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ABSTRACT 

This thesis addresses the problem of history matching 

hydrocarbon reservoirs using numerical simulation models. In 

current practice, estimated reservoir parameters such as 

porosity and permeability are modified by trial and error 

until an acceptable fit is obtained. There is currently no 

available industrial three-dimensional three-phase simulator 

that has automatic history matching capability. 

A computationally efficient Gauss-Newton method for 

parameter estimation was developed in this work. The 

stability and convergence characteristics of the proposed 

method were verified by using complex chemical kinetic 

problems and a single-phase compressible flow model. 

Subsequently, the proposed method was incorporated into 

a fully implicit multi-component three-dimensional three-phase 

simulator. The resulting model was tested on the second SPE 

Comparative Problem which is a numerically difficult three-

phase coning problem. The model was able to simultaneously 

match observed pressures, water-oil ratios, gas-oil ratios and 

flowing bottom hole pressures. The parameters that were 

varied were the permeability and the porosity. A zonation 

approach was used. The proposed algorithm was able to recover 

the original values of permeability and porosity and the 

computational requirement was an order of magnitude less than 

previously published methods. 
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An additional important benefit of using an automatic 

history matching simulator is that it is possible to analyze 

the quality of the match obtained. As the simulator is based 

on the Gauss-Newton method, the variance-covariance matrix of 

the unknown reservoir parameters can be calculated using least 

squares theory. It is shown that by analyzing this 

information, as well as the eigenvectors of the normal 

equation matrix, it is possible to identify zones which are 

highly correlated. Illustrative examples were used to show 

how the theory could be applied to quantify the reliability of 

the estimated reservoir parameters and to identify the 

reservoir parameters that do not have a significant effect on 

the match of the measured field variables. 

In actual application, a priori estimates of the most 

probable values of the parameters are usually available. 

Bayesian estimation was used to incorporate this prior 

information into the simulator. In addition, the penalty 

function approach was used to impose constraints on the 

parameter values. Test cases were used where the postulated 

models were quite different from the actual models. With 

prior estimates and constraints, reasonable parameter 

estimates were obtained. It was shown that important 

practical questions such as the presence of impermeable 

barriers in the reservoir, estimates of in-place fluid volumes 

and probable reservoir extensions could be better answered by 

the use of an automatic history matching simulator. 
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CHAPTER 1 

INTRODUCTION 

1.1 Reservoir Simulation 

The mathematical modelling of the dynamics of fluid flow, 

heat and mass transfer in underground hydrocarbon reservoirs 

is termed reservoir simulation. The degree to which the model 

can be used successfully to predict the behaviour of the 

actual reservoir is a function of the input data used and the 

adequacy of the mathematical model. 

The mathematical model consists of the set of partial 

differential equations, together with appropriate boundary 

conditions, which describes the flow of oil, gas and water in 

the reservoir. The model equations must account for mass 

transfer between the phases, consider gravity, capillary and 

viscous forces, and allow for heterogeneous reservoirs of 

arbitrary geometry. The solution of these equations using 

classical analytical methods of mathematical physics is not 

practicable, and numerical methods implemented on high speed 

computers are necessary. The explosive growth in 

computational speed and memory capacity of computers has made 

possible the routine use of reservoir simulators and 

contributed in part to the rationale for the research work 

described in this thesis. 
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1.2 Incentives for Reservoir Simulation 

The main incentive for reservoir simulation is the 

potential increased recovery, of oil and gas from the reservoir 

by better reservoir management. A simulator that has 

accurately matched prior production history can be used to 

evaluate plans for optimum development of the reservoir. The 

major benefits of a simulation study are summarised below. 

(a) The history matching process improves understanding 

of the reservoir behaviour. The reservoir engineer conducting 

the study increases his knowledge of the important variables 

affecting reservoir behaviour in the course of developing and 

modifying the grid cell model and its parameter distributions 

to match the prior history. 

(b) It assists in reservoir definition, such as the size 

and extent of the reservoir. A properly matched model can 

point out deficiencies in reservoir description based on 

insufficient geological information. 

(C) We can obtain more accurate estimates of fluid in-

place and the extent of aquifer support. Very simplified 

models of the reservoir can be quickly built for material 

balance purposes. 

(d) With a simulator, we can quickly compare different 

operating strategies without expensive pilot tests. The 

physical reservoir can be developed and produced only once. 

However the numerical model can be run many times in order to 

examine the various alternatives in production scenarios. 
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(e) The simulator can be used for prediction of reservoir 

performance under primary or secondary /tertiary recovery using 

various injection fluids. 

(f) We can compare various flooding patterns and the 

effects of well spacing on sweep efficiency and ultimate 

recovery. 

(g) In addition, we can compare different injection and 

production rates to find the optimum ones. 

(h) Quite often the results of the simulation study 

identify unswept oil regions suitable for locating new wells. 

(i) We can determine critical well rates to avoid coning 

and locate completion intervals. Single well models with 

greater definition near the well bore can be used to 

investigate gas and water coning. 

(j) Laboratory experiments can be modelled to obtain 

fluid and rock properties that can be used in full field 

modelling. 

In order to realise these benefits, reservoir description 

data of high quality, accurate production history data and 

pressure observations are necessary. The more accurate the 

data, the more confidence can be placed on the resulting 

match. The reliability of the predictions depends on the 

acceptability of the match. The current industry guideline is 

that the prediction period should only be as long as the 

historical period. 
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1.3 Steps in a Typical Simulation Study 

A properly conducted reservoir study will take time to 

complete. Most studies involve essentially the same kind of 

activities but the time necessary to complete each phase of 

the study will differ from reservoir to reservoir. In 

general, however, the usual steps and typical percentage of 

time spent on each of these are: 

(a) Definition of the problem (5%). 

It is necessary that the scope of the study and the 

objectives to be achieved be well defined prior to beginning 

the study. 

(b) Data Compilation and Review (30%). 

Reservoir description data, seismic data, core 

analysis, well log analysis, pressure transient analysis, PVT 

laboratory tests, special fluid displacement tests, production 

history data, all these have to be analyzed and reviewed for 

missing data or inconsistencies. 

(c) Model Building (10%). 

The data have to be assembled in a form demanded by 

the input format of the simulator being used. Decisions have 

to be made on the type of models to be run, the number of 

individual wells to be analyzed, what cross-section and areal 

models should be run and the number of cells for the full 

field model. 

(d) History Matching (40%). 

Here the task is to duplicate the reservoir behaviour 
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with the simulation model by modifying the input data as 

necessary to obtain a match. 

(e) Performance predictions and sensitivities (10%). 

With a satisfactorily matched model, different 

operating strategies and sensitivity to well production I 

injection rates can be studied to maximize recovery or to 

achieve the objectives of the study. 

(f) Reporting the results and conclusions (5%). 

From the above, we can see that history matching is one 

of the most time-consuming phases of a typical simulation 

study. 

1.4 History Matching 

1.4.1 Current Approach 

In a typical reservoir study, a grid cell model that 

could have thousands of grid cells is built to represent the 

underground geological structure. The reservoir parameters 

such as porosity, permeability and depth which are attributed 

to these grid cells have to be estimated from analysis of data 

from a few wells drilled into the structure. There is 

therefore considerable uncertainty in the estimated values of 

many of the reservoir parameters. 

In order to verify the values of the estimated 

parameters, the postulated model is used to simulate past 

reservoir performance and the results are compared with 
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historical data. Very often, significant differences will be 

obtained. History matching is the process of estimation of 

reservoir parameters, such as the porosity and permeability 

distributions so that the observed field data is replicated by 

the numerical model. The current state of the art is the 

reservoir engineer performing the study will use his 

experience and judgement to vary the parameters by trial and 

error until a suitable match is obtained. The search for 

these parameters is often the most time consuming and 

frustrating part of a reservoir study. 

1.4.2 Motivation for Automatic History Matching 

Extensive experience is often required to perform a 

simulation study. The engineer should have a good knowledge of 

the important parameters that affect reservoir behaviour. As 

well, manpower costs have been increasing while advances in 

computer technology have led to a rapid decline in computer 

costs. 

The aim therefore is to reduce the tedium of making trial 

and error runs and instead to let the computer do the work of 

estimation of the parameters using optimization techniques. 

This will allow the reservoir engineer to spend more time on 

the interpretation of the results, and less time on the 

process of making trial and error runs to estimate the 

magnitude of the parameters. 

The resulting efficiencies will reduce the time required 
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to perform history matching and therefore the total length of 

time for the study. 

1.5 Problem Statement 

The available field data may consist of observed 

pressures, production rates, gas-oil ratios, water-oil ratios, 

and bottom hole pressures measured at some wells at a few 

times during the history of the reservoir. 

Using the least squares (LS) technique, an objective 

function is defined as 

no 

Sr $ (k) - E LP( t1) -y( ti)] TQ L9( t) -y( ci)] 
1-1 

where k represents a vector of m measurements at observation 

times t, n0 is the number of observation times, y represents 

the vector of corresponding calculated values, Q is an m x m 

matrix of weighting factors which may vary with time and k is 

a vector of p parameters to be estimated. 

The weighting matrix Q is often chosen as a diagonal 

matrix which normalizes the data, so that all measurements are 

of the same order of magnitude. On statistical grounds, this 

is the correct choice if the error in the measurements is 

proportional to the magnitude of the variable, that is, we 

have a constant percentage error. 

The history matching problem consists of estimating the 

unknown reservoir parameters in the numerical model so that 
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the objective function, S, is minimized. The numerical model 

involves one or more partial differential equations depending 

on the scope of the model. These are reduced by grid 

discretization to a set of ordinary differential equations 

which can be written in general as 

dx(b) - 
f(x(t) ,k;u) 

dt 

x(t0) -x0 

(1.2) 

(1.3) 

where x is the n dimensional vector of state variables, x0 is 

the given initial state, k is the p dimensional vector of 

parameters to be estimated, u is a vector of user specified 

variables or parameters. 

For example, the vector x, in a black oil model could be 

the pressure and saturation variables. The vector k could be 

unknown permeabilities and porosities. The vector u could be 

user specified production rates. 

The objective is to find the unknown parameters, k, by 

matching the model predictions to the actual field data taken 

over several observation times, t1, i = 1,2,..,n0. These 

measurements, represented by the in dimensional vector, -(t), 

could be the pressure at wells, water-oil ratios, gas-oil 

ratios and so on. The corresponding model predictions, 

y(t), are related to the model state variables through a 

relationship of the form, 



Y(t) -h(r(t)) 

The solution of the model equations for a given set of 

reservoir parameters would take minutes to hours of computer 

time depending on the number of grid cells in the model and 

the computer used. It is therefore desirable to use a 

parameter estimation method that does not require a large 

number of function evaluations (model runs). 

Standard methods for parameter estimation using nonlinear 

regression include steepest descent and the Gauss-Newton 

method. These require calculation of sensitivity 

coefficients. These are the partial derivatives of the 

reservoir state variables with respect to the reservoir 

parameters, that is, 

a(sbabe variable) 
a(es bima bed parameter) 

(1.5) 

These are normally obtained by numerical differentiation, that 

is, each parameter is perturbed slightly and a full model run 

is made to find the change in the reservoir variables. If 

there are p parameters, we would require at least (p-/-l) runs 

for each iteration of the regression method. For example, if 

there are 10 parameters, and we need 10 iterations for the 

regression method, and each run took 1 hour, we would need 110 

runs or 110 cpu hours. The extensive computation time is the 

reason why no practical method for automatic history matching 



10 

is in use today. Mattax and Dalton (1990) writing in the 

prestigious Society of Petroleum Engineers Reservoir 

Simulation Monograph stated that automatic history matching is 

not widely used and probably should not be the method of 

choice for most problems. 

1.6 Research Objectives 

The main goal of this research project was to develop an 

efficient algorithm for automatic history matching, and to 

incorporate it into a three-dimensional three-phase reservoir 

simulator. This would result in the first practical model 

with automatic history matching capability. The development 

and research objectives that led to the realization of this 

goal follow. 

In fundamental research work comparing various parameter 

estimation methods, a computationally efficient form of the 

quadratically convergent Gauss-Newton method was proposed. To 

test whether the modifications suggested would still result in 

a convergent method, the proposed method was used to estimate 

the reaction rate constants in several typical chemical 

kinetic problems described using ordinary differential 

equations. The results of this numerical experimentation 

demonstrated that the proposed method was convergent, and 

required significantly less computational time for these 

kinetic models. 

The next objective was to incorporate the proposed method 
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in a single-phase reservoir model. The resulting model was 

tested with single-phase problems described in previously 

published papers on automatic history matching. Again 

encouraging results were obtained in estimating parameters 

with significant reduction in computational time. 

Building on this success, the method was next 

incorporated in a three-dimensional three-phase reservoir 

simulator that had been developed by this author. Several 

conceptual problems had to be overcome before a working model 

could be put together. Development testing was performed 

using a difficult standard industrial problem. The model was 

able to match observations such as pressures, water-oil 

ratios, gas-oil ratios as well as combinations of these 

observations. The computational speed was also an order of 

magnitude faster than other published methods. 

The questions of identifiability of parameters and 

accuracy of estimates were then addressed. The objective was 

to identify correlations between pairs of parameters as well 

as between groups of parameters. This information could then 

be used to identify the reservoir parameters that do not have 

a significant effect on the match of the observed variables. 

In actual application of the automatic history matching 

model in a reservoir study, it is extremely unlikely that the 

grid cell model used for the reservoir would be a true 

representation of the underground reservoir. Thus it is very 

probable that the parameter estimation would result in values 
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for the physical parameters that are either unrealistically 

high or low. Furthermore, a priori estimates of the most 

probable values of the parameters are usually available. To 

complete the model, the final objective was to incorporate the 

prior information via Bayesian estimation, and to provide 

maximum and minimum constraints on the parameter values. 

1.7 Outline of Thesis 

Chapter 1 provides an introduction to reservoir 

simulation, its uses and the steps involved in a typical 

reservoir study. The problem of history matching is defined 

and the difficulties of automatic history matching outlined. 

The research objectives are then stated. 

In Chapter 2, the literature on automatic history 

matching is reviewed. The various attempts at developing 

reservoir models using nonlinear regression methods for 

parameter estimation are surveyed. Optimal control methods 

have also been used in the literature. Papers on 

identifiability of parameters and incorporation of prior 

information and constraints are discussed. Finally, the state 

of the art is presented. 

Chapter 3 introduces the mathematical formulation of 

reservoir simulation models, how they are classified, the 

methods of solution, Jacobian building,' the concept of 

variable substitution and iterative methods of solution of the 

Jacobian. The operation of a typical simulator is described. 
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Parameter estimation techniques are the subject of 

Chapter 4. The least squares objective function is developed 

from the theory of maximum likelihood estimation. The 

composite objective function when Bayesian estimation is used 

to incorporate prior information is also developed. The 

methods of estimation of the unknown parameters are reviewed 

and discussed. 

In Chapter 5, the normal Gauss-Newton method is detailed, 

together with a flow chart. The sensitivity equations that 

have to be solved when the model consists of differential 

equations are described. The proposed computationally 

efficient Gauss-Newton method is then described. The chapter 

then presents the convergence tests using typical chemical 

kinetic problems. 

Chapter 6 covers the application of the proposed method 

to a single-phase model. The model is used to solve problems 

reported in the literature and its efficiency compared with 

other methods. 

The incorporation of the proposed method into a three-

dimensional three-phase model is the subject of Chapter 7. The 

model operation and features are described. Numerical tests 

to match common field observation data are described using a 

standard industrial problem. 

Chapter 8 describes how at convergence, the covariance 

matrix may be obtained. Identification of correlation between 

pairs or groups of parameters is discussed. Numerical 



14 

examples are given. 

In Chapter 9, the incorporation of prior information via 

Bayesian estimation and use of penalty functions for 

constrained estimation in the model are discussed. Case 

studies with incorrect postulated grid models of the true 

reservoir are presented to show the stabilizing effect of the 

Bayesian modification and the need for constraints. 

Finally, the conclusions and recommendations are 

presented in Chapter 10. 
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CHAPTER 2 

REVIEW OF LITERATURE 

In this chapter the previously published algorithms that 

have been applied to the problem of automatic history matching 

in reservoir simulation are reviewed. Nonlinear regression 

techniques are widely applied in many areas of scientific 

research, and today, commercial codes are generally available 

in many statistical packages. However, the typical problems 

that are solved with these multi-purpose programs involve 

fairly simple models. The computational time in evaluating 

the models for each estimate of the regression parameters is 

usually not of much concern. 

Unfortunately this is not the case for reservoir 

simulation where each model evaluation involves the 

integration of several thousands of ordinary differential 

equations over long time intervals. In addition, because the 

field measurements used as observation variables are available 

only at a few discrete well locations and at a few times, and 

because of the large number of combinations of possible 

parameters, the chosen set of parameters used to obtain a 

solution may not be unique. This is characterized as an ill-

posed problem, where the identified parameters may change 

significantly but without changing significantly the value of 

the objective function. 
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2.1 Methods used for Automatic History Matching 

Due to the complexity of the numerical model and the 

large number of unknown parameters, the literature on 

automatic history matching in reservoir simulation is 

relatively sparse. In addition, the standard techniques for 

parameter estimation cannot be used without modifications. 

The techniques used in automatic history matching fall into 

several major categories. 

2.1.1 Nonlinear Regression Methods 

These methods include the method of steepest descent, the 

Gauss-Newton method, quasi-linearization and Newton's method. 

Jacquard and Jam (1965) were among the early workers in 

this field. They presented a modified steepest descent method 

for use with a two-dimensional single-phase model. Jahns 

(1966), Slater and Durrer (1971), Thomas et al. (1972) also 

developed variants of the gradient and Gauss-Newton method. 

These nonlinear regression methods require in general the 

calculation of all sensitivity coefficients. These are the 

partial derivatives of the reservoir variables (such as 

pressure, saturation and temperature) with respect to the 

reservoir parameters (typically porosity and permeability). 

The usual method used to obtain these coefficients is 

numerical differentiation. Each parameter is perturbed 

independently and a full simulation run is made to evaluate 

the sensitivity of the reservoir variables to the perturbed 
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parameter as a function of time. This must be repeated at 

each iteration of the regression for each estimate of the 

parameters. In general, if there are p parameters to be 

estimated, it is necessary to perform (p+l) equivalent 

simulator runs to calculate the sensitivity coefficients. The 

main advantage of developing the sensitivity coefficients 

using numerical differentiation is that it can be easily 

applied to any simulator without significant modification of 

the simulator. 

Another method for calculating the sensitivity 

coefficients is to derive the governing differential equations 

by differentiating the original model differential equations 

with respect to each of the p parameters. The resulting p 

sensitivity equations are also differential equations that 

have to be solved in conjunction with the model equations. 

The work involved to solve each of these p equations is 

similar to the work to solve the model equations. The 

required work is therefore equivalent to (p+l) model runs. 

Thus there is no apparent difference in computational work 

between the two methods to obtain the sensitivity 

coefficients. 

Since there are normally many unknown parameters and the 

time required for each simulation run is quite significant, 

the regression methods as presented in the literature require 

excessive amounts of computing time which renders them 

practically unusable. Thus our literature review has found 
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only applications of these regression methods to simple 

single-phase problems or small two-phase problems. 

2.1.2 Optimal Control Methods 

Optimal control methods have also been applied to the 

history matching problem. Chen et al. (1974) and Chauvent et 

al. (1975) presented single-phase models based on a first-

order optimal control method. The method involves the solution 

of a set of adjoined ordinary differential equations together 

with the ordinary differential equations of the model. It 

therefore requires the equivalent of two simulation runs per 

iteration of the parameter search. This is a significant 

improvement over the other published methods. However, the 

method has only linear convergence properties and a very large 

number of iterations are required for highly non-linear 

multiphase problems. Watson et al. (1980) published a two-

dimensional two-phase (oil and water) algorithm based on this 

approach. Yang et al. (1987) used variable metric methods to 

obtain a better rate of convergence with the optimal control 

method. The two-phase (oil and water) test problems used were 

simple one-dimensional ten cell models and two-dimensional ten 

by ten models. Wasserman et. al. (1975) presented a 

multiphase model based on optimal control theory, however, it 

matches only pressure data. Furthermore, he claimed that a 

rigorous optimal control method for a three-dimensional three-

phase model would be prohibitive in cost for large scale 
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simulations. 

If a second-order optimal control method is desired, then 

the sensitivity coefficients have to be calculated too, much 

like the nonlinear regression methods. Dogru et al. (1981) 

calculated the computational effort required to develop the 

sensitivity coefficients using the second-order optimal 

control method and found that it was more economical to use 

the nonlinear regression methods if the number of parameters 

was less than the number of ordinary differential equations of 

the model. This is usually the case in a reservoir model with 

several thousand grid cells as the number of parameters that 

can be reasonably estimated with the observed data is usually 

much less. 

Furthermore, as Makhlouf (1990) found, the coefficient 

matrix of the adjoint equations cannot be easily inverted 

using the iterative methods developed for the solution of the 

Jacobian of the original model, and more expensive direct 

methods must be utilized. 

2.1.3 Regularization Methods 

The regularization of an ill-posed inverse problem 

involves the modification of the original problem to one that 

is well-posed and whose solution approximates that of the 

original problem. In particular, the usual least squares 

objective function is augmented with a weighted function which 

measures the degree of non-smoothness with respect to the 
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parameter estimates. The augmenting term exerts a penalty 

action against anomalous oscillations in the parameter 

estimates. 

Lee et al. (1986) applied regularization with bicubic 

spline approximation to single-phase two-dimensional problems. 

Chung and Kravaris (1990) incorporated a priori information 

with the method. Makhlouf et al. (1990) extended the method 

to a three-dimensional three-phase simulator. The only 

parameter matched was permeability. However excessive 

computational times were experienced and algorithmic 

difficulties were probably also indicated by their conclusion 

that estimation of absolute permeabilities in three-phase 

reservoirs is not recommended. 

2.1.4 Other Methods 

Veatch and Thomas (1971) presented a simple "direct" 

method that computes porosity and permeability given pressure 

and saturation observations at every grid location at several 

times. In practice, this amount of information is never 

available. 

Coats et al. (1970) proposed a method based on linear 

least squares and linear programming which involved making a 

number of simulation runs with reservoir properties supplied 

by a random number generator. 

Chen (1988) introduced a generalized pulse spectrum 
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technique (GPST) for two-dimensional two-phase models. This 

involves solving the history matching problem using a 

multigrid technique, in which the grid is successively refined 

until parameter estimates converge to a solution. The method 

requires pressure and saturation data at each observation 

point. 

2.2 Identifiability of Parameters 

In addition to the problem of obtaining estimates of the 

parameters, the questions of identifiability of parameters and 

the accuracy of the estimates need to be addressed. 

For single-phase problems, Shah et al. (1978), using 

covariance analysis, investigated the accuracy of estimates 

and the optimal level of zonation for one-dimensional 

situations. Dogru et al. (1977) studied well test situations 

and developed estimates for the reliability of predictions. 

Padmanabhan and Woo (1976) used a recursive estimation 

technique for estimating parameters for well tests. These are 

valid only for single phase situations. Watson et al. (1984) 

examined the identifiability and accuracy of parameter 

estimates for two-phase flow in one-dimensional situations. 

2.3 Incorporation of Prior Information and Constraints 

With the use of an incorrect model, the automatic history 

matching problem is usually ill-conditioned. Estimates of 

parameter values could be unrealistically high or low. The 
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presence of several local minima in the objective function 

could result in premature termination of the parameter 

estimation algorithm. In order to partially alleviate some of 

these difficulties in the application of the automatic history 

matching model, it is necessary to incorporate constraints on 

the minimum and maximum values of the parameter estimates. In 

addition, when prior estimates of the most probable values of 

the parameters are available, these should be incorporated 

into the algorithm. 

Gavalas et al. (1976) also incorporated prior geological 

information in a one-dimensional one-phase reservoir model 

using a classical Bayesian approach. However, they separated 

the Bayesian method from the zonation method. For their 

Bayesian development, they used empirical correlations for the 

porosity and permeability distributions. The objective 

function they minimised consisted of the least squares 

function and a Bayesian contribution. They did not 

incorporate any constraints in their model. Chung and 

Kravaris (1990) combined prior information with the method of 

regularization in a two-dimensional gas model. Relative 

weighting of the various terms of the objective function was 

accomplished using rules of thumb in a stepwise procedure. No 

constraints were employed to limit parameter values. Yang and 

Watson (1991) used the Bayesian method to estimate relative 

permeability curves in a two- dimensional two-phase model. In 

their work, the optimum weighting factor for the Bayesian term 
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was estimated in an algorithm based on observation of slope 

changes of the minimum composite objective function obtained 

from many regression runs using various weighting factors. In 

the field of groundwater hydrology, Neuman and Yakowitz (1982) 

also introduced a composite objective function to include a 

priori estimates of the parameter values. The weighting 

factor for the a priori information was determined by 

analyzing residual errors of the estimation. Cooley (1982) 

extended this approach to include prior information that 

consisted of nonlinear combinations of several types of 

parameters. 

When the simulation model used is not a true 

representation of the reservoir, the parameter estimates will 

often attain unrealistic values. This may be prevented by 

including parameter inequality constraints. Coats et 

al.(1970) in a linear programming approach incorporated 

inequality constraints in single-phase and two-phase models. 

They noted that the final parameter values in several case 

studies were usually at their upper or lower limits. Farouq 

Ali (1988) pointed out that with this algorithm, extremal 

values were likely to be obtained when the bounds on the 

parameters are not symmetrical about the true values. Using 

a Gauss-Newton method, Thomas et al. (1972) introduced box 

type constraints on the parameters in a single-phase model. 

Yang et al. (1987) used a sequential quadratic programming 

approach to incorporate inequality constraints with variable 
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metric methods in a two-dimensional two-phase model. 

