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Abstract

Field oriented control (FOC) is used to achieve high dynamic performance in
inverter-fed induction motor drives. It is necessary, for field oriented control, to know the
instantaneous magnitude and position of the rotor flux. These values are approximated
based on flux measurements in direct FOC, and estimated in indirect FOC. This thesis
presents the design of a novel robust flux controller and, subsequently, a robust speed
controller for the purpose of indirect field oriented controlled flux estimation for an
induction motor drive. The controllers are designed in terms of stability and performance
criteria through a graphical technique, called loopshaping, taking into account the effects
of external disturbances and parameter variations, including time delay, rotor resistance
variances and inertial deviation from the nominal model. The purpose of these controllers
is to provide good tracking and performance despite the uncertainties present in the drive
system. The system’s ability to accurately estimate the flux magnitude and field angle is
verified through a parameter sensitivity study, which indicates that that the robust
controllers are quite insensitive to rotor resistance variations (maximum absolute error in
the flux magnitude is 0.01 p.u. if the rotor resistance is increased to twice the nominal
value). This preliminary work indicates that the robust controllers provide a practical

alternative to other control methods.
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Chapter 1

Introduction

Field oriented control (FOC) was originally developed in the early 1970s for the
purpose of high dynamic performance induction motor control. Due to the FOC
linearization technique, an induction motor drive gains the capability of performance
previously attainable only with DC motors used in servo drive applications. It is often
desirable, in field oriented control, for the rotor flux to reach its maximum value as
quickly as possible and maintain that magnitude throughout the normal operating range
of the induction motor. This is done by taking advantage of the relationship between the
shaft torque and the motor voltages or currents.

Induction motors have gained popularity in industrial applications due to their
advantage over other electric machines in terms of structural simplicity, ease of
maintenance, ruggedness, and durability. Unlike the DC motor, the squirrel cage
induction motor operates without the need for carbon brushes. Instead, as the stator
magnetic field rotates, current is induced into the rotor windings. However, due to the
fact that the windings are made up of conducting bars embedded in slots in the rotor iron
and short-circuited at each end by conducting end-rings (often called a squirrel cage),

they are inaccessible to the extraction flux information needed for FOC.
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Two primary techniques have been developed in order to alleviate this problem.

Direct FOC, which is based on the direct measurement of the air-gap flux; and indirect
FOC, in which the desired quantities are estimated, rather than measured with sensors.
The various existing methods of indirect FOC share the need of a relationship between
stator currents, stator voltages and rotor speed, in some combination, in order to
determine the magnitude and angle of the rotor flux.

In this thesis, indirect FOC is used to estimate various rotor flux quantities. At the
same time, robust controllers are employed in order to take into account, and compensate
for, any plant parameter deviation and disturbance, thereby effectively reducing
performance degradation during such deviation from, or disruption with respect to, ideal

performance.

1.1. Field Oriented Control

Field orientation implies that the stator current is oriented with respect to the rotor
flux so as to attain independently controlled flux gnd torque. This decoupling of the
current components supplied to the machine can be derived from the d-g axis theory
[1-4], in which the time dependence of some quantities is removed for steady-state
operation (i.e. sinusoidal quantities become DC quantities) and variables are expressed in

orthogonal or mutually decoupled direct (d) and quadrature (¢g) components.
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It is possible to represent the d-g model in either a stationary or rotating reference
frame. As the term implies, in the stationary reference frame, the direct and quadrature
axes are fixed on the stator itself. In the rotor reference frame, the axes are fixed on the
rotor. In the synchronously rotating reference frame, the axes rotate at the synchronous
speed of the motor and are fixed on the stator magnetic field.

Various superscripts are used to differentiate between the reference frames; in
standard notation, d* and ¢° denote the stationary reference frame; d° and ¢° denote the
synchronous rotating reference frame; and no superscripts are used for the field oriented
reference frame, whereby the synchronously rotating reference frame is fixed in relation
to the rotor flux. If machine operation is considered in the synchronously rotating
reference frame, sinusoidal variables of other frames appear as DC quantities in this
frame for steady state conditions [5].

In the early 1970’s, Blaschke developed the concept of field orientation [5, 6]. He
realized that the angular position of the rotating magnetic field within the rotor of the
induction motor was essential for control. He concluded that if the position of this
magnetic field could be measured, it would be possible to induce current into the rotor at
the point where the field strength has its maximum. This way, the motor could always
deliver full torque, even under transient conditions. However, because the magnetic field
rotates, the current-carrying rotor winding cannot be constantly located where the
magnetic field has its maximum. An impossible, hypothetical solution is to rotate the
gntire stator in order to let it follow the rotation of the magnetic field, thereby allowing

" the stator winding to always induce current into the correct position in the rotor.
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Blaschke, together with Hasse [7], found a practical solution. Instead of rotating

the entire stator, they “rotated” the control signals to the stator (made possible by the
vector multiplication of a standard rotation matrix). The flux components of the stator
currents are oriented in phase with the total rotor flux linkage of the motor, by fixing the
d-axis in the rotor synchronous reference frame. Thus, the magnetization of the motor
lies directly along the d-axis (hence the name). The torque components of the stator
currents, meanwhile, are oriented in quadrature (i.e. along the g-axis) to the rotor flux
linkage, indicating that the magnetization can be maintained constant, while torque may
be independently controlled in proportion to the stator current component along the
g-axis [5-7].

Therefore, field oriented control effectively “converts™ the induction motor into a
DC motor, that is, permitting independent control of flux and torque. The induction
motor will behave in a manner practically identical to a current controlled (or voltage
controlled) DC motor [8]. This means that, with field oriented control, it is possible to
have the performance of a DC motor in a simple, rugged squirrel cage induction motor.

Of the two basic kinds of FOC, indirect is preferred in practical applications [6].
For indirect FOC, the necessary flux information is estimated, rather than directly
measured, as in direct FOC. The advantage to this is that it negates the requirement of an
externally mounted device, which, in general, can be subject to severe thermal and
mechanical stresses (i.e. Hall sensors) or that flux cannot be sensed at zero speed (i.e.

flux sensing coils) [3, 4, 8).



1.2. Robust Control

High disturbance rejection and good command tracking are basic requirements of
any high performance drive systems, which are subject to some types of extraneous
disturbances and parameter variations during operation. These perturbations typically
consist of differences in the dynamics of the model and the actual process, including
various external load uncertainties, and plant parameter deviation (e.g. variation of the
rotor time constant in an induction machine).

The rotor time constant of an induction motor is dependent on rotor resistance,
which tends to vary significantly due to temperature variations and skin effect. This
influences the accuracy of the flux magnitude and angle estimation of indirect FOC,
leading to a degradation in system performance and quality of control. With the inclusion
of robust controllers in the system modeling, it is proposed that rotor resistance
perturbations may be compensated for.

In recent years, several advances have been made to reduce the hardware
requirements of a field oriented control system [9, 10], and to improve the accuracy in
speed and/or position control under a range of operating conditions through the use of
robust control methods [11-13], thereby attempting to circumvent problems of plant
uncertainties. However, the application of robust control theory to flux control has not
been attempted in the past.

Following a commonly used graphical method, called the loopshaping technique

[14-16], a novel robust flux controller is proposed, and subsequently, it is proposed that a
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robust speed controller be designed in terms of high performance criteria, taking into

account the effects of external disturbances and parameter variances, including time
delay, rotor resistance variations, and inertial deviation of the plant from the nominal

case.

1.3. Thesis Overview/QOutline

Chapter 2 serves as a review of the history and basic concepts of field oriented
control (including d-¢ axis theory, and matrix transforms), and robust control (including
the loopshaping technique).

Presented in Chapter 3 is the implementation of a field oriented control induction
motor drive system, utilizing the robust controliers presented in Chapter 2.

Chapter 4 consists of the results of the flux estimator tests, comprising of
parameter variation tests to examine the robustness of the estimator and comparisons
with alternative control schemes.

A discussion of the results is presented in Chapter 5, followed by conclusions and

suggestions for future work in Chapter 6.



Chapter 2

2.1. Field Oriented Control and Flux Estimation

2.1.1. Field Oriented Control Theory

The goal of field oriented control is to control an AC induction motor like a
separately excited DC motor, in order to provide a controlled torque over a wide range of
operating conditions [3, 4]. This allows for good performance near zero speed, and for
the motor flux to be controlled and maintained at its optimum level so as to attain a fast
speed response.

In literature, the terms “vector control” and “field oriented control” are used
interchangeably. In a DC machine, torque control in an induction machine is achieved by
controlling the motor armature current. The induction motor requires external control of
the field flux and armature mmf spatial orientation, unlike the DC motor where the field
flux and armature mmf orientation is fixed by the commutator and brushes. It is this
control that prevents the space angles between the various fields in an AC motor from
varying with load (and during transients), which further yields complex interactions and
oscillatory dynamic response [4]. Directly controlling these space angles has come to be

known as “vector control” or “field oriented control”. In this thesis, systems that attempt
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to produce a 90° space angle between specifically chosen field components, are referred
to as being “field oriented”, in order to emulate the behavior of a DC motor.

Field orientation can be best explained by first reviewing the principles of DC
motor operation. The basic structure of a DC motor consists of a stationary field
structure, which uses either a DC excited winding or permanent magnets, and a rotating
armature winding supplied through a commutator and brushes. This structure, along with
the motor equivalent circuit, and resulting orientation of the armature mmf and the field

flux, is shown in Fig. 2.1.

L Ly 0
A 0000 ——» ~— 0000 A~
[, “«( ) 8w T
Armature Circuit Field Circuit
lelx.
0. 28 — — > Fi K
® ® _0000
@ ® Y 4 Torque
® ® |
©o® T h

Figure 2.1. DC machine model
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As can be seen from Fig. 2.1, the flux and mmf are maintained in a mutually

perpendicular orientation independent of rotor speed, resulting in the field flux being
unaffected by the armature current and maximum possible torque. The electromagnetic
torque, neglecting the armature demagnetization effect and field saturation, is given by
Te=K:¥elo=Ki Il @.1)
where X,,K; = proportionality constants
¥, =airgap flux
I, =armature current (torque component)

I =field current (flux component)

The control variables /, and /; are considered as being orthogonal or decoupled
vectors. Under normal operating conditions, torque is varied by changing the armature
current, and the field current is set to maintain the rated field flux. Since the stator
current components respoasible for rotor flux and torque production are decoupled, the
torque sensitivity remains maximum in both transient and steady-state operation. This
DC motor control model becomes valid for induction motor torque control if machine
operation is considered in a synchronously rotating reference frame where the sinusoidal
variables appear as DC quantities.

The principle of field oriented control can be explained through the use of a
phasor diagram [2, 17]. Figure 2.2 shows the equivalent circuit of the induction motor
and the corresponding phasor diagram. The equivalent circuit uses only one of the three
- identical motor phases, as the only difference between them is a 120 degrees phase shift.
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Figure 2.2. Per-phase equivalent circuit and phasor diagram for the induction motor

10
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Neglecting rotor leakage inductance [3], the primary (or stator) current /, spiits

into the magnetizing current /,, and the secondary (or torque) current /,. The magnetizing
current induces the rotor field through the inductance L,,. Secondary current /, produces
the motor torque. The amount of secondary current (and torque) is dependent on the

secondary resistance and the slip frequency Ra/s.

In the complex plane
[m =1; coS e (2.2)
Ii=Issinf 2.3)

where 6= phase angle.

The torque as a function of primary current /; is nonlinear, making direct control
of the motor torque impossible [17]. However, field oriented control theory allows for the
establishment of a control law such that 7, is maintained constant, thereby making the
rotor flux constant. The secondary current, /,, meanwhile, is controlled in proportion to
the amount of torque required. Thus, referring to Fig. 2.2 and Eqn. (2.3), both the stator

current /; and the phase angle 6 will increase or decrease given a large or small torque,

respectively.
This relationship is quantified by
L=[B+F 24
1,
=tan! ﬁ] 2.5)
The torque is given by

Te=K¥Ynl=KiInl; (26)
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where K,,K, = proportionality constants
¥ =airgap flux
From the equivalent circuit in Fig. 2.2,

Ry
Lm ]m Qe =TI; (2.7)

where w.=27f.
fe = stator excitation frequency
s = per unit slip ( i.e. synchronous speed of the stator field minus steady speed of
the rotor, divided by the synchronous speed of the stator field)
The angular slip is then given by
Ou=pE T =0, s @8)

The three key variables in field oriented control are the stator excitation
frequency (i.e. synchronous frequency), the magnitude, and the phase angle, of the
primary current. The aim of a drive system utilizing FOC , then, is to satisfy Eqns. (2.4),
(2.5), and (2.8), at least implicitly. Note that in doing so, not only are the magnetizing
and torque producing currents, /,, and /, respectively, orthogonal phasors (as in Fig. 2.2),
but also orthogonal space vectors, just as is the case for the DC motor (as in Fig. 2.1).

In Fig. 2.3, field orientation is illustrated with the control inputs iz, and i7,. The
currents are expressed in orthogonal direct-axis and quadrature-axis components, iz and
fqs, Tespectively, where both are in a synchronously rotating reference frame. When

comparing with the DC motor, iy is analogous to the field current I;, and iy is
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analogous to the armature current /,. Thus, the torque of the induction motor in the
synchronously rotating reference frame may be
expressed as

Te=K:Wmipg=Kigis 2.9

where Ki,K; = proportionality constants

¥ m = airgap flux
i'a
.
Inverter- /
.. and LM
1gs - Control \

Figure 2.3. FOC induction motor

Adjustable speed operation can be accounted for by the use of an element within
a feedback loop [4], so dynamic behavior of the induction machine has to be taken into
consideration. Due to the coupling effect between the stator and rotor phases, the
dynamic performance is a complex one, whereby the coupling coefficients tend to vary
with rotor position. It is possible to describe the machine in terms of differential

equations with time-varying coefficients.
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2.1.2. Variable Transformations

The d-q axis theory is generally used for dynamic modeling of an induction
motor, whereby variables and parameters are expressed in orthogonal or mutually
decoupled direct (@) and quadrature (¢) components [1]. This model may be formulated
in one of several reference frames, either stationary or rotating. In a stationary reference
frame, the direct and quadrature axes are fixed on the stator, while in a rotating reference
frame, the axes can be fixed on the rotor or can be rotating at synchronous speed
(referenced to the stator or rotor flux).

