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Abstract This paper discusses a modularized design for a Mars Global Terrain Database.
The design provides for elevation data with respect to a triaxial ellipsoidal reference datum
developed for Mars by USGS. Terrain data is recorded for 1-second of arc almost square
grid elements over the surface of Mars. A 2000-Gigabyte column-gridded relation called
Terrain contains the surface terrain data. Data for Terrain is expected in 1999-2000 from
the Mars Global Surveyor satellite currently in initial polar orbit around Mars. Each tuple
of Terrain contains data for a N-S column-grid of 900 1-second grid elements. There is
thus a set of tuples per 1-degree rectangle, with the number of tuples per set decreasing
with the cosine of latitude. Surface resolution is 16.5 meters or better. The design
constrains tuple sizes in Terrain to permit efficient blocking and manipulation of the
records of the underlying storage file. Terrain contains a virtual-attribute function for
geodetic computations relating to the triaxial ellipsoidal reference datum.

The database also relates Mars feature-type relations to Terrain. Terrain's gridded
structure is transparent to users writing SQL expressions to retrieve Terrain data on the
basis of specific features. Many different distinct feature-type relations can be included.
At least two of these participate in recursive relationships. The design also allows
attachment of additional feature-type relations in a modular manner, correctly related to
Terrain, without affecting the contents of Terrain. The design is intended to enable
efficient exploration of the planet at all levels of scale.
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1. Introduction

During the last two decades there has been increased use of digital terrain databases [1, 2],
often obtained by remote sensing [3, 4], of the Earth's surface. But now, with the arrival
of the Mars Global Surveyor (MGS) spacecraft in Mars polar orbit in the fall of 1997, a
new digital terrain database application possibility is emerging, for exploration of the
terrain and geology [5] of the planet Mars. This MGS spacecraft should return the data
necessary for a high resolution Mars Global Terrain Database whose primary function
would be the facilitation of Mars terrain exploration.

The MGS spacecraft is equipped with a laser altimeter [6] for elevation
measurements, and cameras with resolution down to a few meters, as well as other
scientific instruments. All data returned from the spacecraft will be digital - digital pixel in
the case of photogrammetric data. Remote-sensed photogrammetric data, obtained with
telescopic lenses, is excellent for high-resolution planimetric mapping. However it can be
employed only in a limited manner, involving sophisticated triangulation methods, for
generating corresponding elevation data for topographic mapping and imaging, or for a




digital terrain model or database, unless supplemented by coincident altimeter readings [1,
7].

MGS is in a sun-synchronous polar orbit [6], so that an imaginary line from planet
to sun always lies in (or makes a zero angle with) the plane of the MGS orbit. As a result,
MGS always traverses (in a N-S direction) the planet's daytime face at midday at all
(nadir) points of the surface. This enables photogrammetric data to be obtained at uniform
lighting and shading angle. Since Mars rotates under the orbital plane both daily and
annually, MGS will take a Martian year (about 2 Earth years) to complete an accurate
survey of the entire planet. The initial polar orbit is highly elliptical, and a tight near-
circular orbit, enabling the survey to begin, is expected in late 1998. Complete survey data
should be available late in 2000. From this survey, detailed surface elevation, color, and
some composition data will become available for the entire planet.

This means that it will shortly be possible to construct a very high resolution Mars
Global Terrain Database (MGTDB). Such a database would not have been defensible
earlier. The first extensive photography of the Martian surface was by the Mariner 9
spacecraft in 1971-72, which sent back over 7,000 images covering most of the planet.
However the image quality had a resolution far too low for terrain database purposes; in
addition elevation data was sparse. The situation was very much improved by the Viking
Orbiters which arrived in 1976, and which during the next 4 years returned over 50,000
high quality images covering the entire planet [8, 9, 10]. There have been no further
images from Mars until late 1997, when MGS sent back its first even better quality
pictures.

Viking images cover large areas near the equator to a resolution of 7-30 meters,
and at least 90% of the planet to a resolution of 100-150 meters. Accurate high-resolution
terrain elevation data is lacking, however. A high-resolution global terrain database was
not defensible with the Viking data, for three reasons: lack of uniform high resolution
photogrammetric data for the whole planet, lack of uniform high resolution elevation data
for the whole planet, and non existence of the powerful low-cost relational [11, 12, 13]
and object-relational database techniques [14] and associated computer hardware
resources that exist in the late 1990s. It is the expected high resolution altimeter,
photogrammetric and geological data from MGS, coupled with the availability of low-cost
powerful database techniques, that now make a high resolution MGTDB a feasible
proposition for the next decade.

The primary purpose of an MGTDB is exploration of the planet. Because of the
great distance of Mars, and oppositions only every two years, exploration of the planet
even by robotic means is likely to be limited, expensive, and sporadic at best. Although
robotic exploration will likely reveal detailed geological information at specific sites that
could not be obtained from satellites, an effective and inexpensive exploration technique
will involve using computer processing and a high resolution MGTDB [15].

Mars is a planet that generates intense scientific interest [16, 17]. Data returned
from Mars by the early Mariner and Viking orbiters have revealed a densely featured
planet that has undergone extensive cratering and great atmospheric, volcanic, tectonic
and hydrological upheavals since coming into existence, in some ways similar to those of
Earth during its early period [18, 19].




A properly designed MGTDB of sufficient resolution, supplemented with global
geological data, would be a tool of incomparable value in research on the planet. And
furthermore, once the data for it has been obtained, the cost of creating and operating the
database, although not insignificant, would be negligible compared to the cost of even a
single robotic expedition. Given the data for the database, current hardware costs for the
database are of the order of M$0.5.

With the design presented in this paper, researchers would be able to retrieve the
high resolution local terrain data, on scales ranging from the very large to the very small,
for just about any combination of circumstances. Digital terrain data so retrieved would in
most cases require considerable additional computer processing. Users would frequently
want to have the grid of retrieved elevation and other data converted to an image of some
kind, sometimes a map but more likely, for research purposes, a perspective or vista.
Retrieved data could be used for automated generation of a variety of planimetric maps [
20, 9], using cartographic projection techniques [7, 21], as well as images [22] and
perspectives or vistas [23] for any position and direction. Many techniques developed for
map and image generation using Earth digital terrain databases and GIS [1, 24, 25], such
as ARCINFO [26], should be applicable to the terrain data extracted from the database.
Fractal [27, 28, 9] and rendering [ 29, 30] techniques can be used to enhance images
where data is insufficient.

