I Introduction

e Noduta 2 programmdigg g inge b isedil e fone i compiteg selencn coneepts heyond the
ntroductory fevel heca 1 bewbongly Typedd nwl LTI el eonsbue tnusexternal mod
les, separate congatation law level Hiletlneew, lll!" v pat e Hownver, undemtamding the more
complex concepba aach wh plotiration ||||H||u, HLO|IH, Wl muml CORCITEONRT processes tequires inton
nation on how the aoltwais webnally oomeglon i Ptk ponentn womodel which can he used 1o
fook at progran eacontion e totims ol e woies s g o avobds the complication of dealing
with the compleattien at tho ommllllllh'l/ll|||||l||ﬂl Jovel 1 e bonwdon of work done with othes
languages (Bivtwistle, el TORE TOHNY Pl iosdsd aiditen what actually occaes and introduces
concepts ol “block tntateon® wtable mpd dynapde Hods wod the imling valo as building blocks

Fhe combimation ol hene can e ased fo prodien @ vlatial modol o the oxecation

2 Basic Compononis

2.1 Bloch lnstuneon

A block of code (code hotworn o begin and ol s aesdime) van beviadized as-acblock
instanee. A bloch tuntanen oo o componein—n hllig, docdwratlomns, nnd execatable code
or body. Phe Teadumg comtabma ubeguo Pttt a st Bl wod o dynnmbe ok Vhe declaration
portion contatus bonwation an By pew, viarinblon sl sl which aee o be ased within the
block. Temmay also contali G adibvomen iedleat g wheas i value b wtored The body containe
the executable code tneo o wnorwilon of the PO e wespientlnlly through the code, o
pointer (called sequence vonhalng W) Pt wbem Phe cnppepthy e pHng wtatoment Block watanees

donotwaally extstan 0l HE woven to Che bogtinibag of o Block sode o o procedue call.

- g e T

In visualizing Modula-2 execution, each module is visualized as having its own stack which
contains the active block instances for that module, rather than coping with one large stack. The
order of stack initialization is such that modules which are referenced by other modules are initial-
ized first. Implementation modules require a partner definition module. For our purposes, these
are incorporated into the declaration portion of the block instance for the equivalent implementa-
tion module at run time. (During compile it is only necessary to know what the values and their
structures are but it is not necessary to create the entity or assign storage at compile time). These
features and the additional components are best discussed using examples.

Suppose that we have a simple program which assigns a value to an integer variable and writes
this value to the screen as shown below. Figure 1 provides a visual representation of the block

instances at the time that execution has called Writelnt in the program module.

MODULE ex1;
FROM InOut IMPORT Writelnt;
VAR x : INTEGER;
BEGIN
X := 3;
WriteInt(x,5);

END exl1.

RTS
oLf et Jst DL | mout] st
x INTEGER 3
InOut.Writelnt ~f ——~——— 0 Done BOOLEAN 7
X = 3; |
Wirielnt (x,5); [J Writeint PROCEDURE
end.

DL | Wwriteint | st -

x INTEGER 3
n CARDINAL 5

SC_J .. codeto display x

Figure 1

When the program is executed, the run-time system (RTS) is called and some book-keeping is done
and then the execution begins. We first create a stack for the module InOut since it is used by ez!
and must be created first. Initialization produces a block instance for the module. The dynamic
link, DL, provides the position to which execution will return when all requirements for the block
instance are complete and it therefore points back to the RTS. The static link, SL, points back to
the block where the declarations exist which are required to produce the block new instance. Since
the RTS can also be considered as a block instance, SL points back to the RTS. The declarations

for InQOut contain the variables, constants, and procedures for the block instance. Note that it is

only here that the address of any variable which is declared exists. For purposes of the model, we
show the value of the variable in this section of the block instance. Any initialization which might
be required in the body of the implementation module is also accomplished at the time that the
block instance is created. In this case, this has been left blank since any of these operations are
transparent to the user for a library module.

