyperplane.
Then 2, is isomorphic to the multiplicative group {In,rn}. As in (i),
. the inclusién {In,rn} ——4'0n is a séction of the exact sequence
0 — SOn — 0n —» 22 — 0. Hence, On ] SOnx Z2; so that

n-1

-1
[s ,on];[sn ,S0_Ja 25

Now, Lemma (23.4) in [Ste2] says that the homotopy class of Tn+1

generates an infinite cyclic subgroup of [Sn_l,SOn] and Lemma (23.11)
in [Ste2] says that w(SOn)rn[Tn+1] = - [Tn+1]' It follows that
c n-1 . Cy .
rw(SO )[S ,son] contains a copy of 272 and, consequently, is not 0
n

34



for all c € N;. Consequently, [Sn_l,SOn] is not w(SOn)—nilpotent.

n-1

Hence (S ,On] is not nilpotent. By Proposition (2.7), 0n is not

H—-nilpotent.
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§3 Twist on the product of groups and

the tensor product of certain algebras

In this chapter we develop the algebraic concepts that are needed
to appropriately express the structure of certain functors in
Algebraic Topology when applied to an H—semidirect product.

Specifically, let R be a commutative ring with 1, T a group
acting on an R-algebra A via a group homomorphism y:T — AutA.

Then the R-module A@RRH can be endowed with an R-algebra structure
which reflects the action of M on A. We shall sho& thét this twisted
R-algebra structure solves a certain univefsal problem generalizing
the universal problem for the standard tensor product of R-algebras.

The multipliqation in the twisted R-algebra structure on AQRRW
formally resembles the multiplication in the semidirecthproduct of
groups. In order to clarify this resemblance, we shall begin our
development by approaching the semidirect product of groups as the
solution of a universal problem resembling the universal problem for
the twisted tensor product of an R-algebra with a group algebra. We
- remark that the concept of a "crossed product algebra" [C-R] is
equivalent to that of a "twisted tensor product".

Let G, M, H be groups, M acting on G via a homomorphism

@: T — AutG.

(3.1) Definition A function f:GXT — H is y-twisted :e= for all

(g,p), (g',p') € GxW, f(g,p)f(g",p') = f(gwp(g'),pp').
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(3.2) Definition A group T is called the y-twisted product of @

and T :e there exists a y-twisted function i:GXT — T such that
for every group H and every y-twisted homomorphism f:GxT — H,
there exists a unique group homomorphism F:T — H making the

following diagram commute.

GxT

(3.3) Theorem The universal problem in Definition (3.2) has a

solution, namely the usﬁal semidirect product G»wﬂ.

(3.4) Remark The terminology "y—twisted product" is merely an

invention for use in this chapter. It is motivated by the program
suggested above. We shall in general use the standard terminology

"semidirect product".

Proof of Theorem (3.3) It is clear that the functiom i:GxT 3 (h,p)

— (h,p) € GNW" is a y-twisted function. Let £1GxT — H be a

y~twisted function. In order to have the diagram

commute; we are forced to set F(g,p) = f(g,p) for all (g,p) € Gmwﬂ.
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Therefore, if F satisfying the conditions in (3.2) exists, it is

unique. To see that F is indeed a group homomorphism, we check

F((g,p)  (g',p')) F(gwp(g'),pp')

F°i(gwp(g'),pp')

f(gwp(g'),pp')
f(g,p)f(g',p")

F(g,p)F(g',p"). o

Now let R be a commutative ring with 1, T a group and A an
R-algebra. Let AutA denote the group of R-algebra automorphisms

and suppose W acts on A via a group homomorphism w:T — AutA.

(3.5) Definition Let B be an R-algebra and f:AXRIT — B a

function. We call f R-balanced with y-twist e

(i) f is R-balanced as a function of R-modules (i.e. f is
additive in each variable and f(ar,x) = f(a,rx) for all a € A,
r €R, x€RI.

(ii) For all a,a*t € A, x € R, peT
f(a,lp)f(a’,x) = f(awp(a'),IPX).

If there is no risk of confusion we shall refer to an R-balanced

function with y-twist merely as a balanced y-map.

(3.6) Definition An R-algebra T is called the y—twisted tensor

product of A and RW over R :e=» there exists an R-balanced
y—twisted function 1i:AXRW — T such that for every R-algebra B

and for every balanced y-map f:AXRIT — B, there exists a unique
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R-algebra homomorphism F:T — B with the following diagram

commutative.

(3.7) Theorem The universal problem in Definition (3.6) has a
solution, namely the tensor product A@RRH endowed with the
multiplication, defined by

(a@Rlp)(a‘ﬁRX) 1= awp(a')@Rlp-x

where a,a' € A, p€ 1, x € RI.
We shall denote the R-algebra described in Theorem (3.7) by
A @E RW. As usual, if an R-algebra T also solves the universal

problem in Definition (3.6), then T 32A@gﬂﬂ as R-algebras.

Proof of Theorem (3.7) Part 1 A@gRﬂ is an R-—algebra. Let us first
spell out how the multiplication of certain elements in A@%Rﬂ extends

to arbitrary elements in A@%Rﬂ. So let

n m
¢ = 3 a.By. , n= 3 box. e ASYRN.
= j=1JJ R

Then y. = 2 r (y.)p, with r (y.) € R and for all, but at most
i pey P 1 pUi ’

finitely many elements p € T, rp(yi) = 0. Thus
n ’ n
$£¢= 2 a8®( 2 r(y.)p) = 2 32 (a.r (v.))8lp
izl * pem P 1 i=l pem; ' P 1
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and we set

n m
g'n=(2 2 (a,r (yv,))®lp)( = b.8x.)
i=] pen P 1 =1 77

m

5 3 X e ®x.
L o 1 (alrp(yl) 1p)(bJ8xJ)

n m

= . L) )8 ..
izl pﬁﬂ jil alrp(yl)wp(bJ) (lp)xJ

i
un ™Mo

i

This renders the multiplication in ‘AﬂgHﬂ biadditive. We must check
ihe compatibility of this definition with the relationé of the tensor
product. Furthermore, the behaviour of the multiplication with
respect to the scalar multiplication in the R-module structure needs
to be checked.

To check compatibility with additive tensor relations of factors

on the right hand side, we compute firstly,

(a®1lp) (a'®x; + a'®xy)

awp(a')e(lp)xl + awp(a')@(lp)Xz
= awp(a')@(lp)(x1+xz)

= (a8lp) (a'@(x;1+x2)) ,
and secondly

(a®lp)(a;8x + a,8x)

awp(ax)@(lp)x + awp(az)@(lp)x
= a(wp(ax)+wp(az))8(lp)x
= awp(ax+az)@(1p)x

= (a®lp) ((a;+az)8®x) .

To check compatibility with additive tensor relations of factors on
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the left hand side, we compute

(a;®lp + a,@lp)(adx) axwp(a)e(lp)x + azwp(aié(lp)ﬁ

(artaz)y (a)8(lp)x

((ay+az)®lp) (a8x) .

On the other hand, (a ® (1p+lp'))(a'@x)r= (a®lp + a®lp')(a'®x)
according to our definitiop of the multiplication in AQEHU. For the
same reason scalar multiple tensor relations of factors on the left
are preserved.

To check compatibility of scalar multiple tensor relations of

factors on the right, we compute

(a®lp) (a'®rx)

awp(a')ﬁ(lp)(rX)

arwp(a')@(lp)x

ay (ra’)8(lp)x

(a®lp) (a'r®x) .

