
The End-to-End Use of Source Code Examples: An Exploratory

Study—Appendix

Reid Holmes Rylan Cottrell, Robert J. Walker, Jörg Denzinger
Dept. of Computer Science & Engineering Dept. of Computer Science

University of Washington University of Calgary
Seattle, WA, USA Calgary, AB, Canada

rtholmes@cs.washington.edu cottrell, rwalker, denzinge@cpsc.ucalgary.ca

Technical report 2009-934-13

Abstract
This appendix contains the details of our case studies out­
lined in our paper for the 2009 International Conference on
Software Maintenance, as well as an expanded discussion
section. The reader is directed to the main paper for intro­
duction, motivation, and related work.

A. Case Studies
We conducted case studies into the location, selection, and
integration of source code examples in the context of partic­
ular tasks. Four scenarios were selected from the published
literature on source code examples. The scenarios were
chosen to possess some complexity and to display some va­
riety in terms of their domain and attributes.

The method and criteria that we applied for this process
are described in Section A.1. Section A.2 describes the
scenarios, their associated code skeletons and queries, and
overviews the results from each scenario. Section A.3 ana­
lyzes the results and describes a few general observations.

A.1. Method

For each scenario, we constructed a code skeleton—based
on the original article’s description—to represent the point
at which the developer required assistance from an example.

Locating and selecting examples. GCS requires a string-
based query, which we manually extracted from the code
skeleton; we queried the web site with this and examined
the returned examples. To investigate an example, we se­
lected the source file and visually scanned through it, con­
centrating our analysis on the GCS-highlighted parts of the
file. To query Strathcona,1 we highlighted the relevant

1The repository contained all of Eclipse 3.3 and NetBeans 6.

source code in our code skeleton and initiated a query. We
examined the returned graphical examples, investigating the
highlighted source code for examples that looked promis­
ing.

We analyzed the first five returned examples from each
location approach and evaluated their relevance to the sce­
nario, in order. We limited this investigation to five exam­
ples, as some empirical evidence indicates that developers
rarely look beyond this limit when searching [9].

Our main goal when investigating a search result was
to determine whether the example provided the function­
ality required by the task. To do this we visually scanned
all the highlighted regions returned by GCS along with the
selection provided by Strathcona. If the example seemed
functionally relevant, we marked it as a candidate for inte­
gration. We also noted the number of methods that were
highlighted by the search approach to gain a sense for how
much code we had to scan through with each search tech­
nique as well as the time we required to make our relevance
determination. Table 1 provides an overview of the search
process for the four scenarios we investigated.

In a real development situation, a developer is likely to
halt the investigation upon discovery of a method that seems
promising; investigation might resume if the results of the
attempted integration were less than satisfactory. Despite
this and for the sake of completeness, we report the time
and results for investigating each of the five examples for
both approaches.

Integrating potentially relevant examples. For each ex­
ample deemed relevant to the task using either location ap­
proach, we attempted to integrate the example into our code
skeleton. For the integration phase, we independently used
the standard tools available in the Eclipse IDE (“manual”
approach) and the Jigsaw tool [2].

Manual integration involved copying the relevant code

from the example, pasting it into our code skeleton, and
modifying it to resolve compilation errors and so it would
work in our environment. Jigsaw integration involved se­
lecting the originating source method that the developer
wanted to reuse and selecting the target method in the code
skeleton; this activated Jigsaw which subsequently copied
the required code to our system and modified it to compile
within our system. Before Jigsaw could be queried in this
way, we had to setup an environment for it. This involved
copying the full source file to our system and making it fully
compile; sometimes this would mean modifying the code to
remove those portions that were not compiling and were ir­
relevant to our class; other times this meant importing more
code to enable the example code to compile. This compi­
lation limitation arises because of requirements Jigsaw has
on the Eclipse AST; we discuss this issue further in Sec­
tion A.3.

To quantitatively compare the integration approaches,
we record the time required to perform the task (and the
time required to setup Jigsaw, where applicable), the lines
of code (LOC) ultimately reused from the example, and the
number of discrete actions required of the developer to per­
form the task. These results are found in Table 2.

We use “actions” in this context as an effort indicator that
is alternative to time. We counted any specific decision a
developer made as an action; for example, if the developer
decided to remove a certain method, deleting the method
and all calls to it counted as a single action. Copying a
method and resolving any dangling dependencies counted
as a single action. Any unique modification to the source
code counted as an action.

