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Abstract 

The concept of H-semidirect product structure on an H-group is 

introduced. We show that the loop space QX of any CW-complex X is 

the H-semidirect product of the identity path-component of QX with 

7r1X. 

The set of free homotopy classes of maps into an H-semidirect 

product inherits the structure of a semidirect product of groups. 

This leads to new insight concerning the nilpotency of homotopy 

classes of maps into an H-group. 

In singular homology with suitable coefficients and suitable 

bordism theories the Pontryagin algebra of an H-semidirect product 

decomposes into a twisted tensor product of the Pontryagin algebras of 

the factors. The notion of a twisted tensor product of certain 

algebras is introduced and their universal properties are presented. 

We make explicit the role played by the H-semidirect product 

structure of the loop space of a CW-complex X in the context of 

investigating X for nilpotency. 



Contents 

Introduction 1 

%0 Notation, technicalities, preliminaries on H-spaces 5 

%l Construction of H-semidirect products 12 

%2 Nilpotency of mappings into H-groups 20 

3 Twist on the product of groups and the tensor product 

of certain algebras 36 

%4 The Pontryagin homology algebra of an H-seiuidirect 

product 49 

5 Nilpotency of CW-complexes and H-semidirect products 56 

6 Bordism rings of H-semidirect products 66 

References 82 



Introduction 

There are various reasons why nilpotent CW-complexes enjoy 

special interest in Topology. This thesis evolved out of an attempt 

to understand the nature of nilpotency of CW-complexes. 

A connected CW-complex X is called nilpotent, if its 

fundamental group 7rjX is nilpotent and acts nilpotently on the higher 

homotopy groups of I or, equivalently, if the Postnikov system of I 

admits, a principal refinement [B-K], [H-M-R]. It seems it was 

Roitberg [RI who was the first to consider'the nature of nilpotency of 

X from the loop space point of view. He replaces £21 by a 

homotopically equivalent topological group, a construction due to 

Milnor [Ml] for the loop space of a countable CW-complex, and arrives 

at the characterization: I is nilpotent if and only if it(X,*) is 

nilpotent and the action of WL(X,*) on 7r_1(2X,*) by loop conjugation 

is nilpotent. 

Closer scrutiny reveals: £21 is, up to homotopy, a semidirect 

product (f2X)o.iir1X, where (12X) 0 denotes the path component of 121 

containing the path that stays constant at the base point. The 

concept of an H-semidirect product Wo1T is introduced in % l. Here IT 

denotes a group acting on a path connected H-group WO by classes of 

self homotopy equivalences of W0 which are at the same time H-maps. 

We show that the loop space of every based CW-complex is an 

H-semidirect product. 

Let TI be a group acting on another group G via a homomorphism 

4:TI - AutG. From group theory we know that the semidirect product 

1 



Gm 0  is nilpotent if and only if TI is nilpotent and acts nilpotently 

on G [H], [ V]. The corresponding notion of H-nilpotency of an 

H-group makes sense, and we show in 2 that an H-seniidirect product 

Wo>TF is H-nilpotent if and only if 11 is a nilpotent group and the 

action of TI on WO is H-nilpotent. 

These considerations are linked up with the nilpotency of a space 

X because 2X is the H-semidirect product (QX) o nr1X. The group of 

free homotopy classes of maps [S1l,QX] inherits from QX the structure 

of a semidirect product, [s' 1,czx] [S',(12X) o]nrjX 

because (Six) 0 is simple. The action of 7tjX on ir_1(fZX)o inherited 

from the H-semidirect product SiX coincides with the action by loop 

conjugation used by Roitberg to characterize the nilpotency of X. 

Thus we arrive at the characterization: X is a nilpotent space if 

and only if [S 1,SiX] is a nilpotent group for all n ?: 2 ( cf. 5). 

Conditions for the nilpotency of [& 1,12X] are contained in %2. 

E.g.: if SiX is H-nilpotent, then [Sthl,QX] is nilpotent for all 

n ? 2. The difficult part of this approach is the problem: Does 1TjX 

act H-nilpotently on (Six) 0? An answer depends crucially on the group 

of classes of self homotopy equivalences of (Six) 0 induced by 

H-conjugation in SiX ( cf. 5) or, more precisely, on the homomorphism 4) 

from TI into this group E.g. if this homomorphism takes everything in 

11 to the identity, then X is simple. Unfortunately, it seems like 

not much is yet known about this subgroup of the group of self 

homotopy equivalences of (SiX) 0. 

We also study singular homology and suitable bordism functors on 

an H-semidirect product W = W0xi1T. The resulting graded abelian group 
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inherits from W a graded algebra structure which decomposes to a 

twisted tensor product reflecting the H-multiplication in W. 

In %3, we lay the algebraic foundations. Given a commutative 

ring B with identity, we introduce the notion of a twisted tensor 

product A RG of an R-algebra A with an B-group algebra RG and 

discuss its universal properties. 

In %4, we show that H(W;R) H(Wo;R) € H(T1;R) and in %6, we 

derive a similar result for certain bordism theories. To avoid 

confusion, H(U;R) denotes the singular homology of the discrete space 

TI with Pontryagin product coming from the group multiplication in TI. 

The considerations in 4 enter again into the discussion of 

nilpotency of a space X. The actions of TI on [S n-1 ,(2X) 0] and on 

H_1((c2X)) are both derived from the H-semidirect product structure 

on 2X. It follows that the Hurewicz homomorphism is an operator 

homomorphism. Consequently, if 7rX acts nilpotently on 

then 7r1X also acts nilpotently on the image of 7r 1(12X) o in 

H 1((f2X) 0) ( cf. %4, 5). 

A technical remark: This thesis is self contained in the sense 

that the relevant definitions are recalled and that facts not 

contained in a standard reference text like Spanier "Algebraic 

Topology" [ Sp] are stated, without proof, as they are needed. To 

avoid confusion as to whether or not a statement labeled as "theorem", 

"proposition", " lemma" is taken from a source in print or is believed 

to be new, I have marked the known results with an asterisk. Thus 

*(52) Theorem ..., indicates a known result. Some of these results 

are of elementary nature and folklore, in which case no reference is 
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given, others are implicitly contained in a source in print. A proof 

is given if such a result plays a key role in this thesis. All of the 

remaining stated facts are accompanied by a precise reference. 
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%O Notation, technicalities, preliminaries on H-spaces 

Throughout we shall be working in Steenrod's "Convenient category 

of topological spaces" [Stel] or suitable subcategories or categories 

of pairs of it. We use the following symbols. 

IN, NO positive integers, non-negative integers 

Z integers 

IR reals 

I {tE: Otl) 

(S',*) any pair honieomorphic to 

(Cx E 0fl+l: lxi = 1), ( 1,0,...,0)) 

QX loop space of a based space X 

f g f is homotopic to g 

If] homotopy class of f 

[X,Y] free homotopy classes of maps 

based homotopy classes of maps 

Ca reduced mapping cone of a based map a 

SA reduced suspension of the based space (A,*). 

For the purposes of Homotopy Theory the concept of a topological group 

has been generalized to that of an H-space. 

(0.1) Definition Let (W,e) be a space, p: (W x W,(e,e)) - (W,e) a 

based map. 

(i) The pair (W,p) is an H-space with homotopy identity e .4==* the 

following diagram commutes up to a homotopy which is constant on the 

base point (e,e) of (W,e) v (W,e). 
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(W x W (e,e)) 

I 
(W,e) V (W,e) 

V 

 . (W,e) 

Here V denotes the folding inap t v(e,w) = V(w,e) = w. 

(ii) (W,) is homotopy associative the following diagram 

commutes up to a homotopy which is constant on the point ( e,e,e). 

Idw x 1 
wxWxw  , W  

P X Id I I 
W x W   

p 

P 

(iii) A map i: (W,e) - (W,e) is a homotopy inverse in the H-space 

(W,p) =* the following diagram commutes up to homotopies which are 

constant on the base point. 

W x W 

Here c: W -. {e} W is the collapsing map. 

6 
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(iv)' (W,) is homotopy commutative =* the following diagram 

commutes up to a homotopy which is constant on ( e,e); 

t'(w,W' ) = (w , w) 

T 

WxW   WxW 

We shall write ww' for p(w,w') and w' 1 for i(w) if there is no 

risk of confusion. By an H-group we mean a homotopy associative 

H-space with homotopy inverse i. Furthermore, WO will denote the 

path connected component of W containing the homotopy identity e. 

Thus every topological group with identity element e is an 

H-group with strict homotopy identity e yielding strictly commutative 

diagrams ( O.l)(i),(ii),(iii). The loop space RX of a based space X 

is an H-group with homotopy identity the loop staying constantly at 

the base point of X. The formation of loop spaces can be iterated; 

£22X := f2(f2X) is a homotopy commutative H-group. 

The following theorem explains the role of H-structure in the 

connection with natural group structure in the set of homotopy classes 

of maps into a fixed space. [wh], 116-121. 

*(02) Theorem If (W,) is an H-space, then [, W], respectively 

[_,(W,e)], is a contravariant functor from the category of compactly 

generated Hausdorff-spaces, respectively based compactly generated 

Hausdorff spaces into the category of non-associative monoids (monoid: 
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a set with multiplication satisfying x(yz) = (xy)z and existence of 

a neutral element u with xu = x = ux for a11 x). If (W,i) also 

has any of the additional structures (0.l)(ii), ( iii),(iv), then 

[,W], respectively [_,(W,e)] inherits the strict analogues of these 

structures. 

Conversely, if for a space (V,*) the functor [_,(V,*)] from the 

category of based spaces to the category of based sets can be enriched 

to be a functor into the category of non-associative monoids, 

respectively associative monoids, respectively abelian monoids, 

respectively any of the above with inverse then ( V,*) has the 

structure of an H-space, respectively homotopy associative H-space, 

respectively homotopy abelian H-space, respectively with homotopy 

inverse. o 

In particular [X,W], [(X,*),(W,e)] are groups if (W,p) is an 

H-group. 

(0.3) Definition Let ( V,p), (W,v) be H-spaces, f: ( V,e) .- (W,e) 

a map. We call f an H-map the following diagram commutes up to 

a homotopy which is constant on ( e,e) E V X V. 

f  f 
•VxV  0 WxW 

V   
f 
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*(04) Remark (a) An H-map f: ( V,e) - (W,e) yields natural 

transformations of non associative monoids f: [_, V] - p [, W] and 

f: [_,(V,e)] [_,(W,e)]. If in addition ( V,), (W,v) both have 

any of the properties ( 0.l)(ii),(iii),(iv) then f is a natural 

transformation of algebraic systems having as structures the strict 

analogues of (0.l)(ii),(iii),(iv). 

(b) We shall frequently work with free homotopy classes of free maps 

into an H-group. In this context we may drop the conditions 

concerning base points from the definition of an H-space and of an 

H-map f and merely require f: V - i W to be a map which makes the 

diagram in Definition ( 0.3) commute. This still guarantees that 

f: [_, V] [_,WJ is a natural transformation with the properties 

stated in ( a). D 

The following observation will be fundamental on a technical 

level. Let (V,z), (W,i.') be H-spaces. 

* 
(0.5) Lemma If f: V - W is a homotopy equivalence and also an 

H-map, let g: W -* V be a homotopy inverse of f. Then g is also 

an H-map. 

Proof In the diagram 

fxf 
VxVI WxW 

V   
f 

gxg fxf 
  VxV  0 WxW 

g f 
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we know that the left and right hand diagrams commute up to homotopy 

and need to verify homotopy coimnutativity of the middle diagram. 

Conunutativity of the right hand diagram yields 

f  0 (gxg) c 0 (fxf) ° (gxg) = fog) x (fog)) 

v(Idw X Idw) 

Id 0 

f 0 g 0 U. 

Consequently, ( g°f) 0 M 0 (gxg) (g°f) 0 g 0 v. Since g°f Idv, 

homotopy commutativity of the middle diagram follows. 0 

An H-equivalence is an H-map which is also a homotopy 

equivalence. This terminology is justified by Lemma ( 0.5). 

If (W,) is an H-space, the set of homotopy classes of self 

equivalences of W is a group with multipliáation defined by 

[f]•[g] := [fog]. Denote this group by £(W). Lemma (0.5) says 

(0.6) Corollary The set HC(W) of homotopy classes of self 

H-equivalences of W is a subgroup of e(W). a 

Now let (W,p) be an H-group. For w € W, let denote the path 

connected component of w in W. Let if denote the set of all path 

components of W. 