As for the scalar multiplication in the R-module structure of

A@;Rﬂ we have

r((a®lp)(a'8x)]

i

r[awp(a')@(lp)X]
r(awp(a'))@(lp)x
(ra)wp(a')e(lp)x

(ra®1p) (a'®x)

(r(e®lp)](a'®x) .

On the other hand,
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(ra)wp(a')@(lp)x arwp(a')e(lp)x

awp(ra')e(lp)x

(aBlp) (ra'®x)-

(aBlp)(r(a'@x)] .

Furthermore, the multiplication in AQgRW is associative. It
suffices to check this for the following particular case. The case of
arbitrary factors follows from this particular case and the

compatibility results already proven.

[(a181p) (az81p') ] (as®x) (axwp(az)elpp')(a38X)

(axwp(az)wpp.(aa)@(lpp')x

az(wp(az)wpp.(aa))elp(p'X)

axwp(azwp.(as))alp(p'X)

(axelp)(azwp.(as)elp'X)

(a181p) [(2281p') (as®x)] .

This completes the proof that A@ERH is an associative R—algebra.

Part 2 As a balanced y-map i:AXRIT — AegRﬂ, we take the map 1i:AxXRN
— AegRﬂ arising from the R-module construction. Then i is already

known to be R-balanced and the computation

i(a,lp)i(a',x) (a®lp) (a'8x)

awp(a')@(lp)x ‘

i(awp(a'),(lp)X)

confirms that i 1is also y—twisted.
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Part 3 1i:AXRIT — A@ERH solves the universal problem of Definition
(3.6). So let B be an R-algebra and f:AXRW -—— B ' a balanced
_m—ﬁap. The universal property of the R-module A@RHH yields a
unique R-module homomorphism F:A@RHW — B which makes the following

diagram commute as R-modules.

A @R R » B

¥ :

A X RIT

The following computation on generators shows that F is also a

homomorphism of R-algebras.

F(a®lp)F(a'®x) = Fi(a,lp)Fi(a',x)r

f(a,lp)f(a*,x)
flay (a'), (1p)x)
Fi(ay (a'), (1p)x)
F(ay (a')8(1p)x)

F((a®lp)(a'8x)).

[i]

This completes the proof of Theorem (3.7) . ‘ o

(3.8) Remark One might attempt to generalize the concept of a

w?twisted product to the situatién where A and S8 are R;algebras
and S acts on A by R-algebra homomorphisms via an R-algebra
homomorphism y:S — EndA, where EndA denotesrthe endomorphism
algebra of A. One would then define A@gs as the R-module A@RS
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with multiplicafion'defined on generators by
(a®s) (a'®s') := aws(a')ess'.
This, however, does not always Work because, for r € R,

r(a®s)(a'®s!') (a®rs)(a'®s')

= awrs(a')erss'
= r(arms(a')ass')
= rz(aws(a')ess')

= r2(aB®s)(a'®s').

This is, in general, a contradiction. When defining A@gRﬂ on
particular elements, our approach was, from a technical point of view,

motivated by the observation above.

We can now make the resemblance between the y-twisted product of
groups and the y-twisted tensor product of an R-algebra A with a
group algebra RN explicit. Observe that the balanced y-map 1i:AXRW
— A@ERW of Theorem (3.7) factors through A@RRH with the R-balanced

map Jj:AXRN ~ A@RBH followed by the idéntity function Id:A@RRﬂ —

Y.
A@RRU.

Id v
A 8, R » A8} mm
Ii
J .
A x R



Give ABRRU the usual R-algebra structure. Then Id is an
isomorphism of R-modules which behaves with respect to multiplication

(formally) like a y-twisted function of groups (cf. Definition (3.1)).

The following lemma helps to recognize a y-twisted tensor product

of an R-algebra with a group algebra.

(3.9) Lemma Let A, B be R-algebras and suppose

A » B « RIT
s

is a (not necessarily exact) diagram of R-algebras and R-algebra

homomorphisms such that qs = Ian . In this situation, the function
t:AXRT 3 (a,x) - x(a)s(x) € B

is R-balanced and, therefore, induces a unique homomorphism of
R-modules T':A@RRH —+ B. Suppose that
(i) T' is an isomorphism of R-modules.

(ii) There exists a homomorphism y:T — AutA such that
t(a,1lp)t(a’',x) = t(awp(a'),(lp)X)

for all a,a' € A, x € RlT, p e 1.

Then B = ASYHI.

Proof Property (ii) and the universal properties of y-twisted tensor
products provide us with a homomorphism T:AEgRH — B of R-algebras

making the following diagram commute.
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Aegmr » B

i
t

A X RI

This diagram may be extended as follows.

We already know that the functions Id, T' are isomorphisms of
R-modules. Consequently, T is also an isomorphism of R-modules.
But T 1is also an R-algebra homomorphism and, therefore, an

R-algebra isomorphism. o

The following Lemma (3.10) gives conditions under which a

y—-twisted tensor product A@ERH allows for a sequence of R-algebra

homomorphisms as in (3.9).

(3.10) Lemma Let A be an R-algebra with 1. Suppose R 3 r i~

rl € A is a monomorphism and that there is an ideal A' of A such
that A = RI®A' (internal direct sum) as an R-module. Thus a € A
can be written uniquely as a = (r,a') with r € R, a' € A'. let T be
a group acting on A via y:T — AutA by automorphisms having R1

and A' as‘invariant submodules. Then
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(1) E:AXRH 3 ((r,a'),x) + rx € RT is y-balanced and, hence,

induces a unique homomorphism q:AﬂgRﬂ — Rl of R-algebras.

q
(ii) The sequence A =, A@ERH — RT with «(a) = a@lRlIT and
s(x) = 18x satisfies the requirements of Lemma (3.9).
(1ii) The action of M on A can be recovered from the multiplication

in A®

gﬂﬂ by the identity wp(a) = «—l(s(p)«(a)s(p_l)) for all a € A,

p € T.

Proof (i) q is obviously R-balanced. To see that q is

y—twisted, we check
a((r1,a1'),1p1)a((rz,82"),8p2) = (ri1p1)(rzspz) = rir2s(pipa)
and

E((rz,ax')wpl(rz,az'),lpxspz) = E((rz,ax')(rz,wpl(az'),5p1pz)

q((rlrz,rxwpl(az')+rza1'+&1wpl(82')),5P1P2)

rirzs(pip2) .

Visibly, the results are the same. For more general factors we use
this result and the fact that E is R-balanced.

(ii) We need only check that gs = IdHW . But for x € RI,

qs(x) = q(18x) = q((1,0),x) = x.
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(iii) Follows from the computation

(1,81gp) (281,11) (1,810")

= (y,(2)81pp) (1, 8 1pp )

s(p)«(a)s(p ')

w(a)y, (1,81 (pp )

wp(a)lAalRln

«(wp(a)) . ]

The reader may now compare the statements of Lemmas (3.9) and

(3.10) with the following fact for groups.

A group extension G — E —— T has a section s:MT — E so
that M acts on G via p*'g = s(p)gs(p—l) if and only if E = anﬂ and

wp(g) = first coordinate of (l,p)(g,l)(l,pnl) for all ge G, peT.

48



84 The Pontryagin homology algebra of an H-semidirect product

If X is an H-space, the g;aded singular homology group H*X
inherits a product structure from X turning H*X into a graded
ring, called the Pontryagin homology ring of X. If X has several
path-connected components, additivity of singular homology says that
H*X, as a graded group, is isomorphic to the direct sum of the graded
homology groups of the various path components of X. In general,
however, H*X as a graded ring will not decompose in any cobvious way.