For the stationary reference frame, the d-q axes are denoted by 4° and ¢°, where
the s superscript denotes variables and transformations associated with circuits which are
stationary, as opposed to rotor circuits which are free to rotate. The synchronously
rotating reference frame, whereby the d-g axes are denoted by d° and g€, can be defined
as the reference frame rotating at the electrical angular velocity corresponding to the
fundamental frequency of the variables associated with the stationary circuits (denoted by
we). For AC machines, w, is the electrical angular velocity of the air gap rotating
magnetic field established by stator currents of fundamental frequency. For the field
oriented reference frame, in which the synchronously rotating reference frame is fixed in
relation to the rotor flux, no superscripts are used. The advantage of considering machine
operation in the synchronously rotating reference frame, or the field oriented reference
frame, is that sinusoidal variables of other frames are transformed into DC quantities in

- this frame for steady-state operation.
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Figure 2.4 can be used to explain the axiom of variable transformation. This

diagram shows three physical phases a,, b, ¢, (fixed relative to the stator datum), the
stationary reference frame axes &* and ¢* and the synchronously rotating reference frame
axes d® and ¢°. The arbitrary angle x lies between the a,-axis and the stator datum (i.e.
the g*-axis).

The three-phase to two-phase transformation of the stator voltages is given by

Vsasgs=TVsp, (2.10)
Vsp;, = [Vas, Vbs, Va]T 2.12)
) cc-)s(x) O?S(X - i;“") cos(x — :T")
T=3%| SinG) sinGx~%) sinG- 5 (2.13)
7 7 7
and conversely
V%=T“V,d,q, (2.149)
where
cos(x) sin(x) 1
T-1= | cos(x-%F) sin(x-%) 1 (2.15)

cos(x—3%) sin(x-4F) 1

(A similar type of operation can be done for the stator currents.)
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—p - axis
Stator Datum

Y

ds- axis

Figure 2.4. Axes transformations

Setting x = 0 results in the g°-axis coinciding with the a;-axis. The transform

matrix then becomes

wiN
N

(2.16)

O O
Nl-,:lc';l
N "'l“q N'I--

and

@.17)

~

L

|
R

|
Nlﬁnlﬂq o
[ N
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The stationary reference frame to rotating reference frame transformation is given

by
Vsag= UVSG,Q, (2.18)
where Vi, = [Vqs, vas]T (2.19)
Vg =Vis va)l (2.20)
_ COSOQ -Singe
U'[ sind, cosf. ] 221)
and conversely
Vs o Ul v i (2.22)
1| cosfe sinf.
where U~ [ _sinf. cosd. jl (2.23)

and fe~w.t (i.e. angle of the stator synchronously rotating reference frame).

For a balanced, fixed voltage three-phase supply let

Vas = Vim COS(@et) (2.24)
Vos = Vim COS(@et - Z2) (2.25)
Ves = Ve COS@et + ) (2.26)

where ¥V, = stator peak voltage.
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If it is further assumed that the phase voltages are balanced and sinusoidal, then

simplifying Eqns. (2.10) and (2.14) in the synchronously rotating reference frame yields

Vas =Vis @27)
1 /3

Vbs =-2Ves = "2 Vas (2.28)
1 J3

Ves =-2Vgs ¥ "7 Vs (2.29)

and
2 1 |

V“'”. = 3Vas - 3Vbs~ 3Ves = Vas (2.30)
1 1

V= - /3 Vbs + TVes (2.31)

(zero components in T'and 7! have been dropped.)

Substituting Eqns. (2.24), (2.25), and (2.26) into (2.30) and (2.31) yields

Vs = Vim cOS(@t) (2.32)

Vi = Vo Sin(@et) (2.33)

Then, substituting Eqns. (2.32) and (2.33) into (2.18) results in
Ve =Vim (2.34)

vg =0 (2.35)

It can be seen that the sinusoidal variables appear as DC quantities in the stator
synchronously rotating reference frame for steady-state operation. This is the main

advantage of using the d-q axis theory.
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2.1.3. Synchronously Rotating Reference Frame Model

The d-q equivalent circuit is shown in Fig. 2.5, from which the stator voltages in
the stator synchronously rotating reference frame are given by
Vos = Rs igs + s¥s + 0. WG (2.36)
Vo= Rs iG + sV -we Vs (2.37)
where s = differential operator
vgs™ instantaneous g°¢-axis stator voltage
v¥,= instantaneous d®-axis stator voltage
R, = stator resistance
igs = instantaneous ¢°-axis stator current
ig, = instantaneous d°-axis stator current
we. = stator frequency (rad/s)
¥¢: = q°-axis stator flux linkage

¥, = d°-axis stator flux linkage

If the rotor moves at a speed of w,, the d-q axes fixed on the rotor move at a
speed of (we - ;) relative to the synchronously rotating reference frame. Then, the rotor
voltages can be expressed as

ve,=R, i, + sV + (0.~ ;) V5 (238)

ve,=R, i5 + sVG - (@e-w,) ¥ (2.39)
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where vg, = instantaneous ¢-axis rotor voltage
v, = instantaneous d°-axis rotor voltage
R, = rotor resistance
ig, = instantaneous g°-axis rotor current

i%, = instantaneous d®-axis rotor current

L]
g

R, — 1(-)u=f-s-1-m Le=L-Lp R,
+\-__0000 0000 -/ \+
W—— —(— W\

T me\l’c‘k u" :,' (©c- mr)\!;edr T
Vs e Sh Ve Vear
| .. — .’ |
@

i
R —_— Ls=Lln Ly=L-In 4___
AM—O) 0000 QD.Q.O__O 'V\/\r
(Y .
T 0% FERCISI-D) L T
V‘“ ‘P.d, 8 I-m .?gﬁ chr
[ ..K. <> ."—' l
®)

Figure 2.5. d-q equivalent circuits in the synchronously rotating reference frame:

(8) q°- axis circuit, and (b) d®- axis circuit
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It should be noted that for a squirrel cage induction motor or single fed machine,

vgr and v, are equal to zero.

The various flux linkages are given by

Wo =Ligige + Ly (g + igy) (2.40)
Vo =Ly il +Lm (i +i5)  (241)
WE, =Ly i, + Lo (i% + i5,) (2.42)
Ve =Ly iG + L (i +i5)  (243)

where L; = stator leakage inductance
L =rotor leakage inductance

L,, = magnetizing inductance

The model of electrical dynamics, in terms of currents and voltages, can be

rewritten in matrix form as
V;, Ry +5sLs @els SLm WeLm i;s
Vz, = -CDQL; R: + SL; “CﬂeLm SLm lé‘. 244
V;r SLm (CD¢ - Wr)Lm Rr +SLr (wg -wr)[:r l;r ( i )
V% ~(@e —wr)m SLm ~@e-wr)Lr Ry +sL, is

where s = Laplace operator
L = stator inductance

L ,= rotor inductance



22

During steady-state, all s-related terms in the above matrix become zero, and all
variables in the synchronously rotating reference frame appear as DC quantities with
sinusoidal excitation. Electrical rotor speed relates to torque by the following expression

T,-Ty =Js0n -5/ 50 (2.45)

where 7, =load torque

J =system inertia

P = number of poles

s = differential operator

The electromagnetic torque is then given by
T =385mwe it -ws i) (246)
-5 nlh =l ) Q4D
Eqns. (2.44), (2.45), and (2.47) together represent the complete model of the

electromechanical dynamics of an induction machine.
2.1.4. Direct Field Oriented Control

Two primary methods exist in order to obtain the magnitude and position of the
rotor flux; direct and indirect field oriented control.
In direct field orientation, the position of the flux to which orientation is desired

- is directly measured using sensing devices or estimated from terminal measurements.
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Since rotor flux cannot be sensed directly, a rotor flux-oriented system requires some
computation to obtain the desired information from a directly sensed signal. Two of the

most widely known sensing methods are the Hall sensing method and the flux coils

method.
ig
l.t i‘p
P T i
i’y VR | % U
- e
t 1 e N
sin ‘; cos &, , O
\ IM
N
-
VA < k4

Figure 2.6. Direct field oriented control

In the Hall sensing method, shown in Fig. 2.6, two sensors (i.e. Hall sensors) are
placed in the air gap of the stator and measure the angular position of the magnetic field.
The signals are fed into a “vector analyzer” (VA), which filters the signal and adjusts the
amplitude. The sine and cosine of the magnetic field angle come from the VA and are fed
into the “vector rotator” (VR). The control signals for the magnetizing current /,, and the

rotor current /, (shown in the upper left part of the figure) together define a control
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vector. The vector is fed into the VR, which rotates it to an angle where /, and /, are fed
into the right angular positions in the motor.

Because the currents are fed into the stator windings, the motor must be
controlled in stator coordinates. Since the stator reference frame is related to the stator, it
is stationary. However, the coordinate system related to the magnetic field rotates (i.e.
follows the rotation of the magnetic field). Following the rotation and viewing the motor
from the field oriented reference frame, it behaves like 2 DC motor as it appears to have
a stationary magnetic field vector and stationary current vectors (i.e. DC currents). Thus
the motor can be controlled by DC currents, if the control signals are generated in field
coordinates [8]. In Fig. 2.6, there are field coordinates to the left of the VR and stator
coordinates to the right. The control signals are created in field coordinates, consequently
as DC currents, and then transformed to stator coordinates.

A disadvantage with Hall sensors is that they are subject to severe thermal and
mechanical stress due to their semiconductor nature, resulting in output error which is
difficult to compensate.

In the flux coils method, flux coils are used to sense induced voltage (which is
proportional to the flux change), followed by integrators to calculate the main flux of the
motor. Flux coils avoid the problem inherent in Hall sensors by having no active
semiconductor components. However, control problems can arise because most flux coils
are mounted on the stator, and not the rotor. As a result, these sensors monitor the stator
flux in a stationary reference frame, and not the rotor flux which is used in the

" decoupling scheme. The rotor flux then must be derived from the flux sensor



25

measurements via flux linkage equations. This leads to the introduction of detuning
errors in the system dynamics [15]. As well, flux coils can only give satisfactory results at
frequencies above 5 to 10 Hz. Therefore, this technique is unsuitable for position control,
as the flux cannot be sensed at zero speed.

A problem with most direct orientation schemes is that they require modifications
to be made to the motor (i.e. mounting of external devices) making them expensive and

impractical outside the laboratory setting.

2.1.5. Indirect Field Oriented Control

An alternative to direct sensing of the flux position is presented in indirect field
orientation, which can employ the slip relation to estimate the flux position to the rotor.
There are no sensing devices placed inside the motor, meaning there is no direct
measurement of the magnetic field. Instead, the rotor speed (i.e. rotor frequency) is
measured and slip frequency is calculated. Addition of these frequencies yields an
optimal stator frequency for motor control. This scheme is shown in Fig. 2.7. A sensor on
the motor shaft measures the rotor angle 6(or measures the rotor speed ®,, followed by
an integrator for calculation of the angle). The input signals for current control are used
for calculation of the desired slip frequency, wy;, which is integrated, giving a slip angle,
Bs:, which is added to the rotor angle. (The slip angle is required to adjust the inclination

of the d-axis so that the magnetization of the motor is along this axis.) The sum of the

- two angles gives the instantaneous rotor flux position angie.
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Figure 2.7. Indirect field oriented control

For determination of the rotor flux, a real time solution of the motor flux model

equations is implemented using the measurable stator currents and rotor speed as driving

functions. This is shown in block diagram form in Fig. 2.8.

i Lm
S'TR‘I'.I

s 3PL,
22L,

¥

Figure 2.8. Indirect FOC induction motor model
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Indirect field orientation does not have inherent low speed problems (unlike

direct FOC), and is thus preferred in most systems that must operate near zero speed. As
well, flux can be obtained even down to zero frequency, making it suitable for position
control. A major drawback, however, is that calculation of the rotor flux depends on the
rotor time constant Tz, where Tr = L,/ R,. This time constant is dependent on rotor
resistance, which is a function of rotor temperature and therefore tends to vary
significantly due to temperature variations and the skin effect. This affects the accuracy
of the flux magnitude and angle estimation, leading to a degradation in system
performance and quality of control.

The functional diagram of a generalized indirect field oriented control system is
presented in Fig. 2.9 [2]. The solid lines represent signals that are necessary for field
orientation, while the dashed lines indicate signals that may or may not be required. As
well, the stator current is divided into its direct component, iz, and its quadrature
component, iy, which are expressed in the field oriented frame (i.e. the synchronously
rotating reference frame fixed on the rotor magnetic field). The direct and quadrature
components control the rotor flux, ¥, and electromagnetic torque, 7, respectively, of
the induction motor. The inputs are the torque command (established by speed or
position feedback) and the flux command (usually constant). The magnetizing reference
input, vz or iz, and the torque reference, vy or iz, are produced by separate controllers.
These voltages or currents are then fed into the matrix U-!, which transforms them from

synchronously rotating coordinates to stationary coordinates. Then, they are converted
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from the two-phase to the three-phase domain via the matrix 7!, where they become

phase commands for the inverter. Similarly, in the feedback loop, the three-phase
quantities are converted back into two-phase variables from a stationary to a
synchronously rotating reference frame. The flux magnitude, field angle and torque
calculation block may require any of a combination of phase currents and/or phase
voltages and rotor speed [18]. Even though a voitage source inverter (VSI) or a current
source inverter (CSI) may be used fqr voltage phase commands or current phase
commands, respectively, this is not essential. For example, current phase commands can

be applied to 2 VSI with current feedback implemented for the inverter itself [19].

