
THE UNIVERSITY OF CALGARY

SECD:

The Design and Verification

of a Functional Microprocessor

BY

Brian T. Graham

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

June, 1990

® Brian T. Graham 1990

'National Library
of Canada

Canadian Theses Service

Ottawa, Canada
KIA 0N4

Bibliothéque nationale
du Canada

Service des theses canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrary
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any meahs,and in
any form or format, making this thesis available
-to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Cmaaa

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la Bibliothèque
nationale du Canada de reproduire, prêter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété.du droit d'auteur
qui protege sa these. Ni La these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-61962-7

Dr. B Gaines

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "SECD: The Design and Verifica-

tion of a Functional Microprocessor" submitted by Brian Thomas Graham in partial

fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. G.M. Birtwistle
Department of Computer Science

Department of Computer Science

Date

II

Dr. L. Higha
Department of Computer Science

J.W.r. Ha.slett
Department of Electrical Engineering

Dr. S.J. Curry
Bell Northern Research Ltd.

Abstract

The subject of this thesis is a silicon implementation of Landin's SECD machine.

The starting point was an abstract specification defined by instruction transitions.

Work completed includes the evolution of the design by transformation from the

abstract specifications down to microcode, laying out the design in silicon, and the

formal verification of its functional correctness using the HOL proof assistant.

A top level specification for the SECD system as well as an implementation level

definition are generated using the HOL system. The intended operating conditions

are formally defined, and installed as constraints in a machine-assisted proof of cor-

rectness stating that the computation effected by the implementation model meets

the specification. The specification raises issues of the representation of S-expression

data structures wih destructive operation on shared structures. A solution which

defines an abstract memory data type which can embed the data structures is used

in the formal specification. Several issues related to the representation of temporal

aspects of the chip function are analysed.

The SECD chip is one of the most complex devices subjected to formal verifi-

cation to date, and is unique in combining the design and layout with the formal

specification and verification of an integrated circuit. The problem size prevents

presentation of either the specification or proof in their entirety, however techniques

used to help manage the inherent complexity are presented in conjunction with a

representative sampling of the specifications and proofs.

111

Acknowledgements

I have been assisted by many people throughout the years of work on this project. My

greatest debt is to my supervisor, Graham Birtwistle, who has patiently supported

and guided my work, and whose unwavering confidence has been a vital encourage-

ment to strive for greater challenges. He has been instrumental in making this lab a

very stimulating environment in which to work.

I owe a particular debt of gratitude to Tom Meiham and Inder Dhingra, without

whose gracious assistance with HOL I could not have succeeded. Thanks also to

Ian Mason, whose work on the Semantics of Lisp provided key ideas for the formal

SECD specification.

Many thanks to the past and present members of the VLSI and Verification group

at the University of Calgary who have always been a pleasure to work with, including

the original SECD team of Mark Brinsmead, Jeff Joyce, Wallace Kroeker, Breen

Liblong, and Simon Williams, and past and present colleagues Tom Fukushima,

Ganesh Gopalakrishnan, Mike Hermann, Rajagopal Nagarajan, Paliath Narendran,

Cameron Patterson, Todd Simpson, Konrad Slind, Sue Stodart, Glen Stone, and

Mark Williams.

This work could not have been completed without the support of the Alberta

Microelectronics Centre, NSERC, CMC, and the Communications Research Estab-

lishment.

I especially thank my parents for their support and encouragement that gave me

the opportunity to pursue this goal. Last but hardly least, I would like to thank my

wife Jean for her support and patience over the years, and Timothy and Christopher,

who have been a very special part of my life.

iv

Contents

Approval Page jj

Abstract in

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

1 Introduction 3
1.1 The Impetus for Formal Methods 3
1.2 Formal Methods and Verification 5
1.3 The Nature of this Research 7
1.4 The Structure of the Thesis 10

2 Hardware Verification and Formal Methods 11
2.1 Why Higher Order Logic 12
2.2 A Brief Introduction to HOL 13

3 LispKit and the SECD Architecture 17
3.1 The Syntax of LispKit 18
3.2 The Interpretation of LispKit 21
3.3 SECD Architecture 30
3.4 Compiling LispKit to SECD Machine Code 35
3.5 summary 39