Given these possibilities, it seems reasonable to investigate a possible structure
design for a MGTDB. The design proposed is essentially entity-relationship [31], but it is
presented as relations [11, 13], since it is expected to constructed as a relational database.
However, with minor modification the design could be presented as an object-oriented
database [14], although the author could find no advantage in using an object-oriented
approach to the design problem. Functional, multivalued and join dependency
considerations [11, 13] are largely irrelevant for a Mars database, since, apart from error
correction, it would never be change updated. Nevertheless the design presented does
avoid them. The suggested design is shown in Figure 1. Note that in this paper all sample
queries to illustrate this database are in SQL [32, 11] although use of other powerful
declarative languages is a possibility [33].

Geodetic considerations

Before considering an overview of the database design, a few geodetic matters
[34] relating to Mars need to be considered. On Earth elevation data is with respect to a
reference level or reference datum, which is normally sea level, reflecting an isogravimetric
[35, 34]. With no sea on Mars, an equivalent reference datum must be derived on the basis
of gravity and atmospheric pressure isobars. A complication is that Mars is even more
spheroidal than the Earth. While Earth is a two-axial ellipsoid, Mars is best modeled by a
3-axial ellipsoid.

Using Viking data, in the 1980s the U.S. Geological Survey generated a Mars
Atlas, updated since [9], of 140 quite detailed topographical maps at a scale 1:2000000,
with kilometric contour lines. The elevations were with respect to a Mars reference datum
established both from the planet's gravitational field, and from a reference corresponding
to an atmospheric pressure of 6.1 millibars. This USGS Mars reference datum is a triaxial




ellipsoid with two semimajor axes of 3394.6 and 3393.3 km and a semiminor axis of
3376.3 km. This Mars reference datum appears to be a good standard, so that in the
proposed database, elevation data will be with respect to this datum for a given latitude
longitude coordinate. Note, however, that the triaxial ellipsoidal nature of Mars means
that the exact length in meters of 1 second of arc, will vary slightly over the planet's
surface and will need to be computed as required. A function (#rax()) to acomplish this is
included in the database as a virtual attribute. The zero of longitude on Mars is the center
of a craterlet called Airy-0, at long 0.0, lat -0.5 [36].

Overview of the MGTDB design

The database will contain feature data and terrain data for a regular angular-
coordinate (or arc raster) grid over the entire surface of Mars. At the core of the database
is a 2000-Gigabyte relation called Terrain that contains the terrain data. It has a surface
resolution everywhere, including at the poles, of 16.5 meters or better.

Data is recorded with respect to approximately 1-second of arc almost square grid
elements. Each tuple of Terrain contains the latitude/longitude coordinates of a 1-degree
curved rectangle, plus data for a N-S running column of 900 of these grid elements, a
quarter degree of latitude long, called a N-S column grid, within the 1-degree rectangle.
Thus for each one degree curved rectangle there are many Terrain tuples each denoting a
N-S column grid. In the N-S direction there are four 900-grid-element N-S column grids
per degree of latitude, and thus four tuples. The number of tuples in the E-W direction per
degree of longitude, and thus the number of N-S column-grids, varies from 3600 per
degree of longitude at the equator to 15 at the poles. Within any N-S column-grid each of
the 900 grid elements has a N-S side length of exactly 1 second of arc, and the eastern and
western side of a N-S column grid are meridians and intersect the poles. Also within any
N-S column grid, the E-W side length of each grid element will normally vary from 1.0
down to 0.98 seconds of arc for latitudes less than 78, but from 1.0 down to O for the N-S
column grid running from latitude 89.75 to 90. This arrangement ensures an almost
square grid element, at least to within 2% for latitudes less than 78. Since 1 second of arc
is close to 16.5 meters, it also ensures the resolution of 16.5 meters or better over the
entire planet. (A N-S column grid can easily be visualized as equivalent to a stretch of
highway in a N-S direction just under 15 km long (or 0.25 latitude degrees) and about
16.5 meters wide, with sides that are meridians, converging slightly in the polewards
direction, but completely convergent in the case of a N-S column grid that ends at a pole.)

This Terrain relation design solves four practical problems associated with a
relation for Mars global data. First it enables tuple size to lie well within disk track
capacity with currrent technology, and will not lead to complications with blocking the
records of the underlying Terrain file. Increasing resolution to 0.5 second (or about 8
meters) will not affect this compatibility. Second, the design accommodates the fact that
as latitude increases the surface length of a degree of longitude decreases. It does so by
using an almost fixed angular-coordinate grid element whose N-S sides are meridians and
whose size stays almost constant in terms of surface length over the globe, but is
sufficiently flexible to handle the convergence effect at the poles. The third problem solved
is the geodetic problem of how to relate surface length of 1 second of arc to latitude,




longitude and elevation for a triaxial ellipsoid in a convenient manner; it is solved by
placing the virtual attribute function rax() in Terrain.

The remainder of the database has to do with relating Martian feature-type
relations to Terrain (Figure 1). The fact that Terrain is structured so that there is a set of
tuples per 1-degree latitude-longitude rectangle, the number in the set falling with
increasing latitude, is essentially transparent to users writing SQL expressions to retrieve
Terrain data on the basis of specific features, even though there are many different types
of features, each requiring a distinct relation. This is the fourth problem solved by the
design. At least two of the feature-type relations needed, namely Crater and Valley, are
involved in recursive relationships, recursive many-to-many in the case of Crater, and
recursive one-to-many in the case of Valley.

Since all features have some attributes in common, each feature-type relations is in
a 1:1 ISA relationship with a relation Feature that contains attributes common to all
features. It is Feature that is linked to Terrain in a many-to-many relationship via a simple
relationship relation FT. FT is estimated to be of the order of 1Mbyte in size, since it is
likely to have a number of tuples comparable to the number of 1-degree rectangles on a
sphere. The number of tuples in Feature is equal to the number of distinct feature instances
named on Mars, e.g. Ares Valles, Pavonis Mons, etc., and is likely to grow with time. As a
result of this design there are no feature-type relationship-attributes [37] in Terrain, so that
it is possible to add additional feature-type relations in a modular manner. Since Feature-
type relations are each in a 1:1 ISA relationship with Feature, a feature-type tuple inherits
all the properties of the Feature supertype, including relationship participation.