2.4 Summary of Review - The State of the Art 

As evidenced by the above survey, the problem of 

automatic history matching in reservoir simulation is an 

extremely difficult one, compounded by the number of possible 

parameters, the complexity of the underlying numerical model 

requiring extensive computational time for each estimate of 

the parameter values, and the reality that the grid cell model 

would never be an exact representation of the reservoir. 

Due to the requirement of computing the sensitivity 

coefficients for the nonlinear regression methods, these 

methods have largely fallen into disfavour for application to 

automatic history matching. All of the published models in 

the last decade have utilized the first-order optimal control 

method because it apparently requires only two equivalent 

simulation runs per parameter estimation iteration. The 

disadvantages of the first order optimal control method 

however are: 

(a) its linear convergence characteristics which 

necessitates hundreds of iterations for highly nonlinear 

multiphase problems, 

(b) the complexity of programming of the method, 

(c) the current experience that iterative methods for 

matrix inversion cannot be used for the adjoined equations, 
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(d) the unavailability of sensitivity coefficients to 

compute the variance of the estimated parameters. 

The only other published three-dimensional three-phase 

model, by Makhlouf (1990), uses the method of regularization, 

requires hours of supercomputing time, and is unable to 

estimate permeability from usually available field data. 

There is no currently available three-dimensional three-phase 

reservoir simulator in the world today that has automatic 

history matching capability. Reservoir engineers today rely 

on accumulated experience and perform manual trial and error 

runs in order to perform history matching. 
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CHAPTER 3 

MATHEMATICAL FORMULATION OF RESERVOIR SIMULATION MODELS 

3.1 Classification of Models based on Phase Behaviour 

Reservoir models may be classified based on their 

representation of the phase behaviour of the reservoir. 

Usually only three immiscible phases are identified in the 

reservoir. These are the water, oil and gas phases. The 

various kinds of simulators, in increasing order of complexity 

are: 

(a) Black-Oil Models. These assume that the gas phase 

contains only gas with no oil or water vaporized in it., the 

oil phase has oil with gas dissolved in it and the water phase 

has only water with no oil or gas dissolved in it. The 

formulation is based on volume balances of the equivalent 

surface volumes of the three phases. The fluid properties are 

functions of pressure only. The black-oil model was the 

earliest form of simulator developed and it is most commonly 

used due to its simplicity. However, considerable simplifying 

assumptions have been made in its treatment of phase behaviour 

which may lead to inaccuracies. 

(b) Compositional Models. Compositional models must be 

used for reservoirs where the phase behaviour depends on 

composition as well as pressure. These include reservoirs 

with volatile oil, and gas condensate reservoirs. These 



27 

models maintain a mass (molar) balance for each separately 

identifiable component or chemical species, each of which may 

exist in any or all of the three phases (water, oil and gas). 

The phases are mixtures of these components in varying 

proportions. The compositions of the phases are calculated 

using flash calculations with equilibrium K values (functions 

of pressure and composition) or with equations of state (EOS) 

such as the Peng-Robinson EOS (1976) or the Redlich-Kwong EOS 

(1949). Viscosities and densities can then be calculated from 

phase compositions. 

Compositional models have been presented in the 

literature by Nolen (1973), Kazemi et al. (1978), Coats 

(1980), Young and Stephenson (1983), Acs et al. (1985) and 

Watts (1986). These models provide the most rigorous 

treatment of phase behaviour but are more complex to program 

and time consuming to run. However, they can correctly solve 

problems such as mixing of fluids with significantly different 

properties, variable bubble point problems and miscible 

displacement problems. In order to handle these problems in 

the framework of a black-oil model, special artifices must be 

devised, such as that by Ridings (1971) for fluid mixing, and 

by Todd and Longstaff (1972) for pseudo-miscible displacement. 

Limited compositional models have also been introduced. 

These assume the equilibrium ratios (K values) are functions 

of pressure only. This assumption is normally quite 

reasonable for reservoir fluid systems and it also reduces the 
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need to build multi-dimensional tables of K values. The model 

used in this thesis belongs to this class of models. 

(c) Thermal models. In addition to being fully 

compositional, these models consider temperature effects on 

fluid properties. The energy balance is solved in conjunction 

with the component mass balances. These models are primarily 

used for simulation of heavy oil reservoirs where steam is 

injected to provide thermal energy to the oil in order to 

reduce its viscosity. In such models, steam tables must be 

built into the simulator to provide the properties of water in 

the gaseous phase. Thermal models without reaction are called 

steam models. The first such models were published by Coats 

(1974, 1976, 1978). 

The recovery process of in-situ combustion involves the 

injection of oxygen (air) into the reservoir. Combustion of 

the oil in place provides thermal energy that reduces oil 

viscosity. Carbon dioxide, inert gas and steam resulting from 

combustion displace oil ahead of the burning front. 

Simulation programs that model these reaction mechanisms are 

extremely complex and are called combustion models. Crookston 

et al. (1979), Coats (1980) and Youngren (1980) have presented 

combustion models. 

(d) Chemical and Polymer Flooding Models. In the 

chemical /polymer flooding process, surfactant/polymer slugs 

are injected into the reservoir to reduce oil/water 

interfacial tension. Phase behaviour of the 
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oil/water/surfactant-polymer system is extremely complex and 

multiple liquid phases may be formed. Adsorption of 

surfactant and polymer on to reservoir rock surfaces reduces 

the concentration of the injected fluids and must be accounted 

for in the model. Todd and Chase (1979), Bondor et al. 

(1972), among others, have published papers on their models. 

3.2 Grid Systems 

Most simulation models are capable of handling flow in 

multiple dimensions. In the cartesian coordinate system, the 

grid cell models may be one-dimensional (linear), two-

dimensional areal (x,y) or vertical (x,z) cross-sections, or 

three-dimensional (x,y,z) full field grid systems. For 

detailed study of single well behaviour, radial models are 

used. These can be two-dimensional (r,O) or three-dimensional 

(r,O,z) radial models. 

In addition, some models have the capability whereby 

selected grid cells, such as those containing well locations, 

may be refined into sub-cartesian grids (local grid 

refinement), such as that published by Wasserman (1987), or 

into radial grids (hybrid grid) as presented by Pedrosa and 

Aziz (1985). The purpose of this is to increase accuracy in 

the description of displacement fronts, especially near wells 

without greatly increasing the number of grid cells in the 

reservoir model. One drawback of these schemes is the 

probability of obtaining unrealistic flood fronts due to 
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numerical dispersion. Heineman (1983) has introduced dynamic 

grid refinement whereby the grid cells may be refined or 

grossed in time with the passage of a displacement front. 

To simulate naturally fractured reservoirs, one approach 

is to create two domains of grid cells, one for the matrix and 

one for the fracture. The physical dimensions of these two 

domains are equivalent so that they occupy the same physical 

space. Then each cell in the matrix domain is connected .by a 

special connection to the corresponding cell in the fracture 

domain. The special connections represent transfer functions 

that approximate the movement of fluids from the matrix cells 

to the fracture cells. In such grid systems, fluid flow occurs 

between adjacent cells and between non-neighbour cells as well 

due to the special connections. Such models have been 

discussed by Gilman (1987), and Lee and Tan (1987). 

3.3 Differential Equations 

As discussed in section 3. 1, the compositional model has 

the most rigorous theoretical background and so the 

development of the simulation equations will be based on the 

general compositional model. It can be shown that the black-

oil model is simply a subset of the compositional model. 

We will consider the most general case where there are n 

components, each of which may exist in any or all of the three 

phases (oil,gas and water). Let x10 be the mole fraction of 

the 1th component in the oil phase, x the mole fraction of 
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the 1th component in the gas phase and x 1, the mole fraction of 

the 1th component in the water phase. The fundamental equation 

is the law of conservation of mass, simply stated, 

(Input) - (Output) - (Rate of Accumulation) 

(3.1) 

The rate of fluid flow through porous media is given by 

Darcy's Law. For each of the three phases, we have 

(VPg Yg ) q9q,9,  

- -K- k -u (VP0 - ,VD) 
110 

- -K- k-- (VP, 11 W 

(3.2) 

(3.3) 

(3.4) 

where K is the absolute permeability, krgi kro, krw are the 

relative permeabilities of the phases, jig, are the phase 

viscosities, Ygl y., '' are the specific weights of the phases, 

Pgi P0, P are the phase pressures, D is the depth. 

As component I can exist in all three phases, the molar 

flux density for component I is, 

XrgP gqg + ;crop 0q0 + x1p (3.5) 
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where Pg' p0 ' pw are the molar densities of the phases. 

The rate of accumulation of each phase per unit bulk of 

porous medium is, 

(3.6) 

where Sgi S0, S, are the saturations of the phases, 4' is the 

porosity, and t is time. The rate of accumulation of 

component I is therefore, 

(4 (X gP g*9g + X10P eg o + xiwp S)] (3.7) 

Further we can include a source or sink term, q1, which 

is the molar rate of production/injection of component I per 

unit volume. Then for component I, the conservation equation 

can be written as, 

_V. [XzgP gg•g + xrop 0q0 + x1 p q] + qr 

a 
- [4 (x1P g3g + X10P 0S0 + X,P p9) I 

(3.8) 
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Substituting Darcy's Law as in Eqs. 3.2 to 3.4 , we get the 

differential equation, 

V. [XrgP gK k (VPg - Y gVD) + X1 k 0P 0K (VP, - Y 0VD) 
P'g 1.1 0 

+ x 1 kp K— (VP,,, - ' ,VD) 1 

-C3 [4) (XrgP gSg + x 10p 0S0 + x1p 

(3.9) 

If there are n components, we would have n, differential 

equations. 

3.4 Auxiliary Equations 

Additional equations are required to complete the 

formulation. These are the conditions that the sum of the 

mole fractions in any phase must be 1 and the sum of the phase 

saturations must be 1. 

(3.10) 

(3.11) 

(3.12) 
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(3.13) 

If we select the independent variables as Xig,(I=l,..,flc), 

x101(I1,..,n), P0, S01 SW, Sgi then all the 

other variables can be defined as functions of the independent 

variables. 

Densities and viscosities are functions of the phase pressures 

and compositions. 

P  

p0 

P  

- f(Pgi Xrg) 

- f(P0,x10) 

- f(P,x1 ) 

f(Pgi X1g) 

- f(20,x10) 

- f(P,x1 ) 

(3.14) 

The phase relative permeabilities are expressed as functions 

of saturation. Stone's (1973) probability model for three-

phase relative permeability is commonly used. 

krg - f(Sg) 

kro - f(Sw1Sg) 

kxW - f(Sg) 

(3.15) 
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Capillary pressure relationships couple the phase pressures. 

Pg - Po - Pcgo (Sg) 

P0 - P - P 0 (S) 
(3.16) 

The permeability K is a time independent function of position 

and is normally directional as well. Thus, 

- K(x,y,z) 

- K(x,y,z) 

K - K(x,y,z) 

The depth, D, is a function of position. 

D - D(x,y,z) 

The porosity is a function of pressure and /position. 

(3.17) 

(3.18) 

- 4, (POI x,y,z) (3.19) 

Equilibrium values (K-values) relate the mole fractions of 

component I between each pair of phases. These K-values are 

functions of pressure and composition, assuming the 

temperature is fixed in an isothermal model. Thus, 
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Igo o1 Xjgi Xj0 ) 

, Poi Xjgl x) 
xIw  

- K70, - K1 gw 

xlv K1g0 

(3.20) 

There are 2 n, relationships for Eq. 3.20 as the last 

equation is not independent of the first two. 

In an equation-of-state model, the equality of component 

fugacities in each phase provides the 2 n relationships. 

(3.21) 

3.5 Master Mole Fraction Concept 

As there are 3 n + 4 independent variables to be solved 

for, it is desirable to reduce the number of independent 

variables. Coats (1980) introduced the master mole fraction 

concept whereby the mole fractions of component I in each 

phase are defined in terms of a master mole fraction X1 which 

is equivalent to the mole fraction of component I in a 

selected (base) phase. 

For each component, a base phase is selected. Then all K-

values of that component will be defined with respect to the 

base phase. For example, if the oil phase is selected as the 

base phase, the master mole fraction of component I, X1, is 
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equal to x1,. Then, 

Xro - K100x10 

X 1g - KigoXr0 

x1 - K1,x10 

- K100X1 - 

- KrgciXr 

- K10X1 

(3.22) 

The three variables, x g, x10, xI, are now expressed in terms of 

a single variable X1. 

As there are n master mole fractions, the independent 

variables are X111.11 P0, S, S, Si,, that is n, + 4 in number. 

The number of equations we have consist of the nc differential 

equations (Eq. 3.9) and the 4 phase and saturation constraint 

equations (Eqs. 3.10 to 3.13). 

3.6 Boundary Conditions 

It is usually assumed that the reservoir lies within a 

closed space across which there is no flow and fluid injection 

and production takes place at wells which are represented by 

point source or sink terms. At each well, either the pressure 

or the flow rate for each phase is specified. 

3.7 Initial Conditions 

The usual initial condition of the reservoir is the state 

of static equilibrium at which velocities of all phases are 

zero. This is accomplished by specifying phase pressures and 

initial fluid compositions at a reference depth and using the 

capillary pressure and density relationships to compute 
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pressure and saturations using the ordinary differential 

equations, 

dP 
dD  -p(P)g .p-o,w,g (3.23) 

3.8 Discretization 

The numerical solution of partial differential equations 

by the method of finite differences simply involves replacing 

each of the partial derivatives by equivalent finite 

difference quotients. The spatial solution region is divided 

into a discrete set of grid blocks, and the time domain is 

divided into discrete time intervals. Then, instead of 

calculating a continuous solution to the differential 

equations, we obtain an approximate solution at a discrete set 

of grid cells in the x-y--z space at discrete times. The 

derivation of the finite difference form of the differential 

equations is simple but lengthy and is available in a number 

of numerical analysis texts ( Burden and Faires (1981), Smith 

(1969)). The application to differential equations of 

reservoir flow has been presented by Peaceman (1977), Crichiow 

(1977), Settari and Aziz (1979). 

The resulting form of the difference equation is, for 

component I, 
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A [Tx1gpg (AP,,, + APcg - YgAD) + 

11 g 

Tx10p0- k_ 2 (AP0 - y0AD) + 

110 

Tx1 p krw (A P0 - A - y WAD)] + qr 
11 W 

- - 8 [(0 (XrgP g5g + IoP OSO + x1p ,$)1 

where T is the physical transmissibility. 

3.24) 

3.9 Well Mode]. 

The rate of flow of component I, from a well completion 

located in a grid cell is given by the usual productivity 

index equation, 

- (WI) [ ' P,,Xr9,(Pb-PIIb) 

0x10 (Pb-P b) 
110 

11 V 

(3.25) 

where (WI) is the phase independent part of the productivity 

index, Pb is the cell pressure and PlIb is the flowing bottom 

hole pressure opposite the centre of the grid cell. 

For square grid cells, and in the absence of any near 

weilbore restrictions, Peaceman (1978) has shown (WI) to be, 



(WI) -  27rkh  
ln(0 . 2 AX/ r) 
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(3.26) 

More complicated expressions for (WI) are available for non-

square grid cells with anisotropic permeability. These have 

been given by Peaceman (1983). 

3.10 Methods of Solution 

We now have all the equations and state variables to be 

determined for each grid cell. Next we have to solve these 

equations. The aim is to obtain values for the state 

variables of all the grid cells at each new time level. 

Commonly used methods of solution include the following. 

(a) IMPES solution. In this method, the component 

equations are combined into a single equation based on 

pressure only. The values of all the grid cell pressures are 

then solved for simultaneously. The values of the saturation 

and composition variables are calculated explicitly after the 

pressure solution. This procedure was introduced by Stone and 

Garder (1961) and extended by Macdonald and Coats (1970). The 

method is fast but has severe restrictions on timestep sizes 

due to instability. 

(b) Semi-Implicit solution. To increase stability, 

instead of calculating saturations explicitly, the mobility 

terms and capillary pressures at each new time level are 

estimated by extrapolation based on the gradient at the 
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beginning of the timestep. For example, for water relative 

permeability, 

(_•k-w )' [S-  +   1 l_S 1'2] 
'rw .rw as W 

(3.27) 

Letkeman and Ridings (1970) implemented this approach for 

coning models. It can be shown that this formulation is 

equivalent to taking just one step of a Newtonian iteration. 

Thus the problem with this approach is that the gradients used 

at the beginning of the timestep may not be correct. 

(C) Fully Implicit solution. This is the Newtonian 

iteration solution of the set of simultaneous equations Eqs. 

3.24 and 3.10 to 3.13. All state variables in the equations 

are at the n+1 time level. To obtain estimates of the changes 

in the state variables,, a Jacobian matrix is set up and solved 

for at each iteration. The solution requires a number of 

iterations until the changes in the state variables become 

acceptably small. 

(d) Adaptive Implicit solution. This is a variant of the 

fully implicit approach. Depending on the magnitude of the 

changes of each state variable, each variable is treated 

implicitly or explicitly, and the treatment could change from 

iteration to iteration, timestep to timestep. Adaptive 

implicit methods have been presented by Thomas and Thurnau 

(1982), Tan (1987). 
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3.11 Disadvantages and Advantages of Fully Implicit Solution 

Fully implicit models require much more extensive coding, 

significant computational work in matrix operations, and 

storage for coefficient matrices. The work required for each 

timestep is considerably more than other solution methods. 

However, this is more than compensated for by the stability of 

the model, its ability to take much larger timesteps in 

problems that exhibit large pore volume throughputs, well 

coning, gas percolation and high transmissibility variation. 

For use in automatic history matching, we would prefer to 

use a fully implicit model in order to obtain maximum 

stability and convergence for a wide range of parameter 

estimates. 

3.12 Jacobian Matrix 

Eqs. 3.24 and 3.10 to 3.13 are differentiated with 

respect to the set of unknown state variables of each cell 

using the chain rule. The resulting Jacobian is shown 

schematically in Figure 3.1 for a cell containing 3 components 

and with two neighbours. It will be noted that only the first 

n equations , which are the component mass balances, have 

flow terms which introduce unknown state variables of 

neighbouring blocks. The constraint equations for a given 

cell involve only state variables of that cell. Since' the 

work required to invert a matrix whose elements are 

submatrices of size n is proportional to n3, it is extremely 
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desirable to further reduce the value of n. We can take 

advantage of the fact that the constraint equations appear 

only on the main diagonal of the Jacobian matrix. We can 

diagonalize the constraint submatrix by Gaussian elimination 

and use it to eliminate 4 unknowns ( columns) in the n 

component balance equations. This results in an nc by n 

submatrix for each element of the Jacobian matrix and thus 

significantly reduced computational work to invert the 

Jacobian. 

The procedure to eliminate the constraint submatrix is 

coded very generally to account for a variable number of 

phases and components in each cell. Row and column pivoting 

is used to ensure diagonal dominance. 
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unknowns 

Comp 1 
Bal. 

Comp 2 
Bal. 

Comp 3 
Bal. 

Left Cell 
Upstream 

P xl x2 X3 S. SW Sg 

Current Cell 

P X1 X2 X3 So S Sg 

XXX XXX X 

XX X X 

XX X X 

XXX 

Right cell 
Downstream 

P X1 X2 X3 S. SW Sg 

X 

Fig 3.1 Schematic of Model Jacobian for 1 Cell with Two 
Neighbours 
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If the cells are numbered in normal ordering, the 

resulting Jacobian will have a banded structure. The Jacobian 

of a one-dimensional model will have three bands, a two-

dimensional model Jacobian will have five bands, and a three-

dimensional Jacobian will have seven bands. However, if 

communicating faults are present, or the model represents 

dual-porosity, dual-permeability or if special connections 

joining non-neighbouring cells are set up, then arbitrary 

sparse matrices will be generated. These need special 

treatment for iterative matrix inverse methods. 

3.13 Solution of Jacobian 

The above development reduces to a matrix equation of the 

form, 

Axf' - b (3.28) 

where x is the vector of state variables for all the cells. 

The inverse of the matrix A can be found by direct methods 

such as the D4 method by Price and Coats (1974) or the nested 

dissection method of George (1973). When the matrix A is 

large, however, its inverse is more economically found by an 

iterative method. Many iterative methods have been published, 

such as successive over-relaxation (SOR) and its variants 

(BSOR, LSOR), the strongly implicit procedure (SIP) suggested 

by Stone (1968), Orthomin and its variants proposed by Vinsome 

(1976), nested factorization by Appleyard and Chesire (1983), 
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and iterative D4 with minimization by Tan and Letkeman (1982). 

The details of these methods are best obtained from the 

indicated references. The preferred iterative methods are 

those which do not require any iteration parameters to be 

supplied by the user and thus are completely transparent to 

the user. In the automatic history matching model, a sparse 

matrix iterative solution method was employed. 

3.14 Pseudocode Flow Chart of the Simulator 

A simplified flow chart of .the simulator is presented. 

Initialization - 

Read in model dimensions, grid system, 

control parameters, start and stop times, 

tolerances, unit system. 

Read in fluid properties, rock 

properties, relative permeability 

relationships, capillary pressures. Read 

in the reservoir description. 

Read in initial reservoir pressures, 

datum depths, fluid contacts, saturation 

pressures. 

Calculate intercell transmissibilities. 

Calculate for each grid cell, the initial 

pressure and saturations, fluid 
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compositions and properties such as 

viscosity and density. 

Time Dependent Data - 

Read in timestep size, timestep controls, 

well locations, well rates and 

constraints, output options etc., at the 

current time. Increment time step if 

current time is less than stop time. 

Solve - 

Calculate well rates, intercell flow 

rates, accumulation rates. Calculate 

residuals for the cells and check against 

tolerances. 

If residuals less than tolerances then 

compute material balances; 

update current time; 

print output report if required; 

return to Time Dependent Data; 

Else 

set up Jacobian; 

solve linear system using 

iterative method to get x; 

update properties e.g. 

pressures, saturations, fluid 



48 

properties; 

return to Solve; 

End if 
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CHAPTER 4 

PARAMETER ESTIMATION TECHNIQUES 

The problem of trying to match a numerical model 

consisting of algebraic or differential equations to 

experimental data by variation of parameters appearing in the 

equations is known as parameter estimation. When the model 

equations involve linear expressions in the unknown 

parameters, the solution is usually very simple - the 

estimates can be obtained directly by solving a set of 

simultaneous linear equations. However, if the model is 

nonlinear, the solution involves the finding of the minimum 

value of a nonlinear function in multi-dimensional space. 

This requires an iterative solution which may or may not 

converge to the global optimum, due to the presence of local 

minima or extremely shallow valleys near the optimum. 

In general, there are two classes of models, algebraic 

models and differential equation models. In the algebraic 

form, 

y - f(x,k) (4.1) 

we have a vector of measured or observed variables y, a vector 

x of known state variables, or which have been set by the 

experimentalist, and a vector of unknown parameters k. 

More difficult to solve are models which are formulated 
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in terms of differential equations. A special subclass are 

the standard dynamic models which are characterized by a set 

of state variables which change with time according to first 

order nonlinear differential equations. 

dx(t) - f(x(t),k;u) 
dt 

(4.2) 

Here x is the vector of state variables, k is the vector of 

unknown parameters, and u is a vector of user specified 

variables. The initial conditions are usually known and some 

of the states of the system are observed at various points in 

time. The vector of calculated variables, y, is related to 

the state vector x by the nonlinear relationship, 

y(t) -h(x(t)) (4.3) 

Examples of dynamic systems include chemical reaction systems 

where the kinetic parameters have to be estimated. 

The automatic history matching problem in reservoir 

simulation is a classical nonlinear parameter estimation 

problem. The numerical model consists of a set of mixed 

differential and algebraic equations as discussed in Chapter 

3, and is equivalent to those considered in the chemical 

engineering literature by Petzold (1982), and Caracotsios and 

Stewart (1985). The parameters k, to be estimated usually 

consist of the porosity and permeability distributions, though 

other physical properties such as rock compressibility, 
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relative permeability, fluid properties may also be considered 

as parameters. 

In parameter estimation, we try to find a set of k such 

that some scalar function of the errors is minimised. The 

differences between the observed variables k and the 

calculated variables y is the vector of residuals, c, 

(4.4) 

In least squares estimation, the objective function SLS (k) 

is defined as the sum of the squares of the residuals. 

no 

SLS(k) - [(t1)-y(t)] TQ((t1)-y(e)] 
i-i 

(4.5) 

In general, the values of Q. the weighting matrix, are chosen 

to scale the relative magnitude of the measured variables. On 

statistical grounds, if the error between the measured and the 

predicted variables have zero mean and a known covariance 

matrix V1 then Q should be the inverse of this covariance. 

This can be proved using the method of maximum likelihood (ML) 

estimation. 

4.1 Development of Least Squares from Maximum Likelihood 

Estimation 

In order to provide a mathematical basis for parameter 

estimation, it is necessary to assume that the errors in the 
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observations have a probability distribution, usually the 

normal distribution. Then the parameters in the probability 

model of the errors may be estimated together with the unknown 

parameters of the model. The joint probability density 

function of all the errors s in the observed variables is 

therefore 

function. 

This is also called the likelihood 

L(k,*) '-p(eI4) -p (9-y'*) (4.6) 

Here ip represents the parameters in the normal distribution 

such as the mean and the variance. The variables y are 

calculated using the numerical model given any values for the 

model parameters k. The maximum likelihood estimate is 

obtained by finding the values of k and ip which maximize L. 

Since the logarithm is a monotonic increasing function of 

its argument, the values of k,kp that maximize L also maximize 

log L. Taking the logarithms often simplifies the final 

objective function to be maximized, and this is the case here. 