If W= Wox¢ﬂ is an H~semidir¢ct product, W acts on W, by
classes of H-self homotopy equivalences and, therefore, on H*Wo by
graded ring isomorphisms. We shall show that H*W, as a graded ring,
is isomorphic to a twisted tensor product of H*W0 with H*ﬂ, where .
H*ﬂ is the Pontryagin ring of T viewed as a discrete topological group
(not to be confused with group homology; note that H*U = R viewed as
a graded R-algebra concentrated at degree 0). .

So let T be a group acting on a path connected H-group (Wg,u,)
via a homomorphism ¢:T — HE(W,), and denote by (W,u) the
‘corresponding H-semidirect product Wox¢ﬂ (cf.  (1.3)). Let R be a
commutative ring with 1. All homology groups, unless stated
otherwise, will be with coefficients in R;WAConsequently, H*X is a
graded R-module for any space X. "In particular H*W is a graded
R-module.

Let us recall the definition of the multiplication in H*W. The

conceptually easiest approach uses cubical singular homology.
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The key construction is the cross product in singular homology.
Let X, Y be spaces and let 1lu € CP(X;R), lv € Cq(Y;R) be generators
with w1 — X, v € 19 5y singﬁlar cubes., Then the map uxv:Ipqu
— XxY is a singular (p + q}~cube in X¥xY and, hence, yields a
generator (18R1)uxv € Cp+q(XxY;R8RR) & Qp+q(XXY;R). This construction
turns out to be compatible with the formation of homology classes and
yields an R-balanced function H*XXH*Y — H*(XXY). This function
induces the cross product homomorphism x:H*X@RH*Y — H*(XXY).

If (X,m) is an H-space, we get an R-homomorphism H*X@RH*X X,
H*(XXX) —Tfa H*X turning H*X into a graded R—algebra.

Furthermore, if X,Y are H-spaces and f:X ~—+ Y is an H-map, f

induces a homomorphism of graded R—algebras.

(4.1) lemma T acts on H*Wo by automorphisms of the graded R—algébra

via ¢: T 3 p > ¢(p)* € Aut H*Wo.
The proof is trivial. ‘a

y
(4.2) Theorem H*W =4 H*W08RH*H.

Proof Consider the "exact" sequence of H-maps

q
{(e, 1)} —— Wox{1} e Wpe, T &= =2 T — {1}

admitting a section s:T 3 p — (e;p) € Wyxdll. The computation
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P p' (pp')

| ] .

(e,p)(e,p') =—————— (eg,(e),pp') ———— (e,pp")

shows that s is also an H-map. The homotopy in the above diagram
can be constructed from any path joining evp(e) to e.

An H-map between two H—spacesrinduces a homomorphism of the
Pontryagin homology algebras. Therefore, £he "exact" sequence of

H-maps above induces the following diagram of homology algebras.

Since “y is induced by the map identifying W, with the path-connected
component WyXx{1l} of Wy= T, oy is a monomorphism by additivity of

singular homology. Since gs = IdIT v Sy = IdH*ﬂ . We shall now

invoke Lemma (3.9) to complete the proof of Theorem (4.2).

First of all, let us view RIl as a graded R-algebra whose only
non zero term sits at dimension 0. Then RN = H*U under the
isomorphism induced by the function on generators W 3 p 15 € H,T.
Here p denotes the unique map I° — {p} and, by slight abuse of
notafion, 1p the homology class represented by the (properly denoted)
element 15 of CyN. This function establishes a bijection between
the canonical bases of R-modules RW and H,W and, hence, induces an
isomorphism p:RIT — H,T. To see that p also preserves multiplication,

consider the following computation on generators
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1p ¢« 1p 1p

[+ ] I

Ip - 1p = == 1Ipp

where pp' is identified with I®xIO —§—§—§L—+ T —2 T via the
unique homeomorphism I® = I%XI°. Since the higher homology groups of
T are all 0, p is indeed an isomorphism of gradeé R—-algebras.
Following the set up of Lemma (3.9) we get a Homomorphism
T':H*WOQRH*H — H*W of R-modules defined on generators by
28X — «*(g)s*(§). We are left to verify
(1) T' is an isomorphisﬁ of graded R-modules.

(ii) For all a, a' € H*Wo; X € H*ﬂ, p € T we have the identity
T' (a®1p)T' (a'8x) = T‘[gq:p(g')e(ls);]

Both statements appear plausible upon inspection of the
underlying situation on the level of function values of maps for
singular simplices. The following observation will help us to

transform this idea into a formal proof of (i) and (ii).

(4.3) Observation Let C1:C B Coll — C*(Woxﬂf denote the chain map

defined on generators by 1u®lp +— 1(u,p). Here (u,p) denotes the

singular n-cube (u,p):In 3 t > (u(t),p(t)) € Wypa T, where

p:In — {p} denotes the unique map. Identifying 1% with Ian°, we
see that c¢; coincides with the cross—p;oduct map sending

lu®lp +— luxp where uxp denotes the singular n-cube uxp:IHXI0 3

(t,O) — (u(t)sp) € Wo"“-
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Let v_:Wy 3 w > w'e € W, and suppose that in the definition of

4, $(1) is represented by Idwo. Now consider cj := cl(te#QRId)
C*WOQCOH — c*(woxn). Then c,(1lu®lp) is representgd by the map
I" 3 t 1 (u(t)e,p) = (u(t)y;(e),p)

(u(t),1)(e,p)

ulocu(t),sp) € Woa T .

Since T, is homotopic to IdW » ¢1 and c; are chain homotopic and,
0

therefore, induce the same map in homology.

Verification of (i) ¢, gives rise to the Kinneth-map k*:H*WOGRH*H —
H*(Woxﬁ). Because of the particular structure of H*H, k* ishan
isomorphism of graded R-modules. On the éther hand, ¢, induces T'.
Since c; and c; are chain homotopic, this shows that T!' = k*.

Hence T is an isomorphism of graded R-modules.

Verification of (ii) Since X = rjp; + ... + rksk , we get

a'®x = r;a'®lp; + ... + rkg'@lsk )

Using distributivity in H*W it suffices to prove (ii) when X = 15'.
Suppose now that a = rju; + ... + ru and that a* = r;'u;' + ...

+ réué . Sincé T = k* , T'(a®1p) is represented by ri(uixp) + ...
+ rk(ukxp) and T'(g'alg,) is represented by ri'(up'xp) + ...

+ rﬁ(uﬁxP'). Consequently, T'(EQIS)T'(E'Glg') is represented by
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k 2 ' kK 2
2 Zor.rt po((u.xp)x(uxp')) 2  Z r.riu(u.,xp,u'xp')
i=1 j=1 * Y ' J i=1 g=1 Y9t
k =2
= I Zr.ri(uy(u,
i=1 j=1 *J t
k 2
= 1 o
I 2aTiT ket upepu et

s¢pu3)’Pp')

k 2
= t, o '
cif 2 z r,T 4o (uixwpuj)ﬁlpp }

Jj=1
r[ : l :
= C1 Mg Zr.u.lx] 2 rte ut]®lpp’
#_-= J {5=1 9P

2 |
= U !
CLiHoy '2 r.u.Xx ¢p#[j§1rjuj }}Glpp ].
The argument of c¢; is just a representative of gwp(Q')@lﬁS' and T'
is induced by c¢; on the chain level. Hence (ii) is verified which

completes the proof of Theorem (4.2). o

Let R = Z from now on and let us look at the Hurewicz
homomorphism hn:ﬂn(wo,e) - Hnwo. To recall the construction, denote
by oy the generator of H;(S°,{l}) represented by the 1lu, where
u:d, — {-1} is the unique map. Then the n-fold suspension o, = Sndo
determines a generator of HnSn. If (X,%) is a based space we get a

natural transformation
hn:ﬂn(x,*) 3 [f] ha,f*wn € HnX.