*(07) Theorem TI is a ( discrete) group with multiplication 

W I = WW'. The identity element of TI is the path-component of the 

homotopy identity e of W and (' = w'. 0 
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Let ( X,*) be a based space. The adjointness homeomorphism 

(X ,*)*) = (X,*)*)sP* 1 *))*) = 

shows 

(0.8) Remark In the notation of ( 0.7), if W = 2(X,*), then 

1Tir 1(X,*). 0 

* 
(0.9) Lemma, Definition Let TI be a group acting on another group 

G by a homomorphism y:TI - AutG. Then the set GxTT with 

multiplication (g,p)(g1,p1) = (g9J(g'),pp') is a group, called the 

semidirect product of G and 11 with respect to qi. Notation G4 41 
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%l Construction of H-semidirect products 

Let (W0,p) be a path-connected H-group with H-inverse i and 

H-identity e. Let TI be a group and 4:TI - He (WO)a group 

homomorphism. We define the H-semidirect product of W0 with TI under 

and give conditions under which an H-group is an H-semidirect 

product. 

For each p E IT, fix an H-self hoinotopy equivalence 

T € € HEM). Define 

m:(W0xTT) x (W0xTI) a (w,p,w',p') p-. (1(w,p(w'),pp') e W0XIT 

j:W0xTI 3 (w,p) i- (p 1(i(w)),p') E W0x1T. 

p 

If we want m and j to be base point preserving, we take 

Pi := Id. 

(1.1) Proposition (W,m) : (W0x1T,m) is an H-group with H-inverse map 

J. 

(1.2) Lemma For p E 11, let p, p, e 4(p) and denote by 

(W,m) (W0x1T,m), (W',m') : (W0x1I,m') the corresponding H-groups. 

Then, the identity map W - i W is an H- equivalence. 

Proof of ( 1.1) Step 1 m restricted to W v W is homotopic to 

the folding map. For t E W v W (we write ww' for i(w,w')), 

m() 
- J (ep1(w'),p') 

1. (wp(e),p) 
if = (e,l,w',p') 

if = (w,p,e,l). 

Let F be a homotopy of p1 into Idw and, for each p E IT, let be 
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a path in W. joining c(e) to e (we must take ol := FJ{}xI ). This 

yields a homotopy 

J  A:(W V W) x I a (, t) i—i (eF(w1,t),p') 

1 (w(t),p) 

satisfying 

A(, l) = 
.1 (p(e,w'),p') 
1 (p(w,e),p) 

if = (e,l,w',p') 
EW 

if = (w,p,e,l) I 

if = (e,l,w',p') 

if = (w,p,e,l) 

Thus a homotopy of p Iw0vW0 induces a homotopy of A( -,l), and hence of 

into the folding map of W. 

Step 2 Homotopy associativity of m. We must show that the maps 

m(mxld), m(Idxm) : WxWxW - W are homotopic. Computing 

m(m(w1,p1,w2,p2) , w3,p3) = ((wip Pi (wz))p(w3),p1p2p3) 

m(w1,p1,m(w2,p2,w3,p3)) = (w1p(w2p(w3)),p1p2p3) 

we see that such a homotopy can be obtained by going through the 

following succession of homotopies. 

Since 4 is a homomorphism, we get pPLP2 pP1 opP2 • This yields a 

homotopy between m(mxld) and the map 

(wj,pj,w2,p2,w3,p3) I—, ((WIT PI (w2))pP1 Op P2 (w3),p1p2p3). 

Using homotopy associativity in W0, we see that this map is homotopic 

to 

(wj ,Pi , w2,p2,w3,p3) i—. (wi(cp(w2)p op(w3)),p1p2p3). 
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Since p is an H-map, this latter map is homotopic to m(Idxm). 
PI 

Step 3 j is a homotopy inverse. We must show that the maps 

__  W -- + W x W Idxj m W —4W 

W --. WxW iXldww m 

are homotopic to the constant map W - {( e,l)} (4 denotes the 

diagonal map). 

Let (w,p) E W; then 

m(Idxj)4(w,p) = ((w( -I 1(w )), l) = (w(PP(w - 1 )),l). 

p 

Since p °p - p Id , we get a homotopy of m(Idxj)4 
p p pp 0 

with the map (w,p) i—* (ww',l). This is homotopic to the constant map 

W - {( e,l)} using the property of the H-inverse I in W0. 

The other way around we get 

m(j x Id) 4 (w,p) = (p 1(w')(P 1(w),l). 
P p 

Since T is an H-map, this map is homotopic to 
p 

(w,p) i- (p _1(w 1w),l). 
p 

Since W0 is an H-group, this map is homotopic to 

(w,p) i—, Of _(e),l). 
p 

Since W. is path connected there is a path in W0 joining p _1(e) to 

p 

e. Such a path induces a homotopy of the latter map with the constant 
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map W -, {( e,1)}. Hence m(jxId)1 is homotopic to the constant map. 

0 

Proof of ( 1.2) In view of Lemma (0.5) we need only check that Idw 

isan H-map. For (w,p), (w ' ,p') Wx1T, we get 

IdOm(w,p,w',p') = (w(p(w'),pp'). 

Since p p,, this map is hoinotopic to the map' 

(w,p,w',p') i—* (wp(w'),pp') = mbo (IdxId)(w,p,w',P I). El 

Proposition ( 1.1) and Lemma ( 1.2) suggest the following. 

(1.3) Definition Let W. be a path-connected H-group, TI a discrete 

group, :U - HC(W0) a group homomorphism. An H-group V is an 

H-semidirect product of Wo and TI under 4' if an only if V is 

H-equivalent to the space W constructed in ( 1.1). In this case, we 

write V W0 TT. The subscript ft4et may be deleted if the context is 

clear. 

Turning to the question as to whether or not a given H-group 

(W,M) is an H-semidirect product, let us denote by WO the identity 

path component of W and by iT the set of path-connected components of 

W with the canonical structure of a discrete group as explained in 

(0.7). Thus, if Rx denotes the path component of x € W, then 

xyxy in 7T. 

(1.4) Proposition 11 acts on W. by classes of free H-equivalences. 
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Proof For each 3Z € 11, let c(x) E HC(W0) be represented by the map 

W0 B w ,-' xwx 1 € W0 

It is clear that 'p x takes values in W. Since (p (e) E W. and W. is 

connected, p, actually takes values in W0. Then T is an H-map with 

H-inverse sp , hence an H-equivalence. 
x 

To see that 4() is well defined, suppose '. Then x and 

x' belong to the same path component of W. Take a path ø:I - W 

joining x to x'. Then 

IxW0 3 ( t,w) i-. (t)w.(t)' E W0 

is a homotopy between and 1p. Thus 4(i) is well defined. 

The same technique shows that xy Hence, 

= ()4) and 4:TT -, HC(W0) is a homomorphism. o 

Now fix an element x for each path-component K E TI. From the 

data in ( 1.4) we may then form the H-semidirect product W0  TI in 

accordance with ( 1.1). There is a canonical continuous map 

h:WoTI a (w,) i-i wx € W. 

(1.5) Lemma (i) h is an H-map. 

(ii) Taking different choices V in the various path components 

of W yields an H-map h' : WoTI -+ W with h h'. 

Proof Ci) We claim that the following diagram commutes up to 

homotopy. 
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(W0 >1 11) x 

h  h 

(W0 11) 3 (w1,ij,w2,2) 

V 

W x W 3 (w1x1,w2x2) 1.±L, 

(wj(Pxl (w2),x1x2) 

Ih 

V 

E W 

Here [x1x2] denotes the fixed representative for the path component 

xx2 E TI. A homotopy ( 1) in the diagram above is obtained using any 

path joining [x1x2J to x1x2 (same technique as in ( 1.4)). A 

homotopy (2) conies from homotopy associativity in W. 

(ii) A homotopy of h into h' can be constructed using for each 

€ TI a path *, joining x to x'. U 

Representing the path component of the identity W. of 11 by the 

homotopy identity e of W itself, we see that the restriction 

is homotopic to Idw ( if we identify W0x{} with W0). Therefore, 

for any XETI, 

W0x{} -, x 

is also a homotopy equivalence. Since h establishes a bijection 
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between the path components of W0xTI and those of W, we would like to 

assert that the path componentwise homotopy inverses of h combine to 

a homotopy inverse k of h. We are then confronted with the 

question whether the topology of W is fine enough to admit this. 

Elementary point set topology yields 

(1.6) Lemma The path componentwise homotopy inverses of h 

combine to a homotopy inverse k of h if and only if the path 

components of W are open in W. 

This result can be utilized as follows. If X is a based 

OW-complex, Milnor [M2] shows that RX has the homotopy type of a 

OW-complex. The connected components of a OW-complex are open. 

Therefore, the path-components of £2X are open. Thus 

(1.7) Theorem Let X be a based OW-complex, (QX) 0 the identity 

component of QX and IT : = ir1X. As in ( 1. 4), let 4:U -, HC(ÜX) 0 denote 

the action of TI on (17X) 0 by classes of H-self homotopy equivalences. 

Then there is an H-equivalence h: (≥X) 0 .iTI -+ IZX. 

Proof Obvious from ( 1.5), ( 1.6) and the fact that the path-

components of f2X are open in 2X. U 

Since the path components of a locally path connected space are 

open, we see that a locally path connected H-group is an H-semidirect 

product. Of particular interest here is the case where W is a 

locally path connected topological group with identity component Wo. 

In this case, W. is a normal subgroup of W and the quotient group 
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11 : W/W0 is the same as the group constructed on the path components 

of W in accordance with ( 1.4). 

(1.8) Theorem (i) The action of TI on W. as defined in ( 1.4) is 

by homotopy classes of inner automorphisms of W restricted to W0. 

(ii) There is an il-homeomorphism h:W0 TI -, W. 

Proof (i) is immediate from the definition of 4:U -. He(W0): If 

x E TI, then 4) is represented by the map 

B w i-i xwx 1 E W0. 

(ii) As in ( 1.5), fix an element x for each path-component E Ir 

and define 

h:WoU a (w,) I-' wx E W. 

From ( 1.5) and ( 1.6) we know that h is an H-equivalence. 

Furthermore, for each TI, the map W0x{} 3 (w,-) i-i wx has 

an inverse y F-i yX 1 E W0x{}. Thus h is even a homeomorphism. 

0 
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%2 Nilpotency of mappings into H-groups 

Throughout this section W will denote an H-group obtained by 

taking the H-semidirect product of a path-connected H-group W. with a 

discrete group TI under #: TI - HC(W0). 

In [Wh], [Whi] G.W. Whitehead showed that for a path-connected 

space X the group [X,W0] is nilpotent if X has finite category. 

Here, we give conditions for [X,W] (free homotopy classes) to be 

nilpotent. This goal will be approached by considering ( a) suitable 

properties of the range space, (b) suitable properties of the domain 

space. We shall respectively show: 

(a) If X is arbitrary and W itself is H-nilpotent, then [ X,W] 

will be nilpotent. 

(b) If W is arbitrary and X is the mapping cone of a map 

f:A - Y, then the Puppe sequence of f can be used to give 

conditions for the nilpotency index of [X,W] in terms of the 

nilpotency indices of [Y,W} and [SA,W]. 

We begin by stipulating some notation. 

(i) Let y = y1:WxW 3 (w0,w1) i-+ W0WLW; Wj E W and, for n ? 1, 

n+l n+l 1 n 
:Wxw (W .- O,WL,...,w•l) i—' (w0,' (wi, ... )w+1) E W 

denote the commutator maps of W. 

(ii) Let y,, = 4:(W0xTI)xW0 (w0 ,p,w1) i—+ w0p(w1)w 1w ' 

and, for nl, 

YO n+l(W XU) X(W XII)nXW Wo 

(wo,po ,wi , ... ,p ,w+)I 

denote the 4-commutator maps of W0. 
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(2.1) Definition ( i) W is H-nilpotent of nilpotency index 

nilW ≤ c y  is homotopic to a constant map. 

(ii) W0 is H-nilpotent of nilpotency index nilWo S c 

homotopic to a constant map. 

is 

Note that the above commutators, when formally applied to a 

(discrete) group G ( resp. 11 acting on G by 43:TI —* AutG), agree 

with the usual commutators ( resp. qs-commutators). Here for ,C (resp 

to be homotopically trivial means that all c-fold commutators 
41 

(resp. y-commutators) of G are equal to the identity element of G. 

Furthermore, the image set of y  (resp. .y) generates the usual n-th 

central series group r'G (resp. rH). In this sense the H-nilpotency 

indices of ( 2.1) agree with the usual group theoretic nilpotency 

indices. 

For the reader's convenience, we include the following notions on 

-nilpotent groups and y-central series. The knowledgeable reader may 

continue reading after Lemma (2.3). 