Thus, 

L*(k,*) - log L(k,*) - log p(9-yI) (4.7) 

If the errors in different experiments, or in groups of 

observations at each observation time, are independent, the 

joint probability density p is the product of the individual 

experiments' probability densities, and, 
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no 

L*(k,*) 1ogp(9(t1) - y(t) Iir) 
F-i 

The normal distribution, p, is given by, 

p(e 11 V) - 1 exp(- erVI' ½ e) i-1,2, • 

(27 )2 IVjI2 

(4.8) 

(4.9) 

where it is assumed the errors in each experiment are 

independent with zero means and covariance matrix V. Vi has 

the dimensions of m x m where there are m observations in each 

experiment at observation time t. 

Substituting Eq. 4.9 into Eq. 4.8, we obtain, 

no no 

L*(k,V) - -ran °log2it - -V'1og(IvI) -e'V'e 
2 2f If 

(4.10) 

Next, if we assume that the value of the covariance matrices 

V1,i1,...n0 are known, then the only non-constant term in Eq. 

4.10 is 

V1-1 € 

(4.11) 
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and maximizing L*(k), is equivalent to minimizing, 

no 

S(k) - e' V e (4.12) 

Comparing equations 4.5 and 4.12, we see that maximum 

likelihood estimation is equivalent to least squares when Q 

= v'. It should be noted that V is the covariance matrix of 

the errors of the observations and is not the covariance 

matrix of the probability distribution of the unknown 

parameters k, which we will consider next in Bayesian 

estimation. 

4.2 Bayesian Estimation 

There is usually some prior information about the 

permissible values, or the most probable values of the unknown 

parameters k. For example, it is obvious that the value of 

the porosity parameter must be a positive number between 0 and 

1. The most probable value of a permeability parameter may be 

obtained from well test analysis of a well located in the 

parameter zone. This prior information can be put on a 

mathematical basis by assigning a probability distribution to 

it and then incorporating it into the objective function. 

This prior distribution p0(k) biases the parameter search in 

favour of parameter values for which the prior density 

function is relatively large. Naturally the bias decreases as 

the number of observations increases. 
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In practice, our prior information on a parameter k often 

takes the form of a mean value k, ± a, where or is the. standard 

deviation. A normal prior distribution is often used for 

simplicity as suggested by Bard (1974), namely 

p,, (k) =  1  exp   
20 2 

(4.13) 

The prior information may be taken into account in.the 

estimation process by combining the likelihood function L, and 

the prior density. The posterior density is proportional to 

their product, 

L(k,$) p, (k) 

(4.14) 

which follows from Bayes' Theorem (1763). 

Following the same discussion as in the previous section, 

instead of maximizing Eq. 4.7, we maximize, 

- log p(j?-yl$) + 1ogp0 (k) 

(4.15) 

Writing the prior distribution of the parameters, p0(k) for p 

parameters with a known covariance matrix, W, of dimension p 

x p, and with mean Icm, we obtain, 

1 

PO (k) - (27t) 2 IWi 2 exp [--. (kkm) Tprl(kk)] 

(4.16) 
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Then the logarithm of p, (k) is 

logp0 (k) - -.  log (2it) - -.iogIwI -  -1 (k-•k) TWl(k_km) 

(4.17) 

The Bayesian objective function to be minimized is obtained 

from Eq. 4.15 by substituting Eq. 4.9 and Eq. 4.17, ignoring 

constant terms and changing signs. 

no 

S2 (k) - E [9(ti) -y(t)] TQ[.(t)-y(t)] + (kkm) TW(kkm) 

(4.18) 

This composite objective function will be used in Chapter 9, 

when we incorporate prior information into the automatic 

history matching model. 

4.3 Methods of Estimation 

The optimum value of k has to be found by an iterative 

procedure. Gradient methods of solution are usually employed. 

At the jth iteration, we have a current estimate of and we 

seek a new value using the equation, 

- - A R g (4.19) 
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where X is a scalar, R is a matrix to be defined, and g the 

gradient vector of S, i.e. g( aSIok. Various gradient 

methods differ from each other in the choice of R and X. R 

determines the new step direction from and ? defines the 

step length. 

In the method of steepest descent, R = I. This method 

converges very slowly for ill-conditioned problems, and thus 

is not suitable for reservoir parameter estimation. 

When R is the inverse of the Hessian matrix, i.e. the 

matrix of second derivatives, then the algorithm becomes the 

Newton-Raphson method. This method has quadratic convergence 

properties, but it requires computation of the second 

derivatives of S, a very costly process, especially for 

differential equations. 

The Gauss-Newton method computes an approximation to the 

Hessian matrix without actually computing any second 

derivatives of the model equations. Only the first 

derivatives, &f/äk are required. One difficulty with this 

method is the possibility of overshoot when the linear 

approximation is not quite valid. Then the step length X 

should be reduced, and the optimum step size is often found by 

interval halving or subsidiary optimization along the step 

direction. 

A class of methods termed variable metric, or quasi-

Newton, exist that approximate the Hessian matrix but use 

information from only first derivatives. These methods employ 



58 

conjugate directions. In essence, estimates of the Hessian 

are successively improved with each iteration. 

In a large number of test problems, Bard (1970) found the 

Gauss-Newton method to be somewhat more efficient than the 

other methods. We will use the Gauss-Newton method in this 

work because it possesses quadratic convergence properties, 

does not require second derivatives, and because we can 

compute statistical information from the Gauss-Newton matrix 

at convergence to provide reliability estimates of the final 

parameter values. 
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CHAPTER 5 

PROPOSED COMPUTATIONALLY EFFICIENT GAUSS-NEWTON METHOD 

In this chapter, the proposed modifications to the Gauss-

Newton method are developed. First, we will restate the 

problem, present the derivation of the Gauss-Newton method, 

outline the normal implementation of the method, and then 

introduce the modifications that would significantly reduce 

the computational effort. 

5.1 Problem Statement 

Any reservoir model, whether it is a simple black-oil 

model, a compositional model or a thermal model, and 

regardless of its dimensionality, can be represented generally 

by the set of ordinary differential equations, 

dx(b) - 
,f (x( t) , k; u) 

dt 
(5.1) 

x(t0) -za (5.2) 

where x is an n dimensional vector of state variables (such as 

pressure and saturations), x0 is the initial state, k is the 

p dimensional vector of parameters to be estimated ( usually 

porosity, permeability) and u represents the user specified 

variables (e.g. flowrates). 

The vector of calculated variables, y, is related to the 
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state vector x by the nonlinear relationship, 

y(t) -h(x(b)) (5.3) 

As an example, the calculated water-oil ratio of a well 

is a function of the pressure, saturations and fluid 

composition of the grid cells the well is completed in. 

In many problems, Eq. 5.3 assumes the linear form, 

y(t) - Cx(b) (5.4) 

where C is an in x in matrix. This occurs when the calculated 

variable is also a state variable, for example, pressure. In 

particular, for reservoir simulation problems, this matrix is 

usually very sparse with zero entries everywhere except where 

the corresponding state variable is involved in a functional 

relationship with the calculated variable. This implies the 

work required to solve the numerical model is extremely 

disproportionate to the number of measured variables. The 

function evaluations are therefore time consuming and as a 

result the number of function evaluations should be minimized. 

In least squares (LS) estimation, the parameters are 

obtained by minimizing the LS objective function. 

no 

SLS (k) - 9(t1)-y(t1)} TQ1[(t)-y(t)) 
1-1 

(5.5) 
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where Q is an in x in user supplied weighting matrix. 

5.2 The Gauss-Newton Method 

The method used to obtain successive estimates of the 

parameter vector k is the Gauss-Newton method. This is a 

quadratically convergent method requiring only first 

derivatives. A brief description of the method as presented 

by Kalogerakis and Luus (1983) follows. 

Suppose at the jth iteration, an estimate of the 

unknown parameter vector is available. To obtain the next 

estimate the output vector y is expanded by Taylor 

series to yield, 

T T 

y (i+1) (t) i.y(i) (b) (17 
r ) I\( k ) 

ax a  (5.6) 

When the measured variables are linearly related to the 

state variables, substitution of Eq. 5.4 into Eq. 5.6 yields, 

y(i41) (b) - C (b) + C G( t) (5.7) 

where G(t) is the n x p sensitivity matrix (äxT/äk)T. 

Substituting y 1 (t) from Eq. 5.7 into the objective function 

Eq.5.5, and setting ôSIäk = 0, we obtain a set of linear 

algebraic equations, 
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EGT(ti)cTti Q c(t)G(t)]k(i+1) 

no 

no 

i-i 

(5.8) 

which is of the form AAk 1 = b. This set of linear equations 

can be solved to yield and thus the next estimate 

of the parameter vector is obtained. 

Similarly for the nonlinear case of Eq. 5.3, 

linearization of the output vector around yields, 

T T 

y(i+1) (t) - y (i) (e) +( \ (•L )(JC(i+1)ax )aic  
(5.9) 

Following the same development that led to Eq. 5.8, we 

obtain,  ax  G(tj) jAk(J+' [n (ahT ) (ahT 
ax ) T 

IG T (ti) 

no (ahr\ 
_EG T (bi)ta )Q(9(ti)_Y(t) 
i-i 

(5.10) 

Thus when the observation relationship is nonlinear of 

the form of Eq. 5.3, we use Eq. 5.10 for the Gauss-Newton 

method. 

The sensitivity matrix G is obtained by differentiating 

both sides of the model equation Eq. 5.1 with respect to k to 

yield 



dG(b) - 

G(t) %—) + (la-f ) , 
dt  ak 

To obtain the initial conditions, it is observed that the 

initial state vector x0 is independent of the parameter vector 

k, and therefore, 

G(t0) - 0 (5.12) 

5.3 Integration Method - The Implicit (Euler) Method 

In chemical engineering, the integration methods used 

for ordinary differential equations are usually higher order 

methods such as the Runge-Kutta or Gear's method. For 

reservoir modelling, the equations involved are partial 

differential equations, and these are reduced by grid 

discretization into a set of ordinary differential equations. 

The methods used for integration of these parabolic equations 

are either explicit (forward) difference, or implicit 

(backward) difference methods. The implicit difference method 

is equivalent to the implicit Euler method. More advanced 

reservoir simulators use the implicit method because of its 

unconditional stability in spite of the additional work in 

setting up the Jacobian and solving the simultaneous sets of 

equations. Much larger timesteps can be used with the 

implicit method. The implicit method will therefore be used 

in this work. 

To integrate the model equations, Eq. 5.1 is expressed in 
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difference form, 

(n+1) 
- t (x' 1 , k; u) 

At 
(5.13) 

and x" 1 is obtained iteratively. Suppose at the 1th 

iteration, we have an estimate x1 of the state vector. To 

obtain the next estimate we have the expansions, 

and 

x (1+1) - + Ax 

afT\T (2) f(x 21 ,k; u) - t(x 2 ,k; u) + ax ) Ax I  

Substituting these into Eq. 5.13, and rearranging, 

(1) 

1( 3 8xfT\ E J T 1 1 Ax- X (1) 

,k; u) 
) L_  At 

(5.14) 

(5.15) 

(5.16) 

This is of the form AAx = b, and can be solved for Ax and thus 

to obtain Thus the model equation can be integrated to 

obtain values of the state vector x at the observation times. 

The step size, At, is usually adjusted to control local 

truncation error. 

The sensitivity equations can be integrated using the 

implicit method in a similar way. The resulting iterative 

equation is 
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1( r 1(1) 
3fT ii 

AG 

(5.17) 

G1-G' I(3fr T1 1 r At  3x) j G(1) - 3k(afT) 1 (1) 

The procedure for the Gauss-Newton method thus consists of the 

solution of equations 5.16 and 5.17 to obtain values of the 

state vector x and the sensitivity matrix C • At •the 

observation times, these values of x and C are used in Eq.5.8 

or 5.10 to generate the Gauss-Newton matrix. 

5.4 Normal Implementation of the Gauss-Newton method 

The model equation, Eq.5.1, represents a set of n ODEs 

and the sensitivity equation, Eq. 5.11, represents a set of 

n x p ODEs. Most authors such as Bard (1970), Thomas (1972), 

Dogru (1981) in describing the implementation of the Gauss-

Newton method have recommended that all n.(p+1) equations be 

integrated simultaneously using the same integration step 

sizes. This integration must be performed at each iteration 

of the Gauss-Newton method in order to supply the values of x 

and C required in Eq.5.8. While this is practical for small 

values of n and p, the simultaneous integration would not be 

feasible for reservoir simulation models. A typical reservoir 

model may have a value of n of 10000, and the number of 

parameters, P may be 20. The normal Gauss-Newton 

implementation would require the simultaneous integration of 
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Table 5.1: Pseudo-Code Flow Chart for Gauss-

Newton Method. 

Flow Chart (Pseudo-Code) 

1. Read initial model parameters, k. 

2. Integrate model and sensitivity equations 

overtime domain. Compute LS objective function. 

Invert matrix size n(p+1) each 

Newtonian iteration in each timestep. 

3. Generate Gauss-Newton matrix and solve for 

k. 

4. Using new estimate of Ic, integrate model 

equations, compute LS objective function. 

5. If objective function value is > previous 

value, adjust ik, and goto 4. 

6. If Eik > tolerance goto 2, else converged 
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200000 ODEs over the history match time period for each Gauss-

Newton iteration. 

The pseudo-code for a typical flow chart for the Gauss-

Newton method is shown in Table 5.1. 

5.5 Efficient Implementation of the Gauss-Newton Method 

We will now introduce two important considerations that 

will significantly reduce the computational effort for the 

generation of the sensitivity coefficients and thus lead to an 

efficient and practical implementation of the Gauss-Newton 

method. 

5.5.1 Matrix Inversion 

If the model equations Eq. 5.16 and the sensitivity 

equations, Eq. 5.17, are compared, it will be observed that 

they have the same coefficient matrix. If the unknown vectors 

Ax and AG are linearized into a single vector, Ax, A(ôx/äk1), 

A(äxl&k2),. .. A(cJxIôk), of length n(p+1), then the Jacobian 

matrix is of the form shown in Figure 5.1. Now if the 

equations are simultaneously integrated by a library routine, 

it is quite possible that the entire n(p+1) matrix will be 

inverted without recognizing the fact that the coefficient 

matrix is identical for each successive set of n equations. 
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Very substantial savings in computation time can be 

obtained by inverting the coefficient matrix of the first n 

equations and then performing matrix multiplication to get the 

remaining p sets of n unknowns. Typical reservoir models 

utilize several thousand grid cells for reservoir description 

and the computational effort in inverting a matrix of this 

size usually takes up to 70% of the computing time for a 

single timestep even with an efficient iterative method. 

Therefore in utilizing the inverted Jacobian from the model 

equations at each iteration, the time it takes to integrate 

the n x p sensitivity equations is much less than n x p 

equivalent model runs. 

5.5.2 Sequential Integration of Sensitivity Equations 

During the integration of the model equations, timestep 

failures may frequently occur. These failures may occur if 

the current timestep size is too large initially, as result of 

which the model iteration equation, Eq. 5.16, may not converge 

in a reasonable number of iterations. In other cases, to 

control truncation error, maximum allowable changes are set 

for each timestep and if these changes are exceeded, the 

timestep is repeated. The timestep size is reduced 

successively until convergence occurs or allowable changes 

over the timestep occur. 

If the model and sensitivity equations are simultaneously 

integrated, then for timestep cuts, the work performed in 
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integrating the sensitivity equations would have had been 

performed in vain. It is therefore suggested that the 

sensitivity equations should be integrated only after the 

model equations have converged for any timestep, i.e. the 

solutions of the model and sensitivity equations are 

decoupled. We would first solve the model equations for a 

given timestep, and then the sensitivity equations for the 

same timestep, and repeat the sequence for the next timestep. 

This is shown schematically in Figure 5.2. 

This sequential solution has another significant 

advantage. Referring to the iteration equation for the 

sensitivity equations, Eq. 5.17, it can be seen that the 

coefficients for the sensitivity equations are iteration 

dependent. As the values of the state variables x change 

during the solution of the model equations, the coefficient 

matrix of the sensitivity equations changes, but these changes 

are not a result of the changes in the sensitivity variables 

ax/ak. This implies a different set of sensitivity equations 

is created by each model iteration and this may cause 

additional iterations in the convergence of the sensitivity 

equations in the course of a timestep. The solution of the 

sensitivity equations after the model equations in a given 

timestep implies the coefficients of the sensitivity equations 

will be constant, effectively linearizing the sensitivity 

equations. 
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Fig. 5.2 Schematic of Sequential Solution of Model 

and Sensitivity Equations. 
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The combination of sequential integration and the 

utilization of the inverted Jacobian from the model equations 

to solve the sensitivity equations greatly reduces the work 

effort to obtain the sensitivity coefficients. The 

sensitivity equations are solved only once at the last 

iteration of each successful timestep of the implicit 

procedure for the evaluation of the state variables of the 

model equations, rather than simultaneously at every iteration 

of every successful or unsuccessful timestep. Furthermore, 

the sensitivity coefficients are simply obtained by matrix 

multiplication using a previously inverted Jacobian available 

from the model equations. It is therefore expected that the 

work to solve the sensitivity equations for p parameters will 

be very much less than the p equivalent model runs required in 

the normal implementation of the Gauss-Newton method. 

5.6 Convergence Testing using Chemical Kinetic Models 

It is of interest to investigate whether or not the 

proposed method is convergent. Numerical experimentation was 

performed with the four typical chemical engineering kinetic 

problems used by Kalogerakis and Luus (1983) in their work on 

using the information index to extend the region of 

convergence. The initial values of the parameter estimates 

were set at the limits of the regions of convergence reported 

in the paper. 
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5.6.1 Example 1 

This is the pyrolytic dehydrogenation of benzene to 

diphenyl described using the two parameter model, 

dt 

-- r1/2 - x2(0)-0 

Z1. - (X12  

- k2(x1x2-(1-x1-2x2) (2-2x1-x2)/3.852) 

dx1 - 
- r1 - r2 x1(0)-1 

(5.18) 

where x1 and x2 are the moles of benzene and diphenyl per mole 

of benzene feed. This. system was studied by Seinfeld and 

Gavalas (1970) for parameter estimation. The parameters k1 

and k2 are to be estimated from the measured values of the 

state variables x1 and x2 obtained as a function of time shown 

in Figure 5.3. The optimum values (k1*,k2*) of the parameters 

have previously been determined to be 355.4 and 403.3. Table 

5.2 shows the number of iterations required by the proposed 

Gauss-Newton method to converge to the optimum values from 

different starting points. The table column heading of 

(100,100) means that the initial guess of k1 is 100 x k1*, and 

of k2 is 100 x k2*. A listing of the program is provided in 

Appendix A. 
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Fig. 5.3 - Given Measurements for Example 1 
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Table 5.2: Number of Iterations for Example 1 

(k01/k1*,k02/k2*) (100,100) (1,100) (100,1) (10000,10000) 

iterations 9 10 9 15 
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5.6.2 Example 2 

This is a model of an isothermal CSTR with complex 

reactions, used by Lapidus and Luus (1967) for optimal control 

studies. There are seven state variables, x1 to x7, and seven 

differential equations. 

dx1/dt - k5-qx1-k1x1x2-k4x1x6 O.9; x1(0)-0.1883 

dx2/dt - 7.0-qx2--k1x1x2-2k2x2x3; x2(0)-0.2507 

thc3/db - 1 . 7 5 - qx3 -k2x2x3 ; x3(0)-O.0467 

dx4/dt - -qx4+2k1x1x2-k3x4x5; x4(0)-0.0899 

dx5/dt - -qx5+3k2x2x3-k3x4x5; x5(0)-0.1804 

dx6/dt - -qx6+2k3x4x5-k4x1x6y0.g; x6(0)-0.1394 

thc.,/dt - -qx7+2k4x1x6 O.9; x,(0)-0.1046 

q- 8.75+k5 

(5.19) 

There are five unknown parameters, k1 to k5 and four observed 

state variables x1, x4, x5, x6. The values of the parameters 

are assumed to be k1= 17.6, k2 = 73.0, k3 = 51.3, k4 23., k5 

= 6.0. Using these values, simulated measurements of the 

observed variables were obtained by integrating the model 

equations. This data is shown in Figure 5.4, and is used as 

the observed data to match by varying the initial values of 

the parameters. The values of k were varied in sequence, and 

a is the normalized distance of the initial guess from the 

optimum. Thus an initial guess of (0.176 x io, 0.731 x 102, 

0.513 x 102, 0.23 x 102, 0.601 x 101) corresponds to a = 10 in 

the direction (1,.1,.1,.1,.1). Table 5.3 shows the number of 

iterations required by the modified Gauss-Newton method. 
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Table 5.3: Number of iterations for Example 2 

direction (1,1,1,1,1) (1,.1,.1,.1,.1) (.1,1,.1,.1,.1) (.1,.1,1,.1,.1) 

a 15 160 290 310 70 10 

iteration 9 10 15 17 8 8 
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Fig. 5.4 Simulated Measurements for Example 2 
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5.6.3 Example 3 

This describes a reversible one-enzyme system. It was 

used by Garfinkel et al. (1966) and Enright and Hull (1976) as 

a test problem for stiff differential equation solvers. The 

model equations are, 

dx1/dt - -k1x1x2+(k2-i-k3)x3-k4x1x4; x1(0)-3.365x10 7 

thc2/db - -k1x1x2+k2x3; x2(0)-8.261x10 3 

dx3/dt - x3(0)-9.38x10 6 

dx4/dt - -k4x1x2+k3x3; x4(0)-l.642x10 3 

(5.20) 

There are four state variables, of which only x1, x2 are 

observed. The parameter values are assumed to be k1 = 3.0 x 

ion, k2 = 2.0 x 10 1, k3 = 1.0 x 102, and k4 = 9.0 x 10g. Using 

these k values, simulated data was generated by solving the 

differential equations. The data is shown in Figure 5.5 and 

used as the observed data to match. Again, the values of k 

were varied in sequence and a is the maximum step length in 

each of the directions. The 'iterations needed to converge are 

shown in Table 5.4. 
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Fig. 5.5 - Simulated Measurements for Example 3 
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Table 5.4: Number of Iterations for Example 3 

direction (1,1,1,1) (1,.1,.1,.1) 1'. 1'. (.1,.1,1,.1) (.1,.1,.1,1) 

a 90 110 40 190 30 

iterations 10 13 12 11 8 
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5.6.4 Example 4 

As a final test problem, the reaction rate expressions 

introduced by Robertson (1967) are considered. These have 

also been used to evaluate stiff differential equation 

solvers. 

thc1/dL - -k1x1-'-k2x2 (l-x1-x2); 

thc2/db - -k3x22  

x1 (0) -1. 

X2 (0) -0. 

(5.21) 

There are two state variables x1 and x2, both of which are 

measured. The values of the rate constants, k1 = 0.04, k2 = 

1.0 x 101, k3 = 3.0 x107, were used to generate simulated data 

as shown in Figure 5.6. Note that the initial value of y2, the 

simulated value of x2, is 0 at t = 0. The number of Gauss-

Newton iterations required for convergence are shown in Table 

5.5 for a number of different initial parameter values. 

Table 5.5: Number of Iterations for Example 4 

direction (1,1,1) 

a 110 20 5 850 

iterations 14 13 5 19 
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Fig. 5.6 - Simulated Measurements for Example 4 
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5.7 Discussion 

Since convergence was obtained for the same a as tested 

by Kalogerakis and Luus (1983), the numerical experimentation 

has shown that the proposed modifications to the Gauss-Newton 

method have not reduced the region of convergence of the 

method. As the number of iterations required to converge to 

the optimum is very reasonable it can be inferred that the 

convergence characteristics of the Gauss-Newton method has. not 

been impaired. In the next chapter, we will apply the method 

to a single-phase reservoir model. 
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CHAPTER 6 

APPLICATION TO A SINGLE-PHASE MODEL 

The next research objective was to incorporate the 

computationally efficient Gauss-Newton algorithm into a 

single-phase compressible flow model in order to investigate 

its applicability to the models typical of reservoir 

simulation. This chapter describes the testing of the 

resulting model with two single-phase problems reported by 

Coats et al. (1970) and Thomas et al. (1972) in their work on 

automatic history matching models. 

6.1 Single-Phase Compressible Flow Model 

The general compositional model developed in Chapter 3 

can be considerably simplified by making the following 

assumptions: 

(a) there is only a single phase in the reservoir, 

(b) the single phase consists only of one component, 

(C) there is no gravity effect on flow, 

(d) the source/sink term is constant, 

(e) the viscosity is constant. 

With these assumptions, the resulting partial 

differential equation is, 

V.VP+ q11 at 

(6.1) 
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This can be reduced by grid discretization, for a grid of 

n cells, to a set of n ordinary differential equations, 

written as 

dx(b)  
- f (z( t) , k; u) 

dt 

(6.2) 

with initial conditions, 

(6.3) 

where x is an n dimensional vector of grid cell pressures - 

the state variables, x0 is the given initial state, k is the 

p dimensional vector of porosities or permeabilities to be 

estimated, and u is a vector of user specified parameters, 

such as flowrates. 

This is analogous to the model equation described in 

Chapter 5 in the development of the Gauss-Newton method. Thus 

the theory presented in Chapter 5 is readily applicable to the 

single-phase compressible flow model. 

6.2 Performance Evaluation 

6.2.1 Single-Phase Gas Reservoir 

This example was taken from Coats et al. (1970). It 

represents a gas reservoir with an 8 x 8 computing grid. The 

reservoir description is given in Table 6.1. The reservoir is 

divided into 6 zones of constant permeability as shown in 
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Table 6.1: Single-Phase Gas Reservoir Problem Description 

Reservoir Dimensions 20000 x 20000 feet 

Grid Cells 8 x 8 

Grid Dimensions 2500 x 2500 feet 

Thickness 25 feet 

Porosity 0.15 

Initial Pressure 2000 psi 
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Figure 6.1 - Single-Phase Gas Reservoir Example 
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Figure 6.1. The observed data consists of the pressures at 

eight observation wells with locations shown in Figure 6.1, 

measured at 360 days using the true zone permeabilities. The 

timestep used in the run was a constant 30 days. 