4 SECD Architecture: Silicon Synthesis 40
4.1 Project Context 40
4.2 Levels of the Design 41
4.3 External Architecture 43

4.3.1 Abstract Machine 43
4.3.2 Abstract System: the First Refinement 44
4.3.3 The Top FSM Level 46

4.4 Internal Architecture 48
4.4.1 The Abstract Register Transfer Level 48

V

4.4.2 The Concrete Register Transfer Level 52

4.4.3 The Mossim Level 58
4.4.3.1 Memory Elements and Clocking 59

4.4.3.2 Control Unit 60

4.4.3.3 Datapath 63

4.4.4 Layout 64

4.4.4.1 Floorplanning 65

4.4.4.2 Design Guidelines 65
4.4.4.3 Shift Registers 66

4.4.4.4 Padframe 67

4.5 Summary and Status 67

5 Formal Specification of SECD 71

5.1 Modelling Hardware 72
5.2 The Top Level Specification 74

5.3 The Low Level Definition 79
5.4 Register Transfer Level Specification 81

5.4.1 Temporal representation 81
5.4.2 The Datapath Specification 84

5.4.3 The Control Unit Specification 90

5.4.4 The Padframe 93
5.4.5 Composing the Whole 94

5.5 Relating the Levels 95
5.5.1 Memory Abstraction 95

5.5.2 Temporal Abstraction 96

5.6 Summary 97

6 Verification of the SECD Design 100

6.1 Constraints 101

6.2 Structure of the proof 106
6.3 Unfolding the System Definition 108

6.4 Phase Level: Effect of Each Microinstruction 112
6.5 Microprogramming Level: Symbolic Execution 116

6.5.1 The initial transition 117

6.5.2 The general approach: LDF 118

6.5.3. Proving the complex sequences 124

6.6 Liveness 128

6.7 Relating the Computations over Abstraction 130

6.8 Summary 135

vi

7 Conclusions 139
7.1 What has been accomplished 139
7.2 Putting the proof result into context 142
7.3 Retrospective Improvements 145
7.4 Hardware Verification: the future 147

References 149

vii

List of Tables

3.1 Well Formed LispKit Expressions 19
3.2 LispKit Interpreter Written in Franz Lisp 22
3.3 Machine Instruction Definitions 32
3.4 SECD Machine Code Generated for Well-Formed Expressions 36
3.5 LispKit to SECD Compiler Written in LispKit 38

4.1 Initial RTL Microcode Sequence for AP Instruction 51
4.2 Intermediate RTL Microcode Sequence for AP Instruction 55
4.3 Final Microcode Sequence for AP Instruction 57
4.4 Levels of Definition Summary 70

5.1 Primitive Operations on Abstract Memory Data Type 76

7.1 Comparison of Viper and SECD proofs 142

viii

List of Figures

0.1 The SECD Chip: Microphotograph of Second Version 1

3.1 Valuelist Structure Before Destructive Operation 29
3.2 Circular Valuelist Structure After Destructive Operation 30

4.1 Top Level Finite State Machine View of SECD 46
4.2 Register Transfer Level View of SECD Machine 53
4.3 SECD Chip Major Subcomponents 68

5.1 Transition for LDF Instruction 77
5.2 Top Level Specification 78
5.3 Control Unit and Datapath Register Schematics and Definitions . 82
5.4 Relating low and RTL times 83

5.5 Definition of the DP Component 89
5.6 Definition of the CU Component 93
5.7 Definition of the PF Component 94
5.8 Definition of the SECD SYS Component 95
5.9 Temporal Abstraction Function Definitions 96

6.1 RTL D top level goal 107
6.2 Base_thm: the RTL definition simplified 111
6.3 Theorem for execution of microcode instruction at address 97 . 113
6.4 Microprogramming level theorems for LDF instruction 120
6.5 Microprogramming level theorems for consxl x2 subroutine 122
6.6 Decision Tree for Recursive Microprogramming Level Proof Function 123
6.7 Theorems for n iterations through ioopi 126
6.8 Microprogramming level State theorem for LD instruction 127
6.9 Microprogramming level Next theorem for LD instruction 128
6.10 Abstract Memory Theorems 131
6.11 The Correctness result for the LDF instruction 134

ix

1

Figure 0.1: The SECD Chip: Microphotograph of Second Version

S •. S-,S•S ,'.