The Feature/FT relations can be viewed as a "relationship bus" from Terrain, to
which it is possible to attach any additional feature-type relation, regardless of any
additional complexity due to recursive relationship participation. The design presented
assumes that an initial implementation will include relations for only the most common
features on Mars, namely the recursive Crater and Valley feature-type relations, and the
ordinary Mountain feature-type relation.

From a data retrieval viewpoint, the structure seems to result in relatively straight-
forward SQL expressions for terrain data retrieval. Where an SQL expression is complex,
the complexity will not be due to unnecessary complexity in the database, but only to the
complexity of the request, for example, a retrieval request involving one feature type
within another feature of a different type, such as valleys in mountains, or one feature type
within another of the same type, such as craters on top of craters - the recursive case. In
the design, measured storage space is deliberately expended in order to reduce retrieval
complexity. The total database size will be less than a percent greater than the size of the
core relation Terrain, so that consuming storage space for non-Terrain relations to reduce
complexity makes sense.

It should be understood at the outset that the design presented for a Mars Terrain
Database must necessarily be different from the database designs with GIS for Earth use.
A GIS product is essentially a component of a decision support system, for answering
factual and analyical queries about what it is possible, e.g. where to site a pipeline or a
bridge or a school [1]. A Mars terrain database has no such possible use in the foreseeable
future (except perhaps on rare occasions to look for a landing site for a future Mars
probe). Its sole purpose is exploration of the planet both on a large and small scale. It is




this goal that has determined the design presented here. Another difference is that
databases for GIS for earth use, such as those used with such popular systems as
ARC/INFO [26] are normally designed as thematic layers [1], which are integrated to
satisfy queries [1, 38], the underlying layer being the natural terrain, and each additional
layer involving something man-made. For example, if layer O is terrain, layer 1 could be
street layout, layer 2 could be parks and layer 3 could be buildings, each layer using an
underlying grid or raster approach for the data involved. With the Mars Terrain database
there is no data about man-made entities. There is only data for the untouched natural
terrain, or a single layer, so that the thematic layer approach of popular GIS software
products, with their capability of handling a plethoria of man-made geographic objects, is
largely irrelevant. Indeed, the SEDRIS data model for environmental databases,
sponsored largely by DOD, is specifically aimed at synthetic environments and simulation
(and related military operations). Popular GIS products do have some potential for use
with the Mars Terrain database, however. GIS products are excellent for map generation,
so that retrieved MGTDB Terrain data can be downloaded to a GIS product for
generating maps.

2. The terrain data relation Terrain

The core of the database is the relation Terrain holding the terrain data for the planet. The
basic data consists of terrain elevation, together with terrain color and composition data,
versus latitude and longitude for the entire planet. A raster approach is needed and data is
spaced on a grid of approximately square, approximately equal elements. Since data can
be expected from MGS to a resolution of the order of 10 meters of surface, and since 1
second of arc is close to 16.5 meters on average, it is clear that the grid elements should
be of the order of 1 second of arc, or even a fraction of a second. At the time of writing,
the final orbit of MGS, and thus the data resolution, remains to be determined. In this
paper we therefore assume what is likely to be a worst case for the grid, namely 1 second
of arc. Changing it to 0.5 second, and a resolution of 8.25 meters, for example, will have
no effect on the functionality of the database, apart increasing the required gigabytes by a
factor of four, from 2,000 to 8000.

It should be obvious that given the enormous size of Terrain, a Terrain relation of
the form:

Terrain (lat, long, x, y, elev, color, comp)

with one Terrain tuple per 1-second-of-arc square grid element, where x and y identify the
position of a grid element within a 1-degree latitude-longitude rectangle, would involve an
unnecessarily large number of Terrain tuples and waste of disk space. Admittedly, this
version of Terrain appears to be similar to the Digital Terrain Elevation Data (DTED) files
for Earth from the U.S. National Imagery and Mapping Agency (NIMA, formerly Defense
Mapping Agency), except that those files that have been released (resolution levels 1 and
0) do not have resolution to anywhere near 1 second of arc; some work on a high
resolution DTED files has begun however [39]. Also each DTED file is intended for
military purposes for a specific area of the world, and not for a single global Earth Terrain
Database.




A much more efficient database relation design, quite different from the DTED file
design, which would very much reduce access times and access frequencies for Terrain,
and to a considerable extent reduce underlying storage space, would be to store a North-
South column of grid elements (referred to as an N-S column-grid) in a single Terrain
tuple, as a 1-dimensional column-grid array. Such a N-S column-grid array consists of the
data for exactly 900 approximately 1-second-of-arc square grid elements, each array
element containing terrain elevation, color and composition data. Going from South to
North by 1 degree (3,600 seconds) of latitude anywhere, within a 1 second E-W swath,
gives rise to data for four Terrain tuples, each corresponding to a N-S column-grid of 900
grid elements, so that an N-S column grid is everywhere 0.25 latitude degrees long. Each
of these four N-S column grids is identified in Terrain by a segment (seg value) integer
running from 1 (polewards) to 4. The number of N-S column grids, and thus tuples, in the
E-W direction per degree of longitude, is 3600Cos(lat) and thus falls off from 3600 per
degree of longitude at the equator to 15 at latitude 89.75 at the poles. Allowance for this
fall-off is called the arc raster approach to grid management [6]. In the E-W direction, the
N-S column grids within a degree of longitude are identified by a colgrid integer running
from 1 (westwards) to a value equal to 3600Cos(lat). The N-S column-grid within a 1-
degree rectangle to which a tuple corresponds is thus determined by a seg and colgrid
number in the tuple.