Let G, 11 be groups, y:1T -, AutG a homomorphism. Define the 

n-th qi-central series group by 

a 
tP 

r 1G:= grp{gqi(h)g 1h': g EG, p Xl 11, h e tP for n E N 

We say 0 is qi-nilpotent of nilpotency index nil tP G S c 

ra (1). In case qi is the homomorphism sending TI into ( 1), the 
tP 

notion of 4t-nilpotency reduces to the standard notion of nilpotency. 
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*  (2.2) Lemma (i) rnG is a qt-invariant normal subgroup of G. 

(ii) For all n, c 

Proof ( i) The statement is true for n = 0. Suppose r n G is 

qi-invariant. A generator of r Y G is of the form gqi(h)g'h' with 

Let qETr, then 

yq (gqJp (h)g 1h 1) = qig(g)Pq4Jp (h)qig(g')yq(h) 

= 43 (g) qi q qpq_j4iq (h) 4Jq()'4 q(h) 1 e 

because 93q(h) E rc, by induction hypothesis. 

Suppose that r n G is normal in G. We show that any conjugate of 

a generator of is in r 1G. So let g' E Q then 

(h)('h'g'' 91gyp  = 

= aqi(b)a'b' 

with a = and b = g'hg'' Ern G by induction hypothesis. 
If 

(ii) Follows from ( i) by an obvious induction argument. 

*(23) ' Lemma If r "G is contained in the center of G, then 

raG = ( G) for all a e IN. 

Proof The statement is true for a = 0. So let us assume 

r''a = ra(rhlG) 
434, 

Then 

ra+lG = grp{gqi(h)g'h': g E G, h E r'G} 
4, 

But (2.2) says that qi(h) E r a 4, G c center of G. Hence, r 43 1G is 

equal to 

grp{ly(h)lh': 1 E rnG, h e ra(rnc)} = r 1(r"G). 

a 

a 
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Concerning nilW, nil ON, we have the following results. 

(2.4) Proposition Let 4):Tr - HC(W0) and 4)':TI' -+ He(W0) be 

homomorphisms of groups. Suppose 4)' = 4)°f for some homomorphism 

f: TI' - TI. Then ni l, , W0 nil #WO. 

Taking IT' to be the trivial group and 4)', f the unique 

homomorphism, yields 

(2.5) Corollary nilW0 = nil,,W0 < nil ,Wo for all 4):TT .- Ht(W0). n 

(2.6) Theorem W = W.i4TI is H-nilpotent if and only if W0 is 

4)H-nilpotent and 11 is nilpotent. 

Theorem (2.6) is the H-analogue of a known result [H], [ V] 

concerning nilpotency of a semi-direct product of discrete groups: 

GTI is nilpotent if and only if C is y-nilpotent and 11 is 

nilpotent. The proof of Theorem (2.6) below yields also a proof for 

this result if one makes the necessary adaptations as explained 

immediately after Definition (2.1). 

Proof of Proposition ( 2.4) We show that y factors through 16 so 

that a null-homotopy of y yields a null-homotopy of To factor 

is let us assume that the actions of p' e IF' on W0 via 4)' and 

f(p') E TI on W. via 4) are defined by the same element 

= Pf(pl) E 4)'(i') = 4)f(p') e He(W0). Then consider the map 

fC (WO XITS)X (WO XUI)clXW0 (WO xTI)x (WO xff) 'xW0 

(w0,p,,w1, ... ,p',w) i (w0,f(p),wj,...,f(p'),w) 

Visibly, , = CQfC ci 
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Proof of Theorem ( 2.6) Suppose nilW = nilWoTF = c. Then Yc is null 

hoinotopic so that the image of y  is contained in the single path-

component of w0 ii containing yC(e,l,...,e,l) E W0 X l}. Inspection 

of the H-multiplication of W shows that for any 

c-Fl c 
(W0 )p0 , ... ,w,p) C W , the second coordinate of y (wo,po, ... ,w,p) 

is equal to ...' c = 1. Thus null S c. 

To see that W0 is 4H-nilpotent, observe that there is a homotopy 

W0XTIXWQXI - W. deforming y'(w0,p,w1,l) into (.4(w0,p,wi) )l). For 

Since 

y1(w0,p,w1,l) (w0,p)(w,l)(p _1(w '),p ')(wij,l) 

= 

= 

-1 -1• 
,p )(w1 , l) 

,l)(w71,l). 

is homotopic to the identity map on 

homotopy deforming the latter expression into 

W0, there is a 

-1 -I - --- 1 -1 
(w0 (w1)w0 , l)(w1 , l) (w0p(w1)w0 w , l) = (##(wo ,p,w) ,l). 

For n 1, induction gives a homotopy W0x(TTxW0)nlxl - W. deforming 

.,,n(wo)po,wpwl) into 

Thus a null homotopy of ,c yields a null homotopy of y showing that 

nil 46 Wo c. 

Conversely, suppose null S a and nil .Wo b. Since the second 

coordinate of y'(w0)p0,...,w,p) is equal to ,fl(p0, ... ,p), it 

follows that for s 0, ,a+s(WU)a+s+l C W0x(l). Hence, we may 

proceed as above and construct a homotopy ( for s 1), 

24 



(WOU)sX(WOff)a+lXI - W0 deforming 

a+s , 
.Y w0,p0, ... ,w 

s-i s 
SI 

s-i ,o(ws s+a2ps+a where 

into 

.,W + ,P + ) denotes the first coordinate of 

a 
, (W,P,...,W + ,P). 

a+b 
Consequently, y is homotopic to Y,, following o, so that a null 

homotopy of yb yields a null homotopy of the composite and hence, of 

a-I-b 
Thus ni1W0 1T 5 a + b. a 

Let ( X,*) be a path connected well pointed space ( i.e. the 

inclusion {*} c—i x has the homotopy extension property). Then the 

canonical map [(X,*),(W0,e)] -, [X,W0] is an isomorphism of groups. 

The homotopy group [ X,W] inherits information from the H-seinidirect 

product structure on W and its il-nilpotency in the following way. 

(2.7) Proposition If nilW c, then nil[X,W] c. 

Furthermore, iT acts on [ X,W0] by composition, qi:Tr - Aut[XW0] 

being defined by 

Y [f] := 4(p)°[f] for p E 11, { f] E [X,W01. 

(2.8) Theorem The function 

R:[, ,W0]U a ({ f],p) i—i [( f,p)} E [X,Wo>J.1T] 

is an isomorphism. 

Proof of Proposition (2.7) Let f0,...,f E [X,W] be represented by 

maps 0 c - W. The commutator of f0,...,f is represented by 

the composite 
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C 

1 c+l C c+l 

which is homotopically trivial, because ,,C is homotopically trivial. 

ci 

Proof of Theorem ( 2.8) To see that R is a homomorphism, take 

({f],p),([f'],p') E [X,W0 ]iTr. Then 

I I I 
[(f,p)] 1(ft,p')I = [(ff ), pp'] 

If ( f,p) is homotopic to the map X - {( e,l)}, then p = 1 and f is 

homotopic to the map X - {e}. Hence R([f],p) = [( e,l)] implies 

([f],p) = ((e],l), showing that R is mono. It is obvious that H 

is onto. ci 

We shall now enter a discussion of the nilpotency of the groups 

(C ,Wo.TT] [C,W0],T1, where C is a mapping cone. Since [C,W0]1T 

can only be nilpotent if TI is, we shall from now on require it to be 

nilpotent. Let us agree that all spaces denoted by symbols A, Y are 

based path connected compactly generated Hausdorff spaces. In order 

to get a canonical isomorphism [(Y,*),(W0,e)] -+ [Y,W0], we require 

(Y,*) to be well pointed. Furthermore, we stipulate for the sequel 

that mappings and homotopies A - Y are to be based and mappings and 

homotopies into WO or W are to be free. 
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So let a:A - Y be a map and consider the exact sequence 

(2.9) [Y,W0] 
_.* * 

E. 1 [C,W0] i = q [SA,W0] 

arising from the Puppe sequence 

a i q 
A - Y - C : C -. SA. 

a 

We know that 11 acts on [Y,W0], [C,WQ], [SA,W0]. Denote the 

corresponding homomorphisms into the respective automorphism groups by 

y(Y), qi(C), y(SA). 

*(210) Proposition Let ,: Y -, Y' be a map, then 

Oe * :[Y,W0J - [Y,W0] is an operator homomorphism. 

Proof Let [ f] E [Y',W0], p E 11. Then 

= *((ya) 0[fj) = y(Yi)o[fJo[] = (yt)( *[f]) 

We need the following folklore Lemma. The proof is inspired by [Th] 

Theorem X.3.lO. 

*(211) Lemma The sequence (2.9) is a central extension. 

Proof Let [f], [g] E [C,W0} be such that s[f] = 1 in [Y,WQ] ( i.e. 

i°f is null hopiotopic). We show that the commutator '([f],[g]) = 1 

in [C,W0J. 

Recall that the mapping cone C is obtained by identifying the 

points (x,O) of the reduced cone over A with a(x) E Y. Denote by 
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Y':= { E C : E Y or ( (a,t) and t 

C'A:= {(a,t) E C : t ≥ 

and observe that 

(i) Y is a strong deformation retract of Y' and {A x {l}} is a 

strong deformation retract of B. 

(ii) The above deformation retractions can be extended to homotopies 

S,T: CXI — p c (respectively). 

It follows that f°S(,l) restricted to Y' is null homotopic and 

g°T(•,l) restricted to C'A is a constant map. Now consider the 

following composition of maps 

CXC  f°S(,l) x g°T(•,l) W0XW0 _+ W0. 

From ( i), ( ii) above we see that {foS(.,l)xg0T(.,l)} 0.1 takes values in 

W0vW0. But y restricted to W0vW0 is null homotopic. Thus 

= 1 in [C,W0] showing that ker a is contained in the 

center of [C,W0]. a 

When investigating [C,W] for nilpotency, the following Lemma 

plays a key role. 

(2.12) Lemma [C,W] is nilpotent if and only if there exists s E IN 

such that 

(i) r4J(C)[cwU] c im i.', and 

(ii) there exists t e IN such that r(SA)(T'r(C)[c,wO]) C ker ii. 
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(2.13) Corollary Suppose [Y,W] is nilpotent and there exists t E IN 

such that r(SA) [SA wO] c ker i.. Then [C,W] is nilotent. 

An immediate consequence of ( 2.13) is 

(2.14) Corollary, If [Y,W] and [ SA,W] are nilpotent, then [C,W] is 

nilpotent. 0 

Our previous discussion can be extended to iterated mapping cones 

as follows. Let A = fAA}AC=A be a family of spaces. Following 

G.W. Whitehead [5Th], let us call a sequence Y = S0 C ... C S  = K an 

A-stratification of K if, for n ? 1, S. is obtained from S. as 

the mapping cone of a wedge of spaces in A. 

(2.15) Theorem Let [Y,W] be nilpotent and let Y = S0 c ... C S  

be an A-stratification for K. Suppose there exists a positive 

integer N such that for all A 6 11, nil[SAA,W] ≤ N. Then [K,W] is 

nilpotent. 

Letting A be the family of n-spheres S  (n ? 0) and Y the 

1-point space, we obtain 

• (2.16) Corollary Let Y = S0 C ... C S  = K be a stratification of 

a connected CW-complex K by connected subcoiuplexes S. Suppose 

there exists a positive integer N such that for every n 0, 

ni1{S'W] N. Then [K,W] is nilpotent. E3 

Using the stratification of finite dimensional CW-complexes K 

by their skeleta, we obtain 
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*(217) Corollary [K,W] is nilpotent for all finite dimensional 

CW-complexes K if and only if [ S",W] is nilpotent for all n e 

Corollary (2.17) has also been obtained by Scheerer [Sch] by 

direct inspection of the homotopy groups in question. 

Proof of Lemma (2.12) If nil[C,W] ≤ a, the choices s:= a and 

t:= 0 clearly satisfy conditions ( i), ( ii). 

Conversely, suppose there exist s,t E 4 such that conditions ( i) 

and ( ii) are satisfied. By ( 1), r5(C)[CWO] is contained in the image 

of u and, by Lemma (2.11), in the center of [C,W0]. By Lemma (2.3), 

we get for k0 

r,(C)tcwOJ = rY (C)rY (C)[cwOJ. 

Using that v is an operator homomorphism, this implies 

t+s 
rI (C) 

r 
- Y(C) qi(C)L 

r(SA)(vr(C)[cwO]) c i(ker = M. 

Thus [C,W0] is y(C)-nilpotent. By (2.8), [C,W] a5 [CWoJ(C)1T which 

is nilpotent by the remark following (2.6). 0 

Proof of Corollary (2.13) Suppose nil (y)[YWo] s, then (because a 

is an operator homomorphism) 

E. P(C) c r,( )[YwOi = 1}. 

Thus r (C)[CWo] c ker a = im v and conditions ( 1) and (ii) of 

Lemma (2.12) are satisfied. 0 
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Proof of Theorem (2.15) Using Corollary (2.14), we show by induction 

on the stages of the stratification of K that {K,W0} is 

p(K)-nilpotent. 