A.2. Scenarios

Four scenarios were used in our case studies, one each
from the publications on Strathcona [7], XSnippet [8],
PARSEWeb [10], and XFinder [4]. We examine these, in
turn, below. As a detailed description of these integration
tasks would be overwhelming for the reader, we opted to
provide full details for the first scenario while providing
only the most significant, qualitative details for the rest.

Scenario 1: Compute the signature of a MethodDecla­
ration. The Eclipse abstract syntax tree (AST) main­
tains a programmatic tree-based representation of the source
code that the environment has compiled. These ASTs rep­
resent Java methods using MethodDeclaration objects.
This scenario involves the generation of method signatures
(e.g., Object getResults(int[], Vector)) from
MethodDeclaration objects. The code skeleton for the
task is given in Figure 1 (from Holmes et al. [7, Figure 6d]).
This skeleton is motivated by the fact that the developer
can quickly discover these methods as apparently relevant
to their task, but remain unsure of how to manipulate

them appropriately. For the Strathcona query, we se­
lected lines 7 to 9 of the skeleton; we queried GCS with
“ASTVisitor MethodDeclaration getModifiers
getName getIdentifier parameters lang:Java”.

1 import java.util.List;
2 import org.eclipse.jdt.core.dom.ASTVisitor;
3 import org.eclipse.jdt.core.dom.

MethodDeclaration;
4
5 public class ExtractSig extends ASTVisitor {
6 public boolean visit(MethodDeclaration node)

{
7 int mod = node.getModifiers();
8 String id = node.getName().getIdentifier();
9 List parms = node.parameters();
10
11 return super.visit(node);
12 }
13 }

Figure 1. Scenario 1 code skeleton.

Location and selection. GCS returned 102 examples. Of
the first five, three of them matched all the queried terms
(G12, G13, G15). The first and fourth examples (G11, G14)
contained only some of the search terms and by investi­
gating them for less than one minute each, we discarded
them. The second example (G12) used all the queried APIs
but consisted of only validation code; it did not use the re­
trieved data to generate any form of textual representation.
The third example (G13) matched all the terms, but the first
range highlighted by GCS contains references that the de­
veloper has actually commented out. The second range was
promising, as it referenced all the query terms and con­
verted various ASTNode elements into their textual repre­
sentation. Unfortunately, this code fragment is also very
long (1636 lines) and after spending 8 minutes investigating
the method, we decided that there was too much extraneous
functionality to effectively tease out the parts of interest.
The fifth example (G15) also references all the query terms,
matching across many methods (117). After 5 minutes we
had located the best of these methods and concluded that it
seemed to provide most of the functionality needed to com­
plete the task; this method was chosen for integration.

Strathcona returned 10 examples. Examining the first
five, we found that S11, S12, and S14 all contained partial
matches that could be discarded in less than one minute
each (Strathcona orders results in terms of the nature of
the structural matches, not their quantity). The third ex­
ample (S13) referenced all the required query terms and ap­
pended much of the information gleaned from the query, to
a StringBuffer instance; in less than 5 minutes we were
able to flag this example as worthy of integration. Exam­
ple S15 was identical to example G15 from GCS.

Integration. Manually integrating G/S15 involved copying
the method that seemed most relevant to our task into our
code skeleton, resulting in 19 compilation errors. We mod­

2

ified the code by adding a new field (buffer) and remov­
ing an irrelevant method call; this reduced the number of
errors to 5. We then noticed that we needed to copy an­
other method (printModifiers(List)); this led to iter­
ation that required four more methods to be copied into our
skeleton, one after another. We also removed a call to an ir­
relevant private method. At this point the code compiled but
we realized that without testing it we could not verify that
it met our requirements. Execution of the code revealed its
extensive use of visitors, which extracted a great deal more
information than necessary for this scenario. Although the
code might have been modified to eliminate the extrane­
ous functionality, the quantity and potential impact of the
changes required, combined with the uncertainty of what
additional modifications would still be needed to complete
the task, led us to abandon this example. Reaching this de­
cision took 20 minutes.

