HOMOTOPY FUNCTORS ON H-SEMIDIRECT PRODUCTS

BY

GEORG PESCHKE

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

APRIL, 1986
c GEORG PESCHKE
1986

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a étē accordēe à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se rēserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimes ou autrement reproduits sans son autorisation écrite.

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled

> Homotopy Functors on H-Semidirect Products
submitted by Georg Peschke in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

K. Varadarajan, Supervisor

Department of Mathematics \& Statistics
P. Zvengrowski
Department of Mathematics \& Statistics
H.J. Tanahat.
Department of Mathematics \& Statistics

D. Venkatesan

Department of Physics

$\frac{12 \text { June } 86}{\text { date }}$

Abstract

The concept of H -semidirect product structure on an H -group is introduced. We show that the loop space ΩX of any $C W$-complex X is the H -semidirect product of the identity path-component of $\Omega \mathrm{X}$ with $\pi_{1} \mathrm{X}$.

The set of free homotopy classes of maps into an H -semidirect product inherits the structure of a semidirect product of groups. This leads to new insight concerning the nilpotency of homotopy classes of maps into an H -group.

In singular homology with suitable coefficients and suitable bordism theories the Pontryagin algebra of an H -semidirect product decomposes into a twisted tensor product of the Pontryagin algebras of the factors. The notion of a twisted tensor product of certain algebras is introduced and their universal properties are presented.

We make explicit the role played by the H -semidirect product structure of the loop space of a $C W$-complex X in the context of investigating X for nilpotency.

Contents

Introduction 1
§0 Notation, technicalities, preliminaries on H-spaces 5
§l Construction of H-semidirect products 12
§2 Nilpotency of mappings into H-groups 20
\$3 Twist on the product of groups and the tensor product of certain algebras 36
\$4 The Pontryagin homology algebra of an H -semidirect product 49
\$5 Nilpotency of CW-complexes and H -semidirect products 56
§6 Bordism rings of H -semidirect products 66
References 82

Introduction

There are various reasons why nilpotent CW-complexes enjoy special interest in Topology. This thesis evolved out of an attempt to understand the nature of nilpotency of CW -complexes.

A connected CW-complex X is called nilpotent, if its fundamental group $\pi_{1} X$ is nilpotent and acts nilpotently on the higher homotopy groups of X or, equivalently, if the Postnikov system of X admits a principal refinement [$\mathrm{B}-\mathrm{K}$], [$\mathrm{H}-\mathrm{M}-\mathrm{R}]$. It seems it was Roitberg [R] who was the first to consider the nature of nilpotency of X from the loop space point of view. He replaces ΩX by a homotopically equivalent topological group, a construction due to Milnor [M1] for the loop space of a countable CW-complex, and arrives at the characterization: X is nilpotent if and only if $\pi_{1}(X, *)$ is nilpotent and the action of $\pi_{1}(X, *)$ on $\pi_{n-1}(\Omega X, *)$ by loop conjugation is nilpotent.

Closer scrutiny reveals: $\Omega \mathrm{X}$ is, up to homotopy, a semidirect product $(\Omega X)_{0 \times \pi} X$, where $(\Omega X)_{0}$ denotes the path component of ΩX containing the path that stays constant at the base point. The concept of an H-semidirect product $W_{0 \times} \Pi$ is introduced in $\$ 1$. Here Π denotes a group acting on a path connected H-group W_{0} by classes of self homotopy equivalences of W_{0} which are at the same time H-maps. We show that the loop space of every based CW-complex is an H-semidirect product.

Let Π be a group acting on another group G via a homomorphism $\phi: \Pi \rightarrow$ AutG. From group theory we know that the semidirect product
$G_{\phi} \Pi$ is nilpotent if and only if Π is nilpotent and acts nilpotently on G [H], [V]. The corresponding notion of $H-n i l p o t e n c y$ of an H-group makes sense, and we show in $\$ 2$ that an H -semidirect product $W_{0 \times} \Pi$ is $H-n i l p o t e n t$ if and only if Π is a nilpotent group and the action of π on W_{0} is $H-n i l p o t e n t$.

These considerations are linked up with the nilpotency of a space X because ΩX is the H-semidirect product $(\Omega X)_{0} \times \pi_{1} X$. The group of free homotopy classes of maps $\left[\mathrm{S}^{\mathrm{n}-1}, \Omega \mathrm{X}\right]$ inherits from $\Omega \mathrm{X}$ the structure of a semidirect product, $\left[S^{n-1}, \Omega X\right] \cong\left[S^{n-1},(\Omega X)_{0}\right] \times 0 \pi_{1} X \cong \pi_{n-1}(\Omega X)_{0 \times 0} X$, because $(\Omega X)_{0}$ is simple. The action of $\pi_{1} X$ on $\pi_{n-1}(\Omega X)_{0}$ inherited from the H-semidirect product ΩX coincides with the action by loop conjugation used by Roitberg to characterize the nilpotency of X. Thus we arrive at the characterization: X is a nilpotent space if and only if $\left[S^{n-1}, \Omega X\right]$ is a nilpotent group for all $n \geq 2$ (cf. 85). Conditions for the nilpotency of $\left[S^{n-1}, \Omega X\right]$ are contained in 82 . E.g.: if ΩX is $H-n i l p o t e n t$, then $\left[S^{n-1}, \Omega X\right]$ is nilpotent for all $n \geq 2$. The difficult part of this approach is the problem: Does $\pi_{1} X$ act H-nilpotently on $(\Omega X)_{0}$? An answer depends crucially on the group of classes of self homotopy equivalences of ($\Omega \mathrm{X})_{0}$ induced by H -conjugation in $\Omega \mathrm{X}$ (cf. 85) or, more precisely, on the homomorphism ϕ from Π into this group. E.g. if this homomorphism takes everything in π to the identity, then X is simple. Unfortunately, it seems like not much is yet known about this subgroup of the group of self homotopy equivalences of $(\Omega X)_{0}$.

We also study singular homology and suitable bordism functors on an H-semidirect product $W=W_{0} \rtimes \Pi$. The resulting graded abelian group
inherits from W a graded algebra structure which decomposes to a twisted tensor product reflecting the H-multiplication in W.

In 83 , we lay the algebraic foundations. Given a commutative ring R with identity, we introduce the notion of a twisted tensor product $A \otimes_{R}^{\Psi} R G$ of an R-algebra A with an R-group algebra $R G$ and discuss its universal properties.

In 84, we show that $H_{*}(W ; R) \cong H_{*}\left(W_{0} ; R\right) \otimes_{R}^{\psi} H_{*}(\pi ; R)$ and in §6, we derive a similar result for certain bordism theories. To avoid confusion, $H_{*}(\pi ; R)$ denotes the singular homology of the discrete space π with Pontryagin product coming from the group multiplication in π.

The considerations in $\$ 4$ enter again into the discussion of nilpotency of a space x. The actions of Π on $\left[S^{n-1},(\Omega X)_{0}\right]$ and on $H_{n-1}\left((\Omega X)_{0}\right)$ are both derived from the H -semidirect product structure on ΩX. It follows that the Hurewicz homomorphism is an operator homomorphism. Consequently, if $\pi_{1} X$ acts nilpotently on [$\mathrm{S}^{\mathrm{n}-1},(\Omega \mathrm{X})_{0}$], then $\pi_{1} \mathrm{X}$ also acts nilpotently on the image of $\pi_{n-1}(\Omega X)_{0}$ in $H_{n-1}\left((\Omega X)_{0}\right)(c f .8 \$ 4,5)$.

A technical remark: This thesis is self contained in the sense that the relevant definitions are recalled and that facts not contained in a standard reference text like Spanier "Algebraic Topology" [Sp] are stated, without proof, as they are needed. To avoid confusion as to whether or not a statement labeled as "theorem", "proposition", "lemma" is taken from a source in print or is believed to be new, I have marked the known results with an asterisk. Thus *(5.2) Theorem ..., indicates a known result. Some of these results are of elementary nature and folklore, in which case no reference is
given, others are implicitly contained in a source in print. A proof is given if such a result plays a key role in this thesis. All of the remaining stated facts are accompanied by a precise reference.

Acknowledgements I thank the Faculty of Graduate Studies and the Department of Mathematics and Statistics at the University of Calgary for accepting me into their program and for their support. My most heartfelt thanks go to Dr. K. Varadarajan for supervising me in this Ph.D. program and, above all, for fostering my development in Mathematics in many ways.

Also I wish to thank the following mathematicians on the defense examining committee of this thesis: Dr. H. Farahat who pointed out that a concept equivalent to the "twisted tensor product", developed in §3, is known as a "crossed product algebra" [C-R]. Furthermore Dr. D. Sjerve and Dr. P. Zvengrowski for carefully reading the original version of this thesis and for offering a number of welcome editorial suggestions.

80 Notation, technicalities, preliminaries on H-spaces

Throughout we shall be working in Steenrod's "Convenient category of topological spaces" [Stel] or suitable subcategories or categories of pairs of it. We use the following symbols.

$\mathfrak{N}, \mathbb{N}_{0}$	positive integers, non-negative integers
2	integers
\mathbb{R}	reals
I	$\{\mathrm{t} \in \mathbb{R}: 0 \leq t \leq 1\}$
$\left(\mathrm{S}^{\mathrm{n}}, *\right)$	any pair homeomorphic to
	$\left(\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\},(1,0, \ldots, 0)\right)$
$\Omega \mathrm{X}$	loop space of a based space X
$\mathrm{f} \approx \mathrm{g}$	f is homotopic to g
[f]	homotopy class of f
[X, Y]	free homotopy classes of maps
[(X,*),(Y,*)]	based homotopy classes of maps
$\mathrm{C}_{\text {a }}$	reduced mapping cone of a based map a
SA	reduced suspension of the based space (A,

For the purposes of Homotopy Theory the concept of a topological group has been generalized to that of an H-space.
(0.1) Definition Let (W, e) be a space, $\mu:(W \times W,(e, e)) \rightarrow(W, e)$ a based map.
(i) The pair (W, μ) is an H-space with homotopy identity $e: \Longleftrightarrow$ the following diagram commutes up to a homotopy which is constant on the base point (e,e) of (W, e) $\vee(W, e)$.

Here ∇ denotes the folding map, $\nabla(e, w)=\nabla(w, e)=w$.
(ii) (W, μ) is homotopy associative : \Longleftrightarrow the following diagram commutes up to a homotopy which is constant on the point (e,e,e).

(iii) A map i: $(W, e) \rightarrow(W, e)$ is a homotopy inverse in the H-space $(W, \mu): \Longleftrightarrow$ the following diagram commutes up to homotopies which are constant on the base point.

Here $c: W \rightarrow\{e\} \longrightarrow W$ is the collapsing map.
(iv). (W, μ) is homotopy commutative : \Longleftrightarrow the following diagram commutes up to a homotopy which is constant on (e,e); $\tau\left(w, w^{\prime}\right)=\left(w^{\prime}, w\right)$.

We shall write w^{\prime} for $\mu\left(w, w^{\prime}\right)$ and w^{-1} for $i(w)$ if there is no risk of confusion. By an H-group we mean a homotopy associative H-space with homotopy inverse i. Furthermore, W_{0} will denote the path connected component of W containing the homotopy identity e. Thus every topological group with identity element e is an H-group with strict homotopy identity e yielding strictly commutative diagrams (0.1)(i),(ii),(iii). The loop space ΩX of a based space X is an H-group with homotopy identity the loop staying constantly at the base point of X. The formation of loop spaces can be iterated; $\Omega^{2} \mathrm{X}:=\Omega(\Omega \mathrm{X})$ is a homotopy commutative $\mathrm{H}-\mathrm{group}$.

The following theorem explains the role of H -structure in the connection with natural group structure in the set of homotopy classes of maps into a fixed space. [Wh], 116-121.
*(0.2) Theorem If (W, μ) is an H-space, then [_, W], respectively $[\ldots,(W, e)]$, is a contravariant functor from the category of compactly generated Hausdorff-spaces, respectively based compactly generated Hausdorff spaces into the category of non-associative monoids (monoid:
a set with multiplication satisfying $x(y z)=(x y) z$ and existence of a neutral element u with $x u=x=u x$ for all x). If (W, μ) also has any of the additional structures (0.1)(ii), (iii), (iv), then [_,W], respectively [_, (W, e)] inherits the strict analogues of these structures.

Conversely, if for a space ($V, *$) the functor [_, $(V, *)$] from the category of based spaces to the category of based sets can be enriched to be a functor into the category of non-associative monoids, respectively associative monoids, respectively abelian monoids, respectively any of the above with inverse then ($\mathrm{V}, *$) has the structure of an H-space, respectively homotopy associative H-space, respectively homotopy abelian H-space, respectively with homotopy inverse.

In particular $[\mathrm{X}, \mathrm{W}],[(\mathrm{X}, *),(W, e)]$ are groups if (W, μ) is an H-group.
(0.3) Definition Let $(V, \mu),(W, \nu)$ be H-spaces, $f:(V, e) \rightarrow(W, e)$ a map. We call f an H-map $: \Longleftrightarrow$ the following diagram commutes up to a homotopy which is constant on (e,e) $\in V \times V$.

(0.4) Remark (a) An H-map $f:(V, e) \rightarrow(W, e)$ yields natural transformations of non associative monoids $f_{}:[\ldots, V] \rightarrow[\ldots, W]$ and $f_{*}:\left[{ }_{-},(V, e)\right] \rightarrow\left[{ }_{-},(W, e)\right]$. If in addition $(V, \mu),(W, \nu)$ both have any of the properties (0.1)(ii), (iii), (iv) then f_{*} is a natural transformation of algebraic systems having as structures the strict analogues of (0.1)(ii), (iii), (iv).
(b) We shall frequently work with free homotopy classes of free maps into an H-group. In this context we may drop the conditions concerning base points from the definition of an H -space and of an H-map f and merely require $f: V \rightarrow W$ to be a map which makes the diagram in Definition (0.3) commute. This still guarantees that $\mathrm{f}_{*}:[, \mathrm{V}] \dot{\longrightarrow}[$, W$]$ is a natural transformation with the properties stated in (a).

The following observation will be fundamental on a technical level. Let $(V, \mu),(W, \nu)$ be H-spaces.
*(0.5) Lemma If $f: V \rightarrow W$ is a homotopy equivalence and also an H-map, let $g: W \rightarrow V$ be a homotopy inverse of f. Then g is also an H-map.

Proof In the diagram

we know that the left and right hand diagrams commute up to homotopy and need to verify homotopy commutativity of the middle diagram.

Commutativity of the right hand diagram yields

$$
\begin{aligned}
f \circ \mu \circ(g \times g) \approx \nu \circ(f \times f) \circ(g \times g) & =\nu((f \circ g) \times(f \circ g)) \\
& \approx \nu\left(I d_{W} \times I d_{W}\right) \\
& \approx{I d_{W} \circ \nu} \quad \\
& \approx f \circ g \circ \nu .
\end{aligned}
$$

Consequently, $\left(g^{\circ} f\right) \circ \mu \circ(g \times g) \approx\left(g^{\circ} f\right){ }^{\circ} g^{\circ} \nu$. Since $g^{\circ} f \approx I d_{V}$, homotopy commutativity of the middle diagram follows.

An H-equivalence is an H-map which is also a homotopy equivalence. This terminology is justified by Lemma (0.5).

If (W, μ) is an H -space, the set of homotopy classes of self equivalences of W is a group with multiplication defined by $[f] \cdot[g]:=\left[f^{\circ} g\right]$. Denote this group by $\varepsilon(W)$. Lemma (0.5) says (0.6) Corollary The set $H \varepsilon(W)$ of homotopy classes of self H-equivalences of W is a subgroup of $\varepsilon(W)$.

Now let (W, μ) be an H-group. For $w \in W$, let \bar{w} denote the path connected component of w in W. Let Π denote the set of all path components of .
*(0.7) Theorem $\quad \pi$ is a (discrete) group with multiplication $\bar{w} \overline{w^{\top}}=\overline{w^{\top}}$. The identity element of Π is the path-component of the homotopy identity e of W and $(\bar{w})^{-1}=\overline{W^{-1}}$.

Let ($X, *$) be a based space. The adjointness homeomorphism

shows
(0.8) Remark In the notation of (0.7), if $W=\Omega(X, *)$, then $\Pi \cong \pi_{1}(\mathrm{X}, *)$.
\square
*(0.9) Lemma, Definition Let Π be a group acting on another group G by a homomorphism $\psi: \Pi \rightarrow$ AutG. Then the set $G \times \Pi$ with multiplication $(g, p)\left(g^{\prime}, p^{\prime}\right)=\left(g \psi_{p}\left(g^{\prime}\right), p p^{\prime}\right)$ is a group, called the semidirect product of G and π with respect to ψ. Notation $G \bowtie \pi$.

81 Construction of H-semidirect products

Let $\left(W_{0}, \mu\right)$ be a path-connected H-group with H-inverse i and H-identity e. Let Π be a group and $\phi: \Pi \rightarrow H \varepsilon\left(W_{0}\right)$ a group homomorphism. We define the H-semidirect product of W_{0} with Π under ϕ and give conditions under which an H -group is an H -semidirect product.

For each $p \in \Pi$, fix an H-self homotopy equivalence $\varphi_{\mathrm{p}} \in \phi(\mathrm{p}) \in \mathrm{H} \varepsilon\left(W_{0}\right)$. Define

$$
\begin{aligned}
& m:\left(W_{0} \times \Pi\right) \times\left(W_{0} \times \Pi\right) \exists\left(w, p, W^{\prime}, p^{\prime}\right) \mapsto\left(\mu\left(w, \varphi_{p}\left(w^{\prime}\right), p p^{\prime}\right) \in W_{0} \times \Pi\right. \\
& j: W_{0} \times \Pi \exists(w, p) \mapsto\left(\varphi_{p^{-1}}(i(w)), p^{-1}\right) \in W_{0} \times \Pi .
\end{aligned}
$$

If we want m and j to be base point preserving, we take $\varphi_{1}:=\mathrm{Id}_{W_{0}}$.
(1.1) Proposition (W, m) $:=\left(W_{0} \times \Pi, m\right)$ is an $H-$ group with H-inverse map j.
(1.2) Lemma For $p \in \Pi$, let $\varphi_{p}, \varphi_{p}^{\prime} \in \phi(p)$ and denote by $(W, m):=\left(W_{0} \times \pi, m\right),\left(W^{\prime}, m^{\prime}\right):=\left(W_{0} \times \pi, m^{\prime}\right)$ the corresponding H-groups. Then, the identity map $W \rightarrow W$ is an H-equivalence.

Proof of (1.1) Step 1 m restricted to $W \vee W$ is homotopic to the folding map. For $\xi \in W \vee W$ (we write $W W^{\prime}$ for $\mu\left(W, W^{\prime}\right)$),

$$
m(\xi)= \begin{cases}\left(e \varphi_{1}\left(w^{\prime}\right), p^{\prime}\right) & \text { if } \xi=\left(e, l, w^{\prime}, p^{\prime}\right) \\ \left(w \varphi_{p}(e), p\right) & \text { if } \xi=(w, p, e, 1) .\end{cases}
$$

Let F be a homotopy of φ_{1} into ${I d_{W_{0}}}$ and, for each $p \in \Pi$, let α_{p} be
a path in W_{0} joining $\varphi_{p}(e)$ to e (we must take $\alpha_{1}:=F_{\mid\{e\} \times I}$). This yields a homotopy

$$
A:(W \vee W) \times I \exists(\xi, t) \mapsto\left\{\begin{array}{ll}
\left(e F\left(w^{\prime}, t\right), p^{\prime}\right) & \text { if } \xi=\left(e, l, w^{\prime}, p^{1}\right) \\
\left(w \alpha_{p}(t), p\right) & \text { if } \xi=(w, p, e, 1)
\end{array}\right\} \in W
$$

satisfying

$$
A(\xi, 1)= \begin{cases}\left(\mu\left(e, w^{\prime}\right), p^{\prime}\right) & \text { if } \xi=\left(e, l, w^{\prime}, p^{\prime}\right) \\ (\mu(w, e), p) & \text { if } \xi=(w, p, e, 1) .\end{cases}
$$

Thus a homotopy of $\mu_{\mid W_{0} \vee W_{0}}$ induces a homotopy of $A(\cdot, 1)$, and hence of ${ }^{m} \mid W V W$, into the folding map of W.

Step 2 Homotopy associativity of m . We must show that the maps $m(m \times I d), m(I d \times m): W \times W \times W \rightarrow W$ are homotopic. Computing

$$
\begin{aligned}
& m\left(m\left(w_{1}, p_{1}, w_{2}, p_{2}\right), w_{3}, p_{3}\right)=\left(\left(w_{1} \varphi_{p_{1}}\left(w_{2}\right)\right) \varphi_{p_{1} p_{2}}\left(w_{3}\right), p_{1} p_{2} p_{3}\right) \\
& m\left(w_{1}, p_{1}, m\left(w_{2}, p_{2}, w_{3}, p_{3}\right)\right)=\left(w_{1} \varphi_{p_{1}}\left(w_{2} \varphi_{p_{2}}\left(w_{3}\right)\right), p_{1} p_{2} p_{3}\right)
\end{aligned}
$$

we see that such a homotopy can be obtained by going through the following succession of homotopies.