2.1.6. Flux Estimation

Figure 2.10 helps to explain the procedure for estimating the rotor flux magnitude
and angular position using indirect field orientation. The d&°-¢° axes are fixed on the
stator while the d¢-¢g¢ axes rotate at synchronous angular velocity w.. At any instant, the
q°¢-axis is at angular position 8. with respect to the g*-axis. The angle 6. is given by

0e =6+ 04 (2.48)
=(wr + o)t
=Wet
where 6, = rotor angular position (@- ¢
8, = slip angular position (@ ¢)

We =Wr + Wy
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The rotor flux , ‘¥'-, consisting of the air gap flux and the rotor leakage flux, is
aligned to the d-axis. Since the voltages v;, and v, are zero, Eqns. (2.38) and (2.39)

become

0=R, if, + s¥5 + (@e~w,) WG (2.49)

0=R, i + s¥5 - (@e—w;) ¥ (2.50)
and from Eqns. (2.41) and (2.43),
Ve, =L, i€, + Ly i (2.51)

WS, =L, i€ + Ly i (2.52)

From Equs. (2.51) and (2.52),

. 1y, Lm.
i =7V - T it (2.53)
it =0 - 525, (2.54)

The rotor currents from Eqns. (2.49) and (2.50) can be eliminated by substituting
Eqns. (2.53) and (2.54) into Eqns. (2.49) and (2.50) to yield

0=F%g - 2R it + %5 + @e—0) ¥, (255)

R, Lm, .
0=T-¥5 - TR, i% + V5 -@e-@,)¥5  (2.56)
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Figure 2.10. Phasor diagram for field orientation

The field orientation concept implies that the currents supplied to the machine
should be oriented in phase and in quadrature to the rotor flux vector ¥g,.. This can be
achieved by selecting @, to be the instantaneous speed of ‘¥, and locking the phase of
the reference system such that the rotor flux is aligned with the d*-axis (i.e. angle =0,
hence the field angle ¢ equals the synchronous angle 6.), resulting in the mathematical
constraint

we =0 @.57

This is the case for steady-state operation with zero load torque, neglecting stator

and rotor losses. One purpose of field oriented control is to determine the field angle ¢,
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which is equal to 6., during this time frame. However, during steady-state, constant load

torque operation, § is a small negative constant (typically -30° < § < 0°).

For decoupling control, it is desirable that

¥, =Y, =constant
S‘P¢.=0

(note that no superscript denotes field oriented axes).

Hence, Eqns. (2.55) and (2.56), with decoupling control, become

Lm Rl‘ .
Du=g T, igs (2.58)

%sty, + W, =Lpig (259

from which it can be seen that rotor flux is a simple first order differential equation

which is dependent on the d-axis current of the stator in the synchronously rotating

coordinate system.
Eqn. (2.59) can be rewritten as
ige = l—.;g& ¥, (2.60)
where s= 'g—,
Lr
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Substituting Eqn. (2.60) into (2.58) yields

_l-i-STRii
D= "Tr  ig

(2.61)

As well, in the field oriented frame, Eqns. (2.51) and (2.52) are expressed as
W =Lpig +Lyig (2.62)

IP& =Lr idr + Lm idt (2.63)

Eqns. (2.62) and (2.63) are quite relevant to the approach taken in this thesis to
obtain field oriented control, as is discussed in Chapter 3.



2.2. Robust Control Theory and Loopshaping

No physical system can be exactly modeled by a mathematical system. Such is the
case for high performance motor drive systems, which demand good command tracking
and load regulating responses. Ideally, the performances should remain insensitive to the
uncertainties of the drive system, which include differences in the dynamics of the model
and the actual process, such as external load disturbance, unmodeled and nonlinear
dynamics of the plant, and plant parameter variations. This is the definition of robust
control. To determine how uncertainties affect a system, the concepts of robust stability

and robust performance are applied to the model.

2.2.1. Types of Uncertainty

Modeling errors can be separated into two types. The first is parametric (or
structured) uncertainty, in which these errors are differences between the numerical
values of the differential equation coefficients between the actual plant and the model. It
is assumed that the actual plant is of the same order as the model. The second type of
uncertainty is known as unstructured uncertainty, in which the modeling errors refer to
the difference in the dynamics between the finite dimensional model and the unknown,
and possibly infinite, dimensional actual process [15]. This thesis considers only
unstructured uncertainty, due to the fact that parametric errors and the effects of

unmodeled dynamics are accounted for under its definition.
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Suppose that the plant (a nominal transfer function), P, belongs to a bounded set

of transfer functions, 2. The multiplicative representation of unstructured uncertainty is
then defined as

B(s)=[1 + A(s) Wa(s)] P(s) (2.64)

where P(s) = a perturbed plant transfer function
A(s) = a variable stable transfer function satisfying || A [lo<1
W (s) = a fixed, stable, and proper transfer function (also called the weight)

s = Laplace operator

Note: the infinity norm (or o - norm) of a function is the least upper bound of its

absolute value,
I A llo =sup| AG)
(i.e. it is the highest gain value on a Bode magnitude plot).

The quantity || . || is a norm, as it satisfies the following axioms (as per [14, 16]):

@@ | Alle 20 with|| A |l =0ifand only if A=0
() leAlle=la|-] A |« forall scalarsa

(i) [|A+BlasfAllet|Bllo
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It is assumed that no unstable or imaginary axis poles of P(s) are canceled in the
formation of P(s). Thus P and & have the same unstable poles.

Since A accounts for phase uncertainty and its magnitude varies between 0 and 1
at all frequencies (i.e. A acts as a scaling factor on the magnitude of the perturbation), the
set 2 is the set of the transfer functions whose magnitude Bode plot lies in the envelope
surrounding the magnitude plot of P(s), as illustrated in Fig. 2.11. Thus, the size of the
unstructured uncertainty is represented by the size of the envelope containing 2, and is
found to increase with increasing frequency. The upper edge of the envelope conforms to
the plot of (1 + | W2(j®)| ) | P(jw)|, while the lower edge of the envelope conforms to the
plot of (1 - | W2(j@)| ) | P(jw)|. Typically, | W2(jw)| is also an increasing function of @, as
demonstrated in Fig. 2.11. Furthermore, since the phase of A(jw) is arbitrarily variable,
the phase difference between any B(jw) € P and P(jw) can be arbitrarily large at high

4
frequencies. |

(1 +] Wy (jo)X )P (jo)

[P (joo)

(1-[W2(jo))IP (jo)

Magnitude

Envelope of actual plant

>

Frequency
Figure 2.11. Bode plot interpretation of multiplicative uncertainty
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Interpreting the uncertainty model, it can be seen that A(s)P>(s) is the

normalized error in the transfer function of the perturbed system with respect to the

nominal model, such that
By~
—(‘;(-g(ﬂ= A(s)H(s) (2.65)
which reduces to
)
%— 1= A(S)Wa(s) (2.66)

Hence, if || Allo < 1, then

2~ 1| sy 2.67)
for all frequencies, so |W(jw)| provides the uncertainty profile. As shown in Fig. 2.12,
this inequality describes a closed disk in the complex plane of radius |#>(jw)| centered at
1, which contains the point P(jw) / P(jw), for each frequency. The unstructured
uncertainty, then, is represented by the closed disk and, therefore, the direction and phase

of the uncertainty is left arbitrary.
Im

&

K?I\Wz (o)l
L/

Figure 2.12. Multiplicative uncertainty in the complex plane
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2.2.2, Robust Stability

The notion of robustness requires a controller, a set of plants and some
characteristic of the system [14]. A controller C provides robust stability if it provides

internal stability for every plant in the uncertainty set 2. (Note that the Laplace operator s

has been dropped for convenience sake from this point onward. However, the transfer
functions are still functions of s unless otherwise stated.) Hence, a test for robust stability
involves the controller and the uncertainty set. Let L denote the open-loop transfer
function (i.e. L = P C). Then, let S denote the sensitivity function (i.e. error to reference

tranfer function),

1
S=T1. (2.68)

and the complimentary sensitivity function (i.e. output to reference transfer function) is

given by
L PC
T=1-S=T[~T+C (269)

Furthermore, for a multiplicative perturbation model, the robust stability
condition is met if and only if | W2T ||, < 1 [14,15). A graphical interpretation of this
condition is shown in Fig. 2.13. Hence, the stability condition may be generalized to
become

s
| 72T o<1 [ —}%"L’T)Lf)ﬁ)- <1, forall (2.70)
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o | M(o)ljo)| <|1+Liw)| , forall @

& | Aoy (w)w)| <|1+L{w)| ,forall o, | Ale < 1

Therefore, the critical point, -1, lies outside the disk, which is centered at L(jw),

radius| W2(jw)L(o)| .

-1
——- — Re

@ W2 (jo) L (je) |

Figure 2.13. Robust stability condition in the complex plane

The relevance of the condition || W2T ||, < 1 can be seen in its relation to the
small-gain theorem, which states that the feedback system is initially stable if all the
transfer functions (i.e. the plant P, controller C and feedback gain F) are stable and
| PCF |l» < 1. A block diagram of a typical perturbed system, ignoring all inputs, is
shown in Fig. 2.14. The transfer function from the output of A to the input of A equals
-W2T. The properties of the block diagram can be reduced to those of the configuration
given in Fig. 2.15. The maximum loop gain, || -#2T ||, is less than 1 for all allowable As

if and only if the small-gain condition || W27 || < 1 holds.
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Figure 2.14. Perturbed feedback system

—WzT Y

Figure 2.15. Reduced block diagram

40
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2.2.3. Robust Performance |

Internal stability and performance should hold for all plants in the uncertainty set
P, according to the generalization of robust performance. The robust stability condition
for an internally stable, nominal feedback system, is | W2T |l < 1, and the nominal
performance condition is | WS |lo < 1, where W; is a real-rational, stable,
minimum-phase transfer function (also called the weighting function) such that

Wi(jw)
| WlSIIQSIQI—l;fUE,j <1,forall

o | Wi(w)| <|1+L{w)| , forall

If, as before, P=[1+ AW,] P, then the perturbed sensitivity function is written as

et e e s e = e = S 271
=TeFc = THITAWPEC = THI+AWG)L — (AWl — 1+aw,T (271

Therefore, the robust performance condition is given by

w\S
| 2T |l <1 and ” "11'5;!;;27 ” oS 1, for all allowable A (2.72)

Since | A|< 1, then|- AW2T | < |WaT|. Thus|1+ AW2T| > 1-|W>T| for a fixed
frequency, and it is then implied that

| et s e last e
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Hence, Eqn. (2.72) can be rewritten as a necessary and sufficient condition for
robust performance, which is

H#1S| + |W2T | o < 1 (2.74)

which is a stronger constraint than nominal performance or the robust stability condition

alone. A graphical interpretation of this condition is shown in Fig. 2.16, whereby

W W)L
S|+ WaT o<1 | Tor| 4 BE| <1, forallw

< Wil + WLl <|1+L, forall (2.75)

At each frequency, there exist two closed disks; one disk centered at -1, radius
|W1(jw)|; the other centered at L(jw), radius |#2(jw)L(jw)|. The condition given by Eqn.
(2.74) then holds if and only if the two disks have no nontrivial intersection (i.e. they can
touch, but they cannot overlap).

It should be noted that since the condition for simultaneously achieving nominal
performance and robust stability is

| max (#7181, |#W2T| ) o <1 (2.76)

and the robust performance condition is tested by Eqn. (2.74), then the conditions in
Equns. (2.74) and (2.76) differ at most by a factor of two. In other words,

fmax (#1S |, [W2T|) e SIS + [W2T | o <2 || max (1S |, 72T | ) |0 (2.77)
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The choice of these norms is not crucial, even though they may vary by as much |
as a factor of two. The inherent tradeoffs in control problems between [, S | and |#2T |

allow for similar solutions to be achieved even when using different norms.

» Re

(W2 (jo) L (jo) |

Figure 2.16. Robust performance condition in the complex plane

2.2.4. Loopshaping Technique

Loopshaping is a graphical design procedure for robust performance design,
whereby P, W1, and > are the input data, and a proper controller C is designed to
stabilize the plant and satisfy Eqn. (2.74) [14]. The basic idea of this method is to
construct the loop transfer function L to approximately satisfy Eqn. (2.74), and then to
attain C via C = L / P. Intemal stability of the nominal feedback system and the
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properness of C constitute the constraints of this method. It is assumed that P and P! are
both stable, otherwise L must contain P’s unstable zeros and poles. Thus, the condition

L=PC must have no pole-zero cancellation. In terms of Wi, W, and L, Eqn. (2.74) is

given by
X W1(jos) Wa(jw)L(jo)
o) =l l+},(/'a;)| +| “Tegay | <! (2.78)

which must hold for all frequencies. (Note that the argument jw is dropped from this
point on. The transfer functions are still functions of j& unless otherwise stated.)

A necessary condition for robust performance is that at every frequency, either
IW1| or |W2| must be less than 1 [15]. Typically, |#1} is monotonically decreasing (for
good tracking of low frequency signals), and |#2| is monotonically increasing (as
uncertainty increases with increasing frequency). Hence, at each frequency, either
[W1] < 1or|W2| <1. Itis also the case when || < 1, |#2| >> 1, and when [#2| <1,
|#1| >> 1. These properties can be used to determine the relationship between |#1], |72|,
and|L|.