Isci '

a1,:jiu, II
*I,LII i; i at IEEE IIlI.I.aaII.&.

UHUIIIIIIUHUUIJIIHHIU
u full
u.n tSH.0 it u.un ii U.tuLH•I ." -
nutuu If nultitu.nuii.i
titittIslUtllltUhttlIR

filtH it if H till till U till HI m .i
S S - IlililU 11 it HUll 11 -11 1111141 a- I

- - hull u t; u.n un flU.tlli 11.1 11111111a
huH IIiHHUHIUHIHUI$

.1111 1111 HIt Ii HUll 11101 'IV 9 ! tir I F I F II I I I !
1111IItt;ltfl'UlIIUULIJ.ft il.iI:iDI:Ii'iDI ll:II1I1III1UEIIiEIUI

'ffilluI

I,itiunrjni 01-01 'Ifil MIA h 011111111111.
' - 'S.--.. tLUlfFIIJI4 'III ' It-Il liii II II III III

ilUll HI Ilfi ii 1111 liii lllifl I Ii 'I V V ll II U 1111111

111111 tn
1 111111111
I

EpRHftI1flrniiiIrJIi'sIt

iIINHtqfriIrhiriminI

Chapter 1

Introduction

Great strides in the technology of fabrication of physical devices in integrated

circuits have created a gap between production capability and the ability to manage

the complexity that such devices invite. These advances have also extended the

range of integrated circuit applications, so that today any device requiring a control

mechanism will almost inevitably utilize integrated circuits. The future promises

continued growth in both capability of discrete components as well as the range

and complexity of tasks to which they are applied. Mounting evidence of failures

of integrated circuit based systems and resulting costs has focussed attention on

methods of increasing their reliability. In this context, the use of formal methods

has been advanced as a means of dealing with one aspect of system reliability, that

of guaranteeing functional correctness of a design.

1.1 The Impetus for Formal Methods

As the smallest feature size of integrated circuit devices drops, the number of tran-

sistors that can be integrated into a single design increases. Current microprocessor

designs have in excess of one million transistors on a single chip. Quite apart from

simple transistor count, the devices are themselves increasingly complex and the

development of massively parallel systems promises that this trend will continue.

Reasoning about things of such complexity demands a high degree of formalism in

'The Intel 80486 with 1.1 million and the Motorola 68040 with 1.2 million transistors were
expected to be available in mid 1990, but when the 80486 was marketed in late 1989, production was
suspended when an error was discovered in the floating point unit despite "hundreds of thousands
of hours" of testing.

3

CHAPTER 1. 4

order to ensure the behaviour of the device is understood. The informal methods

used for design in the past are not always adequate for today's designs.

The decrease in cost coupled with the increasing functionality of integrated circuit

devices has led to a rapid growth in their range of application. Today we find them

in such diverse locations as the control systems of aircraft, automobiles, ships, and

trains; medical devices such as pacemakers and artificial limbs; imbedded within

"smart cards" for banking, medical records, and other applications; industrial control

systems including nuclear generating stations; remote sensing systems on pipelines;

as well as assorted military systems.

The potential for a flawed design to cause economic disaster or loss of life is very

real. Numerous documented cases of risk and actual loss connected with computer

systems and related technology have appeared in the pages of the ACM SIGSOFT

quarterly, Software Engineering Notes, spread over many issues. Peter Neumann

-has produced a summary of these cases with over 500 entries [Neu89]. Loss and

risk categories include loss of life, potentially life-critical, loss of resources, and se-

curity/privacy/integrity problems. Behaviours to which the losses are attributed

include intentional misuse; accidental misuse; misinterpretation/confusion at a man-

machine interface; flaws in system concept, requirements, design, or implementation;

improper maintenance/upgrade; and hardware malfunction attributable to system

deficiencies, electronic or other interference, the physical environment, acts of God,

etc.

