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ABSTRACT 

The problem of decomposing a multi-exponential signal formed by the linear 

superposition of exponentials having the same location but different widths and 

amplitudes is addressed in this dissertation. The problem is of great practical 

significance and occurs in many fields of applied sciences. 

In this thesis several classical iterative search techniques, namely the nonlinear 

least squares and the maximum likelihood methods, are implemented. ,A well known 

approach based on the Gardner transformation has been extended and improved. Most 

importantly, however, is the introduction of a novel, efficient and robust approach 

based on the idea of total least squares. 

The nonlinear least squares problem is solved using the modified Powell's 

method. This numerical method iteratively searches for the minimum of a given 

function in a N-dimensional space. The nonlinear set of equations encountered in the 

maximum likelihood method are solved using Newton-Raphson's iterative method. 

Both these methods require a priori knowledge of the number of signal components 

and the initial estimate of the signal parameters. 

A frequency-domain technique based on the Gardner transformation is also 

implemented. Improvement in the resolution of time-domain impulse train is achieved 

by modeling the deconvolved frequency data as an autoregressive moving average 

(ARMA) process using the transient error technique. The autoregressive (AR) 
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parameters are derived using the singular value decomposition (SYD) of the data 

matrix and the moving average (MA) portion corresponds to the transient error terms 

in the unit-step forward prediction. Furthermore, cubic splines are used to obtain the 

uniform samples that are required to perform the discrete Fourier transform (DFT) of 

the transformed data. The results are found to be highly sensitive to the choice of 

nodes at low signal to noise ratio (SNR). 

A novel and efficient method called the Total Least Squares method is introduced. 

The strength of this technique lies in its ability to enhance the signal to noise ratio of 

noise corrupted data using the singular value decomposition (SYD) method. The data 

here is modeled as an AR process and the AR-coefficients are obtained using what has 

recently been referred in the scientific literature as a total least squares approach. The 

number of roots on the real axis between (i and 1 of the polynomial subsequently 

formed with these coefficients give the number of signal components and their 

locations are related to the widths of the individual components. Knowing the number 

of signal components and the widths, the amplitudes are estimated using the least 

squares fit of the data. 

The superior accuracy and the robustness of this method, is demonstrated by 

applying this technique to the decomposition of Wood-NMR data to determine the 

moisture contents of wood during the drying process. 
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CHAPTER 1 

INTRODUCTION 

1.1 STATEMENT AND THE SIGNIFICANCE OF THE PROBLEM 

The nontrivial problem of decomposing a multicomponent signal formed by 

the linear superposition of the basic functions having the same shape and location 

but different widths and amplitudes arises in many fields of applied sciences. 

Mathematically, a multicomponent signal is expressed as 

M 
x(t)= A1p(X1t)+n('t); O≤≤oo. 

1:1 

The pulse shape p (t) is known while the estimates for the unknown parameters M, 

A1 and X for i = 1,2,...M are desired from the knowledge of x (t). The additive 

random noise, n (t), is assumed to be Gaussian. In general, the basic function, p ('r), 

may be Lorentzian, sinc, Gaussian, exponential or any other complex signal. How-

ever, because of practical significance only those signals formed by the linear 

superposition of real decaying exponentials are studied in this thesis. 

The practical significance of this problem finds its roots in such diverse appli-

cations as overlapping excitation in fluorescent decay [1], compartmental analysis 

in physiology [2], pharmokinetics [3], sedimentation equilibrium [4], speech pro-

cessing and Electromagnetic wave problems [5,6], imaging systems [7,8], radio 
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astronomy [9], electronic components reliability study [10], nuclear magnetic reso-

nance (NMR) [11,12] and determination of important material properties in Deep-

Level Transient Spectro Scopy [13,14,15], to mention a few . Depending upon the 

area of application the number of components, M, amplitudes, A1, and widths, 2, 

have different biological or physiological meanings. 

1.2 PREVIOUS METHODS OF ANALYSIS 

Peeling or the graphical method [16,17,18] is one of the oldest and crudest 

time-domain analysis techniques. More recently, other time-domain analysis tech-

niques such as nonlinear least squares methods [19], linear least squares or the 

method of moments [1] and the maximum likelihood methods [11] have been 

applied to the problem of multicomponent signal analysis. The graphical method is 

applicable only if the number of signal components is small, i.e. M≤2, and the 

additive noise level is low. Furthermore, this method of analysis suffers from a 

cumulative error build-up. Other time-domain analysis methods, on the other hand, 

require a priori knowledge of the number of signal components, M, as well as the 

initial estimates of amplitudes and widths. 

Gardner et al [20], in 1959, introduced a frequency domain or spectral 

analysis method that neither requires a priori knowledge of the number of signal 

components nor the initial estimates of the amplitudes and widths. In this method, 

equation (11) is transformed into a convolution integral by the use of nonlinear 

change of variables, r = et and X = e ' so that the data is modeled as a 
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convolution of the basic signal with an impulse train in t-space. The impulse train 

is recovered by the process of deconvolution or inverse filtering yielding the 

number of components, amplitudes and widths simultaneously. Gardner et al used 

this technique in the analysis of multicomponent exponential decays in tracer data. 

However, due to the difficulties involved in performing the numerical Fourier 

transform 'at that time, they met with limited success only. 

Schlesinger [21], in 1973, solved the problem of performing numerical Fourier 

transform by using the discrete Fourier transform (DFT) and its associated fast 

Fourier transform (FF1) algorithm. However, the problem of high error ripples 

associated with inverse filtering remained unsolved. Lin and Dutt [3] used numeri-

cal Fourier transform and Bessel functions to reduce the magnitude of the error rip-

ples. However, this approach is difficult to implement. Cohn-Sfetcu et al [22], in 

1975, used the FF1 and the Gaussian filtering to reduce the high frequency noise 

so that the signal to noise ratio (SNR) of the deconvolved data could be improved. 

The frequenày-domain filtering, however, resulted in a poor resolution in time-

domain. 

Arunachalam [23], in 1979, devised a data extension technique so as to reduce 

the error ripple and to improve the resolution of the deconvolved impulse train. 

Here the "Good portion" of the deconvolved data is extended beyond the optimal 

passband by the recursive application of a unit step forward predictor determined 

by Burg's maximum-entropy method. Though this procedure works well for noise-

free exponential data, it gives a poor estimate of the number of signal components. 
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In a further development, Salami [24] and Nichols et al [25] used the autore-

gressive moving average (ARMA) model of the deconvolved data to enhance the 

resolution of the deconvolved impulse train and the accuracy of the number of sig-

nal components. Their motivation for using the ARMA model was based on the 

fact that it often yields a model with the fewest number of coefficients and 

Pagana's work [26] who showed that an AR(p) process in white additive noise can 

be best modeled as an ARMA(p,p) process. Though their results are quite 

encouraging, they obtained the uniform samples of the nonlinearly transformed 

data, required to perform the DFT, from the direct knowledge of the signal parame-

ters themselves, thus avoiding the complex problem of interpolation. 

In view of the practical significance of this problem coupled with the severe 

limitations of the aforementioned methods, new simpler, more efficient and practi-

cal means of analysis are investigated. 

1.3 THESIS OBJECTIVES 

i. Initially the objective of this thesis was to develop and implement a singular 

value decomposition (S\'D)-based transient error method based on Nichols et 

a! [27] with the added complexity of obtaining the uniform samples of the 

nonlinearly transfonned data using the least squares cubic spline method. 

This technique and the results obtained using this technique are presented in 

details in Chapter 2 and Chapter 4 respectively. It was found that the spline 

fitting and noise severely reduced the robustness of this technique. Therefore, 
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it was decided to investigate other techniques including the well established 

methods of nonlinear least squares and maximum likelihood. The conse-

quence of this investigation was the development of a novel method which 

was later found to be based upon the total least squares concept. A survey of 

the scientific literature from the last few years has revealed a growing interest 

among many researchers in the total least squares methods. However, the 

results presented in section 2.4 were arrived at independently and those in sec-

tion 2.5, to the best of our knowledge, constitute an original contribution. 

This technique extends the signal to noise ratio (SNR) enhancement concept 

of noisy data first purposed by Tufts and Kumaresan ['40] using the SYD 

method. A still' better improvement in the SNR is achieved using the new 

Total Least Squares method by removing noise both from the data matrix and 

the observation vector as opposed to removing it only from the data matrix in 

the case of Tufts and Kumaresan [40] method. 

This Total Least Squares method does not involve nonlinear change of vari-

able, hence alleviating the need for interpolation. The method is based upon 

modeling the multi-exponential data as an autoregressive (AR) process. The 

AR coefficients are derived by solving a total least squares problem. The 

number of roots on the real axis between 0 and 1 of the polynomial subse-

quently formed with these coefficients give the number of signal components 

and their locations are related to the widths of the components. Once the 

number of signal components and the widths are known, the amplitudes are 
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estimated using a least squares fit of the original data. 

The Total Least Squares method is applied to the Wood-NMR data in Chapter 

4. The object here is to estimate the moisture content during Kiln-drying pro-

cess of wood, defect identification and species determination. 

1.4 THESIS ORGANIZATION 

This dissertation is organized into five Chapters. Chapter 2 entitled "TIME-

DOMAIN ANALYSIS OF MULTICOMPONENT SIGNALS" lays the mathemati-

cal ground work for the Total Least Squares and its variation the Weighted Total 

Least Squares method, the nonlinear least squares method and the maximum likeli-

hood method. The closed form solutions in the final implementation states are 

presented. 

In Chapter 3 the frequency-domain method called the SVD-based transient 

error method is presented. This technique of analysis is based upon the Gardner's 

transformation and models the deconvolved data as an ARMA process. Cubic 

splines are used to obtain the uniform samples of the transformed data. 

In Chapter 4 the results are presented in two separate sections. In the first 

section simulation results compare the performance of all the four methods. In the 

second section, the new Total Least Squares method and the Gardner's transform 

based frequency-domain method are applied to the Wood-NMR data to estimate the 

moisture contents in the different anatomical regions of the wood. Finally, the main 

conclusions are drawn in Chapter 5. 



CHAPTER 2 

TIME DOMAIN ANALYSIS OF" MULTICOMPONENT SIGNALS" 

2.1 INTRODUCTION 

The nonparametric time-domain analysis techniques for decomposing mul-

ticomponent signals are the oldest and generally more common outside the field of 

engineering. 

Their popularity lends itself to the readily available algorithms that perform 

reasonably well provided the number of signal components is known and some ini-

tial estimates of the amplitudes and widths are available. The nonlinear least 

squares and the maximum likelihood are two such well known techniques. 

However, in the last decade or so the parametric or modeling techniques have 

been successfully employed in decomposing multi-sinusoidal [28], exponentially 

damped multisinusoidal [29] and most recently real, decaying multi-exponential 

[30] signals. 

This Chapter briefly discusses peeling or graphical methods and lays the 

mathematical ground work for the nonlinear least squares and the maximum likeli-

hood methods. Finally, a novel and efficient parametric technique based on the 

7 
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total least squares approach is introduced. 

2.2 GRAPHICAL METHOD 

This method belongs to the class of nonparametric techniques and is the old-

est and crudest technique for decomposing a multi-exponential signal. The 

mathematical justification for this technique is as follows. 

Consider the multicomponent signal 

M 
x(t)= A1e 

1=1 

where, it is assumed, for convenience, that 

Taking the natural logarithm of both sides of equation (2. 1), yields 

For 

ln[x(t)]=in[ M Aie  1 1. 
i=1 

½ 

—2 1t 
in {x (t)} z in {A 1e ] = In A 1 - 

(2.1) 

(2.2) 
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Equation (2.2) is an equation of a straight line with y-intercept as mA 1 and 

slope —? . Thus fitting the tail-end of the natural logarithm of the data with a 

—2.1t 
straight line gives A1 and 2. Next A is subtracted from (2.1) and the pro-

cedure is repeated to determine A2 and X2.This sequence of steps is repeated until 

the remaining data is in the range of some error. The major drawbacks of this 

method are that: 

1. The decay rates, 2*, must be widely separated, which may not always be the 

case. Consequently, this method has poor resolving capability. 

2. There is a accumulative error buildup. 

3. For large (M > 2) number of components it is not a very practical way of 

parameter estimation. 

Because of these short comings, this method is only useful in obtaining a first 

order estimate of the signal parameters. Parameters obtained using this method may 

subsequently be used as seed values for the more sophisticated techniques such as 

the nonlinear least squares and the maximum likelihood methods. 

2.3 ITERATIVE METHODS 

Given the rough estimates of A1 and X, . for 1 ≤ I ≤ M, these methods itera-

tively update the parameter estimates. Convergence of these methods is guaranteed 

only by the accuracy of the initial estimates and the numerical stability of the algo-

rithms. Thomasson and Clark [19], in 1974, successfully applied the Marquardt's 



10 

nonlinear least squares algorithm to the analysis of exponential decay curves. 

The maximum likelihood method is another extremely powerful iterative tech-

nique. Sandor et. al. [11] have demonstrated the use of this method in estimating 

the parameters of exponential data with Poisson distribution. The maximum likeli-

hood method, like the nonlinear least square method, also requires a priori 

knowledge of the number of signal components, M, and the initial estimates of A1 

and X and can converge to different solutions depending on the initial estimates. 

2.3.1 The Nonlinear Least Square Method 

The nonlinear least squares method converts the parameter estimation problem 

to a multidimensional minimization of an objective function which is nonlinear in 

some or all of the parameters. For the multi-exponential problem with the time 

series x (n); 1 ≤ n ≤ N the objective function is formed as 

N M —A.t.2 
f(A1,. . ,AM,?l,. 'M = [x - A1e J1 (2.3) 

j=l 1=1 

Starting from the initial estimates of A and X the minimum of the objective 

function (2.3) is searched in 2M dimensions. If the initial estimates are not accu-

rate enough the algorithm may not converge or converge to a local minimum. 