For the case || >> 1 > |2, Eqn. (2.78) becomes

C<le|ml+{mllL] <{1+L] 2.79)

= || +IWallLl <1+]L| (2.80)
[#31-1

=L > 2.81)

(a necessary condition), and because [W1| >> 1, it can be said that
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|+1
1L|>m7a|m|+lwzuu<m 1 (282)

= W +IWliLl <IL+1] (2.83)

=>I<l1

(a sufficient condition). Since |#;|>> 1, the condition I" < 1 can be approximated by

|7
ILI >T577,1 (2.84)

For the case |#1] < 1 <<|W2|, Eqn. (2.78) becomes

<l Wil +|WllL| <|1+L| (2.85)
= Wl +|WllL| <1+|L] (2.86)

1-{ ;|
= |Ll <[t (2.87)

(a necessary condition), and since [W2| >> 1, it can be said that

Hml
|LI>IW2;.,.1 o (Wl + WLl <1-{L] (2.88)

= Wil +|WlILl <[1+L] (2.89)

=»I<l1

(a sufficient condition). Since [#1]>> 1, the condition I" < 1 can be approximated by

1-| Wi
Ll <Tw1 (2.90)



Therefore, because |#1] is a decreasing function of frequency, and || is an
increasing function of frequency, then typically at low frequencies
7> 1>|W2|
and at high frequencies
[hi<1<|Wa|.
The loopshaping design procedure can now be outlined (as per [14]):

1. Plot two curves on a log-log scale, magnitude versus frequency. These are

graphs of
41
1-|w,| over the low frequency range where |[#1|> 1 > |,
and

1-{ ;|
AR II over the high frequency range where [#1| <1< |W#>] .

2. On this plot, fit a graph of the magnitude of the open-loop transfer function | L],

whereby
| 71l .
|Ll >, atlow frequencies, and |L|>> 1;
and
1-| 3 ) A
|LI <, athigh frequencies, and [L] << 1.

At very high frequencies, let | L] roll off at least as quickly as | P| does. This ensures that
the controller is proper. The general features of the open-loop transfer function, then, are

- that the gain in the low frequency region should be large enough, and in the high
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frequency region, the gain should be attenuated as much as possible. The gain at the

intermediate frequencies typically controls the gain and phase margins. Near the gain
crossover frequency . (where the magnitude equals 1), the slope of the log-magnitude
curve in the Bode plot should be close to -20 dB / decade (i.e. the transition from low to
high frequency should be smooth). If | L| drops off too quickly through crossover, internal
instability will result, so a gentle slope is crucial.

3. Obtain a stable, minimum-phase open-loop transfer function L for the gain |L|
already consu'uctec}, normalizing so that L(0) > 0. The latter condition guarantees
negative feedback.

4. Recover the controller C from the condition L = PC.

5. Verify nominal stability and the condition of Eqn. (2.74), i.e.

[IPWS|+ WaT | ||l <1
in order to validate the design. Nominal intemal stability is achieved if, on a Nyquist plot
of L, the angle of L at crossover is greater than 180 (i.e. crossover occurs in the third or

fourth quadrant). If either of these conditions do not hold, this entire process must be

repeated.
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Chapter 3

3.1. Implementation of FOC and Robust Controllers

In this chapter, the design of a field oriented control drive system for an induction
motor, and subsequently, the design of robust controllers for this system, are presented.
The major components to be considered are an induction motor, a PWM voltage source
inverter, a robust controller for rotor flux, a robust controller for shaft speed, and two PI
controllers for d-q field currents. Note that the field oriented control approach to be used,
is based on the availability of a voltage source inverter in the power electronics
laboratory at the University of Calgary, which will facilitate the future physical

implementation of the proposed drive system.

3.2. Induction Motor Drive Model

The block diagram of the indirect field oriented controlled induction motor drive
is shown in Fig. 3.1 (as based on the generalized FOC system presented in Fig. 2.9). It
can be seen that the d-q voltages are generated in the field oriented reference frame from
the field oriented /s and iy feedback quantities. These voltages are then rotated (via
matrix U™!), transformed (via matrix 7-!), and applied to a voltage source inverter.
Utilizing a simulated induction motor model, this entire system was coded in C (see

Appendix A).
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Field orientation results in decoupled rotor flux and torque production, and

therefore, a need is established for separate flux and speed control. This is achieved

through the design of robust flux and speed controllers.

3.3. Robust Control Design

3.3.1. Plant Modeling

An accurate knowledge of the field angle, @, is crucial in coordinate
transformation, as is shown by Fig. 3.1. In FOC, as motor speed begins to increase from
standstill, it is often desirable for the rotor flux to reach its maximum value as quickly as
possible and maintain that magnitude throughout its operating range. A robust flux
controller, and subsequently, a robust speed controller, is proposed to achieve this
required fast speed response while allowing the system to remain relatively insensitive to
the uncertainties of external disturbances and parameter variation. It should be noted that
all results presented in this chapter are based on flux magnitude and field angle
calculations as per Eqns. (2.44), (2.62), and (2.63).

From the simplified block diagram of the induction motor model shown in

Fig. 2.8, the following relationships can be established

L ;e
Wy =37l L (.1

Te=K, ig (32)
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K.=(3p/4) (L2IL,) i3, (3.3)

where ¥, =rotor flux
Lm = magnetizing inductance
ig = flux command current
igs = torque command current
Te = electromagnetic torque
K, = torque proportionality constant
p = number of poles

T = rotor time constant ( = L,/R;)

Note that, as in Chapter 2, the transfer functions are still functions of s unless otherwise
stated.
As well, the relationship between electrical rotor speed and torque presented in

Eqn. (2.45) can be rewritten as

Te-Ty=(pl2)Ln=Jdwildt+Bw,  (3.4)

where T =load torque
J = polar moment of inertia
B = coefficient of friction

@, =rotor angular velocity
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From Eqgns. (3.1) - (3.4), it is possible to create first order models of the transfer

functions iz, - ‘¥, and ig - w;, for flux and speed control, which are, respectively,

‘I’r L’ll

15— PAS) =Tpel (3.5)
’ K

=P =Teip (3.6)

where P;=nominal plant transfer function for flux control

P, = nominal plant transfer function for speed control

3.3.2. Uncertainty Modeling

There are several types of perturbations to be considered in system modeling. For
both flux and speed control, one variable to be considered is the delay effect in system
dynz_nnics due to the coupling characteristics of the mechanical shaft, written as e™,
where 7 is the dead-time of the drive, and e~ is treated as a multiplicative uncertainty. A

first order Pade approximation of e is used to simplify the analysis [11,15], where

1—s/2
= Tro (3.7)

For the flux control system alone, the rotor resistance, R, is considered a
perturbed variable, due to temperature variations and skin effect during the normal

operation of an induction motor. For the speed control system alone, the variables to be

perturbed are the inertia, J, and the torque proportionality constant, X,, which is a
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function of the flux command current, ij,. This current is found to vary slightly during
normal operation, rather than remain constant. The inertia constant can undergo
significant change to test the effectiveness of the proposed controllers [13]. In fact, all
tolerances can be made large when modeling. By overcompensating for any given
perturbations in the modeling process, then, the controllers should be able to offset any
unexpected changes during normal operation. In this way, the controllers are modeled for
a worst-case scenario. Therefore, the rotor resistance, polar moment of inertia and the

proportionality constant are assumed to be subject to variations of AR,, AJ, and AKX ,

whereby
R,=R,+AR, (3.8)
J=J+AJ (3.9)
K=K+ AK, (3.10)

where R;= perturbed rotor resistance
J = perturbed inertia constant

Ri= perturbed proportionality constant

Accordingly, the drive models are replaced by

Ln
Pr= Tt e (3.11)
=5 5¢ " (3.12)

where Pj= perturbed plant transfer function for flux control

P=perturbed plant transfer function for speed control
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77 = perturbed rotor time constant (=L, / R;)

The coefficient of friction, B, is not varied due to its relatively small magnitude in

variation. The nominal values and tolerances of these perturbed parameters are:

Table 3.1: Perturbed parameters

Parameters nominal limits
T 0.025 p.u. 0.02 - 0.03 sec
R, 0.0287 p.u. up to 50%
J 0.0167 p.u. | 0.00835 - 0.0835 p.u
ig 0.3 p.u. 0.25-0.35p.u
3.3.3. Loopshaping Design

The frequency response of each perturbed plant is shown in Figs. 3.2 and 3.3, for
flux and speed control, respectively. It can be seen that the tolerances listed in Table 3.1
provide the upper and lower boundaries of each perturbed plant set. A perturbed plant
contained within each set can have any irregular magnitude response shape, within the
known boundaries. Eqn. (2.67) provides a means whereby the weighting transfer function

W, can be found. For convenience, this equation is rewritten here

%- 1| < W) (3.13)
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Reducing Eqn. (3.13) to incorporate the various perturbed variables, a function

W is found to satisfy the requirements of both control systems, and is given by

__004s
W2 =3.01s+1 (.14)

The result is shown in Fig. 3.4. The frequency responses and the determination of
W2 are obtained through MATLAB [20]. As well, the entire loopshaping procedure is

applied through MATLAB. These programs are listed in Appendix B.

- e o w— w -
-

10“ NPTV SN R 1 » g’ —— PN aaaa .
10? 10? 10" 10° 10' 10* 10° 10
frequency (rad/s)

Figure 3.4. Magnitude plot of #>
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Through simulation studies, a cut-off frequency of 1 rad/s provides good tracking

over the normalized frequency range [0, 1] for both control systems. Hence, a transfer

function W, is chosen to be a third order Butterworth filter, given by

(3.15)

1

.05
534252425+1

Wi=

with Eqn. (2.78), a satisfactory

Using #; and # in conjunction

for both control systems

| and {#|. Then, a stable,

with |7,

5

Fig. 3.

in

IL] is constructed and shown

btained as

function L

open-loop transfer
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The corresponding controllers for flux and speed , Crand C;, respectively, are

recovered from the condition L = PC, and are given by

12.9752461 945472
Cr=1(0.0152+0.06035+0.0904) (3.17)

C. -—Q.601252+1.2065+0.0072
s =5(0.004452+0.02645+0.0395) (3.18)

The robust performance condition is verified by plotting [#1S | + |W2T |, as
shown in Fig. 3.7, where it can be seen that || [#1S | + |W2T | |« =0.13 <1. This is the
best result that can be achieved with gain manipulation (of L). The performance

condition is found to depreciate towards 1 if the gain is manipulated in either the positive

or negative direction.
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Also, it can be shown that Z(0) > 0 and that the roots of the closed loop system

1+L=0are

-2.0303 + j5.7448

-2.0303 - j5.7448

-1.9394
verifying that this L provides nominal internal stability. This is correlated by Fig. 3.8,
which shows the Nyquist plot of Z, and Fig. 3.9, which shows gain and phase margins of
L. Gain margin (GM) and phase margin (PM) are used to measure the system’s relative
stability [21]. The gain margin is the amount of gain in 4B that can be inserted into the
closed loop before the system reaches instability. The phase margin is the change in open
loop phase shift required at unity gain to make the closed loop system unstable. The gain
crossover frequency, @, is the frequency at which the loop gain crosses the 0 dB line;

and the phase crossover frequency, @,, is

® T
af .
10F
- S
oo T —
£ <is
-10r
20
'223 .-; -o's ]

Real Axis
Figure 3.8. Nyquist plot of
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the frequency at which the angle of L(ja, ) crosses the - 180° line. If | L(jw, ) | lies below
the 0 4B line, GM is positive; otherwise it is negative. If the angle of L(jw.) lies above
the - 180° line, PM is positive, and if it lies below, PM is negative. A minimum-phase,
proper transfer function has all its poles and zeros lying in the open left half s-plane.
Generally, for a minimum-phase L, the system is stable if GM > 0 and it is unstable if
GM < 0; and generally, a minimum-phase system has a PM > 0 and becomes unstable if
PM < 0. Thus, in Fig. 3.9, it can be seen that the gain margin is positive and the phase

margin is positive, also verifying that the system is stable.

Gm=63.6 dB (Weg=234.1); Pm=37.8 deg. (Wep=5.4)

g
g 1
z
g -1m [ 'l P
g -w v L} L] L)
§ -wf !
[ %
-120} -
-140}
-180.
.180 Vi - o -
10* 10" 10° 10' 10 10!

Frequency (rad/sec)

Figure 3.9. Gain and phase margins
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Next in the design procedure, a unit step input is applied to the closed loop

system as there is a close correlation between a system response to a unit step input and
the system’s ability to perform under normal operating conditions [15, 21]. The response
is given in Fig. 3.10, from which the following quantities are determined:
(a) peak time (¢,) = the time for the step response to reach its first peak
(b) percent overshoot (PO) = the amount that the response overshoots its
steady-state (or final) value at the peak time;

expressed as a percentage of the final value,

. ak val.
ie. 100 (£ -‘,}‘;:,‘:f;j:-""’"‘)

(c) rise time (¢,) = the time at which the step response first reaches 90% of its
final value minus the time at which it first reaches 10% of its
final value

(d) settling time (¢,) = the time required for the response to settle to within 2%

of its final value.

For this system,

tp =0.5439 sec
PO=130.6255%
tr =0.2448 sec
ts = 1.7949 sec
It is found that if the gain of L is increased, the settling time and the percent

overshoot increase, while the rise time decreases. The opposite effect occurs for each
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quantity if the gain is decreased. Ideally, a low settling time, low percent overshoot and

quick rise time are desired (i.e. as close to a unit step as possible). Therefore, an optimum
case should be found which best satisfies all three criteria. In this thesis, the design
focuses on the best robust performance for the controllers, thereby finding a middle

ground in terms of PO, ¢t,, and ¢,.

1-4 ¥ L3 L L] L]

Amplitude

°0 05 1 15 2 25 3
Time (sec.)