The parameters to be estimated were the permeabilities of 

the six zones. As. initial estimates of the true zone 

permeabilities, a constant value of 0.5 md was used in all 

zones. The iteration history of the six zone permeabilities 

are shown in Table 6.2 and in Figure 6.2. In seven 

iterations •of the Gauss-Newton method, the actual zone 

permeabilities were recovered. The convergence was rapid, 

indicating the stability of the proposed Gauss-Newton 

modifications, that is, sequential solution of the model and 

sensitivity equations. 

The cputime required for the evaluation of the model 

equations was 3.74 secs on the computer utilized. The cputime 

required for the evaluation of the model and sensitivity 

equations for one Gauss-Newton iteration was 5.83 secs. This 

is the equivalent of 1.56 model runs. 

Previous implementations of the Gauss-Newton method would 

have required 7 model rune for each Gauss-Newton iteration for 

this 6 parameter problem. Thus there is a significant 

decrease in computational effort compared with previous 

implementations of the Gauss-Newton method. 

Coats' linear programming algorithm required 30 runs made 

with parameters generated using a random number generator. 
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Thomas' algorithm required 25 runs to estimate the parameters 

to the same accuracy. A first-order optimal control method 

would have required a minimum of 2 equivalent model runs per 

iteration. Since the Gauss-Newton is a second-order 

convergent method, its convergence behaviour is much better 

than the first-order optimal control method. This implies the 

proposed implementation of the Gauss-Newton method will take 

fewer iterations to obtain a parameter estimate than the 

first-order optimal control method and also require less 

computer time for each iteration for this particular example. 

The case was repeated with 8 zones instead of 6 by 

subdividing zones 1 and 6. The cputime required for the 

evaluation of the model and sensitivity equations was 6.51 

secs or the equivalent of 1.74 model runs. This compares with 

the 9 equivalent model runs that would have been required 

using previous implementations of the Gauss-Newton method. 
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Table: 6.2 Estimates of Parameter Values at each Iteration for Single-Phase Gas 
Reservoir 

Iter LS Value ki k2 0 k4 k5 k6 

0 313324 0.5000 0.500 0.500 0.500 0.500 0.500 

1 58449 0.8559 1.364 1.271 1.146 1.108 1.329 

2 10107 0.9870 2.800 2.339 1.848 1.726 2.645 

3 1384.5 0.9994 4.954 3.599 2.355 2.013 4.601 

4 115.23 1.0000 7.315 4.602 2.505 1.836 6.988 

5 3.4723 1.0000 8.715 4.970 2.505 1.605 8.996 

6 0.0230 1.0000 8.992 5.001 2.501 1.512 9.881 

7 0.000002 1.0000 9.000 5.000 2.500 1.500 9.999 
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Fig. 6.2 - Estimates of Parameter Values at Each 
Iteration 

in Single-Phase Reservoir Run 
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6.2.2 Five-Spot Pilot Example 

This example is similar to the problem described by Jahns 

(1966) and later by Thomas et al. (1972). A 20 x 20 grid is 

used to describe an isolated five-spot in a large reservoir. 

There are eight zones of constant permeability as shown in 

Figure 6.3. The full reservoir description is given in Table 

6.3. A constant production rate of 3000 bbl/d is equally 

divided among the four central wells. The observation data 

consists of the drawdown pressures at each of the four 

observation wells measured every hour over a twenty hour 

period using the true zone permeabilities. The timestep size 

used for the model integration was 1 hour. 

The Gauss-Newton iteration process was started with an 

initial estimate of 500 md. for all eight zones. The values 

of the individual zone permeabilities at each iteration are 

shown in Table 6.4 and graphed in Figure 6.4. The true 

permeabilities of the eight zones were recovered in seven 

iterations. No stability problems were observed. 

The cputime required for one model run was 195.22 secs. 

To evaluate the model and sensitivity equations for one 

iteration of the Gauss-Newton method, the cputime required was 

243.47 secs or 1.25 equivalent model runs. This compares very 

favourably with the nine equivalent model runs that would be 

required by the normal implementation of the Gauss-Newton 

method. 

The results also show that the larger the reservoir 



94 

model, the more significant will be the cost savings of the 

proposed implementation in terms of equivalent model runs. 

This is because the proportion of time spent in inverting the 

Jacobian of the model will increase as the number of equations 

increase. 

Table: 6.3 Five-Spot Pilot Example Problem Description 

Reservoir Dimensions 1800 x 1800 feet 
Grid Cells 20 x 20 
Grid Dimensions 90 x 90 feet 
Thickness Region 1 6 ft 

Region 2,3,6,7 8.5 ft 
Region 4,8 7.5 ft 

Porosity 0.16 
Compressibility 4.66 x 10 v/v/psi 
Initial Pressure 2000 psi 
Producing Well Locations (10,10), (11,10), 

(10,11), (11,11) 
Producing Well Rates 750 bbl/d 
Observation Well Locations (6,6), (15,6), 

(6,15), (15,15) 
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Table 6.4: Five-Spot Pilot Example - Parameter Convergence 

Iter LS ki k2 k3 k4 k5 k6 k7 k8 

0 1121 500 500 500 500 500 500 500 500 

1 734.9 875 875 332.9 676.1 875 875 125 850.2 

2 366.8 1531 825.9 267 660.3 1531 439 218.8 431.4 

3 113.9 2680 857.9 186.1 678.2 2680 705.2 54.7 551.4 

4 28 3313 910.1 81.1 709.7 669.9 1228 13.67 887.6 

5 2.712 3222 901.5 141.9 706.9 924.9 1167 23.93 868.7 

6 0.0321 3287 909,8 149.5 709.9 1160 1290 32.15 916.8 

7 0.00001 3300 910 150 710 1199 1300 45.55 919.7 
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Fig. 6.4 - Estimates of Parameter Values at each 
Iteration 

in Five-Spot Pilot Example 
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6.3 Discussion 

Table 6.5 summarizes the results of the two numerical 

examples. The magnitude of the differences are graphically 

illustrated in Figure 6.5. It is clear that the proposed 

modifications to the Gauss-Newton method has reduced 

significantly the computational effort for each iteration of 

the Gauss-Newton method even for this relatively simple 

single-phase reservoir model. With this milestone reached, 

the next objective is the incorporation of the method in a 

three-dimensional three-phase reservoir model. 

Table 6.5 : Comparison of Equivalent Model Runs for 
Each Gauss-Newton Iteration 

Problem No of 
Parameters 

Proposed 
Gauss-Newton 

Standard 
Gauss-Newton 

Gas Model 6 0.56 6 

Gas Model 8 0.74 8 

Five-Spot 8 0.25 8 
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Fig. 6.5 - Equivalent Model Runs to Compute 
Sensitivity Coefficients 
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CHAPTER 7 

APPLICATION TO A THREE-DIMENSIONAL THREE-PHASE MODEL 

In this chapter, the modified Gauss-Newton method is 

applied to a fully implicit three-dimensional three-phase 

limited compositional simulator. The model with its automatic 

history matching capabilities is described. A numerically 

difficult three-phase coning problem was used to test out the 

model. 

7.1 Model Equations 

The model consists of a set of ordinary differential 

equations which describe the molar balances of each component. 

The phase behaviour is represented by K values and any 

component can exist in any phase. The model is presented 

succintly in difference notation. 

Assuming there are n phases and nc components, the 

equation component balance, for I = 1 to n, is 

n. 

AFT- Pxip(1iPPcYpAZ)] 
.P-1 [ I.L 

p v n 
TE (4EpSx1 ) +q1 

(7 .1) 
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A set of algebraic constraints completes the model. These 

are: 

Saturation constraint equation 

12. 

E sp - i 
p-i 

n, mole fraction constraint equations, p = 1,n 

(7.2) 

(7.3) 

Master mole fraction variables as introduced by Coats 

(1980) are used to reduce the number of mole fraction state 

variables from n, x n in number to only n variables. The 

component mole fraction variables xxr, in Eqs. 7.1 and 7.3 are 

replaced by 

-Yip - Krp Xr (7.4) 

where K1 is the equilibrium K value of component I in phase 

p and X1 is the master mole fraction for component I. 

The set of unknown state variables for each grid cell for 

n components in a three phase system would then be P, 

X2 •X jci So1 S,1 Sg• 

The numerical integration method used to solve the model 

equations is the implicit method. Eqs. 7.1 to 7.4 are 

differentiated in terms of the set of unknown variables using 

xl, 
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the chain rule. The resulting Jacobian is used to calculate 

the unknown variables using Newton's iteration scheme. 

7.2 Gauss-Newton Method 

The Gauss-Newton method requires the evaluation of the 

sensitivity coefficients. The matrix of sensitivity 

coefficients, G, is obtained by differentiating the model 

equations with respect to the parameter vector k. For the 

mole balance equation for component I, 

22p 

E 
p-i 

aJ 

ak 
v a 

8(( Ep  SP x1,) 
P .3. 

(7.5) 

Differentiation of the saturation constraint equation 

yields, 

tlp 

(7.6) 
p-i ak 

Differentiation of the n mole fraction constraint 

equations yields, 

. ____ .- 0  ; p-imp (7.7) 
'—'3k I-i 
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The set of unknown sensitivity coefficients for each grid 

cell would then be 

aP ax1 ax2 ax as0 as asg 
J' -F, - '•" ak , - ji , -F 

where k is the vector of parameters to be estimated. The 

differentiation is carried out using the chain rule. The 

initial conditions are given by Eq. 5.12. 

The Gauss-Newton method therefore requires the solution 

of the set of sensitivity equations given by Eqs. 7.5 to 7.7 

for the matrix of sensitivity coefficients. These equations 

are solved in conjunction with the model equations. During 

each time step, the model equations are solved to obtain the 

values of the state variables P, X1, S0, Si,, S. These 

values are used in the sensitivity equations to solve for the 

sensitivity coefficients. 

aP ax1 ax2 ax 0 as as asg 
, -, _-F '•'• ak '' --, - ak 

At the observation times, the sensitivity coefficients are 

substituted into, 

[ E GT( t) CT( t) Q CC t) G(t)]Ak(i+1) 

no 

- 

no 

1-1 

(7.8) 
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if the measured variables are linearly related to the state 

variables, 

y(t) - Cx(t) (7.9) 

or into, 

EG T (tj) 
m o (a'-2T )Q (!a'-2f ) TG(t)]Ak(j+l) 

(ax  

no (ahr\ 
- GT(t1) (—)Q(#(t)-Y'(t1) 

1.-i 

(7.10) 

if the observation relationship is nonlinear of the form of, 

y(t) -h(x(t)) (7.11) 

Finally at the end of the history period, Eq. 7.8 or 7.10 

is solved to yield the next estimate of the parameter vector. 

The Gauss-Newton method has been implemented in an 

efficient manner, approximating the sensitivity equations and 

utilizing information from the solution of the model equations 

at each timestep in order to reduce the computational work to 

obtain the values of the sensitivity coefficients. 

7.3 Model Features and Operation 

The parameters that can be estimated by the automatic 

history matching model are permeability and porosity. The 

procedure is to first establish regions encompassing one or 
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more grid cells for which parameter values are to be 

determined. Each region has a constant parameter value. An 

initial estimate of the parameter value must be provided. The 

observed variables that can be matched are the pressures of 

the grid cells, producing water-oil ratios and gas-oil ratios 

of the individual wells, and flowing bottom hole pressures. 

The observed data can be weighted individually in the 

objective function and can be sparse or frequently available 

throughout the reservoir history. The weighting factors for 

any variable can change with time. An automatic timestep 

selector adjusts the timesteps ensuring that the simulator 

calculates values for the observed variables at the 

corresponding observation times. 

7.3.1 Cautious Step Size Policy 

The normal procedure for the Gauss-Newton method is, 

given an estimate of the unknown parameters, to make a 

complete pass through the history with the model to obtain the 

value of the objective function. Then the sensitivity 

equations are evaluated and this usually requires solution of 

the model and sensitivity equations simultaneously albeit 

sequentially for each timestep over the history period. This 

is because the integration of the sensitivity equations over 

the history requires that values of the model state variables 

be available and it is not practical to store these at each 

timestep. The Gauss-Newton matrix is generated from the 
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sensitivity coefficients and it is solved to provide a new 

estimate of the parameter vector. The new estimate is usually 

not accepted immediately and a model run is performed with the 

new estimated parameters to obtain the new value of the 

objective function. If the new value is greater than the 

previous objective function value, the step length is adjusted 

either using quadratic interpolation down the step direction 

as suggested by Thomas et al. (1972) or using the bisection 

rule to find a step length that provides an improved estimate 

of the objective function. In either case, further model 

evaluations are required before the new estimate of the 

parameter vector is accepted. The sensitivity coefficients 

for the next iteration of the Gauss-Newton method are obtained 

by solving the model and sensitivity equations again 

simultaneously. It can therefore be noted that each iteration 

of the Gauss-Newton method requires the minimum of two 

identical model evaluations together with the sensitivity 

equation evaluation if the Gauss-Newton step is immediately 

successful. 

In this implementation of the Gauss-Newton method, it was 

found that the work required to evaluate the sensitivity 

coefficients was not significantly more than the work required 

for each model evaluation. As a result the two or more model 

evaluations required to evaluate each step change for each 

Gauss-Newton iteration was. a major portion of the 

computational effort. It was therefore decided to accept each 
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new estimate of the parameter vector without requiring that 

the new value of the objective function be less than the 

previous value. In order to avoid but not prevent 

overstepping, a cautious stepsize policy was adopted with 

respect to the maximum change of each parameter during each 

iteration. The step changes of each parameter are normalized 

and maximum step change limitations can be imposed by the user 

so that the new estimate of the parameter vector is obtained 

along the direction found by the Gauss-Newton method. In 

summary, in this implementation, each iteration of the Gauss-

Newton method consists of the simultaneous solution of the 

model and sensitivity equations followed by the solution of 

the Gauss-Newton matrix. 

7.3.2 Pseudo-Inverse Option 

An option available in the program is the use of the 

pseudo-inverse method as described by Lawson and Hanson 

(1974). This method computes the solution vector by a 

procedure that avoids the instability that can occur when a 

very ill-conditioned problem is treated as full rank. This 

may happen when the parameters being sought for are not 

identifiable from the observed data. For example, a parameter 

zone may be outside the drainage radius of a well and hence is 

not observable from the data measurements at the well. The 

technique replaces the Gauss-Newton matrix by a rank deficient 

matrix and then computes the minimal length solution to the 



108 

problem. In this implementation, the rank of the pseudo-

inverse is increased whenever the estimated change in the 

parameters is less than a certain tolerance. 

7.3.3 Implicit Formulation 

The choice of model formulation is also important for the 

success of the automatic history matching algorithm. 

Kalogerakis and Luus (1983) have shown the importance of using 

a robust. integration routine for parameter estimation in 

complex chemical systems in order to increase the region of 

convergence. Similarly in reservoir simulation, a fully 

implicit formulation for the reservoir model ensures stability 

and convergence for a wide range of parameter estimates. It 

is essential that the model itself be well constructed, robust 

and stable with sufficient provisions for timestep cuts and 

repeats and possess an effective iterative matrix solution 

algorithm, prior to development of the automatic history 

matching algorithm. 

7.4 Application of the Automatic History Matching Model 

The resulting model was applied to the Second SPE 

Comparative Solution Problem (Chappelear and Nólen, 1986). 

This is a radial coning problem. The reservoir grid consists 

of ten concentric rings and fifteen layers. A gas cap, an oil 

zone and a water zone are all present. Both water and gas 

coning occurs. Over a short time frame, severe changes in 
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production rate were imposed causing rapid changes in pressure 

and phase saturations as well as phase appearance and phase 

disappearance. Full details of the model parameters, fluid 

properties and other necessary data can be found in the 

reference and will not be repeated here. The problem itself 

is a difficult one and combining its solution with the 

parameter estimation problem is a good test of the stability 

and effectiveness of the automatic history matching model. 

The model was used to generate artificial observation data 

using the original values of the reservoir parameters. Then 

starting with an arbitrary initial guess of the reservoir 

parameters, it was attempted to recover the original data by 

matching the observed data. 

7.4.1 Matching Reservoir Pressure 

The reservoir pressure is a state variable in the model 

equations and thus the relationship between the observed 

variables and the state variables is a linear one of the form 

of Eq. 7.9. 

The matrix C consists of a sparse matrix with C3 = 1 for 

the grid cell locations where the pressure measurements are 

taken. 

The SPE Comparison Problem 2 has fifteen layers of 

constant permeability and porosity. These layers were taken 

as the reservoir zones for which parameters are to be 

estimated. The original reservoir description was used to 
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generate the observed data. With automatic timestep 

selection, the model required 16 timesteps to complete the 900 

day problem. The cputime required for this base model run was 

166 secs. This value is used to calculate equivalent model 

runs. At the end of each timestep, the pressures of the first 

column of cells were recorded. This data was used as the 

observed data. As weighting matrix, Q, the identity matrix 

was used. 

In the first test, Run 1, layers 3 to 12 were selected as 

the zones wh9se parameters were to be estimated. The 

horizontal permeabilities of these ten zones were the unknown 

parameters. The initial guess of the permeabilities was a 

uniform value of 200 md. The Gauss-Newton method recovered 

the original permeability values of the ten zones in 9 

iterations. The objective function value decreased from 0.911 

x 106 to 0.306 x 102. Figure 7.1 shows the change in the 

objective function value with iteration number. The estimated 

values of the ten zone permeabilities are given in Table 7.1. 

The deviations of these values from the original values, also 

given in Table 7.1, are very small. Figure 7.2 shows the 

initial pressure profile of cell (1,1,8) and the final match 

of the observed data. The pressure profiles for the second, 

third and fourth iterations are also plotted. The iteration 

history of the ten zone permeabilities is shown in Figure 7.3. 

The cputime required for the 9 iterations was 3238 secs, 

equivalent to 19.51 model runs. The average cputime for each 
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Table 7.1 : Match of Original Permeabilities 

Layer Permeabi- 
Iity(md) 

Run 1 Run 2 Run 6 Run 12 Run 13 

1 35.0 34.98 

2 47.5 47.54 

3 148. 148.0 148.0 

4 202. 202.1 202.0 

5 90. 90.0 90.0 89.64 

6 418.5 418.5 418.5 433.7 418.5 418.3 

7 775. 775.0 775.0 761.4 774.8 775.3 

8 60. 60.0 60.0 65.0 60.0 60.0 

9 682. 681.7 682.0 627.6 681.7 686.6 

10 472. 472.3 471.8 476.8 

11 125. 125.1 125.2 

12 300. 299.8 299.7 

13 137.5 137.4 

14 191, 191.4 

15 350. 349.3 
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Table 7.2: Match of Original Porosities 

Layer Porosity Run 3 Run 4 Run 7 Run 14 

1 0.087 0.0867 

2 0.097 0.0982 

3 0.111 0.1109 0.1105 

4 0.160 0.1601 0.1610 

5 0.130 0.1299 0.1298 0.1297 

6 0,170 0.1704 0.1700 0.1660 0.1699 

7 0.170 0.1700 0.1697 0.1800 0.1718 

8 0.080 0.0800 0.0794 0.0747 0.0788 

9 0.140 0.1402 0.1421 0.1406 0.1420 

10 0.130 0.1297 0.1283 0.1273 

11 0.120 0.1212 0.1202 

12 0.105 0.1031 0.1003 

13 0.120 0.1313 

14 0.116 0.1554 

15 0.157 0.1335 
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Fig. 7.1 - Reduction of Objective Function with 
Iteration 

in Run No. 1 (Match of Reservoir Pressures) 
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Fig. 7.2 - Match of Pressure Profile of Cell (1,1,8) in 
Run No 1. 
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Fig 7.3 - Estimates of Parameter Values at 
Each Iteration in Run No. 1 
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Gauss-Newton iteration was therefore 2.17 model runs. This is 

the time required for one model run and the evaluation of the 

sensitivity coefficients for each estimate of the parameters. 

The time required for the evaluation of the sensitivity 

coefficients for the ten parameters was therefore 1.17 model 

runs. This compares very favourably to the 10 equivalent 

model runs, one for each parameter, that would have been 

required by normal numerical differentiation for each Gauss-

Newton iteration. This result represents an order of magnitude 

reduction in computational requirement and makes automatic 

history matching through nonlinear regression practical and 

economically feasible for the first time in the history of 

reservoir simulation. 

It should also be pointed out that the Gauss-Newton 

method is a quadratically convergent method and as such it 

converges in very few iterations compared to the first order 

optimal control method introduced by Chen et al. (1974). This 

is especially true for the highly nonlinear multiphase 

reservoir problems. The cputime requirement for this 

implementation of the Gauss-Newton method is extremely 

competitive with the optimal control method, even on a single 

iteration basis. Of course, with the advantage of possessing 

quadratic convergence, the proposed modified Gauss-Newton 

method outperforms the latter method. 

For the next test, Run 2, the horizontal permeability of 



117 

all fifteen layers of the model were initially set at a 

uniform value of 200 md. The Gauss-Newton method converged to 

the optimum in 12 iterations reducing the objective function 

value from 0.833 x 106 to 0.692 x 10. The estimated values 

of the fifteen zone permeabilities are given in Table 7.1. 

Again these values are very similar to the original values. 

The cputime taken for the 12 iterations was 4536 secs, 

equivalent to 27.33 model runs, or an average of 2.28 model 

runs for each iteration. Thus the time required for the 

sensitivity coefficient evaluation for the fifteen parameters 

was 1.28 model runs. Deriving the sensitivity coefficients by 

previously published implementations of the Gauss-Newton 

method would have required 15 equivalent model runs. The 

comparison is again extremely favourable. This case also 

shows that for an increase of 5 parameters, the equivalent 

number of runs per iteration increased from 1.17 to 1.28 only. 

Run 3 is similar to Run 1 except that the porosity values 

of the ten zones were to be estimated. An estimate of 0.1 was 

used for the initial porosity of all the zones. The objective 

function was reduced from 0.391 x 10 to 0.874 x 10 in 

thirteen iterations. Table 7.2 shows the values of the 

estimated porosities as well as the original porosities for 

comparison. The cputime for the thirteen iterations was 

equivalent to 26.62 model runs or an average of 2.05 model 

runs for each Gauss-Newton iteration for this ten parameter 
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case. 

For Run 4, the porosity values of all 15 layers were 

initially set at 0.1. The initial objective function value 

was 0.376 x 10. Using the full rank matrix, the Gauss-Newton 

method was unable to converge, indicating the sensitivity 

coefficient matrix was extremely ill-conditioned. Using the 

pseudo-inverse option previously described, with an initial 

rank of 8, the objective function was reduced to 4.59. 

Further iteration reduced the objective function to 1.5635 

with a rank of 11, and to 0.15874 with a rank of 13. The 

estimated porosities are shown in Table 7.2. Additional 

iterations with a higher rank of the pseudo-inverse of the 

Gauss-Newton matrix resulted in divergence indicating near 

collinearity of the eigenvectors and very poor conditioning. 

An average cputime of 2.41 model runs was taken for each 

Gauss-Newton iteration. The results show that unlike 

permeability, the observed data was insufficient to 

distinguish all fifteen values for the porosity parameter. It 

should be pointed out that the ill-conditioning of the problem 

due to limited observability can only be overcome by supplying 

more information to the model such as additional observed data 

or by reparameterization of the reservoir model. 

7.4.2 Matching Water-Oil Ratio 

A well can produce from several grid cells at the same 
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time. Thus the water-oil ratio is a complex time-dependent 

function of the state variables of several grid cells. The 

relationship between the output vector and the state vector is 

of the form given by Eq. 7.11. 

In the SPE Problem 2, the centrally located well is 

completed in layers 7 and 8. From the base run utilizing the 

original description, the water-oil ratio was obtained at each 

of the 16 timesteps. This set of observations was used as. the 

observed data to be matched in the next set of runs. Figure 

7.4 shows the observed data. A diagonal matrix with elements 

of 1000 was used as the weighting matrix Q. 

In Run 5, the horizontal permeabilities of two zones, 

layers 7 and 8 were estimated starting from an initial value 

of 200 md. With five iterations of the Gauss-Newton method, 

the objective function was reduced from 0.446 x 105 to 2.6. 

The final parameter values were 773.7 and 58.99 compared with 

the original values of 775 and 60. The equivalent number of 

model runs for each Gauss-Newton iteration was 1.36 for this 

two parameter case. 

For Run 6, using the same observed data, it was attempted 

to estimate the horizontal permeabilities of four zones, 

layers 6 to 9 with a starting guess of 200 md. The objective 

function was reduced from 0.517 x 105 to 2.05 in thirteen 

iterations. The initial and final water-oil ratio profiles 
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Fig. 7.4 - Match of Water-Oil Ratio in Run No. 6 
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are shown in Figure 7.4. Table 7.1 compares the estimated 

permeabilities with the true values. The match with the 

observed data is actually very good even though the actual 

permeabilities were not recovered very closely. Note that the 

calculated permeability-thickness of the four zones is within 

four percent of the actual permeability-thickness. Thus a 

good estimate of the permeability-thickness is obtained. 

The porosity of layers 6 to 9 were estimated in Run 7 

using an initial guess of 0.1. After five Gauss-Newton 

iterations, the objective function was reduced from 0.158 x 

105 to 2.55. Table 7.2 compares the estimated porosities with 

the original values. Further iterations did not reduce the 

objective function any further. The equivalent number of 

model runs for each iteration was 1.49. 