The traditional method of ensuring the correctness of designs is simulation. This

entails defining a model of the behaviour of the primitive components of the design,

and exhaustively determining that the behaviour for each possible input condition

was as desired. As the number of cases is exponential in the number of input bits for

combinational circuitry, the increasing device size has made total coverage simulation

too time consuming to be acceptable. Devices which maintain internal state are far

CHAPTER 1. 5

more difficult (to the point of impossible) to simulate exhaustively for each state and

each input condition. Thus products are being produced today without a desirable

level of assurance of behaviour over the range of all input conditions.

Formal methods, entailing the description of and reasoning about systems within

a formal logic, are being applied to all levels of systems design, including both soft-

ware and hardware components, in an effort:

to increase the quality of the systems developed and to increase

our confidence that the systems will behave in a predictable manner.2

1.2 Formal Methods and Verification

Formal methods generally involve representing an implementation and a specification

within a formal theory. Verification compares the representations within the formal

theory, reasoning that under particular constraints the implementation ensures the

specification is (or is not) met.

For application to hardware, a circuit is represented in terms of primitive compo-

nents, such as primitive logic gates, with levels of electrical potential abstracted to

a limited number of discrete values. A primitive logic gate is expressed as a relation

between its inputs and outputs. In the case of memory elements, the relation includes

its state as well. Specifications are often defined in terms of more abstract data ob-

jects, in order to describe the complex behaviour in a way that may be examined for

agreement with what we understand is desired. Verification involves proving that,

under stated constraints representing assumptions about the operating conditions of

the circuit for example, the implementation guarantees the behaviour described by

the specification over all inputs and states. By using a mechanized proof system, we

gain a higher degree of confidence that the proofs are indeed valid.

'Dan Craigen in [Cra89].

CHAPTER 1. 6

The use of verification must be understood in terms of its practical limitations.

One obvious limitation is the accuracy of the model chosen for primitive components.

As an example, consider possible transistor models. The transistor can be defined

by a simple switch model, where the transistor is either on or off, depending on

the gate input. This model is appropriate for CMOS, where signals are guaranteed

to be strong, but will not accurately capture the behaviour of pullup transistors

or transistors with weak gate signals, and could lead to an incorrect conclusion.

On the other extreme, a transistor model could be as complex as the one used in

SPICE. This model will give us a much higher degree of accuracy, but complexity

of the proof becomes simply unmanageable for anything other than a trivial circuit.

Clearly, one must choose a model appropriate for the subject, and make explicit

the assumptions under which the model can capture the subject behaviour. The

exceedingly complex behaviour of transistors suggests that a higher level view of the

design would be more suitable for modelling. The choice of primitive logic gates and

latches as the lowest level components used to model fully complementary CMOS

circuits combines simplicity with accurate capture of behaviour, given the assumption

that all signals have enough time to settle to stable values. Full simulation of the

primitive components using such tools as SPICE can establish the detailed operating

constraints under which the model will be valid.

Aside from representing primitive component behaviours, the circuit connections

must themselves be correctly captured in the model. There is a need to integrate the

formal model with design tools to ensure that this correspondence is maintained.

Production of a correct design requires both that the design itself meets the

specification of the desired behaviour, and the desired design is actually produced in

the chip. The former is the realm of verification, while the latter is in the realm of

testing of the product. While the two realms can be viewed as distinct, the formalism

of the design process may well offer insight in determining an appropriate test suite

CHAPTER 1. 7

for the design. Formal methods could also be used to reason about the behaviour of

an assembly of exhaustively tested subcomponents.

There is necessarily a gap between the lowest level of representation and the

physical hardware device, just as geometry only describes abstractions of physical

objects. At the other end of the spectrum, the specification is a representation of

some designer's intention, which cannot be entirely captured within a formal logic.

Nor can we ever prove the validity of the specification as a representation of these

intentions. These gaps are not unique to formal methods, but their presence defines

the limits of what formal methods can contribute to assurance of correct design.

Thus the term "partial" should be assumed whenever the words "verification" or

"correctness" appear in this thesis.

1.3 The Nature of this Research

The goal of this research was to examine the application of formal methods to the

design of complex integrated circuits. For this purpose, a microprocessor implemen-

tation of the functional SECD architecture, first described by Landin [Lan64] and

elaborated by Henderson [Hen8O], was designed, specified, and partially verified.