Figure 3.10. Unit step response

As another test of controller performance, the unit step response of each
perturbed system is found for the varying values of 7, R,,J,and X, . The results are
shown in Figs. 3.11 and 3.12 for flux and speed, respectively. It can be seen from these
figures that, in each case, as the uncertainties increase, the response percent overshoot

decreases, but the rise time increases.
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Figure 3.11. Unit step response for perturbed flux control system
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Figure 3.12. Unit step response for perturbed speed control system
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3.3.4. Implementation

The robust controllers are placed into the drive system (as per Fig 3.1) for
simulation by converting them from the continuous time system of their MATLAB
environment to the discrete time system employed in the C program for the FOC drive
system. This is accomplished by using Tustin’s method (also known as bilinear
transformation) [20], which directly converts the s-domain controller C(s) into the

z-domain controller C4(z) by the following substitution:

let s=% ;}) (3.19)
then Ca(2)=C ( £ ((;3 (320)

where Ty = sampling interval (chosen to be 0.3 sec for these systems)

The resulting z-domain controllers for flux and speed, respectively, are then

_ 169.93932°+8.404122-123 8272+37.708:
Ca(2)=""" 23-1.755822.+0.897622-0.1418 (3-21)

_ 12.68723-6.80872-12.67652+6.819%
Cas(z) = ;3_1.759322+0.902962—0.14367 (3.22)

The controllers are then converted to the discrete time domain as per [22, 23], to
become difference equations in delay-operator form, defined by the controllers’ inputs
and outputs. That is, for flux control, the input to the controller C; is given by x/(k) and

s the output is given by y/{k), where
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x(B)=¥;-¥, (3.23)

(k) = ig (3.24)

and for speed control, the input to the controller C; is given by x;(k) and the output is

given by ys(k), where
xs(k) = w; - 0, (3.25)
ys(k) = ig (3.26)

Therefore, for this drive system, the difference equations are

y/R) = 169.9x,(k) + 8.404x (k- 1)~ 123.8x (k- 2) + 37.71x/(k ~ 3)
+1.756y,(k - 1) — 0.8976y,(k — 2) + 0.1418y,(k - 3)

(3.27)

(k) = 12.687x,(k) — 6.8087x, (k— 1) — 12.6765x,(k - 2) +6.8192x,(k~ 3)
+1.7593y,(k - 1) - 0.90296y ,(k - 2) +0.1436Ty(k - 3)

(3.28)

The initial conditions, for £ =0, are chosen to be 0.0 p.u. for x; and x; at (0), (-1),
(-2), etc., and 6.0 p.u. for y; and y; at (0), (-1), (-2), etc., as this corresponds to machine
operation. In fact, the choice of values for y; and y; is not crucial as the FOC program
converges quickly (i.e. there is no difference in the output if the initial values for y; and

ysare 0.0 p.u. or 6.0 p.u.).
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3.4. Current Controllers

In successful field orientation, the d-g axes are decoupled, yielding the correct
stator currents. Thus, current controllers are needed to regulate the stator voltages, for a
system using a voltage source inverter, in order to achieve the desired currents. In the
FOC scheme of Fig. 3.1, current control is performed in the field oriented reference
frame, wﬁereby ig is obtained from the rotor flux controller and iZ; is obtained from the
speed controller. These controllers are chosen to be PI controllers, and as such, they must
be tuned. The proportional control coefficient is tuned first until the drive system just
begins to become unstable, in order to determine a conservative value. Then, the integral

coefficient is tuned to have the best steady-state error.

3.5. Results

The results of implementing the robust controllers into the drive system, and of

optimal tuning of the PI controllers, can be seen in Figs. 3.13 - 3.15.

................................................

magnitude (p.u.)

................................................................................................

1 12 14 1.6 1.8 2
time (s)

Figure 3.13. Electromagnetic torque
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The electromagnetic torque, 7., shown in Fig. 3.13, reaches steady-state in a very
short amount of time (less than 0.03 sec). However, there appear to be oscillatory
transients during switching. In Fig. 3.14, the rotor speed curve is produced by toggling igs

between 6.0 p.u. and -6.0 p.u. every 0.2 sec. As can be seen from Fig. 3.15, the rotor flux
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magnitude reaches 1.0 p.u. in less than 0.02 sec with FOC (and the robust controllers)

implemented, whereas without FOC it takes this motor drive 1.5 sec to reach 1.0 p.u. [2].

In FOC, the field angle, ¢, is responsible for the precise location of the rotor flux
field. Since it is required in coordinate transformation of the system variables, from the
synchronously rotating reference frame to the stationary reference frame, and vice versa,
the field angle is essential to the goal of field orientation. The sine and cosine of the field
angle (i.e. sin($) and cos(@)), for the induction motor, are shown in Figs. 3.16 and 3.17,
respectively. Since ¢ is an unbounded function, and sin (¢) is a bounded function, both
sin(#) and cos(¢) are needed in order to work backwards to define the field angle.

The d-q axes currents in the stationary reference frame are shown in Figs. 3.18

and 3.19.

magnitude (p.u.)
[=]

0.8

Figure 3.16. Sine of field angle (¢)
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Chapter 4

4.1. Parameter Sensitivity

The estimation of the rotor flux magnitude and field angle relies on the value of
the motor parameters. The variation in rotor resistance, in particular, is the dominant
factor affecting flux estimation, due to the temperature variations inside the motor. To
provide some indication of estimation sensitivity, the value of the rotor resistance is
changed in the FOC program, without altering the robust controllers (or any other
component of the simulated drive system).

The following results verify that the flux estimator is capable of achieving
accurate results irrespective of the presence of rotor resistance variations. The rotor
resistance is increased by 50% and 100% above the nominal value and the resulting flux
magnitude and sin ¢ are shown in Figs. 4.1 - 4.4, for each case. The results of cos ¢ are
similar to those of sin ¢ and consequently are not shown here.

In achieving these results, there is no adjustment of robust controller coefficients,
verifying their effectiveness. The only adjustment to be made is in recalibrating the
gain-limiting condition imposed on the command current i}, (i.e. necesarry to maintain
the command current within reasonable physical limits of the induction motor). This
value decreases by 0.135, from the nominal 0.315 value, for a 100% change in R,. The

gain-limiting condition imposed on ig need not be altered from the nominal value of 0.1.
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As can be seen, the maximum absolute error for flux magnitude for both cases is 0.01
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Figure 4.2. Sine of field angle (#) for R, increased by 50%
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4.2. PI Controller Comparison

To further demonstrate the adaptive capabilities of the robust controllers, their
performance is compared with that of simple PI controilers for rotor flux and speed
control. This is a worthwhile comparison, as PI control is still used to a great extent in
industry due to the simplicity of design and ease of implementation. Under nominal
conditions, the PI controllers provide results comparable to those of robust control.
However, it can be seen in Figs. 4.5 - 4.8 that, without PI controller coefficient retuning,
the controllers cannot regulate the flux magnitude for rotor resistance variations greater
than 20%.

The PI controller coefficients are not retuned specifically to reflect this as a
time-consuming drawback in practice. It also further emphasizes the advantages of using
robust control.

The results presented in this chapter indicate that the robust controlled flux

estimator should work quite well under all normal conditions of induction motor

operation.
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Chapter 5

Discussion

5.1. Command current

When modeling the perturbed system for robust control, the torque
proportionality constant is found to be a perturbed variable due to the fact that the
command current i3, changes during the normal operation of the induction motor. This
current may therefore be considered as a perturbed value itself in the design of the speed
controller. However, a more accurate model would be to treat i3, as a feedback quantity.
That way, in designing the speed controller, the system can work with the actual,
changing value of the command current, rather than with an estimation. As can be seen in

Fig. 5.1, the current oscillates around 0.3 p.u.
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The origin of the spikes in the figure is unknown. It may be because the phase

margin is not large enough, resulting in instability during switching, or it may be a
problem inherent in the FOC program as these spikes are present even when using PI
controllers for flux and speed. However, as seen in Chapter 4, the size of the spikes
decreases dramatically with the implementation of robust control in place of PI control.
Also, it is noticed that the spikes deteriorate, that is, Fig. 5.1 becomes “cleaner”, when
the gain-limiting condition for rotor flux is decreased from its nominal value. The
setback to this, though, is that the flux magnitude itself deteriorates; it becomes slightly
oscillatory in nature, and the magnitude is found to be just below 1 p.u. (which is not

desirable).

5.2, Gain-limiting conditions

In Chapter 4, system performance is examined given variations in the rotor
resistance. For such cases, the gain-limiting condition imposed on ig need not be altered
from its nominal value, while the gain-limiting condition for the command current i
should be recalibrated slightly. It is found that, as rotor resistance increases, the
gain-limiting condition decreases. For nominal conditions, it is 0.315. For a 50% change
in R,, this value is becomes 0.25, a change of approximately 20%. For a 100% change in
R,, this value decreases to 0.18, a change of approximately 40% from the nominal.

Normally, this may be significant enough to be considered a drawback in controller

- design, as this value would have to be slightly altered for rotor resistance variations.
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However, it is found that for R, variances up to 20%, the decrease in the gain-limiting

condition is so small (i.e. less than 5%), that it can be considered negligible. It is only for
great increases in R, that this value requires slight modification.

A more dynamic system model is to have R, as a feedback quantity that is

continuously measured during normal operation of the induction motcr, and through the

FOC program, the gain-limiting condition is continuously adapted to these changes. In

this way, the correct flux is always generated.

5.3. Application of an artificial neural network

A neural network “learns” to perform a task after it undergoes a period of
training, so that the network is able to generate the desired output when given a valid
input [24, 25). It is this ability, along with the other advantages of multi-layer neural
networks, that make them ideally suited for signal processing as well as control
applications [26-28]. Theoretically, a three layer artificial neural network can
approximate arbitrarily closely any nonlinear, nonsingular function [29]. This has led to
research in areas of induction motor control, speed estimation [30], and flux estimation
[19].

The potential benefits of neural networks are well known [24 - 26], and are as

follows:
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(1) Neural network models have many neurons arranged in a massive parallel
configuration. Due to this high parallelism, failures of several neurons do not
significantly affect overall system performance. This is also known as fault-tolerance.

(ii) Neural networks have a characteristic ability to approximate any nonlinear
continuous function to a desired degree of accuracy.

(iii) Neural networks can have many inputs and outputs, making them easily applicable to
multivariable systems.

(iv) VLSI hardware implementation of neural networks is possible, resulting in additional
speed in neural computing.

(v) Neural networks have inherent learning and adaptive abilities, meaning they can deal
with imprecise data and ill-defined situations.

(vi) A suitably trained network has the ability to generalize when presented with inputs
not appearing in the trained data.

The addition of a neural network to this flux estimator, then, seems to be a
positive step in improving overall system performance. It is hoped that it may be
advantageous to combine robust control and neural network rotor flux estimation in a
practical drive system. It is expected that the resuiting system would be relatively

insensitive to parameter variations.
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Chapter 6

Conclusions and Future Work

6.1. Conclusions

In this thesis, a novel robust flux controller and a robust speed controller, for the
purpose of indirect field oriented control flux estimation, are presented. The research
work underlying this thesis is basically divided into two components, field orientation
and robust control.

The complex matrix transformations required to perform coordinate conversions
from AC quantities of the induction motor to DC quantities of the d-g axis model, and
vice-versa, used in field oriented control, are detailed in Chapter 2. Robust control theory
and the techniques used to design the rotor flux and shaft speed controllers are also
outlined in Chapter 2. The proposed FOC drive system, implementing the robust
controllers, is discussed in Chapter 3. This drive system is intended for physical
implementation with a pulse width modulation (PWM) voltage source inverter. The
inputs to the flux estimator are the direct and quadrature stator currents, 4°- ¢°,
respectively, and the outputs are the flux magnitude, ‘¥'~, and the sine and cosine of the
field angle 4. The system’s ability to accurately estimate the flux magnitude and field
angle despite parameter variations is verified by test cases and comparisons presented in

Chapter 4.
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The advantage of the proposed robust controllers over their conventional
counterparts is parameter insensitivity in the face of uncertainties. Also, the design of the
controllers, based on the loopshaping technique, is a well defined straight forward
procedure. In particular, it is shown that the effectiveness of the robust controllers is
verified by rotor resistance variation testing. For a doubling of the rotor resistance, the
maximum absolute error in the flux magnitude is approximately 0.01 p.u. These factors
suggest that it would be practical to physically implement a robust controlled FOC flux

estimator.

6.2. Future Work

Some suggestions for future work are:

1. incorporation of a subroutine in the FOC program treating rotor resistance as a
feedback variable rather than as a constant, in order to adapt the i}, gain-limiting
condition to meet the changes in R,.

2. further, to investigate the practicality of such an approach.

3. incorporation of motor non-linearities in the induction motor model.

4. addition of an artificial neural network (ANN) to further improve the
performance of the flux estimator.

5. physical implementation of the robust flux and speed controllers by means of a

microprocessor or a digital signal processor.
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Appendix A

A.l. Induction motor model

The induction motor model implemented in the field oriented control scheme is
outlined in this appendix. In order to model the dynamic behavior of the induction motor,
a computer simulation of the FOC machine is developed. The simulation is based on [2,
31, 32]. The program is written in C code. The induction motor simulator can perform a
detailed analysis of different loading conditions and/or voltage disturbances, as outlined
in [2] and [33]. It is capable of doing this in the rotor reference frame, stator reference
frame or the synchronously rotating reference frame.

The induction motor model is based on the two-axis variable equations detailed in
Chapter 2. The program is structured as a main segment and three principal subroutines.
The subroutine ME apportions parameter values for matrices and performs matrix
inversions. The subroutine RK performs a numerical integration as based on the
Runge-Kutta algorithm. The integration step-length is based on achieving an accurate
solution during the run-up period, without incurring numerical instability. In this case, a
value of 0.001 sec is chosen. The subroutine AUX is used by the Runge-Kutta algorithm

to recalculate, at each time step, the vector containing igs, ius, igr, and ig-.
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A.2. Motor parameters

The induction motor for this drive system is a 30 hp, 415 V, 2 pole, 50 Hz

machine [33], with the following parameters:

Table A.1. 30 bp Induction Motor Parameters

. Parameters 30hp
Line Frequency S50 Hz
Stator Resistance, R, 0.0147 p.u.
Rotor Resistance, R, 0.0287 p.u..
Stator Reactance, X, 3.2340 p.u
Rotor Reactance, X, 3.2484 p.u
Leakage Reactance, X 3.1568 p.u
Inertia Constant, H 1.0167 p.u.




A.3. FOC induction motor model program

controllers (using the machine model of Appendix A.2).