Within any N-S column-grid each of the 900 grid elements has a N-S side length
of exactly 1 second of arc, with the eastern and western sides of the N-S column grid
being meridians. Also within any N-S column grid, the E-W side length of grid element
number 1 (towards equator) will be negligibly close to 1-second of arc; but as we proceed
polewards along the N-S column grid to grid element 900, the E-W grid element side
lengths gradually fall off; the fall-off averages about 1% overall, but rises to 2% at latitude
78; for any N-S column grid beginning at latitude 78, the E-W side lengths will be 1.0
second of arc for the element 1, falling to 0.98 second of arc for the grid element 900
towards the pole. For a final N.S column grid begining at latitude 87.75 and ending at the
pole, the final grid element (no. 900) at the pole has an E-W length of 0, whereas the grid
element at the other end (no. 1) has an E-W length close to 1.0 seconds of arc. This
arrangement ensures an almost square grid element of almost constant side length in
meters, at least to within 2% for latitudes less than 78. Since 1 second of arc is close to
16.5 meters, it also ensures the resolution of 16.5 meters or better over the entire planet.

Use of a single tuple to hold a terrain data for a N-S running column-grid of 900
approximately 1-second-of-arc grid elements is merely a somewhat original variation of
the arc raster approach. With this variant, any given 1-degree latitude-longitude curved
rectangle will be covered by a latitude-varying set of 4 x 3600Cos(lat) Terrain tuples for
an average of 8892 over the planet.

This means that Terrain will have about 8,892 x 360 x 180, or 576 million tuples.
Given a minimum of 4 bytes per grid element of a Terrain tuple, there will be 4 x 900 x
576 million bytes, or about 2000 gigabytes, in the relation Terrain.

Recall that for each degree of latitude, 4 distinct 900-grid-element tuples are used.
Instead of 4 tuples, if a single 3600-grid-element tuple per degree of latitude were used,
this would not do as well. The number of parallel N-S column-grid (and thus tuples) per
degree of longitude is 3600Cos(lat), and falls from 3600 at the equator to 15 at the poles,




as discussed already. This implies an average falloff of about 4% tuples per degree of
latitude, or 1% per quarter degree. Alernatively this can be viewed as a fall off of 0 tuples
per quarter degree at the equator to 15 per degree (or a rate of 100%) at the poles. Thus
there should be at least 4 tuples per degree of latitude in the database in order for the
number of tuples per degree of longitude to fall by only 1% on average, for each quarter
degree change in latitude. In order to have this gradual fall-off on average and yet a
manageable maximum fall off at polar latitudes, and yet have no gaps in the coverage of
the planet by the grid elements, and no deterioration in resolution anywhere, even at the
poles, the E-W length of a grid element will normally vary slightly from 1-second to a few
percent below 1-second of arc (but to O at the poles) within a N-S column-grid, as
described above.

Since we are dealing with a triaxial ellipsoid, and elevations of the order of 10
kilometers above and below the reference datum, the exact surface length of 1-second of
arc will vary, from place to place, by as much as 1%. The function trax(lat, long, seg,
colgrid, elevl) will return the surface length of 1 second of arc at the begining (end
towards equator) of an N-S column grid, using the elevation of the first grid element as a
parameter. Thus frax(56, 42, 3, 650, -3800) would return the surface length of 1 second
of arc at the beginning of the 650th N-S column grid west of longitude 42 and stretching
between latitude 56.5 and 56.75, assuming the first grid element is 3.8km below the
reference datum. The length of 1 second of arc at the other end of the N-S column grid is
obtainable from data for beginning of the next tuple, that is, trax(56, 42, 4, 650, -2400),
assuming the first grid element of this tuple is now 2.4km below reference datum. It is
important that trax() be sufficiently fine-grained. Mars has many cliffs that are kilometers
high, dwarfing those of the Grand Canyon, so that there will be many cases of N-S
column-grids straddling such cliffs, with a consequential tiny but abrupt change in the
length of 1 second of arc and thus in grid sizes derived from this measure (remember,
however, that the N-S sides of a N-S column grid are continuous meridians). The function
trax() can be stored with the Terrain relation as a virtual attribute (i.e. frax() takes up no
storage space in a tuple, but can be used like a conventional attribute name within SQL
expressions with systems that allow this capability [40]. It takes its value from the value of
the parameters, which are all real attributes in the tuple).

A tuple of a Terrain relation of this design has the structure:

Terrain (lat long, seg colgrid, elevl coll compl, elev2 col2 comp?, ..., ...,
elev900 col900 comp900, trax(lat long seg colgrid elevl) )

lat short integer latitude of S.E. corner of 1-degree latitude longitude rectangle
long  short integer longitude of S.E. corner of 1-degree latitude longitude rectangle
seg short integer (1 to 4 polewards) in 1-degree latitude-longitude rectangle
colgrid short integer (1-3600 westwards) in 1-degree latitude-longitude rectangle
elev  integer elevation data in tens of meters for the nth (1st to 900th

in direction of pole) 1-second-of arc grid element in tuple
coln  shortinteger color data for nth grid element in tuple
compn short integer  surface composition data for nth grid element in tuple




trax() real surface length of 1 second of arc at start of N-S column grid
parameters: lat long seg colgrid elev] as in Terrain tuple,

primary key: lat long seg colgrid composite

Indexes: secondary key index on lat long composite

The lat-long values in any Terrain tuple in the northern hemisphere are integer
values for the S.E. corner of a 1-degree curved rectangle, so that lat-long data of 43, 215
means the curved rectangle between latitudes 43 and 44 North and between longitudes
215 and 216. Latitude degrees North are considered positive and degrees South negative.
The primary key for the Terrain relation is the (Jat long seg colgrid) composite. The
Terrain relation would not be indexed in storage on the primary key, however; instead a
secondary key index for the composite attribute (lar long) would be used, since data
would almost always be retrieved on the basis of integer latitude longitude values, that is,
for a 1-degree curved rectangle. Given the size of Terrain, some index optimization may
be required in practice [41].

The terrain data for this rectangle, that is, the data for 4 x 900 x max(colgrid) grid
elements, or for 4 x max(colgrid) tuples, can thus be simply retrieved by:

Select * from Terrain
where lat = 43 and long =215

However, if data is desired for only a portion of a degree rectangle, this can easily be
retrieved by specifying appropriate seg and colgrid values.