To integrate G/S15 using Jigsaw we first copied the
source code for that file from GCS into its own file in
the workbench; initially this had many errors but by also
importing the project in which it is found (the Eclipse
org.eclipse.jdt.core package) we were able to re­
solve these errors; we had to perform this step as Jigsaw
can only integrate fully compiling code. After selecting
the source and target methods, Jigsaw copied the code (145
LOC in five methods, four plus the one selected) and modi­
fied it to fit its new context; after this, 27 compilation errors
remained. After manually adding two fields that Jigsaw had
failed to copy, 4 errors remained. We then deleted one lo­
cal variable that had a name conflict with a field we added,
resolving the final set of errors. Upon execution, the code
displayed the same problems that we had detected during
the manual treatment, so we again abandoned it. Reaching
this decision took 8 minutes.

For the manual integration of S13, we copied first the
key method highlighted by Strathcona (buildMethod-
Declaration(MethodDeclaration)), resulting in 7 er­
rors. We then copied appendExtraDimensions(..) and
five other private methods, iteratively one at a time as we
discovered they were needed. After these were copied, we
were left with 4 errors which we realized were from code
not relevant to the task. After testing the code we found that
it provided the required functionality. Manual integration
took 11 minutes for this example.

To integrate S13 using Jigsaw, we first copied over the
file and imported the Eclipse org.eclipse.jdt.core
package into our test project. After selecting the source and
target methods, Jigsaw copied the code (214 LOC in seven
methods, six plus the one selected for integration) resulting
in 26 errors. After manually creating one StringBuffer
field, 4 errors remained; these were resolved by removing
4 similar statements that were irrelevant to the task. After
executing the code we found that it fulfilled the scenario.
Jigsaw integration took 7 minutes for this example.

Scenario 2: Create an ICompilationUnit. A source
file in Java is called a compilation unit, and the in­
terface type ICompilationUnit represents these within
Eclipse ASTs. The scenario involves creating an instance
of an ICompilationUnit from a Java source file se­
lected from the Eclipse package explorer; note that no
simple constructor calls are available. The parents of
the class under development are expected to be the class
ViewPart and the interface type ISelectionListener.
The task is expected to make use of the types TextEditor,
IAction, and IDocument. The resulting code skeleton
is shown in Figure 2. For the Strathcona query, we se­
lected lines 11 to 14 of the code skeleton. The GCS query
string “ViewPart ISelectionListener TextEditor
IAction IDocument lang:Java” was created from the
key details mentioned above.

1 import org.eclipse.jdt.core.ICompilationUnit;
2 import org.eclipse.jface.action.IAction;
3 import org.eclipse.jface.text.IDocument;
4 import org.eclipse.ui.ISelectionListener;
5 import org.eclipse.ui.editors.text.TextEditor;
6 import org.eclipse.ui.part.ViewPart;
7
8 public class XSnippetICompilationUnit extends

ViewPart implements ISelectionListener {
9 public void buildCU() {
10 TextEditor te;
11 IAction ia;
12 IDocument id;
13 ICompilationUnit icu;
14 }
15 }

Figure 2. Scenario 2 code skeleton.

Location and selection.GCS returned 31 examples. Of the
first five, G21, G23, and G25 matched all the queried terms.
Examples G22 and G24 only matched some of the search
terms; a significant number of methods (23 and 13, respec­
tively) had to be inspected to discover this fact, at high cost
in terms of time (12 and 9 minutes, respectively), and these
examples were subsequently discarded as irrelevant.

Strathcona returned 10 examples. Examining the first
five, we found that all five examples contained only par­
tial matches; using Strathcona’s source code view, we were
able to discard all five examples in less than one minute
each. Strathcona’s repository did not contain any relevant
examples, including those returned by GCS.
Integration. The relevant examples G21, G23, and G25
were integrated into the code skeleton shown in Figure 2.
The number of actions necessary to manually integrate
the examples was 4, 13 and 11 respectively with 25, 33
and 15 minutes respectively required to do so. The Jig­
saw tool required fewer actions from the developer (3, 7,
and 4 respectively) with less time to perform the integra­
tion (3, 7 and 5 minutes respectively). In all three exam­
ples an action was needed to handled a static method call
(EditorUtility.getJavaInput(..)) that required the

3

developer to investigate a method declaration in another
class; though the class name was shared by all three ex­
amples, each class was localized to its project.