(4.4) Proposition Let W = Wy T be an H-semidirect product. Then

hn:wn(wo,e) — Hnwo (n 2 0) is an operator homomorphism with respect

to .the actions of T on nn(wo,e) and Hnwo induced by ¢:T — HE(W,).
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Proof For p € T and [f] € Hn(wo,e) we get

h_(p+[£]) = h_(6(p) [£])
@@ [£]) 0,
$(p)  ([£],0)

p°hn[f]. o

(4.5) Corollary If wn(Wo,e) is nilpotent with respect to the action
of T on nn(wo,e) then imhn is nilpotent with respect to the action of

Ton HW,. o
n

Finally we remark that, if desired, the question whether or not T
acts nilpotently on imhn can be considered completely within H*W.
The transition is accomplished by making use of Lemma (3.10) after

observing that H*W0 has a multiplicative identity in HyW,.
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85, Nilpotency of CW-complexes and H-semidirect products

Bousfield, Kan [B-K] and Hilton, Mislin, Roitberg [H-M-R] give
the following definition of nilpotency of a connected based

CW—complex.

(6.1) Definition X is nilpotent :e w;(X,%) is nilpotent and acts

nilpotently on nn(X,*) for n 2 2.

Under the adjointness isomorphism wn(X,*) & wn_l(ﬂx,*), this
requirement for nilpotency of X translates into the following

equivalent one.

(6.1)' Definition X is nilpotent :e= m; (X,%) is nilpotent and the

action of =w;(X,%) on wn_l(ﬂx,*) by loop conjugation is nilpotent.

Denoting the path component of the constant path ¥ € 02X by (%) 4,
we get canonical isomorphisms ﬂn_l(QX,*) = ﬂn_l((ﬂx)o,*)
= [Sn—l,(QX)o] and the action of =n;(X,%) on [Snnl,(QX)o] of
Definition (5.1)' coincides with the action of m;(X,*) on [Snnl,(ﬂx)o]
arising from the H-semidirect product structure on 2X (denoted by
m(sn_l) in 82). Thus our results in §2 lead to yet another
characterization of nilpotency of X: X is nilpotent if and only if
[Sn,ﬂX] is nilpotent for all mn = 1.

The main objective of this section is to give .an explicit
development of this characterization and then to use results in the
previous chapters to provide additional tools for investigating a

connected CW-complex for nilpotency.
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It should be noted, however, that this approach to nilpotency of
CW-complexes is not entirely new. Roitberg [R] utilized the
characterization (5.1)' of nilpotency in the following way.

Given a countable connected based simplicial complex X, a result
of Milnor’s [Ml] guarantees the existence of a topological group T
having the homotopy type of QX. Furthermore, T is the fiber of a
principal T-fiber bundle map E — X, where T *ana E are couﬁtable
CW-complexes. Also E 1is contractible so that X is, up to homotopy
equivalence, the classifying space of T. Based on these facts,
Roitberg uses T for RX in Definition (5.1)' to characterize
nilpotency of countable connected based simplicial complexes.

At this 1evel of consideration, Roitberg benefits from his

approach in the following result.

*(5.2) Theorem Classifying spaces of nilpotent Lie groups are

nilpotent.

Proof If T is nilpotent as a group, the requirements of (5.1)' are

satisfied (compare Proposition (2.7) of this thesis). a

We shall now embark on an explanation why (5.1) and (5:1)' are
equivalent. This is implicit in [R]. We shall actually prove a more
generai result.-

Let (D,%*) be a based well pointed space (i.e. the inclusion
¥ <« D has the homotopy extension property) and let (X,%) be a based
space. Then =y (X,%) acts on [(D,%),(X,%)] on the left as follows. If
f:(D,%X) — (X,%) is a based map and y:(I,{0,1}) — (X,%) is a loop, we

obtain a map .f out of the following process.
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(1) Let F:DxI — X be a homotopy extension of the data
F(d,0) = £(d) for all d €D and F(¥,t) = (t) = y(1 - t) for all
t eT.
(ii) «.f(d) := F(d,1).
It turns out that choosing different homotopy extensions of the
data in (i) and varying 4 and f in their homotopy classes only
varies 4.f in its homotopy class. Consequently, we obtain a well

defined function
8:my (X, K)x[(D, %), (X,%)] 3 ([«],[f]) — [v.f] € [(D,%),(X,%)] .

Furthermore, 8([y1],[v2]) = 8(y118[v2] as a function from
[(D,%),(X,%)] into itself. Hence, 8 describes an action of m;(X,%) on
[(D,%),(X,%)].

Now let (A,%) be a connected CW—complex with a 0—-cell as base
point. Then (SA,%) =: (D,X%) is well pointed. Let 8 denote the action
of my(X,%) on [(SA,%),(X,%)] explained above.

On the other hand, using adjointness of suspension and loop

functors we have the action,

8':n1(X,*)x{(SA,*),(X,*)] » [(SA’*)’(X’*)]

o =1

“I(X’*)x[(Aa*)’(th*)o] — [A’(Qx)o] = [(A:*)’<Qx:*)o]

defined by going through the bottom part of the diagram above.

Explicitly, let ([y],[f]) € m, (X, %)x[(SA,%),(X,%)]. Let
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f:(A,%X) — (RX,%) denote the adjoint of f. For g:(A,%) — (QX,%),
let g:(8A,%¥) — (X,%) denote the adjoint of g. Observe that (F) = f

and (g? = g. Then 8'([y],[f]) is represented by the composite of maps
(7 ) = (1, F) o oBy o g o g,

where g:(A,%) — (QX,*%) is defined as follows.

The map kafI:A 3ait— y?(a)y_l € (2X), is given by loop
conjugation and will in general not be based. Using the homotopy
extension property of the inclusion ¥ + A, we get a based map
g:(A,*) — (RX,%), which is freely homotopic to y?y—r. Since‘(SZX)0 is
a simple space, [g] and subsequently [g] =: 8'([y],[f]) are uniquely

determined by +Fy .
(6.3) Lemma 8 = 8':7; (X, ¥)X[(SA, %), (X,%)] — [(SA,%),(X,%)].

Proof In the notation of the introductory explanations above, we

shall show that [g] = [y.T] proceeding along the following steps.

Step 1 is based on the following observation. If (B,%) is a well
pointed space, then the data F(b,0) = (b,0), F(%,t) = (%,t) have a
homotopy extension F:B X I — (B x 0) U (¥ X I). Given F, we have a
- uniform way of construc£ing homotopy extensions for the inclusidn

{¥} = B. If f:(B,*%) — (Z,%), a:(k x I,(%,0)) — (Z,%) are maps,

then (v denotes the folding map)

F fva v
BXY —— (Bx0) U (*xI) —_— 2V — 7

is a homotopy extension of the data f, a.
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Therefore, we shall fix suitable homotopies

R:AXI — (AXO)U(*XI) ’ R(a:t) =v (Pl(a,t)’pZ(aft))

S:8!xI — (8'X0)U(KXI) , 8(s,t) = (01(s,t),02(s,t))

to construct a homotopy
T:SAXI — (SAXO)U(¥xI) , T(saa,t) = (t1(sAa,t),T2(sAa,t))

and construct homotopy extensions of A, S!, SA using R, S, T as

explained above.
Step 2 Compute g and v.T .