In this thesis modified Powell's method [31] is used to search for the 

minimum of the objective function in N dimensions. The original Powell's 

method generates N mutually conjugate directions and proceeds in a following 
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manner: 

Initialize the set of directions U1 along which the minimum of the given function is 

to be searched, to the basis vectors, i.e. 

I= 1,2,...,N 

where the vector e. has all its elements zero except the 1t1j. element, which is 

unity. 

Then the following basic procedure is repeated until the function stops 

decreasing: 

1. Save starting position as 

2. For i = 1,2,...,N, move to a minimum along u and call this point p 

3. For i = 1,2,...,N-1, set Ri 
- 

4. Set —p_p0. 

5. Move PN  to minimum along 11N and call this point p0 . 

Powell, in 1964, showed that, for a function with quadratic form, k iterations 

of the above basic procedure produce a set of directions whose last k members 

are mutually conjugate. Therefore, N iterations of the basic procedure, amounting 

to N(N+1) line minimizations in all, will exactly minimize a quadratic form. But 

the practice of discarding i in favor of N - p0 tends to produce directions set 
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that are linearly dependent. Once, this happens, the Powell's method tends to 

minimize the given function over a subspace of the full N-dimensional space. 

In the modified Powell's method pN -  po  is still taken as a new direction. 

However, the old direction along which the function at hand made its largest 

decrease is discarded. Since, the old direction is still the major component of the 

new direction we are adding, so dropping the old direction gives us the best chance 

of avoiding a buildup of linear dependence. However, under the following two con-

ditions it is sometimes even better to retain the direction along which maximum 

decrease occurred. Define: 

fo o)' fN E f - 

Let Af be the magnitude of the largest decrease along one particular direc-

tion. Then: 

≥ f0, then keep the old set of directions for the next basic procedure, 

because the average direction pN  -  po  is all played out. 

2. If 2(fo_2fN+fE)[fo_fN_bf]2 fOfE) L\f , then keep the old set of 

directions for the next basic procedure, because either (i) the decrease along 

the average direction was not primarily due to any single direction's decrease 

or (ii) there is a substantial second derivative along the average direction and 

we seem to be near the bottom of its minimum. 

An algorithm based on this technique is implemented in this thesis and its 
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performance is compared to the maximum likelihood method. 

2.3.2 The Maximum Likelihood Method 

The maximum likelihood method is based on a relatively simple idea: 

different parameter populations generate different data samples and any given data 

sample is more likely to have come from some population than from others, 

Kmenta [44]. In this context, the problem of parameter estimation can be restated 

as follows: Given the time series x (ii); 1 ≤ n ≤ N estimate the parameter vector 

by its most plausible values. In other words, maximize the conditional joint proba-

bility density function of the random vector x represented by the observed sample 

vector ii with respect to the parameter vector q. 

The vectors are given by 

u=[x1,x2,. . 

and 

AM . 

The conditional joint probability function, in this context, is more commonly 

known as the likelihood function. It is generally a common practice to maximize 

the logarithm of the likelihood function, known as the log likelihood function, 

rather than the likelihood function itself with respect to the parameter vector q. 
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For the multi-exponential signal, if the total time interval T of the measure-

ment is subdivided into subintervals, (&) , I = l,2,...,N such that for all i (&) 

then it may be, assumed that the measured signal in each interval follows a 

Poisson distribution. With this assumption, the likelihood function can be expressed 

as 

Xi 

l(ul1)=exP — Z<x> H ,  

j=1 j=1 j• 
(2.4) 

where <x i > is the expected value of the signal in the tk interval and x! is fac-

torial x1 . Furthermore, the expected value < x > is given by 

M 
Ae J. 

i=l 

Using (2.4); the natural logarithm of the likelihood function, the log likelihood 

function, is 

N N 
L(!I)—<xj >+[xjln<xj >_1nx!]. (2.5) 

Differentiating the log likelihood function with respect to A1 and equating it to 

zero gives 
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N  —At. N x. —At. 
—e 1J+  e •1JØ 
j=l j=l <j>• 

N X. A t 
• <'•> 1 e . = 0, 1 = 1,2,...,M. 

J=1 J 

Similarly, differentiating (2.5) with respect to X, and equating it to zero gives 

(2.6) 

NIX. 1 - 

1 A1te if = , = 1,2,...,M. (2.7) 

J=1L i J 

Equations (2.6) and (2.7) can be combined into a single equation as 

N X. 

j=1 <j> 
1] 

Dqj (2.8) 

From (2.8), we have a set of 2M nonlinear equations that are to be solved for 

2M independent variables, namely the signal parameters. In this thesis Newton-

Raphson's iterative method is used to solve these equations. 

2.3.2.1 Newton-Raphson's Method 

A typical problem gives N functional relations, in N variables, to be zeroed, 

i.e. 

fi () = 0, 1 = 1,2,...,N 

where 

(2.9) 
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X=[X1X2...N]. 

Then in the neighborhood of x each of the function, f1 , can be expanded in a 

Taylor's series as 

Naf1 
fj(x+Ax)=fj(x)+a  x+O(Sx2)=O. 

j=1 j 

By neglecting terms of the order 8X2 and higher gives 

'N 
f()+ I .ô;—oxj=o 

j=1 j 

or 

Naf1 
= —f ()  

_J=1 ax J 

The above equation can be expressed in the matrix form as 

A Ax=f() (2.10) 

where 
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af 1 af 1 af 1 

ax  ax2 

ia af2 af 2 

ax  &t2 axN 

A 

afN afN afN 

ax  ax  

Ax = [ox 1 OX 2 . . . OXJ ]T, 

! () = —f 2(x-) !N (x) I T 

The error in the estimate of the solution to the homogeneous set of equations 

(2.9) is denoted by the error vector Ax. An initial estimate of the solution vector, 

x, is required to start the iterative process. Equation (2.10) is solved for the error 

vector and the solution vector is updated at the end of each iteration as 

new = sold + Ax. 

The iterative process stops if either the sum of the magnitudes of the func-

tions, f1, is less than some tolerance, or the sum of the absolute values of the 

corrections, &r1, is less than some tolerance. 
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The solution of (2.10) for Ax proceeds through LU decomposition of the 

matrix A using Crout's method which employs partial pivoting, i.e. row inter-

changes only, to attain stability. The LU decomposition of (2.10) gives 

Now let 

Therefore, 

(2.11) 

(2.12) 

The advantage of breaking up one set of linear equations into two successive 

ones is that the solution of the triangular set of equations is quite trivial. Equation 

(2.12) is solved for the elements of the vector y using forward substitution and 

(2.11) is solved for the elements of the vector Ax, the corrections, using backward 

substitution. 

Using the Taylor's expansion of (2.8) in the neighborhood of q gives 

2M a 1N IX  la<x>1 N 1 JX. 
h=1 q [<xi> 1] aq j h = j=1 L 1 

I a aq. 
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2M 

h=1 

N x 1 a2< j > N x a<x> <x.>  

j=1[ x < >  i j j=1 >2 aq 

N 2M 

j=1 h=1 

N X. 
--

- j=l <j> aq1 
i = l,2,...,2M. 

a2<xi> xi a<x3> a<.x> 

a aq1 <Xj aq h aq1 

N X. 

= - <> 1 aq = 1,2,,..,2M. (2.13) 

.1=1 J 

Equation (2.13) has the same form as (2.10), where the elements of the matrix A, 

amn for 1 ≤ m,n ≤ 2M, are given as 

- N I 1 am a2<x> x, <x.> n -    i  
ia aq j=1 < [ f > j n m <x>2 aq 

and the elements of the vector f(x) , - m (x) , are given as 

N x. 

M = j1 <x> 1 aq 

Equation (2.13) is solved for the error vector using Newton-Raphson's 

method. The estimates of the parameter vectors are updated iteratively until the 
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desired convergence is achieved. 

2.4 THE TOTAL LEAST SQUARES METHOD 

The underlying principle of this method is that there is a polynomial 

M 
A(z) = 1 + a1 z 1 

1=1 

of degree M whose roots correspond to the M components of the multi-

At 
exponential signal. The roots are given by e , where At is the sampling inter-

val. Thus, for any choice of At, 0 ≤ At ≤ oo , the roots corresponding to the rate 

constants, 2, of the exponentials that constitute the data must be real and lie 

between the interval zero and one on the real axis. 

The polynomial A (z) is obtained from the one step forward predictor and is 

referred to as the prediction error filter. A prediction error filter of degree pe > M 

has M roots on the real axis between the interval zero and one and the remaining 

pe —M roots will be off this interval but inside the unit circle in the complex plane. 

Furthermore, since all the polynomial coefficients are real for real data, the com-

plex roots occur in conjugate pairs. As all the roots lie inside the unit circle, the 

prediction error filter is minimum phase and hence the predictor is stable. 

The choice of the forward predictor order pe > M ensures lower prediction 

errors in the presence of noise. However, if the predictor coefficients a1 's are 

derived using the classical linear least squares method or any other methods which 
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do not improve the SNR of the data then the zeros of the polynomial A (z) that do 

not correspond to the signal parameters become spuriously distributed in the com-

plex plane [36] and may even be located in the interval zero and one on the real 

axis, thus resulting in false detection. The robustness of this technique lies in its 

ability to improve the SNR of the data by removing noise both from the data 

matrix and the observation vector by using the S\'D method. It is this SNR 

enhancement property of the Total Least Squares method that enables the detection 

of the signal component at high noise levels. Using this method the predictor 

coefficients are derived as follows. 

For a multi-exponential time series x(n), the forward predictor coefficients, in 

the absence of noise, must satisfy the following equation: 

X.a= (2.14) 

because the real decaying exponentials are perfectly predictable. The data matrix 

X given as 

Xpe Xpe_l xo 

Xpe+1 Xpe . x1 

X= 

XN1 X_2 . . XN pe 1 

is a (N—pe) x (pe+1) matrix and the integer variable pe signifies the predictor 
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order. 

The vector 

a=[1 a1 a2 ... ape] 

determines the predictor coefficients. 

It can be easily shown that the rank of the data matrix X is M, the number of 

exponentials in the signal. Since the data matrix is rank deficient if pe > M, which 

is usually the case, there are infinitely many solution vectors, a, satisfying equation 

(2.14). One method of finding a meaningful solution from all the possible solutions 

is to select the one that assigns the minimum energy to the polynomial A ( ej ()). 

The energy, I, of the polynomial A ( e (0) is defined as 

I = -_fIA(eJ02dco. (2.15) 
21r -7r 

The above condition is equivalent to minimizing the Euclidean norm of the 

vector a. The significance of the minimum norm lies in the fact that it minimizes 

the variance of prediction errors. 

Thus, 

I =aTa. (2.16) 

Hence, the linear prediction problem is transformed here into a norm minimi-

zation problem. The problem is redefined as: Minimize the norm of the vector a 
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subject to the following constraints: 

1. The vector a lies in the null space of X. 

2. a0=l. 

The problem is solved by resorting to the singular value decomposition (SVD) 

of the data matrix X. The following three properties of the SVD are of fundamen-

tal significance to the solution of this problem: 

(i) In the absence of noise, the number of nonzero singular values of X is equal 

to its rank which in turn equals the number of signal components, M. 

(ii) The right singular, vectors, v. , of X corresponding to the zero singular values 

form the orthonormal basis for the null space of X. 

(iii) A (pe+l) x (pc-i-i) matrix. V with right singular vectors of X as its columns 

is orthonormal. Therefore, 

VVI. 

where superscript H is the Hermitian operator indicating transpose conjuga-

tion and I is an identity matrix. Furthermore, from the orthonormality of V 

we have 

ye 
1 

i=o 
and 

(2.17) 
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pe 
( v(0))v = 

i=0 

or 

1=0 

(eTv )y i = •20 

where v1 (0) is the first element of the i singular vector and 

e=[1000]T 

(2.18) 

Using properties (i) and (ii), the vector a is constructed in the null space of X 

as 

De 
C1!1 

i=M 
(2.19) 

where C1 's are the unknown constants and 's are the right singular vectors 

of X corresponding to the zero singular values. The second constraint can be 

expressed as 

eTa _ 1=0. 

Forming the Lagrangian, L, gives 

L =aTa_p(Ta _ 1) 

where p. is called the Lagrange multiplier. 

(2.20) 

(2.21) 
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Minimizing the norm of the vector a subject to the constraint that a0 = 1 is 

then equivalent to minimizing the Lagrangian, L, without any constraint The con-

straint requiring a to be in the null space of X is implicitly taken care of in (2.19). 

Substituting (2.19) in (2.21), gives 

L= 
i=M j=M 1 - (e T .C v - 1). 

Noting that v. are orthonormal vectors, (2.22) can be simplified to 

L = c12 - 1). 

It is now desired to minimize L with respect to C1's. For real data C1's are 

also real and differentiating (2.23) with respect to Ck, M ≤ k ≤ pe, and equating it 

to zero yields expression (2.24). 

(2.22) 

Solving for Ck gives 

DL 

ack 
= 2C_ ( Ty)=0 

k .20 

C_t, T 
k2' O ! 

Substituting (2.25) into (2.19), yields 

(2.23) 

(2.24) 

(2.25) 



26 

A = , • ( %'li )!j. 

Equation (2.18) can be expressed as 

M—1 je 
(e Tv )v + (e Tv. )v 

i=0 i=M 

Substituting (2.26) into (2.27), we obtain 

giving 

M-1 
(e  Tv. )v +a/() 

1=0 

M-1 

i (eTv) -Vi 
0  

From (2.28) the constraint a 0 = 1 is equivalent to 

or 

a0 = 
M12] =1 

1  
2 M-1 

1— v21(0) 

1=0 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Substituting (2.29) back into (2.28), we obtain the desired result 

a= 

M—1 : (eTv)v 
1=0 
M—1 

1— 1 v21(O 

1=0 

(2.30) 

Pe 
The resulting polynomial A (z) = I a1 z 1 , where a1 are given by (2.3(i), 

—?,.At 
will have M real roots, e , in the interval 0 to 1 on the real axis and 

(pe—M) roots off this interval and inside the unit circle in the complex plane. 