The Jigsaw integration of examples G23 and G25 high­
lighted problems with the current implementation of the
tool; the developer was required to perform actions to re­
solve dependencies on fields and methods from the methods
depended upon by the original method (setInput(..)).
For the indirect method dependencies, the Jigsaw tool
was applied again selecting each indirectly depended-upon
method declaration as the originating source method; indi­
rect field dependencies required the developer to manually
“copy & paste” them into the skeleton. For the Jigsaw inte­
gration, over half the time was spent setting up the examples
to work with the tool for this scenario.

Scenario 3: Extract an ITextSelection. The Eclipse
IDE captures modifications to source code editors in
TextEditorActions; in this scenario a developer must
extract an ITextSelection given a TextEditorAction.
This is essentially a call chain scenario. While this task is
fairly straightforward, the TextEditorAction API con­
tains 44 methods that can be directly called and hundreds
that can be called indirectly, making an exhaustive search
impractical. The code skeleton for this scenario is pre­
sented in Figure 3. For Strathcona, we queried lines 5 to 9
of the code skeleton, while the GCS query consisted of
“TextEditorAction ITextSelection lang:Java”.

1 import org.eclipse.jface.text.ITextSelection;

2 import org.eclipse.ui.texted.ITextEditor;

3 import org.eclipse.ui.texted.TextEditorAction;

4

5 public class TSAct extends TextEditorAction {

6 public void processSelection() {

7 ITextSelection its;
8 }
9 }

Figure 3. Scenario 3 code skeleton.

GCS returned 322 examples; Strathcona returned
10 examples. Each location technique returned three
examples that provided the developer’s desired func­
tionality (G32, G34, G35, S31, S32, S34). Imple­
mentations of TextEditorActions tend to be smaller
classes with limited functionality (ignoring inherited meth­
ods) which made assessing relevance an easy job for
this task. Also, the functionality required itself was
well contained, as it could be provided as a single
call chain: sel = (ITextSelection) editor.get-
SelectionProvider().getSelection();

As the required code was so small, the needed fragments
were easy to integrate manually. While using Jigsaw was
still faster than the manual case in general at the actual in­
tegration, the set up time associated with these tasks over­
shadowed the time saved by using such an approach. While

two of the examples returned by Strathcona used a more
robust mechanism for returning the selection (by testing
casts), the original paper [10] did not indicate that these
were strictly necessary.

Scenario 4: Create a TableModel. In the Java Swing
framework, the TableModel interface specifies the meth­
ods that integrate a tabular data model for the JTable
graphical widget. This scenario involves the implementa­
tion of a TableModel to provide sorting and filtering func­
tionality. From the description of the task, we created the
code skeleton shown in Figure 4. For Strathcona, we se­
lected the SortFilterTable constructor, lines 5 and 6
of the skeleton, and for GCS we queried with “JTable
TableModel Sort Filter lang:Java”.

1 import javax.swing.table.TableModel;
2 import javax.swing.JTable;
3
4 public class SortFilterTable implements

TableModel {

5 public SortFilterTable(JTable jtable) {

6 }

7 }

Figure 4. Scenario 4 code skeleton.

Location and selection. GCS returned 2000 examples. All
the first five examples matched all the queried terms. Fur­
ther investigation of the examples revealed that only G41
had methods relevant to the scenario. Strathcona returned
10 examples. Examining the first five, we found that the
first three examples contained only partial matches; using
Strathcona’s source code view, we were able to quickly dis­
card the first three examples. The fourth and fifth examples
(S44 and S45) contained methods relevant to the scenario.

Integration. We integrated the relevant examples G41, S44,
and S45 into the code skeleton. During the manual integra­
tion of G41, it became apparent that the example was not
relevant to the scenario task. The SortFilterModel class
contained methods that followed a similar naming conven­
tion to the TableModel interface and the three methods
found to be relevant contained dependencies on other meth­
ods that made explicit the TableModel use within the class
as a type but not describing its creation. The integration was
halted after 7 minutes and the application of the Jigsaw tool
was not attempted (hence the “-” marks in Table 1).

We were able to successfully integrate S44 and S45 into
the code skeleton. For S44 the developer was required to
make 6 fewer actions manually compared to the use of the
Jigsaw tool. Example S44 contained 8 methods and S45
contained 6 methods that were required to be integrated to
complete this scenario; this required the developer to sup­
ply Jigsaw with each of the methods individually as input
into the tool. Despite this overhead, the time spent manu­
ally integrating the source code for S44 and S45 was three

4

times as much. However, there was a tremendous time cost
of 61 and 58 minutes, respectively, associated with setting
up the source (requiring significant functionality to be im­
ported from the NetBeans IDE) to work with Jigsaw.