Step 3 Show that g is homotopic to +.T .

1 has the

On step 1 For every n € N,, the inclusion s™ ey Bn+
homotopy extension property. Using the cell structure of A, this is
the‘key to constructing a homotopy R:AxXI — (AxXQ)U(*xI) such ohat
R(X,t) = (%,t) for all t € I and p2(a,t) < p2(*,t) for all
a€A={%} andall t, 0 < t=<1, and R(a,0) = a for all a € A,
For (S!,%) we exhibit a homotopy "S:S"xI — (8*%0)U(*xI) with
these properties explicitly. Using the homeomorphism s! = 1/(0,1},

define

' t
(¥,t - (1+2t)s) 0<s < T+ 9%
o _ t 1+t
S(s,t) := 1 ((1+2t)s t,0) T 7% <£s < T 7%
: ' 1+t
(%, (1+2t)s - 1 - t) T 7 5% £s <1

60



S(.,t) pulls the base point of S$! out to (%,t) under uniform
stretching of S!. 1In fact, the construction of S shows how to
construct R on the l-skeleton of A.

Now define T:SAXI — (SAX0)U(%XI) by
T(sAa,t) := (o1(s,t)A01(a,t),max{c2(s,t),02(a,t)}).

To see that v, is continuous, we show that the function

T2':SXAXI 3 (s,a,t) - max{o2(s,t),p2(a,t)} € I is continuous and
factors through (S!AA)XI with v,. Continuity of ©,' can be seen by
using the continuous difference function &:S*xAxI 3 (s,a,%) — o2(s,t)
~ p2(a,t) € R which yields two closed subsets 8_1(R20), S_I(RSO) of

S!xAXI over which T,' is defined by o2, p2 respectively.

On Step 2 ILet v € 2X and f:(SA,%) — (X,%) be as above. Then

wv.f:1(8A,%) — (X,%) is given by

) I fr;(sAa,l) if T(sAa,l) € SA x O
v.f(sAa) =
1 v(l - v2(sAa,1)) if T(sAa,l) € ¥ x I .

Consequently, if a € A, then v.f(a) is the loop

v(3s) 05s531-
S! = 1/{0,1}) 3 s =+ : ?R(a,l)(3(s—%)) %555% }ex
v(1 - 3(s - 3)) Zess1
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in case R(a,l) € Ax0. If R(a,l) = (¥,t) € ¥xI, then v.f(a) is the

loop
v(3s) 0<s < %-(s—t)

= 1/{0,1} 38y w(1-t)  g(-t) £5%1 - 2(1-t) }ex :
v(1 ~ 3s) 1- %(1—t) €£s =<1

The function values of the loop conjugated map ny_l actually
depend on how we bracket this product of three elements. Regardless
of how this product is bracketed; there is an easily constructed
homotopy AXI — (R2X), which allows us to assume that for a € A,

«F(a)y ' is the loop

v(3s) 0555%1
S! 3 s+~ F(a)(3(s - %)) é < s < % - € X
| v -36-%5) Fsss1

In particular, »y-f(*)y»1 is the loop ¢ at triple speed for

s € [ 0, % ], constant at ¥ for s € [ % R % ], v backwards at triple

speed for s € [ % , 1 ].

The path v:I — (RX), Jjoins yf(*)f{_1 to the constant loop.

[ (39) 055 s 3(1-t)
p(£):S! B s 3 (1-t) %(;—t) <s<] - 31-(1~t) e x .
(1-3(s - -g-)) 1 - %(l—t) <s<1 J
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Using the homotopy R, we get g:(A,%) — (QX,%), as the homotopy
extension of the data Y?Q_I:A — (2X)y and v:I — (QX),.
Specifically, we get for a € A, g(a) = q(?(R(a,l))q’“1 if R(a,l) e Ax0.

Thus

v(3s) 0<sx % ]
ga)is' 35y TR(a,1)(3(s-3) 3<ss5 Lex
¥(1-3(s - £)) Zess1

If R(a,l) = (%,t) € ¥xI, we get g(a) = vR(a,l) = v(t).

Step 3 is now trivial because we see from Step 2 that ~.f(a) = g(a)

for all a € A.
This completes the proof of Lemma (5.3). . 1]

In 81, we have seen that QX = (QX)omén;X, where ¢:m; X — HE(RX),
is defined by loop conjugation. Explicitly, if [y] € mX, ®[y] is
represented by the map (QX), 3 « — Y«yfl € (X)g; cf. (1.4), (1.7).

In 82, we have seen that ¢ induces an action ¢(A) on the free
homotopy groups [A, (2X),] by composition. Explicitly,
w(A)[_1lg] = ¢(I])°[g] and ¢([y])°[g] is represented by the mep

A3ais ygla)y & e (2X),. Hence, we have shown

(6.4) Corollary For all [y] € mX, [f] € [(SA,%),(X,%)],

8([v],[£f]) = 8'([v],[f]) = W(A)[Y]T?T . - o
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Applying Corollary (5.4) to n-spheres (n 2 1), we get the

following equivalent conditions for the nilpotency of CW~complexes.

(5.5) Theorem Let (X,%) be a connected CW—complex.' Then the
following are equivalent:
(i) w1 (X,%) is nilpotent and acts nilpotently on wn(X,*) for
nz 2.
(ii) m;(X,%) is nilpotent and acts nilpotently on nn_l(QX,*) by loop
conjugation for n 2 2.
(iii) w(¥X,%) is nilpotent and [Sn—l,(ﬂX)o] is w(Sn_l) nilpotent for
n 2 2,

{(iv) [Sn_l,QX] is nilpotent for n 2 2.

Proof (i) e (ii) follows from (5.3).
(ii) e (iii) follows from (5.4).
n—l’n

(i) e (iv) [$°1,ex] = [s%7L, (ax), )= n—1)’“(x'*)’ by (2.8) and

w(S
thg semidirect product on the right hand side is nilpotent if and only

if (iii) is true, for purely group theoretic reasons (cf. §2). o

The material in 82 can now be exploited in the following way.
The action w(Sn~1) in (5.5) (iii), (iv) is induced by the homomorphism
¢:m X — HE(RX),, determining the H-semidirect product structure of

X,

(5.6) Proposition If ¢ is trivial (ker¢ = m;X), then X is simple.

a

This calls our attention to homomorphisms of m;X intoxthe

following Fower of groups.
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mX — CE(RX),; group of homotopy classes of H-conjugations of (RX),
< HE(QX),; group of H-equivalences of (2X),

< £(R2X)y; group of self homotopy equivalences of (2X), .

(6.7) Corollary If the set of homomorphisms from w;X into one of the

groups CE(RX),, HE(RX),, £(QX), is the l-element set, then X is a

simple space. : O

In Proposition (2.7) we have shown that nil[Sn,ﬂX] < c for all
n 21 if @X has H-nilpotency index < c. Together with (5.5)(iv), we

get

(6.8) Corollary If 2X is H-nilpotent, then X is nilpotent. ]

As for (5.5)(iii), the material in 84 can be utilized in the

following way.

(5.9) Proposition Let hn:-rrn(szx)o — Hn(SZX)0 denote the Hurewicz
homomorphism. If X is nilpotent, then ;X acts nilpotently on

im hn' In particular, m;X acts nilpotently on H;(RX),.