Similarly, a block instance is created for ex! with DL and SL pointing back to the RTS. The
declarations include an integer z and a procedure imported from InOut called Writelnt. The
declarations do not include the code for the procedure but only a link to the procedure declaration
in InOut (shown with a broken line). The value of z is not yet determined. When all of the
declarations are complete sequence control, SC, is positioned at the first instruction which sets the

value of z to 3.

2.2 Binding Rule

Locating an identifier (variable, constant, procedure) requires the application of the binding rule.

This rule can be stated as:

Look for the quantity in the declarations of the current block instance. If it is found
then the search ends. If it is not found, then follow the SL to the block instance and

look in the declarations here. This process is continued until the search is successful.

Thus, z is found in the declarations of the current block and the value is placed here. When
the call is made to WriteInt, the current block instance is searched for the procedure. Because the
import statement has indicated that the procedure exists in another module and has set a link to
that module, execution then moves to InQOut and a block instance for the procedure created in the

stack for InOut. Since the values in the paramemter list of the procedure are passed by value, the

declarations for WriteInt have assigned variable names corresponding to the formal parameter list
and the values passed to the procedure are placed in the appropriate positions in WriteInt. Note
that passing by value does create another set of values in the newly created block instance and the
original values are unchanged in the calling block instance.

When the procedure has written the appropriate value to the screen, the code reaches an end
statement. Whenever an end statement which terminates the block is encountered, the block
instance is removed and execution continues at the position indicated by the DL. In this case,
execution returns to the calling position, and since this statement is complete, moves to the end of
the program. Since this end statement terminates the block instance for ez, the instance is removed
and control passes to the RTS as indicated by DL. When the RTS regains control after the removal
of the program module, all other stacks (modules which were initialized) are also removed and a

final clean-up done.

3 Reference and Value Parameters

When a procedure is called, this results in the creation of a block instance with the DL showing
the return position when the procedure is complete and the SL indicating the block instance which
contains the declaration of the procedure which can be used to create the block instance. If the
procedure has no parameters, then the binding rule uses SL to find the position (block instance)
where the variables in the procedure are stored. In creating the block instance for procedures
with parameters, the declaration of the procedure contains the formal parameters and their types.
However, reference and value parameters are treated slightly differently. When a formal parameter

is called by value, the formal parameter name is given to the variable within the declaration of the

block instance and the value which this parameter has on the call is inserted into the declaration.
If, however, the parameter is a reference parameter, the address of the storage location is placed
into the formal parameter name position rather than the value itself. This is shown with an @ and
then a broken line is used to indicate the position where the actual values are stored.

Consider the following simple program.

MODULE norm;
FROM Reall0 IMPORT ReadReal, WriteReal;
TYPE vec = ARRAY [1..5] OF REAL;
VAR v : vec;
success : BOOLEAN;
PROCEDURE readvec (VAR x : vec; n : INTEGER);
VAR k : INTEGER;
BEGIN
FOR k := 1 TO n DO
ReadReal (x[k]);
END;
END readvec;
PROCEDURE writevec (x : vec; n : INTEGER);
VAR k : INTEGER;
BEGIN
FOR k := 1 TO n DO
WriteReal(x[k], 10, 2);

END;

END writevec;
BEGIN
readvec (v, 5);
writevec (v, 5;

END norm.

[RB]

|‘ oLf rom [,_] riDL| Reall0 ISL-J

vec TYPE ARRAY]1..5) OF REAL
——fv e [T o,
I success BOOLEAN ‘
Reall0.ReadReal— — — — — — — -

——-1 ReadReal PROCEDURE
— -p-WriteReal PROCEDURE

|

e —

.
|
|
|

ReallO.WriteReal — — — — — — | + |
readvec PROCEDURE
writevec PROCEDURE

|

-
i
i
(! |
I |
il
K |
} | 4> readvec (v,5); | DL] ReadReal ISL —
: } writevec (v, 10, 2); 1 real REAL @ ———— |
| } ond : success BOOLEAN @ —}, :
| | i
: } DL} o [st | SC—{—> code to read real : I
|l xvec @ —————4—— ! | }
{ ! k INTEGER 1 :I
| n INTEGER & |
' !
|} FOR k:= 1TOn DO |;
I | ReadReal (x[K]); } i

| END; |
! |
Il END; i
| : | :

Figure 2

Figure 2 indicates the block instances at the time that readvec is called and the first read has just
been completed. As shown previously, two stacks are created. The stack for RealIO is created first,
followed by the stack for norm. The block instance for procedure readvec is created from the defini-
tions in norm. Note that the formal parameter for the array (called z) is called by reference so the
formal value indiates that the position where the values are stored is in the block instance for norm.