[S 0,W0] is q(S0) nilpotent by hypothesis. So suppose 0 S i < k 

and [51,W0] is q(S.)-nilpotent. Let A be an indexing set for the 

(i + 1)-st wedge corresponding to the A-stratification of K. By 

distributivity of wedge and suspension, we get 

P:= [S( V AA),Wo] [ V (SAA),WO] 11 (SA J W] =: Q. 
AEA AEA i AE/1 i 1+1 +1 +1 

The isomorphism above is an operator isomorphism. Hence 

nilP = nilQ N. By (2.14), nil (s )[S11 Wo1 S nil (y)[YWo] 

+ (i + 1)N, which completes the induction. Summing up, we obtain 

nil y(K) [ K,W0] nil [Y,W0] + M. El 

Proof of Corollary (2.17) Since 5rI is a finite dimensional 

CW-complex, the direction "" is trivial. To see that the converse 

is also true, let / be an indexing set for the connected components 

{Ki}i E,. By ( 2.16), {K.,W0} is qi(K.) nilpotent for every i E 

Furthermore, 

nil [K1,WO1 tp(S nil j) [S',W] + ... + nil P(S dUn ) dUnK K [S ,W0] =: n. 

Since K is the topological sum of its connected components, we get 

[K,W] TI ( K.,W) IT 
iE 1 1Efr 
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Since nil[K.WoJt(K)T1 nil (K)fKiWO] + null n + null, 

nil[K,W] n + nilil. 

Analogous to Theorem (X.3.1O) in [Wh], in the situation of 

Theorem ( 2.15), we may derive the following explicit y(K)-central 

series for (K,W0]. 

0 

(2.18) Proposition Let F. be the set of homotopy classes of maps 

K -, W whose restriction to S. is null hoinotopic. Let 

nil .JS0,W0] S c, e.:S. , K the inclusion map and X := V SA 
Y( SO) 1 - AEA. 

1 

Then 

{K,W01 (e ) 'r (5 )[SOWO} D (e) i r c 4J(5 )(sOwOI = F0 D 

*i N 
D (e) _1 (v Lr1(x )(XWo }) ... (e1) (zlr41 ,(X)[xlwO1)=Fl 

(e)(vkr(X)[XkWO]) ••• ()'( kr (xk)[xk wo])=;k 

={1} 

is a y(K)-central series for {K,W0J. 

Proof In the commuting diagram, 

xl 

so 

X2 X  

I 

ek 
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Consequently, [S1,O]ag[Sk,SO] W 

every sequence S. 1 -. Si -+ X is a cofibration. Applying the 

functor [-,W0] to this diagram yields a commuting diagram of groups 

[SO $W01 

{X,,W0] [X2,W0] 

IU1 1 V2 

e1 a2 
4 [S,W0} [S2,W0] 

a 
____ k 
4 . . . 4 

* 
e0 -... I e2 

[Xk,Wo] 

* 
e  

{K,WQ] 

in which every sequence {S_i ,WoJ — {S.,W0J i- [X.,W0] is exact and a 

central extension (by Lemma ( 2.11)). Furthermore, every homomorphism 

in this diagram is an operator homomorphism. The claim now follows by 

applying the proof of Lemma ( 2.12) successively to the sequences 

[S. 1,W0] — {S.,W] — [X,Wo], beginning with [SQ,W0], and taking 

inverse images with respect to suitable e's. 0 

Of particular interest is the question whether or not the groups 

[S k , f2X] are nilpotent, where X is a based CW-complex ( cf. 5). For 

now, we offer a brief discussion of the H-nilpotency of the orthogonal 

groups O• This discussion is based on Corollary (3.5) in [ V]. 

*(219) Proposition ( i) If n is odd, 0 n 29 SO X Z2. 

is abelian. 

(ii) If n > 0 is even, 0 SOi Z2, where 22 acts nontrivially on 

SO. Furthermore, [S 1,O] {S' 1,SO] 22 is not nilpotent. 

Consequently, 0 is not H-nilpotent. 
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Proof ( i) Let I denote the identity map on IR'. Then 22 is 

isomorphic to the multiplicative group (1,-I). Since n is odd, 

is orientation reversing. Therefore, the inclusion s:22 — p 

is a section of the exact sequence 0 — SOn —, On —' Z — 0. Hence, 

on SOn n 22. But the action of 22 on SO via s is trivial because 

conjugation in SO by is the identity on SO. Thus 

o n n SO X22. 

(ii) We use results contained in Steenrod's book on fibre bundles 

[Ste2], a23. The tangent bundle of 5" is the vector bundle of 

n-planes associated with the principal fibre bundle 

where p(u) = u(en+i) , u E SO +i e1 the i-th canonical basis vector 

n+l i n n n-i 
in IR . Since S s a suspension, S = SS , this principal 

SOS-fibre bundle has a 2-chart atlas giving rise to a single 

transition map T+1: S n-i —, SO whose homotopy class completely 

characterizes the isomorphism class of p. 

Let r  denote the reflection of IR" at the IR" 1x{O} hyperplane. 

Then 22 is isomorphic to the multiplicative group {I,r}. As in ( 1), 

the inclusion (I n fl } ---+'0 n ,r is a section of the exact sequence 

0 — p So — 0 —+ 2 ' 0. Hence, 0 SO 22 so that n n n — n 

[S" 1,O] [S"1,SO] 22. 

Now, Lemma (23.4) in [ Ste2] says that the homotopy class of T 1 

generates an infinite cyclic subgroup of [S 1,SO] and Lemma (23.11) 

in { Ste2} says that y(SO) [T 1J = - [T +1 }. It follows that 

c n-i C2  
rq,(50)[s , SO] contains a copy of 2 and, consequently, is not 0 
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for all c E N. Consequently, [S'',SOJ is not 

Hence [S n-i 3O] is not nilpotent. By Proposition 

y(SO)-nilpotent. 

(2.7), 0 is not 

H-nilpotent. 0 
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%3 Twist on the product of groups and 

the tensor product of certain algebras 

In this chapter we develop the algebraic concepts that are needed 

to appropriately express the structure of certain functors in 

Algebraic Topology when applied to an H-semidirect product. 

Specifically, let H be a commutative ring with 1, TI a group 

acting on an fl-algebra A via a group homomorphism qi:1T -. AutA. 

Then the fl-module ARTT can be endowed with an H-algebra structure 

which reflects the action of 11 on A. We shall show that this twisted 

fl-algebra structure solves a certain universal problem generalizing 

the universal problem for the standard tensor product of H-algebras. 

The multiplication in the twisted H-algebra structure on A®flRhT 

formally resembles the multiplication in the semidirect product of 

groups. In order to clarify this resemblance, we shall begin our 

development by approaching the semidirect product of groups as the 

solution of a universal problem resembling the universal problem for 

the twisted tensor product of an R-algebra with a group algebra. We 

remark that the concept of a "crossed product algebra" [C-fl] is 

equivalent to that of a " twisted tensor product". 

Let G, TI, H be groups, TI acting on G via a homomorphism 

y: IT - i AutG. 

(3.1) Definition A function f:Gx1T - H is qi-twisted : for all 

(g,p), ( 9', p') € Cxli, f(g,p)f(g',p') = f(gqi(g'),pp'). 
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(3.2) Definition A group T is called the y-twisted product of G 

and It there exists a qi-twisted function i:Gx1T - i T such that 

for every group H and every qi-twisted homomorphism f:GxTI - i H, 

there exists a unique group homomorphism F:T - H making the 

following diagram commute. 

F 

i f 
Gx1T 

f 

(3.3) Theorem The universal problem in Definition (3.2) has a 

solution, namely the usual semidirect product Ga 41 TT. 

(3.4) Remark The terminology "y--twisted product" is merely an 

invention for use in this chapter. It is motivated by the program 

suggested above. We shall in general use the standard terminology 

"semidirect product". 

Proof of Theorem (3.3) It is clear that the function i:GxTF 3 (h,p) 

i-p (h, p) E G> 31T is a -twisted function. Let f:GxT1 -. H be a 

qi-twisted function. In order to have the diagram 

F 

Gx1t 

commute, we are forced to set F(g,p) = f(g,p) for all ( g,p) E G.iTT. 
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Therefore, if F satisfying the conditions in ( 3.2) exists, it is 

unique. To see that F is indeed a group homomàrphism, we check 

F((g,p)•(g',p')) = F(gy(g'),pp') 

= F°i(gy(g'),pp') 

= f(gq;(g'),pp') 

= f(g,p)f(g',p') 

= F(g,p)F(g',p'). U 

Now let R be a commutative ring with 1, U a group and A an 

fl-algebra. Let AutA denote the group of fl-algebra automorphisms 

and suppose 11 acts on A via a group homomorphism i:T1 -. AutA. 

(3.5) Definition Let B be an fl-algebra and f:AxRhT —* B a 

function. We call f fl-balanced with y-twist .. 

(i) f is fl-balanced as a function of fl-modules ( i.e. f is 

additive in each variable and f(ar,x) = f(a,rx) for all a e A, 

r e fi, x e fill). 

(ii) For all a,a' e A, x e fill, p 6 IT 

f(a,lp)f(a',x) = f(ay(a'),lpx). 

If there is no risk of confusion we shall refer to an fl-balanced 

function with qi-twist merely as a balanced qi-map. 

(3.6) Definition An fl-algebra T is called the qi-twisted tensor 

product of A and fill over fl there exists an fl-balanced 

qi-twisted function i:AxRTT - T such that for every fl-algebra B 

and for every balanced qi-map f:AxRlT —, B, there exists a unique 
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H-algebra homomorphism F:T -. B with the following diagram 

commutative. 

F 
T 

i 11 

A x RU 

f 

(3.7) Theorem The universal problem in Definition (3.6) has a 

solution, namely the tensor product A@RRTI endowed with the 

multiplication, defined by 

(a®R1P)(a'øRx) := ai(aI)elirx 

where a,a' E A, p E IT, x E Eli. 

We shall denote the H-algebra described in Theorem (3.7) by 

A 041 RU. As usual, if an H-algebra T also solves the universal 

problem in Definition (3.6), then P . A®RT1 as H-algebras. 

Proof of Theorem (3.7) Part 1 A®RF1 is an H-algebra. Let us first 

spell out how the multiplication of certain elements in ARU extends 

to arbitrary elements in ARTF. So let 

n m 
a. øy. , z = I b .®x. E AØRU. 

i=l 1 1 j=l ' H 

Then y. = I r (y. i )p, with r (y) E H and for all, but at most 
1 pElt p 1 p  

finitely many elements p E IT, r(y1) = 0. Thus 

n n 
= I a.ø( I r(Y)P) = I I (a r (y ))elp 

1=1 1 pElT i1pEU 
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and we set 

n m 
( Z I (a r (y ))®lp)( b.øx.) 
ilpell ' jl ' 

n In 

X (a 1 .r P (y. 1 )®J lp)(b.øx 1=1 .) J 

n m 
= I I I a.r (yi )'qi (b.)e(lp)x.. 

* 1P P J J 
i=l pElt j:1 

This renders the multiplication in ARTT biadditive. We must check 

the compatibility of this definition with the relations of the tensor 

product. Furthermore, the behaviour of the multiplication with 

respect to the scalar multiplication in the R-module structure needs 

to be checked. 

To check compatibility with additive tensor relations of factors 

on the right hand side, we compute firstly, 

(a®lp)(a®x1 + a'®x2) = atp(a')ø(lp)x1 + aY(a$)@(lP)x2 

= ay(a')ø(lp)(x1+x2) 

= (aølp)(a'ø(x1+x2)) 

and secondly 

(aølp)(a10x + a20x) = a4J(ai)ø(1P)x + aY(a2)®(lP)x 

= a(tp(aj)+q(a2))ø(lp)x 

= ay(a1+a2)®(lp)x 

(aølp)((a1+a2)øx) 

To check compatibility with additive tensor relations of factors on 
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the left hand side, we compute 

aj®lp + a2ølp)(ax) = a1y(a)e(lp)x + a2y(a)ø(lp)x 

(aj+a2)tp(a)®(lp)x 

((a1+a2)ølp)(ax) 

On the other hand, (a 0 ( lp+lp'))(a'Ox) = ( lp + aOlp')(a'Ox) 

according to our definition of the multiplication in AøH1T. For the 

seine reason scalar multiple tensor relations of factors on the left 

are preserved. 