This work was part of a larger project on the use of formal methods in systems

design at the University of Calgary. The design of hardware is only one part of

producing reliable systems. It is equally important to assure the correctness of the

software which will run on the system, and most important of all is the interface

between the two. It is most desirable if a common formalism can be used to express

both. At Calgary, the VLSI group chose to restrict its attention to functional lan-

guages running on functional architectures. It is not that the hardware is any easier

to verify, but proofs of program correctness certainly are, as is the verification of the

translation process. The key points in the approach are:

CHAPTER 1. 8

1. Use a functional programming language. Since they are based upon the A-

calculus they are expressive. They are also very succinct and amenable to

proof.

2. Use a sugared variant of A as the compiler target language. Since functional

constructs are easy to express in terms of A, it is relatively straightforward to

express the semantics of the translation scheme and to prove its correctness.

3. Convert from A to machine code. This step is relatively trivial if we choose

a functional architecture, e.g. SECD which supports A, or a graph reduction

machine which will execute combinators.

4. Run the code on verified hardware.

Choosing A as the common thread considerably simplifies all the above step-by-step

transitions. In particular, it is possible to verify software and hardware with the

same proof checker, to adopt a single proof style, and to reuse proofs.

The work is part of a long term effort in verification that started in 1985. The

VLSI group chose to work with Lispkit [Hen8O, HJJ83a, HJJ83b, SBGH89], and

Henderson's version of Landin's abstract SECD machine [Hen8O]. [Bur75, F1188,

Hen8O, HBGS89] explain the workings of varieties of eager and lazy SECD machines.

[F1188] sketches Plotkin's [P1o75] proof of correctness of an eager SECD machine.

Thus the choice of SECD was deliberate - there was much work to build on. To

date the project group has

. designed, fabricated and is presently testing version II of the chip,

• constructed a rig and associated software, including compilers from Lispkit to

SECD so that we can download Lispkit programs and run them on SECD,

• completed a (hand) proof that the abstract SECD machine executes Lispkit

programs correctly (see [SGB89] for a full version of the proof), and

CHAPTER 1. 9

• substantially completed a machine assisted proof in HOL [Gor85, Gor88a,

Gor89] of the SECD design, see [GWS89] and [BGS89].

The formalism chosen for this study is a higher-order logic, which has been imple-

mented in the HOL proof assistant by Mike Gordon of Cambridge University. The

use of a higher-order logic permits specifications to be succinct and often elegant,

making it easier to assure through visual inspection that the specification captures

the intention. The lengthy period of time required to become adept at use of this

system, combined with the availability of experienced circuit designers at the start

of the project, resulted in a reversal of the intended project execution, with the

chip design completed before the formal specification was prepared. This has shifted

attention from the impact of formal methods on the design process to methods of

specifying and verifying complex designs. Only after the fact can we speculate how

revelations arising from the formal work could have contributed to a better and more

reliable design.

My thesis research focuses on several aspects of the larger project:

• Development of a working integrated circuit design from a highly abstract de-

scription. The design is developed through several increasingly detailed models.

• The design of the system specification within a formal logic.

• Imbedding a model of the implementation within the same logic.

• Making the assumed operating conditions explicit within the logic.

• The proof of correctness that under the given constraints, the computation

effected by the implementation matches the specified behaviour.

This work has several unique properties. The integration of circuit design and

specification/verification in this project has led to a close resemblance between the

formal specifications and the informal models that are used in the design process.

CHAPTER 1. 10

The choice of a functional architecture subject provided increased complexity in

defining the effect of machine instruction execution, and required the representation

of abstract S-expression data structures, so that the specification operates well above

the level of bits.

One of the most significant aspects of the project has been the size and complexity

of the subject system. Because of the complexity of the SECD chip, it is not possible

within the scope of a thesis to give more than an outline of most of its component

specifications and the proofs: they are simply too large to be included in their entirety.

