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Abstract 
This appendix contains the details of our case studies out­
lined in our paper for the 2009 International Conference on 
Software Maintenance, as well as an expanded discussion 
section. The reader is directed to the main paper for intro­
duction, motivation, and related work. 

A. Case Studies 
We conducted case studies into the location, selection, and 
integration of source code examples in the context of partic­
ular tasks. Four scenarios were selected from the published 
literature on source code examples. The scenarios were 
chosen to possess some complexity and to display some va­
riety in terms of their domain and attributes. 

The method and criteria that we applied for this process 
are described in Section A.1. Section A.2 describes the 
scenarios, their associated code skeletons and queries, and 
overviews the results from each scenario. Section A.3 ana­
lyzes the results and describes a few general observations. 

A.1. Method 

For each scenario, we constructed a code skeleton—based 
on the original article’s description—to represent the point 
at which the developer required assistance from an example. 

Locating and selecting examples. GCS requires a string-
based query, which we manually extracted from the code 
skeleton; we queried the web site with this and examined 
the returned examples. To investigate an example, we se­
lected the source file and visually scanned through it, con­
centrating our analysis on the GCS-highlighted parts of the 
file. To query Strathcona,1 we highlighted the relevant 

1The repository contained all of Eclipse 3.3 and NetBeans 6. 

source code in our code skeleton and initiated a query. We 
examined the returned graphical examples, investigating the 
highlighted source code for examples that looked promis­
ing. 

We analyzed the first five returned examples from each 
location approach and evaluated their relevance to the sce­
nario, in order. We limited this investigation to five exam­
ples, as some empirical evidence indicates that developers 
rarely look beyond this limit when searching [9]. 

Our main goal when investigating a search result was 
to determine whether the example provided the function­
ality required by the task. To do this we visually scanned 
all the highlighted regions returned by GCS along with the 
selection provided by Strathcona. If the example seemed 
functionally relevant, we marked it as a candidate for inte­
gration. We also noted the number of methods that were 
highlighted by the search approach to gain a sense for how 
much code we had to scan through with each search tech­
nique as well as the time we required to make our relevance 
determination. Table 1 provides an overview of the search 
process for the four scenarios we investigated. 

In a real development situation, a developer is likely to 
halt the investigation upon discovery of a method that seems 
promising; investigation might resume if the results of the 
attempted integration were less than satisfactory. Despite 
this and for the sake of completeness, we report the time 
and results for investigating each of the five examples for 
both approaches. 

Integrating potentially relevant examples. For each ex­
ample deemed relevant to the task using either location ap­
proach, we attempted to integrate the example into our code 
skeleton. For the integration phase, we independently used 
the standard tools available in the Eclipse IDE (“manual” 
approach) and the Jigsaw tool [2]. 

Manual integration involved copying the relevant code 



from the example, pasting it into our code skeleton, and 
modifying it to resolve compilation errors and so it would 
work in our environment. Jigsaw integration involved se­
lecting the originating source method that the developer 
wanted to reuse and selecting the target method in the code 
skeleton; this activated Jigsaw which subsequently copied 
the required code to our system and modified it to compile 
within our system. Before Jigsaw could be queried in this 
way, we had to setup an environment for it. This involved 
copying the full source file to our system and making it fully 
compile; sometimes this would mean modifying the code to 
remove those portions that were not compiling and were ir­
relevant to our class; other times this meant importing more 
code to enable the example code to compile. This compi­
lation limitation arises because of requirements Jigsaw has 
on the Eclipse AST; we discuss this issue further in Sec­
tion A.3. 

To quantitatively compare the integration approaches, 
we record the time required to perform the task (and the 
time required to setup Jigsaw, where applicable), the lines 
of code (LOC) ultimately reused from the example, and the 
number of discrete actions required of the developer to per­
form the task. These results are found in Table 2. 

We use “actions” in this context as an effort indicator that 
is alternative to time. We counted any specific decision a 
developer made as an action; for example, if the developer 
decided to remove a certain method, deleting the method 
and all calls to it counted as a single action. Copying a 
method and resolving any dangling dependencies counted 
as a single action. Any unique modification to the source 
code counted as an action. 