7.4.3 Matching Gas-Oil Ratio 

The gas-oil ratio, like the water-oil ratio, is a derived 

quantity from a complex function of the state variables. Eq. 

7.11 is solved numerically to obtain new estimates of the 

parameter vector. 

The observed data consists of the gas-oil ratio reported 

at each of the 16 timesteps in the base model run using the 

original data. This data is shown in Figure 7.5. As 

weighting matrix, the identity matrix is used. 

Using two zones, layers 7 and 8, and the horizontal 

permeabilities as the unknown parameters, the program was 
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Fig. 7.5 - Match of Gas-Oil Ratio in Run No. 9 
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unable to recover the original values using an initial guess 

of 200 md. Starting with guesses much closer to the original 

values, it was able to converge to the correct solution. For 

example, in Run 8 using initial estimates of 770 and 70 md, 

the final estimated values were 774.5 and 60.51 in three 

iterations. The cputime required was an equivalent of 1.25 

model runs for each iteration. 

Using porosity as the parameter and layers 7 and 8 as the 

two zones in Run 9, the program was able to recover the 

porosities from an initial estimate of 0.1. Six iterations 

were required to obtain a final estimate of 0.1727 and 0.0789. 

The initial and final match values are shown in Figure 7.5. 

The average time for each iteration was 1.30 equivalent model 

runs. 

Unlike the runs to match water-oil ratio, it was not 

possible to estimate the values of either the permeability or 

porosity for four zones using the observed gas-oil ratio data. 

This indicates the gas-oil ratio is a much more nonlinear 

function than the water-oil ratio. The combined effect of the 

linearization of the gas-oil ratio function together with the 

linearization of the output vector with respect to the 

parameter vector as in Eq. 7.10 is to reduce the region of 

convergence. Initial estimates that are closer to the correct 

values must be provided as in Run 8. 
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7.4.4 Matching Bottom Hole Pressure 

In a fully implicit model, the bottom hole pressure of 

each well is also a state variable when the well is capacity 

restricted. At other times, the well is bottom hole pressure 

restricted and the bottom hole pressure is fixed at the 

minimum value allowed. The functional relationship between 

the observed vector and the state vector is that of Eq. 7.9. 

The observed data for this case consists of the bottom 

hole pressure measurements for the central well at each 

timestep. This data is displayed in Figure 7.6. Since the 

functional relationship only exists when the measured bottom 

hole pressure is greater than the minimum bottom hole 

pressure, the actual data region is much shorter. Using only 

one zone, layer 7, and an initial estimate of 200 md, Run 10 

predicted the true permeability to be 761.3 md in 7 

iterations. The actual permeability was 775 md. The average 

number of equivalent model runs was 1.41 per Gauss-Newton 

iteration. 

With the same data, Run 11 tried to estimate the 

permeabilities of layers 7 and 8 starting from an initial 

guess of 200 md. After 17 iterations, the estimated values 

were 743.7 and 107.8 md. Each iteration required an average of 

1.51 equivalent model runs. The initial and final match 

values of the bottom hole pressure are shown in Figure 7.6. 

Again the match is very good. 
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Fig 7.6 - Match of Bottom Hole Pressure in Run No. 
11 
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7.4.5 Matching Combinations of Observed Data 

The observed data from producing wells in a reservoir 

would normally consist of all the data previously matched 

individually. As the Gauss-Newton equations 7.8 and 7.10 are 

fundamentally similar, it is an easy matter to construct the 

Gauss-Newton matrix elements regardless of whether the 

relationship Eq. 7.9 or Eq. 7.11 is used. The program can 

therefore match reservoir pressures, water-oil ratios, gas-oil 

ratios and flowing bottom hole pressures simultaneously. 

The observed data for the remaining runs consists of the 

WOR, GOR, and flowing bottom hole pressure measurements from 

the previous runs, and the reservoir pressures at the two 

locations of the well, layers 7 and 8. This data is shown in 

Figures 7.7 and 7.8. 

For Run 12, the horizontal permeabilities of layers 6 to 

9 were estimated starting from an initial guess of 200 md. The 

objective function was reduced from 0.1997 x 107 to 0.97,x 101 

in 12 iterations. Table 7.1 shows the final estimates of the 

permeabilities. In comparison with Run 6, which, used only 

water-oil ratio data, it can be seen that the estimates are 

closer to the actual values. This is to be expected as more 

data is available in this run. The equivalent number of model 

runs for each Gauss-Newton iteration was 1.52. 
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Fig 7.7 - Match of Pressure Data in Run No 13 
(Combined Data) 
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Fig. 7.8 - Match of WOR and GOR in Run No. 13 
(Combined Data) 
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It is of interest to investigate the extent of reservoir 

that is identifiable from measurements made only at the well 

locations. Run 13 estimated the horizontal permeabilities of 

6 zones, layers 5 to 10, starting from the initial guess of 

200 md. The pseudo-inverse option was necessary to ensure 

initial stability. As the rank of the pseudo-inverse was 

increased, it was noted that the parameters that had the most 

significant changes were the ones furthest away from the well 

locations. The objective function was reduced from 0.33 x 107 

to 0.91 in 22 iterations. Table 7.1 shows the final estimates 

of the 6 zone permeabilities. The initial and final profiles 

of each of the calculated variables are displayed in Figures 

7.7 and 7.8. Each Gauss-Newton iteration required an average 

of 1.76 model runs. An attempt to estimate permeability values 

for 8 zones from the available data 'failed. It would be 

necessary to have observation data over a longer history in 

order to identify the parameters of more zones. 

The porosities of the 6 zones, layers 5 to 10, were the 

parameters for Run 14. After 10 iterations, the objective 

function was reduced from 0.1938 x 106 to 0.456. Table 7.2 

shows the estimated porosities. The equivalent number of 

model runs per iteration was 1.67. Again it was not possible 

to estimate porosity values for 8 layers. 
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7.5 Correlation of Computational Requirements with Number of 

Parameters 

The runs described above demonstrate the capability of 

the automatic history matching model to match the types of 

production data commonly obtained. Even though the observed 

data used in these runs were synthetic, the runs were 

extremely useful in the development stage of this very complex 

model to establish its validity and to investigate the 

convergence behaviour of the algorithm. 

Computational times in terms of equivalent model runs for 

each Gauss-Newton iteration were presented for each case. In 

order to quantify the time required to develop the sensitivity 

coefficients only, these times were sorted in order of 

increasing number of parameters and presented in Table 7.3. 

The values are graphed in Figure 7.9 and a simple linear least 

squares fit was made of the data. The equation of the 

correlation line was 0.233 + 0.077x. This indicates that 

after an initial overhead of 0.233 model runs to set up the 

algorithm, an additional 0.077 equivalent model run was 

required to develop the sensitivity coefficients for each 

additional parameter. This is much less than the additional 

run per parameter required by previously published Gauss-

Newton methods. These numbers should serve only as a 

guideline as each model run using a different set of 

parameters would take a different amount of time and a simple 

linear correlation was used. 
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Table 7.3: Comparison of Model 
Equivalent Runs with Number of 

Parameters 

No. of 
Parameters 

Model 
Equivalent 

Runs 

Run No 

1 0.41 10 

2 0.36 5 

2 0.25 8 

2 0.30 9 

2 0.51 11 

4 0.54 6 

4 0.49 7 

4 0.52 12 

6 0.76 13 

6 0.68 14 

10 1.17 1 

10 1.05 3 

15 1.28 2 

15 1.41 4 
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Fig. 7.9 - Correlation of Computational 
Requirements for Runs 1 to 13 
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CHAPTER 8 

RELIABILITY OF PARAMETER ESTIMATES 

In a history matching exercise, the engineer would like 

to know how accurately the parameters have been estimated, 

whether or not a particular parameter has any influence on the 

history match and to what degree. The traditional procedure 

of history matching by varying parameters based on engineering 

judgement may provide a match, but certainly does not provide 

the engineer with any estimate of the degree of confidence one 

may place on the reliability of these parameters. Often the 

engineer is only too pleased to find a set of parameters that 

results in a minimally acceptable match. 

Least Squares (LS) estimation is commonly used to 

identify the objective function to be minimized and is the 

basis of many parameter estimation algorithms. Drawing from 

the extensive body of knowledge that has been developed in the 

fields of statistical inference and multivariate analysis, it 

is possible to develop relationships for the variances of 

estimated parameters, establish confidence intervals and 

detect highly correlated parameters from the results of a 

linear least squares fit. One of the benefits of using a 

simulator with an automatic history matching capability is the 

further information provided to the engineer about the quality 

of the match and the reliability of the estimates of the 
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parameters. 

As discussed in the literature review, the techniques 

used in automatic history matching fall into two major 

categories, optimal-control based methods and nonlinear 

regression methods. The first-order optimal-control method 

proposed by Chen et al. (1974) and Chauvent et al. (1975) 

involves the solution of a set of adjoined ordinary 

differential equations together with the ordinary differential 

equations of the reservoir model. However, this provides only 

the gradient of the least squares objective function with 

respect to the paramethrs, and this information is not 

sufficient to generate the desirable covariance matrix that 

quantifies the reliability of the estimates. 

Nonlinear regression methods such as the Gauss-Newton 

method have also been proposed by Thomas et al.(1972) and Tan 

and Kalogerakis (1991). These methods require the computation 

of the sensitivity coefficient matrix (the partial derivatives 

of the reservoir variables with respect to the reservoir 

parameters) at each iteration of the parameter search. The 

sensitivity coefficient matrix can be used to determine the 

covariance matrix of the parameters which quantifies the 

accuracy of the estimates. This is an additional advantage of 

the nonlinear regression methods over optimal control methods. 

8.1 The Covariance Matrix of the Parameter Estimates 

Nonlinear regression parameter estimates obtained by the 
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Gauss-Newton method possess characteristics of linear LS 

estimates due to the nature of the Gauss-Newton method. 

The Gauss-Newton equation (also known as the "normal 

equation") was developed in full in Chapter 5. 

no 

E G7(t1)CT(t1) Q C(t1 )G(t1) 
i-i 

no 

(8.1) 

This can be represented by 

H Ak" - b (8.2) 

This set of linear equations can be solved to yield 

and therefore the next estimate of the parameter vector. 

When convergence is achieved, the matrix H by analogy to 

linear least squares can be used to develop measures of the 

variance of the parameters. 

Under the null hypothesis that the errors in the 

measurements, ej are independently and normally distributed 

with zero mean and variance-covariance matrix COV(e)=c 2Q 1, 

the covariance matrix of the parameters is given by 

[COv(k)] - OH 1 (8.3) 
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where H is calculated with the converged parameter values, k, 

and ô is an unbiased estimate of O 2 that can be obtained 

from 

S(k)  
-. (d.f.) 

(8.4) 

where (d.f.) are the degrees of freedom which are equal to the 

total number of measurements minus the number of parameters, 

that is, (d.f.) = no m - p. 

8.2 Correlation between Pairs of Parameters 

The variances of the parameters appear as the diagonal 

elements of COV(k) and the covariances between the parameters 

appear as the off-diagonal elements. In general, the larger 

the variance of a parameter, the less confidence one would 

place on the estimated parameter value. The covariances 

between any two parameters is an indication of how closely 

these two parameters are correlated. The higher the 

covariance, the closer is the correlation, or the near 

dependence between the pair of parameters. If any two 

parameters are closely correlated, this implies that these 

parameters have the same influence on the observations and it 

may not be possible to identify the values of these two 

parameters separately. If this is the case, the two 

parameters may be combined into a single parameter. 

In order to show this relationship clearer, the 
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covariance matrix can be transformed into a correlation 

matrix, R, using the simple matrix operations, namely, 

- D' [cOV(k)] .D" (8.5) 

where D is a diagonal matrix whose entries are the reciprocals 

of the square roots of the diagonal elements of matrix Cov(k), 

i.e. the reciprocals of the standard deviations of the 

parameters. The diagonal elements of R will be 1 as a result 

of these operations, and the off-diagonal elements will have 

values whose absolute magnitude will range from 0 to 1. If an 

off-diagonal element has an absolute value close to 1, the 

corresponding pair of parameters is highly correlated. Thus 

observation of the elements of the correlation matrix R will 

assist in identifying the degree of correlation between pairs 

of zones. 

8.3 Multiple Correlation 

Unfortunately, cases do occur where a set of three or 

more parameters have a mutual near dependence whereas no two 

of the parameters are nearly dependent. In such a case, the 

off-diagonal elements of the correlation matrix R, 

corresponding to these parameters taken as pairs, will not be 

close to 1 or -1. Correlations between three or more 

parameters are very difficult to detect using the covariance 

or the correlation matrix. However, in this case, the 

eigenvalue decomposition of the matrix H can be used to 
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identify groups of parameters that are highly correlated and 

which may be combined and hence provide guidelines on how to 

reduce the number of parameters. 

A geometrical approach may be taken to illustrate this 

property. Consider a p dimensional ellipsoid around the 

minimum of the LS objective function S, where p is the number 

of parameters to be estimated. Let this ellipsoid represent 

the region of indifference, i.e. the region around the minimum 

where S does not vary significantly. If this ellipsoid is 

highly elongated in one direction, then there is considerable 

uncertainty in the value of the parameters in that direction. 

We wish to find the points of the p dimensional ellipsoid 

which are furthest away from the origin and also those which 

are closest. These points determine respectively, the least 

determined and best determined linear combinations of the 

parameters. It can be shown that an eigenvalue decomposition 

of the matrix H will provide us with the information to 

describe this ellipsoid. The eigenvalue decomposition of H, 

a (p x p) matrix, yields the p eigenvalues and corresponding 

eigenvectors of H. The p eigenvectors form the direction of 

the p principal axes of the ellipsoid. The eigenvalues 

corresponding to the eigenvectors represent inversely the 

magnitude of the length of each principal axis. The longest 

axis, corresponding to the smallest eigenvalue defines the 

worst determined direction, and the shortest axis 

corresponding to the largest eigenvalue defines the best 
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determined direction. 

Since H is symmetric, the eigenvalue decomposition of H 

is also an orthogonal decomposition, namely, 

H- vAvT (8.6) 

where A is a diagonal matrix of positive eigenvalues which can 

be arranged in decreasing order. V is an orthogonal matrix 

whose columns are the normalized eigenvectors of H and hence, 

vTv_ z (8.7) 

The eigenvalue decomposition of H can be used to solve 

Eq. 8.2 which can now be written as, 

- b (8.8) 

Since V is an orthogonal matrix, is readily 

obtained as 

- vklvT.b (8.9) 

Usually the eigenvalues of H will have a wide range of 

values. If some of the k parameters are highly correlated, 

then the ratio of the largest eigenvalue to the smallest 

• eigenvalue (usually referred to as the condition number of 

matrix H) will be very large. Note that the eigenvalues are 

not in a one-to-one correspondence with the parameters. That 
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is, for example if the fifth and sixth parameters are highly 

correlated, this does not mean that the fifth and sixth 

eigenvalues will be small. However, inspection of the 

eigenvectors corresponding to the smallest eigenvalues will 

allow the engineer to deduce which parameters are highly 

correlated. The elements of each eigenvector are the cosines 

of the angles the eigenvector makes with the axes 

corresponding to the p parameters. If r of these parameters 

are highly correlated, then at least r of the parameter axes 

are closely collinear, i.e. lie in the same direction, and the 

angle between them is very small. Thus the eigenvector 

corresponding to the smallest eigenvalue will have significant 

contributions from r of these parameters, and the cosines of 

the angles will tend to 1 as the angles tend to zero. Thus 

the larger elements of the eigenvector will identify a 

particular combination of parameters which are nearly 

dependent. The same logic applies to any other eigenvalues I 

eigenvectors which are also very small. 

8.4 Numerical Results and Discussion 

In order to illustrate how to use such information in 

analyzing reservoir history matching results, let us begin 

with a very simple problem so that we can observe the 

relationships between the zones as predicted by the theory 

without getting lost in the geometry of the problem. In each 

case the eigenvalues, matrix of eigenvectors, covariance 
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Fig. 8.1 - Schematic of 3 x 3 Grid Cell Model 
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matrix and the correlation matrix are calculated by the 

automatic history matching program. The reported standard 

deviations of the parameters are normalized by dividing with 

the individual parameter. 

8.4.1 Case Study I : A 3 x 3 Symmetrical Model 

Consider a uniform areal 3x3 model with a producing well 

situated in grid cell (1,1). The model is shown schematically 

in Figure 8.1. The fluid properties used are those of the SPE 

Second Comparative Solution Problem (Chappelear and Nolen, 

1986). The model is initialized with oil and a connate water 

saturation. As depletion starts, the pressure of the cell 

with the producing well drops below the saturation pressure 

and solution gas is liberated. This is a three-phase problem. 

The physical details of the problem are quite irrelevant as 

the purpose ig to show the correlation between the zones. 

We assume that each cell has the same properties, such as 

grid cell dimensions, depth and porosity. The permeability in 

either direction is the same. The problem therefore is 

symmetrical about the diagonal (1,1), (2,2) and (3,3). The 

parameters to be estimated are the porosities of each grid 

cell. The observed data is generated by running the model for 

a period of 100 days and observing the pressures of the grid 

cells at intervals of 10 days. Artificial data are generated 

by adding noise to the noise-free observations by using random 

numbers zjj , distributed normally with mean zero and variance 



143 

equal to 1 and then using the equation 

.9(t) Y(b) + Zjj *IYj ( ti) I*O (8.10) 

Here, 9(t) are the "noisy" observations of variable j at time 

t1, y(t1) are the exact observations of variable j at time t1 

(calculated by the model using the exact parameter values) and 

o is the standard deviation of the measurement errors, taken 

as a fraction of the magnitude of the errors. 

The reservoir simulation model is then run to match the 

noisy observations with a weighting matrix Q that is a 

diagonal matrix with elements I y(tjI . At convergence, the 

eigenvectors, eigenvalues and correlation matrix are 

inspected. Initially assume the reservoir is divided into 9 

zones, each cell comprising one zone, and numbered in natural 

ordering. The pressures of each grid cell are observed. For 

the first case a value for a of 0.001 was used. The 

correlation matrix is shown in Table 8.1 and the eigenvector 

matrix in Table 8.2. 

The correlation matrix can be used to identify quickly 

any correlation among the parameters. For example, if we 

concentrate on parameter 5, we can readily see that the 

elements 2,4,6 and 8 are large. Therefore parameter 5 is 

highly correlated with parameters 2,4,6 and 8. Not 

surprisingly, these are the zones (cells) which are directly 

adjacent to zone (cell) 5. Similarly we see that column 1 has 

largest elements corresponding to parameters 2 and 4. These 



TABLE 8.1 : Correlation Matrix - Full Data - 3 x 3 Symmetrical Problem 

1 2 3 4 5 6 7 8 9 

1 1.000 -0.1514 0.03726 -0.1514 0.05341 -0.01194 0.03727 -0.01193 -0.00588 

2 -0.1514 1.000 -0.5262 0.03526 -0.4195 0.1650 0.01469 0.07712 -0.02157 

3 0.03726 -0.5262 1.000 0.01471 0.1007 -0.5490 0.00359 0.00914 0.1471 

4 -0.1514 0.03526 0.01471 1.000 -0.4195 0.07709 -0.5262 0.1650 -0.02159 

5 0.05341 -0.4195 0.1007 O.4195 1.000 -0.4257 0.1008 -0.4257 0.1735 

6 -0.01194 0.1650 -0.5490 0.07709 -0.4257 1.000 0.00916 0.1237 -0.5347 

7 0.03727 0.01469 0.00359 -0.5262 0.1008 0.00916 1.000 -0.5491 0.1472 

8 -0.01193 0.07712 0.00914 0.1650 -0.4257 0.1237 -0.5491 1.000 -0.5349 

9 -0.00588 -0.02157 0.1471 -0.02159 0.1735 -0.5347 0.1472 -0.5349 1.000 



Table 8.2: Eigenvector Matrix - Full Data - 3 x 3 Symmetrical Problem 

1 2 3 4 5 6 7 8 9 

1 -0.0465 0.00003 -0.1057 -0.0001 -0.1207 0.9059 -0.3880 -0.00009 0.03107 

2 -0.4238 0.4617 -0.4602 0.5277 -0.2052 0.00299 0.2390 0.09116 -0.09761 

3 -0.3645 0.5046 0.04238 -0.3880 0.5858 0.05658 -0.00670 -0.3076 0.1383 

4 -0.4237 -0.4615 -0.4600 -0.5281 -0.2049 0.00306 0.2392 -0.09097 -0.09766 

5 -0.3782 0.000003 0.05546 -0.00023 -0.3213 -0.3490 -0.6480 -0.00037 0.4571 

6 -0.2959 0.1795 0.3669 -0.2657 -0.09028 -0.01148 -0.1040 0.6303 -0.5086 

7 -0.3645 -0.5048 0.04193 0.3885 0.5854 0.05652 -0.00698 0.3075 0.1385 

8 -0.2959 -0.1796 0.3666 0.2658 -0.09055 -0.01145 -0.1037 -0.6301 -0.5090 

9 -0.2342 -0.00005 0.5384 0.00015 -0.3096 0.2257 0.5418 0.00003 0.4636 
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cells 2 and 4 are adjacent to cell 1. Similar relationships 

can be observed for the other parameters. The correlation 

matrix can therefore be used to assess which zones 

(parameters) are highly correlated. In this example, 

adjacency leads to a degree of correlation, and which is 

clearly demonstrated by the correlation matrix. 

Each column of the eigenvector matrix is an eigenvector 

corresponding to the eigenvalues of the matrix H. As the 

eigenvalues are arranged in decreasing order, the last column 

corresponds to the smallest eigenvalue. The elements of each 

eigenvector have a direct correspondence with the parameters. 

This is borne out by the observation that rows 2 and 4, 3 and 

7, 6 and 8 are nearly equal. Recall that the reservoir model 

is symmetric about a diagonal and thus rows 2 and 4 represent 

the equal contributions of cells 2 and 4 to the eigenvector, 

and similarly for the other pairs. 

The standard deviation of the parameters is shown in 

column 1 of Table 8.3. In this particular case, all the grid 

cell pressures are observed and thus there is enough 

information to estimate reliably the values of all the 

parameters. The standard deviation of the parameters is 

therefore quite small. Column 2 of Table 8.3 shows the 

standard deviation of the same nine parameters when the data 

noise is increased by changing o to 0.005. As expected, the 

standard deviation of the parameters increases with noise. If 

the model is correct and the only errors are due to the 
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measurement errors, then an estimate of the variance of the 

measurement error can be obtained from Eq. 8.4. These 

requirements are met here. The estimated variance is 

0.0000299 corresponding to a standard deviation of 0.0055. 

This agrees well with the value of 0.005 used to generate the 

noise. A x2 test could be readily performed to confirm that 

this is the case. Dumez et al. (1977) used similar tests for 

chemical kinetic models. 

Next we demonstrate, the effect of having fewer data 

(limited observability) on the identifiability and reliability 

of the estimated parameters. Let us assume that the 

observations are obtained only at cells 1 (1,1) and 9 (3,3). 

In this case, we are not able to estimate the values of all 

nine cells. The standard deviation of the 9 parameters are 

shown in column 3 of Table 8.3. The standard deviations are 

smallest for the cell where the well is located (cell 1), the 

cell with the observation well (cell 9) and the diagonal cell 

(cell 5). The standard deviation is smaller for cell 1 than 

for cell 9 because the well provides more excitation, dropping 

the pressure rapidly in cell 1, and the pressure of the 

observation cell drops in response to the pressure drop of 

cell 1. The pressure drop is more significant in cell 1 than 

in cell 9. The cells on either side of the diagonal have huge 

standard deviations indicating that it is not possible to 

identify and reliably estimate the parameter values of these 

cells with the information available. In addition, due to the 
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symmetry of the problem, the parameters are highly correlated. 

In this situation, one could say that all six cells 2,3,4,6,7 

and 8 have similar influence on the observations. The 

correlation matrix, reproduced in Table 8.4, cannot show the 

effect of correlations between more than two parameters as 

discussed in the mathematical background. However, the 

eigenvector corresponding to the smallest eigenvalue as shown 

in Table 8.5 shows the correlation between these six zones. 

The eigenvector elements are the cosines of the eigenvector 

axis with the parameter axes. Parameters which are nearly 

collinear will have smaller angles between them and the 

eigenvector axis and this will be indicated by larger cosine 

values. The largest entries are indeed those of the 

parameters 2,3,4,6,7 and 8. 