Since ϕ is a homomorphism, we get $\varphi_{\mathrm{p}_{1} \mathrm{P}_{2}} \approx \varphi_{\mathrm{p}_{1}}{ }^{\circ} \varphi_{\mathrm{p}_{2}}$. This yields a homotopy between $m(m \times I d)$ and the map

$$
\left(w_{1}, p_{1}, w_{2}, p_{2}, w_{3}, p_{3}\right) \mapsto\left(\left(w_{1} \varphi_{p_{1}}\left(w_{2}\right)\right) \varphi_{p_{1}}{ }^{\circ} \varphi_{p_{2}}\left(w_{3}\right), p_{1} p_{2} p_{3}\right) .
$$

Using homotopy associativity in W_{0}, we see that this map is homotopic to

$$
\left(w_{1}, p_{1}, w_{2}, p_{2}, w_{3}, p_{3}\right) \mapsto\left(w_{1}\left(\varphi_{p_{1}}\left(w_{2}\right) \varphi_{p_{1}}{ }^{\circ} \varphi_{p_{2}}\left(w_{3}\right)\right), p_{1} p_{2} p_{3}\right) .
$$

Since $\varphi_{p_{1}}$ is an H-map, this latter map is homotopic to $m(I d \times m)$.

Step 3 is a homotopy inverse. We must show that the maps

$$
\begin{aligned}
& W \xrightarrow{\Delta} w \times w \xrightarrow{I d \times j} w \times w \xrightarrow{m} w \\
& W \xrightarrow{\Delta} w \times w \xrightarrow{j \times I d} w \times w \xrightarrow{m} w
\end{aligned}
$$

are homotopic to the constant map $W \rightarrow\{(e, 1)\}$ (\triangle denotes the diagonal map).

Let $(w, p) \in W$; then

$$
m(I d \times j) \Delta(w, p)=\left(\left(w \varphi_{p}\left(\varphi_{p^{-1}}\left(w^{-1}\right)\right), 1\right)=\left(w_{p}\left(\varphi_{p^{-1}}\left(w^{-1}\right)\right), 1\right) .\right.
$$

Since $\varphi_{p}{ }^{0} \varphi_{p^{-1}} \approx \varphi_{p^{-1}} \approx \varphi_{1} \approx I d_{W_{0}}$, we get a homotopy of $m(I d \times j) \Delta$ with the map $(w, p) \mapsto\left(w^{-1}, 1\right)$. This is homotopic to the constant map $W \rightarrow\{(e, 1)\}$ using the property of the H-inverse i in W_{0}. The other way around we get

$$
m(j \times I d) \Delta(w, p)=\left(\varphi_{p^{-1}}\left(w^{-1}\right) \varphi_{p^{-1}}(w), 1\right)
$$

Since $\varphi_{p^{-1}}$ is an H-map, this map is homotopic to

$$
(w, p) \mapsto\left(\varphi_{p^{-1}}\left(w^{-1} w\right), l\right) .
$$

Since W_{0} is an H-group, this map is homotopic to

$$
(\omega, p) \mapsto\left(\varphi_{p^{-1}}(e), l\right)
$$

Since W_{0} is path connected there is a path in W_{0} joining $\varphi_{p_{-1}}$ (e) to
e. Such a path induces a homotopy of the latter map with the constant
map $W \rightarrow\{(e, l)\}$. Hence $m(j \times I d) \Delta$ is homotopic to the constant map.

Proof of (1.2) In view of Lemma (0.5) we need only check that $I d_{W}$ is an H-map. For $(w, p),\left(W^{\prime}, P^{\prime}\right) \in W_{0} \times \pi$, we get

$$
I d_{W^{\circ}} m\left(w, p, W^{\prime}, p^{\prime}\right)=\left(w \varphi_{p}\left(w^{\prime}\right), p p^{\prime}\right)
$$

Since $\varphi_{P} \approx \varphi_{p}^{\prime}$, this map is homotopic to the map,

$$
\left(w, p, w^{\prime}, p^{\prime}\right) \mapsto\left(w \varphi_{p}^{\prime}\left(w^{\prime}\right), p p^{\prime}\right)=m^{\prime 0}\left(I d_{W} \times I d_{W}\right)\left(w, p, w^{\prime}, p^{\prime}\right)
$$

Proposition (1.1) and Lemma (1.2) suggest the following.
(1.3) Definition Let W_{0} be a path-connected H-group, $I T$ a discrete group, $\phi: \Pi \rightarrow H E\left(W_{0}\right)$ a group homomorphism. An $H-g r o u p ~ V$ is an H-semidirect product of W_{0} and Π under ϕ if an only if V is H-equivalent to the space W constructed in (1.1). In this case, we write $V \approx W_{0 \times \infty} \Pi$. The subscript " ϕ " may be deleted if the context is clear.

Turning to the question as to whether or not a given H-group (H,M) is an H-semidirect product, let us denote by W_{0} the identity path component of W and by Π the set of path-connected components of W with the canonical structure of a discrete group as explained in (0.7). Thus, if \bar{x} denotes the path component of $x \in W$, then $\bar{x} \bar{y}=\overline{x y}$ in π.
(1.4) Proposition π acts on W_{0} by classes of free H-equivalences.

Proof For each $\bar{x} \in \Pi$, let $\phi(\bar{x}) \in H \varepsilon\left(W_{0}\right)$ be represented by the map φ_{x},

$$
\varphi_{x}: W_{0} 3 w \mapsto x w x^{-1} \in W_{0} .
$$

It is clear that φ_{x} takes values in W. Since $\varphi_{x}(e) \in W_{0}$ and W_{0} is connected, φ_{X} actually takes values in W_{0}. Then φ_{X} is an H-map with H-inverse $\varphi_{x^{-1}}$, hence an H-equivalence.

To see that $\phi(\bar{x})$ is well defined, suppose $\bar{x}=\bar{x}^{\prime}$. Then x and x^{\prime} belong to the same path component of W. Take a path $\alpha: I \rightarrow W$ joining x to x^{\prime}. Then

$$
I \times W_{0} \exists(t, w) \mapsto \alpha(t) W_{\alpha}(t)^{-1} \in W_{0}
$$

is a homotopy between φ_{x} and $\varphi_{\mathrm{X}}{ }^{\prime}$. Thus $\phi(\bar{x})$ is well defined.
The same technique shows that $\varphi_{x y} \approx \varphi_{x} \varphi_{y}$. Hence,
$\phi(\overline{x y})=\phi(\bar{x}) \phi(\bar{y})$ and $\phi: \Pi \rightarrow H \varepsilon\left(W_{0}\right)$ is a homomorphism.

Now fix an element x for each path-component $\bar{x} \in \Pi$. From the data in (1.4) we may then form the H-semidirect product $W_{0} \propto_{\phi} \Pi$ in accordance with (l.1). There is a canonical continuous map

$$
h: W_{0} \rtimes_{\phi} \Pi \ni(w, \bar{x}) \mapsto w x \in W .
$$

(1.5) Lemma (i) h is an H-map.
(ii) Taking different choices $\overline{x^{\top}}=\bar{x}$ in the various path components of W yields an H-map $h^{\prime}: W_{0} x_{\phi} \Pi \rightarrow W$ with $h \approx h^{\prime}$.

Proof (i) We claim that the following diagram commutes up to homotopy.

Here $\left[x_{1} x_{2}\right]$ denotes the fixed representative for the path component $\overline{x_{1} x_{2}} \in \Pi$. A homotopy (1) in the diagram above is obtained using any path joining $\left[x_{1} x_{2}\right]$ to $x_{1} x_{2}$ (same technique as in (1.4)). A homotopy (2) comes from homotopy associativity in W.
(ii) A homotopy of h into h^{\prime} can be constructed using for each $\bar{x} \in \Pi$ a path $\propto_{\bar{x}}$ joining x to x^{\prime}.

Representing the path component of the identity W_{0} of Π by the homotopy identity e of W itself, we see that the restriction

$$
{ }^{h} \mid W_{0} \times\{\bar{e}\}: W_{0} \times\{\bar{e}\} \rightarrow W_{0}
$$

is homotopic to $I d_{W_{0}}$ (if we identify $W_{0} \times\{\bar{e}\}$ with W_{0}). Therefore, for any $\vec{x} \in \Pi$,

$$
{ }^{h} \mid W_{0} \times\{\bar{x}\}: W_{0} \times\{\bar{x}\} \rightarrow \bar{x}
$$

is also a homotopy equivalence. Since ' h establishes a bijection
between the path components of $W_{0} \times \Pi$ and those of W, we would like to assert that the path componentwise homotopy inverses of h combine to a homotopy inverse k of h. We are then confronted with the question whether the topology of W is fine enough to admit this. Elementary point set topology yields
(1.6) Lemma The path componentwise homotopy inverses of h combine to a homotopy inverse k of h if and only if the path components of W are open in W.

This result can be utilized as follows. If X is a based CW-complex, Milnor [M2] shows that ΩX has the homotopy type of a CW-complex. The connected components of a CW-complex are open. Therefore, the path-components of $\Omega \mathrm{X}$ are open. Thus
(1.7) Theorem Let X be a based CW-complex, ($\Omega \mathrm{X})_{0}$ the identity component of ΩX and $\Pi:=\pi_{1} X$. As in (1.4), let $\phi: \Pi \rightarrow H \varepsilon(\Omega X)_{0}$ denote the action of π on $(\Omega X)_{0}$ by classes of $H-s e l f$ homotopy equivalences. Then there is an H-equivalence $h:(\Omega X)_{0} \infty_{\phi} \Pi \rightarrow \Omega X$.

Proof Obvious from (1.5), (1.6) and the fact that the pathcomponents of ΩX are open in ΩX.

Since the path components of a locally path connected space are open, we see that a locally path connected H -group is an H -semidirect product. Of particular interest here is the case where W is a locally path connected topological group with identity component W_{0}. In this case, W_{0} is a normal subgroup of W and the quotient group
$\Pi:=W / W_{0}$ is the same as the group constructed on the path components of W in accordance with (1.4).
(1.8) Theorem (i) The action of π on W_{0} as defined in (1.4) is by homotopy classes of inner automorphisms of W restricted to W_{0}. (ii) There is an H-homeomorphism $h: W_{0} \times \pi \rightarrow W$.

Proof (i) is immediate from the definition of $\phi: \Pi \longrightarrow H \mathcal{H}\left(W_{0}\right):$ If $\overline{\mathrm{x}} \in \Pi$, then $\phi(\overline{\mathrm{x}})$ is represented by the map

$$
\varphi_{X}: W_{0} \ni w \mapsto x W x^{-1} \in W_{0}
$$

(ii) As in (1.5), fix an element x for each path-component $\bar{x} \in \Pi$ and define

$$
h: W_{0 \times \phi} \Pi \exists(w, \bar{x}) \mapsto w x \in W .
$$

From (1.5) and (1.6) we know that h is an H-equivalence.
Furthermore, for each $\bar{x} \in \Pi$, the map $W_{0} \times\{\bar{x}\} \exists(W, \bar{x}) \mapsto w x \in \bar{x}$ has an inverse $\bar{x} 3 y \mapsto y x^{-1} \in W_{0} \times\{\bar{x}\}$. Thus h is even a homeomorphism.

82 Nilpotency of mappings into H-groups

Throughout this section W will denote an H-group obtained by taking the H-semidirect product of a path-connected H-group W_{0} with a discrete group Π under $\phi: \Pi \rightarrow H \varepsilon\left(W_{0}\right)$.

In [Wh], [Whl] G.W. Whitehead showed that for a path-connected space X the group $\left[X, W_{0}\right]$ is nilpotent if X has finite category. Here, we give conditions for [X,W] (free homotopy classes) to be nilpotent. This goal will be approached by considering (a) suitable properties of the range space, (b) suitable properties of the domain space. We shall respectively show:
(a) If X is arbitrary and W itself is H-nilpotent, then [X, W] will be nilpotent.
(b) If W is arbitrary and X is the mapping cone of a map $f: A \rightarrow Y$, then the Puppe sequence of f can be used to give conditions for the nilpotency index of $[X, W]$ in terms of the nilpotency indices of $[Y, W]$ and $[S A, W]$.

We begin by stipulating some notation.
(i) Let $\gamma=\gamma^{1}: W \times W \exists\left(w_{0}, w_{1}\right) \mapsto w_{0} w_{1} w_{0}^{-1} W_{1}^{-1} \in W$ and, for $n \geq 1$, $\gamma^{n+1}: W \times W^{n+1} \ni\left(w_{0}, w_{1}, \ldots, w_{n+1}\right) \mapsto \gamma^{1}\left(w_{0}, r^{n}\left(w_{1}, \ldots, w_{n+1}\right) \in W\right.$ denote the commutator maps of W.

Let $\gamma_{\phi}=\Upsilon_{\phi}^{1}:\left(W_{0} \times \Pi\right) \times W_{0} \exists\left(W_{0}, p, W_{1}\right) \mapsto W_{0} \varphi_{p}\left(W_{1}\right) W_{0}^{-1} W_{1}^{-1} \in W_{0}$ and, for $\mathrm{n} \geq 1$,
$r_{\phi}^{n+1}:\left(W_{0} \times \Pi\right) \times\left(W_{0} \times \Pi\right)^{n} \times H_{0} \longrightarrow W_{0}$
$\left(w_{0}, p_{0}, w_{1}, \ldots, p_{n}, w_{n+1}\right) \longmapsto r_{\phi}\left(w_{0}, p_{0}, \gamma_{\phi}^{n}\left(w_{1}, \ldots, p_{n}, w_{n+1}\right)\right)$ denote the ϕ-commutator maps of \mathcal{H}_{0}.
(2.1) Definition (i) W is H-nilpotent of nilpotency index nilW $\leq c: \Longleftrightarrow \gamma^{c}$ is homotopic to a constant map.
(ii) W_{0} is ϕH-nilpotent of nilpotency index $n i l_{\phi} W_{0} \leq c: \Longleftrightarrow \gamma_{\phi}^{\mathrm{C}}$ is homotopic to a constant map.

Note that the above commutators, when formally applied to a (discrete) group G (resp. Π acting on G by $\psi: \Pi \rightarrow$ AutG), agree with the usual commutators (resp. ψ-commutators). Here for γ^{c} (resp. r_{ψ}^{c}) to be homotopically trivial means that all c-fold commutators (resp. ψ-commutators) of G are equal to the identity element of G. Furthermore, the image set of γ^{n} (resp. γ_{ψ}^{n}) generates the usual n-th central series group $\Gamma^{n_{G}}$ (resp. $\Gamma_{\psi}^{n_{H}}$). In this sense the H-nilpotency indices of (2.1) agree with the usual group theoretic nilpotency indices.

For the reader's convenience, we include the following notions on $\psi-$ nilpotent groups and ψ-central series. The knowledgeable reader may continue reading after Lemma (2.3).

Let G, Π be groups, $\psi: \Pi \rightarrow$ AutG a homomorphism. Define the n-th ψ-central series group by

$$
\begin{aligned}
& \Gamma_{\psi}^{0} \mathrm{G}:=\mathrm{G} \\
& \Gamma_{\psi}^{\mathrm{n}+]_{G}}:=\operatorname{grp}\left\{g \psi_{\mathrm{p}}(\mathrm{~h}) \mathrm{g}^{-1} \mathrm{~h}^{-1}: g \in \mathrm{G}, \mathrm{p} \in \Pi, \mathrm{~h} \in \Gamma_{\psi}^{\left.\mathrm{n}_{\mathrm{G}}\right\}} \quad \text { for } \mathrm{n} \in N .\right.
\end{aligned}
$$

We say G is ψ-nilpotent of nilpotency index nil $_{\psi} G \leq c: \Longleftrightarrow$ $\Gamma_{\psi}^{C}=\{I\}$. In case ψ is the homomorphism sending Π into $\{1\}$, the notion of $4-$ nilpotency reduces to the standard notion of nilpotency.
*(2.2) Lemma (i) $\Gamma_{\psi}^{n_{G}}$ is a ψ-invariant normal subgroup of G.
(ii) For all $n, r_{\psi}^{n+1} G \subset \Gamma_{\psi}^{n_{G}}$.

Proof (i) The statement is true for $n=0$. Suppose $\Gamma_{\psi}^{n_{G}}$ is ψ-invariant. A generator of $\Gamma_{\psi}^{n+1} G$ is of the form $g \psi_{p}(h) g^{-1} h^{-1}$ with $g \in G, p \in \Pi, h \in \Gamma_{\psi}^{n_{G}}$. Let $q \in \Pi$, then

$$
\begin{aligned}
\psi_{q}\left(g \psi_{p}(h) g^{-1} h^{-1}\right) & =\psi_{q}(g) \psi_{q} \psi_{p}(h) \psi_{q}\left(g^{-1}\right) \psi_{q}\left(h^{-1}\right) \\
& =\psi_{q}(g) \psi_{q p q}{ }^{-1} \psi_{q}(h) \psi_{q}(g)^{-1} \psi_{q}(h)^{-1} \in \Gamma_{\psi}^{n+1} G
\end{aligned}
$$

because $\psi_{q}(h) \in \Gamma_{\psi} n_{G}$, by induction hypothesis.
Suppose that $\Gamma_{\psi}^{n_{G}}$ is normal in G. We show that any conjugate of a generator of $\Gamma_{\psi}^{n+1} G$ is in $\Gamma_{\psi}^{n+1} G$. So let $g^{\prime} \in G$, then

$$
\begin{aligned}
g^{\prime} g \psi_{p}(h) g^{-1} h^{-1} g^{\prime}-1 & =g g^{\prime} g \psi_{p}\left(g^{\prime}\right)^{-1} \psi_{p}\left(g^{\prime} h g^{\prime-1}\right) \psi_{p}\left(g^{\prime}\right) g^{-1} g^{\prime-1} g^{\prime} h g^{\prime}{ }^{-1} \\
& =a \psi_{p}(b) a^{-1} b^{-1}
\end{aligned}
$$

with $a=g^{\prime} g \psi_{p}\left(g^{\prime}\right)^{-1}$ and $b=g^{\prime} h g^{1^{-1}} \in \Gamma_{\psi^{\prime}}^{n_{G}}$ by induction hypothesis.
(ii) Follows from (i) by an obvious induction argument.
${ }^{*}(2.3)$ Lemma If $\Gamma_{\psi}^{n_{G}}$ is contained in the center of G, then $\Gamma_{\psi}^{n+a_{G}}=\Gamma_{\psi}^{a}\left(\Gamma_{\psi}^{n_{G}}\right)$ for all $a \in \mathbb{N}$.

Proof The statement is true for $a=0$. So let us assume $\Gamma_{\psi}^{n+a_{G}}=\Gamma_{\psi}^{a}\left(\Gamma_{\psi}^{n_{G}}\right) \quad$ Then

$$
\Gamma_{\psi}^{n+a+1} G=\operatorname{grp}\left\{g \psi_{p}(h) g^{-1} h^{-1}: g \in G, h \in \Gamma_{\psi}^{n+a} G\right\}
$$

But (2.2) says that $\psi_{p}(h) \in \Gamma_{\psi}^{n+a_{G}} \subset$ center of G. Hence, $\Gamma_{\psi}^{n+a+1} G$ is equal to

$$
\operatorname{grp}\left\{l \cdot \psi_{p}(h) \operatorname{lh}{ }^{-1}: 1 \in \Gamma_{\psi}^{n_{G}}, h \in \Gamma_{\psi}^{a}\left(\Gamma_{\psi}^{n_{G}}\right)\right\}=\Gamma_{\psi}^{a+1}\left(\Gamma_{\psi}^{n_{G}}\right)
$$

Concerning nilW, $\operatorname{nil}_{\phi} W_{0}$, we have the following results.
(2.4) Proposition Let $\phi: \Pi \rightarrow H \mathcal{H}\left(W_{0}\right)$ and $\phi^{\prime}: \Pi^{\prime} \rightarrow H \varepsilon\left(W_{0}\right)$ be homomorphisms of groups. Suppose $\phi^{\prime}=\phi^{\circ} f$ for some homomorphism $f: \Pi r \rightarrow \pi$. Then $\operatorname{nil}_{\phi}{ }^{\prime} W_{0} \leq n i l_{\phi} W_{0}$.

Taking Π^{\prime} to be the trivial group and ϕ^{\prime}, f the unique homomorphism, yields
(2.5) Corollary $n i l W_{0}=\operatorname{nil}_{\phi}, W_{0} \leq n i l_{\phi} W_{0}$ for all $\phi: \Pi \rightarrow H E\left(W_{0}\right)$.
(2.6) Theorem $W=W_{0} \infty_{\phi} \Pi$ is H-nilpotent if and only if W_{0} is $\phi H-n i l p o t e n t$ and π is nilpotent.

Theorem (2.6) is the H-analogue of a known result [H], [V] concerning nilpotency of a semi-direct product of discrete groups: $G \rtimes \psi^{I}$ is nilpotent if and only if G is $\psi-$ nilpotent and Π is nilpotent. The proof of Theorem (2.6) below yields also a proof for this result if one makes the necessary adaptations as explained immediately after Definition (2.1).

Proof of Proposition (2.4) We show that γ_{ϕ}^{C}, factors through γ_{ϕ}^{c}, so that a null-homotopy of γ_{ϕ}^{c} yields a null-homotopy of γ_{ϕ}^{c}, To factor $\gamma_{\phi \prime}^{C}$, let us assume that the actions of $p^{\prime} \in \Pi^{\prime}$ on W_{0} via ϕ^{\prime} and $f\left(p^{\prime}\right) \in \Pi$ on W_{0} via ϕ are defined by the same element $\varphi_{p^{\prime}}=\varphi_{f\left(p^{\prime}\right)} \in \phi^{\prime}\left(p^{\prime}\right)=\phi f\left(p^{\prime}\right) \in H \varepsilon\left(W_{0}\right)$. Then consider the map
$f^{c}:\left(W_{0} \times \Pi^{\prime}\right) \times\left(W_{0} \times \Pi^{r}\right)^{c-1} \times W_{0} \longrightarrow\left(W_{0} \times \Pi\right) \times\left(W_{0} \times \Pi\right)^{c-1} \times W_{0}$ $\left(w_{0}, p_{0}^{1}, w_{1}, \ldots, p_{c}^{1}, w_{c}\right) \longmapsto\left(w_{0}, f\left(p_{0}^{1}\right), w_{1}, \ldots, f\left(p_{c}^{1}\right), w_{c}\right)$

Visibly, $\gamma_{\phi 1}^{\mathrm{c}}=\gamma_{\phi}^{\mathrm{c}} \mathrm{f}^{\mathrm{c}}$.