To check compatibility of scalar multiple tensor relations of 

factors on the right, we compute 

(a01p)(a'0rx) = ay p 

= arY(a')0(lP)x 

= aY(ra')®(lP)x 

(a0lp)(a'r0c) 

As for the scalar multiplication in the R-module structure of 

A0R1F we have 

r {( a®lp)( a *@x )] = r[ay(a')O(lp)x} 

r(ay(a'))O(lp)x 

= (ra)y(a' )0(lp)x 

(raOlp)(a'Ox) 

= [r(lp)](a'0x) 

On the other hand, 
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(ra)qi(a')ø(lp)x arqi(a')ø(lp)x 

= aq(ra')ø(lp)x 

(aølp)(ra'øx) 

(a@lp)[r(a'øx)] 

Furthermore, the multiplication in A®Rh1 is associative. It 

suffices to check this for the following particular case. The case of 

arbitrary factors follows from this particular case and the 

compatibility results already proven. 

[(a1elp)(a2®lp')](aa x) = (a1q(a2)®1pp')(a3øx) 

(aitp(az)y pp , (a3)®(lpp')x 

= a(q(a2)y 1(a3))®lp(px) 

= a4J(ay 1(a3))ølp(p'x) 

= (a®lp)(aqJ 1(a3)@].p'x) 

= (ajølp)[(a2®lp)(a3®x)} 

This completes the proof that AOYRTT is an associative fl-algebra. 

Part 2 As a balanced qi-map 1: AXHIr - AeRTr, we take the map i: Axflul 

- A®R1T arising from the H-module construction. Then i is already 

known to be H-balanced and the computation 

i(a,l)i(a',x) = (alp)(a'øx) 

= aq(a')ø(lp)x 

i(aqi(a'),(lp)x) 

confirms that ± is also qi-twisted. 
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Part 3 i:AxRTI .-. ARTr solves the universal problem of Definition 

(3.6). So let B be an H-algebra and f:AxRT1 -*- ''B' a balanced 

hi-map. The universal property of the H-module ARRlT yields a 

unique R-module homomorphism F:A®RRTT - B which makes the following 

diagram commute as R-modules. 

F 
A 

ii 
A x rar 

f 

The following computation, on generators shows that F is also a 

homomorphism of R-algebras. 

F(aølp)F(a'øx) = Fi(a,lp)Fi(a',x) 

= f(a,lp)f( a *, x) 

f(ay(a'),(lp)x) 

Fi(aqi(a),(lp)x) 

= F(ay(a' )ø(lp)x) 

= F((a@lp)(a'8x)). 

This completes the proof of Theorem ( 3.7) 11 

(3.8) Remark One might attempt to generalize the concept of a 

q-twisted product to the situation where A and S are H-algebras 

and S acts on A by H-algebra homomorphisms via an R-algebra 

homomorphism qi:S - EndA, where EndA denotes the endomorphism 

algebra of A. One would then define A®S as the H-module AØ HS 
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with multiplication defined on generators by 

(aøs)(a'øs') atp(a')øss'. 

This, however, does not always work because, for r E R, 

r(aøs)(a'®s') = (a@rs)(a'øs') 

= aqi(a')ørss' 

r(arqi(a')ess') 

= r2 (ay (a')@ss') 

= r2(as)(a'øs'); 

This is, in general, a contradiction. When defining A@4'RTT on 

particular elements, our approach was, from a technical point of view, 

motivated by the observation above. 

We can now make the resemblance between the y-twisted product of 

groups and the tv-twisted tensor product of an R-algebra A with a 

group algebra RTT explicit, Observe that the balanced qi-map i:AXR1T 

- AR1T of Theorem (3.7) factors through AØRRTF with the R-balanced 

map j:AxRIT - i AØRR1T followed by the identity function Id:A@RTF  

A®RTT. 

Id 

A x Ru 
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Give AeHRTr the usual H-algebra structure. Then Id is an 

isomorphism of H-modules which behaves with respect to multiplication 

(formally) like a si-twisted function of groups ( cf. Definition (3.1)). 

The following lemma helps to recognize a q-twisted tensor product 

of an H-algebra with a group algebra. 

(3.9) Lemma Let A, B be H-algebras and suppose 

A B q HIT 
S 

is a ( not necessarily exact) diagram of H-algebras and H-algebra 

homomorphisms such that qs = Id . In this situation, the function 

t:AxHiT 3 ( a,x) i-s o(a)s(x) E B 

is H-balanced and, therefore, induces a unique homomorphism of 

H-modules T':AORRTr -. B. Suppose that 

(1) T' is an isomorphism of H-modules. 

(ii) There exists a homomorphism qi:1T - AutA such that 

t(alp)t(a',x) = t(a(a')(l)x) 

for all a,a' EA, XERU, pEIT. 

Then B AØH1T. 

Proof Property ( ii) and the universal properties of qi-twisted tensor 

products provide us with a homomorphism T:ART1 -, B of H-algebras 

making the following diagram commute. 
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T 
A 04J RU 

ii 
A X RU 

t 

This diagram may be extended as follows. 

T' 

A x RU 

We already know that the functions Id, T' are isomorphisms of 

H-modules. Consequently, T is also an isomorphism of H-modules. 

But T is also an H-algebra homomorphism and, therefore, an 

H-algebra isomorphism. U 

The following Lemma (3.10) gives conditions under which a 

p-twisted tensor product AøR1T allows for a sequence of H-algebra 

homomorphisms as in ( 3.9). 

(3.10) Lemma Let A be an R-àlgebra with 1. Suppose H 3 r 

rl E A is a monomorphism and that there is an ideal A' of A such 

that A = RlWA' ( internal direct sum) as an H-module. Thus a E A 

can be written uniquely as a (r,a') with r E H, a' E A'. Let U be 

a group acting on A via qi:U - AutA by automorphisms having Hi 

and A' as invariant submodules. Then 
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(i) : AxRT1 a ((r,a'),x) t- rx E HIT is qi-balanced and, hence, 

induces a unique homomorphism q:AøRIT -' R1T of H-algebras. 

q 
(ii) The sequence A ° AøRT1 HIT with o(a) = ael and 

s(x) = l@x satisfies the requirements of Lemma ( 3.9). 

(iii) The action of 11 on A can be recovered from the multiplication 

in AøRT1 by the identity qi(a) = '( s(p)o(a)s(p')) for all a E A, 

p E TI. 

Proof ( i) is obviously H-balanced. To see that q is 

q-twisted, we check 

((ri,ai 1),lpi)((rz,az 1),sp2) = (r1p)(r2sp2) = r1r25(pxpz) 

and 

'((ri,aj ') q Pi (r2,a2'),1p1sp2) = ' (( ri,ai ')( r2,qi PI (a2'),sp1p2) 

= (( r1r2,rjy Pi (a2')+ra'+a1qJ pi (a2')),s1p2) 

r1r2s(p1p2) 

Visibly, the results are the same. For more general factors we use 

this result and the fact that Z is H-balanced. 

(ii) We need only check that qs = IdRTT . But for x E HIT, 

qs(x) = q(løx) = Z((I,O),x) = x. 
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(iii) Follows from the computation 

s(p)o(a)s(p1) ( 1A®1RP)(a®1R1.IT)(1A@1Rp1) 

= (tvP(a)ølRP)(lA 0 1p) 

y(a)4J( 1A )elR (pp ') 

= 

ci 

The reader may now compare the statements of Lemmas (3.9) and 

(3.10) with the following fact for groups. 

A group extension C - E 11 has a section s:TI -. E so 

that IT acts on C via pg = s(p)gs(p) if and only if E and 

Y(g) = first coordinate of ( 1,p)(g,l)(1,p') for all g € C, p E 11. 
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4 The Pontryagin homology algebra of an H-semidirect product 

If X is an H-space, 'the graded singular homology group H*X 

inherits a product structure from X turning H*X into a graded 

ring, called the Pontryagin homology ring of X. If X has several 

path-connected components, additivity of singular homology says that 

H*X, as a graded group, is isomorphic to the direct sum of the graded 

homology groups of the various path components of X. In general, 

however, H*X as a graded ring will not decompose in any obvious way. 

If W = W0 U is an H-semidirect product, TI acts on W. by 

classes of H-self homotopy equivalences and, therefore, on H*Wo by 

graded ring isomorphisms. We shall show that H*W, as a graded ring, 

is isomorphic to a twisted tensor product of H*Wo with H*TT, where 

HTr is the Pontryagin ring of IF viewed as a discrete topological group 

(not to be confused with group homology; note that HTr ml viewed as 

a graded R-algebra concentrated at degree 0). 

So let TI' be a group acting on a path connected H-group (W0,p0) 

via a homomorphism c:TT -.-- }1C(W0), and denote by (W,) the 

'corresponding H-semidirect product W0 .iTF ( cf. ( 1.3)). Let R be a 

commutative ring with 1. All homology groups, unless stated 

otherwise, will be with coefficients in H. Consequently, H*X is a 

graded R-modure for any space X. ' In particular H*W is a graded 

H-module. 

Let us recall the definition of the multiplication in H*W. The 

conceptually easiest approach uses cubical singular homology. 
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The key construction is the cross product in singular homology. 

Let X, Y be spaces and let lu E C(X;H) lv E C(Y;R) be generators 

with u:I - i X, v E 1q -, y singular cubes. Then the map 

-. XxY is a singular (p + q)-cube in XxY and, hence, yields a 

generator ( 1ØR1)uxv E Cp+q(XxY;}RR) Cp.fq(XxY;R). This construction 

turns out to be compatible with the formation of homology classes and 

yields an H-balanced function HXxHY -. H(XxY). This function 

induces the cross product homomorphism x:HX®RHY - H(XxY). 

If ( X,m) is an H-space, we get an H-homomorphism H*X@RH*X -  -

H(XXX) H * X turning H * X into a graded R-algebra. 

Furthermore, if X,Y are H-spaces and f:X -. Y is an H-map, f 

induces a homomorphism of graded R-algebras. 

(4.1) Lemma 11 acts on H*Wo by automorphisms of the graded H-algebra 

via qJ:113 p € Aut H*Wo. 

The proof is trivial. 

(4.2) Theorem H*W H tp *WOØH*TF. 

Proof Consider the "exact" sequence of H-maps 

q 
4-- {l} W0x{l} - W0>a.1T -- iT 

admitting a section s:TI a p i-9 (e,p) € The computation 
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P P' 

I 
(e,p)(e p') 

(Pp I) 

(ep(e),pp*) - (e,pp 1) 

shows that s is also an H-map. The homotopy in the above diagram 

can be constructed from any path joining eP(e) to e. 

An H-map between two H-spaces induces a homomorphism of the 

Pontryagin homology algebras. Therefore, the "exact" sequence of 

H-maps above induces the following diagram of homology algebras. 

H*Wo o 4----- * H*Wo 1T 11*IT 

Since is induced by the map identifying W. with the path-connected 

component W0x(l} of W0i ii, is a monomorphism by additivity of 

singular homology. Since qs = Idif , = Id, • We shall now 
* Tr  

invoke Lemma (3.9) to complete the proof of Theorem (4.2). 

First of all, let us view Rh as a graded H-algebra whose only 

non zero term sits at dimension 0. Then RU H*Tl under the 

isomorphism induced by the function on generators ii B p t-* ip E Hail. 

Here p denotes the unique map 1° -, {p} and, by slight abuse of 

notation, li the homology class represented by the (properly denoted) 

element l of C011. This function establishes a bijection between 

the canonical bases of H-modules flit and H0U and, hence, induces an 

isomorphism p:Ril -, H011. To see that p also preserves multiplication, 

consider the following computation on generators 
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'p • ip'   'p 

where ' is identified with I°xi° P X 1Tx1T m IT via the 

unique homeomorphism 10 I°xl°. Since the higher homology groups of 

IT are all 0, p is indeed an isomorphism of graded fl-algebras. 

Following the set up of Lemma ( 3.9) we get a homomorphism 

T':HWQORHTr - HW of fl-modules defined on generators by 

aft - We are left to verify 

(i) T' is an isomorphism of graded fl-modules. 

(ii) For all , ' e HW0, x G HTI, p c TI we have the identity 

Both statements appear plausible upon inspection of the 

underlying situation on the level of function values of maps for 

singular simplices. The following observation will help us to 

transform this idea into a formal proof of ( i) and ( ii). 