A.2. Scenarios 

Four scenarios were used in our case studies, one each 
from the publications on Strathcona [7], XSnippet [8], 
PARSEWeb [10], and XFinder [4]. We examine these, in 
turn, below. As a detailed description of these integration 
tasks would be overwhelming for the reader, we opted to 
provide full details for the first scenario while providing 
only the most significant, qualitative details for the rest. 

Scenario 1: Compute the signature of a MethodDecla­
ration. The Eclipse abstract syntax tree (AST) main­
tains a programmatic tree-based representation of the source 
code that the environment has compiled. These ASTs rep­
resent Java methods using MethodDeclaration objects. 
This scenario involves the generation of method signatures 
(e.g., Object getResults(int[], Vector)) from 
MethodDeclaration objects. The code skeleton for the 
task is given in Figure 1 (from Holmes et al. [7, Figure 6d]). 
This skeleton is motivated by the fact that the developer 
can quickly discover these methods as apparently relevant 
to their task, but remain unsure of how to manipulate 

them appropriately. For the Strathcona query, we se­
lected lines 7 to 9 of the skeleton; we queried GCS with 
“ASTVisitor MethodDeclaration getModifiers 
getName getIdentifier parameters lang:Java”. 

1 import java.util.List; 
2 import org.eclipse.jdt.core.dom.ASTVisitor; 
3 import org.eclipse.jdt.core.dom. 

MethodDeclaration; 
4 
5 public class ExtractSig extends ASTVisitor { 
6 public boolean visit(MethodDeclaration node) 

{ 
7 int mod = node.getModifiers(); 
8 String id = node.getName().getIdentifier(); 
9 List parms = node.parameters(); 
10 
11 return super.visit(node); 
12 } 
13 } 

Figure 1. Scenario 1 code skeleton. 

Location and selection. GCS returned 102 examples. Of 
the first five, three of them matched all the queried terms 
(G12, G13, G15). The first and fourth examples (G11, G14) 
contained only some of the search terms and by investi­
gating them for less than one minute each, we discarded 
them. The second example (G12) used all the queried APIs 
but consisted of only validation code; it did not use the re­
trieved data to generate any form of textual representation. 
The third example (G13) matched all the terms, but the first 
range highlighted by GCS contains references that the de­
veloper has actually commented out. The second range was 
promising, as it referenced all the query terms and con­
verted various ASTNode elements into their textual repre­
sentation. Unfortunately, this code fragment is also very 
long (1636 lines) and after spending 8 minutes investigating 
the method, we decided that there was too much extraneous 
functionality to effectively tease out the parts of interest. 
The fifth example (G15) also references all the query terms, 
matching across many methods (117). After 5 minutes we 
had located the best of these methods and concluded that it 
seemed to provide most of the functionality needed to com­
plete the task; this method was chosen for integration. 

Strathcona returned 10 examples. Examining the first 
five, we found that S11, S12, and S14 all contained partial 
matches that could be discarded in less than one minute 
each (Strathcona orders results in terms of the nature of 
the structural matches, not their quantity). The third ex­
ample (S13) referenced all the required query terms and ap­
pended much of the information gleaned from the query, to 
a StringBuffer instance; in less than 5 minutes we were 
able to flag this example as worthy of integration. Exam­
ple S15 was identical to example G15 from GCS. 

Integration. Manually integrating G/S15 involved copying 
the method that seemed most relevant to our task into our 
code skeleton, resulting in 19 compilation errors. We mod­

2 



ified the code by adding a new field (buffer) and remov­
ing an irrelevant method call; this reduced the number of 
errors to 5. We then noticed that we needed to copy an­
other method (printModifiers(List)); this led to iter­
ation that required four more methods to be copied into our 
skeleton, one after another. We also removed a call to an ir­
relevant private method. At this point the code compiled but 
we realized that without testing it we could not verify that 
it met our requirements. Execution of the code revealed its 
extensive use of visitors, which extracted a great deal more 
information than necessary for this scenario. Although the 
code might have been modified to eliminate the extrane­
ous functionality, the quantity and potential impact of the 
changes required, combined with the uncertainty of what 
additional modifications would still be needed to complete 
the task, led us to abandon this example. Reaching this de­
cision took 20 minutes. 