Proof of Theorem (2.6) Suppose nilW $=$ nilW $W_{0} \rtimes_{\phi} \Pi=c$. Then γ^{c} is null homotopic so that the image of γ^{c} is contained in the single pathcomponent of $W_{0} \times \Pi$ containing $\gamma^{C}(e, l, \ldots, e, l) \in W_{0} \times\{1\}$. Inspection of the H-multiplication of W shows that for any $\left(w_{0}, p_{0}, \ldots, w_{c}, p_{c}\right) \in W^{c+l}$, the second coordinate of $\gamma^{c}\left(w_{0}, p_{0}, \ldots, w_{c}, p_{c}\right)$ is equal to $r^{c}\left(p_{0}, \ldots, p_{c}\right)=1$. Thus nill $\leq c$.

To see that W_{0} is $\phi H-n i l p o t e n t$, observe that there is a homotopy $W_{0} \times \pi \times W_{0} \times I \rightarrow W_{0}$ deforming $\gamma^{1}\left(W_{0}, p, W_{1}, 1\right)$ into $\left(\gamma_{p}^{1}\left(W_{0}, p, W_{1}\right), 1\right)$. For

$$
\begin{aligned}
r^{1}\left(w_{0}, p, w_{1}, 1\right) & =\left(w_{0}, p\right)\left(w_{1}, 1\right)\left(\varphi_{p^{-1}}\left(w_{0}^{-1}\right), p^{-1}\right)\left(w_{1}^{-1}, 1\right) \\
& =\left(w_{0} \varphi_{p}\left(w_{1}\right), p\right)\left(\varphi_{p^{-1}}\left(w_{0}^{-1}\right), p^{-1}\right)\left(w_{1}^{-1}, 1\right) \\
& =\left(w_{0} \varphi_{p}\left(w_{1}\right)\left(\varphi_{p^{\prime}}{\underset{p}{-1}}\left(w_{0}^{-1}\right)\right), 1\right)\left(w_{1}^{-1}, 1\right) .
\end{aligned}
$$

Since $\varphi_{p} \varphi_{p}{ }^{-1}$ is homotopic to the identity map on W_{0}, there is a homotopy deforming the latter expression into

$$
\left(w_{0} \varphi_{p}\left(w_{1}\right) w_{0}^{-1}, 1\right)\left(w_{1}^{-1}, 1\right) \approx\left(w_{0} \varphi_{p}\left(w_{1}\right) w_{0}^{-1} w_{1}^{-1}, 1\right)=\left(r_{\phi}^{1}\left(w_{0}, p, w_{1}\right), 1\right)
$$

For $n \geq 1$, induction gives a homotopy $W_{0} \times\left(\pi \times W_{0}\right)^{n} \times I \rightarrow W_{0}$ deforming $r^{n}\left(w_{0}, p_{0}, \ldots, w_{n-1}, p_{n-1}, w_{n}, 1\right)$ into $\left(r_{p}^{n}\left(w_{0}, p_{0}, \ldots, w_{n-1}, p_{n-1}, w_{n}\right), 1\right)$. Thus a null homotopy of γ^{c} yields a null homotopy of γ_{ϕ}^{c} showing that $\operatorname{nil}_{\phi} W_{0} \leq c$.

Conversely, suppose nill $\leq a$ and nil $_{\phi} W_{0} \leq b$. Since the second coordinate of $r^{n}\left(w_{0}, p_{0}, \ldots, w_{n}, p_{n}\right)$ is equal to $r^{n}\left(p_{0}, \ldots, p_{n}\right)$, it follows that for $s \geq 0, r^{a+s}\left(W_{0} \propto \Pi\right)^{a+s+1} \subset W_{0} \times\{1\}$. Hence, we may proceed as above and construct a homotopy (for $s \geq 1$),

$$
\left(W_{0} \times \pi\right)^{s} \times\left(W_{0} \times \pi\right)^{a+1} \times I \rightarrow W_{0} \text { deforming }
$$

$r^{a+s}\left(w_{0}, p_{0}, \ldots, w_{s-1}, p_{s-1}, w_{s}, p_{s}, \ldots, w_{s+a}, p_{s+a}\right)$ into
$r_{\phi}^{s}\left(w_{0}, p_{0}, \ldots, w_{s-1}, p_{s-1}, \alpha\left(w_{s}, p_{s}, \ldots, w_{s+a}, p_{s+a}\right)\right)$, where
$\alpha\left(\omega_{s}, p_{s}, \ldots, \omega_{s+a}, p_{s+a}\right)$ denotes the first coordinate of
$r^{a}\left(w_{s}, p_{s}, \ldots, w_{s+a}, p_{s+a}\right)$.
Consequently, γ^{a+b} is homotopic to γ_{ϕ}^{b} following α, so that a null homotopy of γ_{ϕ}^{b} yields a null homotopy of the composite and hence, of r^{a+b}. Thus nilW ${ }_{0} \times \Pi \leq a+b$.

Let ($\mathrm{X}, *$) be a path connected well pointed space (i.e. the inclusion $\{*\} c X$ has the homotopy extension property). Then the canonical map $\left[(X, *),\left(W_{0}, e\right)\right] \rightarrow\left[X, W_{0}\right]$ is an isomorphism of groups. The homotopy group [X,W] inherits information from the H-semidirect product structure on W and its H-nilpotency in the following way.

(2.7) Proposition If nilW $\leq c$, then $n i l[X, W] \leq c$.

Furthermore, Π acts on $\left[X, W_{0}\right]$ by composition, $\psi: \Pi \rightarrow$ Aut $\left[X, W_{0}\right]$ being defined by

$$
\psi_{p}[f]:=\phi(p)^{\circ}[f] \quad \text { for } p \in \Pi,[f] \in\left[X, W_{0}\right]
$$

(2.8) Theorem The function

$$
R:\left[X, W_{0}\right]_{\infty} \Pi \not{ }_{\psi} \exists([f], p) \mapsto[(f, p)] \in\left[X, W_{0 \times \infty} \Pi\right]
$$

is an isomorphism.

Proof of Proposition (2.7) Let $f_{0}, \ldots, f_{c} \in[X, W]$ be represented by maps $\alpha_{0}, \ldots, \alpha_{c}: X \rightarrow W$. The commutator of f_{0}, \ldots, f_{c} is represented by the composite

$$
X \xrightarrow{\Delta} X^{c+1} \xrightarrow{\alpha_{0} \times \ldots \times \alpha_{c}} W^{c+1} \xrightarrow{\gamma^{c}} W
$$

which is homotopically trivial, because γ^{C} is homotopically trivial.

Proof of Theorem (2.8) To see that R is a homomorphism, take $([f], p),\left(\left[f^{\prime}\right], p^{\prime}\right) \in\left[X, W_{0}\right] \times \pi$. Then

If (f, p) is homotopic to the map $X \rightarrow\{(e, 1)\}$, then $p=1$ and f is homotopic to the map $X \rightarrow\{e\}$. Hence $R([f], p)=[(e, l)]$ implies $([f], p)=([e], l)$, showing that R is mono. It is obvious that R is onto.

We shall now enter a discussion of the nilpotency of the groups $\left[C, W_{0} \infty_{\phi} \Pi\right] \cong\left[C, W_{0}\right]_{x_{4}} \pi$, where C is a mapping cone. Since $\left[C, W_{0}\right] \times \pi /$ can only be nilpotent if π is, we shall from now on require π to be nilpotent. Let us agree that all spaces denoted by symbols A, Y are based path connected compactly generated Hausdorff spaces. In order to get a canonical isomorphism $\left[(Y, *),\left(W_{0}, e\right)\right] \rightarrow\left[Y, W_{0}\right]$, we require ($\mathrm{Y}, *$) to be well pointed. Furthermore, we stipulate for the sequel that mappings and homotopies $A \rightarrow Y$ are to be based and mappings and homotopies into W_{0} or W are to be free.

So let $a: A \rightarrow Y$ be a map and consider the exact sequence

$$
\begin{equation*}
\left[Y, W_{0}\right] \stackrel{\epsilon=i^{*}}{\rightleftarrows}\left[C, W_{0}\right] \stackrel{\nu=q^{*}}{\longleftrightarrow}\left[S A, W_{0}\right] \tag{2.9}
\end{equation*}
$$

arising from the Puppe sequence

$$
A \xrightarrow{a} Y \xrightarrow{i} C:=C a \xrightarrow{q} S A .
$$

We know that Π acts on $\left[Y, W_{0}\right],\left[C, W_{0}\right],\left[S A, W_{0}\right]$. Denote the corresponding homomorphisms into the respective automorphism groups by $\psi(\mathrm{Y}), \psi(\mathrm{C}), \psi(\mathrm{SA})$.
(2.10) Proposition Let $\alpha: Y \rightarrow Y^{\prime}$ be a map, then $\alpha^{}:\left[Y^{\prime}, W_{0}\right] \rightarrow\left[Y, W_{0}\right]$ is an operator homomorphism.

Proof Let $[f] \in\left[Y^{\prime}, W_{0}\right], p \in \Pi$. Then

$$
\alpha^{*}\left(\psi\left(Y^{\prime}\right)_{p}[f]\right)=\alpha^{*}\left(\psi\left(Y^{\prime}\right)_{p}^{0}[f]\right)=\psi\left(Y^{\prime}\right)_{p} \circ[f]^{\circ}[\alpha]=\psi\left(Y^{\prime}\right)_{p}\left(\alpha^{*}[f]\right)
$$

We need the following folklore Lema. The proof is inspired by [Wh] Theorem X.3.10.
*(2.11) Lemma The sequence (2.9) is a central extension.

Proof Let $[f],[g] \in\left[C, W_{0}\right]$ be such that $\in[f]=1$ in $\left[Y, W_{0}\right]$ (i.e. $i^{\circ} f$ is null homotopic). We show that the commutator $r([f],[g])=1$ in $\left[C, W_{0}\right]$.

Recall that the mapping cone C is obtained by identifying the points $(x, 0)$ of the reduced cone over A with $a(x) \in Y$. Denote by

$$
\begin{aligned}
& Y^{\prime}:=\left\{\xi \in C: \xi \in Y \text { or }\left(\xi=(a, t) \text { and } t \leq \frac{1}{2}\right)\right\} \\
& C^{\prime} A:=\left\{(a, t) \in C: t \geq \frac{1}{2}\right\}
\end{aligned}
$$

and observe that
(i) Y is a strong deformation retract of Y^{\prime} and $\{A \times\{1\}\}$ is a strong deformation retract of B.
(ii) The above deformation retractions can be extended to homotopies S,T:CXI $\rightarrow C$ (respectively).

It follows that $f^{\circ} S(\cdot, 1)$ restricted to Y^{\prime} is null homotopic and $g^{\circ} T(\cdot, 1)$ restricted to $C^{\prime} A$ is a constant map. Now consider the following composition of maps

$$
\mathrm{C} \xrightarrow{\Delta} \mathrm{C} \times \mathrm{C} \xrightarrow{\mathrm{f}^{\circ} \mathrm{S}(\cdot, 1) \times g^{\circ} \mathrm{T}(\cdot, 1)} \mathrm{W}_{0} \times W_{0} \rightarrow W_{0}
$$

From (i), (ii) above we see that $\left\{f^{\circ} S(\cdot, I) \times g^{\circ} T(\cdot, 1)\right\}^{\circ} \Delta$ takes values in $W_{0} \vee W_{0}$. But r restricted to $W_{0} \vee W_{0}$ is null homotopic. Thus $\gamma([f],[g])=1$ in $\left[C, W_{0}\right]$ showing that ker ϵ is contained in the center of $\left[C, W_{0}\right]$.

When investigating [C,W] for nilpotency, the following Lemma plays a key role.
(2.12) Lemma $[C, W]$ is nilpotent if and only if there exists $s \in \mathbb{N}$ such that
(i) $\Gamma_{\psi(C)}^{s}\left[C, W_{0}\right] \subset$ im ν, and
(ii) there exists $t \in \mathbb{N}$ such that $\Gamma_{\psi(S A)}^{t}\left(\nu^{-1} \Gamma_{\Psi(C)}^{s}\left[C, W_{0}\right]\right) \subset$ ker ν.
(2.13) Corollary Suppose [Y, W] is nilpotent and there exists $t \in \mathbb{N}$ such that $\Gamma_{\psi(S A)}^{t}\left[S A, W_{0}\right] \subset$ ker ν. Then $[C, W]$ is nilpotent.

An immediate consequence of (2.13) is
(2.14) Corollary If $[Y, W]$ and [SA, W] are nilpotent, then $[C, W]$ is nilpotent.

Our previous discussion can be extended to iterated mapping cones as follows. Let $\mathcal{A}=\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of spaces. Following G.W. Whitehead [Wh], let us call a sequence $Y=S_{0} \subset \ldots \subset S_{k}=K$ an A-stratification of K if, for $n \geq 1, S_{i}$ is obtained from S_{i-1} as the mapping cone of a wedge of spaces in \mathcal{A}.
(2.15) Theorem Let [Y, W] be nilpotent and let $\mathrm{Y}=\mathrm{S}_{0} \subset \ldots \subset \mathrm{~S}_{\mathrm{k}}=\mathrm{K}$ be an \mathcal{A}-stratification for K. Suppose there exists a positive integer N such that for all $\lambda \in \Lambda$, nil $\left[S_{\lambda}, W\right] \leq N$. Then $[K, W]$ is nilpotent.

Letting A be the family of n-spheres $S^{n}(n \geq 0)$ and Y the 1-point space, we obtain
(2.16) Corollary Let $Y=S_{0} \subset \ldots \subset S_{k}=K$ be a stratification of a connected CW-complex K by connected subcomplexes S_{i}. Suppose there exists a positive integer N such that for every $n \geq 0$, $\operatorname{nil}\left[S^{n} W\right] \leq N$. Then $[K, W]$ is nilpotent.

Using the stratification of finite dimensional CW-complexes K by their skeleta, we obtain
*(2.17) Corollary [$K, W]$ is nilpotent for all finite dimensional CW-complexes K if and only if $\left[S^{n}, W\right]$ is nilpotent for all $n \in \mathbb{N}_{0}$. Corollary (2.17) has also been obtained by Scheerer [Sch] by direct inspection of the homotopy groups in question.

Proof of Lemma (2.12) If nil[C,W] $\leq a$, the choices $s:=a$ and $t:=0$ clearly satisfy conditions (i), (ii).

Conversely, suppose there exist $s, t \in \mathbb{N}$ such that conditions (i) and (ii) are satisfied. By (i), $\Gamma_{\psi(C)}^{s}\left[C, W_{0}\right]$ is contained in the image of ν and, by Lemma (2.11), in the center of $\left[C, W_{0}\right]$. By Lemma (2.3), we get for $k \geq 0$

$$
\Gamma_{\psi(C)}^{k+s}\left[C, W_{0}\right]=\Gamma_{\psi(C)}^{k} \Gamma_{\psi(C)}^{s}\left[C, W_{0}\right]
$$

Using that ν is an operator homomorphism, this implies

$$
\begin{aligned}
\Gamma_{\psi(C)}^{\mathrm{t}+\mathrm{s}}\left[\mathrm{C}, \mathrm{~W}_{0}\right] & =\Gamma_{\psi(\mathrm{C})}^{\mathrm{t}} \Gamma_{\psi(C)}^{\mathrm{s}}\left[\mathrm{C}, W_{0}\right] \\
& \subset \nu \Gamma_{\psi(\mathrm{SA})}^{\mathrm{t}}\left(\nu^{-1} \Gamma_{\psi(C)}^{s}\left[\mathrm{C}, W_{0}\right]\right) \subset \nu(\text { ker } \nu)=\{I\}
\end{aligned}
$$

Thus $\left[C, W_{0}\right]$ is $\psi(C)$-nilpotent. By (2.8), $[C, W] \cong\left[C, W_{0}\right]{ }_{\Psi(C)} \Pi$ which is nilpotent by the remark following (2.6).

Proof of Corollary (2.13) Suppose $\operatorname{nil}_{\psi(Y)}\left[Y, W_{0}\right] \leq s$, then (because ϵ is an operator homomorphism)

$$
\in \Gamma_{\psi(C)}^{s}\left[C, W_{0}\right] \subset \Gamma_{\psi(Y)}^{s}\left[Y, W_{0}\right]=\{l\}
$$

Thus $\Gamma_{\psi(C)}^{s}\left[C, W_{0}\right] \subset$ ker $\epsilon=i m \nu$ and conditions (i) and (ii) of Lenma (2.12) are satisfied.

Proof of Theorem (2.15) Using Corollary (2.14), we show by induction on the stages of the stratification of K that $\left[K, W_{0}\right]$ is $\psi(\mathrm{K})$-nilpotent.
$\left[S_{0}, W_{0}\right]$ is $\psi\left(S_{0}\right)$ nilpotent by hypothesis. So suppose $0 \leq i<k$ and $\left[S_{i}, W_{0}\right]$ is $\psi\left(S_{i}\right)$-nilpotent. Let Λ_{i+1} be an indexing set for the ($\mathrm{i}+1$)-st wedge corresponding to the A-stratification of K . By distributivity of wedge and suspension, we get

$$
P:=\left[S\left(\underset{\lambda \in \Lambda_{i+1}}{V} A_{\lambda}\right), W_{0}\right]=\left[\underset{\lambda \in \Lambda_{i+1}}{V}\left(S A_{\lambda}\right), W_{0}\right] \cong \prod_{\lambda \in \Lambda_{i+1}}\left[S A_{\lambda}, W_{0}\right]=: Q .
$$

The isomorphism above is an operator isomorphism. Hence $\operatorname{nil}_{\psi} \mathrm{P}=\operatorname{nil}_{\psi}{ }^{Q} \leq \mathrm{N} . \quad \mathrm{By}(2.14), \quad \operatorname{nil}_{\psi\left(\mathrm{S}_{i+1}\right)}\left[\mathrm{S}_{\mathrm{i}+1}, \mathrm{~W}_{0}\right] \leq \operatorname{nil}_{\psi(Y)} .\left[\mathrm{Y}, \mathrm{W}_{0}\right]$ $+(i+1) N$, which completes the induction. Summing up, we obtain

$$
\operatorname{nil}_{\psi(K)}\left[K, W_{0}\right] \leq \operatorname{nil}_{\psi(Y)}\left[Y, W_{0}\right]+\mathrm{kN} .
$$

Proof of Corollary (2.17) Since S^{n} is a finite dimensional CW-complex, the direction " \Longrightarrow " is trivial. To see that the converse is also true, let g be an indexing set for the connected components $\left\{K_{i}\right\}_{i \in \mathscr{g}^{\prime}}$ By (2.16), $\left[K_{i}, W_{0}\right]$ is $\psi\left(K_{i}\right)$ nilpotent for every $i \in \mathscr{H}$. Furthermore,

$$
\operatorname{nil}_{\psi\left(K_{i}\right)}\left[K_{i}, W_{0}\right] \leq \operatorname{nil}_{\psi\left(S^{1}\right)}\left[S^{1}, W_{0}\right]+\ldots+\operatorname{nil}_{\psi\left(S^{\operatorname{dimK}}\right)}\left[S^{\operatorname{dimK}}, W_{0}\right]=: n .
$$

Since K is the topological sum of its connected components, we get

$$
[K, W] \cong \prod_{i \in \xi}\left[K_{i}, W\right] \cong \prod_{i \in g}\left(\left[K_{i}, W_{0}\right] \infty_{\psi}\left(K_{i}\right) \pi\right) .
$$

Since $\operatorname{nil}\left[K_{i}, W_{0}\right]_{\nless \infty}\left(K_{i}\right) T \leq \operatorname{nil}_{\psi\left(K_{i}\right)}\left[K_{i}, W_{0}\right]+n i l \Pi \leq n+n i l \pi$, $\operatorname{nil}[\mathrm{K}, \mathrm{W}] \leq \mathrm{n}+\mathrm{nilm}$.

Analogous to Theorem (X.3.10) in [Wh], in the situation of Theorem (2.15), we may derive the following explicit $\psi(K)$-central series for $\left[K, W_{0}\right]$.
(2.18) Proposition Let F_{i} be the set of homotopy classes of maps $K \rightarrow W$ whose restriction to S_{i} is null homotopic. Let ${ }^{n i]^{\prime}} \underset{\left(S_{0}\right)}{ }\left[S_{0}, W_{0}\right] \leq c, e_{i}: S_{i} \rightarrow K$ the inclusion map and $X_{i}:=\underset{\lambda \in \Lambda_{i}}{V} S A_{\lambda}$. Then

$$
\begin{aligned}
{\left[K, W_{0}\right] } & \supset\left(e_{0}^{*}\right)^{-1} \Gamma_{\psi\left(S_{0}\right)}^{1}\left[S_{0}, W_{0}\right] \supset \ldots \supset\left(e_{0}^{*}\right)^{-1} \Gamma_{\psi\left(S_{0}\right)}^{c}\left[S_{0}, W_{0}\right]=F_{0} \supset \\
& \supset\left(e_{1}^{*}\right)^{-1}\left(\nu_{1} \Gamma_{\psi\left(X_{1}\right)}^{1}\left[X_{1}, W_{0}\right]\right) \supset \ldots \supset\left(e_{1}^{*}\right)^{-1}\left(\nu_{1} \Gamma_{\psi\left(X_{1}\right)}^{N}\left[X_{1}, W_{0}\right]\right)=F_{1} \supset \\
& \vdots \\
& \supset\left(e_{k}^{*}\right)^{-1}\left(\nu_{k} \Gamma_{\psi\left(X_{k}\right)}^{1}\left[X_{k}, W_{0}\right]\right) \supset \ldots \supset\left(e_{k}^{*}\right)^{-1}\left(\nu_{k} \Gamma_{\psi\left(X_{k}\right)}^{N}\left[X_{k}, W_{0}\right]\right)=F_{k} \\
& =\{1\}
\end{aligned}
$$

is a $\psi(K)$-central series for $\left[K, W_{0}\right]$.