(4.3) Observation Let cL:CWOeflCQU - i C(W0>1T) denote the chain map 

defined on generators by lu@lp i-4 l(u,p). Here (u,p) denotes the 

singular n-cube (u,p):I'' t i— (u(t),p(t)) E W0 .i U, where 

p:ItI {p} denotes the unique map. Identifying 1n with I''xI°, we 

see that c1 coincides with the cross-product map sending 

luølp luxp where uXp denotes the singular n-cube uxp:I"xl° 3 

(t,0) i— (u(t),p) e W0>1T. 
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Let Te0 3 w i-* we E W. and suppose that in the definition of 

, 4(l) is represented by IcL. Now consider c2 ci(T#®RId) 

CW0eC0Tr - C(Wo 1T). Then c2(luølp) is represented by the map 

1n (u(t)e,p) = (u(t)y1(e),p) 

= (u(t),l)(e,p) 

(cu(t),sp) e W0>i TT 

Since T e is homotopic to Idw , cj and c2 are chain homotopic and, 

therefore, induce the same map in homology. 

Verification of ( i) c1 gives rise to the Kiinneth-map k:HWO@RHU - 4 

IJ(W04r). Because of the particular structure of H*11, k is an 

isomorphism of graded H-modules. On the other hand, c2 induces T'. 

Since c1 and c2 are chain homotopic, this shows that T' = k*. 

Hence T is an isomorphism of graded H-modules. 

Verification of ( ii) Since = rii +  r k , we get 
kp  

a'x r1a'e1p1 + ... + rkaølpk 

Using distributivity in H*W it suffices to prove ( ii) when 

Suppose now that a = r1u1 + ... + r k u k and that a = r1 ' u1' + 

• ru . Since T' = , T'(ø!) is represented by r1(u1xp) + 

+ rk(ukxp) and T1(@l; 1) is represented by r11(u1'xp) + 

+ r(uxp'). Consequently, T'(l)T'(@l') is represented by 
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k k 
I r.r'. p°((u.xp)x(u'.xp')) = I I r r'(u xp,uxpt) 

1J 1 3 
1=1 j=1 1=1 j=l ± ') 

k 
= I I r.r'.( 0(u.,pu'.),pp') 

i=1 j=l 

k 
= I I r.rl.(,40 0(u .xp u .)xppl) 

1=1 j=l 

1k 
= cxi I I p r.r'4 00(u.1xp u. 3 )Ø1PPI] 

.  li=l j=l 

[[ 1 1 1 1 = I r U  3- [Z i.rpp u1.IlPPt} 
_1JJi 

j  

[[ k ' 1 = IruXIcp ilr'u't 
1=1 ± I Ii=l 

The argument of c1 is just a representative of and T' 

is induced by cl on the chain level. Hence ( ii) is verified which 

completes the proof of Theorem (4.2). 0 

Let R = Z from now on and let us look at the Hurewicz 

homomorphism h:n(W0,e) - HW0. To recall the construction, denote 

by o the generator of H0(S°,{l}) represented by the lu, where 

u:.d0 -. {-l} is the unique map. Then the n-fold suspension o = 

determines a generator of HS. If (X,*) is a based space we get a 

natural transformation 

h n :fl r ( X,*) 3 {f] i-i f* an n E H X. 

(4.4) Proposition Let W = W.i1T be an H-semidirect product. Then 

h:7r(W0,e) -. HW0 (n ≥ 0) is an operator homomorphism with respect 

to the actions of TI on 7rNos e) and HW0 induced by 4:TI - HC(W0). 
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Proof For p e TI and [f} E TI (W0,e) we get 

= h(4()[f]) 

= 

= 

= ci 

(4.5) Corollary If 7r(W0,e) is nilpotent with respect to the action 

of TI on n(W0,e) then imh is nilpotent with respect to the action of 

lion HW. U 
no 

Finally we remark that, if desired, the question whether or not TI 

acts nilpotently on iinh can be considered completely within. IJW. 

The transition is accomplished by making use of Lemma ( 3.10) after 

observing that H*Wo has a multiplicative identity in H0W0. 
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%5. Nilpotency of CW-complexes and H-semidirect products 

Bousfield, Kan [B-K] and Hilton, Mislin, Roitberg [H-M-R] give 

the following definition of nilpotency of a connected based 

CW-complex. 

(5.1) Definition X is nilpotent ir1(X,*) is nilpotent and acts 

nilpotently on it(X,*) for n ≥ 2. 

Under the adjointness isomorphism ir(X,*) ir_1(f2X*) this 

requirement for nilpotency of X translates into the following 

equivalent one. 

(5.1)' Definition X is nilpotent . 'irj(X,*) is nilpotent and the 

action of ir,.(X,*) on 7r_1(QX,*) by loop conjugation is nilpotent. 

Denoting the path component of the constant path * e 12X by (M) O, 

we get canonical isomorphisms lrn_i(czX,*) 

[S'',(flX) 0] and the action of n1(X,*) on [ S' 1,(7X) 0] of 

Definition (5.1)' coincides with the action of ir1(X,*) on [S 1,(QX) 0] 

arising from the H-semidirect product structure on QX (denoted by 

((S n-i) in 2). Thus our results in 2 lead to yet another 

characterization of nilpotency of X: X is nilpotent if and only if 

n 
[S , c2X] is nilpotent for all n? 1. 

The main objective of this section is to give an explicit 

development of this characterization and then to use results in the 

previous chapters to provide additional tools for investigating a 

connected CW-complex for nilpotency. 

56 



It should be noted, however, that this approach to nilpotency of 

CW-complexes is not entirely new. Roitberg [ R] utilized the 

characterization (5.1)' of nilpotency in the following way. 

Given a countable connected based simplicial complex X, a result 

of Milnor's [Ml] guarantees the existence of a topological group T 

having the homotopy type of QX. Furthermore, T is the fiber of a 

principal T-fiber bundle map E -, X, where T and E are countable 

CW-complexes. Also E is contractible so that X is, up to homotopy 

equivalence, the classifying space of T. Based on these facts, 

Roitberg uses T for 12X in Definition (5.1)' to characterize 

nilpotency of countable connected based simplicial complexes. 

At this level of consideration, Roitberg benefits from his 

approach in the following result. 

*(52) Theorem Classifying spaces of nilpotent Lie groups are 

nilpotent. 

Proof If T is nilpotent as a group, the requirements of (5.1)' are 

satisfied ( compare Proposition (2.7) of this thesis). a 

We shall now embark on an explanation why (5.1) and (5.1)' are 

equivalent. This is implicit in [R]. We shall actually prove a more 

general result. 

Let (D,*) be a based well pointed space ( i.e. the inclusion 

* -* D has the homotopy extension property) and let ( X,*) be a based 

space. Then itj(X,*) acts on [(D,*),(X,*)] on the left as follows. If 

f:(D,*) - i (X,*) is a based map and qs:(I,{O,l}) -- (X,*) is a loop, we 

obtain a map '. f out of the following process. 
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(i) Let F:DxI -' X be a homotopy extension of the data 

F(d,O) = f(d) for all d E D and F(*,t) = y'(t) = y(l - t) for all 

t E T. 

(ii) y.f(d) F(d,l). 

It turns out that choosing different homotopy extensions of the 

data in ( 1) and varying .' and f in their homotopy classes only 

varies y.f in its homotopy class. Consequently, we obtain a well 

defined function 

([}, [f]) i-+ (y.f) E  

Furthermore, O([y],[.y]) = 9'x16[.y] as a function from 

[(D,*),(X,*)] into itself. Hence, 9 describes an action of 7,(X,*) on 

Now let (A,*) be a connected CW-complex with a 0-cell as base 

point. Then (SA,*) : (D,*) is well pointed. Let 9 denote the action 

of irj(X,*) on {(SA,*),(X,*)] explained above. 

On the other hand, using adjointness of suspension and loop 

functors we have the action, 

9' : rr1(X,*)x[(SA,*), ( X,*)]  0 [(SA,*), (x,*)] 

{A,(f2X) 0] 

defined by going through the bottom part of the diagram above. 

Explicitly, let ({.y],[f}) E ij(X,*)x{(SA,*),(X,*)]. Let 
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-i (2X,*) denote the adjoint of f. For g: (A, -, 

let g:(SA,*) - (X,*) denote the adjoint of g. Observe that (?) = I 

and g. Then 0' (['], [f]) is represented by the composite of maps 

(.y,f) i-+ (', T) i- I-, g 1  g 

where g: (A,*) -, (12X,*) is defined as follows. 

The map .y?y 1:A a a i-. y?(a)'' € (1≥X) 0 is given by loop 

conjugation and will in general not be based. Using the homotopy 

extension property of the inclusion* i- A, we get a based map 

g:(A,*) - (12X,*) 0 which is freely homotopic to y?ty 1 . Since ( 2X) 0 is 

a simple space, { g] and subsequently [g] =: 8'([y],[f]) are uniquely 

determined by 

(5.3) Lemma 8 = 81:7r1(X,*)x[(SA,*),(X,*)) .-. 

Proof In the notation of the introductory explanations above, we 

shall show that [ g] = {?] proceeding along the following steps. 

Step 1 is based on the following observation. If (B,*) is a well 

pointed space, then the data F(b,O) = (b,O), F(*,t) = (*, t) have a 

homotopy extension F:B X I - (B x 0) U (* x I). Given F, we have a 

uniform way of constructing homotopy extensions for the inclusion 

B. If f:(B,*) -. (Z,*)., a:(* x I,(*,O)) - p (Z,*) are maps, 

then (v denotes the folding map) 

F fva V 

BxII (BxO) U (*XI) i ZvZ Z 

is a homotopy extension of the data f, a. 
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Therefore, we shall fix suitable homotopies 

ThAxI - (AxO)U(*xl) , R(a,t) = (pj(a,t),p2(a,t)) 

S:S'xl - i. (S'xO)U(*xl), S(s,t) = (CYI  

to construct a homotopy 

T:SAxI -, (SAxO)U(*xl) , T(sia,t) = (Tj(sAa,t),r2(sAa,t)) 

and construct homotopy extensions of A, S', SA using R, 5, T as 

explained above. 

Step 2 Compute g and ? 

Step 3 Show that g is homotopic to 1 

On step 1 For every n E n the inclusion S a n+l—. B has the 

homotopy extension property. Using the cell structure of A, this is 

the key to constructing a homotopy R:AxI - (AxO)U(*xl) such that 

R(*,t) = (*, t) for all t E I and p2(a,t) < p2(*,t) for all 

a e A = {*} and all t, 0 < t 5 1, and R(a,O) = a for all a € A. 

For (51,*) we exhibit a homotopy S:S'xI - (SiXO)U(*xI) with 

these properties explicitly. Using the homeomorphism S' I/CO,l}, 

define 

(*,t-(l+2t)s) OsSi2t 

S(s,t) := (( 1+2t)s - t,0) t  < sS 1+t 
. + 2t - + 2t 

(*,(1+2t)s-l-t)   < s<l 
1+2t - 
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S(.,t) pulls the base point of S' out to (*, t) under uniform 

stretching of S'. In fact, the construction of S shows how to 

construct R on the 1-skeleton of A. 

Now define T:SAxI - (SAxO)U(*xl) by 

T(sAa,t) := (oi(s,t)ip(a,t),max{o 2(s,t),p2(a,t)}). 

To see that t2 is continuous, we show that the function 

21SLXAXI 3 (s,a,t) i—. max{o2(s,t),p2(a,t)} € I is continuous and 

factors through (S',A)xI with T2. Continuity of T2' can be seen by 

using the continuous difference function 6:S'xAxI a ( s,a,'t) i—+ o'2(s,t) 

p2(a,t) E Rwhich yields two closed subsets 5'(JR0) 6 1- (W 0  of 

S'xAxl over which is defined by o2, P2 respectively. 

On Step 2 Let ' E RX and f:(SA,*) -, (X,*) be as above. Then 

- (X,*) is given by 

y. f(sAa 
- •j. fr1(sia,l) if T(sAa,l) E SA X 0 

1. y(l - r2(sAa,l)) if T(sAa,1) E * x I 

Consequently, if a E A, then l(a) is the loop 

S' = I/ {0,1} 3 S I—. J 
I 

','(3s) 

?R(a,l)(3(s - 

y(l - 3(s - 
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in case R(a,l) E AxO. If R(a,l) = (*, t) E *xl, then (a) is the 

loop 

{ '( 3s) 0 s i(S-t) 

S' = I/{O,l} a s i y(l - t) 1 (l-t) s 1- (lt) 

(l - 3s) l-(l-t)s≤l 
i 3 I 

EX 

The function values of the loop conjugated map '?' actually 

depend on how we bracket this product of three elements. Regardless 

of how this product is bracketed, there is an easily constructed 

homotopy AxI - (2X) 0 which allows us to assume that for a e A, 

-(a)y is the loop 

S1 3 S 1-4 J 
1 

In particular, '(*)' is the loop y at triple speed for 

SE [0 , ], constant at * for s e [1 , 2}, ybackwards at triple 
speed for s 6 [ , 1 

The path v I -. (M), joins .yf(*)y' to the constant loop. 