The values for k& and n in the formal parameter list are given the values which existed at the proce-

dure call, and the loop begins executing. The call to ReadReal results in a search for the identifier in
the current block and since it is not found here the search continues in the block indicated by SL (i.e.
norm). Because this is an IMPORTED procedure, the linker has already determined that it exists
in the stack defined by the block instance ReallO. Thus a block instance for ReadRealis produced in
this stack using the information from the declarations of ReallO. Since both of the parameters for
the procedure are called by reference, the block instance which is to contain the values is indicated.
In this case, it is a block instance in another stack. When ReadReal has obtained the first value,
this is stored in the block norm as shown in the diagram. Note that the DL indicates that SC moves
back to the readvec block instance. At that time, the block instance for ReadReal will disappear,
the value of kincremented, and another call made to ReadReal which repeats the process of creating
ReadReal. When readvec is complete, the block instance is deleted, along with the values for k and
n. The formal value for the array (z) also disappears but since it indicated that the values read
were to be stored in norm, the array v still contains the values. SC returns to the statement which

called readvec and since this is now complete, it moves to the next statement to write the values.

L DLI norm lSL ‘_] i‘ DLl Reall0 ISLJ

vec TYPE ARRAY[1..5] OF REAL ~—— 2 ReadReal PROCEDURE

v vec mmmm — J=-WriteReal PROCEDURE

success BOOLEAN TRUE
ReallO.ReadReal — — — — — — — I -
ReallO.WriteReal — — — — — —] A S
readvec PROCEDURE

writevec PROCEDURE

readvec (v5); ou| WrieReal [sL |-
> writevec (v, 10, 2);
end.

real REAL 5.0

width CARDINAL 10
decPlaces INTEGER 2
D] writevec ISL | | o~ 1. codetoreadreal

x vec [so[60[40[70[39
k INTEGER 1
n INTEGER 5

FOR k:=1TOnDO
WriteReal(x{k],10,2);
END;

END;

Figure 3

Figure 3 shows the block instances when writevec has been called and the first value is to be written
to the screen. Note that the values for the array are now stored in the block instance for writevec
as a local copy in array « since these are called by value. When WriteReal is called, all are value
parameters and thus local copies are made for real, width, and decPlaces. The value for real is

found using the binding rule which locates the first value of x in the block instance writevec.

4 Name Parameters

The structure of Modula-2 makes it possible to group procedures which have the same formal
parameter list structure into a single type. Thus each procedure must have the same size parameter

list with the same types for the parameters. This type can then be used as a parameter in other

10

procedures, with the appropriate name of the desired procedure inserted at call time. Consider the

example below.

MODULE tab;
FROM InOut IMPORT WriteCard, WriteLn;
TYPE
CardFunc = PROCEDURE(CARDINAL) : CARDINAL;
PROCEDURE Tabulate(F : CardFunc; Limit : CARDINAL);
VAR
N : CARDINAL;
BEGIN
FOR N := 0 TO Limit DO
WriteCard(N,10);
WriteCard(F(F(N)),10);
WritelLn;
END;
END Tabulate;
PROCEDURE Sum (N : CARDINAL) : CARDINAL;
BEGIN
RETURN (N * (N+1) DIV 2);
END Sum;
PROCEDURE SumSq(N :CARDINAL) : CARDINAL;
BEGIN

RETURN (N * (N+1) * (2 *x N + 1) DIV 6);

11

END SumSq;

BEGIN
Tabulate(Sum,5);
Tabulate(SumSq,5) ;

END tab.