Proof In the commuting diagram,

every sequence $S_{i-1} \rightarrow S_{i} \rightarrow X_{i}$ is a cofibration. Applying the functor $\left[\cdot, W_{0}\right]$ to this diagram yields a commuting diagram of groups

in which every sequence $\left[S_{i-1}, W_{0}\right] \leftarrow\left[S_{i}, W_{0}\right] \leftarrow\left[X_{i}, W_{0}\right]$ is exact and a central extension (by Lemma (2.11)). Furthermore, every homomorphism in this diagram is an operator homomorphism. The claim now follows by applying the proof of Lemma (2.12) successively to the sequences $\left[S_{i-1}, W_{0}\right] \leftarrow\left[S_{i}, W_{0}\right] \leftarrow\left[X_{i}, W_{0}\right]$, beginning with $\left[S_{0}, W_{0}\right]$, and taking inverse images with respect to suitable e_{i}^{*} s.

Of particular interest is the question whether or not the groups $\left[\mathrm{S}^{k}, \Omega \mathrm{X}\right]$ are nilpotent, where X is a based CW -complex (cf. s5). For now, we offer a brief discussion of the H-nilpotency of the orthogonal groups O_{n}. This discussion is based on Corollary (3.5) in [V].
*(2.19) Proposition (i) If n is odd, $O_{n} \cong S_{n} \times \mathbf{Z}_{2}$. Consequently, $\left[S^{k}, 0_{n}\right] \cong\left[S^{k}, S O_{n}\right] \oplus Z_{2}$ is abelian.
(ii) If $n>0$ is even, $O_{n} \cong \mathrm{SO}_{\mathrm{n}} \times \mathbf{Z}_{2}$, where \mathbf{Z}_{2} acts nontrivially on $S O_{n}$. Furthermore, $\left[S^{n-1}, o_{n}\right] \cong\left[S^{n-1}, S O_{n}\right] 风 Z_{2}$ is not nilpotent. Consequently, O_{n} is not H -nilpotent.

Proof (i) Let I_{n} denote the identity map on \mathbb{R}^{n}. Then \mathbf{Z}_{2} is isomorphic to the multiplicative group $\left\{I_{n},-I_{n}\right\}$. Since n is odd, $-I_{n}$ is orientation reversing. Therefore, the inclusion $s: \mathbf{Z}_{\mathbf{2}} \longrightarrow 0_{n}$ is a section of the exact sequence $0 \rightarrow \mathrm{SO}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}} \rightarrow \mathbf{Z}_{\mathbf{2}} \rightarrow 0$. Hence, $O_{n} \approx S O_{n} \times \mathbf{Z}_{2}$. But the action of \mathbf{Z}_{2} on S_{n} via s is trivial because conjugation in SO_{n} by $-\mathrm{I}_{\mathrm{n}}$ is the identity on SO_{n}. Thus $O_{n} \cong S_{n} \times Z_{2}$.
(ii) We use results contained in Steenrod's book on fibre bundles [Ste2], §23. The tangent bundle of S^{n} is the vector bundle of $n-$ planes associated with the principal fibre bundle $\mathrm{SO}_{\mathrm{n}} \rightarrow \mathrm{SO}_{\mathrm{n}+1} \xrightarrow{\mathrm{P}} \mathrm{S}^{\mathrm{n}}$, where $p(u)=u\left(e_{n+1}\right), u \in S O_{n+1}, e_{i}$ the i-th canonical basis vector in \mathbb{R}^{n+1}. Since S^{n} is a suspension, $S^{n}=S^{n-1}$, this principal SO ${ }_{n}$-fibre bundle has a 2 -chart atlas giving rise to a single transition map $T_{n+1}: S^{n-1} \rightarrow S_{n}$ whose homotopy class completely characterizes the isomorphism class of p.

Let r_{n} denote the reflection of \mathbb{R}^{n} at the $\mathbb{R}^{n-1} \times\{0\}$ hyperplane. Then $\mathbf{Z}_{\mathbf{2}}$ is isomorphic to the multiplicative group $\left\{I_{n}, r_{n}\right\}$. As in (i), the inclusion $\left\{I_{n}, r_{n}\right\} \longrightarrow O_{n}$ is a section of the exact sequence $0 \rightarrow \mathrm{SO}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}} \rightarrow \mathbf{Z}_{2} \rightarrow 0$. Hence, $\mathrm{O}_{\mathrm{n}} \cong \mathrm{SO}_{\mathrm{n}} \times \mathbf{Z}_{\mathbf{2}}$ so that $\left[S^{n-1}, 0_{n}\right] \cong\left[s^{n-1}, S 0_{n}\right] \times Z_{2}$.

Now, Lemma (23.4) in [Ste2] says that the homotopy class of T_{n+1} generates an infinite cyclic subgroup of $\left[\mathrm{S}^{\mathrm{n}-1}, \mathrm{SO}_{\mathrm{n}}\right]$ and Lemma (23.11) in [Ste2] says that $\psi\left(S_{n}\right)_{r_{n}}\left[T_{n+1}\right]=-\left[T_{n+1}\right]$. It follows that $\Gamma_{\psi\left(\mathrm{SO}_{n}\right)}^{\mathrm{c}}\left[\mathrm{S}^{\mathrm{n}-1}, \mathrm{SO}_{\mathrm{n}}\right]$ contains a copy of $2^{\mathrm{C}} \mathrm{Z}$ and, consequently, is not 0
for all $c \in \mathbb{N}_{0}$. Consequently, $\left[S^{n-1}, S_{n}\right]$ is not $\psi\left(S_{n}\right)$-nilpotent. Hence $\left[\mathrm{S}^{\mathrm{n}-1}, \mathrm{o}_{\mathrm{n}}\right.$] is not nilpotent. By Proposition (2.7), o_{n} is not H-nilpotent. \square

83 Twist on the product of groups and the tensor product of certain algebras

In this chapter we develop the algebraic concepts that are needed to appropriately express the structure of certain functors in Algebraic Topology when applied to an H-semidirect product.

Specifically, let R be a commative ring with $1, \pi$ a group acting on an R-algebra A via a group homomorphism $\psi: \Pi \rightarrow$ AutA. Then the R-module $A \otimes_{R} R T$ can be endowed with an R-algebra structure which reflects the action of Π on A. We shall show that this twisted R-algebra structure solves a certain universal problem generalizing the universal problem for the standard tensor product of R -algebras.

The multiplication in the twisted R-algebra structure on $A \dot{\theta}_{R} R T$ formally resembles the multiplication in the semidirect product of groups. In order to clarify this resemblance, we shall begin our development by approaching the semidirect product of groups as the solution of a universal problem resembling the universal problem for the twisted tensor product of an R-algebra with a group algebra. We remark that the concept of a "crossed product algebra" [C-R] is equivalent to that of a "twisted tensor product".

Let G, Π, H be groups, Π acting on G via a homomorphism $\psi: \Pi \rightarrow$ AutG.
(3.1) Definition A function $f: G \times \Pi \rightarrow H$ is ψ-twisted $: \Longrightarrow$ for all $(g, p),\left(g^{\prime}, p^{\prime}\right) \in G \times \Pi, f(g, p) f\left(g^{\prime}, p^{\prime}\right)=f\left(g \psi_{p}\left(g^{\prime}\right), p p^{\prime}\right)$.
(3.2) Definition A group T is called the ψ-twisted product of G and $\Pi: \Longleftrightarrow$ there exists a ψ-twisted function $i: G \times \Pi \rightarrow T$ such that for every group H and every ψ-twisted homomorphism $f: G \times \pi \rightarrow H$, there exists a unique group homomorphism $\mathrm{F}: \mathrm{T} \rightarrow \mathrm{H}$ making the following diagram commute.

(3.3) Theorem The universal problem in Definition (3.2) has a solution, namely the usual semidirect product ${ }^{G \times} \psi^{\infty} \pi$.
(3.4) Remark The terminology " ψ-twisted product" is merely an invention for use in this chapter. It is motivated by the program suggested above. We shall in general use the standard terminology "semidirect product".

Proof of Theorem (3.3) It is clear that the function $i: G \times \pi 3(h, p)$ $\mapsto(h, p) \in G \propto \psi^{\prime} \Pi$ is a ψ-twisted function. Let $f: G \times \pi \rightarrow H$ be a ψ-twisted function. In order to have the diagram

commute, we are forced to set $F(g, p)=f(g, p)$ for all $(g, p) \in G_{\nrightarrow} \pi$.

Therefore, if F satisfying the conditions in (3.2) exists, it is unique. To see that F is indeed a group homomorphism, we check

$$
\begin{aligned}
F\left((g, p) \cdot\left(g^{\prime}, p^{\prime}\right)\right) & =F\left(g \psi_{p}\left(g^{\prime}\right), p p^{\prime}\right) \\
& =F^{\circ} i\left(g \psi_{p}\left(g^{\prime}\right), p p^{\prime}\right) \\
& =f\left(g \psi_{p}\left(g^{\prime}\right), p p^{\prime}\right) \\
& =f(g, p) f\left(g^{\prime}, p^{\prime}\right) \\
& =F(g, p) F\left(g^{\prime}, p^{\prime}\right) .
\end{aligned}
$$

Now let R be a commutative ring with $1, \pi$ a group and A an R-algebra. Let AutA denote the group of R -algebra automorphisms and suppose Π acts on A via a group homomorphism $\psi: \Pi \rightarrow$ AutA.
(3.5) Definition Let B be an R-algebra and $f: A \times R T \rightarrow B$ a function. We call f R-balanced with ψ-twist $: \Longleftrightarrow$
(i) f is R-balanced as a function of R-modules (i.e. f is additive in each variable and $f(a r, x)=f(a, r x)$ for all $a \in A$, $r \in R, x \in R T)$.
(ii) For all $a, a^{\prime} \in A, x \in R T, p \in \Pi$

$$
f\left(a, l_{p}\right) f\left(a^{\prime}, x\right)=f\left(a \psi_{p}\left(a^{\prime}\right), l p x\right)
$$

If there is no risk of confusion we shall refer to an R-balanced function with ψ-twist merely as a balanced ψ-map.
(3.6) Definition An R-algebra T is called the ψ-twisted tensor product of A and $R T I$ over $R: \Longleftrightarrow$ there exists an R-balanced ψ-twisted function $i: A \times R T T \rightarrow T$ such that for every R-algebra B and for every balanced $\psi-$ map $f: A \times R T I \rightarrow B$, there exists a unique

R-algebra homomorphism $F: T \rightarrow B$ with the following diagram commutative.

(3.7) Theorem The universal problem in Definition (3.6) has a solution, namely the tensor product $A \otimes_{R} R I$ endowed with the multiplication, defined by

$$
\left(a \otimes_{R} \operatorname{lp}\right)\left(a^{\prime} \otimes_{R} x\right):=a \psi_{p}\left(a^{\prime}\right) \otimes_{R} l p \cdot x
$$

where $a, a^{\prime} \in A, p \in \Pi, x \in R T$.
We shall denote the R-algebra described in Theorem (3.7) by A $\otimes_{\mathrm{R}}^{4} \mathrm{RT}$. As usual, if an R-algebra T also solves the universal problem in Definition (3.6), then $T \cong A \Theta_{R}^{4} R T$ as R-algebras.

Proof of Theorem (3.7) Part $1 \quad A \otimes_{\mathrm{R}}^{4} \mathrm{RT}$ is an R -algebra. Let us first spell out how the multiplication of certain elements in $A \otimes_{\mathrm{R}}^{\psi} \mathrm{RT}$ extends to arbitrary elements in $A \otimes_{R}^{\psi} R T$. So let

$$
\xi=\sum_{i=1}^{n} a_{i} \otimes y_{i}, \quad \eta=\sum_{j=1}^{m} b_{j} \otimes x_{j} \in A \otimes_{R}^{\psi} R T .
$$

Then $y_{i}=\sum_{p \in \Pi} r_{p}\left(y_{i}\right) p$, with $r_{p}\left(y_{i}\right) \in R$ and for all, but at most finitely many elements $p \in \pi, r_{p}\left(y_{i}\right)=0$. Thus

$$
\xi=\sum_{i=1}^{n} a_{i} \otimes\left(\sum_{p \in \Pi} r_{p}\left(y_{i}\right) p\right)=\sum_{i=1}^{n} \sum_{p \in \Pi}\left(a_{i} r_{p}\left(y_{i}\right)\right) \otimes l p
$$

and we set

$$
\begin{aligned}
\xi \cdot \eta & =\left(\sum_{i=1}^{n} \sum_{p \in \Pi}\left(a_{i} r_{p}\left(y_{i}\right)\right) \otimes l p\right)\left(\sum_{j=1}^{m} b_{j} \otimes x_{j}\right) \\
& :=\sum_{i=1}^{n} \sum_{p \in \Pi} \sum_{j=1}^{m}\left(a_{i} r_{p}\left(y_{i}\right) \otimes l_{p}\right)\left(b_{j} \otimes x_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{p \in \Pi} \sum_{j=1}^{m} a_{i} r_{p}\left(y_{i}\right) \psi_{p}\left(b_{j}\right) \otimes(l p) x_{j}
\end{aligned}
$$

This renders the multiplication in $A \otimes_{R}^{\psi}$ RTI biadditive. We must check the compatibility of this definition with the relations of the tensor product. Furthermore, the behaviour of the multiplication with respect to the scalar multiplication in the R-module structure needs to be checked.

To check compatibility with additive tensor relations of factors on the right hand side, we compute firstly,

$$
\begin{aligned}
(a \otimes l p)\left(a^{\prime} \otimes x_{1}+a^{\prime} \otimes x_{2}\right) & =a \psi_{p}\left(a^{\prime}\right) \otimes(l p) x_{1}+a \psi_{p}\left(a^{\prime}\right) \otimes(l p) x_{2} \\
& =a \psi_{p}\left(a^{\prime}\right) \otimes(l p)\left(x_{1}+x_{2}\right) \\
& =(a \otimes l p)\left(a^{\prime} \otimes\left(x_{1}+x_{2}\right)\right),
\end{aligned}
$$

and secondly

$$
\begin{aligned}
(a \otimes l p)\left(a_{1} \otimes x+a_{2} \otimes x\right) & =a \psi_{p}\left(a_{1}\right) \otimes(l p) x+a \psi_{p}\left(a_{2}\right) \otimes(l p) x \\
& =a\left(\psi_{p}\left(a_{1}\right)+\psi_{p}\left(a_{2}\right)\right) \otimes\left(l_{p}\right) x \\
& =a \psi_{p}\left(a_{1}+a_{2}\right) \otimes(l p) x \\
& =(a \otimes l p)\left(\left(a_{1}+a_{2}\right) \otimes x\right) .
\end{aligned}
$$

To check compatibility with additive tensor relations of factors on
the left hand side, we compute

$$
\begin{aligned}
\left(a_{1} \otimes l p+a_{2} \otimes l p\right)(a \otimes x) & =a_{1} \psi_{p}(a) \otimes(l p) x+a_{2} \psi_{p}(a) \otimes(l p) x \\
& =\left(a_{1}+a_{2}\right) \psi_{p}(a) \otimes(l p) x \\
& =\left(\left(a_{1}+a_{2}\right) \otimes l p\right)(a \otimes x) .
\end{aligned}
$$

On the other hand, $\left(a \otimes\left(l p+l p^{\prime}\right)\right)\left(a^{\prime} \otimes x\right)=\left(a \otimes l p+a \otimes l p^{\prime}\right)\left(a^{\prime} \otimes x\right)$ according to our definition of the multiplication in $A Q_{R}^{\psi} R T$. For the same reason scalar multiple tensor relations of factors on the left are preserved.

To check compatibility of scalar multiple tensor relations of factors on the right, we compute

$$
\begin{aligned}
(a \otimes l p)\left(a^{\prime} \otimes r x\right) & =a \psi_{p}\left(a^{\prime}\right) \otimes(l p)(r x) \\
& =a r \psi_{p}\left(a^{\prime}\right) \otimes(l p) x \\
& =a \psi_{p}\left(r a^{\prime}\right) \otimes(l p) x \\
& =(a \otimes l p)\left(a^{\prime} r \otimes x\right) .
\end{aligned}
$$

As for the scalar multiplication in the R -module structure of $A \otimes_{R}^{\psi}$ Rा we have

$$
\begin{aligned}
r\left[(a \otimes l p)\left(a^{\prime} \otimes x\right)\right] & =r\left[a \psi_{p}\left(a^{\prime}\right) \otimes(l p) x\right] \\
& =r\left(a \psi_{p}\left(a^{\prime}\right)\right) \otimes(l p) x \\
& =(r a) \psi_{p}\left(a^{\prime}\right) \otimes(1 p) x \\
& =(r a \otimes l p)\left(a^{\prime} \otimes x\right) \\
& =\left[r\left(a \otimes l_{p}\right)\right]\left(a^{\prime} \otimes x\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(r a) \psi_{p}\left(a^{\prime}\right) \otimes(l p) x & =a r \psi_{p}\left(a^{\prime}\right) \otimes(l p) x \\
& =a \psi_{p}\left(r a^{\prime}\right) \otimes(l p) x \\
& =(a \otimes l p)\left(r a^{\prime} \otimes x\right) \\
& =(a \otimes l p)\left[r\left(a^{\prime} \otimes x\right)\right] .
\end{aligned}
$$

Furthermore, the multiplication in $A \otimes_{R}^{\psi} R T$ is associative. It suffices to check this for the following particular case. The case of arbitrary factors follows from this particular case and the compatibility results already proven.

$$
\begin{aligned}
{\left[\left(a_{1} \otimes l p\right)\left(a_{2} \otimes l p^{\prime}\right)\right]\left(a_{3} \otimes x\right) } & =\left(a_{1} \psi_{p}\left(a_{2}\right) \otimes l p p^{\prime}\right)\left(a_{3} \otimes x\right) \\
& =\left(a_{1} \psi_{p}\left(a_{2}\right) \psi_{p p^{\prime}}\left(a_{3}\right) \otimes\left(l p p^{\prime}\right) x\right. \\
& =a_{1}\left(\psi_{p}\left(a_{2}\right) \psi_{p p^{\prime}}\left(a_{3}\right)\right) \otimes l p\left(p^{\prime} x\right) \\
& =a_{1} \psi_{p}\left(a_{2} \psi_{p^{\prime}}\left(a_{3}\right)\right) \otimes l p\left(p^{\prime} x\right) \\
& =\left(a_{1} \otimes l p\right)\left(a_{2} \psi_{p^{\prime}}\left(a_{3}\right) \otimes l p^{\prime} x\right) \\
& =\left(a_{1} \otimes l p\right)\left[\left(a_{2} \otimes l p^{\prime}\right)\left(a_{3} \otimes x\right)\right]
\end{aligned}
$$

This completes the proof that $A \otimes_{R}^{\psi} \mathrm{RT}$ is an associative R -algebra.

Part 2 As a balanced ψ-map $i: A \times R T \rightarrow A \otimes_{R}^{\psi} R T$, we take the map $i: A \times R T$ $\rightarrow A \otimes_{R}^{\psi} \mathrm{RIT}$ arising from the R-module construction. Then i is already known to be R -balanced and the computation

$$
\begin{aligned}
i\left(a, l_{p}\right) i\left(a^{\prime}, x\right) & =\left(a \otimes l_{p}\right)\left(a^{\prime} \otimes x\right) \\
& =a \psi_{p}\left(a^{\prime}\right) \otimes(l p) x \\
& =i\left(a \psi_{p}\left(a^{\prime}\right),(l p) x\right)
\end{aligned}
$$

confirms that i is also ψ-twisted.

Part 3 i:A×RTT $\rightarrow A \otimes_{\mathrm{R}}^{\psi} \mathrm{RT}$ solves the universal problem of Definition (3.6). So let B be an R-algebra and $f: A \times R T I \rightarrow B$ a balanced ψ-map. The universal property of the R -module $\mathrm{A®}_{\mathrm{R}} \mathrm{RTI}$ yields a unique R-module homomorphism $F: A \Theta_{R} R T \rightarrow B$ which makes the following diagram commute as R -modules.