Select * from Terrain
where lat = 43 and long =215
and seg = 4 and colgrid >2000 and colgrid <=3000)

This would retrieve exactly 1000 tuples, or data for 900,000 grid elements, covering part
of the N.W. quadrant of the 1-degree rectangle.

An advantage of this structure is that any curved rectangle of data, from the vary
large to the very small, can be retrieved just as easily. For example, suppose we want the
rectangle of data for the great 3000-mile long Martian rift valley Valles Marineris in the
S.W. quadrant. This valley stretches from about latitude 0 to 18 degrees South, and from
about longitude 40 to 100 degrees West, with many tributary valleys. We would code:

Select * from Terrain
where lat <= 0 and lat > -18 and long <= 90 and long > 40

This would retrieve 18 x 60 sets of tuples from Terrain, each set containing a one-degree
rectangle of data, corresponding to about 3.5 million square kilometers of terrain.

Overall, as already pointed out in the overview, this Terrain relation design solves
four practical problems associated with a relation for Mars global data. The first problem
solved concerns tuple size. In more, detail, assuming 4 bytes of data per grid element, we
need close to 3600 bytes per tuple, which is well within disk track capacity with current
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technology, and will not lead to complications with blocking the records of the underlying
Terrain file. Increasing resolution to 0.5 second (or about 8 meters) will not affect this
compatibility. With other designs that would much reduce the number of tuples in Terrain,
the underlying records are simply too large for hardware compatibility. The reader is
referred to the overview for the other problems solved. The design is highly flexible in that
it enables users to extract data (a) on the basis of features and feature properties from the
very large to the very small, as will be apparent later, and (b) on the basis of any curved
latitude-longitude rectangle large or small, or even any portion of a 1-degree latitude-
longitude rectangle all the way down to 1-second of arc.

3. Relating Terrain data to terrain features.

Humans usually do not think of locations in terms of angular coordinates, but in
terms of feature types and feature names. Thus any generally useful database must relate
features to the survey data in Terrain. Mars has a large number of different feature types,
each with many instances, and the enormous variety of features easily exceeds that on
Earth. Given that each type of feature will have distinct characteristics, a distinct relation
will be needed for each feature type, and each of these relations must relate to Terrain,
although not necessarily directly. The relationship between the planet's features and
Terrain is therefore complex, especially when it is considered that features frequently
overlap on the surface, for example, one crater partly obliterating two craters in a tributary
valley of a main valley. These problems have been solved in the design in Figure 1. Before
discussing that design further, we give a summary of the kinds of features occurring on
Mars [36].

Main feature types on Mars

The International Astronomical Union, the body responsible for names on Mars, has
adopted the following feature type names, using Latin. The list is not exhaustive.

Catena A chain of craters, not overlapping. An example is Ganges Catena in the SW
quadrant [lat(-2,-3), long(70,65)]

Chasma A canyon, a depression with steep sides. An example is Coprates Chasma in the
SW quadrant [lat(-10,-15), long(70,55)]

Crater Circular structure with a rim caused by a meteor impact. A crater may partly
obliterate one or more earlier craters. Common on Mars.

Fossa A ditch-like, long, narrow, valley; can be either curved or straight. An example is
Sirenum Fossa in the SW quandrant [lat (-35,-25), long(165,135)].

Mensa A table-like structure, with a flat top and steep sides. An example in the NE
quadrant is Deuteronilus Mensa [Lat (45,40), long (345,340].
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Mons A mountain, which can be of volcanic origin. Best known example is Olympus
Mons in the NW quadrant, an extinct 15-mile high volcano [Lat 18, long 133]

Planitia A basin, or low-lying, smooth plain. Best known example is Chryse Planitia in the
NW quadrant (the 'Plain of Gold, where Viking 1 landed in 1976) [lat (25,15),long
(50,40)].

Rupes A steep cliff or scarp. An example is Amanthes Rupes which is up to 3 km high and
stretches for 250 km.

Tholus An isolated hill, or dome-like mountain. An example in the NW quadrant is Jovis
Tholus [lat 18, long 117].

Vallis A valley, or river-like winding channel, that may have tributary channels. Best-
known example is Valles Marineris (Valleys of Mariner) in the SW quadrant, mentioned
carlier. Also Ares Vallis where Pathfinder landed in 1997.

The database design in Figure 1 allows for addition of new feature types as
required. Additional feature-type relations can be added without affecting the existing
design (apart from extensions of the Feature and FT relations) Thus in this way the design
is modularized. The relation for a feature type may be ordinary or complex. 1t is ordinary
if a single relation can be used for feature instances with no recursive relationships, and
complex if it is involved in a recursive relationship [31, 37].

A Crater relation is complex, since it must participate in a many-to-many (n:m)
recursive relationship. A (top) crater may have impacted on one or more earlier (bottom)
craters, and a (bottom) crater may have been impacted by one or more (top) craters; hence
the n:m recursive relationship. A Valley relation is also complex, since it participates in a
one-to-many (1:n) recursive relationship. A valley may be a tributary of another valley,
and a valley may have one or more tributaries; hence the 1:n recursive relationship. A
Mountain is an ordinary relation, since it does not participate in recursive relationships.

Scope of the current MGTDB design

The database structure shown in Figure 1 presents a design for an initial
implementation. The three most common features on Mars are craters, mountains and
valleys, so that to be useful the initial implementation would have to accommodate these.
Note that not all craters, mountains and valleys on Mars have been named, so that the
content of the relations for these features could be expected to increase over time. Since
relations for other feature types are quite ordinary, like mountain, it is a fairly trivial matter
for an implementor to expand the design presented and include relations for additional
features. relations for crater, valley and mountain feature types are presented in Figure 1.

Feature sizes versus the 1-second-of-arc surface resolution

As will be seen presently, the database design allows for easy retrieval of the data
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Viewl (latlong)
Viewl= proj(Terrain(lat,long))

Terrain (lat long seg colgrid , elevl coll compl, elev2 col2 comp?, ...,
..., €lev900 col900 comp900, trax () )

N
FT(fname lat long)
¥

Feature (fname, ftype, clat, clong, ...)

Crater (cname, rimdiam1, rimdiam2, floortype, rimheight, ...)