Procedures Sum and SumSq are both of type CardFunc since they both have one cardinal value
parameter and return a cardinal value. Thus, procedure Tabulate which has a parameter F of
type CardFunc is called, either Sum or SumSq can be used in the evaluation to produce the number
which is printed to the screen. The procedure is called by name. Figure 4 shows the block instances

as they exist at the time that WriteCard(F(F(N)),10)is called.

12

CardFunc PROCEDURE(CARDINAL):.CARDINAL

Sum
SumSq
Tabulate PROCEDURE
InOut.WriteCard
InOut.WriteLn

I~ Tabulate (Sum, 5);
Tabulate (SumSg, 5);

DL [Tabulate I SL

Limit CARDINAL 5
N CARDINAL 2

FOR N:=0 TO Limit DO

[IR]
DL 1ab | s L oL

nout | sL

WriteCard PROCEDURE
WriteLn PROCEDURE

] DLI WriteCard]su.

x CARDINAL ?
n CARDINAL 10

= code to write cardinal

WriteCard(N, 10);
WriteC. (F(N),10);
WriteLn;
END;
I— DLI sum]SL
N INTEGER 7
L RETURN N * (N+1)DIV 2
[DLI Sum sL
N INTEGER 2
SC——} RETURN N * (N+1)DIV 2

Figure 4

Note that in the declarations of tab, the procedures Sum and SumSq have been placed in the
type CardFunc to identify them not only as procedures but also as procedures of a specific type
which can be called by name as a parameter in other procedures. The call to Tabulate results in
a block instance for this procedure. At this point, N has been incremented twice and the value of
N has been written to the screen. We are now executing the second call to WriteCard. This has
resulted in the block instance for WriteCard in the InOut stack. Since the parameters passed are
by value, a local copy is made for the two values. The value of n has been stored but the value of

z is not yet determined. This requires a call to the procedure Sum which results in a new block

13

instance under Tabulate. The SL for Sum is used to find the definition for the creation of the block
instance. The other quantity N, exists in the definition for Tabulate. Since the value needed is not
yet determined, another block instance must be created for Sum, but this time it has been passed
a value of 2. The statement is then executed and a value returned to the point indicated by DL
and the block instance deleted. Since this statement has not yet been completed, the value of 3 is
the inserted so that this can be completed, the value obtained (6), and then passed to the point
indicated by the DL before deleting the block instance for Sum. WriteCard can then complete
its execution and return to the point indicated in Tabulate and the block instance for WriteCard

deleted.

5 Co-routines

In imperative languages, code is normally executed sequentially and it is the aim of good languages
to contain only controlled goto type of statements. Thus when the statement contains a call to
another procedure, a new block instance is created and statements are executed seequentially in
this block instance as well. In addition, the DL is automatically set to the statement which resulted
in the creation of the new instance so that execution will resume here. Then if the execution of
that statement is complete we move on, otherwise, as is the case for functions, execution of the
statement can continue to completion. Modula-2 also allows for co-routines. In this case, it is
necessary to find a means of retaining a block instance when execution resumes at some other
position in the program. It is also necessary to find a way to cope with DL since we may want a
choice of where to go next rather than to go to the statement which called the block instance. This

is accomplished through a module called SYSTEM which interfaces with the RTS and has access

14

to information and processes which are normally controlled here.

Consider the following code.

MODULE CoRoutine;
FROM SYSTEM IMPORT ADDRESS, WORD, TRANSFER, NEWPROCESS,ADR;
FROM InOut IMPORT WriteCard;
VAR num : CARDINAL;
pl, p2, Exit : ADDRESS; (* for coroutines¥)
WorkOne, WorkThree : ARRAY [1 .. 1000] OF WORD; (*workspace*)

PROCEDURE IncOne;
BEGIN
LOOP

INC (num);

WriteCard(num,5);

TRANSFER (pi,p2);
END;
END IncOne;
PROCEDURE IncThree;
BEGIN
Loop

INC(num,3);

WriteCard(num,5);

IF num < 15 THEN

TRANSFER (p2,p1);

15

ELSE
TRANSFER (p2,Exit);
END;
END;
END IncThree;
BEGIN
num := O;
NEWPROCESS (IncOne, ADR(WorkOne), SIZE(WorkOne), pi1);
NEWPROCESS (IncThree, ADR(WorkThree), SIZE(WorkThree), p2);
TRANSFER (Exit, p1);

END CoRoutine.