To reduce the number of parameters then, one would lump 

adjacent zones of highest variance. The suggested zonation 

would be zone 1 consisting of cell 1, zone 2 consisting of 

cell 5, zone 3 consisting of cell 9, and zone 4 consisting of 

the rest of the cells (2,3,4,6,7,8). With the suggested 

zonation using 4 parameters, the value of the objective 

function was 0.164 x 1O. Figures 8.2 and 8.3 show the match 

of the calculated pressures to the noisy data. The match 

using 9 or 4 parameters was virtually indistinguishable 

showing the insensitivity of the predictions to parameters 

with high variance. 
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TABLE 8.3: Standard Deviations - 3x3 Symmetrical Problem 

Zone Std. Dev. 
ot=O.0O1 
Full Data 

Std. Dev. 
a=0.005 
Full Data 

Std. Dev. 
c=0.001 

Limited Data 

1 0.06745 0.54280 0.18 

2 0.04077 0.18713 2016.2 

3 0.04840 . 0.26567 1022.7 

4 0.04078 0.16417 2013.6 

5 0.07820 0.41325 40.63 

6 0.08368 0.39927 809.1 

7 0.04840 0.32481 1056.8 

8 0.08370 0.33589 752.2 

9 0.07433 0.37696 8.32 



Table 8.4: Correlation matrix - Limited Data - 3 x 3 Symmetrical Problem 

1 2 3 4 5 6 7 8 9 

1 1.000 -0.6787 -0.2694 0.6780 0.1110 0.7340 0.2483 -0.7216 -0.0914 

2 -0.6787 1.000 0.3795 -1.000 -0.4541 -0.7781 -0.3128 0.7148 0.5354 

3 -0.2694 0.3795 1.000 -0.3794 0.3985 -0.3522 -0.9957 0.2945 0.5417 

4 0.6780 -1.000 -0.3794 1.000 0.4546 0.7776 0.3126 -0.7142 -0.5361 

5 0.1110 -0.4541 0.3985 0.4546 1.000 0.3784 -0.4805 -0.3647 -0.0623 

6 0.7340 -0.7781 -0.3522 0.7776 0.3784 1.000 0.3509 -0.9943 0.01520 

7 0.2483 -0.3128 -0.9957 0.3126 -0.4805 0.3059 1.000 -0.2535 -0.4982 

8 -0.7216 0.7148 0.2945 -0.7142 -0.3647 -0.9943 -0.2535 1.000 -0.1210 

9 -0.0914 0.5354 0.5417 -0.5361 -0.0623 0.01520 -0.4982 -0.1210 1.000 



Table 8.5: Elgenvector Matrix - Limited Data - 3 x 3 Symmetrical Problem 

1 2 3 4 5 6 7 8 9 

1 -0.0311 0.9970 -0.06308 0.03239 -0.00812 0.00118 -0.00007 0.00000 -0.00004 

2 -0.1756 0.04337 0.5821 -0.3493 0.07393 -0.03725 -0.2027 -0.1498 0.6603 

3 -0.1946 -0.00782 0.1356 0.2511 -0.1787 0.6148 -0.0044 0.6668 0.1587 

4 -0.1758 0.04337 0.5834 -0.3427 0.1007 0.00336 0.2049 0.1498 -0.6594 

5 -0.4114 -0.01738 0.2760 0.7182 0.09156 -0.4791 -0.00314 0.02049 -0.00527 

6 -0.1405 -0.00679 -0.01384 -0.1161 -0.6726 -0.1822 -0.6577 0.01543 -0.2194 

7 -0.1925 -0.00774 0.1341 0.2580 -0.1445 0.5729 0.01254 -0.7134 -0.1419 

8 -0.1497 -0.00730 -0.01648 -0.1050 -0.6463 -0.1694 0.6951 -0.03106 0.1888 

9 -0.8068 -0.04213 -0.4514 -0.2993 0.2302 0.02985 -0.00900 0.00193 0.00142 
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Fig. 8.2 - 3 x 3 Symmetrical Problem with Limited 
Data 
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Fig. 8.3 - 3x3 Symmetrical Problem with Limited Data 
Match of Pressures at Cell 9 
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8.4.2 Case Study II : A 3 x 3 Asymmetrical Model 

Having used the symmetrical model to show how the 

parameters interact in a well defined case, we now turn to the 

more general situation of the asymmetrical model. Keeping 

everything else unchanged, the porosities of the cells were 

varied. Specifically, in natural ordering, the values used 

were 0.1, 0.15, 0.05, 0.2, 0.3, 0.1, 0.15, 0.1 and 0.2. 

Observations were taken only at the well cell 1 (1,1) and at 

cell 9 (3,3). 

With the limited number of observations, it is not 

possible to estimate the individual porosities of all nine 

cells. Proceeding as in the previous case, we use a 

preliminary zonation taking each cell as a separate zone. 

Column 1 of Table 8.6 shows the standard deviations of each of 

the nine parameters as generated by the automatic history 

matching program. The cells sorted in ascending order of 

standard deviation are 1,9,2,4,5,7,3,6 and 8. If we locate 

these cells on the grid, we see that the standard deviations 

increase radially from the producing well. Thus apart from 

the well cell 1, and the observation cell 9, two rings are 

apparent. One consists of cells 2,4 and 5, and the other 

consists of cells 3,6,7 and 8. This is to be expected on 

physical grounds and differs from the symmetrical case where 

the highest variances are on both sides of the diagonal 

joining cells 1 and 9. The eigenvector corresponding to the 

smallest eigenvalue also confirms that the parameters that are 
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most closely correlated are those of cells 3,6,7 and 8. The 

elements of this eigenvector are reproduced in column 2 of 

Table 8.6. 

The zonation suggested by these standard deviation values 

would be zone 1 consisting of cell 1; zone 2 consisting of the 

ring of cells 2,4,5; zone 3 consisting of the next ring of 

cells, 3,6,7 and 8; and zone 4 consisting of cell 9. The 

minimum value of the least squares objective function using 

these four parameters is 0.1584 x 1O. Figures 8.4 and 8.5 

show the match of the observed pressures. The quality of the 

match obviously has not decreased with the fewer parameters. 

The standard deviation of the four parameters is now much 

smaller with fractional magnitudes of 0.15, 0.29, 0.56 and 

0.53. The predicted porosity values are 0.086, 0.16, 0.134 

and 0.2048 which compares with the volumetrically averaged 

values of 0.1, 0.217, 0.1 and 0.2. The conclusion that can be 

dawn from this is that the user of an automatic history 

matching model should use a zonation that reflects the 

quantity of data available. The advantages of using fewer 

parameters are that the model would use less computer time, 

the standard deviations of the parameters are smaller giving 

more confidence in the estimates of the values. 
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Table 8.6 : Standard Deviations and 
Eigenvector of Smallest Eigenvalue - 

3x3 Asymmetrical Problem - Limited 
Data 

Zone Std. Dev Eigenvector of 
Smallest 
Eigenvalue 

1 0.3484 -0.00018 

2 28.2466 0.00802 

3 217.149 -0.2087 

4 28.7422 -0.00092 

5 82.2182 -0.04818 

6 520.476 0.6262 

7 160.398 0.1617 

8 608.605 -0.7319 

9 8.0241 0.00472 
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Fig. 8.4- 3x3 Asymmetrical problem with Limited 
Data 
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Fig. 8.5 - 3x3 Asymmetrical Problem with Limited 
Data 
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8.4.3 Case Study III : The SPE Second Comparative Solution 

Problem (Chappelear and Nolen, 1986) 

As mentioned earlier, the model in this problem has 15 

layers, each of constant horizontal permeability. We will try 

to estimate the values of these permeabilities using the 

observations made at the well. The well is completed in layers 

7 and 8 and with permeability thicknesses of 6200 and 480 md 

ft. respectively. The model represents a three phase coning 

problem and the measurements made are the producing gas-oil 

ratio, water-oil ratio, flowing bottom-hole* pressure, and the 

reservoir pressures of the well locations. The observations 

are generated running the model with the original description 

and at the end of each of the 16 timesteps required to 

complete the run, recording the above variables. Noise was 

then added to the data to reflect measurement errors as 

described previously. The value of o, used was 0.001. 

In the preliminary zonation, all fifteen layers were 

treated as separate zones. An initial guess of 300 md was 

used for the permeabilities of all the 15 zones. After ten 

Gauss-Newton iterations, the objective function was 0.147 x 

10_i. The values of the estimated permeabilities, the true 

permeabilities, the calculated standard deviations and the 

eigenvector corresponding to the smallest eigenvalue are shown 

in Table 8.7. The largest elements of the eigenvector 

correspond to zones 1,2,3,12,13,14,15 indicating these zones 

are highly correlated. The standard deviation of the 
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parameters are smallest for zones 4,5,6,7 and 8. Parameters 

9,10,11 have standard deviations of relative magnitude greater 

than 1. Because of this, zones 9,10,11 are combined with 

zones 12 to 15 in the revised zonation. Zones 1,2 and 3 are 

lumped into one zone. The revised zonation consists of lumped 

zone 1, zones 2,3,4,5,6 corresponding to layers 4,5,6,7,8 and 

lumped zone 7, making a total of 7 parameters. 

With this revised zonation, the objective function was 

reduced to 0.392 x 10-2. The final match is shown in Figures 

8.6 and 8.7. The values, of the estimated permeabilities and 

their standard deviations are shown in Table 8.7. It is of 

interest to note that parameter 5 corresponding to layer 7 has 

the lowest error. The well is completed in layers 7 and 8 but 

has a higher permeability thickness in layer 7, and thus has 

more production from this layer. Parameter 3, corresponding 

to layer 5, has a higher error than zones further away than it 

from the well locations even though this is contrary to 

expectation. This layer has a lower permeability thickness 

and its effect may have been missed in the timing of the 

observations. 

The effect of less observed data on the reliability of 

the estimates is now considered. Assuming that only the 

pressures of the two well locations are measured, the 

calculated values of the permeabilities and the standard 

deviations of the 15 parameters, taking each layer as a zone, 

are shown in Table 8.8. The values of the permeabilities of 
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layers 7 and B can be accepted, but all the other layers have 

standard deviations of relative magnitude much greater than 1. 

We can safely combine these layers without affecting the match 

of the observed data. Combining adjacent zones of high 

variance, the suggested zonation is zone 1 representing layers 

1 to 6, zone 2 consisting of layer 7, zone 3 consisting of 

layer 8 and zone 4 representing layers 9 to 15. When the 

automatic history matching model is run with this zonation, we 

obtain estimated values for the permeabilities of layers 7 and 

8 that are much closer to the original values as shown in 

Table 8.8. The standard deviation of the estimates has also 

decreased, increasing their reliability. 
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Table 8.7: Estimated Permeabilities, Standard Deviations and Elgenvector 
for SPE Problem 2 - Full Data 

Layer True 
Permeability 

(md) 

Estimated 
Permeability 

Std. Dev. 
Relative 

magnitude 

Eigenvector of 
smallest 

eigenvalue 

Estimated 
Permeability 
Reduced 
Zones 

Std. Dev. 
Relative 

Magnitude 

1 35.0 237.5 8.6771 0.1280 

2 47.5 329.2 14.1603 -0.2501 246.2 0.1436 

3 148.0 22.4 7.2519 0.1037 

4 202.0 289.2 0.4075 -0.00405 248.0 0.2135 

5 90.0 240.8 0.6912 0.0108 128.1 0.3807 

6 418.5 324.6 0.4029 -0.00557 478.6 0.1013 

7 775.0 676.2 0.0533 0.00027 696.8 0.0194 

8 60,0 52.62 0.2091 0.00007 67.48 0.0873 

9 682.0 636.0 1.1684 -0.01937 480.48 0.1207 

10 472.0 411.4 1.2098 -0.00737 

11 125.0 821.1 2.6144 -0.04280 

12 300.0 323.7 12.8429 -0.2848 

13 137.5 159.9 33.9166 0.8613 

14 191.0 246.1 12.4082 0.1693 

15 350.0 256.4 - 12.5646 -0.2373 



163 

Table 8.8: Estimated Permeabilities and Standard Deviations for SPE 
Problem 2 - Limited Data 

Layer Estimated 
Permeability md 

Std. Dev. 
Relative 

Magnitude 

Estimated 
Permeability md 

Std. Dev. 
Relative 
Magnitude 

1 226.9 180.37 

2 261.4 332.44 263.4 0.0168 

3 1229. 11.09 

4 111.8 61.14 

5 5.899 252.47 

6 50.55 13.05 

7 985.8 0.27 788.3 0.0086 

8 68.12 0.26 61.64 0.0165 

9 283.6 11.01 392.5 0.1910 

10 333.6 111.95 

11 325.4 405.86 

12 316.9 1206.45 

13 315.3 2824.31 

14 315.5 2791.76 , 

15 315.6 1611.55 
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Fig 8.6 - SPE Problem 2- Limited Data 
Match of Pressure Measurements 
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Fig. 8.7 - SPE Problem 2- Limited Data 
Match of WOR and GOR 
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8.5 Practical Guidelines 

The practical application of the techniques demonstrated 

in this chapter can now be summarized. Using an initial 

parameterization of the reservoir, the automatic history 

matching model is run. If groups of parameters are highly 

correlated, i.e. the reservoir has been over-parameterized for 

the data available, then it will be noticed that the model 

will converge to a minimum value of the LS objective function 

before beginning to diverge as successively higher ranks of 

the w1 are used. This will be an indication that a converged 

solution will be extremely difficult to obtain using all the 

parameters. At this point, the correlation matrix, 

eigenvalues and eigenvectors as well as the variances of the 

parameters computed at the current minimum of the LS objective 

function should be inspected. Adjacent zones of high variance 

should be combined. With the reduced zonation, the automatic 

history matching model can be rerun, often with the effect of 

further decreasing the LS objective function and reduction of 

the variance of the parameters.. 
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CHAPTER 9 

INCORPORATION OF PRIOR KNOWLEDGE AND CONSTRAINTS 

In the numerical examples described so far, the 

postulated grid cell model was identical to the actual model 

used to generate the observation data. 

However, when the automatic history matching simulator is 

utilized for actual field studies, the postulated grid cell 

model may not accurately represent the reservoir description 

since the geological interpretation of seismic data and well 

samples may be in error. In addition, the variation in rock 

properties may be such that the postulated grid cell model may 

not have enough detail to represent it. Several researchers 

such as Christie (1987) and White (1987) have attempted to use 

very fine grids with hundreds of thousands of cells to model 

reservoir heterogeneities. Unfortunately, with current 

computer hardware and numerical techniques, it is still not 

possible to use many thousands of parameters to describe the 

variation in porosity and permeability in reservoir rock both 

areally and vertically. We have to resort to a zonation 

approach whereby the reservoir is divided into a relatively 

small number of zones in each of which the parameters have 

constant values that have to be estimated. The shape and 

arrangement of these zones in the postulated model will be 

quite different than the true reservoir distribution. The 
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problem of optimally defining the zoning pattern is still 

unresolved and most published work involves a trial and error 

approach. 

When the postulated model is very much different than the 

actual model, the resulting estimated parameter values could 

also be very different from the true values such that they 

become physically unrealistic. In such circumstances, it is 

helpful to incorporate into the algorithm prior knowledge of 

the most probable values of the parameters, and also to be 

able to impose constraints on the magnitudes of the values. 

This helps to influence the parameter search towards 

physically acceptable values. 

9.1 Incorporating Prior Information using Bayesian Methodology 

In many practical situations, even before we start 

estimating the unknown parameters from the field data, some 

information about the values of the parameters is often 

available from other sources or from general physical 

considerations. For example, from core data analysis and well 

test analysis, the estimated porosity and permeability values 

may be obtained as 4m and Km. It is reasonable to assume that 

the probable values of these parameters have normal 

distributions with means equal to the estimated values k, and 

standard deviation Ok. It was shown in Chapter 4, that using 

maximum likelihood estimation, the objective function could be 

written as, 
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S - + 5pr:ior 

where S1 is defined by Eq. 4.5 and, 

5pr1or - (kkm) WJ ' (k-k,) 

(9.1) 

(9.2) 

Here Wk is the covariance matrix of the probability 

distribution of the unknown parameters k, and is a diagonal 

matrix with its elements being the reciprocals of Ok2. 

The Gauss-Newton method can be readily modified to 

include the prior term. At the jt11 iteration, 

- km + - km (9. 3) 

Therefore substituting in Eq. 9.2, 

Sprior - (Ak 1 + km) TWk (Ak( l) + - km) (9.4) 

Setting aSprior/ok 41 to zero, rearranging and combining with 

Eq. 5.8, the resulting Gauss-Newton equation is 

mo 1 
E GT(t)CT(t) Q c(t1)G(t1) +Wk 'JAki' 
no (9.5) 

Q (9(t1) -y( t1) ) _Wk_l(k(i)_km) 
i-i 
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Note that since Wk-1 is simply a diagonal matrix, only the main 

diagonal of the Gauss-Newton matrix is modified. The effect 

of prior information can be deduced easily. If the user 

specified standard deviations 0k are large, implying the user 

has little confidence in the prior estimate of k,, then Wk-' is 

small and it makes an insignificant contribution to the Gauss-

Newton matrix. On the other hand, if the user has a strong 

belief that the prior estimates of km are representative of 

the actual reservoir values, then the user specified 0k will 

be small, Wk ' will be large and dominant in the Gauss-Newton 

matrix, and hence, will stay close to km. 

Other authors such as Yang and Watson (1991), Chung and 

Kravaris (1990) have incorporated a weighting factor for the 

Bayesian term, and attempted to find rules to determine the 

optimum weighting factor. 

In our work, we have not considered the problem of 

optimizing the weighting factor for the a priori estimates of 

the parameter values as there is really no rigorous approach 

for doing this. The selection of the weighting factor is very 

much a subjective process in that the weight is a function of 

how strongly the user believes in the a priori information he 

has supplied. If there is a significant amount of historical 

observation data available, the objective function will be 

dominated by the least squares contribution. The contribution 

of the a priori information to the objective function 

increases as the amount of data decreases. If the estimated 
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parameter values after regression are significantly different 

from the prior estimates, the user then either has to question 

his pre-conceptions or to support them by increasing the 

weighting factor for the prior information. The approach we 

have taken is to provide the user with this flexibility. 

9.2 Incorporating Constraints using the Penalty Function 

Approach 

While prior information may be used to influence 

parameter estimates towards physically realistic values, there 

is no guarantee that the final estimates will not reach 

extremal values especially when the postulated model is not 

correct and there is a large amount of data available. The 

only way then to ensure that this does not happen is to 

restrict the feasible region by the use of parameter 

inequality constraints. For example, the range of values for 

porosity must be greater than 0 and less than 1, and the value 

of permeability must be greater than or equal 0. 

Various methods of incorporating boundary constraints 

exist, such as the gradient projection method. In this work, 

we have chosen the penalty function method because it can be 

incorporated into the Gauss-Newton algorithm readily and it 

has a negligible computational overhead. The penalty function 

approach works well when the solution is expected to be in the 

interior of the feasible region, which is true in this 

application. The objective function is modified in such a way 
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that it remains almost unchanged in the interior of the 

feasible region, but increases dramatically as the solution 

approaches the constraints. 

For each constraint, 1, of the form, 

b, (k) ≥ 0 (9.6) 

a penalty function is assigned, 

(k) a1 
b7 (k) 

(9.7) 

where c is a small specified positive constant that 

determines how close the parameter vector approaches the 

boundary. The objective function to be minimised is expanded 

to include the sum of the penalty functions thus, 

where, 

S - 5LS + Sprior + 5ponally 

a1 

b, (k) 

(9.8) 

(9.9) 

if there are 11b constraints. 

The Gauss-Newton method is further modified to include 

the penalty function. At the jth iteration, 
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(9.10) 

Substituting into Eq. 9.9, and differentiating Spenaity with 

respect to 

8Sponaity b ab 
- _ai(b.2_2bj3jAk(i+1)) .9b1 

1-i 

(9.11) 

Setting this to zero, rearranging and adding to Eq. 9.5, we 

obtain the final form of the modified Gauss-Newton iterative 

equation, 

b 
IEGTei  CT ( ti )21 0 jcu+i 

bi ( 

no 

- GT( b) CT( t1) 0 (9( -y( b) ) -Wk (k' JCm ) ! 
11 I-1 bi 

This is of the form AAk 1 = b and can be solved for 

With constraints in the form of, 

b1 (k1) - k (max, i)  - k1 0 

b(1+1) (k1) - -' k(1) ≥ 0 

(9.12) 

(9.13) 
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the penalty function terms appear only in the main diagonal of 

the A matrix. 

The general effect of the penalty terms can easily be 

identified. In the interior of the feasible region, a1/b1 is 

small resulting in a small contribution to the main diagonal 

of the A matrix. The values of will not be affected. 

Near the 1th constraint, a1/b1 is large, dominating the 

diagonal element of the parameter to which the constraint is 

applied. Then Ak, will be very small. 

The penalty function method requires little modification 

of the Gauss-Newton algorithm and is superior to the box type 

constraint method. As discussed by Yang et al. (1987), the 

step direction in the box type method is determined 

independently of the constraints, and the step length is 

limited if the bounds are violated. This could result in 

early termination of the algorithm when a boundary is 

encountered. With the penalty function approach, the step 

direction is confined to the feasible region only. 

In addition, as the magnitude of the main diagonal of the 

Gauss-Newton matrix is increased by contributions from the 

Bayes function and the penalty function, the eigenvalues of 

the matrix become larger, and the ratio of the largest to the 

smallest eigenvalue (the condition number) is decreased. This 

increases the stability of the nonlinear regression algorithm. 
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9.3 Model Application 

As explained earlier, in an actual application, it is 

extremely unlikely that the grid cell model used to describe 

the reservoir will correctly represent the underground 

reservoir structure with all its variation in areal extent and 

parameter distribution. Furthermore, the equations used to 

calculate fluid flow and phase behaviour in the numerical 

model are also approximations to the true physical processes. 

Thus the postulated simulation model can be quite different 

from the actual physical model. Regression analysis to find 

parameter values that cause the postulated model to match the 

actual field data may result in parameter values that are 

unrealistically large or small. In order to influence the 

parameter search towards a priori beliefs of the most probable 

values of the parameters, the incorporation of prior 

information via a method such as Bayesian estimation is very 

useful. In order to restrict the estimated parameter values 

within feasible limits, the incorporation of constraints via 

a method such as the use of penalty functions is needed. 

There are thus two major problems associated with 

automatic history matching in reservoir simulation. The first 

is the correct representation of the reservoir with a grid 

cell model with a limited number of zones, and the second is 

the regression analysis necessary to find the parameter values 

that result in a "best" fit. The automatic history matching 

model presented by Tan and Kalogerakis (1991a, 1991b) and in 
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this thesis was designed to solve the second problem. 

Unfortunately as yet, there is no rigorous analysis of the 

first problem of accurate model description, and the design of 

postulated models to represent the reservoir is at best a 

trial and error process, utilizing as much prior information 

as possible from other sources such as seismic mapping, and 

geological analysis. In spite of this, the automatic history 

matching model is still very useful as a tool to help predict 

the existence of impermeable boundaries, suggest the 

possibility of reservoir extensions, provide estimates of the 

volumes of oil, gas and water in place, and at the same time 

limit estimates of the parameters to within realistic values. 

The two hypothetical case studies presented here are intended 

to demonstrate these. 

9.4 Case Study IV 

The actual model used to generate the observation data 

and the postulated models used to match the data are shown in 

Figure 9.1. This case study is a two-dimensional three-phase 

problem. In the actual model, an impermeable boundary extends 

halfway across the reservoir partially separating Well #1 in 

grid cell (6,3) and Well #3 in cell (10,4) from Well #2 in 

cell (7,5). Well #1 is a water injector while the other two 

wells are producing wells. The effect of the impermeable 
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Fig 9.1 - Case Study IV - Actual and Postulated Models 

Figure 9.la Actual Model 
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Fig. 9.2 - Case Study 9.1 - Porosity, Permeability Distributions 

Figure 9.2a Porosity Distribution 
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Table 9.1: Decription of Actual Model for Case Study IV 

Grid dimension in X and Y directions 
Thickness of cells 
Top depth of cells 
Initial Pressure at Depth 9035 ft is 
Depth of Gas-Oil, Water-Oil Contacts 
Well #1 - Injector II = 20 

Water injection rate = 1500 bbls/d 
Injection pressure = 50000 psi 

Well #2 - Producer Wellbore Index = 10 
Maximum Oil Rate = 1000 bbl/d 
Minimum Bottom Hole Pressure = 2000 

Well #3 - Producer Weilbore Index = 5 
Maximum Oil Rate = 500 bbl/d 
Minimum Bottom Hole Pressure = 2000 

300 ft 
50 ft 

9035 ft 
3600 psia 
9035,9300 ft 

psia 

psia 
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Table 9.2: Relative Permeability Table for Case 
Study IV 

SL KRG KROG PCG 

0.22 1.00 0.00 3.9 

0.30 0.8125 0.00 3.5 

0.40 0.5000 0.00 3.0 

0.50 0.4200 0.00 2.5 

0.60 0.3400 0.00 2.0 

0.70 0.2400 0.02 1.5 

0.80 0.1000 0.10 1.0 

0.90 0.0220 0.33 0.5 

0.96 0.005 0.60 0.2 

1.00 0.000 1.0 0.0 

SW KRW KROW PCw 

0.22 0.00 1.0000 7.0 

0.30 0.066 0.4000 4.0 

0.40 0.15 0.1250 3.0 

0.50 0.24 0.0649 2.5 

0.60 0.33 0.0048 2.0 

0.70 0.49 0.0024 1.5 

0.80 0.66 0.0000 1.0 

0.90 0.83 0.0000 0.5 

0.95 0.915 0.0000 0.25 

1.00 1.00 0.0000 0.0 
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boundary is to delay the response of Well #2, which is located 

closer, to the water injection in Well #1. The water 

injection rate is not sufficient to maintain voidage 

replacement and the producing wells soon drop below saturation 

pressure. The gas-oil ratio increases as free gas is formed in 

the reservoir. The water-oil ratio of Well #3 increases first, 

until it reaches a value of 3.05 when the well is shut in at 

480 days. The water front then sweeps around the no-flow 

boundary to Well #2. The pressure of Well #2 begins to 

increase when Well #3 is shut in as then there is over water 

injection. The producing gas-oil ratio of this well reaches a 

maximum of 4482 scf/stb and then decreases as the free gas 

goes back into solution. The water-oil ratio of Well #2 just 

begins to increase when the base run is terminated at 720 

days. 

As the actual reservoir is partially divided by the 

impermeable boundary, and the water front has not yet broken 

through at Well #2 at the termination of the base run, the 

estimation problem is thus more difficult. This is typical of 

actual reservoir situations where the reservoir parameters 

have to be estimated even though the reservoir has not been 

completely produced. 