A.3. Observations and Analysis
While performing the case studies we investigated 40 ex­
amples and attempted to integrate the most promising 14 of
these. From this experience we made a number of observa­
tions about the process of locating, selecting, and integrat­
ing these types of examples.

Classifying examples. The four scenarios we undertook
were derived from the related literature, but in perform­
ing these tasks we observed that they fell into two cate­
gories. Scenario 2 involved what have been termed call
chains, object instantiations [8], and method invocation se­
quences [10]; these involve short snippets of code that usu­
ally demonstrate how to access some functionality in an
API. Conversely, feature-oriented scenarios require richer
functionality; these are demonstrated in Scenarios 1, 3,
and 4. In Scenario 2 we noticed that relevant call chain
examples were easier to identify, occurred more frequently
because their scope was broad (the same call chain can be
used by examples of very different functionality), and were
easy to integrate manually as the significant parts were gen­
erally short. Deciding that an example was relevant to a
feature-oriented scenario was more difficult: as more signif­
icant functionality is required from them, they are generally
larger and more specific. In general, we found that to really
be able to tell if an example offered the required function­
ality for a feature-oriented scenario, the example had to be
integrated into our skeleton and tested; this also helped us
to ultimately determine which example was best for a task.
For example, in G/S15 and G41 we believed that a given ex­
ample was relevant, only to realize during integration that
it was not. The various approaches that we discussed in
Section 2 generally support call chain scenarios and are not
effective in feature-oriented scenarios.

Location approach shortcomings. While we were se­
lecting scenarios to use for these case studies, we often en­
countered situations where GCS would report a given result
but an uninformative error message would be returned when
we attempted to investigate the result. More significantly,
Strathcona also demonstrated the shortcoming of its cen­
tralized repository approach, as in Scenario 2 the repository
contained no relevant examples.

In addition, GCS sorts examples relative to the query
terms that are sent to it, and performs lexical matching
within entire files, selecting files where parts of identifiers
and comments match the terms; Strathcona ranks examples
according to the structural heuristics that are matched on
the server. Neither location approach, or any we are aware

of, can rank examples in the order that would be most con­
ducive to the developer being able to reuse the example.
For example, in G13 the example matched all the search
terms but was also more than 1.5 kLOC in length with
much extraneous functionality; this example would likely
not have been as easy to integrate as another example that
was <100 LOC in length.

Manual integration shortcomings. We observed two
main shortcomings of manual integration tasks. First, it was
not easy to tell, through manual inspection, what dependen­
cies the example code might have on the rest of its class
or the system from which it was extracted. (This is consis­
tent with an earlier study that found that developers often
fail to identify source code dependencies using source code
editors [6].) This meant that after we copied over some frag­
ment of code, another fragment, method, or field would also
be required, often iteratively. Second and more intrusive,
the example’s context was often different from our code
skeleton: fields, local variables, and methods often had to
be renamed. For small examples this was straightforward
but for larger examples we had to be careful that we were
not breaking how the code worked by modifying it.

Jigsaw integration shortcomings. Configuring an exam­
ple so it could be integrated by Jigsaw often took more
time than the actual integration; beyond our controlled en­
vironment, it is thus unlikely that Jigsaw would be used in
end-to-end example reuse tasks. This setup burden arises
because Jigsaw needs full bindings (to the declarations of
types, methods, etc.) from the Eclipse AST in order to do its
analyses well. For example, if an example file contained the
call chain one().two().three(), without bindings the
return type of two() could not be determined and thus the
type upon which three() is invoked would be unknown.
Jigsaw uses this information to ensure integrity when inte­
grating fragments of source code, as two elements of iden­
tical type are more likely to correspond than two elements
of differing type.

A.4. Summary
We found that locating, selecting, and integrating source

code examples with existing tool support is approachable
but generally cumbersome and slower than necessary. This
burden led to situations where we feel that after spend­
ing time to integrate one example we would be unlikely to
spend more trying to integrate alternatives—in a realistic
development setting, at least.