To integrate G/S15 using Jigsaw we first copied the 
source code for that file from GCS into its own file in 
the workbench; initially this had many errors but by also 
importing the project in which it is found (the Eclipse 
org.eclipse.jdt.core package) we were able to re­
solve these errors; we had to perform this step as Jigsaw 
can only integrate fully compiling code. After selecting 
the source and target methods, Jigsaw copied the code (145 
LOC in five methods, four plus the one selected) and modi­
fied it to fit its new context; after this, 27 compilation errors 
remained. After manually adding two fields that Jigsaw had 
failed to copy, 4 errors remained. We then deleted one lo­
cal variable that had a name conflict with a field we added, 
resolving the final set of errors. Upon execution, the code 
displayed the same problems that we had detected during 
the manual treatment, so we again abandoned it. Reaching 
this decision took 8 minutes. 

For the manual integration of S13, we copied first the 
key method highlighted by Strathcona (buildMethod-
Declaration(MethodDeclaration)), resulting in 7 er­
rors. We then copied appendExtraDimensions(..) and 
five other private methods, iteratively one at a time as we 
discovered they were needed. After these were copied, we 
were left with 4 errors which we realized were from code 
not relevant to the task. After testing the code we found that 
it provided the required functionality. Manual integration 
took 11 minutes for this example. 

To integrate S13 using Jigsaw, we first copied over the 
file and imported the Eclipse org.eclipse.jdt.core 
package into our test project. After selecting the source and 
target methods, Jigsaw copied the code (214 LOC in seven 
methods, six plus the one selected for integration) resulting 
in 26 errors. After manually creating one StringBuffer 
field, 4 errors remained; these were resolved by removing 
4 similar statements that were irrelevant to the task. After 
executing the code we found that it fulfilled the scenario. 
Jigsaw integration took 7 minutes for this example. 

Scenario 2: Create an ICompilationUnit. A source 
file in Java is called a compilation unit, and the in­
terface type ICompilationUnit represents these within 
Eclipse ASTs. The scenario involves creating an instance 
of an ICompilationUnit from a Java source file se­
lected from the Eclipse package explorer; note that no 
simple constructor calls are available. The parents of 
the class under development are expected to be the class 
ViewPart and the interface type ISelectionListener. 
The task is expected to make use of the types TextEditor, 
IAction, and IDocument. The resulting code skeleton 
is shown in Figure 2. For the Strathcona query, we se­
lected lines 11 to 14 of the code skeleton. The GCS query 
string “ViewPart ISelectionListener TextEditor 
IAction IDocument lang:Java” was created from the 
key details mentioned above. 

1 import org.eclipse.jdt.core.ICompilationUnit; 
2 import org.eclipse.jface.action.IAction; 
3 import org.eclipse.jface.text.IDocument; 
4 import org.eclipse.ui.ISelectionListener; 
5 import org.eclipse.ui.editors.text.TextEditor; 
6 import org.eclipse.ui.part.ViewPart; 
7 
8 public class XSnippetICompilationUnit extends 

ViewPart implements ISelectionListener { 
9 public void buildCU() { 
10 TextEditor te; 
11 IAction ia; 
12 IDocument id; 
13 ICompilationUnit icu; 
14 } 
15 } 

Figure 2. Scenario 2 code skeleton. 

Location and selection.GCS returned 31 examples. Of the 
first five, G21, G23, and G25 matched all the queried terms. 
Examples G22 and G24 only matched some of the search 
terms; a significant number of methods (23 and 13, respec­
tively) had to be inspected to discover this fact, at high cost 
in terms of time (12 and 9 minutes, respectively), and these 
examples were subsequently discarded as irrelevant. 