90

/*********i*************************************************

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The Following program is to give an Estimate
of the Rotor Flux Magnitude and Angle in an
Induction Machine with the D-Q axis on
Synchronous Rotating Ref. frame.

The induction motor model is based on the
stationary (stator) ref.frame, the numerical
method used to accomplish this is Runge-Kutta
5th order method (modified).

Using motor model fixed on STATOR (stationary
reference frame) the sine and cosine of angle
phi (i.e the field angle) will be calculated.
This program incorporates Field Oriented Control
for the induction motor.

This program also incorporates a robust flux
controller and a robust speed controller in
order to compensate for various perturbations
(i.e. rotor resistance) and improve performance.

Author (robust controllers): Cumbria, Neil
Author (FOQ): Toh, Allan

Date: April 7th 1997
Revised: January 17th 1998

(X2 222 X222 XX 2222422222 2222222222222 22222222222 3222 2222222

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265359
void ME(double ALI me[5] [5], double R me[5] [5],

double G me([5]T5], double H me[S5]T5], double WE_me,
double XS _me, double XM me, “double XR ._me, double RS _me,
double RR_me, double XRR_me, double RRR . me, int N_me);

LR R B B Bk B B N N N A AR A L R NE B B N N O R NE NE NR O NE N

The following is a C program of the FOC drive system employing robust

/
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int inrun, ndis, itype, iter, ir, tq, k, N, i, j, nes;

double CHI r ERR, CHI r ERR1l, CHI_ r ERR2, CHI r ERR3;
double Ids_foc_ REF Ids_foc_ REFl TIds foc REF2,
Ids_foc_ REF3;

double WR ERR, WR_ERR1l, WR_ERR2, WR_ERR3;

double Igs_ foc REF, Iqs foc_. REFl Igs_ foc REF2,
Igs_foc_REF3;

char infile{10];
FILE *outptrl, *inptr, *outptr2;

printf ("Enter DATA FILENAME please :\n");
scanf ("¥s", infile);
printf("Readlng & Processing, Please Wait...\n");

inptr = fopen(infile, "r");

outptrl = fopen("Results.m", "w");
outptr2 = fopen("VI.m", "w");

/*****ti****if************************‘k*****************

Input Data Stream Sequence

No. of iterations before application of
disturbance
The ending iteration number of the
disturbance being applied
Type of Disturbance,

1= Voltage Disturbance

2= Load Disturbance

3= No Disturbance
Total No. of iterations
Type of starting/initial conditions,
Motor Start
Read Initial States

INRUN

NDIS

.

ITYPE

.

ITER
IR

1
Load type,
0= Free Acceleration
1= Constant Load Torque
2= Load Proportional to square
of speed
Total stator reactance
Mutual reactance
Total rotor reactance
Stator resistance
Rotor resistance
Inertia constant
Rotor reactance (run mode)
Rotor resistance (run mode)
Integration step interval
Supply frequency
Inverter DC bus Voltage

T

10

FHITIE

DX
FREQ

3
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™ : Load torque

VT1 : Voltage disturbance value

T™1 : Torque disturbance value

VT2 : Removal of disturbance voltage value
(i.e resume value)

™2 : Removal of torque disturbance value

(i.e resume value)

Variable Dictionary

cl1] = ids, cl2] = igs, c[3] = idr, c[4] = iqgr
c[5] = theta slip, cl[6] = w_slip
v[1] = vds, v[2] = vgs, vI[6T = load torque (TM)

CHI_r = rotor flux magnitude

************************i’**************i****************/

/*

fscanf (inptr, "%¥d", &inrun);
fscanf (inptr, "$d", &ndis);
fscanf (inptr, "%d", &itype);
fscanf (inptr, "$d", &iter);
fscanf (inptr, "$d", &ir);
fscanf (inptr, "%d4d", &tq);
fscanf (inptr, "$1f", &XS);
fscanf (inptr, "$1£", &XM);
fscanf (inptr, "$1£f", &XR);
fscanf (inptr, "$1£f", &RS);
fscanf (inptr, "$¥1£f", &RR);
fscanf (inptr, "$1£", &ah);
fscanf (inptr, "$1£f", &XRR);
fscanf (inptr, "$1£", &RRR);
fscanf (inptr, "$1£f", &dx);
fscanf (inptr, "%¥1£f", &freq);
fscanf (inptr, "$1£", &VT);
fscanf (inptr, "$1£", &TM);

/**** CHI base is different for differnt m/c ***%x/

CHI base = 393.7007874; */ /* 10 hp */
= 323.2062055; /* 30 hp */

/*%k* Initial States ****/

am = ah/(pi*freq);

WE = WE_base = 2.0*pi*freq;
WRR = 0.0;

CHI r = 0.0;

CHI_REF = 1.0;

WR_ERR1 = 0.0;

WR_ERR2 = 0.0;

WR_ERR3 = 0.0;

CHI r ERR1 = 0.0;

CHI r ERR2 = 0.0;
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void RK(int N _rk, double dx_rk, int nes rk, double Y rk[5],
double E rk[S] , double v_rk[5], double ALI rk([5]1T5],
double G_rk([5] [5], double H rk[5] [S], double R rk[5] {51,
double am_rk, double *TM_rk, double VT rk, douEle *TE_rk,
double WE rk, int tq_rk, ~int inrun rk, int k_rk,
double XS rk, double XM rk, double XR rk,
double *Vds sta rk, double *Vgs_sta_rk, double t_rk,
double *WRR rk, ~double *Ids _syn_rk, ~double *Igs_syn_rk,
double *Idr syn rk, double *Iqr syn_rk, double *CHI x rk
double *CHI dr sta rk, double *CHI ar sta rk,
double *Sin_Phi_rk, double *Cos _Phi rk);

void AUX (double c_aux[5], double PC_aux{5], double v_aux[5],
double ALI_aux[5] [S], double G aux[5] (5],
double H aux[5] [5], double R _aux[5] [5], double am_aux,
double *TM_aux, double VT_auX, double *TE_aux,
double WE_aux, int tqg_aux, int inrun _aux, int k_aux,
double XS aux, double XM aux, double XR _aux,
double *Vds_sta_aux, double *Vgs_sta_aux, double t_aux,
double *WRR_aux, double *Ids _syn_aux,
double *Igs_syn_aux, double ¥Idr_syn_ aux,
double *Iqr_syn_aux, double *CHI r aux,
double *CHI dr sta _aux, double *CHI _dr_sta_aux,
double *Sin_Phi_aukX, double *Cos_Phi_ aux);

void MM(double A mm[5] [S], double B _mm[5] [5],
double C_mm([5] [5], int N_mm);

void main()

double c[5], PC(5], v[5], R[5] (5], G[s]{5], H[S]I[S],
ALI[5] [5];

double XS, XM, XR, RS, RR, XRR, RRR, ah, freq, dx, WRR;
double am, T™, VT, TE, WE, WR, VT1l, VT2, TM1l, TM2, VTT,
AIM;

double Ls, Lm, Lr, t, CHI_r, KP, KPP, KI, WE_base;
double Igs_syn_REF, Ids _syn_ REF, WSL REF,

double Iqs sta_REF, Ids_sta REF;

double VAO, VBO, VCO, Vds_sta, Vgs_sta, Ids_sta,

Igs sta, W_r;

double Ids syn, Igs_syn, Idr_syn, Iqr_syn, Vds_foc,
Vgs foc, PHI;

double Sin_ Ph:L Cos_Phi, Ids_foc, Igs_foc, CHI_dr_sta,
CHI qr_. sta;

double Igr sta, sin_err, cos_err, Sin_Phi_AUX,

Cos _Phi AUX, Ids_ERR;

double TIds ERR_INTEG, Igs_ERR_INTEG;

double Vgs_foc_lim, vds _foc, vgs_ foc, CHI_r ERR_INTEG,
CHI REF;

double KP CHI, KI_CHI, CHI_base, Idr_sta, Igs_ERR;
double 1ds foc lim, Vds foc_1lim, WR_ERR _ INTEG;

double WR_REF, KP_WR, KI_WR, Igs_foc_lim;
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CHI r ERR3 = 0.0
WR_REF = 310.0;

-

Vds foc lim = 1.0;
Vgs_foc_lim = 1.0;
Ids foc_llm = 6.0;
Igs foc_REF = 6.0;
Igqs_foc_REFl = 6.0;
Igs_foc_REF2 = 6.0;
Igs_foc REF3 = 6.0;
Ids_foc_REFl = 6.0;
Ids foc_REFz 6.0;
Ids foc REF3 6.0;

Vds_sta = 0.
Vgs_sta = O.

Sese B

OO

/**%x* P I, controls coefficients ****/

KP = 0.8;

KI = 400.0;

KP WR = 0.1;
KI'WR = 0.05;
KP CHI = 100.0;
KI_CHI = 100.0;

/***************************i*************************

Initial States Read in
Order in which the states are read in:
d-axis stator current
gq-axis stator current
d-axis rotor current
g-axis rotor current
*****i*************i*k**f****i**#************i***i****/
if (ir == 1)
for(i=1; i<=4; i++)
fscanf (inptr, "¥1£", &c[il);
for(j=1; j<=4; j++)
fscanf (inptr, "$1£", &vijl);

[**%*%* INITIAL CONDITIONS *#**#+*/

if (ir == 0)
for(i=1;
clil

v[i]

ic=4; i++)
= 0.001
= 0.001

.
r
-
[



[ Ak Dynamic Cycle kkkkdk [

fscanf (inptr, "$1£", &VT1);

fscanf (inptr, "%1£f", &TM1);

fscanf (inptr, "¥1£", &VT2);

fscanf (inptr, "$1£", &TM2);

for(k = 1; k <= iter; k++) {

[***** Perform Matrix inversion ****%/

ME(ALI, R, G, H, WE, XS, XM, XR, RS, RR, XRR, RRR, 1);

/**+*+ Disturbance Application #****%/

if (k == inrun)
if (itype == 1) VT = VT1;
else if (itype == 2) TM = TM1;

/*%*** Disturbance Removal #*#**+%/

if (k == ndis)
if (itype == 1) VT = VTI2;
else if (itype == 2) T™M = TM2;

/***%* Perform (modified) Runge-Kutta ****x/
t = dx*k;

RK(4, dx, 1, ¢, PC, v, ALI, G, H, R, am, &TM, VT, &TE,
WE, tq, inrun, k, XS, XM, XR, &Vds_sta, &Vgs_sta,
t, &WRR, &Ids syn, &Igs_syn, &Idr_syn, &Igr syn,
&CHI_r, &CHI dr_sta, &CHI_qgr_sta, &Sin Phi AUX,
&Cos_Phi_AUX] ;

Ls = XS/WE;
Lm = XM/WE;
Lr = XR/WE;

/**%* Change variable name ***#*/

Ids_sta = c[l1];
Igs_sta = cli2];
Idr_sta = c[3];
Igr_sta = cl4];

/**%*%* Calc. sine & cosine of field angle (phi)
& Calc. Terminal Voltage and Current ***kkkkik/

W r = WRR*pi/15.0; /* Change from RPM to rad/sec */
VIT = sqrt((v[2]*v([2] + v[1]*v[1]));
ATM = sqrt((c(2]*c[2] + cl[1]l*c[1]));
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WR = W_r;

Sin Phi

. CHI gr sta/(CHI r);
Cos_Phi

CHI dr sta/(CHI r);

/**** Perform Stationary to FOC Co-ordinate change ****/
Ids_foc = Igs_sta*Sin Phi + Ids_sta*Cos_Phi;
Igs_foc = Igs_sta*Cos_Phi - Ids_sta*Sin_Phi;
/**** Calc. of Controller Command Signals for CHI_r ****/

CHI_r_ERR = (CHI_REF - CHI_r+*CHI_base);

Ids_foc REF = 169.9*CHI r ERR + 8.404*CHI r ERR1 -
123.8*CHI r ERR2 + 37.71*CHI r ERR3 +
1.756*Ids_foc_REFl1 - 0.8976*Ids_foc REF2 +
0.1418*Ids_foc_REF3;

Ids_foc REF = Ids_foc_REF*0.315;

Ids foc REF2;
Ids foc | REF1~

Ids_foc_ REF3
Ids foc REF2

Ids foc REF1 Ids foc REF;
CHI r ERR3 = CHI r ERRZ
CHI r ERR2 = CHI r ERRI;
CHI r ERR1 = CHI r_| “ERR;

/* Calc. of P.I. Controller Command Signals for CHI_xr */

CHI r ERR = (CHI_REF - CHI_r*CHI base);
CHI r ERR_INTEG = CHI_r ] ERR INTEG + CHI _r ERR*dx;

Ids_foc REF = KP_CHI*CHI_r ERR + KI_CHI*CHI_r ERR_INTEG;

/**** Adding Current limiter for Ids foc ref. **#*+*/

if (Ids_foc_REF > Ids_foc_lim) Ids_foc REF = Ids_foc_lim;

[**%*x* Calc. of Controller Command Signals for Wxr #*&k&#*/

WR_ERR = (WR_REF - WR);

/**** With Igs_foc REF as a constant value of 0.25 *#%*%/

Igs_foc_REF = 15.1552+WR_ERR - 8.1333*WR ERR1 -
15.1427*WR_ERR2 + 8. 1459*WR_ERR3 +

1.764*Igs_foc REF1 - 0.91153*Igs_foc REF2
+ 0.14756%Igs_foc REF3;
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/********************************************i********i****
*