We found 5 significant issues with using these exist­
ing approaches as end-to-end support for reusing examples:
(1) example repositories that do not contain examples rele­
vant to a scenario are not helpful to that scenario; (2) lo­
cation techniques have to consider syntax and semantics
to locate better examples for reuse; (3) located examples

5

GCS Strathcona

Example class Methods Time # Example class Methods Time

P TP P TP

Scenario 1: Compute the signature of a MethodDeclaration
G11 EclipseCFG 19 0 2 S11 AccessAnalyzer 1 0 1
G12 Verifier 22 0 5 S12 DOMFinder 1 0 1
G13 ASTScriptVisitor 21 0 8 S13 SourceBasedSourceGenerator 1 1 3
G14 ASTConverterTESTAST3 2 117 0 5 S14 ImportRemover$1 1 0 1
G15 NaiveASTFlattener 74 1 8 S15 NaiveASTFlattener 1 1 2

Scenario 2: Create an ICompilationUnit
G21 J2SView 7 3 6 S21 ImportResourcesAction 1 0 <1
G22 PHPEditor 23 0 12 S22 ExportResourcesAction 1 0 <1
G23 ASTView (v2008) 14 4 8 S23 AbstractMemoryViewPane 1 0 <1
G24 InstallOptionsDesignEditor 13 0 9 S24 Visualiser 1 0 <1
G25 ASTView (v2004) 11 3 5 S25 TaskList 1 0 <1

Scenario 3: Access text selection
G31 IndentAction 1 0 1 S31 JoinLinesAction 1 1 2
G32 GoToNextPreviousMemberAction 2 1 2 S32 AddMarkerAction 1 1 <1
G33 PLEditor 1 0 2 S33 ClipboardOperationAction 1 0 <1
G34 RubyEditor 2 1 2 S34 BlockCommentAction 1 1 3
G35 GoToAction 1 1 2 S35 JavaMoveLinesAction 1 0 1

Scenario 4: Create a TableModel
G41 SortFilterModel 9 3 4 S41 ReverseCallGraphPanel 1 0 1
G42 JTable 37 0 8 S42 TagHandlerPanelGUI 1 0 2
G43 TableRowSorter 4 0 1 S43 VisualArchiveIncludeSupport 1 0 1
G44 TransFilterTable 7 0 2 S44 TreeElAttribListCustomize 1 1 2
G45 SortedTableHelper 14 0 5 S45 FilterSetsPanel 1 1 1

Table 1. Investigation of the results from GCS and Strathcona. The “P” column indicates the number of methods that
the approach marked as relevant (positives); “TP” indicates the number of methods that we determined to be relevant
to the scenario (true positives); “Time” indicates the approximate time we required to investigate the result, measured

in minutes.

should be ordered relative to ease of integration with the
developer’s context; (4) overhead for moving examples into
the developer’s environment and resolving trivial issues has
to be reduced or eliminated; and (5) the form of integration
needs to consider factors such as: avoiding the alteration of
APIs; and iterative issues from copying yet more code to
eliminate dangling references.

B. Expanded Discussion
A naive response to the need for end-to-end support for ex­
ample reuse tasks would be to take a couple of the existing
approaches and combine them through a bit of engineering.
In Brooks’s phrasing [1], this could eliminate the acciden­
tal complexity of the end-to-end tasks but not the essential
complexity. None of the existing tools were designed with
these end-to-end tasks in mind. As such, their designs are
not merely incomplete with respect to the end-to-end tasks,

but they actively conflict in significant ways. This is not a
criticism of the quality of the ideas or engineering that have
gone into any of those tools (regardless of the fact that a few
bugs were found); it is a recognition of a mismatch issue [5]
that is not obvious when considering only a high-level view
of each tool and its place in these end-to-end tasks.

On the other hand, the existing approaches are not com­
pletely off the mark: we were able to perform the end-
to-end tasks, although this was more burdensome than it
should have been. Of the available example location ap­
proaches, Strathcona is closest to what is needed for lo­
cating reusable, feature-providing examples; Google code
search can be coerced for this, but it is a more general-
purpose search engine that would require more work to fit
well into end-to-end example reuse tasks (informally, we
have noted that other code search engines suffer from sim­
ilar issues). While approaches that specifically address call

6

Example class Manual Jigsaw

actions size time actions size setup t action t

Scenario 1: Compute the signature of a MethodDeclaration
G/S15 NaiveASTFlattener 8 177 20 4 167 5 3