Overlay(topname botname, rimfraction)

bus

Valley (vname, viength, maxwidth, maxdepth,... parentname)

- —F

Mountain (mname, mtype, height, basediam, ...)

Figure I MGTDB structure. Connecting arrows show I:n relationships. Connecting
lines show 1:1 relationships. Primary keys are underscored. The derived view
relation Viewl is not stored but is included to better illustrate the relationships.

for very large features, even as large as the continental U.S., while at the same time it has
a surface resolution down to 1-second-of-arc. Readers familiar with GIS may have
difficulty grasping the purpose behind facilities apparently so far apart, until it is
considered that we are not dealing with Earth but with an entirely new unexplored planet
containing only natural features, ranging from vary large features to tiny features as yet
unobserved and undocumented and perhaps only a few hundered meters in size, and most
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importantly, where these smaller features can be observed from a variety of perpectives
only via the data base - it will not be possible, as it is on Earth, to send a field worker out
with a camera for a better look. Thus it has to be possible for a reseacher to use SQL to
retrieve data for a feature on the basis of some attributes and/or relationships, and then
explore subfeatures of that feature, perhaps hitherto unobserved, and subfeatures of that
subfeature, all the way down to the limits of resolution; and furthermore any such
subfeature, and subfeatures of that subfeature, must be observable from a wide variety of
perspectives, even from the vantage point of a virtual walk-around or fly-around of the
subfeature. The database design presented permits convenient retrieval of the data to
enable such things to be accomplished via SQL retrievals, although generation of a variety
of perspectives of subfeatures will require the application of vista and perspective
generation software to the retrieved data. This can be done only (a) if the data base
design allows for very high surface resolution, (b) if it has the structure to permit retrieval
via attributes and relationships of features listed in the database, and (c) if it has the
structure to allow addition of the new features as discovered. The design presented is in
compliance with these requirements.

The Feature relation

All features, regardless of type, have common characteristics, and this is used to
construct the Feature relation, with a tuple for every feature instance, regardless of type,
in the database:

FT(fname, lat, long)
Feature (fname, ftype, clat, clong, ...)

FT: fname string feature name
lat short integer latitude
long short integer longitude
primary key: [fname lat long composite
index: primary key index

Relationships: FT relates to Terrain via the lat long composite
FT relates to Feature via fname

Feature: fname string  feature name
ftype string  feature type, e.g. crater, valley
clat(deg min sec) integer integer integer latitude center of feature
clong (deg min sec) integer integer integer longitude center of feature

primary key: fname
indexes: primary key index on fname
secondary key index on ftype

There will be in a 1:1 ISA relationship [31, 12, 21] between Feature and each of
the specific feature-type relations, such as relations Crater, Valley and Mountain. Thus a
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tuple in feature-type relation Mountain for mname = 'Olympus Mons' inherits the
properties of the corresponding tuple in Feature for which fname = 'Olympus Mons’

The important design consideration concerns relating the quite different relations,
Crater, Valley, Mountain, and so on, to the relation Terrain. This problem is solved by
enabling the essentially many-to-many (n:m) relationship that must exist between Feature
and Terrain. [Actually the n:m relationship is between Feature and Viewl, as shown in
Figure 1; Viewl simply lists all the degree rectangles for the planet; for each degree
rectangle there can be many features and for each feature many degree rectangles. Viewl,
obtained from a projection of attributes lar long of Terrain, is not part of the database and
is not stored, but is useful for better understanding the relationships.] The enabling relation
is FT, and its single but crucial function is to relate a tuple of Feature (representing a
feature-type instance) to the tuples in Terrain that cover the terrain encompassed by the
feature. Remember, however, that there is a set of tuples of Terrain for each 1-degree
rectangle of terrain data. The relationship between Feature and Terrain is an essentially
many-to-many because a specific 1-degree rectangle of terrain data, a set of tuples of
Terrain, can be terrain in more than one feature (e.g. the crater in a valley, or the crater on
top of another crater), and vice versa.

An example will clarify this. Suppose a fictional crater called C3 in the side of a
fictional mountain called M6. Suppose the mountain is centered in the curved square
between lat (50, 46) and long (104,100) with peak (center) at about (48,18; 102,12).
Suppose the crater lies inside the square with lat (48, 46) and long (102, 100) with center
at (47,06; 101,12). The relevant tuples in the Feature, FT and Terrain relations would be:

fname  ftype clat clong

C3 crater 470600 1011200
M6 mountain 4818 00 102 18 00

Feature

fname lat long

C3 47 100

C3 47 101

C3 46 100 Lat long seg colgrid elevl coll compl
C3 46 101
M6 49 103 49 103

M6 48 100 48 100

M6 47 103

M6 47 102 47 103

M6 47 101

M6 47 100 47 102

M6 46 103

M6 46 102 47 101

M6 46 101
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M6 46 100 47 100
FT 46 103
46 102
46 101
46 100
Terrain

From this it is clear that for one Feature tuple, for example for crater C3, there are many
(4) degree-rectangle tuple sets in relation Terrain that contain the terrain data for C3.
Conversely, for a 1-degree-rectangle Terrain tuple set, for example the set of tuples each
with (lat long) value (47 101), there are many (2) tuples in Feature, one involving crater
C3 and one involving mountain M6. This structure involving relations Feature, FT and
Terrain enables survey and other data to be retrieved on the basis of a specific feature:

R1: Get terrain data for the mountain Pavonis Mons.
Select * from Terrain
where lat long in (select lat long from FT
where fname = 'Pavonis Mons')

R2: Get terrain data and mountain name for every mountain in the
NW quadrant south of latitude 20.
Select FT.fname, Terrain.* from FT, Terrain
where FT lat = Terrain.lat and FT long = Terrain.long
and FT .fname in (select fname from Feature

where ftype = 'mountain’
and clat.deg < 20 and clat.deg >0
and clong .deg > 0 and clong.deg < 180)

R3: Get the name of each valley in which there is at least one embedded crater.
Select XF .fname from Feature as XF
where XF ftype = 'valley' and XF.fname in
(select XFT.fname from FT as XFT
where where XFT lat XFT.long in
(select YFT lat YFT.long from FT as YFT
where YFT .fname in
(Select YF.fname from Feature as YF
where YF fiype = 'crater’))

Notice that this information can be retrieved without using Terrain.
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Alternative to the Feature/FT relation approach

A criticism of the use of the relations Feature and FT, as described above, is that
the data in FT could be computed if coordinates for a rectangle enclosing the feature were
stored in Feature, instead of the location of the center. It could therefore be argued that
we should replace both Feature and FT by a single alternative relation FTFeature:

FTFeature (fname, ftype, maxlat, minlat, maxlong, minlong)

where fname is the primary key, ftype gives the type of feature, e.g. crater, or valley, and
maxlat, minlat, maxlong and minlong give the latitudes and longitudes for the curved
rectangle that enclosed the feature. The former clat in Feature can now be computed from
(maxlat - minlat)/2 and clong from (maxlong - minlong)/2 to give the latitude and
longitude of the center point of the feature.