J 
i 

0 s (l-t) 

(l-t) s s S 1 - .( l-t) 

1 - .( l-t) s s 1 
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Using the homotopy R, we get g:(A,*) - i (S2X,*) as the homotopy 

- 

extension of the data yfy-J. :A - (S2X) 0 and v:I - (S2X) 0. 

Specifically, we get for a E A, g(a) = y?(R(a,1))y' if R(a,l) e MO. 

Thus 

g(a): S' 3 5 J 
1 

y(38) 

1 ?R(a,l)(3(s - 

2 
- 

Os 

3-

3 — 

S 

s 1 

If R(a,l) = (*, t) E *xl, we get g(a) = iR(a,l) = v(t). 

1 
J 
EX 

Step 3 is now trivial because we see from Step 2 that (a) = g(a) 

for all aEA. 

This completes the proof of Lemma (5.3). 

In % l, we have seen that RX (1≥X) 0 ,i 1X, where 4:ir1X .- HC(2X) 0 

is defined by loop conjugation. Explicitly, if [.'] E 7r1X, 4'] is 

represented by the map (fzX) 0 3 oe I-4 yocy E (2X) 0; cf. ( 1.4), ( 1.7). 

In %2, we have seen that 4 induces an action q(A) on the free 

homotopy groups [A,(QX) 0] by composition. Explicitly, 

qi(A) [] [g] = ([']) °[g] and 4([y])°[g] is represented by the map 

A 3 a 1-4 yg(a)' E (2X) O. Hence, we have shown 

(5.4) Corollary For all [ y] E ir1X, [ f] E 

= O'([.yj,[f]) = i(A) JT?T . 0 
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Applying Corollary (5.4) to n-spheres (n 1), we get the 

following equivalent conditions for the nilpotency of CW-complexes. 

(5.5) Theorem Let ( X,*) be a connected CW-complex. Then the 

following are equivalent: 

(i) ir1(X,*) is nilpotent and acts nilpotently on wn(X*) for 

n ≥ 2. 

(ii) 711(X,*) is nilpotent and acts nilpotently on ir01 (QX,*) by loop 

conjugation for n ? 2. 

(iii) irj(X,*) is nilpotent and [S n-i ,(f≥X) 0] is qi(S n-i) nilpotent for 

n ≥ 2. 

(iv) [ S' 1 ,X] is nilpotent for n 2. 

Proof (i) (ii) follows from (5.3). 

(ii) ( iii) follows from (5.4). 

[S',12X] (Sr_l,(l2X)0] y(S ) n-i 7r1(X,*), by ( 2.8) and (iii) ( iv) 

the semidirect product on the right hand side is nilpotent if and only 

if ( iii) is true, for purely group theoretic reasons ( cf. §2). 

The material in §2 can now be exploited in the following way. 

The action 4J(Snl) in (5.5) ( iii), ( iv) is induced by the homomorphism 

-i He(QX),, determining the H-semidirect product structure of 

M. 

(5.6) Proposition If 4 is trivial (ker = iX), then X is simple. 

This calls our attention to homomorphisms of 7rX into the 

following tower of groups. 

ci 
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ir1X - CC(12X) O; group of homotopy classes of H-conjugations of (QX) 0 

c HC(12X) O; group of H-equivalences of (12X) 0 

c C(M) O; group of self homotopy equivalences of (12X) 0 

(5.7) Corollary If the set of homomorphisms from wjX into one of the 

groups CC(2X) 0, HC(2X) O, e(2X) 0 is the 1-element set, then X is a 

simple space. U 

In Proposition ( 2.7) we have shown that ni1[S',QX] c for all 

n 1 if S2X has H-nilpotency index c. Together with (5.5)(iv), we 

get 

(5.8) Corollary If £2X is H-nilpotent, then X is nilpotent. U 

As for (5.5)(iii), the material in t4 can be utilized in the 

following way. 

(5.9) Proposition Let h:ir(f2X) 0 - H (c2X) 0 denote the Hurewicz 

homomorphism. If X is nilpotent, then 711X acts nilpotently on 

im h. In particular, i1X acts nilpotently on 

Proof Use (4.5) and the Hurewicz isomorphism theorem. 
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§6 Bordism rings of H-semidirect products 

Conceptually, bordism theories have a flavour of generalizing 

aspects of free homotopy sets as 

groups. It is therefore not too 

group of an associative H--space 

well as aspects of singular homology 

surprising that the graded bordism 

has the natural structure of a graded 

ring arising in very much the same way as the Pontryagin ring 

structure in singular homology. Indeed, in this chapter we shall show 

that the bordism ring of an H-semidirect product decomposes into a 

twisted tensor product in a way resembling the 

Pontryagin algebra ( cf. §4). 

Let us begin by introducing the necessary 

decomposition of the 

concepts related to 

(co-)bordism theories. We are interested in bordism having a 

description by singular manifolds via Thom's theorem. Therefore, we 

shall assume that the extra structure on a manifold comes from an 

extra requirement concerning the normal bundle of this manifold with 

respect to a fixed imbedding in some 1R5. To keep this chapter to a 

certain extent self contained, we shall explain the underlying 

formalities and state, without proof, the results invoked. This 

material is extracted from Stong "Notes on cobordism theory" [ St] and 

Switzer "Algebraic Topology" [Sw], which are the general references. 

We shall refer to a smooth compact manifold ("smooth": it has a 

C°° atlas), with or without boundary, simply as a manifold. If we use 

the symbol M for a manifold, then m will denote the dimension of 

M. We agree that 0 is a manifold of arbitary dimension. Whitney's 

imbedding theorem says that M can be imbedded in the half space 
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:= {(x10 ... ,x +1 ): x 0) C s+l (s 2m+l) such that aM gets 

mapped to 911.s+l = {( O,x2,.. ., x +1) a fR 1} and (M - t9M) gets mapped 

into the open half space (x1 > 0) of lHs+l We require all imbeddings 

in later considerations to have these properties. 

Notation and preparations Let lim IR c_.R2c_.. FR3 a— •• with 

the limit topology. For r ? 1, it will be advantageous to use the 

isomorphism 00 r _, FR 2r R 3r c_ induced by deleting 

the vector spaces FR', n not divisible by r, from the first limiting 

system above. 

For r, r' ? 1, we get an isomorphism lrrrl: IR°° IR°° -, FR°° given 

by the following self explanatory picture. 

00 r ,. r r r 

FR 19 'FR ' W , FRr 
I I I 

I I ' I I I S 

00 1r I ' FRr ' r ' :n ' ' ' S I I 

L J I i C J 

100 

If rr' is even, ltrrl r',r by a homotopy through orthogonal maps 

interchanging the summands FRr ED R X' pointwise in each of the blocks 

fRr For n >- 1, let p: FR00 °° 
- FR be the isomorphism induced 

blockwise by the map Rn 3 (x1,x2,. .. )x) i-+ (-x,,x21 ... ,x) E R. If 

rr' is odd, lrrrl r+r'r',r by a homotopy through orthogonal maps 

interchanging the sunimands FR" R  pointwise in each of the blocks 

r+r' 
FR . Evidently, the diagram 
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00 00 . 00 

JR ED JR ED R 

Id itri h1 

it • Id 
r, r 00 00 

JR 

00 Co 00 

commutes strictly. Furthermore, the inclusion i r : JRr 3 (X1,...,x) 

i— (x1,.. ., x,O) E R induces an inclusion i r JR°° R 00  - given by 

r 

JR 00 JR 

I 
00 

JR 

® R  

ii ii i 
r  r  r 

Cd JRr+l JRr+l JRr+l 

For 0 r S n, denote by G nr the Grassmann manifold of 

unoriented r-planes in JR n and by BO := urn G Q--+ G 
r,r ri,r 

On the set level, there is an immediate identification between BO 
r 

and G00r the set of r-planes in Roo. We give Goo the topology 

rendering this identification a homeomorphism. Let 'r denote the 

canonical r-planebundle over BO. Note that 'r is a universal 

r-plane bundle, i.e. if ( E,p,B) is a numerable r-plane bundle, then 

there exists a unique homotopy class of maps [f]: B - BO  such that 

the pull back bundle f * y is vector bundle isomorphic to (E,p,B). 

Let 0 denote the orthogonal group of IR". The inclusion 

i r : JRr JRr x f 0) JRr+l induces the inclusion i 0 0 x {Id....} 
r r r 

C--+ °r+l' giving rise to the inclusion Bir: BO  3 F' 

U {e r+l r+l n }) E BO Here e E Roo denotes the vector having 0-entries 
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everywhere but for a 1 at the n-th position. 

For 1 ≤ r n, denote by Vn,r the Stiefel manifold of ordered 

orthogonal r-frames in IRE, and by EO : = liin V r 0 V 
r - p r,r r+l,r 

On the set level, there is an immediate identification between EO 
r 

and V r , the set of orthogonal r-frames in . We give V the 

topology rendering this identification a homeomorphism. Let 

f: EO 3 (v1,...,v ) span{vi,...,v } € BO . Then ( EO , f',BO ) is 
r. 

a universal principal Orundle. 

The inclusion j :R -* R Co  induces an inclusion 
r 

Ei: BO  3 (v1,... Vr) i* (vj,...,v , e+1) E EO +i. Now, the direct 

sum decomposition fl°° r R  $ •• gives us a "diagonal" action of 

O on li °° r r r inducing an action of 0 on EO . The inclusion 

i r r : 0 r 0 x {IL} - r+l r r+ , 0 gives us an action of 0 on EO . It l 

is immediate that Elr is an equivariant map with respect to this 

Oraction. In particular, we get the commuting diagram 

El 
EO  r  EO 

fl V I 
BO  . BO 
r Bi r+1 

r 

(6.1) Definition (i) A (B,f)-system is an infinite ladder 
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fb 

Bb 
gb 

b+l f 
r 

r r+l 

.1 
BOb BOb+l . . . BO BO 

Bib r Bi r+l 
r 

in which every square is strictly commutative and every vertical map 

is a Hurewicz fibration. 

(ii) A (B,f)-structure on a manifold M is a pair (erAr) r ? b, 

where e : M - IRm+r is an imbedding. E. gives rise to a canonical map 

c r r : M - m+r,,r G - r , BO which classifies the normal bundle of e. (M) in 

and we require A r : M - r r r r * B to be a lift of c ( i.e. f A r). ). 

Actually a pair r"r induces more pairs r+k"  r+k ' k 1 by 

composition: Gr+k := M , m+r , n+r+k which yields 

c Bi ° °Bi °Bi and A r+k r+k-1 0 r+l °c r r r+k = gr+k-10... O r+lO °A r r 

For our purposes we do not need to favour any of the (E.5,A5), s ? r, 

above. We shall, therefore, write a (B,f)-structure on M as a pair 

(e,A) and specify subscripts only when necessary. 

Note also that a (B,f)-structure on N induces a (B,f)-structure 

on 8M by taking restrictions of the maps involved. 

(iii) Two % f)-structures (G',A'), (€.2,A2) on N are equivalent 

: there exists r ≥ b and a translation T: m+r such that 

Te l = E. 2 and A' su A2 by a vertical homotopy. The latter 
r r r r 

requirement makes sense because Tel = € implies = c2. 
r r 

(iv) A (B,f)-manifold is a manifold N together with an equivalence 

class of (B,f)-structures. 
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(v) Let M1, M2 be (B,f) manifolds of dimensions in2 - 1 in1 S in2 

with representing (B,f)-structures (€', A'), ( 2,A2). A 

(B,f)-imbedding of M1 in M2 is an imbedding a: M1 - M2 such that 

(a) a(8M1) C aM2 if m = in2 

(b) 8M1 = 0 and a(MI) C 8M2 if in1 = in2 - 1. 

Furthermore, there is to exist r ? b and a translation 

T: m2+r , m2+r such that TE.1 p2 a, and A1 A 2 a by a vertical 

homotopy. The latter requirement makes sense because Tel = 62a 

implies c1 c2a. 
r r 

If C is a (B,f)-manifold with boundary M, and M is given the 

induced (B,f)-structure, then the inclusion M — i C is a 

(B,f)-imbedding with T the translation by the 0-vector, i.e. 

T = Id. 

A (B,f)-diffeoinorphism between Mj and M2 is an invertible 

(B,f)-imbedding of M1 in M2. We denote this situation by M1 

(assuming that the underlying (B,f)-system is fixed). 