The following computation on generators shows that F is also a homomorphism of R-algebras.

$$
\begin{aligned}
F(a \otimes l p) F\left(a^{\prime} \otimes x\right) & =F i(a, l p) F i\left(a^{\prime}, x\right) \\
& =f(a, l p) f\left(a^{\prime}, x\right) \\
& =f\left(a \psi_{p}\left(a^{\prime}\right),(l p) x\right) \\
& =F i\left(a \psi_{p}\left(a^{\prime}\right),(l p) x\right) \\
& =F\left(a \psi_{p}\left(a^{\prime}\right) \otimes(l p) x\right) \\
& =F\left((a \otimes l p)\left(a^{\prime} \otimes x\right)\right)
\end{aligned}
$$

This completes the proof of Theorem (3.7)
(3.8) Remark One might attempt to generalize the concept of a ψ-twisted product to the situation where A and S are R-algebras and S acts on A by R-algebra homomorphisms via an R-algebra homomorphism $\psi: S \rightarrow$ EndA, where EndA denotes the endomorphism algebra of A. One would then define $A \theta_{R}^{\psi} S$ as the R-module $A \otimes_{R} S$
with multiplication defined on generators by

$$
(\mathrm{a} \| \mathrm{s})\left(\mathrm{a}^{\prime} \theta \mathrm{s}^{\prime}\right):=a \psi_{\mathrm{s}}\left(\mathrm{a}^{\prime}\right) \otimes \mathrm{s} \mathrm{~s}^{\prime} .
$$

This, however, does not always work because, for $r \in R$,

$$
\begin{aligned}
r(a \otimes s)\left(a^{\prime} \otimes s^{\prime}\right) & =(a \otimes r s)\left(a^{\prime} \otimes s^{\prime}\right) \\
& =a \psi_{r s}\left(a^{\prime}\right) \otimes r s s^{\prime} \\
& =r\left(a r \psi_{s}\left(a^{\prime}\right) \otimes s s^{\prime}\right) \\
& =r^{2}\left(a \psi_{s}\left(a^{\prime}\right) \otimes s s^{\prime}\right) \\
& =r^{2}(a \otimes s)\left(a^{\prime} \otimes s^{\prime}\right)
\end{aligned}
$$

This is, in general, a contradiction. When defining $A Q_{R}^{\psi} R T$ on particular elements, our approach was, from a technical point of view, motivated by the observation above.

We can now make the resemblance between the ψ-twisted product of groups and the ψ-twisted tensor product of an R -algebra A with a group algebra RT explicit. Observe that the balanced ψ-map i:A×RT $\rightarrow A \otimes_{R}^{\psi} R T$ of Theorem (3.7) factors through $A \otimes_{R} R I T$ with the R-balanced map $j: A \times R T T \rightarrow A \otimes_{R} R T I$ followed by the identity function $I d: A \otimes_{R} R T T$ $\mathrm{A}_{\mathrm{R}}^{\psi} \mathrm{RIT}$.

Give $A \otimes_{R} R T$ the usual R-algebra structure. Then $I d$ is an isomorphism of R -modules which behaves with respect to multiplication (formally) like a ψ-twisted function of groups (cf. Definition (3.1)).

The following lemma helps to recognize a ψ-twisted tensor product of an R-algebra with a group algebra.
(3.9) Lemma Let A, B be R-algebras and suppose

$$
\mathrm{A} \xrightarrow{\alpha} \mathrm{~B} \stackrel{\mathrm{q}}{\mathrm{~s}} \mathrm{RT}
$$

is a (not necessarily exact) diagram of R -algebras and R -algebra homomorphisms such that $q s=I d_{R T}$. In this situation, the function

$$
t: A \times R T T \exists(a, x) \mapsto \alpha(a) s(x) \in B
$$

is R -balanced and, therefore, induces a unique homomorphism of R-modules $\quad T^{\prime}: A{ }_{R} R T T \rightarrow B$. Suppose that
(i) T^{\prime} is an isomorphism of R -modules.
(ii) There exists a homomorphism $\psi: \pi \rightarrow$ AutA such that

$$
t(a, l p) t\left(a^{\prime}, x\right)=t\left(a \psi_{p}\left(a^{\prime}\right),(l p) x\right)
$$

for all $a, a^{\prime} \in A, x \in R T, p \in \Pi$.
Then $\quad B \cong A \otimes_{R}^{\Psi} \mathrm{RTI}$.

Proof Property (ii) and the universal properties of ψ-twisted tensor products provide us with a homomorphism $T: A ब_{R}^{\psi} R T \rightarrow B$ of R-algebras making the following diagram commute.

This diagram may be extended as follows.

We already know that the functions Id, T ' are isomorphisms of R -modules. Consequently, T is also an isomorphism of R -modules. But T is also an R-algebra homomorphism and, therefore, an R-algebra isomorphism.

The following Lemma (3.10) gives conditions under which a ψ-twisted tensor product $A \otimes_{R}^{\psi}$ RTI allows for a sequence of R-algebra homomorphisms as in (3.9).
(3.10) Lemma Let A be an R-algebra with 1. Suppose $R \exists r \mapsto$ $r l \in A$ is a monomorphism and that there is an ideal A^{\prime} of A such that $A=R 1 \not A^{\prime}$ (internal direct sum) as an R-module. Thus $a \in A$ can be written uniquely as $a=\left(r, a^{\prime}\right)$ with $r \in R, a^{\prime} \in A^{\prime}$. Let Π be a group acting on A via $\psi: \Pi \rightarrow$ AutA by automorphisms having $R 1$ and A^{\prime} as invariant submodules. Then
(i) $\tilde{q}: A \times R T \ni\left(\left(r, a^{\prime}\right), x\right) \mapsto r x \in R T$ is ψ-balanced and, hence, induces a unique homomorphism $\mathrm{q}: \mathrm{A}_{\mathrm{R}}^{4} \mathrm{RTI} \rightarrow \mathrm{RT}$ of R -algebras.
(ii) The sequence $A \xrightarrow{\alpha} A \otimes_{R}^{\psi}{ }_{R I T}^{\stackrel{q}{\rightleftarrows}}$ RTI with $\alpha(a)=a \otimes 1_{R} l_{\pi}$ and $s(x)=18 x$ satisfies the requirements of Lemma (3.9).
(iii) The action of π on A can be recovered from the multiplication in $A \otimes_{R}^{\psi_{R I}}$ by the identity $\psi_{p}(a)=\alpha^{-1}\left(s(p) \alpha(a) s\left(p^{-1}\right)\right)$ for all $a \in A$, $p \in \Pi$.

Proof (i) \tilde{q} is obviously R-balanced. To see that \tilde{q} is ψ-twisted, we check

$$
\tilde{q}\left(\left(r_{1}, a_{1}{ }^{\prime}\right), 1 p_{1}\right) \tilde{q}\left(\left(r_{2}, a_{2}{ }^{\prime}\right), s p_{2}\right)=\left(r_{1} p_{1}\right)\left(r_{2} s p_{2}\right)=r_{1} r_{2} s\left(p_{1} p_{2}\right)
$$

and

$$
\begin{aligned}
\tilde{q}\left(\left(r_{1}, a_{1}^{\prime}\right) \psi_{p_{1}}\left(r_{2}, a_{2}^{\prime}\right), l p_{1} s p_{2}\right) & =\tilde{q}\left(\left(r_{1}, a_{1}{ }^{\prime}\right)\left(r_{2}, \psi_{p_{1}}\left(a_{2}{ }^{\prime}\right), s p_{1} p_{2}\right)\right. \\
& =\tilde{q}\left(\left(r_{1} r_{2}, r_{1} \psi_{p_{1}}\left(a_{2}^{\prime}\right)+r_{2} a_{1}^{\prime}+a_{1} \psi_{p_{1}}\left(a_{2}^{\prime}\right)\right), s p_{1} p_{2}\right) \\
& =r_{1} r_{2} s\left(p_{1} p_{2}\right) .
\end{aligned}
$$

Visibly, the results are the same. For more general factors we use this result and the fact that $\tilde{\mathbf{q}}$ is R -balanced.
(ii) We need only check that $q s=I d_{\text {RTI }}$. But for $x \in R T$,

$$
\mathrm{qs}(x)=\mathrm{q}(1 \otimes \mathrm{x})=\tilde{q}((1,0), x)=x .
$$

(iii) Follows from the computation

$$
\begin{aligned}
s(p) \alpha(a) s\left(p^{-1}\right) & =\left(l_{A} \otimes 1_{R} p\right)\left(a \otimes 1_{R} l_{\pi}\right)\left(l_{A} \otimes l_{R} p^{-1}\right) \\
& =\left(\psi_{p}(a) \otimes 1_{R^{p}}\right)\left(l_{A} \otimes 1_{R} p^{-1}\right) \\
& =\psi(a) \psi_{p}\left(l_{A}\right) \otimes 1_{R}\left(p p^{-1}\right) \\
& =\psi_{p}(a) 1_{A} \otimes l_{R} l_{\Pi} \\
& =\alpha\left(\psi_{p}(a)\right) .
\end{aligned}
$$

The reader may now compare the statements of Lemmas (3.9) and (3.10) with the following fact for groups.

A group extension $G \longrightarrow E \longrightarrow \pi$ has a section $s: \Pi \rightarrow E$ so
 $\psi_{p}(g)=$ first coordinate of $(1, p)(g, l)\left(1, p^{-1}\right)$ for all $g \in G, p \in \pi$.

If X is an H-space, the graded singular homology group $H_{*} X$ inherits a product structure from X turning $H_{*} X$ into a graded ring, called the Pontryagin homology ring of X. If X has several path-connected components, additivity of singular homology says that $\mathrm{H}_{*} \mathrm{X}$, as a graded group, is isomorphic to the direct sum of the graded homology groups of the various path components of X. In general, however, $H_{*} \mathrm{X}$ as a graded ring will not decompose in any obvious way.

If $W=W_{0}>_{\phi} \Pi$ is an H-semidirect product, Π acts on W_{0} by classes of H-self homotopy equivalences and, therefore, on $H_{*} W_{0}$ by graded ring isomorphisms. We shall show that $H_{*} W$, as a graded ring, is isomorphic to a twisted tensor product of $H_{*} W_{0}$ with $H_{*} \Pi$, where. ${ }^{H} \pi$ is the Pontryagin ring of Π viewed as a discrete topological group (not to be confused with group homology; note that $H_{*} \Pi \cong$ RाI viewed as a graded R -algebra concentrated at degree 0).

So let Π be a group acting on a path connected H-group (W_{0}, μ_{0}) via a homomorphism $\phi: \Pi \rightarrow H \varepsilon\left(W_{0}\right)$, and denote by (W, μ) the corresponding H-semidirect product $W_{0} \rtimes_{\phi} \Pi$ (cf. (1.3)). Let R be a commutative ring with 1 . All homology groups, unless stated otherwise, will be with coefficients in R. Consequently, $H_{*} X$ is a graded R-module for any space X. In particular $H_{*} W$ is a graded R -module.

Let us recall the definition of the multiplication in $H_{*} W$. The conceptually easiest approach uses cubical singular homology.

The key construction is the cross product in singular homology. Let X, Y be spaces and let $l u \in C_{p}(X ; R)$, $l v \in C_{q}(Y ; R)$ be generators with $u: I^{P} \rightarrow X, v \in I^{q} \rightarrow Y$ singular cubes. Then the map $u \times v: I^{P} \times I^{q}$ $\rightarrow X \times Y$ is a singular $(p+q)$-cube in $X \times Y$ and, hence, yields a generator $\left(1 \otimes_{R} 1\right) u \times v \in C_{p+q}\left(X \times Y ; R \otimes_{R} R\right) \cong C_{p+q}(X \times Y ; R)$. This construction turns out to be compatible with the formation of homology classes and yields an R -balanced function $\mathrm{H}_{*} \mathrm{X} \times \mathrm{H}_{*} \mathrm{Y} \rightarrow \mathrm{H}_{*}(\mathrm{X} \times \mathrm{Y})$. This function induces the cross product homomorphism $x: H_{*} \mathrm{X}_{\mathrm{R}} \mathrm{H}_{*} \mathrm{Y} \rightarrow \mathrm{H}_{*}(\mathrm{X} \times \mathrm{Y})$.

If (X, m) is an H -space, we get an R -homomorphism $\mathrm{H}_{*} \mathrm{X}_{\mathrm{R}} \mathrm{H}_{*} \mathrm{X} \xrightarrow{\mathrm{X}}$ $\mathrm{H}_{*}(\mathrm{X} \times \mathrm{X}) \xrightarrow{\mathrm{m}_{*}} \mathrm{H}_{*} \mathrm{X}$ turning $\mathrm{H}_{*} \mathrm{X}$ into a graded R-algebra. Furthermore, if X, Y are H-spaces and $f: X \rightarrow Y$ is an H-map, f induces a homomorphism of graded R -algebras.
(4.1) Lemma π acts on $H_{*} W_{0}$ by automorphisms of the graded R-algebra via $\psi: \Pi \ni p \mapsto \phi(p)_{*} \in \operatorname{Aut} H_{*} W_{0}$.

The proof is trivial.
(4.2) Theorem $H_{*} W \cong H_{*} W_{0} \otimes_{R}^{\psi} H_{*} \Pi$.

Proof Consider the "exact" sequence of H-maps

$$
\{(e, 1)\} \longrightarrow W_{0} \times\{1\} \xrightarrow{\propto} W_{0 \infty_{\phi}} \pi \stackrel{q}{\leftarrow-s^{--}} \pi
$$

admitting a section $s: \Pi \exists p \mapsto(e, p) \in W_{0} \rtimes \Pi$. The computation

shows that s is also an H-map. The homotopy in the above diagram can be constructed from any path joining $e \varphi_{p}$ (e) to e.

An H-map between two H-spaces induces a homomorphism of the Pontryagin homology algebras. Therefore, the "exact" sequence of H-maps above induces the following diagram of homology algebras.

$$
\mathrm{H}_{*} \mathrm{~W}_{0} \xrightarrow{\alpha_{*}} \mathrm{H}_{*} \mathrm{~W}_{0 \times} \Pi \xrightarrow{\mathrm{q}_{*}} \stackrel{\mathrm{~s}_{*}}{\leftarrow-\mathrm{H}_{*}^{-} \Pi}
$$

Since α_{*} is induced by the map identifying W_{0} with the path-connected component $W_{0} \times\{I\}$ of $W_{0} \times \Pi, \alpha_{*}$ is a monomorphism by additivity of singular homology, Since $q s=I d_{\pi}, q_{*} s_{*}=I d_{H_{*}} \Pi$. We shall now invoke Lemma (3.9) to complete the proof of Theorem (4.2).

First of all, let us view $R T$ as a graded R-algebra whose only non zero term sits at dimension 0 . Then $R T \cong H_{*} \Pi$ under the isomorphism induced by the function on generators $\Pi \exists p \mapsto 1 \tilde{p} \in H_{0} \Pi$. Here \tilde{p} denotes the unique map $I^{0} \rightarrow\{p\}$ and, by slight abuse of notation, $1 \tilde{p}$ the homology class represented by the (properly denoted) element $1 \tilde{p}$ of $C_{0} \Pi$. This function establishes a bijection between the canonical bases of R-modules $R I I$ and $H_{0} \Pi$ and, hence, induces an isomorphism $\rho: R T \rightarrow H_{0} \Pi$. To see that ρ also preserves multiplication, consider the following computation on generators

where $\tilde{\mathrm{pp}}^{1}$ is identified with $I^{0} \times I^{0} \xrightarrow{\tilde{p} \times \tilde{p}^{1}} \Pi \times \Pi \xrightarrow{m} \Pi$ via the unique homeomorphism $I^{0} \equiv I^{0} \times I^{0}$. Since the higher homology groups of π are all 0, ρ is indeed an isomorphism of graded R-algebras.

Following the set up of Lemma (3.9) we get a homomorphism $T^{1}: H_{*} W_{0} \otimes_{R} H^{H} \rightarrow H_{*} W$ of R-modules defined on generators by $\tilde{a} \otimes \tilde{x} \mapsto \alpha_{*}(\tilde{a}) s_{*}(\tilde{x})$. We are left to verify
(i) T^{\prime} is an isomorphism of graded R-modules.
(ii) For all $\tilde{a}, \tilde{a}^{\prime} \in H_{*} W_{0}, \tilde{x} \in H_{*} \Pi, p \in \Pi$ we have the identity

$$
T^{\prime}(\tilde{a} \otimes l \tilde{p}) T^{\prime}\left(\tilde{a} \tilde{a}^{\prime} \otimes \tilde{x}\right)=T^{\prime}\left[\tilde{a} \psi_{p}\left(\tilde{a} \tilde{a}^{\prime}\right) \otimes\left(l_{p}\right) \tilde{x}\right] .
$$

Both statements appear plausible upon inspection of the underlying situation on the level of function values of maps for singular simplices. The following observation will help us to transform this idea into a formal proof of (i) and (ii).
(4.3) Observation Let $c_{1}: C_{*} W_{0} \otimes_{R} C_{0} \Pi \rightarrow C_{*}\left(W_{0} \times \pi\right)$ denote the chain map defined on generators by $l u \otimes l p \mapsto l(u, p)$. Here (u, p) denotes the singular n-cube $(u, p): I^{n} \ni t \mapsto(u(t), p(t)) \in W_{0 \times \infty} \Pi$, where $p: I^{n} \rightarrow\{p\}$ denotes the unique map. Identifying I^{n} with $I^{n} \times I^{0}$, we see that c_{1} coincides with the cross-product map sending lu®lp \mapsto luxp where $u \times p$ denotes the singular n-cube $u \times p: I^{n} \times I^{0} 3$ $(t, 0) \mapsto(u(t), p) \in W_{0} \times \Pi$.

Let $\tau_{e}: W_{0} \exists W \mapsto W \cdot e \in W_{0}$ and suppose that in the definition of $\mu, \phi(1)$ is represented by $I d_{W_{0}}$. Now consider $c_{2}:=c_{1}\left(\tau_{e \#}{ }^{(1 d}\right)$: $C_{*} W_{0} \otimes C_{0} \Pi \rightarrow C_{*}\left(W_{0}>\Pi \Pi\right)$. Then $C_{2}(l u \otimes l p)$ is represented by the map

$$
\begin{aligned}
I^{n} 3 t \mapsto(u(t) e, p) & =\left(u(t) \psi_{1}(e), p\right) \\
& =(u(t), 1)(e, p) \\
& =\mu(\alpha u(t), s p) \in W_{0} \times \pi
\end{aligned}
$$

Since τ_{e} is homotopic to $I d_{W_{0}}, c_{1}$ and c_{2} are chain homotopic and, therefore, induce the same map in homology.

Verification of (i) c_{1} gives rise to the Kunneth-map $k_{*}: H_{*} W_{0} \mathbb{Q}_{R} H_{*} \Pi \rightarrow$ $H_{*}\left(W_{0} \infty \Pi\right)$. Because of the particular structure of $H_{*} \Pi, k_{*}$ is an isomorphism of graded R-modules. On the other hand, c_{2} induces T^{\prime}. Since c_{1} and c_{2} are chain homotopic, this shows that $T^{\prime}=\mathbf{k}_{*}{ }^{*}$

Hence T is an isomorphism of graded R-modules.

Verification of (ii) Since $\tilde{x}=r_{1} \tilde{p}_{1}+\ldots+r_{k} \tilde{p}_{k}$, we get

$$
\tilde{a}^{\prime} \otimes \tilde{x}=r_{1} \tilde{a}^{\prime} \otimes l \tilde{p}_{1}+\ldots+r_{k} \tilde{a}^{\prime} \otimes l \tilde{p}_{k}
$$

Using distributivity in $H_{*} W$ it suffices to prove (ii) when $\tilde{x}=1 \tilde{p}^{\prime}$. Suppose now that $a=r_{1} u_{1}+\ldots+r_{k} u_{k}$ and that $a^{\prime}=r_{1}^{\prime} u_{1}^{\prime}+\ldots$ $+r_{\ell}^{\prime} u_{\ell}^{\prime}$. Since $T^{\prime}=k_{*}, T^{\prime}(\tilde{a} \otimes 1 \tilde{p})$ is represented by $r_{1}\left(u_{1} \times p\right)+\ldots$ $+r_{k}\left(u_{k} \times p\right)$ and $T^{\prime}\left(\tilde{a}^{\prime} \otimes 1 \tilde{p}_{1}\right)$ is represented by $r_{1}^{\prime}\left(u_{1}^{\prime} \times p\right)+\ldots$ $+r_{k}^{\prime}\left(u_{k}^{\prime} \times p^{\prime}\right)$. Consequently, $T^{\prime}(\tilde{a} \otimes l \tilde{p}) T^{\prime}\left(\tilde{a}^{\prime} \otimes l \tilde{p} \tilde{p}^{\prime}\right)$ is represented by

$$
\begin{aligned}
\sum_{i=1}^{k} \sum_{j=1}^{\ell} r_{i} r_{j}^{\prime} \mu^{0}\left(\left(u_{i} \times p\right) \times\left(u_{j}^{\prime} \times p^{\prime}\right)\right) & =\sum_{i=1}^{k} \sum_{j=1}^{\ell} r_{j} r_{j}^{\prime} \mu\left(u_{i} \times p, u_{j}^{\prime} \times p^{\prime}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\ell} r_{i} r_{j}^{\prime}\left(\mu_{0}\left(u_{i}, \varphi_{p} u_{j}^{\prime}\right), p p^{\prime}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\ell} r_{i} r_{j}^{\prime}\left(\mu_{0}^{0}\left(u_{i} \times \varphi_{p} u_{j}\right) \times p p^{\prime}\right) \\
& =c_{1}\left[\sum_{i=1}^{k} \sum_{j=1}^{\ell} r_{i} r_{j}^{\prime} \mu_{0}^{\circ}\left(u_{i} \times \varphi_{p} u_{j}\right) \otimes l p p^{\prime}\right] \\
& =c_{1}\left[\mu _ { 0 \# } \left[\left[\sum_{i=1}^{k} r_{i} u_{i}\right] \times\left[\begin{array}{l}
\ell \\
\left.\left.\sum_{j=1}^{\prime} r_{j}^{\prime} \varphi_{p} u_{j}^{\prime}\right] \otimes 1 p p^{\prime}\right]
\end{array}\right.\right.\right. \\
& =c_{1}\left[\mu_{0 \#}\left[\sum_{i=1}^{k} r_{i} u_{i} \times\left[\varphi_{p \# \#}\left[\begin{array}{l}
\ell \\
j=1 \\
\left.r_{j}^{\prime} u_{j}^{\prime}\right]
\end{array}\right]\right] \otimes 1 p p^{\prime}\right] .\right.
\end{aligned}
$$

The argument of c_{1} is just a representative of $\tilde{a} \psi_{p}\left(\tilde{a}^{\prime}\right) \otimes l \tilde{p p}^{\prime}$ and T^{\prime}. is induced by c_{1} on the chain level. Hence (ii) is verified which completes the proof of Theorem (4.2).