From the roots the parameters M and can be determined, using this method. 

Once the parameters M and X, are known, the amplitudes, A1, can easily be deter-

mined using linear least squares methods, such as Prony's method. 

Using equations (2.17) and (2.27), the results given by (2.30) can alternately 

be expressed as 

pe 
(e')v 

i=M  
pe 

V 

i=M 

(2.31) 

The two solutions obtained in (2.30) and (2.31) to the linear prediction prob-

lem posed by (2.14) are identical. However, the solution presented by (2.30) is 

computationally more efficient if M < pe, which generally is the case. For this 

reason (2.30) is used in this thesis to obtain the solution vector a. 
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The solution to the linear prediction problem in the form of (2.30) and (2.31) 

is referred in the scientific literature as a Total Least Squares solution. In a one-

dimensional case this method amounts to fitting the best line through the noisy data 

points that minimizes the sum of the squares of the normal distances as opposed to 

the vertical distances in the case of linear least squares. 

The concept of total least squares or the constrained norm minimization is 

further extended, in this thesis, to weighted total least squares or the constrained 

weighted norm minimization. The objective here is to map the roots of the polyno-

mial A (z) in such a fashion so as to achieve greater resolvability and accuracy of 

the parameters. The solution for the coefficient vector, a, in this case, is derived in 

the next section. 

2.5 THE WEIGHTED TOTAL LEAST SQUARES METHOD 

It is sometimes desirable to map the roots of the polynomial A (z) in some 

region to another region in the complex plane in some optimum fashion. For exam-

ple, if ,in the present case, the roots in the interval zero to one can be mapped on 

to the unit circle, then the complex task of polynomial root finding can be reduced 

to discrete Fourier transform to estimate the signal parameters. Under these cir-

cumstances the problem transforms to a weighted norm minimization. The 

weighted norm of a vector a is defined as 

(2.32) 
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where P is a (pe+1) x (pe+1) weighting matrix. It is this matrix that determines 

the mapping to be achieved. In the case of a conventional norm, this matrix is sim-

ply an identity matrix. Determination of P is quite complicated and is presently 

being investigated by researchers in this field. No attempt is made in this thesis to 

define any optimal mapping or to determine the P matrix if one is defined. How-

ever, a solution for vector a is presented if P is known and is a symmetric matrix. 

The problem at hand then is to minimize the weighted norm, given in (2.32), 

subject to the same two constraints we had for conventional norm minimization. 

As before, a is constructed in the null space of X as 

pe 
= C11 
i=M 

(2.33) 

where 's are the right singular vectors of X corresponding to the zero singular 

values and C1's are the arbitrary constants with respect to which I in (2.32) is to 

be minimized subject to the aforementioned constraints. 

With (2.33), the Lagrangian L to be minimized is 

L =aTPa_j.t(e Ta_i) 

= T T i=M j=M ZJ J - L eTC v - 1. 

Minimization of (2.34) with respect to C  requires 

(2.34) 



30 

= cTPaCk j=M j Lk v + 2CkP + cj!TP!k - e Tv 
j=M 

j*k j#k 

=0. 
(2.35) 

In equation (2.35), the range of k is from M to pe. Since, P is a symmetric 

matrix, we have 

Tp 

Therefore, (2.35) simplifies to 

2 1 CvPv + 2CkyIP!k = 
j=M i-Lk -Li 

j#k 

2 Cj!k Tp = pe  Tv 
j=M 

2Ac = j.Lb. (2.36) 

In equation (2.36) the symmetric matrix A is given by 

A=['Pv.] pe 
k,j=M 

the vector 
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c= [CM lT 
-  c M+1 cpe ] 

and 

= 

T 
O!M+1"OT!pe T 

= [VM(0) •VM+1(0).. . 
Vpe (0)]l' 

From (2.36), c can be written as 

! -A 1b. 

Expression (2.33) can alternately be expressed as 

(2.37) 

(2.38) 

where the matrix V has vectors yi, for M ≤ i ≤ pe, as its columns. Substituting 

(2.37) in (2.38) gives 

! 

Therefore, noting that V is a unitary matrix, we get 

(2.39) 

From (2.27), we have 
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M-1 ye 
(v )v+ ("!)! 

i=0 i=M 

M-1 T 
= v1 (0)v +  v (0)v1 

i=0 i=M 

M-1 
= v (0)v1 + Vb. 

i=0 

Substituting for b, from (2.39) in (2.40) 

Therefore, 

gives 

M-1 

i=0 

M-1 
v1 (0)v1 

i=o 

= VA 1VH - v(0)v 

Now define a (pe+1) x (pe+1) matrix D and a vector w as follows: 

D = VAlVH, 

(2.40) 

(2.41) 
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M—1 
v1(0)v1. 

i=0 

Using this, equation (2.41) can be expressed as 

and constraint a0 = 1 reduces to 

Therefore, 

a=--Dw 

pe+l a0= -,,Pe 
Dij  =i. 

i=1 

2 pe+1 
D11 

Substituting (2.43) in (2.42), we obtain the coefficient vector 

Dw 
- pe+1 

Did W 
i=1 

(2.42) 

(2.43) 

(2.44) 

In calculating the matrix D , the inverse of the matrix A is calculated using 

the singular value decomposition. 



CHAPTER 3 

FREQUENCY DOMAIN ANALYSIS OF "MULTICOMPONENT SIGNALS" 

3.1 INTRODUCTION 

Gardner et al [20], in 1959, proposed a transform method which unlike non-

parametric time-domain techniques neither requires prior knowledge of the number 

of components nor of the initial estimates of the signal parameters. This technique 

was first used by the authors in the analysis of multicomponent exponential decays 

in tracer data but met with limited success due to the difficulties of performing 

numerical Fourier transform at that time. Schlesinger [21] solved this problem 

using the discrete Fourier transform (DFT) and its associated fast Fourier transform 

(FYI) algorithm. Since then, this technique has been used by many researchers, Lin 

and Dutt [3] in 1974, Cohn-Sfetcu et al [22] in 1975, Nichols S.T. et al [25] in 

1985, etc., with improvements, in the analysis of multicomponent signals. 

The technique introduced in this Chapter is based upon the work by Salami et 

al [27] with the added complexity of cubic spline fitting the nonlinearly 

transformed data to obtain uniformly spaced samples. The performance of this 

method is directly compared to that of the Total Least Squares method introduced 

34 
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in the previous Chapter. 

3.2 THE TRANSFORM TECHNIQUE 

A multicomponent signal has the general form 

M 
x (t) = A1 p (2 t) + n ('t) 

1=1 
(3.1) 

where r c R + and R + is the positive real line. The pulse shape p (c) is known 

while the parameters M and A1, ? , for i = l,2,...,M., are to be estimated from the 

observed signal x (t). The additive noise is denoted by n (t). 

Equation (3.1) can be equivalently rewritten as 

M °° 
x ('r) = 5A1 (—A) p ()c) d 2 + n (t) 

1=1 0 

where (A,) is a dirac delta function defined by 

00 

f(x—x) (x) dx =4(x) 

if 4(x) is continuous at x0. 

Hence, the equation (3.1) can be considered as a particular case of 

(3.2) 
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00 

X (t) = f  (A.) p (A.t) dA. + n (r) (3.3) 
0 

where the unknown distribution function q (A.) is given by 

M 
A1  

i=1 

It has been shown by Smith and Cohn-Sfetcu [32] and Smith et al [22] that 

using Gardner's transform the integral in equation (3.3) can be mapped to a convo-

lution integral. Nichols et al [25] proposed a further refinement to this transforma-

tion by multiplying equation (3,3) by a factor era, 0 < a ≤ 1, instead of r to vary 
the A1/A.1 ratio as well as to enhance the signal to noise ratio (SNR) of the decon-

volved data. 

Multiplying both sides of the equation (3.3) by t° gives 

00 

Ica x()= fra q(A.) p(A..t)dA.+ ta n(t). 
0 

Now introducing the nonlinear transformation, .t = et and A. = e1' produces 

eat x(et) = feW qe) p(et) edy+ eat n(et). 

-00 

The above equation can alternately be expressed as 
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ew x(et) = 

00 

$ e'Y( 1) q(e 1') ea(t'l')p(et-l') d?+eW n(et). 
-00 

Letting 

in equation (3.4) gives 

00 

(3.4) 

Y(t) = e-2 x(et), (3.4a) 

g(7) = e'( 1) q(el'), 

k(:) =eat n(et), 

(3.4b) 

(3.4c) 

h(t) =e a t p(et) (34j) 

y(t) = f g(y) h(t—y) dy+ k(t); —co oo (3.5) 
-00 

The above equation is a convolution integral and is conventionally written as 

y(t)=g(t)* h(t)+k(t) (3.6) 

where the symbol * denotes convolution of g (t) with h (t). Here y (t) and h (t) are 

known and the parameter distribution function g (t) is to be estimated. Hence the 

parameters estimation problem is reduced to a deconvolution problem. 
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The results from equation (3.5) can easily be modified for the case when the 

basic pulse is an exponential. In this case, the multicomponent signal in equation 

(3.1) becomes the multi-exponential signal 

M -.t 
x(t) = A1 e + n (t). 

1=1 
(3.7) 

Furthermore, the parameters k may be assumed, without the loss of general-

ity, to be ordered so that X1< 2< < M 

In this case, using substitutions (3.4a) to (3.4d), we get 

M A a(t-'y.) (t-'y1) 
e 1 +k(t). 

Expression (3.8) can be written as 

or 

where 

M 
Y  = , B1 h(t—y1) + k(t) 

i=1 

(3.8) 

Y(t) = g (t) * h (t) + k (t) (3.9) 
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M 
g(t)= B1 5(t-7d, 

1=1 

B.= 
A1 

and the pulse h (t) is as previously defined. 

Taking the Fourier transform of both sides of (3.9) gives 

= G(0)H(a))+K(0) 

where 

M -j O). 
G(0))=EB1e 

1=1 

is the transform of the desired distribution and 

Y ((o) = F [y (t)], H (co) = F [h (t)], K (co) = F [k (t)]. 

In the above expressions F denotes the Fourier transform operator. 

Dividing both sides of equation (3.10) by H (c)) gives 

Y(c))  =G(co)+ K(co)  
H(c)) H((o) 

The inverse Fourier transform of G (co) is given by 

(3.10) 

(3.11) 
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M 
g(t)= JB1 (t—y1) 

i=1 

MA1 
= ö(t+ln 1). 
1=1 Xi a 

The function g (t) is called the parameter distribution function and contains 

the desired information about the parameters of the multicomponent signal. It is 

composed of M impulses each having an area A1 /% a and occupying locations 

ln(1/2 1) ; i=1,2,...,M. 

It is, however, customary to order impulses as ln< hh12 2< <ln\ 1. This 

can easily be accommodated by taking the direct Fourier transform of G (o) in 

place of the inverse Fourier transform. 

Since y(t) and h(t) are both known, Y(o) and H()) can both be computed. 

This implies that the estimate of the parameter distribution function, g (t), can be 

obtained from equation (3.11) as 

g(t)=F 1 [(! (c))} 

where denotes inverse Fourier transform operation, and 

(3.12) 

(CO) = = G(c)) +   (3.13) 

The direct implementation of equation (3.12) via (3.13) poses some serious 

problems. The most serious of these problems is the problem of error ripples 
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present in the estimate of the parameter distribution function. This is primarily the 

consequence of division by H(()) in equation (3.13). Since Y(o)) and H(co) 

approach zero simultaneously, C (o) is well behaved provided K(co) equals zero. 

However, K (co) is in no way related to H(co) and does not approach zero as H(co) 

K((o)  
does. Consequently, the term H(co) tends to make G (()) unbounded. The inverse 

Fourier transform of such a function can produce error ripples that can conceal the 

peaks corresponding to signal parameters, thus rendering the results meaningless. 

One way to reduce the error ripples is to cutoff the value of O (C)) at some 

frequency oC , before the divergence occurs. Now the solution to the problem at 

hand poses conflicting requirements. On one hand it is required to teduce the 

bandwidth of G(o)) to reduce the error ripples but on the other hand the smaller 

the value of the cutoff frequency (DC the poorer the resolution, limiting the resolva-

bility of closely related exponents. 

Callahan and Pizer [33] and Pizer et a! [2] introduced error peak averaging 

and error ripples subtraction techniques to reduce the error ripples. These tech-

niques are difficult to implement and are not computationally efficient when M is 

large, (>2) , and the exponents are close to each other. 

Smith and Cohn-Sfetcu [22] demonstrated the use of Gaussian filters to 

achieve reduction of error ripples in the parameter distribution function. Provencher 

[34] used convergence parameters along with Gaussian filtering to improve the 

parameter distribution. But the use of filters to improve the signal to noise ratio 
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(SNR) of the deconvolved signal results in broadening the peaks in the distribution 

function. Hence limiting the resolvability. 

Arunachalam [23] used one-step forward predictor, determined by Burg's 

maximum entropy method, to extend the frequency range of the deconvolved data 

beyond the optimal passband, The justification of this extension method lies 

in the fact that the frequency spectrum of the signal formed by superimposing 

delayed dirac delta functions exists for all n and can be extended beyond -(o nc by 

the recursive application of one-step forward predictor. The results produced by 

this extension method showed marked improvement over the previous methods but 

produced poor estimates at low SNR. 

Salami [24] and Nichols et al [25] modeled the "Good portion" of the decon-

volved data as an autoregressive moving average (ARMA) process and determined 

the parameters of the multicomponent signals from the spectral estimates of the 

ARMA model. Though they obtained good estimates of M, A1, and %,, the 

autoregressive (AR) model order required is usually high and the uniform samples 

of the nonlinearly transformed data, required to perform the DFT, are obtained 

from the direct knowledge of the signal parameters themselves. 