We can admittedly use maxlat, minlat, maxlong, and minlong directly to relate
FTFeature to Terrain, but only at the expense of either more complex or more tedious
retrieval expressions. The reader who tries the rewrite of R1, R2 and R3 above with
FTfeature will be quickly convinced that this is not a good alternative. The problem gets
worse when we bring feature-type relations like Valley, Mountain and Crater into the
retrieval expressions

An alternative to this complexity and tedium would be to construct two views [11,
12] based on FTFeature, one equivalent to FT and the other equivalent to Feature.
However this would be at the undesirable expense of very much increased computing time
for retrievals.

An FT tuple is unlikely to exceed 20 bytes, so that the maximum size of FT is of
the order of 1 Mbyte (derived by assuming that each of the 360 x 180 degree rectangles
has an entry in FT), which is negligible compared with the size of Terrain, estimated at
2,000 Gigabytes. Since the cost of data storage resources is falling, this author's
preference is to add the resource of FT to the database and gain the reduction in
complexity. Some readers may not agree, but we shall assume the Feature and FT
relations design as in Figure 1. From a systems perspective, this is just another example of
the trade-off between resources invested versus complexity of current operations.

4. The feature-type relations

Although the availability of the Feature relation imparts considerable flexibility, in practice
users will want to get at Terrain and other data on the basis of characteristics of features,
such as diameter of a crater or height of a mountain, etc. For this we need the feature-type
relations, such as Crater, Mountain, Valley, and their relationship to Feature, as shown in
Figure 1.

Crater relation

Since craters are common on Mars and since they can overlay one another, any
Crater relation has to be in a n:m relationship with itself, that is, in a recursive relationship.




In Figure 1, the relationship relation Overlay is used to enable the recursive relationship,
that is, for craters we have:

Feature (fname, ftype, clat, clong ...)
Crater (cname, rimdiam 1, rimdiam2, floortype, rimheight, ...)
Overlay(topname, botname, rimfraction)

Crater: cname string crater name
rimdiam1 real outer rim diameter in km
rimdiam?2 real inner rim diameter in km
Sfloortype string type of crater floor, e.g. sandy
rim height integer mean rim height above floor

primary key: cname
indexes: index on primary key
relationships: relates to Feature and FT via fname and cname

Overlay: topname  string name of crater on top of crater named in botname
botname  string name of crater underneath crater named in topname
rimfraction rteal  fraction of botname crater rim destroyed by topname

primary key: topname botname composite

indexes: secondary key index on fopname

secondary key index on botname
relationships: relates recursively n:m to Crater via topname, botname and cname
relates to Feature and FT via topname and fname
relates to Feature and F'T via botname and fname

In the relation Crater, many other technical attributes about craters beyond the scope of
this paper can also be included.

In the relation Overlay the primary key is the composite fopname botname. The
crater topname will have been fashioned on top of prior existing crater botname, such that
a percentage of the rim (rimfraction) of the botname crater has been obliterated by the
meteor impact forming topname. To see how Overlay enables the recursive relation,
consider an area of crater congestion, as occurs in the SE quadrant, with fictional craters
C1, C2, C3, C4 and CS. Craters C1 and C1 are about the same size, 50 km in outer
diameter, and were formed first. They are close together; the rims are about 30 km apart
but do not overlap. Then a larger crater C3, about 75 km in outer diameter is formed
partly on top of both C1 and C2, so that a fraction 0.25 of the rim of each of C1 and C1 is
destroyed. Then a further meteor impact, partly on top of C3 and C2, forms crater C4. C4
is 60 km in outer diameter and destroys a fraction 0.3 of the rim of C3 and a further
fraction 0.2 of the rim of C2. Finally a small crater C5, 20 km in outer diameter, is formed
in the middle of the floor of C4, without destroying any of the C4 rim. The database will
show:

cname rimdiaml rimdiam2
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c1 . 50 topname botname rimfraction
c2 .. 50
c3 .. 75 C3 Cl 0.25
c4a .. 60 C3 C2 0.25
cs . 20 C4 C2 0.20

C4 C3 0.30

Crater Cs C4 0

Overlay

It should be apparent that crater C3 has two child craters C1 and C2, that crater C4 has
two child craters, that C5 has one child crater, that C1 has one parent crater C3, that C2
has two parent craters C3 and C4, and that C4 has one parent crater CS. It is in this way

that relation crater participates in a recursive many-to-many relationship. Some retrievals
will illustrate further:

R4. For each case of a (child) crater with a single (parent) crater completely inside the
child crater, with the rims of both parent and child fully intact, retrieve the parent and
child crater names, and the relevant Terrain data.

select Overlay.topname, Overlay botname, Terrain *
from Overlay, Terrain, FT
where Overlay.botname = FT fname
and FT lat = Terrain.lat and FT .long = Terrain.long
and Overlay.rimfraction = 0
and /* eliminate cases where rims not fully intact */
not exists (select L1.* from Overlay as L1
where (Overlay.botname = L1 botname and rimfraction > 0)
or (Overlay. Topname = L1 botname and rimfraction > 0) )

RS5. Get the crater name and terrain data for each crater in the Northern hemisphere with
a sandy floor that has a partly destroyed rim.
Select FT.fname, Terrain.* from FT, Terrain
where FT.lat = Terrain.lat and FT.long = Terrain.long
and FT.fname in (select fname from Feature
where clat > 0 and fname in
(select cname from Crater
where floortype = 'sandy'
and cname in (select botname from Overlay
where rimfraction > 0))

R6. Get latitude and lontitude data for the curved square that contains the crater Cassini.