Let $R=\mathbf{Z}$ from now on and let us look at the Hurewicz homomorphism $h_{n}: \pi_{n}\left(W_{0}, e\right) \rightarrow H_{n} W_{0}$. To recall the construction, denote by σ_{0} the generator of $H_{0}\left(S^{0},\{l\}\right)$ represented by the $l u$, where $u: \Delta_{0} \rightarrow\{-1\}$ is the unique map. Then the n-fold suspension $\sigma_{n}=S^{n} \sigma_{0}$ determines a generator of $H_{n} S^{n}$. If ($X, *$) is a based space we get a natural transformation

$$
h_{n}: \pi_{n}(X, *) \exists[f] \mapsto f_{*} \sigma_{n} \in H_{n} X .
$$

(4.4) Proposition Let $W=W_{0} \rtimes_{\phi} \Pi$ be an H-semidirect product. Then $h_{n}: \pi_{n}\left(W_{0}, e\right) \rightarrow H_{n} W_{0}(n \geq 0)$ is an operator homomorphism with respect to the actions of Π on $\pi_{n}\left(W_{0}, e\right)$ and $H_{n} W_{0}$ induced by $\phi: \Pi \rightarrow H \varepsilon\left(W_{0}\right)$.

Proof For $p \in \Pi$ and $[f] \in \Pi_{n}\left(W_{0}, e\right)$ we get

$$
\begin{aligned}
h_{n}(p \cdot[f]) & =h_{n}(\phi(p)[f]) \\
& =(\phi(p)[f]) *_{n}^{\sigma} \\
& \left.=\phi(p) *[f]_{n}^{\sigma}\right) \\
& =p \cdot h_{n}[f] .
\end{aligned}
$$

(4.5) Corollary If $\pi_{n}\left(W_{0}, e\right)$ is nilpotent with respect to the action of Π on $\pi_{n}\left(W_{0}, e\right)$ then $i m h_{n}$ is nilpotent with respect to the action of π on $H_{n} W_{0}$.

Finally we remark that, if desired, the question whether or not π acts nilpotently on $\operatorname{imh}_{\mathrm{n}}$ can be considered completely within $\mathrm{H}_{*} \mathrm{~W}$. The transition is accomplished by making use of Lemma (3.10) after observing that $H_{*} W_{0}$ has a multiplicative identity in $H_{0} W_{0}$.
85. Nilpotency of CW-complexes and H-semidirect products

Bousfield, Kan [B-K] and Hilton, Mislin, Roitberg [H-M-R] give the following definition of nilpotency of a connected based CW-complex.

(5.1) Definition X is nilpotent $: \Longleftrightarrow \pi_{1}(X, *)$ is nilpotent and acts

 nilpotently on $\pi_{\mathrm{n}}(\mathrm{X}, *)$ for $\mathrm{n} \geq 2$.Under the adjointness isomorphism $\pi_{n}(X, *) \cong \pi_{n-1}(\Omega X, *)$, this requirement for nilpotency of X translates into the following equivalent one.
(5.1)' Definition X is nilpotent $: \Longleftrightarrow \pi_{1}(X, *)$ is nilpotent and the action of $\pi_{1}(X, *)$ on $\pi_{n-1}(\Omega X, *)$ by loop conjugation is nilpotent.

Denoting the path component of the constant path $* \in \Omega \mathrm{X}$ by $(\Omega \mathrm{X})_{0}$, we get canonical isomorphisms $\pi_{n-1}(\Omega X, *) \approx \pi_{n-1}\left((\Omega X)_{0}, *\right)$ $\cong\left[\mathrm{S}^{\mathrm{n}-1},(\Omega \mathrm{X})_{0}\right]$ and the action of $\pi_{1}(\mathrm{X}, *)$ on $\left[\mathrm{S}^{\mathrm{n}-1},(\Omega \mathrm{X})_{0}\right]$ of Definition (5.1)' coincides with the action of $\pi_{1}(X, *)$ on $\left[S^{n-1},(\Omega X)_{0}\right]$ arising from the H-semidirect product structure on $\Omega \mathrm{X}$ (denoted by $\psi\left(\mathrm{S}^{\mathrm{n}-1}\right)$ in $\left.\$ 2\right)$. Thus our results in $\$ 2$ lead to yet another characterization of nilpotency of $X: X$ is nilpotent if and only if [$\left.\mathrm{S}^{\mathrm{n}}, \Omega \mathrm{X}\right]$ is nilpotent for all $\mathrm{n} \geq 1$.

The main objective of this section is to give an explicit development of this characterization and then to use results in the previous chapters to provide additional tools for investigating a connected CW-complex for nilpotency.

It should be noted, however, that this approach to nilpotency of CW-complexes is not entirely new. Roitberg [R] utilized the characterization (5.1)' of nilpotency in the following way.

Given a countable connected based simplicial complex X, a result of Milnor's [M1] guarantees the existence of a topological group T having the homotopy type of ΩX. Furthermore, T is the fiber of a principal T-fiber bundle map $E \rightarrow X$, where T and E are countable CW-complexes. Also E is contractible so that X is, up to homotopy equivalence, the classifying space of T. Based on these facts, Roitberg uses T for ΩX in Definition (5.1)' to characterize nilpotency of countable connected based simplicial complexes.

At this level of consideration, Roitberg benefits from his approach in the following result.
*(5.2) Theorem Classifying spaces of nilpotent Lie groups are nilpotent.

Proof If T is nilpotent as a group, the requirements of (5.1)' are satisfied (compare Proposition (2.7) of this thesis).

We shall now embark on an explanation why (5.1) and (5.1)' are equivalent. This is implicit in [R]. We shall actually prove a more general result.

Let $(D, *)$ be a based well pointed space (i.e. the inclusion $* \longrightarrow D$ has the homotopy extension property) and let ($\mathrm{X}, *$) be a based space. Then $\pi_{1}(X, *)$ acts on $[(D, *),(X, *)]$ on the left as follows. If $f:(D, *) \rightarrow(X, *)$ is a based map and $\psi:(I,\{0,1\}) \rightarrow(X, *)$ is a loop, we obtain a map $\gamma . f$ out of the following process.
(i) Let $F: D \times I \rightarrow X$ be a homotopy extension of the data
$F(d, 0)=f(d)$ for all $d \in D$ and $F(*, t)=\gamma^{-1}(t)=\gamma(1-t)$ for all $t \in T$.
(ii) \quad.f(d) $:=F(d, l)$.

It turns out that choosing different homotopy extensions of the data in (i) and varying γ and f in their homotopy classes only varies $\gamma . f$ in its homotopy class. Consequently, we obtain a well defined function

$$
\theta: \pi_{1}(\mathrm{X}, *) \times[(\mathrm{D}, *),(\mathrm{X}, *)] \exists([\gamma],[\mathrm{f}]) \mapsto[\gamma . \mathrm{f}] \in[(\mathrm{D}, *),(\mathrm{X}, *)] .
$$

Furthermore, $\theta\left(\left[\gamma_{1}\right],\left[\gamma_{2}\right]\right)=\theta\left[\gamma_{1}\right] \theta\left[\gamma_{2}\right]$ as a function from $[(D, *),(X, *)]$ into itself. Hence, θ describes an action of $\pi_{1}(X, *)$ on $[(\mathrm{D}, *),(\mathrm{X}, *)]$.

Now let ($\mathrm{A}, *$) be a connected CW -complex with a 0 -cell as base point. Then $(S A, *)=:(D, *)$ is well pointed. Let θ denote the action of $\pi_{1}(X, *)$ on $[(S A, *),(X, *)]$ explained above.

On the other hand, using adjointness of suspension and loop functors we have the action,

$$
\begin{gathered}
\theta^{\prime}: \pi_{1}(\mathrm{X}, *) \times[(\mathrm{SA}, *),(\mathrm{X}, *)] \\
\left.\longrightarrow \begin{array}{c}
{[(\mathrm{SA}, *),(\mathrm{X}, *)]} \\
\cong \uparrow
\end{array}\right] \\
\pi_{1}(\mathrm{X}, *) \times\left[(\mathrm{A}, *),(\Omega \mathrm{X}, *)_{0}\right] \longrightarrow\left[\mathrm{A},(\Omega \mathrm{X})_{0}\right] \cong\left[(\mathrm{A}, *),(\Omega \mathrm{X}, *)_{0}\right]
\end{gathered}
$$

defined by going through the bottom part of the diagram above. Explicitly, let $([\gamma],[f]) \in \pi_{\perp}(X, *) \times[(S A, *),(X, *)]$. Let
$\bar{f}:(\mathrm{A}, *) \rightarrow(\Omega \mathrm{X}, *)$ denote the adjoint of f . For $\mathrm{g}:(\mathrm{A}, *) \rightarrow(\Omega \mathrm{X}, *)$, let $g:(\mathrm{SA}, *) \rightarrow(\mathrm{X}, *)$ denote the adjoint of g . Observe that $(\overline{\mathrm{f}})=\mathrm{f}$ and $(\underline{g})=g$. Then $\theta^{\prime}([\gamma],[f])$ is represented by the composite of maps

$$
(\gamma, f) \longmapsto(\gamma, \bar{f}) \longmapsto \gamma^{\prime} \bar{f}_{\gamma}^{-1} \longmapsto g \longmapsto g,
$$

where $g:(A, *) \rightarrow(\Omega X, *)$ is defined as follows.
The map $\gamma_{\mathrm{f}_{\gamma}}^{-1}: \mathrm{A} \boldsymbol{\exists}$ a $\mapsto \gamma \overline{\mathrm{f}}(\mathrm{a})_{\gamma}{ }^{-1} \in(\Omega \mathrm{X})_{0}$ is given by loop conjugation and will in general not be based. Using the homotopy extension property of the inclusion $* \mapsto A$, we get a based map $g:(A, *) \rightarrow(\Omega X, *)_{0}$ which is freely homotopic to $\gamma_{\bar{f}_{\gamma}}{ }^{-1}$. Since $(\Omega X)_{0}$ is a simple space, $[g]$ and subsequently $[g]=: \theta^{\prime}([\gamma],[f])$ are uniquely determined by $\gamma_{\gamma} \bar{f}^{-1}$.
(5.3) Lemma $\theta=\theta^{\prime}: \pi_{1}(\mathrm{X}, *) \times[(\mathrm{SA}, *),(\mathrm{X}, *)] \rightarrow[(\mathrm{SA}, *),(\mathrm{X}, *)]$.

Proof In the notation of the introductory explanations above, we shall show that $[g]=[\overline{\gamma \cdot f}]$ proceeding along the following steps.

Step 1 is based on the following observation. If ($B, *$) is a well pointed space, then the data $F(b, 0)=(b, 0), F(*, t)=(*, t)$ have a homotopy extension $\mathrm{F}: \mathrm{B} \times \mathrm{I} \rightarrow(\mathrm{B} \times 0) \mathrm{U}(* \times \mathrm{I})$. Given F , we have a uniform way of constructing homotopy extensions for the inclusion $\{*\} \mapsto B$. If $\mathrm{f}:(\mathrm{B}, *) \rightarrow(\mathrm{Z}, *)$, a: $(* \times I,(*, 0)) \rightarrow(\mathrm{Z}, *)$ are maps, then (∇ denotes the folding map)

is a homotopy extension of the data f, a.

Therefore, we shall fix suitable homotopies

$$
\begin{array}{ll}
R: A \times I \rightarrow(A \times 0) U(* \times I), & R(a, t)=\left(\rho_{1}(a, t), \rho_{2}(a, t)\right) \\
S: S^{1} \times I \rightarrow\left(S^{1} \times 0\right) U(* \times I), & S(s, t)=\left(\sigma_{1}(s, t), \sigma_{2}(s, t)\right)
\end{array}
$$

to construct a homotopy

$$
T: S A \times I \rightarrow(S A \times 0) \cup(* \times I), T(s \wedge a, t)=\left(\tau_{1}(s \wedge a, t), \tau_{2}(s \wedge a, t)\right)
$$

and construct homotopy extensions of A, S^{1}, SA using R, S, T as explained above.

Step 2 Compute g and $\overline{\gamma \cdot f}$.

Step 3 Show that g is homotopic to $\overline{\gamma \cdot f}$.
On step 1 For every $n \in \mathbb{N}_{0}$, the inclusion $S^{n} \hookrightarrow B^{n+1}$ has the homotopy extension property. Using the cell structure of A, this is the key to constructing a homotopy $R: A \times I \rightarrow(A \times O) U(* \times I)$ such that $R(*, t)=(*, t)$ for all $t \in I$ and $\rho_{2}(a, t)<\rho_{2}(*, t)$ for all $a \in A=\{*\}$ and all $t, 0<t \leq 1$, and $R(a, 0)=a$ for all $a \in A$. For ($S^{1}, *$) we exhibit a homotopy $S: S^{1} \times I \rightarrow\left(S^{1} \times 0\right) U(* \times I)$ with these properties explicitly. Using the homeomorphism $S^{1} \equiv I /\{0,1\}$, define

$$
S(s, t):=\left\{\begin{array}{ll}
(*, t-(1+2 t) s) & 0 \leq s \leq \frac{t}{1+2 t} \\
((1+2 t) s-t, 0) & \frac{t}{1+2 t} \leq s \leq \frac{1+t}{1+2 t} \\
(*,(1+2 t) s-1-t) & \frac{1+t}{1+2 t} \leq s \leq 1
\end{array} .\right.
$$

$S(., t)$ pulls the base point of S^{1} out to $(*, t)$ under uniform stretching of S^{1}. In fact, the construction of S shows how to construct R on the 1 -skeleton of A.

Now define $\mathrm{T}: \mathrm{SA} \times \mathrm{I} \rightarrow(\mathrm{SA} \times 0) \mathrm{U}(* \times \mathrm{I})$ by

$$
T(s \wedge a, t):=\left(\sigma_{1}(s, t) \wedge \rho_{1}(a, t), \max \left\{\sigma_{2}(s, t), \rho_{2}(a, t)\right\}\right) .
$$

To see that τ_{2} is continuous, we show that the function $\tau_{2} \cdot: S^{1} \times A \times I \exists(s, a, t) \mapsto \max \left\{\sigma_{2}(s, t), \rho_{2}(a, t)\right\} \in I \quad$ is continuous and factors through ($\left.S^{1} \wedge A\right) \times I$ with τ_{2}. Continuity of $\tau_{2}{ }^{\prime}$ can be seen by using the continuous difference function $\delta: S^{1} \times A \times I \exists(s, a, t) \mapsto \sigma_{2}(s, t)$ - $\rho_{2}(a, t) \in \mathbb{R}$ which yields two closed subsets $\delta^{-1}\left(\mathbb{R}^{\geq 0}\right), \delta^{-1}\left(\mathbb{R}^{\leq 0}\right)$ of $S^{1} \times \mathrm{A} \times I$ over which τ_{2} ' is defined by σ_{2}, ρ_{2} respectively.

On Step 2 Let $\gamma \in \Omega X$ and $f:(S A, *) \rightarrow(X, *)$ be as above. Then $\gamma . f:(S A, *) \rightarrow(X, *)$ is given by

$$
\gamma \cdot f(s \wedge a)= \begin{cases}f \tau_{1}(s \wedge a, 1) & \text { if } T(s \wedge a, l) \in S A \times 0 \\ \gamma\left(1-\tau_{2}(s \wedge a, 1)\right) & \text { if } T(s \wedge a, l) \in * \times I .\end{cases}
$$

Consequently, if $a \in A$, then $\overline{\gamma \cdot f}(a)$ is the loop

$$
s^{1}=I /\{0,1\} \exists s \mapsto\left\{\begin{array}{ll}
r(3 s) & 0 \leq s \leq \frac{1}{3} \\
\bar{f} R(a, 1)\left(3\left(s-\frac{1}{3}\right)\right) & \frac{1}{3} \leq s \leq \frac{2}{3} \\
r\left(1-3\left(s-\frac{2}{3}\right)\right) & \frac{2}{3} \leq s \leq 1
\end{array}\right\} \in X
$$

in case $R(a, 1) \in A \times 0$. If $R(a, 1)=(*, t) \in * \times I$, then $\overline{\gamma \cdot f}(a)$ is the loop

$$
S^{1}=I /\{0,1\} \ni s \mapsto\left\{\begin{array}{ll}
r(3 s) & 0 \leq s \leq \frac{1}{3}(s-t) \\
r(1-t) & \frac{1}{3}(1-t) \leq s \leq 1-\frac{1}{3}(1-t) \\
r(1-3 s) & 1-\frac{1}{3}(1-t) \leq s \leq 1
\end{array}\right\} \in X
$$

The function values of the loop conjugated map $\gamma_{\mathcal{f}_{\gamma}}{ }^{-1}$ actually depend on how we bracket this product of three elements. Regardless of how this product is bracketed, there is an easily constructed homotopy $A \times I \rightarrow(\Omega X)_{0}$ which allows us to assume that for $a \in A$, $\gamma^{\bar{f}}(a)_{\gamma}^{-1}$ is the loop

$$
s^{1} \exists s \mapsto\left\{\begin{array}{ll}
\gamma(3 s) & 0 \leq s \leq \frac{1}{3} \\
\bar{f}(a)\left(3\left(s-\frac{1}{3}\right)\right) & \frac{1}{3} \leq s \leq \frac{2}{3} \\
\gamma\left(1-3\left(s-\frac{2}{3}\right)\right) & \frac{2}{3} \leq s \leq 1
\end{array}\right\} \in X
$$

In particular, $\gamma \bar{f}(*) \gamma^{-1}$ is the loop γ at triple speed for $s \in\left[0, \frac{1}{3}\right]$, constant at $*$ for $s \in\left[\frac{1}{3}, \frac{2}{3}\right], r$ backwards at triple speed for $s \in\left[\frac{2}{3}, 1\right]$.

The path v: $I \rightarrow(\Omega X)_{0}$ joins $\gamma f(*)_{\gamma}^{-1}$ to the constant loop.

$$
\nu(t): S^{1} \ni s \mapsto\left\{\begin{array}{ll}
(3 s) & 0 \leq s \leq \frac{1}{3}(1-t) \\
(1-t) & \frac{1}{3}(1-t) \leq s \leq 1-\frac{1}{3}(1-t) \\
\left(1-3\left(s-\frac{2}{3}\right)\right) & 1-\frac{1}{3}(1-t) \leq s \leq 1
\end{array}\right\} \in X .
$$

Using the homotopy R , we get $\mathrm{g}:(\mathrm{A}, *) \rightarrow(\Omega \mathrm{X}, *)_{0}$ as the homotopy extension of the data $\gamma_{\overline{\mathrm{f}}}{ }^{-1}: \mathrm{A} \rightarrow(\Omega \mathrm{X})_{0}$ and $\nu: \mathrm{I} \rightarrow(\Omega \mathrm{X})_{0}$. Specifically, we get for $a \in A, g(a)=\gamma \bar{f}(R(a, l)) \gamma^{-1}$ if $R(a, l) \in A \times 0$. Thus

$$
g(a): S^{1} 3 s \mapsto\left\{\begin{array}{ll}
\gamma(3 s) & 0 \leq s \leq \frac{1}{3} \\
\overline{\mathrm{fR}}(\mathrm{a}, 1)\left(3\left(\mathrm{~s}-\frac{1}{3}\right)\right) & \frac{1}{3} \leq s \leq \frac{2}{3} \\
\gamma\left(1-3\left(s-\frac{2}{3}\right)\right) & \frac{2}{3} \leq s \leq 1
\end{array}\right\} \in X .
$$

If $R(a, l)=(*, t) \in * \times I$, we get $g(a)=\nu R(a, l)=\nu(t)$.

Step 3 is now trivial because we see from Step 2 that $\overline{\gamma \cdot f}(a)=g(a)$ for all $a \in \mathbb{A}$.

This completes the proof of Lemma (5.3). .

In sl, we have seen that $\Omega X \approx(\Omega X)_{0}>_{\phi} \pi_{1} X$, where $\phi: \pi_{1} X \rightarrow H \varepsilon(\Omega X)_{0}$ is defined by loop conjugation. Explicitly, if $[\gamma] \in \pi_{1} X, \phi[\gamma]$ is represented by the map $(\Omega X)_{0} \exists \propto \mapsto \gamma \alpha^{-1} \in(\Omega X)_{0}$; cf. (1.4), (1.7).