Strathcona returned 10 examples. Examining the first 
five, we found that all five examples contained only par­
tial matches; using Strathcona’s source code view, we were 
able to discard all five examples in less than one minute 
each. Strathcona’s repository did not contain any relevant 
examples, including those returned by GCS. 
Integration. The relevant examples G21, G23, and G25 
were integrated into the code skeleton shown in Figure 2. 
The number of actions necessary to manually integrate 
the examples was 4, 13 and 11 respectively with 25, 33 
and 15 minutes respectively required to do so. The Jig­
saw tool required fewer actions from the developer (3, 7, 
and 4 respectively) with less time to perform the integra­
tion (3, 7 and 5 minutes respectively). In all three exam­
ples an action was needed to handled a static method call 
(EditorUtility.getJavaInput(..)) that required the 
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developer to investigate a method declaration in another 
class; though the class name was shared by all three ex­
amples, each class was localized to its project. 

The Jigsaw integration of examples G23 and G25 high­
lighted problems with the current implementation of the 
tool; the developer was required to perform actions to re­
solve dependencies on fields and methods from the methods 
depended upon by the original method (setInput(..)). 
For the indirect method dependencies, the Jigsaw tool 
was applied again selecting each indirectly depended-upon 
method declaration as the originating source method; indi­
rect field dependencies required the developer to manually 
“copy & paste” them into the skeleton. For the Jigsaw inte­
gration, over half the time was spent setting up the examples 
to work with the tool for this scenario. 

Scenario 3: Extract an ITextSelection. The Eclipse 
IDE captures modifications to source code editors in 
TextEditorActions; in this scenario a developer must 
extract an ITextSelection given a TextEditorAction. 
This is essentially a call chain scenario. While this task is 
fairly straightforward, the TextEditorAction API con­
tains 44 methods that can be directly called and hundreds 
that can be called indirectly, making an exhaustive search 
impractical. The code skeleton for this scenario is pre­
sented in Figure 3. For Strathcona, we queried lines 5 to 9 
of the code skeleton, while the GCS query consisted of 
“TextEditorAction ITextSelection lang:Java”. 

1 import org.eclipse.jface.text.ITextSelection;

2 import org.eclipse.ui.texted.ITextEditor;

3 import org.eclipse.ui.texted.TextEditorAction;

4

5 public class TSAct extends TextEditorAction {

6 public void processSelection() {

7 ITextSelection its; 
8 } 
9 } 

Figure 3. Scenario 3 code skeleton. 

GCS returned 322 examples; Strathcona returned 
10 examples. Each location technique returned three 
examples that provided the developer’s desired func­
tionality (G32, G34, G35, S31, S32, S34). Imple­
mentations of TextEditorActions tend to be smaller 
classes with limited functionality (ignoring inherited meth­
ods) which made assessing relevance an easy job for 
this task. Also, the functionality required itself was 
well contained, as it could be provided as a single 
call chain: sel = (ITextSelection) editor.get-
SelectionProvider().getSelection(); 

As the required code was so small, the needed fragments 
were easy to integrate manually. While using Jigsaw was 
still faster than the manual case in general at the actual in­
tegration, the set up time associated with these tasks over­
shadowed the time saved by using such an approach. While 

two of the examples returned by Strathcona used a more 
robust mechanism for returning the selection (by testing 
casts), the original paper [10] did not indicate that these 
were strictly necessary. 

Scenario 4: Create a TableModel. In the Java Swing 
framework, the TableModel interface specifies the meth­
ods that integrate a tabular data model for the JTable 
graphical widget. This scenario involves the implementa­
tion of a TableModel to provide sorting and filtering func­
tionality. From the description of the task, we created the 
code skeleton shown in Figure 4. For Strathcona, we se­
lected the SortFilterTable constructor, lines 5 and 6 
of the skeleton, and for GCS we queried with “JTable 
TableModel Sort Filter lang:Java”. 

1 import javax.swing.table.TableModel; 
2 import javax.swing.JTable; 
3 
4 public class SortFilterTable implements 

TableModel {

5 public SortFilterTable(JTable jtable) {

6 }

7 }


Figure 4. Scenario 4 code skeleton. 

Location and selection. GCS returned 2000 examples. All 
the first five examples matched all the queried terms. Fur­
ther investigation of the examples revealed that only G41 
had methods relevant to the scenario. Strathcona returned 
10 examples. Examining the first five, we found that the 
first three examples contained only partial matches; using 
Strathcona’s source code view, we were able to quickly dis­
card the first three examples. The fourth and fifth examples 
(S44 and S45) contained methods relevant to the scenario. 