*
* Subroutine : RK *
* This subroutine RK uses the Runge-Kutta algorithm *
* to calculate [x]t vector (Merson Modified) bd
* *
* *

tX 2222222222 X2 22222222 222222222222 2222222322222 222222 X 3 4 /

void RK(int N_rk, double dx rk, int nes rk, double Y rk[5],
double E rk[S], double v_rk([5], double ALI rk[5]17T5],
double G_rk[5] [5], double H rk([5] [S], double R _rk(5] [S],
double am rk, double *TM_rk, double VT rk,
double *TE rk double WE rk, int tq rk, int inrun rk,
int k rk, double XS rk, Jouble XM_rk, double XR rk,
double *Vds sta_rk, ~double *Vgs_sta_rk, double t_rk
double *WRR_rk, ~double *Ids _syn_rk, ~double *Iqgs_syn_rk,
double *Idr _syn rk, double *Iqr;syn rk,
double *CHI r rk, double *CHI dr sta rk,
double *CHI_gr sta rk, double *Sin Phi rk
double *Cos_Phi_rk]

int i;

h = d.x_rk/3.0;
for(i = nes_rk; i <= N _rk; i++) DI[i] = ¥ rk([i];

AUX(Y rk, E rk, v_rk, ALI rk, G_rk, H_rk, R_rk, am rk,
™ rk vT rk “TE rk, WE rk “tgq rk, inrun rk k rk,
XS"rk, XM rk, XR “rk, Vds sta . Vqs sta_rk, t_rk,
WRR_ rk, Ids _syn_rk, Igs_syn_ Ek Idr_syn_rk,
Igr_syn_rk, “CHI r rk CHI_dr_ sta rk, CHI_gr_sta_rk,
Sin_Phi_rk, Cos_Phi rk),

for(i = nes rk; i <= N_rk; i++) {
A[i] = h*E rk[l],
Y rk({i] = DI[il + Al[i]l;

AUX(Y rk, B_rk, v_rk, ALI rk, G_rk, H rk, R _rk, am rk,
T™ rk vT rk “TE_rk, WE rk “tg rk, inrun rk k rk,
XS"rk, XM rk, XR " rk, Vds_sta ' Vqs sta_rk, t_rk,
WRR _: rk, Ids _syn rk, Igs_syn_xrk, Idr_Syn Tk,

Iqr syn_rk, “CHI r rk CHI_dr_sta_rk, CHI_gr_sta_xrk,
Sin_Phi_rk, Cos_Phi rk),

for(i = nes rk; i <= N_rk; i++) {

B[i] = h*E rk[ll,
Y rk([i] = D[i] + (A[i] + B[il)*0.5;

AUX(Y _rk, E_xrk, v_rk, ALI rk, G_rk, H_rk, R_rk, am_rk,
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[***** Input [R] matrix *+**%/

R me[l] [1] = RS_me;
R_me[2] [2] = RS me;
R_me[3] [3] = RR_me;
R_me[4] [4] = RR_me;

/***** Input [G] matrix in reactance *¥**%/

G_me([3] [2] = XM me;
G_me[3] [4] = XR_me;
G me[4] [1] = -XM me;
G_me[4] [3] = -XR me;

/**%%x%* Input [H] matrix in inductance #*#*#**x/

H me([3] [2] = XM _me/WE_me;
H me[3] [4] = XR _me/WE me;
H _me[4] [1] = -XM_me/WE_me;
H me (4] [3] = -XR_me/WE_me;

/**%*%** Running Parameters *****/

if (N _me == 2) }
ALR = XRR me/WE_me;
R_me[3] [3] = RRR me;
R_me[4] [4] = RRR me;

[*%%%* Input [L] matrice *#*+*xx/

ALI me(l] [1] = ALR;
ALI me[1] [3] = -ALM;
ALI me(2] [2] = ALR;
ALI me([2] [4] = -ALM;
ALI me[3] [1] = -ALM;
ALI_me{3] [3] = ALS;
ALI me(4] [2] = -ALM;
ALI me[4] [4] = ALS;

/**%%% CALCULATE [L]”"-1 matrice #**#%%/

u = ALS*ALR - ALM*ALM;
for(i = 1; i <= 4; i++) {
for(j = 1; 3 <= 4; j++) {
ALT me (il [j]1 = ALI melil [§]/u;

return;
/* end of subroutine ME */
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/* Perform FOC. Ref frame to Stat. Ref frame transfm */

Vds_sta = Vds_foc*Cos_Phi - Vgs_foc*Sin Phi;

Vgs_sta = Vgs_foc*Cos_Phi + Vds_foc*Sin_ Phi;

/*** Print out Time, Terminal Voltage, sin (phi),

Torque, Current, Rotor speed and Flux Mag. *##*/

fprintf (outptrl, "%1f\t %1f\t %1f\t %1f\t %1f\t $1f\t
$1£\t %1f\n", t, VIT, Sin_Phi, Cos_Phi, TE,
AIM, W_r/WE_base, CHI_r*CHI base);

fprintf (outgtrZ, "$1f\t %1£\t %1f\t %1f\t $1f\t %1f\t
¥1f\t %¥1f\n", t, Vds_sta, Vgs_sta, Ids_foc_REF,
Ids_sta, Igs_sta, Idr_sta, Igr sta);

} /* k-loop */

} /*End of main() */

/**********************i********************************i**

* *
* Subroutine : ME *
* This subroutine performs matrix inversion *
* *

******************************************i*****t*********/

void ME (double ALI me (5] [5], double R _me([5] [5],
double G me[5]T5], double H me[5]T5], double WE_ me,
double XS_me, double XM me, double XR me, double RS_me,
double RR_me, double XRR me, double RRR me, int N _me)

double ALS, ALM, ALR, u;
int i, j;

/***%** Convert Reactances to Inductances ***%%/

ALS

ALR = XR me/WE me;
for(i = 1; i <= 4; i++){
for(j = 1; § <= 4; j++){
ALT meli] [j1 = 0.0;
R mefi] {j] = 0.0;
G_me{i] {J] = 0.0;
) H _me(i] [j] = 0.0;
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/* With Igs_foc_REF as a perturbed value of 0.3 +- 0.05 */

Igs_foc_REF = 12.687*WR_ERR - 6.8087*WR_ERR1 -
12.6765*WR_ERR2 + 6.8192*WR_ERR3 +
1.7593*Igs_foc REF1l - 0.90296*Igs_foc REF2
+ 0.14367*Igs_foc_REF3;

Igs_foc_REF = Igs_foc_REF*0.01;
Igs_foc_REF2;

Igqs foc REF1;
Igs_foc_ REF;

Igs_foc_ REF3
Igs”_foc_REF2
Igs_foc_REF1

WR_ERR3 = WR_ERR2;
WR_ERR2 = WR ERRl,
WR_ERR1 = WR_ERR;

/** Calc. of P.I. Controller Command Signals for Wr **/

/* WR_ERR = (WR_REF - WR);
WR_ERR_INTEG = WR_ERR_INTEG + WR_ERR*dx;

, Igs_foc REF = KP_WR*WR_ERR + KI_WR*WR_ERR_INTEG;
*

/**** Adding Current limiter for Igs foc ref. ***x/

if (Igs_foc_ REF>Igs_foc_lim) Igs_foc_REF = Ids_foc_ lim;

if (t <= 0.18) Igs_foc REF = 6.0;

if ((0.18 < t) && (t < 0.5350)) Iqs foc REF = -6.0;
if ((0.5350 < t) && (t < 0.89)) Igs_ foc REF =

if ((0.89 < t) & (t < 1.24)) Igs foe REF = -6.0;
if ((1.24 < t) && (t < 1.6)) Igs_Ffoc_REF = 6.0;

if ((1.6 < t) && (t < 1.955)) Igs_foc REF = -6.0;
if (t >= 1.955) Igs_foc REF = 6.0;

/* Calc. of P.I. Controller Cmd Sig. for Vds & Vgs FOC */

Ids _ERR = (Ids_foc_REF - Ids_foc);
Igs_ERR = (Igs_foc_REF - Igs foc);
Ids ERR INTEG Ids ERR INTEG + Ids ERR*dx;
Igs ERR;INTEG Igs_. ERR INTEG + Igs_: “ERR*dx;

Vvds_foc = KP*Ids_ERR + KI*Ids_ERR_INTEG;
vgs_ ~foc = KP*Igs_ERR + KI*Igs_. _ERR_ INTEG°

/***+ Adding Voltage limiter *#*#*/

if (Vds_foc > Vds_foc_lim) Vds_foc = Vds_foc_lim;
if (Vgs_foc > Vgs_foc_lim) Vgs_foc = Vgs_foc_lim;
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double *Ids_syn_aux, double *Igqs syn aux,
double *Idr syn_aux, double *Iqr syn aux,
double *CHI . _r aux, double *CHI dr sta aux,
double *CHI_gr sta_aux, double *Sin Phi_aux,
double *Cos_Phi_aux)

double A[S] [5], B[S][5], F(s]([5], Z[s]([5], it[2][5],
it _G[2] [5];

double ALS, ALM, ALR W, WR, WD, it_G I, T_accel;

int i, 3, 1-

double CHI dr syn, CHI_gr_syn, CHI_dr sta, CHI_gr_sta,
I[5T[2T;

/****%* Convert Reactances to Inductances ***%#*/

ALS = XS_aux/WE_aux;
ALM = XM_aux/WE_aux;
ALR = XR_aux/WE_aux;

/***** Voltages in STATOR Ref. frame**xx**/

*Vds_sta_aux;
*Vgs_sta_aux;

v aux[1]
v_aux[2]

nn

for(i = 1; i <= 4; i++) {

for(j = 1; j <= 4; j++) {
F[i]l [j] = *WRR_aux*pi/15.0*H_aux([i] [j] +
R _aux([i] [j];
}
}
MM(ALI aux, F, Z, 4);
for(i = 1; i <= 4; i++)
for(j = 1; 3 <= 4; j++)
Ali] [5] = -2Z[i] (3);
B[i] [j] = ALI_aux(i] [j];

for(i = 1; i <= 4; i++) {
PC_aux([i] = 0.0;
for(j = 1; <= 4; j++)
PC_aux[i] = PC aux[:.] + Afi] [j]1*c_aux([j] +
B({1] [j]1*v_aux([j];

/***** Converting frame fixed on STATIONARY (Stator)
frame to frame fixed on SYNCHRONOUS ROTATING
frame ******/
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™ rk, VT_rk, TE_rk, WE_rk, tq rk, inrun rk, k_rk,
XS"rk, XM _rk, XR rk, Vds sta r . Vqs sta_rk, t_rk,
WRR rk, Ids _syn_rk, Igs_syn ¥k, Idr_syn Tk,

Iqr syn_rxk, “CHI r rk CHI_dr sta_rk, CHI_qgr_sta_rk,
Sin_Phi_rk, Cos_Phi rk)

for(i = nes_rk; i <= N_rk; i++)
B[i] h*E rk[1],
Y_rk[n.] D[i] + (A[i]l + B[i]1%*3.0)*0.375;

AUX(Y_rk, E_rk, v_rk, ALI rk, G_rk, H_rk, R _rk, am_rk,
™ rk vr rk “TE rk, WE rk “tq rk, inrun rk k rk,
XS rk, XM rk, XR rk, Vds_sta T Vqs sta_rk, t_rk,
WRR_ rk Ids_syn_rk, Igs_syn_rk, "1dr - syn_rk,

Iqr syn rk, CHI r rk, CHI_dr sta_rk, CHI_gr_ sta_rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <= N_rk; i++) {
C[i] = h*E rk[m]
Y _rk[i] = D[i] + (A[i] - B[i1*3.0 + C[i]*4.0)*1.5;

AUX(Y rk, E rk, v_xrk, ALI rk, G rk, H _rk, R_rk, am_ rk,
T™ rk vT rk “TE rk, WE rk t rk, inrun_ rk k_rk,
XS rk, XM rk, XR rk, Vds sta ' Vqs sta rk, t_rk,
WRR rk, Ids _syn _rk, Igs syn;fk Idr_syn_rk,
Iqr syn rk, CHI r rk CHI_dr sta_rk, CHI gr_sta_rk,
Sin_Phi_rk, Cos Phi rk),

for(i = nes_rk; i <= N_rk; i++) {
Z = D[i]7
D[i] = h*E rk[i];

Y rkli]l = 2 + (A[i] + C[il*4.0 + D[i])*0.5;

return;
} /* end of subroutine RK */
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®* This subroutine AUX is used by the Runge-Kutta *
algorithm to calc. [x]t vector, i.e. igs, ids, *
* iqr, idr *

i*************i*****************t**t***f**#i*************/

void AUX(double c_aux[5], double PC aux(5],
double v_aux[5], double ALI aux[5] [5],
double G_aux([5] [5] , double H aux(5S] [5],
double R _aux[5] [S], double am _aux, double *TM | aux,
double VT _aux, double *TE aux, double WE aux,
int tq aux, int inrun_aux, int k_aux, double XS_aux,
double XM aux, double XR aux, double *Vds sta _aux,
double *VQgs_sta_aux, double t_aux, double *WRR_ aux,
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/*** Calc. d-g Flux Magnitude in Syn. frame ***/

CHI_dr_ syn=ALR* (*Idr syn aux) +ALM* (*Ids_syn_aux);
CHI_qr_ syn=ALR* (*Iqr_syn_aux) +ALM* (*Igs_syn_aux) ;

/* Calc. d-g Flux Magnitude in Stationary frame */

*CHI dr_sta_aux = ALR*(c_aux[3]) + ALM*(c_aux[1])
*CHI qr_sta_aux = ALR*(c_aux[4]) + ALM*(c_aux(2])

-
’
-
14

/**** Rotor Flux Magnitude **#*%*/

*CHI r aux = sqrt((*CHI_dr_sta_aux*
(*CHI_dr_sta_aux)) +
(*CHI_qr_sta_aux* (*CHI gr_sta_aux)));

/**** Rotor Flux Angle (Field Angle, Phi) *#***=x/

*CHI qr_sta_aux/ (*CHI_r_aux);
*CHI dr_ sta_aux/ (*CHI r_ aux);

*Sin Phi_aux
*Cos_Phi_aux

return;
} /* end of subroutine AUX #/

/**i*t***************************i********************ii**

* This subroutine MM is used by AUX subroutine *
* to multiply matrices to obtain [L]*-1(Wr[G] + [R]) *
******t*******if*****************************************/
void MM(double A _mm([5] [5], double B_mm([5] [5],
double C_mm[5] [S], int N_mm)