In \$2, we have seen that ϕ induces an action $\psi(A)$ on the free homotopy groups [$\mathrm{A},(\Omega \mathrm{X})_{0}$] by composition. Explicitly, $\psi(\mathrm{A}){ }_{[\gamma]}[\mathrm{g}]=\phi([\gamma])^{\circ}[\mathrm{g}]$ and $\phi([\gamma])^{\circ}[\mathrm{g}]$ is represented by the map $A \exists a \mapsto \gamma g(a)_{\gamma}^{-1} \in(\Omega X)_{0}$. Hence, we have shown
(5.4) Corollary For all $[\gamma] \in \pi_{1} X,[f] \in[(S A, *),(X, *)]$, $\theta([\gamma],[f])=\theta^{\prime}([\gamma],[f])=\underline{\psi(A)}[\gamma][\overline{f]}$.

Applying Corollary (5.4) to n-spheres ($n \geq 1$), we get the following equivalent conditions for the nilpotency of CW-complexes.
(5.5) Theorem Let $(X, *)$ be a connected CW-complex. Then the following are equivalent:
(i) $\pi_{1}(X, *)$ is nilpotent and acts nilpotently on $\pi_{n}(X, *)$ for $\mathrm{n} \geq 2$.
(ii) $\pi_{1}(X, *)$ is nilpotent and acts nilpotently on $\pi_{n-1}(\Omega X, *)$ by loop conjugation for $\mathrm{n} \geq 2$.
(iii) $\pi_{1}(X, *)$ is nilpotent and $\left[S^{n-l},(\Omega X)_{0}\right]$ is $\psi\left(S^{n-1}\right)$ nilpotent for $\mathrm{n} \geq 2$.
(iv) $\left[\mathrm{S}^{\mathrm{n}-1}, \Omega \mathrm{X}\right]$ is nilpotent for $\mathrm{n} \geq 2$.

Proof (i) \Longleftrightarrow (ii) follows from (5.3).
(ii) \Longleftrightarrow (iii) follows from (5.4). (iii) \Longleftrightarrow (iv) $\left[\mathrm{S}^{\mathrm{n}-1}, \Omega \mathrm{X}\right] \cong\left[\mathrm{S}^{\mathrm{n}-1},(\Omega \mathrm{X})_{0}\right]_{\varnothing}{ }_{\psi\left(\mathrm{S}^{\mathrm{n}-1}\right)} \pi_{1}(\mathrm{X}, *)$, by (2.8) and the semidirect product on the right hand side is nilpotent if and only if (iii) is true, for purely group theoretic reasons (cf. §2).

The material in 82 can now be exploited in the following way. The action $\psi\left(\mathrm{S}^{\mathrm{n}-1}\right)$ in (5.5) (iii), (iv) is induced by the homomorphism $\phi: \pi_{1} \mathrm{X} \rightarrow \mathrm{H} \mathcal{E}(\Omega \mathrm{X})_{0}$, determining the H -semidirect product structure of $\Omega \mathrm{X}$.
(5.6) Proposition If ϕ is trivial ($\operatorname{ker} \phi=\pi_{1} X$), then X is simple.

This calls our attention to homomorphisms of $\pi_{1} X$ into the following tower of groups.
$\pi_{1} X \rightarrow C \varepsilon(\Omega X)_{0} ;$ group of homotopy classes of H-conjugations of $(\Omega X)_{0}$
$\subset \mathrm{H} \mathcal{(}(\Omega \mathrm{X})_{0}$; group of H-equivalences of $(\Omega X)_{0}$
$\subset \varepsilon(\Omega X)_{0}$; group of self homotopy equivalences of $(\Omega X)_{0}$.
(5.7) Corollary If the set of homomorphisms from $\pi_{1} X$ into one of the groups $C \varepsilon(\Omega X)_{0}, H \varepsilon(\Omega X)_{0}, \mathcal{E}(\Omega X)_{0}$ is the l-element set, then X is a simple space.
\square

In Proposition (2.7) we have shown that $\operatorname{nil}\left[\mathrm{S}^{\mathrm{n}}, \Omega \mathrm{X}\right] \leq \mathrm{c}$ for all $\mathrm{n} \geq 1$ if $\Omega \mathrm{X}$ has H-nilpotency index $\leq \mathrm{c}$. Together with (5.5)(iv), we get
(5.8) Corollary If ΩX is H-nilpotent, then X is nilpotent. \quad a

As for (5.5)(iii), the material in $\$ 4$ can be utilized in the following way.
(5.9) Proposition Let $h_{n}: \pi_{n}(\Omega X)_{0} \rightarrow H_{n}(\Omega X)_{0}$ denote the Hurewicz homomorphism. If X is nilpotent, then $\pi_{1} X$ acts nilpotently on im h_{n}. In particular, $\pi_{1} X$ acts nilpotently on $H_{1}(\Omega X)_{0}$.

Proof Use (4.5) and the Hurewicz isomorphism theorem.

Conceptually, bordism theories have a flavour of generalizing aspects of free homotopy sets as well as aspects of singular homology groups. It is therefore not too surprising that the graded bordism group of an associative H-space has the natural structure of a graded ring arising in very much the same way as the Pontryagin ring structure in singular homology. Indeed, in this chapter we shall show that the bordism ring of an H -semidirect product decomposes into a twisted tensor product in a way resembling the decomposition of the Pontryagin algebra (cf. §4).

Let us begin by introducing the necessary concepts related to (co-)bordism theories. We are interested in bordism having a description by singular manifolds via Thom's theorem. Therefore, we shall assume that the extra structure on a manifold comes from an extra requirement concerning the normal bundle of this manifold with respect to a fixed imbedding in some \mathbb{R}^{s}. To keep this chapter to a certain extent self contained, we shall explain the underlying formalities and state, without proof, the results invoked. This material is extracted from Stong "Notes on cobordism theory" [St] and Switzer "Algebraic Topology" [Sw], which are the general references.

We shall refer to a smooth compact manifold ("smooth": it has a C^{∞} atlas), with or without boundary, simply as a manifold. If we use the symbol M for a manifold, then m will denote the dimension of M. We agree that \emptyset is a manifold of arbitary dimension. Whitney's imbedding theorem says that M can be imbedded in the half space
$H^{s+1}:=\left\{\left(x_{1}, \ldots, x_{s+1}\right): x_{1} \geq 0\right\} \subset \mathbb{R}^{s+1}(s \geq 2 m+1)$ such that ∂M gets mapped to $\partial H^{s^{+1}}=\left\{\left(0, x_{2}, \ldots, x_{s+1}\right) \in \mathbb{R}^{s+1}\right\}$ and ($M-\partial M$) gets mapped into the open half space $\left(x_{1}>0\right)$ of $\mathbb{H}^{\mathbf{S + 1}}$. We require all imbeddings in later considerations to have these properties.

Notation and preparations Let $\mathbb{R}^{\infty}:=\lim \mathbb{R} u \mathbb{R}^{2} \longleftrightarrow \mathbb{R}^{3} c \ldots$ with the limit topology. For $r \geq 1$, it will be advantageous to use the isomorphism $\mathbb{R}^{\infty} \cong \xrightarrow{\lim } \mathbb{R}^{\mathbf{r}} \longrightarrow \mathbb{R}^{2 r} \longrightarrow \mathbb{R}^{3 \mathrm{r}} \longrightarrow \ldots$ induced by deleting the vector spaces \mathbb{R}^{n}, n not divisible by r, from the first limiting system above.

For $r, r^{\prime} \geq 1$, we get an isomorphism $\pi_{r, r^{\prime}}: \mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ given by the following self explanatory picture.

If r^{\prime} is even, $\pi_{r, r^{\prime}} \approx \pi_{r^{\prime}, r}$ by a homotopy through orthogonal maps interchanging the summands $\mathbb{R}^{\mathbf{r}} \oplus \mathbb{R}^{r^{\prime}}$ pointwise in each of the blocks $\mathbb{R}^{r+r^{\prime}}$. For $n \geq 1$, let $\rho_{n}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ be the isomorphism induced blockwise by the map $\mathbb{R}^{n} \ni\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(-x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. If $\mathrm{rr}{ }^{\prime}$ is odd, $\pi_{r, r^{\prime}} \approx \rho_{r+r^{\prime}} \pi_{r^{\prime}, r}$ by a homotopy through orthogonal maps interchanging the summands $\mathbb{R}^{\mathbf{r}} \oplus \mathbb{R}^{\mathbf{r}^{\mathbf{\prime}}}$ pointwise in each of the blocks $\mathbb{R}^{\mathrm{r}+\mathrm{r}^{\prime}}$. Evidently, the diagram

commutes strictly. Furthermore, the inclusion $i_{r}: \mathbb{R}^{r} 3\left(x_{1}, \ldots, x_{r}\right)$ $\longmapsto\left(x_{1}, \ldots, x_{r}, 0\right) \in \mathbb{R}^{r+1}$ induces an inclusion $j_{r}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ given by

$$
\begin{aligned}
& \mathbb{R}^{\infty} \cong \mathbb{R}^{r} \oplus \mathbb{R}^{r} \oplus \mathbb{R}^{r} \oplus \ldots
\end{aligned}
$$

For $0 \leq r \leq n$, denote by $G_{n, r}$ the Grassmann manifold of unoriented r-planes in \mathbb{R}^{n} and by ${ }^{B 0}{\underset{r}{r}}:=\lim G_{r, r} \longrightarrow G_{r+1, r} c \ldots$ On the set level, there is an immediate identification between BO_{r} and $G_{\infty, r}$, the set of r-planes in \mathbb{R}^{∞}. We give $G_{\infty, r}$ the topology rendering this identification a homeomorphism. Let r_{r} denote the canonical r-plane bundle over ${ }^{B O_{r}}$. Note that r_{r} is a universal r-plane bundle, i.e. if (E, p, B) is a numerable r-plane bundle, then there exists a unique homotopy class of maps $[f]: B \rightarrow O_{r}$ such that the pull back bundle $f^{*} \gamma_{r}$ is vector bundle isomorphic to (E, P, B).

Let O_{r} denote the orthogonal group of \mathbb{R}^{r}. The inclusion $i_{r}: \mathbb{R}^{r} \cong \mathbb{R}^{r} \times\{0\} \longrightarrow \mathbb{R}^{r+1}$ induces the inclusion $i_{r}: 0_{r} \cong 0_{r} \times\left\{\right.$ Id $\left._{\mathbb{R}^{\prime}}\right\}$ $\longrightarrow 0_{r+1}$, giving rise to the inclusion $\mathrm{Bi}_{r}:{ }^{B O_{r}} \boldsymbol{P} \mathrm{P} \longmapsto \operatorname{span}\left(\mathrm{j}_{r}(\mathrm{P})\right.$ $\left.U\left\{e_{r+1}\right\}\right) \in \mathcal{B O}_{r+1}$. Here $e_{n} \in \mathbb{R}^{\infty}$ denotes the vector having 0 -entries
everywhere but for al at the n-th position.
For $l \leq r \leq n$, denote by $V_{n, r}$ the Stiefel manifold of ordered orthogonal r-frames in \mathbb{R}^{n}, and by $E O_{r}:=\xrightarrow{\lim } V_{r, r} \longleftrightarrow V_{r+1, r} c \ldots$. On the set level, there is an immediate identification between EO_{r} and $V_{\infty, r}$, the set of orthogonal r-frames in \mathbb{R}^{∞}. We give $V_{\infty, r}$ the topology rendering this identification a homeomorphism. Let $f_{r}^{1}: E O_{r} \exists\left(v_{1}, \ldots, v_{r}\right) \longmapsto \operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} \in \mathcal{B O}_{r}$. Then $\left(E O_{r}, f_{r}^{1}, B O_{r}\right)$ is a universal principal 0_{r}-bundle.

The inclusion $j_{r}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ induces an inclusion $E i_{r}: E O_{r} \exists\left(v_{1}, \ldots, v_{r}\right) \longmapsto\left(v_{1}, \ldots, v_{r}, e_{r+1}\right) \in E 0_{r+1}$. Now, the direct sum decomposition $\mathbb{R}^{\infty} \mathbb{\mathbb { 3 }} \mathbb{R}^{r} \oplus \mathbb{R}^{r} \oplus \ldots$ gives us a "diagonal" action of 0_{r} on \mathbb{R}^{∞} inducing an action of O_{r} on $E O_{r}$. The inclusion $i_{r}: O_{r} \cong O_{r} \times\left\{\mathrm{Id}_{\mathbb{R}}\right\} \rightarrow 0_{r+1}$ gives us an action of O_{r} on $E O_{r+1}$. It is immediate that $E i_{r}$ is an equivariant map with respect to this 0_{r}-action. In particular, we get the commuting diagram

(6.1) Definition (i) A (B,f)-system is an infinite ladder

in which every square is strictly commutative and every vertical map is a Hurewicz fibration.
(ii) $A(B, f)$-structure on a manifold M is a pair ($\epsilon_{r}, \lambda_{r}$), $r \geq b$, where $\epsilon_{r}: M \rightarrow \mathbb{R}^{m+r}$ is an imbedding. ϵ_{r} gives rise to a canonical map $c_{r}: M \rightarrow G_{m+r, r} \longrightarrow B O_{r}$ which classifies the normal bundle of $\epsilon_{r}(M)$ in $\mathbb{R}^{\mathbb{m}+r}$ and we require $\lambda_{r}: M \rightarrow B_{r}$ to be a lift of c_{r} (i.e. $f_{r} \lambda_{r}=c_{r}$).

Actually a pair ($\epsilon_{r}, \lambda_{r}$) induces more pairs ($\epsilon_{r+k}, \lambda_{r+k}$), $k \geq 1$ by composition: $\epsilon_{r+k}:=M \xrightarrow{\epsilon_{r}} \mathbb{R}^{m+r} \longrightarrow \mathbb{R}^{m+r+k}$, which yields $\mathrm{c}_{\mathrm{r}+\mathrm{k}}=\mathrm{Bi}_{\mathrm{r}+\mathrm{k}-1}{ }^{0} \cdots{ }^{\circ} \mathrm{Bi}_{\mathrm{r}+1}{ }^{\circ} \mathrm{Bi}_{\mathrm{r}}{ }^{\circ} \mathrm{C}_{\mathrm{r}}$ and $\lambda_{\mathrm{r}+\mathrm{k}}=\mathrm{g}_{\mathrm{r}+\mathrm{k}-1}{ }^{\circ} \cdots{ }^{\circ} \mathrm{g}_{\mathrm{r}+1}{ }^{\circ} \mathrm{g}_{\mathrm{r}}{ }^{\circ} \lambda_{\mathrm{r}}$. For our purposes we do not need to favour any of the $\left(\epsilon_{s}, \lambda_{s}\right), s \geq r$, above. We shall, therefore, write a (B,f)-structure on M as a pair (ϵ, λ) and specify subscripts only when necessary.

Note also that a (B, f)-structure on M induces a (B, f)-structure on $\partial \mathrm{M}$ by taking restrictions of the maps involved.
(iii) Two (B, f)-structures $\left(\epsilon^{1}, \lambda^{1}\right),\left(\epsilon^{2}, \lambda^{2}\right)$ on M are equivalent $: \Longleftrightarrow$ there exists $r \geq b$ and a translation $T: \mathbb{R}^{m+r} \rightarrow \mathbb{R}^{m+r}$ such that $T \epsilon_{r}^{1}=\epsilon_{r}^{2}$ and $\lambda_{r}^{1} \approx \lambda_{r}^{2}$ by a vertical homotopy. The latter requirement makes sense because $T \epsilon_{r}^{1}=\epsilon_{r}^{2}$ implies $c_{r}^{1}=c_{r}^{2}$.
(iv) $A(B, f)$-manifold is a manifold M together with an equivalence class of (B, f)-structures.
(v) Let M_{1}, M_{2} be (B, f) manifolds of dimensions $m_{2}-1 \leq m_{1} \leq m_{2}$ with representing (B, f)-structures $\left(\epsilon^{1}, \lambda^{1}\right),\left(\epsilon^{2}, \lambda^{2}\right)$. A (B, f)-imbedding of M_{1} in M_{2} is an imbedding $a: M_{1} \rightarrow M_{2}$ such that
(a) $a\left(\partial M_{1}\right) \subset \partial M_{2} \quad$ if $\quad m_{1}=m_{2}$
(b) $\quad \partial M_{1}=\square$ and $a\left(M_{1}\right) \subset \partial M_{2} \quad$ if $\quad m_{1}=m_{2}-1$.

Furthermore, there is to exist $r \geq b$ and a translation $T: \mathbb{R}^{m_{2}+r} \rightarrow \mathbb{R}^{m_{2}+r}$ such that $T \epsilon_{r}^{1}=\epsilon_{r}^{2} a$, and $\lambda_{r}^{1} \approx \lambda_{r}^{2} a$ by a vertical homotopy. The latter requirement makes sense because $T \epsilon_{r}^{1}=\epsilon_{r}^{2} a$ implies $c_{r}^{1}=c_{r}^{2} a$.

If C is a (B, f)-manifold with boundary M, and M is given the induced (B, f)-structure, then the inclusion $M \longleftrightarrow C$ is a (B, f)-imbedding with T the translation by the 0 -vector, i.e. $T=I d$.

A (B, f)-diffeomorphism between M_{1} and M_{2} is an invertible (B, f)-imbedding of M_{1} in M_{2}. We denote this situation by $M_{1} \cong M_{2}$ (assuming that the underlying (B, f)-system is fixed).
(vi) Let M_{1}, M_{2} be two (B, f)-manifolds of the same dimension m, without boundary. M_{1} is (B, f)-cobordant to $M_{2}: \Longleftrightarrow$ there exist (B, f)-manifolds C_{1}, C_{2} of the same dimension $c=m+1$ such that (" u " denotes disjoint union)

$$
M_{1} \dot{U} \partial C_{1} \cong M_{2} \dot{U} \partial C_{2}
$$

*(6.2) Lemma
(i) "(B,f)-diffeomorphism" is an equivalence relation. Denote the collection of equivalence classes of closed (B,f)-manifolds of dimension m by $m_{m}^{(B, f)}$.
(ii) $M_{m}^{(B, f)}$ is a proper set for all $m \in \mathbb{N}_{0}$.
(iii) Under the operation of disjoint union (on representing manifolds, imbeddings, classifying maps for normal bundles and lifts into $\left.B_{r}\right)$, the $\operatorname{set} M_{m}^{(B, f)}$ becomes an abelian monoid with the empty manifold (and the unique paraphernalia of maps) as the neutral element.
(iv) (B, f)-cobordism is an equivalence relation on $M_{m}^{(B, f)}$. Denote by $\Omega_{m}^{(B, f)}$ the set of (B, f)-cobordism classes of $m_{m}^{(B ; f)}$ and by $[M]$ the cobordism class of a (B, f)-manifold M.
(v) The adddition on $M_{m}^{(B, f)}$ is compatible with the formation of (B,f)-cobordism classes and induces on $\Omega_{m}^{(B, f)}$ the structure of an abelian group. Its neutral element is the (B, f)-cobordism class consisting of all closed m-manifolds arising as the boundary of some closed (B, f)-manifold $C \quad(c=m+1)$ with the induced (B, f)-structure. Inverses are obtained as follows. If M with (B, f)-structure (ϵ, λ) represents a certain (B, f)-cobordism class, for r sufficiently large, let $T: \mathbb{R}^{m+r} \rightarrow \mathbb{R}^{m+r}$ be a translation such that $\epsilon_{r}(M)$ is disjoint from $T \cdot \epsilon_{r}(M)$. Then there exists an imbedding $\epsilon^{\prime} r^{\prime} M \times I \rightarrow H^{r+m+1}$ such that $\epsilon^{\prime} \mid M \times\{0\}=\epsilon_{r}$ and $\epsilon^{\prime}{ }_{\mid M \times\{1\}}=T \epsilon_{r}$. Then the canonical classifying map $c_{r}^{\prime}: M \times I \rightarrow O_{r}$ is a homotopy of c_{r}. Hence the lift $\lambda_{r}: M \rightarrow B_{r}$ has a homotopy extension $\lambda_{r}^{\prime}: M \times I \rightarrow B_{r}$ over c_{r}^{\prime}. Give $M \times\{1\}$ the induced (B, f)-structure. It follows that

$$
(M \times\{0\} \cup M \times\{1\}) \dot{U} \partial \emptyset \cong \emptyset \dot{U} \partial(M \times I)
$$

which means that $M \times\{1\}$ with the (B, f)-structure constructed above represents the inverse of M in $\Omega_{m}^{(B, f)}$.

We indicate a source for many (B, f)-systems. Let $b \in \mathbb{N}$, and suppose we have an infinite ladder of closed subgroups G_{r} of O_{r}

where all arrows are inclusions, so that each square in this ladder automatically commutes. If for all $r \geq 1, G_{r}=\left\{\operatorname{Id}_{\mathbb{R}^{r}}\right\}$ we take $B_{r}:=E O_{r}, \quad f_{r}:=f_{r}^{1}, \quad g_{r}:=E i_{r}$. In the other cases, observe that G_{r} acts on $E O_{r}$ by restricting the O_{r}-action. The quotient space is a classifying space for principal G_{r}-bundles. Furthermore f_{r}^{1} is the composite of two fibrations $q_{r}: E O_{r} \rightarrow B G_{r}=B_{r}$, a principal G_{r}-bundle, and $\mathrm{f}_{\mathrm{r}}: \mathrm{B}_{\mathrm{r}} \rightarrow \mathrm{BO}_{\mathrm{r}}$ with fibre $\mathrm{O}_{\mathrm{r}} / \mathrm{G}_{\mathrm{r}}$. Since $\mathrm{E} \mathrm{i}_{r}$ is equivariant and $i_{r}: O_{r} \longrightarrow 0_{r+1}$ induces an inclusion $G_{r} \longrightarrow G_{r+1}$, we get the double ladder below in which each square commutes strictly and each vertical map is a Hurewicz-fibration (cf. [B], Chapter III).