Integration. We integrated the relevant examples G41, S44, 
and S45 into the code skeleton. During the manual integra­
tion of G41, it became apparent that the example was not 
relevant to the scenario task. The SortFilterModel class 
contained methods that followed a similar naming conven­
tion to the TableModel interface and the three methods 
found to be relevant contained dependencies on other meth­
ods that made explicit the TableModel use within the class 
as a type but not describing its creation. The integration was 
halted after 7 minutes and the application of the Jigsaw tool 
was not attempted (hence the “-” marks in Table 1). 

We were able to successfully integrate S44 and S45 into 
the code skeleton. For S44 the developer was required to 
make 6 fewer actions manually compared to the use of the 
Jigsaw tool. Example S44 contained 8 methods and S45 
contained 6 methods that were required to be integrated to 
complete this scenario; this required the developer to sup­
ply Jigsaw with each of the methods individually as input 
into the tool. Despite this overhead, the time spent manu­
ally integrating the source code for S44 and S45 was three 
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times as much. However, there was a tremendous time cost 
of 61 and 58 minutes, respectively, associated with setting 
up the source (requiring significant functionality to be im­
ported from the NetBeans IDE) to work with Jigsaw. 

A.3. Observations and Analysis 
While performing the case studies we investigated 40 ex­
amples and attempted to integrate the most promising 14 of 
these. From this experience we made a number of observa­
tions about the process of locating, selecting, and integrat­
ing these types of examples. 

Classifying examples. The four scenarios we undertook 
were derived from the related literature, but in perform­
ing these tasks we observed that they fell into two cate­
gories. Scenario 2 involved what have been termed call 
chains, object instantiations [8], and method invocation se­
quences [10]; these involve short snippets of code that usu­
ally demonstrate how to access some functionality in an 
API. Conversely, feature-oriented scenarios require richer 
functionality; these are demonstrated in Scenarios 1, 3, 
and 4. In Scenario 2 we noticed that relevant call chain 
examples were easier to identify, occurred more frequently 
because their scope was broad (the same call chain can be 
used by examples of very different functionality), and were 
easy to integrate manually as the significant parts were gen­
erally short. Deciding that an example was relevant to a 
feature-oriented scenario was more difficult: as more signif­
icant functionality is required from them, they are generally 
larger and more specific. In general, we found that to really 
be able to tell if an example offered the required function­
ality for a feature-oriented scenario, the example had to be 
integrated into our skeleton and tested; this also helped us 
to ultimately determine which example was best for a task. 
For example, in G/S15 and G41 we believed that a given ex­
ample was relevant, only to realize during integration that 
it was not. The various approaches that we discussed in 
Section 2 generally support call chain scenarios and are not 
effective in feature-oriented scenarios. 

Location approach shortcomings. While we were se­
lecting scenarios to use for these case studies, we often en­
countered situations where GCS would report a given result 
but an uninformative error message would be returned when 
we attempted to investigate the result. More significantly, 
Strathcona also demonstrated the shortcoming of its cen­
tralized repository approach, as in Scenario 2 the repository 
contained no relevant examples. 

In addition, GCS sorts examples relative to the query 
terms that are sent to it, and performs lexical matching 
within entire files, selecting files where parts of identifiers 
and comments match the terms; Strathcona ranks examples 
according to the structural heuristics that are matched on 
the server. Neither location approach, or any we are aware 

of, can rank examples in the order that would be most con­
ducive to the developer being able to reuse the example. 
For example, in G13 the example matched all the search 
terms but was also more than 1.5 kLOC in length with 
much extraneous functionality; this example would likely 
not have been as easy to integrate as another example that 
was <100 LOC in length. 

Manual integration shortcomings. We observed two 
main shortcomings of manual integration tasks. First, it was 
not easy to tell, through manual inspection, what dependen­
cies the example code might have on the rest of its class 
or the system from which it was extracted. (This is consis­
tent with an earlier study that found that developers often 
fail to identify source code dependencies using source code 
editors [6].) This meant that after we copied over some frag­
ment of code, another fragment, method, or field would also 
be required, often iteratively. Second and more intrusive, 
the example’s context was often different from our code 
skeleton: fields, local variables, and methods often had to 
be renamed. For small examples this was straightforward 
but for larger examples we had to be careful that we were 
not breaking how the code worked by modifying it. 