S13 SourceBasedSourceGenerator 8 224 11 3 214 5 2

Scenario 2: Create an ICompilationUnit
G21 J2SView 4 56 25 3 56 5 3
G23 ASTView (v2008) 13 141 33 7 154 8 7
G25 ASTView (v2004) 11 80 15 4 87 6 5

Scenario 3: Access text selection
G32 GoToNextPreviousMemberAction 3 2 2 2 2 4 <1
G34 RubyEditor 3 2 2 2 2 3 <1
G35 GoToAction 3 2 2 2 2 2 <1
S31 JoinLinesAction 3 10 2 3 13 4 <1
S32 AddMarkerAction 1 1 1 2 1 4 <1
S34 BlockCommentAction 2 12 2 2 14 2 <1

Scenario 4: Create a TableModel
G41 SortFilterModel 3 - 7 - - - -
S44 TreeElementAttributeListCustomize 8 209 21 14 215 61 7
S45 FilterSetsPanel 7 51 8 7 59 58 3

Table 2. Integration of the relevant examples into the code skeletons. The “#” column refers to the example number

from Table 1; “actions” indicates the number of discrete actions that the developer had to perform (e.g., manually

adding an import statement that resolved a dozen errors counts as one action); “size” indicates the LOC that were

reused; “time” is the time taken to perform the integration, in minutes, and this is differentiated for Jigsaw into time

to move the example into an actionable form (“setup t”) and time to actually perform the integration (“action t”).

chain scenarios are good at addressing call chain scenar­
ios, these do not require developer interaction with concrete
examples and are trivial to integrate—better support for in­
tegration seems unnecessary for this more narrow focus.

For integration, the assumptions made by Jigsaw are
problematic; nevertheless, it outperformed the manual ap­
proach significantly when the setup time is ignored. Those
assumptions are not foundational to Jigsaw, so using it as
a basis for the integration portion of the end-to-end support
seems reasonable at this point, as long as the means for sig­
nificantly reducing or eliminating setup time is found. We
know of no other approaches that could effectively integrate
feature-providing examples.

How can the issues be overcome? A reasonable starting
point for end-to-end tool support for example reuse tasks
would appear to be combining Strathcona and Jigsaw. But
as we pointed out above, engineering alone will not suffice
to overcome the issues we identified in the case studies.

To eliminate the fact that Strathcona relies on a cen­
tralized repository that can easily become stale (which is
why it could find no relevant examples for Scenario 2), two
routes are possible. (1) A revised Strathcona could auto­
matically retrieve examples from web-based code search

engines and then analyze these according to Strathcona’s
approach to approximate structural context matching; how­
ever, care would need to be taken to maintain Strathcona’s
high speed performance. (2) A revised Strathcona could
use the centralized repository as a cache, and only query
the web-based search engines when a cache miss occurred;
again, tuning such an approach to maintain performance
would be important.

More work should be put into the selection phase to in­
crease the chances of investigating the best integration can­
didate first. This could be achieved either through altering
Strathcona to introduce one or more new heuristics [7, Sec­
tion IV-C] and possibly to remove others, or by analyzing
the examples returned by Strathcona and reordering them
according to alternative heuristics. The latter option has the
advantage of not altering Strathcona but the disadvantage
that it cannot so easily add additional examples that Strath­
cona has chosen to ignore.

The process of integration should be better automated
and more oriented towards the end-to-end task so that de­
velopers can more readily try multiple candidate examples
to find the one that best meets their needs. Part of the dif­
ficulty arises from the fact that Jigsaw (and to a lesser ex­
tent, Strathcona) depend on the availability of resolved ref­

7

erences (i.e., bindings). Bindings are necessary to allow
Jigsaw to fully understand what is happening in the source
code. For example, in the call chain getActionBars().­
getStatusLineManager().setMessage() Jigsaw can­
not interpret the return type of getActionBars() or
getStatusLineManager() without having access to the
AST bindings. To overcome this, a technique could be ap­
plied that allows partial program analysis to determine the
likely resolution of a given reference. Dagenais and Hen­
dren have recently introduced an algorithm for partial pro­
gram analysis that does just that [3]; its existing tool support
within the Eclipse IDE ought to make this a relatively pain­
less exercise. Alternatively, the techniques could be made
to depend on lexical identity when a given binding is un­
available. Which is the easier and more effective alternative
remains to be seen.