In this dissertation a singular value decomposition (SVD) based transient error 

method, proposed by Nichols et al [27], is used to obtain high resolution estimates 

of the exponents of the multi-exponential signal. The "Good portion" of the decon-

volved data is modeled using a special ARMA process. The AR coefficients of the 
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process are determined directly from the data using a SVD-based linear least 

square technique. The MA coefficients are derived from the residual error sequence 

so as to account for the nonstationary noise present in the deconvolved data. 

3.3 DISCRETE REPRESENTATION OF MULTICOMPONENT SIGNAL 

Though all the signals considered so far have been assumed to be continuous 

in nature, in actual practice only the discrete samples of x (t), in equation (3.7), are 

available. Furthermore, these samples are usually not uniformly spaced. This is so 

because the signal to noise ratio of the decaying exponentials is monotonically 

decreasing. It is then prudent to sample these signal densely when the SNR is high 

and sparsely when the SNR is low. The sampled values of x(r) are multiplied by 

a and the Gardner's transformation, r,2 =e n is used to obtain the discrete 

values of y (t) in equation (3.5). Equation (3.5) can be expressed in the discrete 

form as 

00 

y[n]=At Z g{m]h[n—m]+k[n} 
m 

(3.14) 

where, for convenience, the sample values are denoted using square brackets, i.e. 

y[n]=y(n At). 

Estimation of the distribution function g [n] from equation (3.14) is a discrete 

time deconvolution or inverse filtering problem. This, problem is solved by per-

forming the discrete Fourier transform (DFT) of equation (3.14) and then dividing 
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both sides by the DFT of h [n], H (k Lco). This requires uniformly spaced samples 

of y [n ]. In this thesis, uniform samples of y [n] are obtained by using cubic spline 

interpolation technique. 

3.3.1 Cubic Spline Interpolation 

A program called }'TILOS [35] is used to fit the log transformed data with 

cubic splines. The spline functions are defined as pieäewise polynomials of some 

degree "q", joining in the so called "nodes" and satisfying the continuity constraints 

for the function itself and its first (q-l) derivatives. Thus, a cubic spline is a poly-

nomial of degree three and is continuous along with its first two derivatives at the 

nodes, and has the general form 

S(x)=a0 +a 1x +a2x2 +a3x3. (3.15) 

The cubic spline interpolator algorithm used combines some of the advantages 

of least squares polynomial method with the cubic spline technique. In other words 

it computes the polynomial coefficients a0, a1, a2 and a3 such that the quantity 

N 
1= 

i=1 

is minimized subject to the continuity constraints. In the above expression the 

polynomial S (x) is fitted over the ordered pairs of points (x 1,y)l (x2,y2), 

(XN 'N• The constraints are imposed by the method of Lagrangian multipliers. 

The choice of nodes itself in this algorithm is in no way optimal. However, the 
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user has a choice of selecting nodes and/or the number of segments. 

Once the log transformed data has been fitted with cubic splines the next step 

is to obtain the uniform samples. The sampling constraints are discussed in the 

next section. 

3.3.2 Sampling Constraints 

In equation (3.13) the Fourier transform of the estimate of the parameter dis-

tribution function, § (t), is obtained by dividing the Fourier transform of the log 

transformed data, y (t), by the Fourier transform of the pulse h (t), where 

h(t)= eat e_et . (3.16) 

To perform the DFTs, y (t) and h (t) need to be uniformly sampled and the 

maximum value of the sampling interval At needs to be established so as to 

minimize aliasing. Salami [24] has shown that for 0 < a ≤ 1, the pulse h (t) is 

essentially band limited to 2 Hz. Therefore aliasing is avoided for 

At ≤ 0.25sec. 

Furthermore, g (t) is strictly time limited with time width In( M1Xl) for 

<2 < ;(M .Then to avoid aliasing of g (t) in the time domain, we need 

N At ≥ in[%M/?1] 

or 
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N ≥ -iAt -- In (3.17) 

where N is the number of samples of y [n] and h [n I in equation (3.14). If the 

above condition is not satisfied then the data values of y [n ] and h [n] must be 

preallased before performing the DFTs. 

3.3.3 Selecting Good Portion of the Deconvolved Data 

Performing the DFT of equation (3.14), we have 

Yk = Gk Hk + Kk; —N/2 < k ≤ N/2, (3.18) 

where Yk' Gk, 11k' and Kk are the N -point DFTs of y [n ], g En], h [n] and k [n I 

respectively. From equation (3.18), we have 

(3.19) 

where 

Since the noise Kk is wide band and Hk is band limited, dividing Kk by Hk 

tends to amplify the high frequency noise. Thus Ok becomes unbounded for large 

k and any attempt to model this becomes meaningless. In order to proceed with the 

modeling a "Good portion" of the deconvolved data G is selected over which 
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is locally stationary. This is done by plotting 16  I versus k and selecting L such 

that for 1k I > L , IGk I begins to diverge. Mathematically this can be expressed as 

Gk_Wk Gk 

where the rectangular window Wk is defined as 

(3.20) 

Ji; IkI≤L 
Wk = jO; otherwise. 

Performing the DFT of G in equation (3.20) produces poor spectral resolu-

tion due to short, 2L+l, data length. Using diverging values of G  to obtain more 

points results in high error ripples. If this happens the detection of false peaks is 

always a possibility. Filtering Gk on the other hand reduces the error ripples but 

severly limits the resolution due to the finite width of the filter. Under these cir-

cumstances the parametric modeling techniques become viable alternatives and are 

introduced in the next section. 

3.4 PARAMETRIC METHODS 

Arunachalam [23] used one step forward predictor to extend Gk beyond 2L+l 

points. The results showed a significant improvement over nonparametric methods 

at high SNR but produced poor results at low SNR. The extended Prony's method 

gives good estimates of lnX1 and B1 provided the SNR is high and M is known. 

This method is based upon polynomial rooting technique. The forward predictor 
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coefficients, also the polynomial coefficients, are obtained in this thesis from the 

"Good portion" of the deconvolved data. Once X are determined, B1 can then be 

found using the linear least squares method. A similar technique is discussed in 

[36] for decomposing complex sinusoids in the additive noise and is referred to as 

the modified forward-backward linear predictor (FBLP) method. The name is 

derived from the fact that the prediction filter coefficients minimize the energy in 

the error signal both in the forward and backward directions. Pisarenko's harmonic 

decomposition (PHD) method is another polynomial rooting method. The 

coefficients of the polynomial in "z" are obtained as follows. 

The data sequence, y,, is a sum of complex sinusoids in an independent noise 

sequence, w,, given by 

where 

= 
i b e j (0), n 4-0j) 

1=1 

Introducing the vectors 

= 1n' n-1' 'n-2p 1' 

aT — [laa a] 
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and 

VVT = [w nIW_1,... 'W n -2p I 

the problem can be expressed as the solution to the matrix equation 

Ra=a 2a 

where 

R =E[yT] 

and 

(3.21) 

19W 2 = E[wwT]. 

The sequence w is assumed to be white noise sequence with zero mean and 

variance qW 2. The symbols E and T in the above equations denote expectation 

and transpose operators respectively. Furthermore, the harmonic signal x, is 

assumed to be uncorrelated with the white noise sequence. From equation (3.21) it 

is evident that the polynomial coefficient vector a is the eigenvector of the auto-

correlation matrix R corresponding to the minimum eigenvalue aw2. Again, the 

PHD method requires prior knowledge of p, the number of components, and the 

determination of minimum eigenvalue depends on the accuracy of the estimated 

autocorrelatjon functions R (k). A biased correlation function ensures a positive 
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definite Toeplitz matrix R but its use in (3.21) produces inaccurate  frequency 

estimates. An unbiased correlation function on the other hand does not guarantee a 

positive definite matrix and may have negative eigenvalues. 

The above mentioned techniques suffer from the following drawbacks: 

1. Inaccurate parameter estimates are obtained for low SNR. 

2. The number of components, M, must be known for both Prony's and PHD 

methods. 

3. Whenever the angular frequencies, a, are more closely spaced than the. 

reciprocal of the observation interval or, more generally, when the sinusoids 

are not orthogonal to each other over the observation interval the spectral 

resolutions are poor. 

A SVD-based transient error method does not require prior knowledge of M 

and produces high resolution parameter distribution function both at high and rela-

tively low SNR. 

3.4.1 SVD-based Transient Error Method 

In this method the "Good portion" of the deconvolved data Gk is obtained as 

outlined in section 3.3.3 of this Chapter. The selected portion of the data is then 

modeled as a special nonstationary autoregressive moving average (ARMA) pro-

cess. The AR parameters of this ARMA model are obtained directly from the data 

using SVD-based linear least squares technique. The MA coefficients correspond to 
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the residual error sequence so as to account for the nonstationary noise in the 

deconvolved data. 

From equation (3.19), the deconvolved data is given as 

= Yk  = Gk +Nk 

where 

M jkiXco1nA. 
Gk=>Ble 

1=1 

A1 

Ef= 1 
N& 

and N is the number of DFT points used. The length L of the "Good portion" of 

the deconvolved data, k in equation (3.20), is chosen such that IGk I attains its 

minimum for k = L. The resolvability of X can be further improved by including 

the negative frequencies of the deconvolved data to account for the arithmetic 

errors. This is accomplished by right shifting Gk by an amount L, i.e. 
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Gk = GkL 

It can be easily shown that the magnitude of the DFT of Gk is invariant 

under this transformation. 

3.4.1.1 Modeling of the Deconvolved Data 

Realizing that Gk is a sequence of complex points and is stationary in the 

interval 0:5 k ≤ 2L, one can fit a forward predictor over this sequence. Further-

more, since this sequence is generated by superimposing M complex sinusoids, the 

sequence, in the absence of noise, is perfectly predicted by an Mt order predic-

tor. 

Therefore 

- M - 

Gk= — aGk_l; M≤k≤2L 
i1 

where a1 is the AR coefficients. In actual practice though the perfect prediction is 

never possible because of the following reasons: 

1. Since G is zero for k <0, therefore the output transient values 

e0, e1 ,• , eM   will be nonzero. 

2. The data Gk is noisy because of experimental noise and arithmetic errors. 

Therefore, the output error sequence is 
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M 
ek =Y, alGk_l; a0 = 1 and 0 ≤ k ≤ 2L. 

1=0 

Taking the z -transform of equation (3.22), we have 

Hence 

where 

E(z)=A(z)O(z). 

E(z) M 
(n) = G(z) = A (z) j 2it-- = B1 8(n —lnX..); 0 :5 j <N 

1=1 
z=e N 

2L 
E(z)= I e1z 1 

1=0 

and A (z) is the well known prediction error filter, given as 

M 
A(z=Y, a, Z-1; a0 =1. 

1=0 

(3.22) 

(3.23) 

As seen from equation (3.23), the accuracy of the estimate of the parameter 

distribution function § (n) has a direct dependence on the accuracy of the estimated 

AR coefficients, which in turn is determined by the algorithm used for its computa-

tion. Nichols et al [25] have reported that Burg's [37] and Marple's [38] algorithms 

produce poor estimates of A1 and ?. Burg's algorithm is known to produce biased 

estimates of X. for short data records and Marple's algorithm is quite sensitive to 
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arithmetic errors and does not ensure a minimum phase AR filter. Barrodale and 

Erickson's [39] algorithm alleviates the numerical problems associated with Burg's 

and Marple's algorithms by using Cholesky's decomposition of the covariance 

matrix to arrive at the AR coefficients. However, this technique also produces poor 

estimates of A1 and X for low SNR and becomes unstable for large values of M. 

Consequently, Nichols et al [27] proposed a SVD-based method based on Kumare-

san and Tufts [40] work which produces high resolution estimates of A1 and 

even at relatively low SNR. 

3.4.1.2 Determination of AR Coefficients Using SVD 

Autoregressive (AR) coefficients in this method are derived directly from the 

data using the forward prediction error equation, given as 

Gk + a1 Gk_i = ek; p ≤ k ≤ 2L (3.24) 

where p is the predictor order. Equation (3.24) can be expressed in matrix notation 

as 

A+Ga=e 

where 
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a=[a 1,a2, 

e—° E P , p+l' ' 2L 

and 

Gp _i Gp _2 Go 

O G1,_ 

G = 

G2L_l G_2 . 

It is then desired to find the prediction error coefficient vector a such that the 

square of the norm of the error vector e is minimized. Where the square of the 

norm of the vector e is given as eHe and the Hermitian operator, H, implies tran-

spose conjugation. 

The solution to this well known least squares problem is given as 

a = —[ GHG f GH 1. (3.25) 

In equation (3.25), solution for the unknown autoregressive coefficient vector 

a is obtained by using singular value decomposition of the data matrix G. From 

the singular value decomposition theorem, a (2L—p+l) x p matrix G can be 

decomposed as 
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G=UDVH (3.26) 

where U and V are unitary matrices such that 

UUH =1, 

yyH =1, 

and 

1= diag(1, 1, 1, 1). 

Here w denotes the rank of the matrix G such that w ≤ min (2L —p +1, p). 

The columns of U are the left singular vectors of G i.e. the eigenvectors of 

G GH and the columns of V are the right singular vector of G i.e. the eigenvec-

tors of GH G. The diagonal elements of D are called the singular values of G 

and are in fact the square roots of the eigenvalues of GH G. Let these eigenvalues 

be denoted by a12, a2 , , a where a ≥ a ≥ > 0 and 

aw+1 = aw +2 = • a1, =0. Furthermore, since GH G is a Hermitian matrix its 

eigenvalues must be real and positive. 

Substituting (3.26) into (3.25) gives 
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a = —[ VDUH UDVH 1—i VDU g 

= —[ VD2VH ]1 VDUH 

= —{ VD-20 . VDUH I. g 

or 

!!= —[  VD1UH I . g (3.27) 

where is obtained from D by replacing each nonzero diagonal entry by its 

reciprocal. 