{

int i, j, 1;

for(i = 1; i <= 4; i++) {
for(l = 1; 1 <= 4; 1++) {
C mm{i] [1] = 0.0;
for(j = 1; j <= 4; j++) {
C_mm[i] (1] = C_mm(i] [1] + A _mm(i] [(§]1*B_mm(j] (1];

return;
} /* end of subroutine MM */
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Appendix B

B.1. #, for flux controller

% Program for determination of W2 for Flux Controller
% with Rotor Resistance
% by Neil Cumbria

clear;

w = logspace(-3,4,500);
mag =zeros(l,500);
i=1; ¥ index for mag matrix
% first row are all zeros

% The nominal plant conditions are given by:

Lm = 3.1568/(2*pi*60€;

Lr = 3.2484/(2*pi*60);

Rr nom = 0.0287; % up to 50% perturbation

% The variables to be perturbed are tau, the

% drive dead-time, and Rr, the rotor resistance.
% The frequency response of the perturbed plant
% is derived as follows:

clf;

figure (1)

for tau = 0.02:0.001:0.03
num = [-Lm*tau/2 Lm];
for Rr = Rr nom:0.001:1.5*Rr nom
den = [(Lr/Rr)*tau/2 (Lr/Rr)+(tau/2) 1];
i= 1i+1;
[magi phase w] = bode (num,den,w);
mag = [mag; (20*loglO(magi))’];
fmag = [mag; (magi)’];
semilogx(w,mag(i,:));
hold on;
end;
end;

title(’Frequency Response of Perturbed Plant’);
xlabel (‘' frequency (rad/s)’);
ylabel (‘magnitude’) ;

% W2 is determined by

% | P_perturbed (jw) /P_nom(jw) - 1|

% whereby this equation is reduced to
% incorporate the perturbed variables.
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figure (2)
for tau = 0.02:0.01:0.03
for Rr = Rr nom:0.001:1.5*Rr_nom
num = [-(Tr/Rr)*tau -tau 07T;
den = [(Lr/Rr)*tau/2 (Lr/Rr)+(tau/2) 11;
i= i+1;
[magi phase w] = bode(num,den,w);
$mag = [mag; (20*10?10(magi))'1;
mag = [mag; (magi)’l;
loglog(w,mag(i,:));

hold on;
end;
end;
num_W2 = [0.04 0];
den_W2 = [0.01 1];
% W2 = (0.04s)/(0.01s+1)

[mag W2, phase W2, w] = bode(num_W2, den W2, w);
loglog(w, mag W2, '--');

title ('Magnitude plot of W2');

xlabel (' frequency (rad/s)’);

ylabel (‘magnitude’) ;
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B.2. 7, for speed controller

% Program for determination of W2
% for the Speed Controller
% by Neil Cumbria

clear;

w = logspace(-3,4,500);
mag =zeros(1,500);
i=1; ¥ index for mag matrix
% first row are all zeros

% The nominal plant conditions are given by:
Lm = 3.1568/(2*pi*50);
Lr = 3.2484/(2*pi*50);
Rr_nom = 0.0287;
= 2;
Ids = 0.3;
Kt_nom = Ids*(3/4)*p*Lm*Lm/Lr % without rotor
¥ resistance
$Kt_num = Ids*(3/4)*p*Lm*Lm; % with rotor
¥ resistance
$Kt_den = Lr*[Lr/Rr nom 1]; % with rotor
¥ resitance
B = 0 0001; % can’t be zero (linear freq response)
J_nom = 0.0167;
% The variables to be perturbed are tau,
% the drive dead-time, and J, the inertia.
% The frequency response of the perturbed plant
% is derived as follows:
clf;
figure (1)

for tau = 0.02:0.001:0.03
for Kt = 0.8333*Kt_nom:0.1:1.1667*Kt_nom
num = [-Kt*tau/2 Kt];
for J = 0.5*J_nom:0.01:5*J _nom
den = [J*tau/2 (B*tau/2)+J B];
i= 1i+1;
[magi phase w]=bode (num,den,w);
mag = [(mag; (20*log10(magi))’];
tmag = [mag; (magi)’]l:
semilogx(w,mag(i,:));
hold on;
end;
end;
end;

tltle('Frequency Response of Perturbed Plant’);
xlabel (' frequency (rxad/s)’);
ylabel (‘magnitude’) ;
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% W2 is determined by

% | P_perturbed(jw) /P_nom(jw) - 1|

% whereby this equation is reduced to
% incorporate the perturbed variables.
figure (2)

for tau = 0.02:0.01:0.03

for J = 0.5*J_nom:0.1:5*J nom
num = [-J*tau -B*tau 0];
den = [J*tau/2 (B*tau/2)+J B];
i = 1i+1;

[magi phase wl bode (num,den, w) ;
$mag = [mag; (20*10910(mag1)) 1;
mag = [mag; (magi)’];
loglog(w,mag(i, :));

hold on;
end;
end;
num W2 = [0.04 0];
den W2 = [0.01 1];
% W2 = (0.048)/(0.01s+1)

[mag W2, phase W2, w] bode (num_W2, den_W2, w);
loglog(w, mag_W2, '--’)

title(’ Magnltude plot of wW2');

xlabel (' frequency (rad/s)’);

ylabel (‘magnitude’) ;



B.3. Loopshaping program for design of flux controller

% Loopshaping Program for the determination
% of the Flux Controller with Rotor Resistance
% by Neil Cumbria

¥ The nominal plant conditions are given by:

Lm = 3.1568/ (2*pi*50); % ( X = 2#%pi*f*L)
Lr = 3.2484/(2*pi*50);

Rr_nom = 0.0287;

num P = Lm;

’
den_P = [Lr/Rr_nom 1];
% Determination of Wi:
% For mechanical systems with relatively
% large inertia a cut off frequency of
% 1 rad/s may be large enough.
% A third order Butterworth filter for Wi
¥ is derived from the Matlab 4.2c function:
% butter(3,1,’s’);
% Wl =1.05/(s"3 + 28"2 + 28 + 1) max = 1
¥ f_corner = 1 rad/s
num W1l = 1.05; den W1 = [1 2 2 1];
num_W2 = [0.04 0]; den W2 = [0.01 1];
w = linspace(0.001,1000,5000);
% Determination of W2:
% W2 = (0.04s)/(0.01s+1)
% max = 4
% f_cross = 20 rad/s

[mag P phase_P] = bode(num_P,den P,w);
[mag_Wl phase_Wl] = bode(num_W1l,den Wil,w);
[mag_W2 phase_W2] = bode(num_W2,den W2,w);

% Relative degree of L >= relative degree

% of P in order to roll off as fast as P

% so that C is proper.

% L incorporates an integrator to yiels a

% better unit-step response, and to decrease
% the tracking error.

% L(s) = 36(s+2)/s(s"2+6s5+9)

num_L = 36*[1 2];

den L = poly({0 -3 -31);

% L(0) > 0;

% The roots of 1+L=0 are: -2.0303 + 5.74481i
% -2.0303 - 5.74481i
% -1.9394

% verifying that this L(s) gives nominal

¥ stability.
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[(mag L phase L] = bode(num_L,den_L,w);

mag S = 1./(T.+mag_L);
mag T = mag_L./(1.+mag_L);
% |[Wis| + |W2T| calculation

mag_W3 = (mag Wl.*mag S) + (mag_W2.*mag T);

figure(l);

loglog(w, mag Wl, w, mag W2, w, mag_L);
title(’'Plot of L, W1, and W2’);
xlabel (' frequency (rad/s)');

ylabel ('magnitude’) ;

grid;

mag_W4 = mag _Wl./(1l.-mag_W2);
mag_W5 = (1.-mag_Wl)./mag W2;

fiqure(2);

loglog(w, mag W4, w, mag L, w, mag_W5);
title (‘Magnitude Plot of L’);
xlabel (’ frequency (rad/s)’);

ylabel (‘magnitude’) ;

grid;

figure(3);

loglog(w, mag_W3);

title(’'Magnitude Plot of |W1S|+|W2T|’);
xlabel (/' frequency (rad/s)’);

ylabel (‘magnitude’) ;

grid;

% check errcor in output sinusoid when w <= 1

a = mag_L.*(1l.-mag_W2);
index = max(find(w < 1));
b = a(l:index);
sine_error = 1/min(b)

% error in the output sinusoid = 0.10289,

% which decreases as the gain is increased,
% but performance condition (fig. 6) tends
¥ toward 1

figure(4);

plot (w(l:index) ,mag_S(l:index));
tipée('Output Sinusoid Error for w <= 1 rad/s’);
grid;

% NOTE:

% The gain is constrained by the condition
% that at frequencies higher than the

% cross over frequen at W2, the magnitude
% of L < (1-|Wl|)/|wW2
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% &y
% systeeeeororememememe—e—/—/—Y—————————————— —————

figure(5);

freq = logsp'E
nyquist (num I
title(Nyquieme/e—eo

figure(6);
margin(num_L,

% Unit
num L = [0 0

num cl = num
den cl = num

figure(7);
step (num_ 1, cE——

SN
% st

final value =
[Y'x t] = St=
[Y,k] = max(y
time_to_peak
percent_overs

% Deter
ns=1;
while
n=n+1l
end
m= 1;
while
m=m+1
end
rise_time = t
% Deter
1 = length(t)
while
1 =1
end

settling time

% Deter
% C(s)

% num_C
% den C
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conv(num_L, den_P)
conv(den L, num P)

num C
den (o

num_C = [12.9700 61.9400 72.0000];
den_C= [0.0100 0.0603 0.0904 0];

% Convert controller from continuous to
% discrete time system.
Ts = 0.3;

[num_Cd, den cd] = c2dm(num C,den_C,Ts, 'tustin’)
prlntsys(num C,den C,’s’)
printsys (num_ Cd den_ Cd rz’)

% Determination of unit step response for
% the perturbed system.

for tau = 0.02:0.01:0.03
for Rr = Rr_nom:0.001:1.5*Rxr_nom
num P = Lm;
den P = [Lxr/Rr 1];
num tau = [1 -tau/2];
den tau = [1 tau/2];
[num_ol den_ol]=series(num_C,den_C,
num P,den P),
[num_ol den ol]-serles(num ol,den ol,
num tau,den tau),
[num_cl den cl]-fe?aback(num ol,den ol,
-1);
figure(8);
step (num_cl,den_cl);
title (’Step Response of Perturbed
System’) ;
hold on;
end;
end;
axis([0 5 0 1.5]);
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B.4. Loopshaping program for design of speed controller

% Loopshaping Program for the determination
% of the Speed Controller
% by Neil Cumbria

% The nominal plant conditions are given by:
3.1568/ (2*pi*50) ;

3.2484/ (2*pi*50);
Rr_nom = 0.0287;

[
[
"o

p=2;
Ids = 0.3;
Kt_nom = Ids*(3/4)*p*Lm*Lm/Lr % without rotor
¥ resistance
$Kt_num = Ids*(3/4) *p*Lm*Lm; %¥ with rotor
% resistance
$Kt_den = Lr*[Lr/Rr_nom 1]; %¥ with rotor

% resitance
B = 0.0001; % can’'t be zero (linear freq response)
J_nom = 0.0167;

num_P = Kt nom;

den_P = [J_nom B}];

% Determination of Wl:

% For mechanical systems with relatively

% large inertia a cut off frequency of

% 1 rad/s may be large enough.

% A third order Butterworth filter for Wil

% is derived from the Matlab 4.2c function:
% butter(3,1,’'s’);

% Wl = 1.05/(s"3 + 28"2 + 28 + 1) max = 1
% f_cormer = 1 rad/s
num W1 = 1.05; den W1 = [1 2 2 1];

num"wz = [0.04 0]; den W2 = [0.01 1];

w = linspace(0.001,1000,5000);

% Determination of W2:

% W2 = (0.04s)/(0.01s+1)

% max = 4

% f cross = 20 rad/s

{mag P phase_P] =
[mag W1l phase Wl1]
[mag_W2 phase W2]

bode (num_P,den P,w) ;

= bode(num W1, den Wl,w);

= bode (num_W2,den_W2,w) ;

% Relative degree of L >= relative degree
% of P in order to roll off as fast as P
% so that C is proper.
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% L incorporates an integrator to yiels a

% better unit-step response, and to decrease
% the tracking error.

% L(s) = 36(s+2)/s(s8"2+65+9)

num L = 36*([1 2];

den L = poly([0 -3 -3]);

% L(0) > 0;

% The roots of 1+L=0 are: -2.0303 + 5.7448i
% -2.0303 - 5.7448i
% -1.9394

% verifying that this L(s) gives nominal

% stability.

(mag L phase L] = bode(num L,den L,w);

mag S = 1./(I.+mag_L);
mag T = mag_L./(1.+mag L);
% |Wwis| + |W2T| ecalculation

mag W3 = (mag_Wl.*mag S) + (mag _W2.*mag_T);

figure(1l);

loglog(w, mag Wi, w, mag W2, w, mag L);
title(’'Plot of L, W1, and W2');
xlabel (‘' frequency (rad/s)’);

ylabel (’'magnitude’) ;

grid;

mag W4 = mag Wl1./(1.-mag_W2);
mag_WS = (1.-mag_Wl)./mag_W2;
figure(2) ;

loglog(w, mag W4, w, mag_L, w, mag_W5);
title('Magnitude Plot of L’);
xlabel (‘' frequency (rad/s)’);

ylabel (‘magnitude’);

grid;

figure(3);

loglog(w, mag W3);

title (‘Magnitude Plot of |W1S|+|W2T|’);
xlabel (' frequency (rad/s)’);

ylabel (magnitude’);

grid;

% check error in output sinusoid when w <=1

a = mag_L.*(1.-mag W2);
index = max(find(w < 1));
b = a(l:index);
sine_error = 1/min(b)

error in the output sinusoid = 0.1029,
which decreases as the gain is increased,
but performance condition (fig. 6) tends
toward 1

o P o o
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