Figure 5 shows the execution at the point where the call to TRANSFER(p2,pl1) in IncThreeis just
being completed. At this point, num has a value of 4 and the control of execution is returning to

IncOne.

16

I
o] nOut]St

WriteCard PROCEDURE

] (_]]
o CoRoutine B A oL@ p2f incone [sL
|
SYSTEM.ADDRESS TYPE |
LoOP
SYSTEMWORD TYPE
INC(num);
SYSTEM.TRANSFER PROCEDURE | WilteCard(num,5);
SYSTEMNEWPROCESS PROCEDURE i TRANSFER(p1,p2)
[——{= P! ADDRESS ————————— -— H= END; ~&= — ————— 1
i
| r—{> P2 ADDRESS — — — —— —— — . ' |
| | —|— Exit ADDRESS H | :
1 : : I | [workone i [ot@pt | incthes Jsi |
| I |WorkThma I |
R L1y num CARDINAL 4 {l——_\LOOP I
T I I | num t=0;] !NClum; |
s | |: NEWPROCESS {) WiteCaralnum): I
num:
' |I NEWPROCESS () 1‘ TR:NSFER(pZM)' :
& F1r | TRansFer (Ext, pi); | ELSE M
I Ieds enp;
|l | TRANSFER(p2,Exit); | |
| L4 —> END; |
| END; |
| |
S
Hemzzzzmmszzzmoszmmmmonnnnnees L
|
N far——-
|
o] system | st DL @p1 TRANSFER [sL : |
ADDRESS TYPE fromCoroutine @ p2 — ! I
WORD TYPE toCoroutine @ pt — — -}
TRANSFER PROCEDURE
NEWPROCESS PROCEDURE 0de «————1—SC

Figure 5

When the program began execution, InOut and SYSTEM were initialized, followed by CoRou-
tine. p1, p2, and Ewrit are all indicators which can be used to position SC. These variables are set
at the time a NEWPROCESS procedure is executed, or at the time that a TRANSFER procedure
is executed. When execution begins, num is given its initial value and then a new process (IncOne)

is created. This results in a block instance for this procedure, but there is an important difference.

17

This block instance is created within the declarations of CoRoutine in the workspace array called
WorkOne. At the same time, p! also is modified to show that SC would move to the first state-
ment in the procedure at the time that the procedure was the one which was active. Similarly,
this is accomplished for the procedure IncThree. At this point the DL is not set. SL points back
to the CoRoutine declarations so that any variables not newly defined can be accessed within the
main progam. When the TRANSFER statement is executed, Ezit will be modified to contain the
information to move SC to the statement after the TRANSFER call in the main program and SC
moves to the position indicated by p! which is the beginning of the code in IncOne. When the code
indicates that execution control should be passed to IncThree, DL is modified by TRANSFER to
indicate that it should move to the position indicated by p2. Then execution moves through the
statements until the TRANSFER call is made.

Figure 5 shows the situation at this point. Note that transfer modifies the values of p1, p2 and
the DL for IncThree and TRANSFER so that following DL will get to the appropriate point in
IncOne.

Because the block instances exist in CoRoutine and TRANSFER modifies the DL for the ap-
propriate block instances, the block instances do not disappear since they never reach the END
statement for the block instance. When SC finally is transferred back to the main program, the

end will be reached and the RTS will delete all block instances.

6 Conclusions

A simpler version of this model has been used with Simula and Pascal to help understand what

actually happens when program execute. It is particularly useful to explain parameter passing

18

and recursion in these languages. The extensions included here in a brief form have been used
successfully as a way of helping students understand scope, separate modules, information hiding
and parameter passing in Modula-2. The model can be extended to show other low level interfaces
and has been used successfully in giving a good overview of what might be some critical issues in

compiler construction.

7 References

Birtwistle, G., Dahl, O-J., Myrhang, B., and Nygaard, K. (1982) Simula Begin. Sweden : Student

Literatur.

19