Ideally, the rank w of the matrix G is equal to the number of signal com-

ponents M and as well as the number of nonzero singular values of D. Wilkinson 

[41] showed that the perturbation, due to noise, of the w originally nonzero singu-

lar values of D and the corresponding first w columns of U and V are relatively 

small. However, in the presence of noise the matrix G tends to become a full rank 

matrix and the perturbations in the directions of the rest of the columns of U and 

V are quite large. This necessitates the approximation of G , in a Frobenius norm 

sense, by a lower rank matrix G. Eckart and Young, 1936, developed the follow-

ing procedure, based on SVD, to find the best lower rank approximation to a given 

matrix. 

Let the rank of G be w, and let s(W) be the set of all (2L—p+1) x p matrices 

of rank W <w. Then for all matrices B in s(W) 
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hG —OIl ≤ IIG — Bli 

where 

O=UtV' 

and I I . II denotes F-norm (Frobenius norm) defined as 

1 
NN 2 

IIA 11 Z Y, Ia1 I2 
i=lj=1 

The matrix D is obtained from D in equation (3.26) by setting to zero all but 

its w largest singular values. This is equivalent to retaining only first w columns of 

U and V, and only first w rows and columns of the matrix D. Thus an improve-

ment in the SNR is achieved by discarding the noise space. 

With this, equation (3.27) reduces to 

a=—[V1T1U'] g (3.28) 

Once the AR parameters are computed using equation (3.28), the residual 

sequence e can be determined using equation (3.22). The distribution function 

(n) is then estimated using equation (3.23) 



CHAPTER 4 

RESULTS 

4.1 INTRODUCTION 

In this Chapter the performance of the transform method, the Total Least 

Squares method, the nonlinear least squares method and the maximum likelihood 

method is compared. The theory of these techniques is presented in Chapters 2 

and 3. The performance of each method is based on the following criteria: 

1. Accuracy of the estimated signal parameters in the absence of the noise. This 

is an indicator of the robustness of the algorithm to arithmetic errors and the 

user selected parameters. 

2. Effect of the additive noise on the estimates. 

3. Resolvability of closely-related exponents, i.e. for   ≤ 2, at both low and 

high noise levels. 

4. Accuracy of estimates when the number of signal components are greater than 

two. 

5. Relative numerical stability of the algorithm. 

59 
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The results are organized into two sections. In the first section simulated data 

is used to assess the performance of the different methods and in the second sec-

tion experimentally obtained WOOD-NMR data is used to obtain the estimate of 

the unknown signal parameters. 

4.2 SIMULATION RESULTS 

The purpose of this section is to demonstrate the capabilities and the limita-

tions of the four aforementioned algorithms in estimating the parameters of multi-

exponential signals, both in the absence and the presence of the additive noise. A 

typical signal under study is plotted in figure 4.1 using a logarithmic scale to 

emphasize the effect of noise at low signal levels. The signal is observed in the 

Gaussian additive noise with a zero mean and a standard deviation ((Y n) of 0.005. 

It is apparent, both from figure 4.1 and the equation (3.1), that the SNR of these 

types of signals decreases rapidly with increasing time. 
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Figure 4.1 A sample multi-exponential signal with 

A = I = [0.5, 2.0, 5.0, 10.0]T and (S= 0.005. 

4.2.1 The Transform Method 

The theoretical aspect of this method is treated in Chapter 3. Following the 

Gardner's transformation, the estimate of the Fourier transform of the distribution 

function is obtained via the deconvolution process. This necessitates acquiring 

equi-spaced samples of the nonlinearly transformed data. These samples are 

obtained by cubic-spline fitting the transformed data and resampling it at the 

desired frequency. Nichols et al [25] have shown that the pulse h (t) = e (W) e _et 
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is essentially bandlirnited to 2 Hz. Therefore, the sampling frequency needed to 

avoid aliasing must be at least 4Hz. 

The spline fitting is performed using the program FITLOS [35], capable of 

fitting up to 500 points of data with up to 50 cubic splines by the method of least 

squares. The user has the options of either specifying the node points or the 

number of segments. If the nodes are explicitly specified then the data is spline 

fitted using these nodes only. If, on the other hand, only th& number of segments 

are specified then the data is divided, as evenly as possible, among these segments 

to obtain the node points. The functionality of this program is demonstrated by 

fitting the transformed data of figure 4.1 with 30 cubic splines and the results are 

shown in figure 4.2. The fit of the resampled data to the transformed data is 

extremely good and the two curves are hardly distinguishable. 
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Figure 4.2 Cubic spline fit of the transformed data with 30 splines. 

Discrete samples of the multi-exponential signal are obtained by sampling the 

signal at a much higher rate for small values of time and at a relatively slower rate 

for large values of time. This is done primarily for two reasons: 

1. To obtain a sufficient number of samples of the signal components with large 

decay rates. 

2. To obtain more samples of the signal in the time region where the signal is 

decaying rapidly. 
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The time interval is usually selected from the initial time of 0.00001 sec. to 

ten times the largest time constant. 

The parameter distribution function is obtained, as outlined in section 3.5.1, 

by fitting the "Good portion" of the deconvolved with a special autoregressive 

moving average (ARMA) process. 

As shown in Chapter 3 equation (3.23), the parameter distribution function is 

given as 

M 
&(n)= Y B1 (n—ln%.) 

1=1 

A. 
where B1 = . Hence, the locations of the impulses give 's and the areas 

under the impulses give A1 's, implicitly. To obtain a better estimate of the loca-

tions of the peaks of the distribution function, the z-transform in equation (3,23) is 

evaluated on a circle with radius , for 0.9 ≤ r < 1.0. That is, the distribution 

function in equation (3.23) are calculated for z = --- exp (j2ir.) with r = 0.99. 

Estimating the A1 's from the distribution function by calculating the areas 

under the impulses is a cumbersome and error prone technique, though the peaks 

A. 
of the distribution do give a relative estimate of the amplitudes of 1 In actual 

practice, once the exponents have been estimated, it is easy to find A1 's using a 
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least squares technique, such as Prony's extended LS method. 

The four cases studied in this section are the ones that have been reported in 

A. 
the literature to be difficult to decompose. The ratios have been kept constant 

for no reason other than to keep the relative magnitudes of the peaks of the 

estimated parameter distribution functions the same. 

Case study 1: The signal under study here has two closely-related exponents 

and has the form 

x1(t) = 0.1 C-0.1 't + 0.2 e-0.2 ,r + () (4.1) 

where n (t) is additive Gaussian noise with a zero mean and a standard deviation of 

1o 6. As seen from figure 4.3, both the exponents are clearly resolved and accu-

rately estimated, though the amplitudes are slightly inaccurate as indicated by the 

heights of the two peaks. The estimated exponents ? and are 0.1030 and 

0.2080 respectively. 
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Figure 4.3 Estimate of the parameter distribution function for 

A = X = [0. 1, 0.2]T and a = 10. 

Case study 2: Callahan and Pizer [33] observed that the presence of com-

ponent e lOt introduced large error ripples in the estimate of the parameter distri-

bution function obtained using Gardner's method. Consequently, the multi-

component signal considered in this case study includes an exponential with 

exponent 1.0 and has the form 

X 2(t) = 1.0 e 1° + 2.0 e2° c + n(t). (4.2) 
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The additive noise is Gaussian with a zero mean and a standard deviation of 

io-6. As seen from figure 4.4, both the components are resolved and the exponents 

and X are estimated as 0.9692 and 2.0200 respectively. 

Figure 4.4 Estimate of the parameter distribution function for 

A = = [1.0, 2.0]T and a,, = 10 7-64 

Case study 3: The signal considered here has three components with widely-

spaced exponents, i.e. = 10.0. The signal also includes a component with 

exponent 1.0 and is of the form 
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X 3(r) = 1.0 e 1° + 3.0 e'3° T + 10.0 e 10 ° + n(t). (4.3) 

The standard deviation of the noise is taken to be i0. The results are shown 

in figure 4.5 with all the components being accurately resolved and the amplitudes 

of the peaks being the same. 

Figure 4.5 Estimate of the parameter distribution function for 
A = I = [1.0, 3.0, 10.O]Tand cs, = i0. 

The exponents 2, X2 and X are estimated, from the distribution function in 

figure 4.5 as 1.000, 2.985 and 9.943 respectively. 
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Case study 4: The test signal of the form 

x4(t) = 0.5 e5 'r + 2.0 e 2'° ' + 5.0 e 5° + 10.0 + n (t) (44) 

is a typical multicomponent signal problem that is difficult to solve as the number 

24 
of signal components is large (M = 4) and the ratio of -i--- = 2. The estimate of 

".3 

the parameter distribution function obtained is shown in figure 4.6. 

Figure 4.6 Estimate of the parameter distribution function for 

A = = [0.5, 2.0, 5.0, 10.0]Tand = i0. 
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The additive noise has a standard deviation of i0 and a zero mean. The 

exponents ?, 2, X3 and X4 are estimated as 0.499, 1.958, 4.808 and 9.866 

respectively. 

During the course of obtaining the estimate of the parameter distribution func-

tion, a careful attention has to be paid to the selection of certain parameters. The 

selection of these parameters is not always obvious and affects the accuracy of the 

distribution function to a varying degree. It is, therefore, only prudent to study the 

effect of these parameters on the estimate of parameter distribution function. 

4.2.1.1 Selection of the Nodes for Cubic-Spline Fit 

A noisy estimate of the Fourier transform of the parameter distribution func-

tion is obtained by deconvolving the transformed data with the pulse 

h(t) = e(a t) e_et . (4.5) 

Since the Gardner's transformation involves a nonlinear change of the 

independent variable (time), the uniformly spaced samples of the transformed data, 

required for deconvolution, are obtained by cubic-spline fitting the data. Though 

the splines are fitted using least squares (LS) technique, the choice of nodes itself 

is not optimal in the LS sense. Thus, for a different choice of nodes the sample 

values will be slightly different. In order to investigate the sensitivity of the distri-

bution function to a slight perturbation in the interpolated values, the signal in 

equation (4.4) is considered here again. 
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The signal is transformed and resampled at 4.0 Hz. using 20, 30 and 40 

splines. The spline fit in all three cases is shown in figure 4.7. 

Figure 4.7 Spline fit of the transformed data using 20, 30 arid 40 splines. 

A = = [0.5, 2.0, 5.0, 10•0]T and = i0 5. 

The interpolated values in all cases are found to be very close except at the 

tail end of the data. In the case of 40 splines last 5 points out of 59 calculated 

points were notably different. The simple explanation for this deviation in sample 

values is that with 40 splines the number of points in each segment are compara-

tively small. Consequently, the spline fitted on the tail section of the data has more 
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points with high noise levels causing the fit to be quite different as compared to 

other two cases. The distribution functions obtained in all three cases are shown in 

figure 4.8. 

Figure 4.8 Distribution function estimates obtained using 20, .30 and 40 splines. 
A = = [0.5, 2.0, 5.0, 10•0]T and = 10. 

Figure 4.8 shows a marked difference in the three distribution functions. In 

the case of 20 and 40 splines only three signal components are estimated. Further-

more, the decay rates estimates obtained using 20 and 40 splines are grossly inac-

curate. Hence, we see that the choice of nodes is extremely critical. However to 
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the best of the author's knowledge there exists no least squares technique that is 

capable of finding the node points in-some optimum sense. 

4.2.1.2 Selection of Predictor Order 

The deconvolution process used to obtain the estimate of the Fourier 

transform of the distribution function tends to amplify the high frequency noise. 

Therefore, directly performing the inverse Fourier transform of the deconvolved 

data to obtain the estimate of the distribution function produces very high noise 

ripples. If this happens, not only does the possibility of detecting the false com-

ponents becomes very real but also the peaks relating to the signal components get 

buried in noise and may not be detected at all. To avoid this possibility only the 

"Good portion" of the deconvolved data is selected as outlined in Chapter 3 and is 

modeled as an ARMA process. The process of predicting the future data values 

based upon the past values requires finding- the best predictor order. 

Tufts and Kumaresan [40] have reported that in the case of Principal- Eigen-

vector method and white stationary noise, the predictor order of +N, where N is 

the number of points, practically achieves the Cramer-Rao bound. Since this con-

dition of stationarity is not fulfilled for the case at hand, the predictor orders of 

-}N. --N and 4 N are tried. The resulting distribution estimates are shown in 

figure 4.9. 



74 

predictor order 1/2 N 
predictor order 2/3 N 
predictor order 3/4 N 

Figure 4.9 Distribution function estimates obtained for different predictor orders. 
A = A. = [0.5, 2.0, 5.0, 10•0]T and = i0. 

Figure 4.9 shows that in all cases the results obtained are accurate and very 

similar. 

4.2.1.3 Selection of Dominant Singular Values 

Once the predictor order has been decided upon the predictor coefficients are 

derived using a SYD-based least squares technique. To ensure stable AR 

coefficients, a lower rank approximation to the data matrix, in a Frobenius norm 
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sense [42], is desired. This requires the knowledge of the number of dominant 

singular values of the data matrix. In the presence of noise this is not always so 

apparent. Figure 4.10 shows the effect of noise on the spread of singular values of 

the data matrix generated using 4 complex sinusoids. 

Figure 4.10 Effect of noise on the spread of singular values. 

This spread further deteriorates in the case of Gardner's transform method due 

to the errors introduced by the cubic-spline fit. In such a case Cadzow [43] sug-

gests using a 12 norm criterion. The n& 12 matrix norm is defined as 
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1 

12 (n) = 
12 + 22 + •.. 

+cY 2 

2 
(4.6) 

where p is the number of columns of the data matrix and 1 ≤ n ≤ p. Then the 

effective rank of the data matrix is that value of n for which 12 becomes close to 

one. The data matrix is said to have low effective rank if the 12 matrix norm nears 

one for small values of n relative to p. Otherwise, it is said to have a high 

effective rank. 