Jigsaw integration shortcomings. Configuring an exam­
ple so it could be integrated by Jigsaw often took more 
time than the actual integration; beyond our controlled en­
vironment, it is thus unlikely that Jigsaw would be used in 
end-to-end example reuse tasks. This setup burden arises 
because Jigsaw needs full bindings (to the declarations of 
types, methods, etc.) from the Eclipse AST in order to do its 
analyses well. For example, if an example file contained the 
call chain one().two().three(), without bindings the 
return type of two() could not be determined and thus the 
type upon which three() is invoked would be unknown. 
Jigsaw uses this information to ensure integrity when inte­
grating fragments of source code, as two elements of iden­
tical type are more likely to correspond than two elements 
of differing type. 

A.4. Summary 
We found that locating, selecting, and integrating source 

code examples with existing tool support is approachable 
but generally cumbersome and slower than necessary. This 
burden led to situations where we feel that after spend­
ing time to integrate one example we would be unlikely to 
spend more trying to integrate alternatives—in a realistic 
development setting, at least. 

We found 5 significant issues with using these exist­
ing approaches as end-to-end support for reusing examples: 
(1) example repositories that do not contain examples rele­
vant to a scenario are not helpful to that scenario; (2) lo­
cation techniques have to consider syntax and semantics 
to locate better examples for reuse; (3) located examples 
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GCS Strathcona 

# Example class Methods Time # Example class Methods Time 

P TP P TP 

Scenario 1: Compute the signature of a MethodDeclaration 
G11 EclipseCFG 19 0 2 S11 AccessAnalyzer 1 0 1 
G12 Verifier 22 0 5 S12 DOMFinder 1 0 1 
G13 ASTScriptVisitor 21 0 8 S13 SourceBasedSourceGenerator 1 1 3 
G14 ASTConverterTESTAST3 2 117 0 5 S14 ImportRemover$1 1 0 1 
G15 NaiveASTFlattener 74 1 8 S15 NaiveASTFlattener 1 1 2 

Scenario 2: Create an ICompilationUnit 
G21 J2SView 7 3 6 S21 ImportResourcesAction 1 0 <1 
G22 PHPEditor 23 0 12 S22 ExportResourcesAction 1 0 <1 
G23 ASTView (v2008) 14 4 8 S23 AbstractMemoryViewPane 1 0 <1 
G24 InstallOptionsDesignEditor 13 0 9 S24 Visualiser 1 0 <1 
G25 ASTView (v2004) 11 3 5 S25 TaskList 1 0 <1 

Scenario 3: Access text selection 
G31 IndentAction 1 0 1 S31 JoinLinesAction 1 1 2 
G32 GoToNextPreviousMemberAction 2 1 2 S32 AddMarkerAction 1 1 <1 
G33 PLEditor 1 0 2 S33 ClipboardOperationAction 1 0 <1 
G34 RubyEditor 2 1 2 S34 BlockCommentAction 1 1 3 
G35 GoToAction 1 1 2 S35 JavaMoveLinesAction 1 0 1 

Scenario 4: Create a TableModel 
G41 SortFilterModel 9 3 4 S41 ReverseCallGraphPanel 1 0 1 
G42 JTable 37 0 8 S42 TagHandlerPanelGUI 1 0 2 
G43 TableRowSorter 4 0 1 S43 VisualArchiveIncludeSupport 1 0 1 
G44 TransFilterTable 7 0 2 S44 TreeElAttribListCustomize 1 1 2 
G45 SortedTableHelper 14 0 5 S45 FilterSetsPanel 1 1 1 

Table 1. Investigation of the results from GCS and Strathcona. The “P” column indicates the number of methods that 
the approach marked as relevant (positives); “TP” indicates the number of methods that we determined to be relevant 
to the scenario (true positives); “Time” indicates the approximate time we required to investigate the result, measured 

in minutes. 

should be ordered relative to ease of integration with the 
developer’s context; (4) overhead for moving examples into 
the developer’s environment and resolving trivial issues has 
to be reduced or eliminated; and (5) the form of integration 
needs to consider factors such as: avoiding the alteration of 
APIs; and iterative issues from copying yet more code to 
eliminate dangling references. 