Proof Use (4.5) and the Hurewicz isomorphism theorem.
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86 Bordism rings of H-semidirect products

Conceptually, bordism theories have‘a flavour of generalizing
aspects of free homotopy sets as well as aspects of singular homology
groups. It is therefore not too surprising that the graded bordism
group of an associative H-space has the natural structure of a graded
ring arising in very much the same way as the Pontryagin ring
structure in singular homology. Indeed, in this chapter we shall show
that the bordism ring of an H-semidirect product decomposes into a
twisted tensor product in a way resembling the decomposition of the
Pontryagin algebra (cf. 84),

Let us begin by introducing the necessary concepts related to
(co-)bordism theories. We are interested in bordism having a
description by singular manifolds via Thom’s theorem. Therefore, we
shall assume that the extra structure on a manifold comes from an
extra requirement concerning the normal bundle of this manifold with
respect to a fixed imbedding in some R®. To keep this chapter to a
certain extent self contained, we shall eiplain the underlying
formalities and state, without proof, the results invoked. This
material is extracted from Stong "Notes on cobordism theory" [St] and
Switzer "Algebraic Topology" [Sw], which are the general references.

We shall refer to a smooth compact manifold ("smooth": it has a
c” atlas), with or without boundary, simply as a manifold. If we use
the symbol M for a manifold, then m will denote the dimension of .
M. We agree that 0 is a manifold of arbitary dimension. Whitney’s

imbedding theorem says that M can be imbedded in the half space
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HS+l 1= {(xl,...,xs+1): X3 20} c RS+1 (s 2 2m+l) such that M gets
mapped to ams+1 = {(0,xz,...,xs+1) € RS+1} and (M - dM) gets mapped
into the open half space (x; > 0) of HS+1. We require all imbeddings

in later considerations to have these properties.

Notation and preparations Let m“ t= 1im R &— R? «—» R?® = ... with

the limit topology. For r 2 1, it will be advantageous to use the

isomorphism Rm 2 lim RY < RZr c— R3r s

~

.+ induced by deleting
the vector spaces Rn, n not divisible by r, from the first limiting
system aboven
) . ‘ ) ) o
For r, r' 2 1, we get an isomorphism L r': R @8R — R given
?

by the following self explanatory picture.

r | r | r |
m“z:mr:mzmr:a:mr:@..l
& .8 ., .8 , .® . 2R
1 II 1} .| [} .l
R= 'R & (R | & 'R ! ® J
L J L Jd L g
If rr' is even, ﬂr " ~ ﬂr, r by a homotopy through orthogonal maps
’ b}

[}
interchanging the summands R & R¥ pointwise in each of the blocks

]
Rr+r . For n21, let P, m“ — R be the isomorphism induced
blockwise by the map R 3 (x;,xz,...,xn) f— (—xl,xz,...,xn) e R®. If
rr' is odd, "r,}' ~ pr+r'ﬂr',r by a homotopy through orthogonal maps

1
interchanging the summands RT @ RF pointwise in each of the blocks

1
Rr+r . Evidently, the diagram
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) n ,®1Id
ROBR R L,r y ROB R
Id ® wr',r" ﬂf+rl’rl.l
(] (-] o0
R 68 R - » R
. “r,r'+r" -

commutes strictly. Furthermore, the inclusion ir: R' 3 (xl,...,xr)

. r+l . . . . 0 ©
— (x;,...,xr,O) € R induces an inclusion Jp R — R given by

R = ®RF 8 R o R @
Jr 1!‘ l[' lr l
© mr+1 ® mr+1 ® IRr+1 8

For 0 £ r £ n, denote by Gn - the Grassmann manifold of

. . n - 1q
unoriented r-planes in R and by BQr := lim Gr,r e Gr+1,r e ,

On the set level, there is an immediate identification between BO
and Gw’r, the set of r-planes in Rw. We dive Gw,r the topology
rendering this identification a homeomorphism. Let Y denote the
canonical r-plane bundle over ‘Bor. Note ghat Y is a universal
r-plane bundle, i.e. if (E,p,B) is a numerable r-plane bundle, fhen
there exists a unique homotopy class of maps [f]: B — BOr such that
the pull back bundlg f%Yr is vector bundle isomofphic to (E,p,B).
Let 0r denote the orthogonal group of R°. The inclusion
ir: RE = R x {0} = mr+1 induces the inclusion ir: 0r = Or X {Idm}

— 0r+l’ giving rise to the inclusion Blr: BOr 3P b span(Jr(P)

U {e

r+1}) € B0r+1. Here e, € R denotes the vector having O-entries
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everywhere but for a 1 at the n-th position.

For 1 £ r £ n, denote by Vn the Stiefel manifold of ordered

orthogonal r—frames in Rn, and by EO_ := lim V e V Cep ...
r ~= r,r r+l,r

On the set level, there is an immediate identification between EOr
and V r? the set of orthogonal r-frames in Rw. We give V r the

? H
topology rendering this identification a homeomorphism. Let
f;: EO_ 3 (v;,...,vr) +— span{vy,...,v } € BO,.. Then (Eor,f;,BOr)vis
a universal principal Or—bundle.

» 3 m w . 3 .
The inclusion Jp R — R induces an inclusion

Eir: EOr 3 (vl,...,vr) — (Vi,...,V_,e

r r+1) € Eor+

1° Now, the direct

sum decomposition R R eR & ... gives us a "diagonal" action of
Or on Rw inducing an action of 0r on EOr. The inclusion
i 0r = 0r X {Idm} — 0r+l gives us an action of 0r on Eor+l' It

is immediate that Eir is an equivariant map with respect to this

Or—action. In particular, we get the commuting diagram

Eir
EOr > E0r+1
1 1
fr fr+1
BOr BT > BOr+1 .
- r
(6.1) Definition (1) A (B,f)-system is an infinite ladder
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g, g

Bb e} Bb+1 _— ., » Br > Br+l —,
fb fb+1 fr fr+l
BOb — B0b+1 —_— . .. » BOr - > BOr+1 —
Blb B1r

in which every square is strictly commutative and every vertical map
is a Hurewicz fibration.

(ii) A (B,f)-structure on a manifold M ié a pair (er,Ar), r b,
where €. M— mm+r is an imbedding. €. gives rise to a canonical map

c: M—a@G ©~— BO_ which classifies the normal bundle of ¢ (M) in
r m+r,r r r

R and we require A : M- B_to be a 1ift of c_ (i.e. T A =-c).
r r r r'r r

Actually a pair (er,Ar) induces more pairs (e 1 by

rek Apa) s K 2

€
. -+ + . .
composition: €tk ‘T M2 BT e, Rm+r k, which yields

- N3 ) 1 OBy © = o o
Crik Blr+k_1 "'°B1r+1 Bi °c and Ak Erik-1" " 818, Ar.

For our purposes we do not need to favour any of the (es,As), s2r,
above., We shall, therefore, write a (B,f)-structure on M as a pair
(e,A) and specify subscripts only when necessary.

Note also that a (B,f)-structure on M induc;s a (B,f)-structure
on dM by taking restrictions of the maps involved.
(iii) Two (B,f)-structures (e!,A'), (e?,A?) on M are equivalent
‘e there exists r 2 b and a translation T: Rm+r — Rm+r such that

2

Te; = e? and A; ~ Ai by a vertical homotopy. The latter

2

requirement makes sense because Te; = e implies c! = ¢?