The reservoir dimensions are described in Table 9.1. The 

reservoir is initially undersaturated with a connate water 

saturation. No aquifer is present. The permeability and 

porosity distributions are also detailed in Figure 9.2. These 
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distributions were set up with irregular regions so that 

parameter zones would encompass several permeability or 

porosity values. The reservoir fluid properties are identical 

to those used in the Second SPE Comparative Solution Problem 

(1986). The relative permeability values are shown in Table 

9.2. The well constraints are also detailed in Table 9.1. 

The transmissibility between any pair of cells (il,jl), 

(i2,j2) may be calculated in two ways, using the series 

average of the two cell permeabilities or using the 

permeability of cell (il,jl). The second option is used here. 

This allows no-flow boundaries to be specified. The pressures 

of the cells in which the wells are located, the water-oil 

ratios, gas-oil ratios and the oil rates of the producing 

wells are recorded every thirty days in the base run and used 

as observation data to be matched. A small amount of noise was 

added using random numbers distributed normally with a mean of 

zero and a standard deviation of the measurement errors of 

0.001 as discussed previously in Chapter 8. 

9.4.1 Match of Actual Model 

The actual grid model was first used to see if there was 

sufficient observation information to identify the original 

distribution of porosity and permeability. The reservoir was 

divided into fourteen zones, and initial guesses for porosity 

and permeability values were 0.1 and 200 md respectively. 

These initial guesses were used for all subsequent runs. The 
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automatic history matching model was first run without any 

prior estimates of the porosity and permeability available. 

Column 4 of Table 9.3 shows the final estimates of the 

fourteen parameter values. The objective function was reduced 

from 0.4409 x 109 to 0.119 x 10 in 26 Gauss-Newton iterations. 

Comparing with the original values, it can be seen that the 

estimates of the porosity values are not acceptable. Thus a 

local minimum must have been reached. 

The simulator was then rerun using Bayesian estimation. 

The prior estimate of the porosity values was set at 0.1 with 

a standard deviation of 0.001. The prior estimate of the 

permeability values was set at 200 md with a standard 

deviation of 50. md. The LS objective function was reduced 

from 0.4409 x 109 to 0.276 x 103 in 30 Gauss-Newton iterations. 

The Bayes objective function was 0.356 x 1O. The revised 

estimates are shown in column 5 of Table 9.3. It can be 

observed that these are much closer to the actual values. 

This shows the beneficial effect of Bayesian estimation in 

stabilizing the parameter search. The Bayesian contribution 

to the composite objective function influenced the parameter 

search to the correct values. 

The run terminated at a minimum of the composite 

objective function where the Bayes contribution was 

significantly higher than the LS contribution. In order to 

recover the correct values, the weighting factor for the Bayes 

objective function was set to zero, effectively removing its 
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Table 9.3: Parameter Match of Actual Model for Case Study IV 

Zones Parameter Actual LS Bayes Final 

1 Porosity 0.14 0.1898 0.1321 0.1398. 

2 Porosity 0.13 0.0453 0.1297 0.1300 

3 Porosity 0.12 0.1785 0.1234 0.1201 

4 Porosity 0.11 0.0873 0.1095 0.1099 

5 Porosity 0.10 0.1532 0.1005 0.1000 

6 Porosity 0.09 0.0176 0.0878 0.0900 

7 Porosity 0.08 0.1127 0.0837 0.0799 

8 X 
Permeability 

1000. 1037. 1026. 1001. 

9 X 
Permeability 

500. 494.2 485.1 499. 

10 X 
Permeability 

50. 66.93 52.1 50.07 

11 Impermeable 
Boundary 

0. 0.0664 0.0088 0.001 

12 V 
permeability 

1000. 1024. 934.5 999.2 

13 V 
permeability 

500. 313.4 503.8 498.7 

14 V 
permeability 

50. 46.55 49.39 49.98 
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contribution, and the run restarted from the previously 

converged values. The final estimates are shown in column 6 

of Table 9.3 and are very close to the actual values. The LS 

objective function was reduced to 6.4 in 4 Gauss-Newton 

iterations. 

9.4.2 Postulated Model A 

The postulated model used to match the observation data 

is purposely made different from the actual model. The 

relative position of the wells remain the same, but the areal 

extent of the reservoir is modified reflecting the fact that 

in practice, the true reservoir boundaries are rarely known. 

In this case, the postulated model is shifted slightly 

sideways and made smaller. The intent here is to see if the 

results of the parameter estimation using an incorrect 

postulated model could be used as a guide to revising the 

postulated model towards a more accurate representation of the 

reservoir. In particular, we want to see if the presence of an 

impermeable boundary can be detected and whether the correct 

in-place volumes of the fluids can be estimated. The zonation 

used reflects the normal approach towards zonation of a 

reservoir such as this withonly three wells. The postulated 

model as shown in Figure 9.lb is divided into three porosity 

zones and nine permeability zones as detailed in Table 9.4. 

Each well is allocated a zone for the porosity parameter. The 

permeability zones are set up to find the average permeability 
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in the x and y directions for each of the porosity zones as 

well as to find the inter-zonal permeabilities as an 

impermeable barrier is suspected. 

Initial guesses for the porosity and permeability values 

were once again 0.1 and 200 md respectively. The automatic 

history matching model was run initially without any prior 

estimates of porosity and permeability, and without any 

constraints. The objective function was reduced from 0.352 x 

109 to 0.287 x 106 in 38 Gauss-Newton iterations. The 

estimated parameter values are given in column 4 of Table 9.4. 

It is difficult to provide correct estimates to compare 

against as the postulated zones encompass varying proportions 

of the original model zones. Nevertheless, we would expect 

porosity values about 01 and permeability values of 

approximately 1000, 500 and 50 md. Inspecting the calculated 

values, we see porosity values varying from a low of 0.045 to 

a high of 0.378, some permeability values higher than 2000 md, 

one as high as 18430 md. 

Figures 9.3 to 9.11 show the match of water-oil ratios, 

gas-oil ratios, oil rates for Wells #2 and #3, and the match 

of pressures for all three wells. The profiles using the 

initial guesses for porosity and permeabilities are also 

shown. It was at first thought that the matches were not 

satisfactory based on the magnitude of the objective function 

at the end of the regression and the differences between the 

actual and calculated parameter values. However the figures 
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Table 9.4: Case Study IV - Postulated Model A - Parameter Estimates 

Zones Parameter Region LS Bayes Bayes & 
Constraint 

1 Porosity (4-8,2-4) 0.045 0.078 0.078 

2 Porosity (4-8,5-7) 0.235 0.2487 0.2473 

3 Porosity (9-11,3-6) 0.378 0.3014 0.3094 

4 X Permeability (4-7,2-4) 2131. 744.8 717.2 

5 X Permeability (4-7,5-7) 74. 77. 90.83 

6 X Permeability (8,3-4) 1722. 783. 1092. 

7 X Permeability (8,5-7) 71. 66. 54.6 

8 X Permeability (9-11,3-6) 4132. 2513. 2557. 

9 Y Permeability (4-8,2-3) 185. 1340. 1732. 

10 '(Permeability (4-8,4) 1.6 2.311 2.106 

11 '(Permeability (4-8,5-7) 18430. 5013. 3000. 

12 '(Permeability (9-11,3-6) 67. 73.4 87.56 
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show that the predicted profiles compare very closely to the 

actual profiles and the match is indeed quite acceptable. 

If we compare the pore volumes of the zones to the 

approximate drainage volumes of the wells in the original 

model, we can see that the volume of the zone allocated to 

Well #1 should be smaller, the volumes allocated to Wells #2 

and #3 should be larger. The estimated values therefore have 

provided some indication that the reservoir volumes should be 

re-allocated and in particular the reservoir extent should be 

increased for Well #3. The initial oil in-place for the 

original model was 4,297,353 bbls. With the initial guess of 

porosity, the postulated model had an oil in-place of 

2,252,872 bbls. With the final parameter estimates, the oil 

in-place was 4,494,478 bbls which is close to the true value. 

The inter-zonal permeability between Well #1 and Well #2 is 

also small, indicating restriction in flow between the two 

wells. 

The unrealistic high values of some of the permeabilities 

provide an indication that the postulated model is not an 

accurate representation of the true reservoir. In order to 

influence the parameter search towards more realistic 

parameter values, prior estimates of the porosity values were 

supplied with a mean of 0.1 and a standard deviation of 0.01, 

and prior estimates of permeabilities were given with a mean 

of 200 md and a standard deviation of 50 md. No constraints 

were imposed. The results of the regression run using 
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Fig 9.3 - Case Study IV - Model A 
Well #1 - Match of Pressure 
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Fig 9.4 - Case Study IV - Model A 
Well #2 - Match of Water Oil Ratio 
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Fig 9.5 - Case Study IV - Model A 
Well #2- Match of Gas-Oil Ratio 
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Fig 9.6 - Case Study IV - Model A 
Well #2 - Match of Oil Rate 
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Fig 9.7 - Case Study IV - Model A 
Well #2- Match of Pressure 
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Fig 9.8 - Case Study IV - Model A 
Well #3 - Match of Water-Oil Ratio 
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Fig 9.9 - Case Study IV - Model A 
Well #3- Match of Gas-Oil Ratio 
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Fig 9.10 - Case Study IV - Model A 
Well #3- Match of Oil Rate 
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Fig 9.11 - Case Study IV- Model A 
Well #3- Match of Pressure 
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Bayesian estimation and the same initial guesses are given in 

column 5 of Table 9.4. The LS objective function was reduced 

from 0.352 x 109 after 25 iterations to 0.3118 x 106 with a 

Bayes function value of 0.12849 x io. Considering the 

relative magnitude of the LS and Bayes function values, it is 

clear that the observation data has more effect on the final 

parameter estimates than our prior estimates. The use of 

prior information has not changed significantly the porosity 

estimates. They still suggest the same reservoir volume 

modifications. The estimated oil in-place is 4,460,968 bbls. 

The maximum value of the permeability estimates however has 

been reduced to 5013 md from 18430 md. This shows that adding 

prior information using Bayesian estimation helps to reduce 

the variation in estimated values, providing values that are 

more realistic. However it can be termed as a "soft" 

constraint in that it does not impose an absolute limit on the 

values that can be attained during the parameter search. 

When it is required that the parameter estimates do not 

exceed specified minimum and maximum values, it is necessary 

to use a method such as the penalty function method to limit 

the parameter values within the constraint values. In the 

next run, in addition to supplying prior estimates, we set the 

constraints for porosity such that the minimum value is 0.001 

and the maximum value is 0.5, the minimum value for 

permeability to be 0.001 md and the maximum value as 3000 md. 

After 22 iterations, the objective function was reduced from 
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0.352 x 109 to 0.3058 x 106 with a Bayes function value of 0.74 

x 1O. The estimated parameter values supplied in column 6 of 

Table 9.4. The highest permeability value for the zones has 

been further reduced to the limit of 3000 md. The estimated 

value for the oil in-place is 4,493,352 bbls. The matches of 

the observation data for the runs with Bayesian estimation, 

with Bayesian and constraints, are also shown in Figures 9.3 

to 9.11. It is obvious that the matches are similar to the 

run without Bayesian estimation and constraints and yet with 

more realistic permeability values. 

9.4.3 Postulated Model B 

The results of the previous postulated model indicated 

the boundaries of the three porosity zones should be changed 

in order to obtain more reasonable values for the porosity. 

The second postulated model was set up as shown in Figure 

9.lc, with the reservoir extent enlarged and the porosity 

zones assigned to each well modified based on the prior 

results such that the average porosity is about 0.1. Thus the 

area around Well #1 is reduced, and the areas around Wells #2 

and #3 enlarged. Comparing the resulting reservoir 

description with the actual reservoir in Figure 9.la, we can 

see that we are getting closer to the actual model. However 

there is no analysis that can be performed on the results of 

the prior run that would indicate the porosity zonation and 

permeability arrangement that exists in the actual model. 
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Using this postulated model and a porosity and 

permeability zonation similar to postulated model A, the 

automatic history matching model was run initially without any 

prior information and constraints. The final parameter 

estimates are shown in column 4 of Table 9.5. The LS 

objective function was reduced from 0.124 x 109 to 0.8115 x 

106. The porosity values are reasonable, but one of the 

permeability values reaches an unrealistic value of 27960 md. 

The inter-zonal permeability between Wells #1 and #2 is very 

small, with a value of 0.0067 md. It could be argued that 

this too is an unrealistic value, but the analysis of 

reservoir behaviour indicates that this permeability barrier 

is the only explanation for the delayed response of pressure 

and water-oil ratio of Well #2 to the water injection in Well 

#1. The reduced permeability of 13.4 md between Wells #2 and 

#3 could be a clue that though there is no complete barrier 

between these two wells, the permeability barrier between 

Wells #1 and #2 could extend further between Wells #2 and #3. 

The initial oil in-place estimate was 4,414,501 bbls which is 

close to the true value of 4,297,353 bbls. 

Next, prior estimates of the porosity, given as 0.1 ± 

0.01, and of permeability given as 200 ± 50 md are supplied to 

the model. Starting again from the same initial guess, the 

revised estimates are given in column 5 of Table 9.5. The LS 

objective function value is reduced from 0.124 x 109 to 0.785 

X 106 with a Bayes function value of 0.539 x 10. The initial 
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Table 9.5: Case Study IV - Postulated Model B - Parameter Estimates 

Zones Parameter Region LS Bayes Bayes & 
Constraint 

1 Porosity (4-8,2-3) 0.075 0.1016 0.128 

2 Porosity (2-8,4-7) 0.131 0.1308 0.1301 

3 Porosity (9-14,2-7) 0.095 0.086 0.08 

4 X Permeability (4-7,2-3) 2314 1922 3000. 

5 X Permeability (2-7,4-7) 4516 3242 3000. 

6 X Permeability (8,2-3) 440 669 792.7 

7 X Permeability (8,4-7) 13.4 13.7 14.3 

8 X Permeability (9-14,2-7) 27960 11220 3000 

9 Y Permeability (4-8,2) 1489 1062 1120 

10 Y Permeability (4-8,3) 0.0067 0.0094 0.0425 

11 Y Permeability (2-8,4-7) 609 407 367 

12 Y Permeability (9-14,2-7) 731 435 242.6 
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oil in-place estimate is 4,378,679 bbls. The maximum 

permeability value is now 11220 md, and this relatively high 

value shows that the incorporation of prior information using 

Bayesian estimation does not prevent extremal values when the 

LS objective function is significantly larger than the value 

of the prior function. 

In order to restrict the parameters to realistic values, 

the feasible region must be constrained. The next run sets 

the constraint values for the permeability to be ≥ 0.001 and 

≤ 3000 md in addition to the supplied prior estimates. The 

results are shown in column 6 of Table 9.5. The initial oil 

in-place estimate is 4,394,679 bbls. The match of the 

observation values is shown in Figures 9.12 to 9.20. A 

visually acceptable match is obtained for this second 

postulated model. Several parameter zones are restricted to 

the maximum permeability value. This indicates the postulated 

model is different from the actual model but there is no 

theoretical analysis available that will assist us in rezoning 

the model. Several feasible models must be created and 

compared to select the most realistic model. It will be 

impossible to create a model that represents exactly the 

underground reservoir. Nevertheless, it is encouraging that 

on a macroscopic basis, the postulated models provide us with 

reasonable estimates of oil in-place, and will suggest the 

presence of impermeable barriers as shown in this case study. 
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Fig 9.12 - Case Study IV - Model B 
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Fig 9.13 - Case Study IV - Model B 
Well #2 - Match of Water-Oil Ratio 
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Fig 9.14 - Case Study IV - Model B 
Well #2 - Match of Gas-Oil Ratio 
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Fig 9.15 - Case Study IV - Model B 
Well #2 - Match of Oil Rate 
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Fig 9.16 - Case Study IV - Model B 
Well #2- Match of Pressure 
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Fig 9.17 - Case Study IV - Model B 
Well #3- Match of Water-Oil Ratio 
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Fig 9.18- Case Study IV - Model B 
Well #3- Match of Gas-Oil Ratio 
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Fig 9.19- Case Study IV - Model B 
Well #3 Match of Oil Rate 
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Fig 9.20 - Case Study IV - Model B 
Well #3- Match of Pressure 
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9.5 Case Study V 

The purpose of this case study is to further investigate 

the reliability of the estimates of in-place fluids especially 

in situations where an aquifer and a gas cap are present. In 

development drilling of reservoirs, the target of the wells is 

usually the productive pay, normally the oil zone. Wells are 

seldom drilled into an aquifer or a gas cap to verify its 

existence and measure its extent. As a result, the size and 

extent of the aquifer or gas cap must be estimated by material 

balance techniques. Here we will use the automatic history 

matching model to predict the size of the aquifer or gas cap, 

and at the same time incorporate prior values using Bayesian 

estimation while constraining the parameters to within 

realistic values. We will also use different lengths of 

history to see the effect on the estimates of in-place fluids. 

9.5.1 Vertical Cross-section Model 

The model is based on a tilted monoclinal reservoir 

limited by an unconformity and connected to an aquifer as 

shown schematically in Figure 9.21. It is represented in the 

base model by an XZ cross-section consisting of 15 cells in 

the horizontal (X) direction, and 3 layers in the vertical (Z) 

direction. There is a small gas cap, an oil zone, and an 

extensive aquifer. These are explicitly modelled by the grid 

cell model. The fluid properties and relative permeability 
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Fig 9.21 Case Study V - Schematic of Vertical Cross-Section 

Gas Oil Contact 

Water Oil Contact 
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tables are the same as in Case Study 9.1. The porosity and 

permeability distributions are detailed in Table 9.6. Each 

layer has a constant but different porosity and permeability 

in the X and Z directions. 

The reservoir is produced from three wells in the oil 

zone, one near the aquifer, one in the middle and one near the 

gas cap. Well specifications are included in Table 9.6. The 

base run is carried out to 1800 days. As the oil zone is 

depleted, the gas cap expands resulting in high gas-oil ratios 

for the producing well near the gas cap. At 990 days, this 

well is shut in with a gas-oil ratio of 26,700 scf/stb. The 

aquifer provides pressure support and at the same time 

encroaches into the oil zone. The water-oil ratios of the two 

remaining wells increase with time, with the well nearer the 

water-oil contact showing the largest increase. At the end of 

the run, its water-oil ratio was 8.2 bbl/bbl. The producing 

gas-oil ratios, water-oil ratios, oil rates of the wells and 

pressures of the well cells are recorded every ninety days and 

used as observation data to be matched. 

We will now assume in the postulated model that we do not 

know the true extent of the aquifer or the gas cap. The two 

columns of cells at either end of the cross-section are 

removed. The aquifer is reduced to less than half its 

original size, and the gas cap is reduced to one-third. The 

zonation used for the parameters is also different from the 

original distribution of porosity and permeability. For the 
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Table 9.6 : Description of Models Used for Case Study V 

Vertical Cross-Section  

Grid dimensions in X direction - 

20000, 5000, 1000, 300, 300, 300, 300, 300, 300, 300, 
300, 
300, 300, 300, 300 ft 
Grid dimensions in Y direction - 3000 ft 
Thickness of layers 1 to 3 - 50, 75, 100 ft 
Top depth of first layer - 

9600, 9525, 9450, 9375, 9300, 9225, 9150, 9075, 9000, 
8925, 8850, 8775, 8700, 8625, 8550 ft 
Porosity of layers 1 to 3 - 0.4, 0.08, 0.10 
X direction Permeability layers 1 to 3 

- 300, 100, 300 md 
Z direction Permeability of layers 1 to 3 

- 40, 20, 0 md 
Initial Pressure at Depth 8700 ft is 3600 psia 
Depth of Gas-Oil, Water-Oil Contacts 8700,9300 ft 
Well #1 - Producer Location (12,1,2) (12,1,3) 

Well Bore Index = 20 
Maximum Oil Rate = 1000 bbls/d 
Minimum Bottom Hole Pressure = 1000 psia 

Well #2 - Producer Location (10,1,2) (10,1,3) 
Well Bore Index 30 
Maximum Oil Rate 2000 bbls/d 
Minimum Bottom Hole Pressure = 1000 psia 

Well #3 - Producer Location (8,1,1) (8,1,2) 
Well Bore Index = 30 
Maximum Oil Rate 2000 bbls/d 
Minimum Bottom Hole Pressure = 1000 psia 

Three Dimensional Model  

Grid dimensions in Y direction - 1000 ft 

Well #1 - Producer Location (12,2,2). (12,2,3) 
Well #2 - Producer Location (10,5,2) (10,5,3) 
Well #3 - Producer Location (8,1,1) (8,1,2) 
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porosity parameter, five zones consisting of columns of cells 

were used. These are detailed in Table 9.7. Only one zone, 

consisting of the entire grid model, was used for the 

permeability in the x direction. Similarly, only one zone was 

used for the permeability in the z direction. The initial 

guess of porosity was 0.15 for all the porosity parameters, 

500 md for the x direction permeability, and 50 md for the z 

direction permeability. The prior estimates for porosity and 

permeability were the same as the initial guesses. The 

standard deviations for porosity and permeability were 0.01 

and 50 md respectively. Constraints for the porosity were 

0.001 and 0.5 and for permeability were zt 0.001 md and 

3000 md. 

Runs were made using varying lengths of history. 

Specifically these were 360, 720, 1080, 1440 and 1800 days. 

The estimated parameters for each of these runs are shown in 

Table 9.7. The calculated in-place values of oil, gas and 

water are shown in Table 9.8 and compared with the actual 

values. It can be seen that the calculated values are within 

17% of the actual values using a data length of 360 days, and 

the error in general decreases as the data length increases. 

However it can be noted that the estimates at 720 days are as 

good as the estimates at 1800 days. It appears that even 

using a postulated model that is different from the actual 

model, the estimates of aquifer size and gas cap size are 

quite satisfactory. Early time estimates are also quite 
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Table 9.7 Case Study V - Vertical Cross-Section Model - Parameter 
Estimates 

History Period 

Zon 
e 

Parameter 0 -360 
days 

0 -720 
days 

0-1080 
days 

0-1440 
days 

0-1800 
days 

1 Porosity 
(3,1,1-3) 

0.2198 0.2354 0.2394 0.2394 0.2543 

2 Porosity 
(4-6,1,1-3) 

0.0658 0.3088 0.0645 0.1671 0.1630 

3 Porosity 
(7-9,1,1-3) 

0.1152 0.1079 0.0964 0.0994 0.1025 

4 Porosity 
(10-12,1,1-3) 

0.1454 0.0652 0.0829 0.1055 0.1053 

5 Porosity 
(13,1,1-3) 

0.2076 0.3783 0.4064 0.3253 0.3146 

6 X Permeability 
(3-13,1,1-3) 

294.5 352.1 276.6 252.3 266.7 

7 Z Permeability 
(3-13,1,1-3) 

36.99 15.59 14.31 28.95 24.03 
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Table 9.8: Case Study V - Vertical Cross-Section Model - Fluids In-place 
Estimates 

oil 
(1 07stb) 

% duff gas 
(1 07mcf) 

% duff water 
(1 09bb1s) 

% duff 

actual 1.968 3.152 1.902 

0-360 
days 

2.195 11.54% 3.268 3.68% 1.576 -17.1% 

0-720 
days 

1.961 -0.3% 3.119 -1.04% 1.819 -4.36% 

0-1080 
days 

2.004 1.83% 3.209 1.82% 1.704 -1O.4% 

0-1440 
days 

2.067 5.04% 3.212 1.93% 1.764 -7.25% 

0-1800 
days 

2.061 4.71% 3.192 1.29% 1.862 -2.09% 
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reasonable. This implies that a history match of a reservoir 

early in its producing life can provide estimates of its in-

place volumes, and as more data becomes available, this data 

will help to refine estimates of porosity and permeability 

distributions. 

9.5.2 Three-dimensional Model 

The previous vertical cross-section model was extended to 

a three-dimensional model for this test case. The resulting 

model is a 15 x 5 x 3 model with 5 cells in the Y direction. 

The width of the reservoir is extended to 5000 feet from 3000 

feet. The initial -in-place volumes of oil, gas and water are 

larger than in the cross-sectional model. The reservoir 

description, fluid properties are identical to the cross-

sectional case. The Y direction permeability is made the same 

as the X direction permeability. The wells were also 

redistributed along the width (Y direction) of the reservoir. 

In all other respects, the reservoir model is the same as the 

cross-sectional model. The base run is also carried out to 

1800 days recording observation data every 90 days. 

The postulated model is again created by deleting two 

planes of cells at each end of the model, making the model an 

11 x 5 x 3 model effectively reducing the size of the 

postulated aquifer and gas cap. One more parameter zone was 

added for the permeability in the Y direction. The parameters 

in this model thus represent all possible parameters that 
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currently can be used in the automatic history matching 

simulator, i.e porosity and the permeability in each of the 

co-ordinate directions. Prior estimates for porosity and 

permeability, constraints as detailed in the cross-section 

case were also added. 

Runs were again made with varying lengths of historical 

observation data. The estimated values for the parameters are 

shown in Table 9.9. Some porosity estimates are at the 

constraint limits, particularly that of the second porosity 

parameter. There is no well in this zone, so most likely 

there is insufficient information to characterize this zone. 

The utility of the penalty function approach in limiting 

parameter values to within the constraint limits is again 

demonstrated. 

The calculated fluids in-place values for each of the 

runs are shown in Table 9.10, and compared with the original 

values. The conclusions that were drawn for the cross-section 

case are substantiated by the three dimensional case. 