B. Expanded Discussion 
A naive response to the need for end-to-end support for ex­
ample reuse tasks would be to take a couple of the existing 
approaches and combine them through a bit of engineering. 
In Brooks’s phrasing [1], this could eliminate the acciden­
tal complexity of the end-to-end tasks but not the essential 
complexity. None of the existing tools were designed with 
these end-to-end tasks in mind. As such, their designs are 
not merely incomplete with respect to the end-to-end tasks, 

but they actively conflict in significant ways. This is not a 
criticism of the quality of the ideas or engineering that have 
gone into any of those tools (regardless of the fact that a few 
bugs were found); it is a recognition of a mismatch issue [5] 
that is not obvious when considering only a high-level view 
of each tool and its place in these end-to-end tasks. 

On the other hand, the existing approaches are not com­
pletely off the mark: we were able to perform the end-
to-end tasks, although this was more burdensome than it 
should have been. Of the available example location ap­
proaches, Strathcona is closest to what is needed for lo­
cating reusable, feature-providing examples; Google code 
search can be coerced for this, but it is a more general-
purpose search engine that would require more work to fit 
well into end-to-end example reuse tasks (informally, we 
have noted that other code search engines suffer from sim­
ilar issues). While approaches that specifically address call 
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# Example class Manual Jigsaw 

actions size time actions size setup t action t 

Scenario 1: Compute the signature of a MethodDeclaration 
G/S15 NaiveASTFlattener 8 177 20 4 167 5 3 

S13 SourceBasedSourceGenerator 8 224 11 3 214 5 2 

Scenario 2: Create an ICompilationUnit 
G21 J2SView 4 56 25 3 56 5 3 
G23 ASTView (v2008) 13 141 33 7 154 8 7 
G25 ASTView (v2004) 11 80 15 4 87 6 5 

Scenario 3: Access text selection 
G32 GoToNextPreviousMemberAction 3 2 2 2 2 4 <1 
G34 RubyEditor 3 2 2 2 2 3 <1 
G35 GoToAction 3 2 2 2 2 2 <1 
S31 JoinLinesAction 3 10 2 3 13 4 <1 
S32 AddMarkerAction 1 1 1 2 1 4 <1 
S34 BlockCommentAction 2 12 2 2 14 2 <1 

Scenario 4: Create a TableModel 
G41 SortFilterModel 3 - 7 - - - -
S44 TreeElementAttributeListCustomize 8 209 21 14 215 61 7 
S45 FilterSetsPanel 7 51 8 7 59 58 3 

Table 2. Integration of the relevant examples into the code skeletons. The “#” column refers to the example number 

from Table 1; “actions” indicates the number of discrete actions that the developer had to perform (e.g., manually 

adding an import statement that resolved a dozen errors counts as one action); “size” indicates the LOC that were 

reused; “time” is the time taken to perform the integration, in minutes, and this is differentiated for Jigsaw into time 

to move the example into an actionable form (“setup t”) and time to actually perform the integration (“action t”). 

chain scenarios are good at addressing call chain scenar­
ios, these do not require developer interaction with concrete 
examples and are trivial to integrate—better support for in­
tegration seems unnecessary for this more narrow focus. 

For integration, the assumptions made by Jigsaw are 
problematic; nevertheless, it outperformed the manual ap­
proach significantly when the setup time is ignored. Those 
assumptions are not foundational to Jigsaw, so using it as 
a basis for the integration portion of the end-to-end support 
seems reasonable at this point, as long as the means for sig­
nificantly reducing or eliminating setup time is found. We 
know of no other approaches that could effectively integrate 
feature-providing examples. 

How can the issues be overcome? A reasonable starting 
point for end-to-end tool support for example reuse tasks 
would appear to be combining Strathcona and Jigsaw. But 
as we pointed out above, engineering alone will not suffice 
to overcome the issues we identified in the case studies. 