C .
r

(iv) A (B,f)-manifold is a manifold M together with an equivalence

class of (B,f)-structures.
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(v) Let M;, My be (B,f) manifolds of dimensions m; -~ 1 € m; < m,
with representing (B,f)-structures (e!,A!), (e?,A%). A
(B,f)-imbedding of M; in M, is an imbedding a: M; — M, such that
(a) a(aM;) < M, if m; = mp
(b) aM; =0 and a(M;) c M, if my = my — 1.

Furthermore, there is to exist r 2 b and a translation

7 ®RP2TT _, R%2*T guch that Te; = e;a, and A; s A;a by a vertical
homotopy. The latter requirement makes sense because Te; = e;a
implies c; = c;a.

If C is a (B,f)-manifold with boundary M, and M is given the“
induced (B, f)-structure, then the inclusion M e C is a
(B,f)-imbedding with T the translation by the O-vector, i.e.

T = Id.

A (B,f)-diffeomorphism between M; and M. is an invertible
(B, f)-imbedding of M; in M,. We denote this situation by M; = M,
(assuming that the underlying (B,f)-system is fixed).

(vi) Let M;, M2 be two (B,f)-manifolds of the same dimension m,
without boundary. M; is (B,f)-cobordant to M; :e= there exist
(B,f)-manifolds C,, C, of the same dimension c¢ = m+l such that ("U"

denotes disjoint union)
M Uac; 5M, UJac, .

*§6.22 Lemma (i) "(B,f)-diffeomorphism" is an equivalence
relation. Denote the collection of equivalence classes of closed

(B, f)-manifolds of dimension m by méB’f).

(i1) (B

- is a proper set for all m € Ng.
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(iii) Under the operation of disjoint union (on representing
manifolds, imbeddings, classifying maps for normal bundles and lifts
into Br)’ the set m;B’f) becomes an abelian monoid with the empty
manifold (and the unique paraphernalia of maps) as the neutral
element.

(iv) (B,f)-cobordism is an equivalence relation on m;B’f). Denote
by RéB’f) the set of (B,f)-cobordism classes of M;B;f) and by [M] the
cobordism class of a (B,f)-manifold M.

(v) The adddition on méB’f) is compatible with the formation of
(B,f)—cobordism classes and induces ontgéB’f) the structure of an
abelian group. Its neutral element is the (B, f)-cobordism class
consisting of all closedﬁ m-manifolds arising as the boundary of some
closed (B,f)-manifold C (c = m+l) with the induced (B,f)-structure.
Inverses are obtained as follows. If M with (B,f)-structure (e,A)
represents a certain (B,f)-cobordism class, for r sufficiently
large, let T: Rm+r — mm+r be a translation such that er(M) is

disjoint from T'er(M). Then there exists an imbedding

r+m+l

e'r: MxI —+ H such that e! Then

= 1 =
IMx{0} €. and e IMX{l} Ter.
the canonical classifying map c;: MXI — BOr is a homotopy of Cp-
Hence the 1ift Ar: M— Br has a homotopy extension h;: MXI — Br

over c;. Give Mx{1l} the induced (B,f)-structure. It follows that
(Mx{0} U Mx{1}) U 30 = @ U a(MxI),

which means that Mx{1l} with the (B,f)-structure constructed above

represents the inverse of M in RéB’f).
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We indicate a source for many (B,f)-systems. Let b € N, and

suppose we have an infinite ladder of closed subgroups Gr of 0r

Gb“—-—-—+Gb+1<'————-v...’ :Gr“ :Gr+1;——).
ObL———»Ob_*_l"—-—»...f' :0‘r'L :0r+l;"

where all arrows are inclusions, so that each square in this ladder

automatically commutes. If for all r 2 1, Gr = {Id r} we take
) R

B :=E0, f_ :=f!, g :=Ei_. In the other cases, observe that
r r r r r r
Gr acts on EOr by restricting the Or—action. The quotienf space
is a classifying space for principal Gr—bundles. Furthermore f; is
the composite of two fibrations Q. EOr — BGr = Br , a principal
G_-bundle, and f : B_. — BO_ with fibre 0 /G . 8ince Ei is

r r' r r r'r r
equivariant and 1r: 0r s 0r+1 induces an 1nclus1on Gr e Gr+1 ,

we get the double ladder below in which each square commutes strictly

and each vertical map is a Hurewicz~fibration (cf. [B], Chapter III).

Eib Eir

EOb —_——— E0b+1 —_— . . . > EOr > EOH_1 —

| qb | 1 qr 1 l

& g
b r+l

BGb BGb+1 —_— . . » BGr — BGrfl —p

fb , fr

Bib 7 Bir

BOb ey BOb+1 e > BOr » BOr+l —_— . . .
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The bottom ladder is a (B,f)-system associated with the system of
groups {Gr c Or}. |

In essence, a (B,f)-structure on a manifold M comes from an
imbedding €. M— Rm+r so that the assoéiated normal bundle of M in
Rm+r is a Gr—bundle. Furthermore, (B,f)-cobordism is the classical

cobordism idea applied to the class of manifolds allowing for a

(B,f)-structure. In particular the choice

Gr := Or yields standard unoriented cobordism

Gr = SOr yields standard oriented cobordism

G2r i= G2r+l i= Ur yvields complex cobordism

Gr := {Id r} yields Pontryagin’s framed cobordism.
R

We shall briefly explain the method of constructing (B,f)-bordism
theories. For systematic reasons, we present now the formalities
needed to state conditions which will insure that the graded
(B,f)-bordism group of a point will turn out to be a graded

associative commutative ring with 1.

X . 0o ®© o
(6.3) Lemma (i) The map L R ®8R — R induces a map
, .
k : BO_xBO , — BO , by taking direct sums. Note that k .
r r r+r r,r

r,rt’

classifies the product bundle L A

(ii) The diagram

’ Id x k.
. L N
BO, x BO_, x BO_,, + BO_ X BO_, .,
kr’r. x Id kr’r|+r||
B0r+r, X BOr” . + B0r+r.+r“
r+r',r'"!
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commutes.

(iii) If rr' is even, a homotopy of = , tom_, through
r,r r',r
rotations renders the diagram
kr r'
b
BOr X BOr| ’ Bor+r'
T
k.,
r',r
BO_, X BO,
r r

commutative up to homotopy, where «(P,P') = (P',P). Let

Sn: BOn — BOn be the map induced by P, Rw-—» Rw. If rr' is odd,

a homotopy of LI to PrirtTrr 1 through rotations renders the

? ?
diagram

kr r!
bl s
BO_ x BO_, » BO_,
ft "~
1 pr+r'kr',r
BO_, x BO
r

commutative up to homotopy. ‘ o

(iv) BOr has the canonical-base point RF *r (the first R" block

(J L.
of R ). Blr is a based map, kr,r'(*r’*r') *r+r' and
k (X’*r') = Bi

[ ORI
! cos Blr(x).

r+r'-1
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We shall from now on work with (B,f)-systems satisfying the

following additional requirements.

(€l) For all r,r' 2 b, there exists a map Qr

such that the diagram

B * B r,r'
r rt
f x £,
r r
BO_ x BO_,
r r
k. .,
r,r

commutes. Since k*

: B xB

r+r'

r+r!

r+r!

= v Xv,.» this implies that f __ .2

r+r*p+r!
classifies Ffly xf
1 I‘YI' r|'le'
(C2) The diagram
Idx2 , ..
Br X Brl X Brll 2

B X B

r+r! r'!

er+r',r"

r+r!

Br % Br'+r"

2r,r'+r"

Br+r'+r"

commutes up to a vertical homotopy over the diagram (6.3)kii).