The number of dominant singular values are always chosen to be that value of 

n in equation (4.6) for which 1 matrix norm approached the value one. Figure 

4.11 shows the effect of choosing 4, 6 and 9 dominant singular values when the 

multicomponent signal is that given in equation (4.4) with = iO. 
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Figure 4.11 Effect of the effective rank of the data matrix on the distribution 
for A = 2k.. = [0.5, 2.0, 5.0, 10•01T and a, = i0. 

It is seen from figure 4.11 that as long as the effective rank chosen is slightly 

greater than the number of signal components and the noise level is low, its effect 

on the estimates is minimal. However, if the effective rank is chosen to be less 

than the number of components present, which usually is the case with high noise 
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levels, the results are grossly in error. 

4.2.1.4 Effect of Noise 

Again, the test signal considered here is the one given in equation (4.4) with 

the noise standard deviation increased from 10-5 to iO. The four exponents 

become barely resolvable with the estimated values of 0.5068, 2.1336, 5.2807 and 

9.7889. These results are shown in figure 4.12. 

Figure 4.12 Estimate of the distribution function for 

A = = [0.5, 2.0, 5.0, 10•0]T and = 10. 
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Next the noise standard deviation is increased to As seen from figure 

4.13, with the transformed data fitted with 30 splines, only three signal components 

are detected with exponents 0.5609, 2.7396 and 8.7064. Interestingly enough, when 

the data is fitted with 25 splines the four components became resolvable with 

exponents as 0.4724, 1.7010, 4.2432 and 9.6371. 
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Figure 4.13 Estimate of the distribution function for 

A = = [0.5, 2.0; 5.0, 10•0]T and = i0. 

The results again emphasize the significance of the optimum choice of the 

nodes. It is quite possible that under some other better choice of nodes all four 
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components can be more accurately resolved even at this noise level. 

4.2.1.5 Effect of Alpha and Sampling Frequency 

Salami [24] has reported that using a = 0.5 and the sampling frequency of 2 

Hz. produced best results for the parameter estimates. To test the hypothesis the 

test signal in Equation (4.4) is again considered with a noise standard deviation of 

iO 3. The transformed data was fitted with 30 splines. The method failed to esti-

mate both the number of components and the exponents correctly. 

In a separate study a was maintained as 0.5. The transformed data was fitted 

with 25 splines and resampled at 4.0 Hz. The distribution functions obtained in 

both cases are shown in figure 4.14. Both of these methods failed to estimate both 

the number of components and the exponents. 
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Figure 4.14 Effect of alpha and sampling on the distribution function. 

4.2.2 The Total Least Squares (TLS) Method (An Algebraic Method) 

This technique of analysis belongs to the class of time-domain methods and 

models the data, the discrete samples of the multi-exponential signal, as an AR 

process. In this respect this method can also be classified as a parametric method. 

It is then easy to show, [30], that the polynomial 
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Pe 
A(z) = l+ z (4.7) 

where pe is the predictor order and a1 s are the predictor coefficients, will have 

M, the number of components, real roots given by e —A. . At in the interval 0 to 1 

on the real axis and (pe—M) roots off this interval and inside the unit circle in the 

complex plane. Thus from the location of the roots the parameters M and A.1 can 

be estimated using this method. Once these parameters have been estimated, the 

magnitudes of the exponentials, A1 s, can be estimated easily using 'any least 

squares method. 

Though it has been reported [30] that for real exponentials the predictor order 

of = 4. , where .N is the number of data points, produces best results, it is found 

that using predictor order of L  in no way affects the detection of the signal com-

ponents. Consequently, through out this section the data is modeled as a L order 

AR process. This not only speeds up the computation of the AR coefficients using 

the SVD but also reduces the computation load for the root finding routine. 

The AR model coefficients, a1 s, are derived using equation (2.30) and the 

roots of the polynomial in (4.7) are then found using a system routine "tzcpoly" 

capable of finding complex roots. 

1+1  The case studies undertaken have the ratio of  = 2 and includes up to 
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four exponentials. This encompasses the possibilities of closely-related exponents 

and also where the number of signal components are large. In all the cases the 

time interval is chosen from zero to five times the longest time-constant. 

Case study 1: The signal considered here is shown in equation (4.1). One 

hundred data samples are obtained by uniformly sampling the signal between the 

interval 0.0 to 50.0 seconds. Giving the sampling interval 

At = 0.50 sec. 

Gaussian noise with a zero mean and a standard deviation ((Y) of 10-4is 

then added to the data to simulate additive noise. The data is modeled as a l5 

order AR process. The AR coefficients are derived using equation (2.30) and the 

roots of the 15th- order polynomial, formed according to the equation (4.7), are 

plotted in the complex plane in figure 4.15. 
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Figure 4.15 Distribution of the zeroes of the AR polynomial for 
A=?= [0.1, 0.2]T and Y = 10. 

Only two roots corresponding to the two exponentials lie on the real-axis 

between the interval zero and one. From the location of these roots the exponents 

and ½ are estimated as 0.1005 and 0.1998 respectively. Furthermore, it 

intersting to note that one real root lies on the negative real-axis while the remain-

ing roots are conjugate pairs and are uniformly distributed inside the unit circle. 

This situation confirms the theory [36] here and in all the subsequent cases studied 

in this section. 
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Case study 2: The test signal is shown in equation (4.2) and is considered 

here for the reasons outlined in the previous section. Again, 100 data samples are 

obtained by uniformly sampling the signal between the interval 0 and 5.0 secs. 

Additive noise is Gaussian with a zero mean and io standard deviation. 

The data is fitted with a l5' order AR model and the roots of the polyno-

mial with AR coefficients as its coefficients are plotted in the complex plane in 

figure 4.16. 

Figure 4.16 Distribution of the zeroes of the AR polynomial for 
T & A = = [1.0, 2.0]and o = i0 
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The two roots on the real-axis between the interval zero and one correspond 

to the two exponentials. The location of the roots gives X and as 1.0004 and 

1.9997 respectively. 

Case study 3: The test signal considered here is composed of three com-

ponents and is given in equation (4.3). The object in this and the next case study is 

to show that the Total Least Squares is a powerful technique for decomposing 

multi-exponential signals even when the number of components are large (M > 2) 

and the exponents are closely-related. One hundred data samples are acquired with 

a sampling interval of 0.0505 seconds. Standard deviation of the noise and the 

sampling time of the signal is maintained as in case study 2. The distribution of the 

zeroes of the 15' order polynomial in z is shown in the figure 4.17. 
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Figure 4.17 Distribution of the zeroes of the AR polynomial for 
A = 7. = [1.0, 3.0, 100]T and a = 10& 

Three zeroes corresponding to the three signal components are located on the 

real-axis between the interval zero and one, again. The remaining twelve zeroes are 

distributed uniformly in the complex plane inside the unit circle as conjugate pairs. 

From the location of the zeroes on the positive real-axis between zero and one the 

exponents X. and 23 are estimated as 1.0000, 2.9988 and 9.9993 respectively. 

Case study 4: The multi-component signal considered here is shown in equa-

tion (4.4) and presents all the worst case scenarios, namely 
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1. The number of signal components is large, i.e. M = 4. 

24 
2. Some of the exponents are closely-related, i.e. -s--- = 2. 

".3 

3. The ratio of the largest to the smallest exponent is large, i.e. = 20.0. 

1 

Again, one hundred uniform samples are obtained by sampling the signal 

between the interval zero and ten seconds. Gaussian noise with a standard devia-

tion of 10-4 and zero mean is then added and the process is fitted with a 

order AR model. The distribution of the zeroes of the polynomial with AR model 

parameters as its coefficients is shown in figure 4.18. 
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Figure 4.18 Distribution of the zeroes of the AR polynomial for 
A = = [0.5, 2.0, 5.0, 10•0]T and = 1O. 

The four zeroes laying on the real-axis, between the interval zero and one, 

correctly suggest four signal components and the locations of the zeroes give',, 

2' ?3 and ?.4 as 0.4999, 1.9938, 4.9833 and 9.9867. The ratio of fourth to the 

fifth singular value is 31.5966 and there after becomes approximately one for the 

successive values. Hence, the choice of the dominant singular values is quite obvi-
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ous. 

4.2.2.1 Effect of Noise 

As the SNR of the signal decreases the spread of the singular values begins to 

deteriorate. In other words, the signal begins to smear over the entire space and the 

signal space becomes less and less distinguishable from the noise space. Under 

these circumstances the SVD method becomes ineffective as a SNR enhancement 

technique. 

The signal in equation (4,4) is considered again. The standard deviation of the 

noise is increased from 10-4 to 10-3 while maintaining all other signal parameters 

same as in the case study 4. The distribution of zeroes is shown in figure 4.19. 
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Figure 4.19 Distribution of the zeroes of the AR polynomial for 
A = I = [0.5, 2.0, 5.0, 1001T and a = i0. 

The ratio of fourth to fifth singular value is now 3.154 and becomes one there 

after. Therefore, the four signal components are still distinguishable. The four 

exponents are accurately estimated as 0.5019, 1.9698, 4.8646 and 9.9285. None of 

the other techniques considered in this thesis were able to accurately estimate the 

four exponents in this noise environment. 

When the standard deviation of the noise is increased to 10-2 only three dom-

inant singular values become distinguishable. The ratio of fourth to fifth singular 
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value becomes just about unity. Selecting three dominant singular values gives the 

estimate of the exponents as 0.6038, 2.7153 and 8.6727. The location of the zeroes 

of the polynomial indicating only three signal components is shown in figure 4.20. 

No improvement in the estimates was obtained by increasing the predictor order to 

or increasing the sampling rate by a factor of two or selecting more than 

three dominant singular values. 

Figure 4.20 Distribution of the zeroes of the AR polynomial for 

A = X = [0.5, 2.0, 5.0, 10.0]Tand a,, = 10-2. 
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It is further noticed that the level of noise that can be tolerated is a function 

of the number of signal components and the closeness of the exponents. To 

emphasize this point, the signal in equation (4.3) is studied with = As 

shown in figure 4.21 the three signal components are still resolvable. 

Figure 4.21 Distribution of the zeroes of the AR polynomial for 

A = ?. = [1.0, 3.0, 10.0]T and = i0 2. 

From the location of the zeroes in the interval zero and one the exponents are 

estimated as 1.0058, 2.8835 and 9.9358. With noise level increased to i0 1 only 

two components were resolved with both exponents being grossly inaccurate. No 
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other combination of the predictor order, the sampling rate and the number of dom-

inant singular values was able to accurately estimate the number of signal com-

ponents. 

4.2.2.2 Comments on the Total Least Squares Method 

The following important properties of the Total Least Squares method clearly 

stand out. 

1. The roots of A (z) always lie inside the unit circle. Therefore, the predictor 

determined by this method is always stable. 

2. The parameters are estimated directly from the original data with a minimum 

user input. Hence, the technique is very robust and does not involve nonlinear 

transformation and interpolation as is the case with the Gardner's method. 

3. Unlike the iterative techniques this method of analysis requires neither a prior 

knowledge of the number of signal components nor the initial parameter esti-

mates. 

4. Examination of the singular values spread of the data matrix gives an indica-

tion of the number of signal components. It has been found experimentally 

am   that in order to be able to resolve the signal components the ratio ≥ 2, 

M+l 

where am  denotes the Mt1 singular value. 
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Furthermore, the use of the the SVD in inverting a matrix always ensures a 

stable inversion method. 

4.2.3 The Weighted Total Least Squares Method (An Algebraic Method) 

In the case of Total Least Squares the decay rates of the signal components 

are estimated by evaluating the prediction error filter, A (z), between the interval 

zero and one. It is, however, possible to -obtain the estimate of the signal decay-

rates in a manner similar to the transform method by mapping the interval zero to 

one on to the unit circle. This is accomplished by minimizing the weighted-norm 

of the predictor coefficients defined by equation (2.32). It is the weighting matrix 

P in this equation that defines the mapping. Though the derivation of this matrix 

is not attempted in this assertion, a closed form solution for obtaining the predictor 

coefficients, if the matrix P is known and is symmetric, is presented in section 2.5. 

The solution is validated by showing that if the matrix P is chosen to be an 

identity matrix, then the solution presented by equation (2.44) converges to the one 

given by equation (2.30) for the conventional norm-minimization. For this purpose 

the test signal of equation (4.4) is again considered with a noise standard deviation 

of i(F3. The data is fitted with 15th- and 20th- order one step forward-predictor 

and the predictor coefficients determined in the two cases are tabulated in table 4.1. 
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Table 4.1 Comparison of predictor coefficients derived using the 
Total Least Squares and the Weighted Total Least Squares (P = I) methods. 

Predictor 
Coeff. 

Norm-Minimization 
predictor order 

Weighted Norm-Minimization 
predictor order 

15 20 15 20 
a0 1.0000 1.0000 1.0000 1.0000 
a1 -0.2419 -0.1249 -0.2419 -0.1249 
a2 -0.2165 -0.1175 -0.2165 -0.1175 
a3 -0.2043 -0.1200 -0.2043 -0.1200 
a4 -0.1637 -0.1125 -0.1637 -0.1125 
a5 -0.1503 -0.1132 -0.1503 -0.1132 
a6 -0.1000 -0.1111 -0.1000 -0.1132 
a7 -0.0521 -0.0952 -0.0521 -0.0952 
a8 -0.0020 -0.0871 -0.0020 -0.0871 
a9 0.0373 -0.0637 0.0373 -0.0637 
a10 0.0893 -0.0556 0.0893 -0.0556 
all 0.0996 -0.0277 0.0996 -0.0277 
a12 0.0624 -0.0017 0.0624 -0.0017 
a13 -0.0089 0.0249 -0.0089 0.0249 
a14 -0.1041 0.0450 -0.1041 0.0450 
a15 0.0339 0.0685 0.0339 0.0675 
a16 

- 0.0675 
- 0.0675 

a17 - 0.0349 
- 0.0349 

a18 
- -0.0192 

- -0.0192 
a19 

- -0.0798 
- -0.0798 

a20 
- 0.0291 

- 0.0291 

Thus, the derivation of solution equation (2.44) for the Weighted 
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Total Least Squares has been indirectly validated. 