Are the case studies biased and lacking in statistical
significance? Our evaluation consisted of four author-
performed case studies using two different location and in­
tegration approaches. While we did not try to explicitly ac­
count for learning effects (e.g., through randomization), we
did try to report consistent times for tasks that were per­
formed largely the same. While we cannot be sure that the
case studies generalize, the purpose of our investigation was
exploration: to determine whether it would be worthwhile
to invest the considerable effort in explicitly supporting end­
to-end example reuse tasks, and to determine what issues
need to inform the design of that support.

Our investigation provides evidence that the end-to-end
use of source code examples could be improved. The case
studies were selected from scenarios published in the litera­
ture and they have pointed to shortcomings of our own tools.
Thus, we have formulated a hypothesis (that overcoming the
identified issues will significantly improve the end-to-end
support) and outlined a plan for making it testable (over­
coming the identified issues, as described above). Only at
that point will it make sense to attempt a formal experiment
and/or to obtain industrial feedback on the usefulness of the
approach.

Do these case studies teach us anything beyond the do­
main of reusing examples? The reductionist tradition
would suggest that we ought to identify a core set of small
tools to be combined as needed to fulfill larger tasks. The
accidental complexity inherent in the combinations could
be overcome largely by designing and building them to cer­
tain standards—witness the prevalence of integrated devel­
opment environments today. However, these case studies
demonstrate how the complexity and richness of higher-
level tasks can call for specialized end-to-end support; small
and simple tools may be amenable to this need, but only if
their behaviour can be constrained after-the-fact according
to the larger-scale needs.

What is gained by providing end-to-end support? End-
to-end support enables the developer to more quickly inves­
tigate potentially relevant examples, allowing them the pos­
sibility to use the time savings to investigate more examples
and perhaps to discover better functionality or issues that
were not otherwise apparent (like error cases). The funda­
mental difference between call chain scenarios and feature-
provision scenarios is the richness involved: the more com­
plex but non-standard the functionality, the more likely the
need for in-depth investigation of multiple examples. Ignor­
ing the details often leads to making mistakes in the details.

References
[1] F. P. Brooks, Jr.	 No silver bullet: Essence and accidents of

software engineering. Computer, 20(4):10–19, 1987.
[2] R. Cottrell, R. J. Walker, and J. Denzinger. Semi-automating

small-scale source code reuse via structural correspondence.
In Proc. ACM SIGSOFT Int’l Symp. Foundations Softw.
Eng., pp. 214–225, 2008.

[3] B. Dagenais	 and L. Hendren. Enabling static analysis
for partial Java programs. In Proc. ACM SIGPLAN Conf.
Object-Oriented Progr. Syst. Lang. Appl., pp. 313–328,
2008.

[4] B. Dagenais and H. Ossher.	 Automatically locating frame­
work extension examples. In Proc. ACM SIGSOFT Int’l
Symp. Foundations Softw. Eng., pp. 203–213, 2008.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis­
match: Why reuse is so hard. IEEE Softw., 12(6):17–26,
1995.

[6] R. Holmes and R. J. Walker. Task-specific source code de­
pendency investigation. In Proc. IEEE Int’l Wkshp. Visual­
izing Softw. Underst. Analys., pp. 100–107, 2007.

[7] R. Holmes, R. J. Walker, and G. C. Murphy.	 Approximate
structural context matching: An approach to recommend rel­
evant examples. IEEE Trans. Softw. Eng., 32(12):952–970,
2006.

[8] N. Sahavechaphan and K. Claypool. XSnippet: Mining for
sample code. In Proc. ACM Conf. Obj.-Oriented Progr. Syst.
Lang. Appl., pp. 413–430, 2006.

[9] J. Starke, C. Luce, and J. Sillito.	 Working with search re­
sults. In Proc. ICSE Wkshp. Search-Driven Dev.: Users In­
frastr. Tools Eval., 2009. To appear.

[10] S. Thummalapenta and T. Xie.	 PARSEWeb: A program­
mer assistant for reusing open source code on the web. In
Proc. IEEE/ACM Int’l Conf. Autom. Softw. Eng., pp. 204–
213, 2007.

8

	. Case Studies
	. Method
	. Scenarios
	. Observations and Analysis
	. Summary

	. Expanded Discussion