(C3)

If rr' is even, the homotopy between kr

I

,and k_, « in
r r',r

) e , — B
,r rr

r+r!

r+r!

(6.3)(iii) 1lifts to a homotopy between Qr ot and Qr' v over the

diagram in (6.3)(iii).
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(C4) In each fiber f;‘{*r} c Br , there is a distinguished point - ;r
such that Zr r'(ir’gr') is in the same path connected component of
b N

-1 < ~ v . .
fr {*r} as X . . and £ (x,*r,) is in the same path componen? of

r,r!
-1 ~
fr+rl(kr’rl(fr(x))*r|)) as gr+r'”1 ¢ gr(x)'
*(6.4) Remark The (B,f)-systems arising from a system of subgroups

{Gr = Or} as explained above, satisfy the requirements (Cl),...,(C4).

Proof sketch The map LN R ® Ré — R induces a map
]
1 . . . .
Qr,r" EOrXEOr, — E0r+r' satisfying the requirements (Cl),...,(C4).
For the other systems, we get maps Qr,r': BGrXBGr' — BGr+r' 1nduced‘

by 2; o by taking quotients. For the distinguished point %r, we
’ . .

take the quotient class of the r-frame (el,...,er). ) a

A (B,f)-system gives rise to a homology theory as follows. Let

X be a space, M € M(B’f)

L a closed (B,f)-manifold, uw: M — X a

continuous map. The pair (M,u) is called a singular (B,f)-manifold in

X.

(6.5) Definition Two singular (B, f)-manifolds (M,u), (M',u') are

called (B, f)-bordant :e= there exists an (m+1)~dimensional

(B,f)-manifold C such that
MU (-M') = acC,

where -M' represents —-[M*'] in R(B’f)

o , and there exists a continuous

map a:C -— X such that a!M = u and’ a‘ = u'.

Ml
*§6.6) Lemma (1) (B,f)—bordism on singular (B,f)-manifolds is an
equivalence relation. Let {M,u} denote the (B,f)-bordism class of the
singular (B,f)-manifold (M,u).
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(ii) The (B,f)-bordism classes of dimension m in X form an
abelian group under the operation disjoint union of domain manifolds

and singular maps. Denote this group by SﬁB’f)X.

(iii) RiB’f)_ is a generalized homology functor from the category of

compactly generated Hausdorff spaces to the category of Ng—graded

abelian groups.

Next let us construct a cross-product for RiB’f)_. Let X, Y be
spaces and let (M,u) bé a singular (B,f)-manifold in X, (N,v) a
singular (B, f)-manifold in Y. Let (e, A), (e',A') represent

(B,f)-structures for M, N. The cross product of (M,u) with (N,v) is

(MxN,uxv) with (B, f)-structure (erXe;,Q (Afor'))' That this makes

r,r'
sense follows from the commutativity of the diagram below and the fact

that k_  ,(c xc!,) classifies the normal bundle of MxN in gutrintr!
’ N

. because k classifies .
r,r' foyr'

’

zr rt
’ R
/Bg * Br. Br+r.
/Arx ,\;.' f.’c“x fr' -fr+r'
MxN T o > BOr X BOr, - > BOr+rl
r r' r,r'

*§6.72 Lemma (i) The cross product on singular (B,f)-manifolds

defined above is natural, biadditive and associative.
(ii) The cross product on singular (B,f)—manifolds is compatible

with the (B,f)-bordism relation and, therefore, induces a natural
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homomorphism Xx: QiB’f)X @z RiB’f)Y — RiB’f)XxY. The cross product
for three spaces is associative.

(1ii) Let P = {¥} denote the l-point space and identify

PxX = X = XXP by the obvious homeomorphisms. Then "x" induces on
RiB’f)P the structure of an'No—graded associative, commutative ring
with identity element 1, the cobordism class represented by (P,1d)
where P has (B,f)-structure €t P — Rb any map and

~

Ab: P3 Xk *b € Br' Note also that QgB’f)P is a subring of

RiB’f)P containing 1.

(iv) The cross product induces on giBaf)

(B,%)
9*

X a natural.
P-bimodule structure.
(v) The biadditive map 20°'¥)x x 9§B’f)v — By s

RiB’f)P—balanced and, therefore, induces a homomorphism

. o(B, ) (B, ) (B, )
X R* *TX QR(B’f)P R* Y — 9* XxY
X

of RiB’f)P—modules.

The proof is obvious at the level of singular manifolds. For the
related (B,f)-structures it follows from properties Cl,...,C4 above.

o

Now let (X,u) be an H-space. We get a Pontryagin algebra

structure on RiB’f)X out of the composite

(B, 1) (B, f) (B, ) Hy (B,f)
R* Xe Q(B’f)p Q* X — Q* XX ——— R* X.
b 4
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The algebra structure is associative, respectively commutative if

(X,u) is H-associative, respectively H-commutative.

Now let T be a group acting on a path connected H-group (Wg,uq)
by a group homomorphism ¢: T — HEWy and denote by W = Woxéﬂ the
corresponding H-semidirect product with H-multiplication u. Then T

acts on RiB’f)Wo by RiB’f)P—algebra automorphisms via

y: T3 pt—> ¢(p)* € Aut S?iB’f)wo.

(B,T)

(6.8) Theorem R(B’f)w 2 R(B’f)wo ® 20 T as graded
X b §

Q$B Dp
RSB’f)P—algebras.
We are working with a fixed (B,f)-system. Thus we can, without

" " :
risk of confusion, write "R*" instead of RiB’f) . Also denote §P

by R. All tensor products here are over R.

Proof of (6.8) R* is an additive (unreduced) homology theory.

Thus T = RW, so that the y-twisted temsor product above fits in the

frame work of &3.

We know from (6.7)(v) that the cross product
X3 SZ*WO X §2T 3 ({M,u},{A,v}) — {MxA,uxv} € sz*w

is R-balanced. It remains to show

(1) "x" is y~twisted

(2) the R-algebra homomorphism x: R*Woeﬁﬁoﬂ — R*W is an
isomorphism.

Verification of (1). We must shgw that for all {M,u} € RmWo,

{N,v} € Rnwo, {n,t} € MM, p € M, the identity
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({M,u}x{1,p}) ({N,v}x{n,t}) = {MXN,#0°(HX(¢P°V))} X {m,pt}

holds. Here, p: 1 — {p} < T denotes the unique map and pt: n — T

is given by multiplication of function values: pt(x) = p*t(x). Now

({(M,u}x{1,p}) ({N,v}x{n,t}) = {Mx1,uxp}{Nxn,vxt}

{Mx1xNxn, uxpxvxt}

{Mxan,(uo(uX(¢P°V))) x pt}

{MXN,uo(uX(¢p°V))} x {m,pt} ,
where ¢P is defined as in §81. Thus "X" is y-twisted.

Verification of (2). We know that R* is additive. Thus

2T = @& S%HP as an R-module so that we get the isomorphisms of
ren

R-modules

R

.R*Wg QR S2TT @ R*Wox{p}

peN
= Q*w .

To make this isomorphism explicit, define for p e T

i Wox(p} e W  the inclusion

Tpi Wo 3 w & (w,p) € Wx{p} the translation map.
Then, the above isomorphism takes an element {M,u}®{1,p} to i*rp {M,u}
%

= {M,irpu} = {MxI,uxp} = {M,u} x {1,p}. Thus "x" is a monomorphism.
Since the elements of the form {M,u}®{1,p} generate RMWo ® ST, "x" is

onto. a
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