To eliminate the fact that Strathcona relies on a cen­
tralized repository that can easily become stale (which is 
why it could find no relevant examples for Scenario 2), two 
routes are possible. (1) A revised Strathcona could auto­
matically retrieve examples from web-based code search 

engines and then analyze these according to Strathcona’s 
approach to approximate structural context matching; how­
ever, care would need to be taken to maintain Strathcona’s 
high speed performance. (2) A revised Strathcona could 
use the centralized repository as a cache, and only query 
the web-based search engines when a cache miss occurred; 
again, tuning such an approach to maintain performance 
would be important. 

More work should be put into the selection phase to in­
crease the chances of investigating the best integration can­
didate first. This could be achieved either through altering 
Strathcona to introduce one or more new heuristics [7, Sec­
tion IV-C] and possibly to remove others, or by analyzing 
the examples returned by Strathcona and reordering them 
according to alternative heuristics. The latter option has the 
advantage of not altering Strathcona but the disadvantage 
that it cannot so easily add additional examples that Strath­
cona has chosen to ignore. 

The process of integration should be better automated 
and more oriented towards the end-to-end task so that de­
velopers can more readily try multiple candidate examples 
to find the one that best meets their needs. Part of the dif­
ficulty arises from the fact that Jigsaw (and to a lesser ex­
tent, Strathcona) depend on the availability of resolved ref­
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erences (i.e., bindings). Bindings are necessary to allow 
Jigsaw to fully understand what is happening in the source 
code. For example, in the call chain getActionBars().­
getStatusLineManager().setMessage() Jigsaw can­
not interpret the return type of getActionBars() or 
getStatusLineManager() without having access to the 
AST bindings. To overcome this, a technique could be ap­
plied that allows partial program analysis to determine the 
likely resolution of a given reference. Dagenais and Hen­
dren have recently introduced an algorithm for partial pro­
gram analysis that does just that [3]; its existing tool support 
within the Eclipse IDE ought to make this a relatively pain­
less exercise. Alternatively, the techniques could be made 
to depend on lexical identity when a given binding is un­
available. Which is the easier and more effective alternative 
remains to be seen. 

Are the case studies biased and lacking in statistical 
significance? Our evaluation consisted of four author-
performed case studies using two different location and in­
tegration approaches. While we did not try to explicitly ac­
count for learning effects (e.g., through randomization), we 
did try to report consistent times for tasks that were per­
formed largely the same. While we cannot be sure that the 
case studies generalize, the purpose of our investigation was 
exploration: to determine whether it would be worthwhile 
to invest the considerable effort in explicitly supporting end­
to-end example reuse tasks, and to determine what issues 
need to inform the design of that support. 

Our investigation provides evidence that the end-to-end 
use of source code examples could be improved. The case 
studies were selected from scenarios published in the litera­
ture and they have pointed to shortcomings of our own tools. 
Thus, we have formulated a hypothesis (that overcoming the 
identified issues will significantly improve the end-to-end 
support) and outlined a plan for making it testable (over­
coming the identified issues, as described above). Only at 
that point will it make sense to attempt a formal experiment 
and/or to obtain industrial feedback on the usefulness of the 
approach. 

Do these case studies teach us anything beyond the do­
main of reusing examples? The reductionist tradition 
would suggest that we ought to identify a core set of small 
tools to be combined as needed to fulfill larger tasks. The 
accidental complexity inherent in the combinations could 
be overcome largely by designing and building them to cer­
tain standards—witness the prevalence of integrated devel­
opment environments today. However, these case studies 
demonstrate how the complexity and richness of higher-
level tasks can call for specialized end-to-end support; small 
and simple tools may be amenable to this need, but only if 
their behaviour can be constrained after-the-fact according 
to the larger-scale needs. 

What is gained by providing end-to-end support? End-
to-end support enables the developer to more quickly inves­
tigate potentially relevant examples, allowing them the pos­
sibility to use the time savings to investigate more examples 
and perhaps to discover better functionality or issues that 
were not otherwise apparent (like error cases). The funda­
mental difference between call chain scenarios and feature-
provision scenarios is the richness involved: the more com­
plex but non-standard the functionality, the more likely the 
need for in-depth investigation of multiple examples. Ignor­
ing the details often leads to making mistakes in the details. 
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