(vi) Let MI, M2 be two (B,f)-manifolds of the same dimension in, 

without boundary. M1 is (B,f)-cobordant to M2 there exist 

(B,f)-manifolds Cl, C2 of the same dimension c = m+l such that ("U" 

denotes disjoint union) 

M1 U 8C1. M2 U 19C2 

* 
(6.2) Lemma (i) "(B,f)-diffeomorphism" is an equivalence 

relation. Denote the collection of equivalence classes of closed 

(B,f)-manifolds of dimension m by A (B,f) 

(B,f) 
(11) At is a proper set for all in E No. 
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(iii) Under the operation of disjoint union (on representing 

manifolds, imbeddings, classifying maps for normal bundles and lifts 

into B), the set becomes an abelian monoid with the empty 

manifold (and the unique paraphernalia of maps) as the neutral 

element. 

i (B,f) (iv) (B,f)-cobordism s an equivalence relation on Ittm • Denote 

by Q(Bf) the set of (B,f)-cobordism classes of (B,f) and by [M] the 

cobordism class of a (B,f)-manifold M. 

(v) The adddition on is compatible with the formation of 

(B,f)-cobordism classes and induces on, Qm(B,f) the structure of an 

abelian group. Its neutral element is the (B,f)-cobordism class 

consisting of all closed rn-manifolds arising as the boundary of some 

closed (B,f)-manifold C (c = m+l) with the induced (B,f)-structure. 

Inverses are obtained as follows. If M with (B,f)-structure (e.,A) 

represents a certain (B,f)-cobordism class, for r sufficiently 

large, let T: _ frn+r be a translation such that s r  is 

disjoint from TE*r(M)• Then there exists an imbedding 

F- 1 : MxI — 4 lHr+m+l such that el Mx{O} = 
r and JMx{l} = Te. r . Then 

the canonical classifying map c': MxI - BOr is a homotopy of 

Hence the lift A : M - B has a homotopy extension A': MxI . B r r —r r 

over c'. Give Mx{l} the induced (B,f)-structure. It follows that 

(Mx{O} U Mx{l}) J aø 0 U a(MxI), 

which means that Mx{l} with the (B,f)-structure constructed above 

represents the inverse of M in (B,f) a 
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BO   'b+l r 

Bi 
. . B0 r 

Bi b 

We indicate a source for many (B,f)-systems. Let b E IN, and 

suppose we have an infinite ladder of closed subgroups G of 

IG r r+l 

'1 
& 0 

Ob 0b+1 Or c r+l 

where all arrows are inclusions, so that each square in this ladder 

automatically commutes. If for all r ≥ 1, Gr = {Id r we take 
R 

B := EO , f : f', g : Ei . In the other cases, observe that 
r r r r r r 

G  acts on EO by restricting the 0-action. The quotient space 

is a classifying space for principal Gr_bundles. Furthermore fl is 

the composite of two fibrations EOr BGr = Br , a principal 

a r r r - r r r r -bundle, and f : B , BO with fibre 0 /G . Since Ei is 

equivariant and i : 0 -+ 0 induces an inclusion G G 
r r r+l r r+l 

we get the double ladder below in which each square commutes strictly 

and each vertical map is a Hurewicz-fibration ( cf. [B], Chapter III). 

Eib Ei 
EOb   EOb+l ) EO r EO r+1 

I 
gb 

I 
BG BG 
•r r+l 

I' 
BO., 



The bottom ladder is a (B,f)-system associated with the system of 

groups {G c 0r 

In essence, a (B,f)-structure on a manifold M comes from an 

imbedding €: M - Rm+r so that the associated normal bundle of M in 

m+r 
F is a G-bUfldle. Furthermore, (B,f)-cobordism is the classical 

cobordism idea applied to the class of manifolds allowing for a 

(B,f)-structure. In particular the choice 

C := O 
r r 

C := SO 
r r 

yields standard unoriented cobordism 

yields standard oriented cobordism 

G 2r 22rr-+1G := U r yields complex cobordism 

G := {Id } yields Pontryagin's framed cobordism. 

We shall briefly explain the method of constructing (B,f)-bordism 

theories. For systematic reasons, we present now the formalities 

needed to state conditions which will insure that the graded 

(B,f)-bordism group of a point will turn out to be a graded 

associative commutative ring with 1. 

* 00 00 Go 
(6.3) Lemma (i) The map 7r R P R -. IR induces a map 

k : BO xBO -. BO • by taking direct sums. Note that k r,r r r r+r r,r 

classifies the product bundle 

(ii) The diagram 

Id x k 
  BO xBO ' BO r x BO r X BOri r r'+r'' 

k r,r , xld 

BO r+r' r x BO •  . BO + ,.1 
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commutes. 

(iii) If rr' is even, a homotopy of ir r,r I r',r to it through 

rotations renders the diagram 

BO xBO 

:1 
BO xBO. 
r r 

k 
r, r' 

k 
r' , r 

  BO 
r+r 1 

commutative up to homotopy, where r(P,P') = (P',P). Let 

Pn : BO , BO be the map induced by (R° ° — PC - . If rr' is odd, 

a homotopy of w r,r' to Pr+rlltr ,r through rotations renders the 

diagram 

BO xBO re 

BO xBO 
r' r 

k 
r,r' 

BO 
r+r' 

p ,k 
r+r r',r 

commutative up to homotopy. ci 

(iv) BO  has the canonical-base point R r = (the first R ' block 

of fl °°). Bi r r,r is a based map, k , r r (* ,* r+r) = * , and 

k r,'r ,( x,* r ) = Bi r+r • -1 r O .°Bi (x). 
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We shall from now on work with (B,f)-systems satisfying the 

following additional requirements. 

(Cl) For all r,r' ? b, there exists a map r,rl :B xB — p B 
r r' r+r 

such that the diagram 

B xB 
r r'   B r+r t 

f xf r nj, 
BO xBO   BO 
r r k r+r' 

r, r' 

commutes. Since k*1y, r'r'' this implies that f £ 
r+r r+r' r+r 

classifies 
* * 

(C2) The diagram 

B X B , x B  + B x   
r r r' 1 r r s+r hs 

x Id 

B xB 
r+r' r'' n r+rs+rs 

commutes up to a vertical homotopy over the diagram (6.3)(ii). 

(C3) If rrs is even, the homotopy between krri and krart in 

(6.3)(iii) lifts to a homotopy between err' and Ir1,rT over the 

diagram in (6.3)(iii). 

76 



(C4) In each fiber f 1 c Br there is a distinguished pointS 

such that £r,ri r'r' is in the same path connected component of 

f'{* } as ' and 3 is in the same path component of 
r r r+r r,r r 

f' "k r+r'' r,r ±'r i*r3) as 

*(64) Remark The (B,f)-systems arising from a system of subgroups 

{Gr c Or} as explained above, satisfy the requirements (Cl),...,(C4). 

Proof sketch The map 'lrrl: lR° —' R O induces a map 

, r1 : EOrXEOrI — i EO r+rl satisfying the requirements (Cl),...(C4). 

For the other systems, we get maps I r,r l: BC r r xBG — r+r BC induced 

by £, ri by taking quotients. For the distinguished point , we 

take the quotient class of the r-frame ( el ,... ,er). a 

A (B,f)-system gives rise to a homology theory as follows. Let 

X be a space, M E A a closed (B,f)-manifold, u: M — X a 

continuous map. The pair (M,u) is called a singular (B,f)-manifold in 

X. 

(6.5) Definition Two singular (B,f)-manifolds (M,u), (M',u') are 

called (B,f)-bordant ' there exists an (m+l)-dimensional 

(B,f)-manifold C such that 

M U (-M') = 

where -M' represents -[M'] in 2(" f) , and there exists a continuous 

map a:C - X such that aIM = u and aIMI = U'. 

* 
(6.6) Lemma (i) (B,f)-bordism on singular (B,f)-manifolds is an 

equivalence relation. Let {M,u} denote the (B,f)-bordisin class of the 

singular (B,f)-manifold (M,u). 
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(ii) The (B,f)-bordism classes of dimension m in X form an 

abelian group under the operation disjoint union of domain manifolds 

and singular maps. Denote this group by 2 (Bf)x 

2 (B,f) is a generalized homology functor from the category of 

compactly generated Hausdorff spaces to the category of 1N0-graded 

abelian groups. 

Next let us construct a cross-product for Q'_. Let X, Y be 

spaces and let (M,u) be a singular (B,f)-manifold in X, (N,v) a 

singular (B,f)-manifold in Y. Let (e,A), (s',A') represent 

(B,f)-structures for M, N. The cross product of (M,u) with (N,v) is 

(MxN,uxv) with (B,f)-structure (erXa, r,r ,(AXA,)). That this makes 

sense follows from the coimnutativity of the diagram below and the fact 

that k r,r , r( c xc'r ,) classifies the normal bundle of MxN in i 

because kr,rt classifies 

M x N 

* 
(6.7) Lemma 

A x A' 
r r' 

B xB 
r r' 

I 
r, r' 

r+r' 

f r r' xf Ic+nt 
X 

  BO xBO   BO r r' r+r' 
C C' r r' krru 

(1) The cross product on singular (B,f)-manifolds 

defined above is natural, biadditive and associative. 

(ii) The cross product on singular (B,f)-manifolds is compatible 

with the (B,f)-bordism relation and, therefore, induces a natural 
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homomorphism x: c(B,f)x ® Q (Bf) c≥(B,f)xxy The cross product 

for three spaces is associative. 

(iii) Let P = {*} denote the 1-point space and identify 

PXX = X = XXP by the obvious homeomorphisms. Then fix" induces on 

(B,f) 
P the structure of an 1N0-graded associative, commutative ring 

with identity element 1, the cobordism class represented by (P,Id) 

where P has (B,f)-structure P -* fl?.' any map and 

Ab. P  E B. Note also that Bf) is a subring of 

S2( B 'f)P containing 1. 

(iv) The cross product induces on a natural 

(B, P-bimodule structure. 

(v) The ,biadditive map 4"f)X x (Bf) (B,f)xy 

("f) P-balanced and, therefore, induces a homomorphism 

x: ç' f) X ®(B, p 1) , (B, f) xxy 

of (B, UP-modules. 

is 

The proof is obvious at the level of singular manifolds. For the 

related (B,f)-structures it follows from properties Cl,.. ., C4 above. 

Now let (X,) be an H-space. We get a Pontryagin algebra 

structure on (B,f)X out of the composite 

2(B,f)x e Q(B ,f)x (Bf)xxx '* c≥(B,f)x 
Q (Bf) 
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The algebra structure is associative, respectively commutative if 

(X,) is H-associative, respectively H-commutative. 

Now let 11 be a group acting on a path connected H-group (W0,p0) 

by a group homomorphism 4): TI - HWO and denote by W = Wo a 46  the 

corresponding H-semidirect product with H-multiplication A. Then 11 

acts on S2 ,two by ' P-algebra automorphisms via 

qi: 11 3 p 1-, E Aut Q(Bf)w o. 

(6.8) Theorem (B,f)w (B,f)w as graded 
go P 

Q' U P-algebras. 

We are working with a fixed (B,f)-system. Thus we can, without 

risk of confusion, write instead of Also denote S?0P 

by H. All tensor products here are over H. 

Proof of ( 6.8) is an additive (unreduced) homology theory. 

Thus SOU HIT, so that the qi-twisted tensor product above fits in the 

frame work of %3. 

We know from ( 6.7) (v) that the cross product 

?0Tr 3 ({M,u},{A,v}) 1  {MxA,uxv} E 

is R-balanced. It remains to show 

(1) "x" is y-twisted 

(2) the R-algebra homomorphism x: QW0ec≥0U -, Q  is an 

isomorphism. 

Verification of ( 1). We must show that for all {M,u} E S.M. WO, 

{N, v} € RW0, {n,t} E S?1T, p E IT, the identity 

80 



({M,u}x1,p})({N,v}x{n,t}) = {MxN,,j00(ux(pov))} x {n,pt} 

holds. Here, p: 1 - {p} C IT denotes the unique map and pt: n -. II 

is given by multiplication of function values: pt(x) = pt(x). Now 

(CM,.u}x{1,p})({N,v}x{n,t}) = {Mx1,uxp}{Nxn,vxt} 

= {MxlxNxn,uxpxvxt} 

{MxNxn( 0(uX( 0v))) x pt} 

= {MXN,po(uX(p 0v))} x {n,pt} 

where p is defined as in U. Thus ttXtt is qi-twisted. 

Verification of ( 2). We know that is additive. Thus 

20 W 20P as an R-module so that we get the isomorphisms of 
rEIT 

R-modules 

.c?w0 OR Q01T ED Yoxfpl 
pElT 

To make this isomorphism explicit, define for p E U 

i: W0x{p} C-.-., w the inclusion 

: W0 3 w C-, (w,p) E Wx{p} the translation map. 

Then, the above isomorphism takes an element {M,u)e{1,p} to ir p* {M,u} 

= {M,iTu} = {MxI,uxp} = {M,u} x { l,p}. Thus "X" is a monomorphism. 

Since the elements of the form {M,u}ø{1,p} generate SWo 0 207T, "X" is 

onto. 0 
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