Select max(lat), min(lat), max(long), min(long) from FT
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where fname = 'Cassini’

This design allows for retrieval of terrain and other data for every conceivable crater
configuration that occurs in any crater-congested region of Mars.

Valley relation
Valleys on Mars can have tributary valleys, so that a valley resembles a branch of a
tree. Such a structure is easily handled by a recursive 1:n relationship. The Valley part of

the database in Figure 1 is:

Feature (fname, ftype, clat, clong)
Valley (vname, viength, maxwidth, maxdepth,... parentname)

Valley: vname string  name of valley
viength real length of valley in km
maxwidth  real maximum width of valley in km
maxdepth  real maximum depth of valley in km

parentname string  name of the valley of which this is a subsidiary valley
primary key: viname
indexes: index on primary key
relationships; relates recursively 1:n to itself via vname and parentname
relates to Feature and FT via fname and vname

In Valley, for a given tuple for valley V1, the attribute parentname gives the name of the
valley for which V1 is a tributary valley. Suppose this parent is V7. Then valley V7 may
have many tributary valleys, but at least one, namely V1. For a given valley it is clear that
there can be only one parent. However for a given valley there can be many tributaries or
child valleys. Thus Valley is in a recursive 1:n relationship. Some retrievals will illustrate:

R7. Get name, length, and maximum depth of each tributary valley in the Southern
hemisphere that itself has more than 4 tributary valleys.

Select vname, vlength, maxdepth from Valley
where parentname is not null
and vname in (select fname from Feature where clat < 0)
and 4 < (select count (XValley.*) from Valley as XValley
and XValley.parentname = Valley.vname)

RS. Get the valley name and terrain data for each valley in the Western hemisphere that
has no tributary valleys.

Select Valley.vname, Terrain * from Valley, Terrain, FT
where Valley. vname = FT .fname
and FT lat = Terrain lat and FT.long = Terrain.long
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where vname in (select vname from Feature
where clong < 180 and clong > 0)

and not exists (select XValley.* from Valley as XValley
where XValley.parentname = Valley.vname)

The structure of Valley thus allows for navigating through a valley complex with many
levels of tributaries. This would be important for a virtual exploration of a valley of the
complexity of Valles Marineris, which not only has tributary valleys but overlaps many
canyons (chasma).

Ordinary feature-type relations

Crater and Valley relations are significant for their additional participation in recursive
relationships. Many ordinary feature-type relations can be included in the database design
as well. The relation Mountain is included as shown in Figure 1:

Mountain (mname, mtype, height, basediam, ...)
has mname as primary key. The relation Mountain, together with its supertype Feature,
would be used in the retrieval:

R9. Get the names, heights and terrain data for volcanoes lying on the equator.

Select Mountain. mname, Mountain. height, Terrain.
from Mountain, Feature, FT, Terrain
where Mountain. mname = Feature.fname
and Feature fname = FT fname
and FT lat = Terrain lat and FT.long = Terrain.long
and Mountain.mtype = 'volcano'
and Feature.clat.deg = 0.

Any additional feature-relation, such as a Plain relation, can be added to the database
without altering the Terrain relation. It is necessary only to insert additional tuples into
Feature, one for every tuple in Plain, and to insert additional tuples into FT, one for every
degree rectangle of terrain taken up by each Plain instance. Thus Feature and FT can be
looked upon as a bus for hanging feature-type relation modules onto, for linking to the
fundamental Terrain relation.

5. Summary

This paper has presented a modularized design for a Mars Global Terrain Database
to be based on data transmitted from a Mars survey being undertaken by the Mars Global
Surveyor Spacecraft. The database will contain feature data and terrain data, including
terrain elevation, for a regular grid over the esurface of Mars. Elevation is with respect to
a triaxial ellipsoidal reference datum developed for Mars by USGS. At the core of the
database is a 2000-Gigabytes relation called Terrain that contains the terrain data.
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Data is recorded with respect to approximately square 1-second-of-arc grid
elements. Each tuple of Terrain contains the latitude/longitude coordinates of a 1-degree
curved rectangle, plus data for a column of 900 grid elements, called a N-S column grid,
for a N-S running column of 900 1-second-of-arc grid elements within the 1-degree
rectangle. The side of a N-S column grid are meridians. Each grid element is about 16.5
meters square (smaller near the poles), giving a surface resolution of 16.5 meters or better.
The number of Terrain tuples required to cover a quarter-degree latitude one-degree
longitude rectangle falls from 3600 at the equator to 15 at the poles. The triaxial
ellipsoidal nature of Mars is allowed for by means of a virtual attribute geodetic function
trax() in Terrain that returns the surface length of 1 second of arc at the beginning of each
N-S column grid.

The remainder of the database has to do with relating Martian feature-type
relations to Terrain. Since all features have some attributes in common, each feature-type
relations is in a 1:1 ISA relation with a relation Feature that contains attributes common to
all features. It is Feature that is linked to Terrain in a many-to-many relationship via a
simple relationship relation FT. There are no feature-type relationship-attributes in
Terrain, so that it is possible to add additional feature-type relations in a modular manner.

The Feature/FT relations can be viewed as a bus from Terrain, to which it is
possible to attach any additional feature-type relation, regardless of any additional
complexity due to recursive relationship participation. Three feature type relations, for the
most common Martian features, are assumed for an initial implementation, namely the
recursive Crater and Valley relations, and the ordinary relation Mountain.

From a data retrieval viewpoint, the structure results in relatively straight-forward
SQL expressions for terrain data retrieval. Where an SQL expression is complex, the
complexity will not be due to unnecessary complexity in the database, but only to the
complexity of the request. In the design, measured storage space is deliberately expended
in order to reduce retrieval complexity.

A much smaller prototype version of the database proposed in this paper can be
contructed while awaiting MGS data. Such a prototype would be for a smaller mid-
latitude section of the planet, perhaps in the interesting Valles Marineris region, about 5 x
5 degrees in size, in an area of a multiplicity of small features. The size of the database
prototype would then be a reasonable 1.0 Gigabytes.
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