4.2.4 Estimating the Amplitudes Using a Least Squares (LS) Method 

Once the exponents have been estimated by any of the three aforementioned 

techniques, the amplitudes associated with these exponents can easily be estimated 

by a least squares method. One such method, namely the Prony's extended LS 

method has been implemented to estimate the amplitudes. Again, the SVD is used 

to obtain a LS fit of the data to obtain the amplitude vector, A. 

The two signals considered here are given by equations (4.3) and (4.4) with 

the maximum tolerable noise levels of an = 10-2 and = i0 respectively. 

The decay rates estimates used were obtained in section 4.2.2.1. The estimates of 

the amplitudes obtained are tabulated in tables 4.2 and 4.3 respectively. 

Table 4.2 Least Squares estimates of the amplitudes for 

A = A. = [1.0, 3.0, 100]T and o ='10-2. 

Amplitude estimates (As) for different number of data points, N 

Exponents 

Xi N=100 N =30 N =20 N = 10 N=3 

1.0058 
2.8835 
9.9358 

0.9714 
2.9156 
10.1122 

0.9760 
2.9065 
10.1176 

0.9755 
2.9074 
10.1172 

1.0096 
2.8474 
10.1460 

-0.3214 
4.7283 
9.5870 
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Table 4.3 Least Squares estimates of the amplitudes for 

A = X = [0.5, 2.0, 5.0, 10•0]T and = i0. 

Amplitude estimates (As) for different number of data points, N 

Exponents 
N = 100 N = 30 N =20 N = 10 N=4 

0.5019 
1.9697 
4.8646 
9.9285 

0.5007 
1.9154 
4.8611 
10.2226 

0.5011 
1.9140 
4.8632 
10.2215 

0.5013 
1.9131 
4.8646 
10.2208 

0.5080 
1.8919 
4.8906 
10.2090 

0.4745 
1.9551 
4.8563 
10.2134 

It is seen that in both cases with N = 30 the estimates of the amplitudes 

obtained are reasonably accurate even at these high noise levels. 

In the next two sections the results from two different methods namely, the 

nonlinear least squares and the maximum likelihood methods are compared. For the 

reasons outlined in Chapter 2 these methods are classified as iterative methods and 

require the knowledge of the number of signal components, M, and the initial esti-

mates of the signal parameters, A1 's and X 's. Because of the inherent nature of 

iterative methods they have the tendency of converging to a local solution or 
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diverging if the initial estimates are in large errors. 

4.2.5 The Nonlinear Least Squares (NLS) Method 

Given the time series x(n); 1 ≤ n ≤ N the 2M-dimensioned objective function 

is formed as 

N M -.t. 
f(AlAMAl• .. ,?M)= I[x— Y, A1e 

j=l i=1 

and its minimum is sought. 

The technique, justifiably, derives its name "Nonlinear Least Squares" from 

the facts that 

I. the function defined above is nonlinear in the decay rates, X 's, and 

2. minimizing the function in a 2M vector space is equivalent to performing a 

least squares fit of the data with respect to the signal parameters. 

From the knowledge of the number of signal components (M) and the initial 

estimates of the 2M signal parameters, the function minimum is searched using 

Powell's method, outlined in Chapter 2, in 2M dimensions. The convergence, and 

for that matter convergence to the global minimum depends on the accuracy of the 

initial parameter estimates. 

Two separate case studies are undertaken to analyze the effect of the noise 

and the effect of the errors in the initial estimates on the convergence of the algo-
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rithm. 

Case study 1: The test signal given in equation (4.3) and shown below is con-

sidered again. 

x('r) = 1.0 + 3.0 e 3° + 10.0 e10° r + n(r) (4.8) 

Fifty data samples are obtained by uniformly sampling the signal between the 

interval zero and 10.0 seconds. Gaussian noise with a zero mean and a standard 

deviation () of 10-4 is added to the samples. The algorithm is started with 5%, 

10% and 20% errors in the initial estimates. Table 4.4 shows the estimated signal 

component parameters. 

Table 4.4 Parameter estimates obtained using NLS method for 

A = I = [1.0, 3.0, 10.0]Tand an = 10& 

Parameters 
5% Error 10% Error 20% Error 

Seed Estimates Seed Estimates Seed Estimates 
A1 0.95 1.0022 0.9 1.0022 0.8 1.0022 

1.05 1.0006 1.1 1.0006 1.2 1.0006 
A2 2.85 3.0007 2.7 3.0007 2.4 3.0007 

3.15 3.0044 3.3 3.0044 3.6 3.0044 
A3 9.5 9.9970 9.0 9.9970 8.0 9.9970 
A.3 10.5 10.0002 11.0 10.0002 12.0 10.0002 

To study the effect of noise on the estimates, the standard deviation of the 

noise is increased to i0. The seed values and the parameter estimates obtained 
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are tabulated in table 4.5. 

Table 4.5 Parameter estimates obtained using NLS method for 

A = A, = [1.0, 3.0, 10•0]T and an = i0. 

Parameters 
5% Error 10% Error 20% Error 

Seed Estimates Seed Estimates Seed Estimates 
A 0.95 1.0222 0.9 1.0222 0.8 1.0223 

1.05 1.0057 1.1 1.0057 1.2 1.0057 
A2 2.85 3.0091 2.7 3.0091 2.4 3.0092 

212 3.15 3.0445 3.3 3.0445 3.6 3.0447 
A3 9.5 9.9681 9.0 9.9680 8.0 9.9679 
A,3 10.5 10,0032 11.0 10.0032 12.0 10.0033 

Case study 2: The test signal in this case consists of four exponentials with 

closely-related exponents and is given as 

x(t) = 0.5 e 15 'V + 2.0 e2° 'V + 5.0 e 5° 'V + 10.0 e 100 'V + , () (4.9) 

One hundred sample values are obtained by uniformly sampling the signal 

between the interval 0.0 and 10.0 seconds. Additive Gaussian noise has a zero 

mean and a standard deviation of 10. The simulation results are shown in table 

4.6. 
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Table 4.6 Parameter estimates obtained using NLS method for 
A = = [0.5, 2.0, 5.0, 10•0]T and = 10. 

Parameters 
5% Error 10% Error 20% Error 

Seed Estimates Seed Estimates Seed Estimates 
A1 0.475 0.4991 0.45 0.4991 0.40 0.5343 

xi 0.525 0.4997 0.55 0.4997 0.60 0.5138 
A2 1.90 1.9850 1.80 3.9850 1.60 2.6782 

22 2.10 1.9930 2.20 1.9930 2.40 2.2659 
A3 4.75 4.9727 4.50 4.9728 4.00 7.1803 

5.25 4.9754 5.50 4.9754 6.00 6.3878 
A4 9.50 10.0431 9.00 10.0431 8.00 7.1074 

10.50 9.9852 11.00 9.9852 12.00 10.9009 

For the noise standard deviation levels of i(F3 and 102 the parameter esti-

mates obtained are shown in tables 4.7 and 4.8 respectively. 
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Table 4.7 Parameter estimates obtained using NLS method for 

A = A. = [0.5, 2.0, 5.0, 10.0]T and a, = iO 3. 

Parameters 
5% Error 10% Error 

Seed Estimates Seed Estimates 
A1 0.475 0.4996 0.45 0.5315 

ki 0.525 0.4997. 0.55 0.5126 
A2 1.90 2.0111 1.80 2.6288 
A.2 2.10 2.0071 2.20 2.2517 

A3 4.75 4.8653 4.50 6.2846 
A.3 5.25 4.9580 5.50 6. 1049 

A4 9.50 10.1239 9.00 8.0561 
A.4 10.00 9.9563 11.00 10.5408 
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Table 4.8 Parameter estimates obtained using NLS method for 

A = X = [0.5, 2.0, 5.0, 10.0}T and = 1O. 

Parameters 
5% Error 10% Error 

Seed Estimates Seed Estimates 
A1 0.475 0.5 104 0.45 0.5209 

ki 0.525 0.5030 0.55 0.5075 
A2 1.90 2.6879 1.80 2.8881 

2.10 2.2522 2.20 2.3253 
A3 4.75 4.5430 4.50 4.9107 
23 5.25 5.6100 5.50 6.0035 
A4 9.50 9.7590 9.00 9.1805 
24 10.50 9.96880 11.00 10.0899 

The parameter estimates in these cases when the seed values were 20% in 

error had high errors and are, therefore, not included in tables 4.7 and 4.8. As seen 

from the results the performance of this method deteriorates when 

1. the signal components are greater than four, 

2. the exponents are closely-related, 

3. the noise level is high and 

4. when the seed values are grossly inaccurate. 

Furthermore, it was found that for signals 'with more than four components 
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this technique of analysis becomes computationally inefficient. 

4.2.6 The Maximum Likelihood (ML) Method 

Given the time series x (n); 1 ≤ n ≤ N the maximum likelihood method esti-

mates the parameter vector , defined in Chapter 2, by its most plausible values. In 

other words the logarithm of the conditional joint probability density function, 

more commonly known as the log-likelihood function, is maximized with respect 

to the parameter vector. 

If for the reasons outlined in Chapter 2, the data is assumed to follow Poisson 

distribution then the log-likelihood function is characterized by equation (2.5). 

Differentiating equation (2.5) with respect to A1 and for 1 ≤ I ≤ M , gives a 

set of 2M nonlinear equations in 2M unknowns, M being the number of signal 

components. This set of equations is solved iteratively using Newton-Raphson 

method. 

Two different case studies are performed with the test signals same as in the 

case of the nonlinear least squares method. 

Case study 1: The test signal considered is given in equation (4.8) and con-

sists of three signal components. One hundred data samples are obtained by uni-

formly sampling the data between the interval 0.0 and 5.0 seconds. The additive 

noise is again Gaussian with a zero mean and a standard deviation of lO. The 

seed values used for the initial parameters estimates are 5%, 10% and 20% in 
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error. The parameter estimates obtained are shown in table 4.9. 

Table 4.9 Parameter estimates obtained using ML method for 

A = X = [1.0, 3.0, 10•0]T and = 10. 

Parameters 
-5% Error +10% Error +20% Error 

Seed Estimates Seed Estimates Seed Estimates 

A 1 0.95 0.9984 1.10 0.9984 1.20 0.9984 
0.95 0.9995 1.10 0.9995 1.20 0.9995 

A2 2.85 2.9991 3.30 2.9991 3.60 2.9991 
2.85 2.9968 3.30 2.9968 3.60 2.9968 

A3 9.50 10.0025 11.00 10.0025 12.00 10.0025 
23 9.50 9.9988 11.00 9.9988 12.00 9.9988 

The standard deviation of the noise is next increased from 10-4 to i0 while 

maintaining all other parameters to be the same. The estimates obtained in this case 

are listed in table 4.10.a. 



107 

Table 4.10.a Parameter estimates obtained using ML method for 
A = X = [1.0, 3.0, 10.0]T and = i0. 

Parameters 
-5% Error +10% Error +20% Error 

Seed Estimates Seed Estimates Seed Estimates 

A 1 0.95 0.9838 1.10 0.9838 1.20 0.9838 
0.95 0.9952 1.10 0.9952 1.20 0.9952 

A2 2.85 2.9918 3.30 2.9918 3.60 2.9918 
2.85 2.9690 3.30 2.9690 3.60 2.9690 

A3 9.50 10.0245 11.00 10.0245 12.00 10.0246 
2.3 0.50 9.9883 11.00 9.9883 12.00 9.9883 

Parameters estimates obtained using different seed values while maintaining 

the same noise level are shown in table 4.10.b. 
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Table 4.10.b Parameter estimates obtained using ML method for 

A = A. = [1.0, 3.0, 10,Ø]T and = i0. 

Parameters 
+5% Error -10% Error -20% Error 

Seed Estimates Seed Estimates Seed Estimates 
A1 1.05 0.9838 0.90 1.5125 0.80 0.9838 

1.05 0.9952 0.90 -3.6846 0.80 0.9953 
A2 3.15 2.9919 2.70 -2.5118 2.40 2.9918 
A.2 3.15 2.9690 2.70 -3.7192 2.40 2.9690 
A3 10.50 10.0245 9.00 3.2326 8.00 10.0245 
A.3 10.50 9.9883 9.00 -2.0620 8.00 9.9883 

Case study 2: The signal considered here consists of four components and is 

given by equation (4.9). One hundred data samples are obtained by uniformly sam-

pling the signal between the interval 0.0 and 10.0 seconds. The additive Gaussian 

noise has a zero mean and 10 standard deviation. With seed values 20% in error 

the algorithm did not converge even after 50 iterations. Consequently, Table 4.11 

shows parameter estimates only when seed values are in 5% and 10% error. 
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Table 4.11 Parameter estimates obtained using ML method for 

A = X = [0.5, 2.0, 5.0, 10.0]T and a,2 = 10. 

Parameters 
+5% Error +10% Error 

Seed Estimates Seed Estimates 
A1 0.525 0.4987 0.55 0.9596 

0.525 0.4996 0.55 0.6421 

A2 2.10 1.9774 2.20 3.8303 

½ 2.10 1.9898 2.20 6.1190 
A3 5.25 4.8653 5.50 -0.0142 
23 5.25 4.9619 5.50 6.1190 
A4 10.50 10.0658 11.00 11.9052 
24 10.50 9.9780 11.00 6.1190 

With the noise level increased to i0 convergence was obtained only for the 

case with seed values in 5% error as shown in Table 4.12. 
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Table 4.12 Parameter estimates obtained using ML method for 

A=X= [0.5, 2.0, 5.0, 1O.O]T and a = i0. 