Reasonable estimates of aquifer size, oil in-place and gas cap 

size can be obtained even with fairly short periods of 

historical data, and in general, the accuracy of the estimates 

increases with the length of the historical period. Oil and 

gas in-place estimates are within 10% of the actual values and 

this is more than acceptable in field practice. 
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Table 9.9 : Case Study V - Three Dimensional Model - Parameter 
Estimates 

History Period 

Zone Parameter 0-360 
days 

0-720 
days 

0-1080 
days 

0-1440 
days 

0-1800 
days 

1 Porosity 
(3,1-5,1-3) 

0.2605 0.2607 0.1677 0.1938 0.2420 

2 Porosity 
(4-6,1-5,1-3) 

0.1462 0.1568 0.5000 0.5000 0.0010 

3 Porosity 
(7-9,1-5,1-3) 

0.1264 0.1241 0.0560 0.1061 0.0982 

4 Porosity 
(10-12,1-5,1-3) 

0.1318 0.0967 0.0458 0.0772 0,1229 

5 Porosity 
(13,1-5,1-3) 

0.1920 0.2814 0.5000 0.2963 0.2580 

6 X Permeability 
(3-13,1-5,1-3) 

285.4 297.1 192.4 317.1 337.4 

7 Y Permeability 
(3-13,1-5,1-3) 

121.1 111.6 144.6 452.9 218.3 

8 Z Permeability 
(3-13,1-5,1-3) 

16.44 16.67 4.451 3.367 6.163 
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Table 9.10: Case Study V - Three Dimensional Model - Fluids In-place 
Estimates 

oil 
(1 07stb) 

% duff gas 
(1 07mcf) 

% duff water 
(1 09bb1s) 

% duff 

actual 3.281 5.253 3.169 

0-360 
days 

3.587 9.32% 5.318 1.25% 3.164 -0.19% 

0-720 
days 

3.419 4.21% 5.240 -0.24% 3.174 -0.13% 

0-1080 
days 

3.034 -7.53% 5.084 -3.2% 2.441 -22.9% 

0-1440 
days 

3.239 -1.26% 5.016 -4.5% 2.747 -13.3% 

0-1800 
days  

3.342 1.86% 5.092 -3.05% 2.805 -11.5% 
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9.6 Practical Application of the Automatic History Matching 

Model 

The steps involved in a reservoir study using the model 

can be summarised as follows: 

(a) Using all available information, the engineer will 

construct a postulated grid cell model of the reservoir. 

(b) The model will then be subdivided into zones 

following as closely as possible any geological zonation. The 

zones for porosity and permeability need not be identical. The 

cells allocated to a zone do not need to be contiguous. 

(c) The engineer will then optionally provide estimates 

of the most probable values of the parameters as well as 

constraints on the minimum and maximum values. 

(d) The model is then run to provide estimates of the 

parameter values. 

(e) At convergence or at the minimum of the LS objective 

function, the variances of the parameters as well as the 

eigenvectors of the smallest eigenvalues should be inspected 

to identify any highly correlated zones. Adjacent zones of 

high variance should be combined. 

(f) Any zones with values close to the constraint limits 

should be carefully analyzed with a view to modifying the 

postulated grid cell representation of the reservoir. 

(g) If changes are made to the model repeat from step 

(c), otherwise carry on with the study. It should be noted 

that the nature of the problem is such that it is impossible 
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to obtain a postulated model that uniquely represents the 

reservoir and the engineer should update the match when 

additional information becomes available. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

In this work, several modifications were proposed to 

reduce the computational effort of parameter estimation using 

the Gauss-Newton method. Numerical experiments were carried 

out with chemical kinetic problems involving ordinary 

differential equations to show the convergence of the method 

was not affected. Then the method was implemented in a 

single-phase compressible flow simulator. Comparisons with 

published test cases showed the method was significantly 

faster. 

A fully implicit three-dimensional three-phase multi-

component simulator with an automatic history matching 

capability was developed. The model can simultaneously match 

observed pressures, water-oil ratios, gas-oil ratios and 

flowing bottom hole pressures. A zonation approach is used. 

Parameters that currently can be estimated are the 

permeability in all directions as well as porosity. The model 

was used to match observation data generated using the Second 

SPE Comparative Solution Problem. 

The model is extremely efficient in computational 

requirements. Based on the run times obtained from the test 

cases, the program required only 1.233 + O.077(number of 
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parameters) equivalent model runs for each Gauss-Newton 

iteration. This is significantly less than the (number of 

parameters + 1) equivalent model runs required by previously 

published Gauss-Newton methods. 

Further, by using several examples, it was demonstrated 

that one can obtain significant information about the 

reliability of the estimates of the parameters when an 

automatic history matching model based on the Gauss-Newton 

method is used. This is an important advantage over manual 

matching. It was shown that the correlation matrix developed 

at convergence will suggest which pairs of zones are highly 

correlated. For correlation of multiple zones, the 

eigenvectors corresponding to the smallest eigenvalues should 

be inspected to locate the parameters that correspond to the 

largest values. Zones which are highly correlated usually 

have the largest variances. The variances of the parameters 

also depend on the measurement errors. In general, the match 

can often be improved by removing or combining adjacent zones 

whose parameters have high variance. 

In actual application, the postulated model will be quite 

different than the actual reservoir. It was demonstrated that 

under these circumstances, the regression analysis could 

result in parameter values that are highly unrealistic. 

However this problem can be alleviated by introducing prior 

information using Bayesian estimation to influence the 

parameter search towards more realistic values. Inviolable 
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limits on the feasible parameter values can be imposed using 

constraints via the penalty function method. 

Test cases were presented using postulated models that 

were quite different than the actual models that were used to 

generate the artificial observation data. It was concluded 

from the test cases that the automatic history matching model 

can be used to detect the presence of impermeable barriers, 

estimate in-place volumes of oil, gas and water and, suggest 

reservoir extensions that would make the postulated model 

conform more closely to the actual reservoir. 

With the combination of an effective parameter estimation 

method - the Gauss-Newton method, utilization of prior 

information using Bayesian estimation, and limiting 

constraints on parameter values, the three-dimensional three-

phase simulator with automatic history matching capability is 

a powerful tool that can be used effectively for parameter 

estimation in reservoir modelling. 

10.2 Recommendations 

10.2.1 Increasing the Parameter Types 

The parameters that can be estimated should be extended 

to include fluid properties as well as saturation functions. 

These may be represented by spline functions and then the 

parameters of the functions will be estimated. The zonation 

approach assumes a constant parameter value over a range of 



228 

cells. This can be extended such that the parameter value to 

be estimated is a multiplying factor of the values in the 

range of cells. This will allow a distribution to be raised 

or lowered in the range of cells. Another approach would be 

to use a spline approximation for the parameter distribution 

and then to estimate the coefficients of the spline. 

10.2.2 Improving the Cautious Step-size Policy 

In the current implementation, each iteration consists of 

the solution of the model equations and sensitivity equations 

to generate the Gauss-Newton matrix. The step size and 

direction predicted by the Gauss-Newton method is accepted 

regardless whether the objective function is larger at the new 

estimates. It is desirable that if this occurs, the new 

estimate not be accepted, but the Gauss-Newton matrix 

generated at the new estimate be used in combination with the 

previous estimate's Gauss-Newton matrix to provide a new step 

size and direction that hopefully results in a lower objective 

function value. 

10.2.3 Improving the Postulated Model and Discrimination of 

Postulated Models 

Methods should be devised to redesign the postulated 

model if it results in a poor fit of the observation data. 

Statistical tests to distinguish between competing models 

should be investigated. 
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APPENDIX A 

C ODE GAUSS NEWTON METHOD FOR LEAST SQUARES 
C 
C EXAMPLE PROBLEM 1 OF DR KALOGERAKIS 'S PAPER 
C 

PROGRAM GN 
IMPLICIT REAL*8(A_H2OZ) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 

FS(1O,10),RS(10,10),BS(10,10), 
XS(1O),XG(1O),X(1O),DX(1O),DFDX(1O,10),BP(10),L1(1O), 

2 L2(1O),BK(10),AX(100),DFDK(1O,10),DxDK(10,10), 
3 F(1O),R(1O),A(1O,1O),B(10),Q(1O) 
LOGICAL ERROR 
DIMENSION DK(10),TK(1O),VK(1O),XK(10) 
CHARACTER*16 FILE 
LOGICAL SCALE 
Q(1) = 1.E10 
Q(2) = 10.E10 
WRITE(*,700) 

700 FORMAT(' OUTPUT FILE ? ',$) 
READ(*,701) FILE 

701 FORMAT(A) 
OPEN(UNIT=6 ,FILE=FILE, STATUS='UNKNOWN' ,FORM='FORMATTED') 
NEXPT = 9 
NN = 2 
NP = 2 
VK(1) = 355.4 *10000 
VK(2) = 403.3 *10000 
TOL = 0.0001 
CALL FUNCT(VK,VALK) 
WRITE(6,*) 'INITIAL P.I,K1,K2 = ',VALK,(VK(I),I=l,NP) 
WRITE(6,100) 

100 FORMAT(1X,6X,'ITER',6X,'PERF.INDX',8X,' NEW K1',8X,'NEW K2'/) 
DO 20 ITTR = 1,100 
SCALE = .TRUE. 
IPASS = 0 

3 DOSK=1,NP 
B(K) = 0. 
DO 4 KK = 1,NP 

4 A(K,KK) 0. 
5 CONTINUE 

CALL COEF(VK) 
IF(SCALE) THEN 
DO 6 I = 1,NP 
B(I) = B(I) * VK(I) 
DO 6 J = 1,NP 
A(I,J) = A(I,J) * VK(I) * VK(J) 

6 CONTINUE 
END IF 
L=0 
DO 7 I = 1,NP 
DO7J=1,NP 
L, = L + 1 

7 AX(L) = A(I,J) 
CALL NATINV(AX,NP,L1,L2) 
L= 0 
DO 9 I = 1,NP 
DXT = 0 
DO 8 J = 1,NP 
L = L + 1,, 
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8 DXT = DXT + AX(L) * B(J) 
XK(I) = DXT 

9 CONTINUE 
DKMAX = 0 
WRITE(*,*) 'XK', (XK(I) ,I1,NP) 
DO 14 K = 1,NP 
IF(DABS(XK(K)).GT.DKMAX) DKMAX = DABS(XK(K)) 
DK(K) = XK(K) 
IF(DABS(DK(K) ) .GT.0.5) DK(K)=DSIGN(0.5D0,DK(K)) 

14 CONTINUE 
IF(DKMAX.LT.0.001) GO TO 21 
SIGNX = 1.0 

15 DO 16 K = 1,NP 
TK(K) = VK(K)*(1. + DK(K)) 

16 CONTINUE 
CALL FUNCT(TK,VAL) 
WRITE(*,*) 'TK,VAL', (TK(I),I=1,NP) ,VAL 
IF(VAL.GT.VALK) THEN 
IF(IPASS.EQ. 0) THEN 
IPASS1 
DO 17 K = 1,NP 

17 DK(K) = -DK(K) 
GO TO 15 
ELSE IF(IPASS.EQ.1) THEN 
IPASS = 2 
IF(DKMAX.GT.0.5) THEN 
DO 13 K = 1,NP 

13 XK(K) = XK(K)/(2.*DKMAX) 
END IF 
DO 12 K = 1,NP 

12 DK(K) = XK(K) 
GOTO 15 
END IF 
END IF 
DO 22 K = 1,NP 

22 VK(K) = TK(K) 
VALK = VAL 
WRITE(6,101) ITTR,VAL,(VK(I),I=1,NP) 

101 FORMAT(1X,I5,F12.5,5G13.5) 
20 CONTINUE 
21 CONTINUE 
99 STOP 

END 
SUBROUTINE COEF(VK) 
IMPLICIT REAL*8(A_H2O_Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 
1 FS(10,10),RS(10,10),BS(10,10), 
1 XS(10),XG(10),X(10),DX(10),DFDX(10,10),BP(1O),L1(1O), 
2 L2(10),BK(10),AX(100),DFDK(10,10),DXDK(10,10), 
3 F(10),R(10),A(10,10),B(10),Q(10) 
LOGICAL ERROR 
DIMENSION Y(2,9),T(9),VK(10) 
DATA T/ 0., 5.63E-4, 11.32E-4, 16.97E-4, 22.62E-4, 34.E-4, 
1 39.7E-4, 45.2E-4, 169.7E-4/ 
DATA (Y(1,I),I=1,9) 
1/1.,0.828, 0.704, 0.622, 0.565, 0.499, 0.482, 0.470, 0.443/ 
DATA (Y(2,I),I=1,9) 

1 /0.,0.0737,0.113, 0.1322,0.1400,0.1468,0.1477,0.1477,o.1476/ 
DO 10 K = 1,NP 

10 BK(K) = VK(K) 
DO 20 K = 1,NN 

20 X(K) = Y(K,1) 
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DO 30 I = 1,NN 
DO 30 J = 1,NP 

30 DXDK(I,J) = 0. 
DT = 0 
IFLAG = 1 
TIMSTR = T(1) 
DO 100 IEXPT = 2,NEXPT 
TIMEND = T(IEXPT) 
CALL IEULER ( TIMSTR, TIMEND) 
DO 9 K = 1,NP 
DO 6 I = 1,NN 

6 B(K) = B(K) + DXDK(I,K) *Q(I)* (Y(I,IEXPT)—X(I)) 
DO 7 KK = 1,NP 
DO 7 I = 1,NN 

7 A(K,KK) = A(K,KK) + DXDK(I,K) *Q(I)* DXDK(I,KK) 
9 CONTINUE 

TIMSTR = TIMEND 
100 CONTINUE 

RETURN 
END 
SUBROUTINE FUNCT (VK,VALUE) 
IMPLICIT REAL*8(A_H2O_Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL, IFLAG, 
1 FS(].0,10),RS(10,].0),Bs(10,10), 
1 XS(10),XG(10),X(10),DX(10),DFDX(10,1Q),Bp(10),L1(10), 
2 L2(10),BK(10),AX(100),DFD'K(lO,].0),DxDK(lQ,lO), 
3 F(10),R(10),A(10,10),B(10),Q(10) 
LOGICAL ERROR 
DIMENSION Y(2,9),T(9),VK(10) 
DATA T/ 0., 5.63E-4, 11.32E-4, 16.97E-4, 22.62E-4, 34.E-4, 
1 39.7E.-4, 45.2E-4, 169.7E-4/ 
DATA (Y(1,I),I=1,9) 
1 /1.,0.828, 0.704, 0.622, 0.565, 0.499, 0.482, 0.470, 0.443/ 
DATA (Y(2,I),I=1,9) 
1 /0.,0.0737,0.113, 0.1322,0.1400,0.1468,o.1477,o.1477,o.1476/ 
VALUE= 0. 
DO 1 K = 1,NP 
BK(K) = VK(K) 
DO 2 K = 1,NN 

2 X(K) = Y(K,1) 
TIMSTR = T(1) 
IFLAG = 0 
DT = 0. 
DO 10 I = 2,NEXPT 
TIMEND = T(I) 
CALL IEULER ( TIMSTR, TIMEND) 
DO 7 K = 1,NN 
VALUE = VALUE + (Y(K,I)_X(K))**2 * Q(K) 

7 CONTINUE 
TIMSTR = TIMEND 

10 CONTINUE 
RETURN 
END 
SUBROUTINE IEULER (TA, TB) 
IMPLICIT REAL*8(A_H2O_Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 
1 FS(10,10),RS(10,10),BS(10,10), 
1 XS(10),XG(10),X(10),Dx(10),DFDX(10,10),Bp(1O),L1(10), 
2 L2(10),BK(10),AX(100),DFDK(10,10),DXDK(10,10), 
3 F(10),R(10),A(10,10),B(10),Q(10) 
LOGICAL ERROR 
IF(DT.EQ.0) DT = (TB—TA)/10. 



246 

T = TA 
IF((T+DT).GT.TB) DT = TB - TA 
DO 100 IT = 1,10000 
DO 10 I = 1,NN 

10 XS(I) = X(I) 
15 CALL INTGRT 

DTF = DT 
IF(ERROR) THEN 
DT = DT * 0.5 
DO 16 I = 1,NN 

16 X(I) = XS(I) 
GOTO 15 
END IF 
DO 20 1= 1,NN 
XG(I) = X(I) 

20 X(I) = XS(I) 
DTDT*0.5 
DO 30 II = 1,2 
CALL INTGRT 
IF(ERROR) THEN 
DO 25 I = 1,NN 

25 X(I) = XS(I) 
GOTO 15 
END IF 

30 CONTINUE 
ERR = 0 
DO 40 I = 1,NN 

40 IF(DABS((XG(I)-X(I))/X(I)).GT.ERR) ERR= DABS((XG(I)-X(I))/x(I)) 
IF(ERR.LE.TOL) THEN 
T = T + DTF 
DO 45 I = 1,NN 

45 X(I) = XG(I) 
DT = DTF 
IF(IFLAG.EQ.].) CALL INTSEN 
IF(T.EQ.TB) GOTO 110 
IF(ERR.EQ.0) THEN 
DT = 5* DTF 

ELSE 
DT = TOL/ERR * DTF 
END IF 
IF(DT.GT.5.*DTF) DT = 5.*DTF 
IF((T+DT).GT.TB) DT = TB - T 
ELSE IF(ERR.GT.TOL) THEN 
DT = DTF * 0.5 
DO 50 I = 1,NN 

50 X(I) = XS(I) 
END IF 

100 CONTINUE 
110 CONTINUE 

RETURN 
END 
SUBROUTINE INTSEN 
IMPLICIT REAL*8(A_H2O_Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 

FS(10,10) ,RS(10,10),BS(10,10), 

XS(10),XG(10),X(10),DX(10),DFDX(10,10),BP(10),L1(10), 
2 L2(10),BK(10),AX(100),DFDK(10,10),DXDK(1O,1O), 
3 F(10),R(10),A(10,10),B(10),Q(10) 
LOGICAL ERROR 
RDT = 1./DT 
CALL EVDFDK 
DO 10 J = 1,NP 
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DO 10 I = 1,NN 
10 RS(I,J) = 0.0 

CALL DIFFDX 
L=0 
DO 22 I = 1,NN 
DO22J=1,NN 
L=L+1 
AX(L) = DFDX(I,J) 

22 IF(I.EQ.J) AX(L) = AX(L) - RDT 
CALL MATINV(AX,NN,L1,L2) 
DO 200 IT = 1,100 
CALL EVALFD 
BMAX = 0 
DO 110 J = 1,NP 
DO 110 I = 1,NN 
BS(I,J) = RS(I,J) - FS(I,J) 
IF(IT.GT.1) THEN 
ERR = 0. 
IF(RS(I,J).NE.0) ERR = DABS(BS(I,J)/RS(I,J)) 
IF (ERR. GT . BMAX) BMAX = ERR 
END IF 

110 CONTINUE 
IF(IT.GT.1.AND.BMAX.LT.0.0001) GOTO 210 
DXMAX = 0 
DO 150 J = 1,N? 
DO 120 I = 1,NN 

120 BP(I) = BS(I,J) 
L = 0 
DO 125 11= 1,NN 
DXT = 0 
DO 124 JJ= 1,NN 
L= L + 1 

124 DXT = DXT + AX(L) * BP(JJ) 
DX(II) = DXT 

125 CONTINUE 
IF(IT.GT.1) THEN 
DO 126 I = 1,NN 
ERR = 0 
IF(DXDK(I,J).NE.0.) ERR= DABS(DX(I)/DXDK(I,J)) 
IF (ERR. GT . DXMAX) DXMAX = ERR 

126 CONTINUE 
END IF 
DO 127 I = 1,NN 
RS(I,J) = RS(I,J) + DX(I) * RDT 

127 DXDK(I,J) = DXDK(I,J) + DX(I) 
150 CONTINUE 

IF(IT.GT. 1.AND.DXMAX.LT.0.001) GOTO 210 
200 CONTINUE 

WRITE(*,*) ' FAILED TO INTEGRATE SENSITIVITY EQUATIONS 
210 CONTINUE 

RETURN 
END 
SUBROUTINE INTGRT 
IMPLICIT REAL*8 (A-H, O-Z) 
COMMON NEXPT,NN,NP,DT,RDT 

FS(10,10),RS(10,10 
XS(10),XG(10),X(10 

2 L2(10),BK(10),AX(1 
3 F(10),R(10),A(10,1 
LOGICAL ERROR 
ERROR = .FALSE. 
RDT = 1./DT 

,ERROR, TOL, IFLAG, 
),BS(10,10), 

DX( 10) , DFDX( 10, 10) ,BP ( 10) ,L1( 10) 
00) , DFDK( 10, 10) , DXDK( 10, 10) 
0),B(10),Q(10) 
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DO 10 1= 1,NN 
10 R(I) = 0. 

DO 50 IT = 1,100 
CALL EVALF 
BMAX = 0 
DO 15 I = 1,NN 
BP(I) = R(I) - F(I) 
IF(IT.GT.1) THEN 
ERR = DABS(BP(I)/R(I)) 
IF (ERR • GT . BMAX) BMAX = ERR 
END IF 

15 CONTINUE 
IF(IT.GT.1.AND.BMAX.LT.0.0001) GO TO 60 
CALL DIFFDX 
DO 20 I = 1,NN 

20 DFDX(I,I) = DFDX(I,I) - RDT 
L=0 
DO 23 I = 1,NN 
DO 23 J = 1,NN 
LL+1 

23 AX(L) = DFDX(I,J) 
CALL MATINV(AX,NN,L1,L2) 
L0 
DO 25 I = 1,NN 
DXT = 0 
DO 24 J = 1,NN 
LL+1 

24 DXT = DXT + AX(L) * 

DX(I) = DXT 
25 CONTINUE 

DXMAX = 0 
DO 26 I = 1,NN 
IF(X(I).NE.0.) THEN 
ERR = DABS(DX(I)/X(I)) 
ELSE 
ERR = 0. 
END IF 
IF(ERR.GT.DXy1AX) DXMAX = ERR 

26 CONTINUE 
DO 30 I = 1,NN 
R(I) = R(I) + DX(I) * RDT 

30 X(I) = X(I) + DX(I) 
IF(IT.GT. 1.AND.DXMAX.LT.0.001) GOTO 60 

50 CONTINUE 
ERROR = .TRUE. 

60 CONTINUE 
RETURN 
END 
SUBROUTINE EVALF 
IMPLICIT REAL*8(A_H, O-Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 

FS(10,10),RS(10,10),Bs(10,10), 
XS(10),XG(10) ,X(10),DX(10) ,DFDX(10,10) ,BP(10) ,L1(10), 

2 L2(10),BK(10),AX(100),DFDK(1O,10),DXDK(1O,10), 
3 F(10),R(10),A(10,10),B(10),Q(10) 
LOGICAL ERROR 
Rl= BK( 1)* (X(1)*X(1)_X(2)*(2._2.*X(].)_x(2))/O.726) 
R2= BK( 2 )*(X(1)*X(2)_(1._X(1)_2*X(2))*(2._2.*X(1)_X(2))/3.852) 
F(1) = -Ri - R2 
F(2) = R1*0.5 - R2 
RETURN 
END 



249 

SUBROUTINE EVALFD 
IMPLICIT REAL*8(A_H, O-Z) 
COMMON NEXPT,NN,NP,DT,RDT 
1 FS(10,1O),RS(10,10 
1 XS(1O),XG(1O),X(1O 
2 L2(1O),BK(1O),Ax(1 
3 F(1O),R(1O),A(1O,1 
LOGICAL ERROR 
DO 30 I = 1,NN 
DO 30 J = 1,NP 
FD = DFDK(I,J) 
DO 20 K = 1,NN 

20 FD = FD + DFDX(I,K) 
FS(I,J) = FD 

30 CONTINUE 
RETURN 
END 
SUBROUTINE DIFFDX 
IMPLICIT REAL*8(A_H2O_z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 
1 FS(10,10),RS(10,10),Bs(10,10), 
1 XS(10),XG(10),X(10),DX(10),DFDX(],O,1O),Bp(1O 
2 L2(10),BK(10),AX(100),DFDK(10,1O),DXDK(1O,10 
3 F(1O),R(10) ,A(10,10),B(10),Q(10) 
LOGICAL ERROR 
DR1DX1 = BK(1)*(2.*X(1)+2.*X(2)/0.726) 
DR1DX2 =BK(1)I0.726*(_(2._2.*x(1)_x(2)) +X(2)) 
DR2DX1 = BK(2)*(X(2)+(2._2.*X(1)_X(2))/3.852 
1 +2.*(1._X(1)_2.*X(2))/3.852) 
DR2DX2 
1 +(1._X(1)_2.*x(2))/3.852) 
DFDX(1,1) = - DR1DX1 - DR2DX1 
DFDX(1,2) = - DR1DX2 - DR2DX2 
DFDX(2,1) = 0.5 * DR1DX]. - DR2DX1 
DFDX(2,2) = 0.5 * DR1DX2 - DR2DX2 
RETURN 
END 
SUBROUTINE EVDFDK 
IMPLICIT REAL*8(A_H2O_Z) 
COMMON NEXPT,NN,NP,DT,RDT,ERROR,TOL,IFLAG, 
1 FS(10,10),RS(10,10),ss(10,10), 
1 XS( 10 ),XG(10),X(10),DX(10),DFDX(1O,1O),Bp(10),L1(1O), 
2 L2(10),BK(10),AX(100),DFDK(10,1O),DXDK(1O,10), 
3 F(10),R(10),A(10,10),B(].o),Q(10) 
LOGICAL ERROR 
DR1DK1 = X(1)*X(1) _X(2)*(2.-2.*X(1)_x(2))/0.726 
DR2DK2 =X(1)*X(2) - (1._X(1)_2.*X(2))* 
1 (2._2.*X(1)_x(2))/3.852 
DFDK(1,1) = -DR1DK1 
DFDK(1,2) = -DR2DK2 
DFDK(2,1) = 0.5 * DR1DK1 
DFDK(2,2) = - DR2DK2 
RETURN 
END 

,ERROR,TOL,IFLAG, 
),BS(10,10), 
DX( 10) , DFDX( 10, 10) ,BP ( 10) ,L1( 10) 

00) , DFDK( 10, 10) , DXDK( 10, 10) 
0) ,B( 10) ,Q( 10) 

* DXDK(K,J) 

),L1(10), 
), 