The bottom ladder is a (B, f)-system associated with the system of groups $\left\{G_{r} \subset O_{r}\right\}$.

In essence, a (B, f)-structure on a manifold M comes from an imbedding $\epsilon_{r}: M \rightarrow \mathbb{R}^{m+r}$ so that the associated normal bundle of M in $\mathbb{R}^{\mathrm{m}+\mathrm{r}}$ is a G_{r}-bundle. Furthermore, (B, f)-cobordism is the classical cobordism idea applied to the class of manifolds allowing for a (B, f)-structure. In particular the choice

$$
\begin{aligned}
& G_{r}:=0_{r} \quad \text { yields standard unoriented cobordism } \\
& G_{r}:={ }^{S} 0_{r} \quad \text { yields standard oriented cobordism } \\
& G_{2 r}:=G_{2 r+1} \quad:=U_{r} \quad \text { yields complex cobordism } \\
& G_{r}:=\left\{I_{\mathbb{R}^{r}}\right\} \quad \text { yields Pontryagin's framed cobordism. }
\end{aligned}
$$

We shall briefly explain the method of constructing (B, f)-bordism theories. For systematic reasons, we present now the formalities needed to state conditions which will insure that the graded (B, f)-bordism group of a point will turn out to be a graded associative commutative ring with 1 .
*(6.3) Lemma (i) The map $\pi_{r, r^{\prime}}: \mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ induces a map
 classifies the product bundle $\gamma_{r} X_{\gamma_{r}}$.
(ii) The diagram

$$
\begin{aligned}
& \mathrm{BO}_{\mathrm{r}} \times \mathrm{BO}_{\mathrm{r}^{\prime}} \times \mathrm{BO}_{\mathrm{r}^{\prime}} \xrightarrow{\mathrm{Id} \times \mathrm{k}_{\mathrm{r}^{\prime}, \mathrm{r}^{\prime \prime}}} \mathrm{BO}_{r} \times \mathrm{BO}_{\mathrm{r}^{\prime}+\mathrm{r}^{\prime \prime}}
\end{aligned}
$$

commutes.
(iii) If $r r^{\prime}$ is even, a homotopy of $\pi_{r, r^{\prime}}$ to $\pi_{r^{\prime}, r}$ through rotations renders the diagram

commutative up to homotopy, where $\tau\left(P, P^{\prime}\right)=\left(P^{\prime}, P\right)$. Let $\tilde{\rho}_{n}: B O_{n} \rightarrow B O_{n}$ be the map induced by $\rho_{n}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$. If $r r^{\prime}$. is odd, a homotopy of $\pi_{r, r^{\prime}}$ to $\rho_{r+r^{\prime}} \pi_{r^{\prime}, r}$ through rotations renders the diagram

commutative up to homotopy.
(iv) BO ${ }_{r}$ has the canonical-base point $\mathbb{R}^{r}=*_{r}$ (the first \mathbb{R}^{r} block of \mathbb{R}^{∞}). Bi_{r} is a based map, $k_{r, r^{\prime}}\left(*_{r^{\prime}}, *_{r^{\prime}}\right)=*_{r+r^{\prime}}$ and $k_{r, r^{\prime}}\left(x, *_{r^{\prime}}\right)=B i_{r+r^{\prime}-1}{ }^{\circ} \ldots{ }^{\circ} B i_{r}(x)$.

We shall from now on work with (B, f)-systems satisfying the following additional requirements.
(Cl) For all $r, r^{\prime} \geq b$, there exists a map $\ell_{r, r^{\prime}}: B_{r} \times B_{r^{\prime}} \rightarrow B_{r^{+} r^{\prime}}$ such that the diagram

commutes. Since $k_{r+r^{\prime} \gamma_{r+r^{\prime}}}^{*}=\gamma_{r} \chi_{\gamma_{r^{\prime}}}$, this implies that $f_{r+r^{\prime}} \ell_{r+r^{\prime}}$ classifies $f_{r}^{*} \Upsilon_{r} \times f_{r^{\prime} \Upsilon_{r^{\prime}}}^{*}$.
(C2) The diagram

$$
\begin{aligned}
& B_{r} \times B_{r^{\prime}} \times B_{r^{\prime \prime}} \xrightarrow{I d \times \ell_{r^{\prime}, r^{\prime \prime}}} B_{r} \times B_{r^{\prime}+r^{\prime \prime}} \\
& \ell_{r, r^{\prime}} \times I d \left\lvert\,\left\{\begin{array}{l}
\ell_{r, r^{\prime}+r^{\prime \prime}}
\end{array}\right.\right. \\
& \mathrm{B}_{\mathrm{r}^{+} \mathrm{r}^{\prime}} \times \mathrm{B}_{\mathrm{r}^{\prime \prime}} \longrightarrow \ell_{\mathrm{r}^{\prime}+\mathrm{r}^{\prime}, \mathrm{r}^{\prime \prime}} \mathrm{B}_{\mathrm{r}+\mathrm{r}^{\prime}+\mathrm{r}^{\prime \prime}}
\end{aligned}
$$

commutes up to a vertical homotopy over the diagram (6.3)(ii). (C3) If $r r^{\prime}$ is even, the homotopy between $k_{r, r}$ and $k_{r^{\prime}, r} \tau$ in (6.3)(iii) lifts to a homotopy between $\ell_{r, r^{\prime}}$ and $\ell_{r^{\prime}}, r^{\tau}$ over the diagram in (6.3)(iii).
(C4) In each fiber $f_{r}^{-1}\left\{*_{r}\right\} \subset B_{r}$, there is a distinguished point $\cdot \tilde{*}_{r}$ such that $\ell_{r, r^{\prime}}\left(\tilde{*}_{r}, \tilde{*}_{r^{\prime}}\right)$ is in the same path connected component of $f_{r}^{-1}\left\{*_{r}\right\}$ as $\tilde{*}_{r+r^{\prime}}$ and $\ell_{r, r^{\prime}}\left(\tilde{x}, \tilde{*}_{r^{\prime}}\right)$ is in the same path component of $f_{r^{+} r^{\prime}}^{-1}\left(k_{r, r^{\prime}}\left(f_{r}(x), *_{r^{\prime}}\right)\right)$ as $g_{r^{\prime} r^{\prime}-1} \cdots g_{r}(\tilde{x})$.
(6.4) Remark The (B,f)-systems arising from a system of subgroups $\left\{G_{r} \subset O_{r}\right\}$ as explained above, satisfy the requirements (Cl), ...,(C4). Proof sketch The map $\pi_{r, r^{\prime}}: \mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ induces a map $\ell_{r, r^{\prime}}^{1}: E O_{r} \times E O_{r^{\prime}} \rightarrow E O_{r+r^{\prime}}$ satisfying the requirements (C1), .., (C4). For the other systems, we get maps $\ell_{r, r^{\prime}}: B G_{r} \times B G_{r^{\prime}} \rightarrow B G_{r+r^{\prime}}$ induced by $\ell_{r, r^{\prime}}^{1}$ by taking quotients. For the distinguished point $\tilde{}_{r}$, we take the quotient class of the r-frame $\left(e_{1}, \ldots, e_{r}\right)$.

A (B, f)-system gives rise to a homology theory as follows. Let X be a space, $M \in M_{m}^{(B, f)}$ a closed (B, f)-manifold, $u: M \rightarrow X$ a continuous map. The pair (M, u) is called a singular (B, f)-manifold in X.
(6.5) Definition Two singular (B, f)-manifolds (M, u), (M^{\prime}, u^{\prime}) are called (B,f)-bordant $: \Longleftrightarrow$ there exists an ($m+1$)-dimensional (B, f)-manifold C such that

$$
M \dot{U}\left(-M^{\prime}\right)=\partial C,
$$

where $-M^{\prime}$ represents $-\left[M^{\prime}\right]$ in $\Omega_{m}^{(B, f)}$, and there exists a continuous map $a: C \rightarrow X$ such that $a_{\mid M}=u$ and $a_{\mid M^{2}}=u^{\prime}$.
*(6.6) Lemma (i) (B,f)-bordism on singular (B, f)-manifolds is an equivalence relation. Let $\{M, u\}$ denote the (B, f)-bordism class of the singular (B, f)-manifold (M, u).
(ii) The (B, f)-bordism classes of dimension m in X form an abelian group under the operation disjoint union of domain manifolds and singular maps. Denote this group by $\Omega_{m}^{(B, f)} X$.
(iii) $\Omega_{*}^{(B, f)}$ is a generalized homology functor from the category of compactly generated Hausdorff spaces to the category of $\mathbb{N}_{0}-$ graded abelian groups.

Next let us construct a cross-product for $\Omega_{*}^{(B, f)}{ }_{-}$. Let X, Y be spaces and let (M, u) be a singular (B, f)-manifold in $X,(N, v)$ a singular (B, f)-manifold in Y. Let (ϵ, λ), ($\epsilon^{\prime}, \lambda^{\prime}$) represent (B, f)-structures for M, N. The cross product of (M, u) with (N, v) is ($M \times N, u \times v$) with (B, f)-structure $\left(\epsilon_{r}{ }^{X} \epsilon_{r}^{\prime}, \ell_{r, r}\left(\lambda_{r} \times \lambda_{r}\right)\right.$). That this makes sense follows from the commutativity of the diagram below and the fact that $k_{r, r^{\prime}}\left(c_{r} \times c_{r^{\prime}}^{\prime}\right)$ classifies the normal bundle of $M \times N$ in $\mathbb{R}^{m+r+n+r^{\prime}}$ because $k_{r, r}$, classifies $\gamma_{r} X_{\gamma_{r}}$.

*(6.7) Lemma (i) The cross product on singular (B, f)-manifolds defined above is natural, biadditive and associative.
(ii) The cross product on singular (B, f)-manifolds is compatible with the (B, f)-bordism relation and, therefore, induces a natural
homomorphism $x: \Omega_{*}^{(B, f)} X \otimes_{Z} \Omega_{*}^{(B, f)} Y \rightarrow \Omega_{*}^{(B, f)} X \times Y$. The cross product for three spaces is associative.
(iii) Let $P=\{*\}$ denote the 1 -point space and identify
$P \times X=X=X \times P$ by the obvious homeomorphisms. Then " \times " induces on $\Omega_{*}^{(B, f)}{ }_{P}$ the structure of an \mathbb{N}_{0}-graded associative, commutative ring with identity element 1 , the cobordism class represented by (P, Id) where P has (B, f)-structure $\epsilon_{b}: P \rightarrow \mathbb{R}^{b}$ any map and $\lambda_{b}: P \exists * \longmapsto \tilde{*}_{b} \in B_{r}$. Note also that $\Omega_{0}^{(B, f)} P$ is a subring of $\Omega_{*}^{(B, f)} \mathrm{P}$ containing 1 .
(iv) The cross product induces on $\Omega_{*}^{(B, f)} X$ a natural $\Omega_{*}^{(B, f)}{ }_{\text {P-bimodule structure. }}$
(v) The biadditive map $\Omega_{*}^{(B, f)} X \times \Omega_{*}^{(B, f)} Y \rightarrow \Omega_{*}^{(B, f)} X \times Y$ is $\Omega_{*}^{(B, f)}{ }_{\text {P-balanced and, }}$ therefore, induces a homomorphism

$$
x: \Omega_{*}^{(B, f)} X \otimes_{\Omega_{*}^{(B, f)} P} \Omega_{*}^{(B, f)} Y \rightarrow \Omega_{*}^{(B, f)} X \times Y
$$

of $\Omega_{*}^{(\mathrm{B}, \mathrm{f})}{ }_{\mathrm{P}-\text {-modules }}$.

The proof is obvious at the level of singular manifolds. For the related (B, f)-structures it follows from properties $\mathrm{Cl}, \ldots, \mathrm{C} 4$ above.

Now let (X, μ) be an H -space. We get a Pontryagin algebra structure on $\Omega_{*}^{(B, f)} X$ out of the composite

$$
\Omega_{*}^{(B, f)} \mathrm{X} \otimes \Omega_{\Omega^{(B, f)}} \Omega_{*}^{(\mathrm{B}, \mathrm{f})} \mathrm{X} \rightarrow \Omega_{*}^{(\mathrm{B}, \mathrm{f})} \mathrm{X} \times \mathrm{X} \xrightarrow{\mu_{*}} \Omega_{*}^{(\mathrm{B}, \mathrm{f})} \mathrm{X} .
$$

The algebra structure is associative, respectively commutative if $(\mathrm{X}, \mu$) is H -associative, respectively H -commutative.

Now let Π be a group acting on a path connected H-group (W_{0}, μ_{0}) by a group homomorphism $\phi: \Pi \rightarrow H E W_{0}$ and denote by $W=W_{0} \infty_{\phi} \Pi$ the corresponding H-semidirect product with H-multiplication μ. Then π acts on $\Omega_{*}^{(B, f)} W_{0}$ by $\Omega_{*}^{(B, f)}$ P-algebra automorphisms via $\psi: \Pi \ni \mathrm{p} \longmapsto \phi(\mathrm{p})_{*} \in \operatorname{Aut} \Omega_{*}^{(\mathrm{B}, \mathrm{f})_{W_{0}}}$.
(6.8) Theorem $\Omega_{*}^{(B, f)} W \cong \Omega_{*}^{(B, f)} W_{0} \otimes \Omega_{0}^{(B, f)}{ }_{P} \Omega_{0}^{(B, f)} \pi \quad$ as graded $\Omega_{0}^{(B, f)}{ }_{\text {P-algebras. }}$

We are working with a fixed (B, f)-system. Thus we can, without risk of confusion, write " Ω_{*} " instead of " $\Omega_{*}^{(B, f)}$ ", Also denote $\Omega_{0} P$ by R. All tensor products here are over R.

Proof of (6.8) Ω_{*} is an additive (unreduced) homology theory. Thus $\Omega_{0} \Pi \cong R T$, so that the ψ-twisted tensor product above fits in the frame work of $\$ 3$.

We know from (6.7) (v) that the cross product

$$
x: \Omega_{*} W_{0} \times \Omega_{0} \Pi \exists(\{M, u\},\{A, v\}) \longmapsto\{M \times A, u \times v\} \in \Omega_{*} W
$$

is R -balanced. It remains to show
(1) " x " is ψ-twisted
(2) the R -algebra homomorphism $x: \Omega_{*} W_{0} \otimes_{R}^{\psi} \Omega_{0} \Pi \rightarrow \Omega_{*} W$ is an isomorphism.

Verification of (l). We must show that for all $\{\mathrm{M}, \mathrm{u}\} \in \Omega_{\mathrm{m}} W_{0}$, $\{N, v\} \in \Omega_{n} W_{0},\{n, t\} \in \Omega_{0} \Pi, p \in \Pi$, the identity

$$
(\{M, u\} \times\{1, p\})(\{N, v\} \times\{n, t\})=\left\{M \times N, \mu_{0}{ }^{\circ}\left(u \times\left(\varphi_{p}{ }^{\circ} v\right)\right)\right\} \times\{n, p t\}
$$

holds. Here, $p: 1 \rightarrow\{p\} \subset \Pi$ denotes the unique map and pt: $n \rightarrow \pi$ is given by multiplication of function values: $p t(x)=p \cdot t(x)$. Now

$$
\begin{aligned}
(\{M, u\} \times\{1, p\})(\{N, v\} \times\{n, t\}) & =\{M \times 1, u \times p\}\{N \times n, v \times t\} \\
& =\{M \times 1 \times N \times n, u \times p \times v \times t\} \\
& =\left\{M \times N \times n,\left(\mu_{0}\left(u \times\left(\varphi_{p}{ }^{\circ} v\right)\right)\right) \times p t\right\} \\
& =\left\{M \times N, \mu_{0}\left(u \times\left(\varphi_{p}{ }^{\circ} v\right)\right)\right\} \times\{n, p t\},
\end{aligned}
$$

where φ_{p} is defined as in $\$ 1$. Thus " \times " is ψ-twisted.

Verification of (2). We know that Ω_{*} is additive. Thus $\Omega_{0} \Pi \cong \underset{r \in \Pi}{\oplus} \Omega_{0} P$ as an R-module so that we get the isomorphisms of R-modules

$$
\begin{aligned}
\Omega_{*} W_{0} \otimes_{R} \Omega_{0} \Pi & \cong \underset{p \in \Pi}{\oplus} \Omega_{*} W_{0} \times\{p\} \\
& \cong \Omega_{*} W
\end{aligned}
$$

To make this isomorphism explicit, define for $p \in \Pi$

$$
\begin{aligned}
& i_{p}: W_{0} \times\{p\} \longrightarrow W \quad \text { the inclusion } \\
& \tau_{p}: W_{0} \exists w \longrightarrow(W, p) \in W \times\{p\} \quad \text { the translation map. }
\end{aligned}
$$

Then, the above isomorphism takes an element $\{M, u\} \in\{1, p\}$ to $i_{*} \tau_{p_{*}}\{M, u\}$ $=\left\{M, i \tau_{p} u\right\}=\{M \times I, u \times p\}=\{M, u\} \times\{1, p\}$. Thus " \times " is a monomorphism. Since the elements of the form $\{M, u\} \otimes\{1, p\}$ generate $\Omega_{*} W_{0} \otimes \Omega_{0} \pi$, " \times " is onto.

References

[B] A. Borel: Selected topics in the homology theory of fibre bundles. University of Chicago Lecture Notes; 1954. Also: Springer Lecture Notes 36, 1967.
[B-K] A.K. Bousfield; D.M. Kan: Homotopy with respect to a ring. Proc. Symp. in Pure Mathematics; Vol XXII, 1971, 59-65.
[C-R] C. Curtis; I. Reiner: Methods of representation theory Vol I. John Wiley \& Sons; New York 1981.
[H] P. Hilton: Nilpotent actions on nilpotent groups. Algebra and Logic; Proceedings 1974; Springer Lecture Notes 450, 1975; 174-197.
[H-M-R] P. Hilton; G. Mislin; J. Roitberg: Localization of nilpotent groups and spaces. North Holland; Amsterdam, Oxford 1975.
[M1] J.W. Milnor: Construction of universal bundles: I. Ann. of Math. II. Ser 63, 1956; 272-284.
[M2] J.W. Milnor: On spaces having the homotopy type of a CW-complex. Trans. Amer. Math. Soc. 90, 1959; 272-280.
[R] J. Roitberg: Note on nilpotent spaces and localization. Math. Z. 137, 1974; 67-74.
[Sch] H. Scheerer: Bemerkungen ueber Gruppen von Homotopieklassen. Archiv Math. 28, 1977, 301-307.
[Sp] E.H. Spanier: Algebraic Topology. Springer Verlag; New York, Heidelberg, Berlin 1966.
[Stel] N. Steenrod: A convenient category of topological spaces. Michigan Math. Journal 14, 1967; 133-152.
[Ste2] N. Steenrod: The topology of fibre bundles. Princeton University Press; Princeton 1951.
[St] R.E. Stong: Notes on cobordism theory. Princeton University Press; Princeton 1968.
[Sw] R.M. Switzer: Algebraic Topology - homotopy and homology. Springer Verlag; New York, Heidelberg, Berlin 1975.
[V] K. Varadarajan: Nilpotent actions and nilpotent spaces. 1976; unpublished.
[Whl] G.W. Whitehead: On mappings into group-like spaces. Comm. Math. Helv. 28, 1954; 320-328.
[Wh] G.W. Whitehead: Elements of Homotopy Theory. Springer Verlag; New York 1978.

References

[B] A. Borel: Selected topics in the homology theory of fibre bundles. University of Chicago Lecture Notes; 1954. Also: Springer Lecture Notes 36, 1967.
[B-K] A.K. Bousfield; D.M. Kan: Homotopy with respect to a ring. Proc. Symp. in Pure Mathematics; Vol XXII, 1971, 59-65.
[C-R] C. Curtis; I. Reiner: Methods of representation theory Vol I. John Wiley \& Sons; New York 1981.
[H] P. Hilton: Nilpotent actions on nilpotent groups. Algebra and Logic; Proceedings 1974; Springer Lecture Notes 450, 1975; 174-197.
[H-M-R] P. Hilton; G. Mislin; J. Roitberg: Localization of nilpotent groups and spaces. North Holland; Amsterdam, Oxford 1975.
[M1] J.W. Milnor: Construction of universal bundles: I. Ann. of Math. II. Ser 63, 1956; 272-284.
[M2] J.W. Milnor: On spaces having the homotopy type of a CW-complex. Trans. Amer. Math. Soc. 90, 1959; 272-280.
[R] J. Roitberg: Note on nilpotent spaces and localization. Math. Z. 137, 1974; 67-74.
[Sch] H. Scheerer: Bemerkungen ueber Gruppen von Homotopieklassen. Archiv Math. 28, 1977, 301-307.
[Sp] E.H. Spanier: Algebraic Topology. Springer Verlag; New York, Heidelberg, Berlin 1966.
[Stel] N. Steenrod: A convenient category of topological spaces. Michigan Math. Journal 14, 1967; 133-152.
[Ste2] N. Steenrod: The topology of fibre bundles. Princeton University Press; Princeton 1951.
[St] R.E. Stong: Notes on cobordism theory. Princeton University Press; Princeton 1968.
[Sw] R.M. Switzer: Algebraic Topology - homotopy and homology. Springer Verlag; New York, Heidelberg, Berlin 1975.
[V] K. Varadarajan: Nilpotent actions and nilpotent spaces. 1976; unpublished.
[Whl] G.W. Whitehead: On mappings into group-like spaces. Comm. Math. Helv. 28, 1954; 320-328.
[Wh] G.W. Whitehead: Elements of Homotopy Theory. Springer Verlag; New York 1978.