Parameters 
+5% Error -5% Error 

Seed Estimates Seed Estimates 
A1 0.525 0.4867 0.475 0.4867 

0.525 0.4960 0.475 0.4960 
A2 2.10 1.7812 1.90 1.7813 

½ 2.10 1.8976 1.90 1.8977 
A3 5.25 4.6639 4.75 4.6643 

5.25 4.6521 4.75 4.6524 
A4 10.50 10.5673 9.50 10.5668 
24 10.50 9.8096 9.50 9.8098 

For a noise level with standard deviation greater than 10-3 either no conver-

gence is achieved or the estimates obtained are quite inaccurate. Furthermore, the 

process of evaluating the error vector Ax in equation (2.10) may result in the 

matrix A being singular for some given initial conditions. In this respect the max-

imum likelihood method is found to be numerically less stable than the nonlinear 

least squares method. 

It is further observed that both the nonlinear least squares and the maximum 

likelihood methods failed to improve the parameter estimates when the seed values 

used were those obtained using the Total Least Squares and the Prony's LS tech-
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niques. 

4.3 DECOMPOSITION OF WOOD-NMR DATA 

The distribution and interaction of water in the wood are of great importance 

in its commercial utilization. To this end, proton nuclear magnetic resonance (H-

NMR) imaging of water in wood on the basis of spin-spin relaxation time, T2, is 

the only method available for the direct measurement of the distribution of water in 

the wood. 

Proton NMR yields an accurate measurement of the moisture contents and 

allows an identification of anatomically different regions of the wood. Conse-

quently, the method finds varied commercial applications in the wood industry, 

such as Kiln drying of wood, identification of defects and different species of wood 

for production-line analysis and measurement of the lignin content of pulp. 

4.3.1 NMR Data Acquisition 

The wood NMR data considered in this section is supplied by a group of 

researchers, at the University of British Columbia, working on the measurement of 

moisture contents and the distribution of water in the anatomically different regions 

of the wood using H-NMR technique [12]. The raw data contains 128 points of 

pre-baseline and 512 points of post-baseline data. A total of 864 NMR echos are 

processed and each echo is sampled 4 times in the vicinity of the peak. The first 

224 echos are selected by sampling every echo while the next 640 are obtained by 
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retaining every 4th. echo. This results in the raw data files containing a total of 

4096 data points. 

The nonlinear sampling of the signal ensures that sufficient data points are 

obtained in the time-interval where the signal is decaying rapidly. 

4.3.2 Data Processing and Decimation 

The baseline or the constant d.c. offset is removed from the data set by sub-

tracting from each point the average of 512 post-baseline points. The pre-baseline 

points are discarded and the magnitude of each echo is calculated as the average of 

the four samples corresponding to the echo. The time of this echo is referenced to 

the last T-90 degree pulse. All echos whose magnitudes are less than 1.0% of the 

first echo are discarded. 

After the data has been processed as outlined above, it is further decimated so 

that it is computationally manageable while still being representative of the original 

signal. The reduced data set is obtained by taking the first 200 point, plus addi-

tional 100 points by decimating the remaining data points by two and decimating 

whatever remains by four. In this way, a total of 416 points are obtained for the 
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final analysis. 

4.3.3 Parameter Estimation 

If the fast T2, spin-spin relaxation time, component is identified with water in 

and on the cell wall fibrils, the medium component is attributed to the water in the 

ray and latewood tracheid lumens, and the long component to the water in the ear-

lywood tracheid lumens. Then the Wood-NMR decay curve is modeled [12] as 

Y = A e t+C et+E e t  

where B, D and F are the inverses of the three T2 values for the three com-

ponents and A, C and E are their respective populations. The estimates of these 

parameters have been used by the aforementioned researchers in estimating the 

moisture contents at different stages of Kiln drying of wood, defect identification 

and species determination. 

Two case studies are carried out in this section to compare the performance of 

the Transform and the Total Least Squares methods. The parameter estimation 

techniques using the nonlinear least squares and the maximum likelihood 

approaches are omitted in this section because they are both iterative techniques 

and require initial parameters estimates which are not available under the current 

circumstances. 
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Case study 1: The data file 'dopelims' is considered for this case study. The 

Fourier transform of the distribution function obtained according to equation (3.11) 

is shown in figure 4.22. It is apparent, in this case, that even the choice of the 

"Good portion" of the deconvolved data is not always so obvious. The first local 

minimum occurs at the 11d. point but the global or absolute minimum occurs at 

the 21St. point. 

Figure 4.22 Deconvolved data obtained using file 'dopelims'. 

Selecting "Good portion" of the data as 21 (2x10 + 1) points, predictor order 

17 and three dominant singular values the two exponents are estimated as 10.0996 
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and 41.5360. 

The distribution function estimate obtained using 41 (2x20 +1) points, 30th. 

order predictor and 6 dominant singular values is shown in figure 4.23. 

Figure 4.23 Estimate of the parameter distribution function for 'dope urns'. 

The exponents are estimated as 8.9129, 20.4017 and 52.9 192. In all of the 

cases considered so far, uniform samples of the transformed data are obtained by 

fitting the data with 30 cubic splines. However, when the data is fitted with 35 

cubic splines, the "Good portion" of the deconvolved data is selected as 23 points, 

predictor order is 17 and 7 singular values are selected, the exponents are estimated 
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as 7.2179, 15.6426 and 49.3254. Thus, again, showing a strong dependence of the 

estimates on the number of cubic splines and hence the selection of nodes. 

Uniform samples of the decimated data, required for the Total Least Squares 

method, are acquired by fitting the data with 30 cubic splines and resampling at 

100 Hz. Basically, the decay rate of the fastest decaying component dictates the 

sampling frequency while the decay rate of the slowest decaying component dic-

tates the sampling time. These relationships are such that at a given sampling fre-

quency one must obtain a sufficient number of samples of the fastest decaying 

component and the sampling time, for best results, must be close to ten times the 

longest time constant i.e. the reciprocal of smallest decay rate. Out of 113 points so 

obtained only the first 100 are considered and the predictor order is chosen to be 

15. The zeroes of the AR polynomial are plotted in the complex plane in figure 

4.24. 
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Figure 4.24 Distribution of the zeroes of the AR polynomial for 'dopelims'. 

Three zeroes corresponding to the three signal components He on the positive 

real-axis between the interval zero and one. From the location of these zeroes the 

exponents are estimated as 9.4184, 26.7685 and 63.3322. Furthermore, fitting the 

data with 35 cubic splines produced the estimates as 9.4116, 26.8034 and 63.7590. 

This exhibits the robustness of the Total Least Squares method to the selection of 

the nodes and hence the arithmetic errors. 

Case study 2: The data file 'cpmglO' is considered for this case study. The 

estimated distribution function shown in figure 4.25 is obtained by fitting the 
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transformed data with 30 cubic splines. 

Figure 4.25 Estimate of the parameter distribution function for 'cpmglO'. 

Only two signal components are resolved with exponent estimates as 9.3407 

and 14.9262. 

Using the Total Least Squares method, with uniform samples obtained as out-

lined in case study 1 with 30 cubic splines, the results are shown in figure 4.26. 

From the location of the zeroes three signal components are estimated with 

exponents 9.3828, 17.6188 and 155.5412. Sampling the same data at the same rate 

but with 40 splines produces the estimates as 9.3809, 17.6489 and 155.9698. 
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Again, showing minimal sensitivity of this method to the spline fitting. 

Figure 4.26 Distribution of the zeroes of the AR polynomial for 'cpmglO'. 

4.3.4 An Alternate Approach to Selecting the Dominant Singular Values 

Theoretically, the number of nonzero singular values of a data matrix is equal 

to the column rank and to the number of signal components in the case of multi-

exponential signal. Therefore, in the absence of noise selecting the number of dom-

inant singular values using a simple ratio test is quite trivial. It may be noted that 

12 norm criterion , discussed in this Chapter, is also very helpful in the presence of 
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moderate levels of additive noise. 

However, when the amplitudes of the exponentials are excessively large, as in 

the present case, it becomes exceedingly difficult to get a clear fix on the dominant 

singular values. In such cases, the property that singular values corresponding to 

signal space are more robust to noise than the singular values corresponding noise 

space [40], can be successfully exploited. This implies that the addition of noise to 

the data should have the least effect on the dominant singular values. Thus, this 

test when used along with the other two tests namely, the ratio and the 12 norm 

test can provide much better clues to the number of dominant singular values. 

Table 4.13 shows the effect of zero mean Gaussian noise on the singular values. 

From this table it becomes clear that there are only 3 dominant singular values. 
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Table 4.13 Effect of zero mean Gaussian noise on the singular values. 

N 
Singular values of noise added data 

S.D. = 0.0 S.D. = 25.0 S.D. = 40.0 
1 307245.000 307316.000 307358.000 
2 28175.600 28175.500 28177.500 
3 3068.380 2958.950 2908.960 
4 575.087 640.370 754.750 
5 294.926 447.370 684.742 
6 140.471 428.114 599.142 
7 78.551 372.874 573.193 
8 69.119 346.106 548.073 
9 44.121 340.967 533.153 
10 27.460 329.646 523.046 
11 15.473 313.368 499.024 
12 7.518 297.471 463.097 
13 2.260 280.584 438.460 
14 0.984 268.883 423.689 
15 0.585 257.371 403.449 
16 0.499 216.995 349.426 

4.3.5 Estimating the Amplitudes of the Exponentials 

Using the decay rate estimates obtained using the Total Least Squares method, 

the amplitudes estimates are obtained using Prony's LS method. Only the first 50 

uniformly sampled data points are used for the least squares fit. The estimates of 

the amplitudes obtained along with the corresponding exponents used are listed in 

Tables 4.14 and 4.15 
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Table 4.14 Amplitude estimates obtained using LS fit (dopelims). 

Exponent estimates 
used. X 

Amplitude estimates 
obtained. A 

9.4184 
26.7685 
63.3322 

10344.37 
15905.30 
21246.30 

Table 4.15 Amplitude estimates obtained using LS fit (cpmglO). 

Exponent estimates 
used. X 

Amplitude estimates 
obtained. A 

9.3809 
17.6489 

155.9698 

35662.00 
29512.90 
42462.70 

Synthetic data is generated using these estimates. The parameters of the fit 

are shown in table 4.16 and the data fit is shown in figures 4.27 and 4.28. 

Table 4.16 Parameters of synthetic data fit. 

Parameters File = dopelims File = cpmglo 
Data energy 83002204094.04 '111128890810.75 
Error energy 897997.06 48298940.71 
% Misfit error 0.001082 0.010868 



Figure 4.27 Synthetic data fit of 'dopelims'. 
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Figure 4.28 Synthetic data fit of 'cpmglO'. 
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The results show an excellent agreement of the synthetic data with the experi-

mental one suggesting accurate estimate of the signal parameters. 



CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

A novel, efficient and accurate technique of estimating the parameters of a 

multi-exponential signal is presented. The method requires neither a priori 

knowledge of the number of signal coipponents nor the initial parameter estimates 

and belongs to the class of time-domain parametric methods. The significance of 

this method lies in its ability to enhance the SNR of the noise corrupted data by 

discarding the noise space and retaining the signal space. 

The discrete multi-exponential data is modeled as an AR process and the AR 

coefficients derived using the singular value decomposition (SVD) of the data 

matrix have a minimum possible norm resulting in minimum possible prediction 

error variance. This technique is referred to in the scientific literature as a Total 

Least Squares method and produces a stable predictor. 

A polynomial in AR coefficients determined by this method is formed next. 

The roots of this polynomial between zero and one indicate the number of signal 

components and the decay rates are related to the locations of these zeroes. Once 

the number of components and the decay rates have been estimated, the amplitude 

estimates are obtained using a linear least squares method. 

126 



127 

The performance of this technique is directly compared to the frequency 

domain Gardner's transform method. Both these methods are tested on the simu-

lated and experimentally obtained Wood-NMR data. In the case of Gardner's 

method, the uniform samples of the non-linearly transformed data are obtained by 

the cubic spline interpolation and the "Good. portion" of the deconvolved data is 

modeled as an ARMA process using the Transient Error Method. The AR parame-

ters are obtained using a SVD based least squares method and the transient error 

terms constitute the MA portion. 

The results conclusively indicate a superior performance of the Total Least 

Squares (TLS) method over the Gardner's transform method, both at low and high 

noise levels. It is found that the Gardner's method is extremely sensitive to the 

data values at the tail-end where the SNR of the data is very low. Consequently, at 

low signal to noise ratio (SNR) the parameter distribution functions obtained select-

ing different nodes were markedly different. The parameter estimates obtained 

using the TLS method, on the other hand, exhibited a strong robustness to the 

choice of nodes and hence also to the arithmetic errors. It is further seen that the 

simple selection of the "Good portion" of the deconvolved data is not always so 

straight forward and frequently needs some trial runs. 

In the case of simulated data, the choice of the optimal values for the weight-

ing factor a, and the sampling interval, as reported by Salami [24], did not 

improve the performance of the transform method. In all the cases studied, the 

new method produced better estimates when the number of signal components were 
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greater than two and SNR was low. 

For the experimental (Wood-NMR) data the transform method failed to accu-

rately estimate the number of signal components and consequently, the estimates of 

the parameters obtained were in gross error. On the other hand, the Total Least 

Squares method successfully detected all three signal components and a close 

agreement of the synthetic data with the experimental data indicates an accurate 

estimate of the signal parameters. 

A predictor order of N/2 in the case of the transform method and N/6 in the 

case of the TLS method produced the best estimates. Both methods used the SVD 

of the data matrix to obtain the AR filter coefficients. 

For the sake of completeness the nonlinear least squares and the maximum 

likelihood methods have also been implemented. Given a priori knowledge of the 

number of signal components and the initial parameters estimates, these methods 

iteratively improve upon the initial estimates. The results show that when the 

number of signal components is less than or equal to three and the additive noise is 

moderate, these techniques are quite effective. 

The TLS method has been extended to the Weighted Total Least Squares 

method with the objective of mapping the finite interval between zero and one on 

to the unit circle, thus reducing the complex task of polynomial root finding to per-

forming the DFT. A closed form solution to determine the AR filter coefficients is 

obtained, if the weighting matrix is known and is symmetric. The determination of 

this matrix will complement the work in this thesis. 
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