All we can do is give a flavour of the work. Despite this incompleteness, the critical

concepts in designing the specification are presented in detail, and the description

of the proof strategy is ai'igmented with representative samples of results, and quite

detailed descriptions of the methodology. The impact of the project size, particularly

on proof management, is a recurring theme. The huge size of the proof meant that

many original proof management techniques had to be developed. The achievement

of the proof alone stands as a significant result. The SECD chip is one of the largest

examples to date in the field of hardware verification.

1.4 The Structure of the Thesis

Chapter 2 describes other work in the field of hardware verification, and describes

the HOL system which was used for the formal definition and verification'in this

study. In chapter 3, the SECD architecture is described, showing how it can support

the execution of a Lisp-like high level language. Chapter 4 describes the evolution of

the SECD design to the physical layout stage. A formal specification for the SECD

system is defined in Chapter 5, as well as a lower level view closely related to the

layout. The proof of correctness relating two levels is described in Chapter 6. The

final chapter comprises conclusions and continuing and future work.

Chapter 2

Hardware Verification and Formal Methods

The first significant achievement in hardware verification was Gordon's machine

assisted proof of the correctness of a small microprocessor with a microcoded control

unit [Gor83b]. This 8 instruction machine was specified at the register transfer level,

and the correctness of this model meeting a higher level specification was proved.

This work was done in the LCF-LSM system [Gor83a], a predecessor of the HOL

system.

Warren Hunt specified and proved the correctness of the FM8501 microproces-

sor [Hun85], a traditional von Neumann architecture comparable to a PDP-11 in

complexity. The specification and verification was done in the first-order Boyer-

Moore logic, and proven using the associated automated theorem prover.

Jeff Joyce designed the TAMARACK microprocessor based on Gordon's original

example, specified and verified it in HOL [Joy88]. He has extended this work to the

transistor level [Joy89b], added a configurable memory timing interface and parame-

terized the specification datatypes and operations Joy89a], and has since verified the

correctness of a TINY compiler generating code for TAMARACK [Joy89c]. TINY

(see chapter 3 in [Gor79]) is a toy imperative language which includes assignments,

conditionals, and while statements.

Perhaps the largest single verification effort to date has been the VIPER micro-

processor by RSRE [Cul88] and Cohn [Coh88, Coh89b]. This work is distinguished

by the fact that formal methods were applied to a commercially available product,

and the considerably larger size and complexity of the device and verification effort

compared to the previous examples. The chip is hard wired rather than microcode

11

CHAPTER 2. 12

controlled, and was defined at roughly a register transfer level with detailed imple-

mentation of data operations, at a major state level which described the operation of

the chip in terms of a graph traversal, and at a more abstract top level. The corre-

spondence of the two upper levels was fully verified, but the extension to the lowest of

the three levels is incomplete, although a significant analysis of the implementation

through proof techniques was accomplished.

Other significant efforts include the flooding sink local area network broadcast

message eliminator by Melham [BJL+86], the Sobel image processing chip by Naren-

dran and Stillman [NS89], and the Cayuga microprocessor by Sekar and Srivas [SS89].

Dhingra [Dhi88] has formalized and validated CLIC, an integrated circuit design

style, in HOL.

Significant work at Computational Logic followed from Warren Hunt's work on

the FM8501 described above. Bevier [Bev87] has gone on to implement and verify a

multi-tasking operating system kernel for a 16—bit von Neumann architecture which

includes process scheduling, response to error conditions, message passing primi-

tives, and character I/O. Moore [Moo88] has specified the PITON language and

mechanically verified its implementation on the FM8502 architecture via a compiler,

assembler and linker. PITON is an assembly language designed for verified applica-

tions and includes recursive subroutine support, stack based parameter passing, and

several abstract data types. Finally Young [You88] has mechanically verified a code

generator for Gypsy 2.05 down to PITON.

2.1 Why Higher Order Logic

The choice of the HOL system and the use of a higher-order logic offers an expressive

power that other formalisms lack. Clearly this is at some cost, as proof automation

is an even more difficult problem than for a first-order logic such as the one used by

CHAPTER 2. 13

Boyer and Moore [BM79]. The expressive power is essential to capture a wide range

of views of a device, and to be able to relate them in understandable ways. Without

this power of expression, both the specifications and the meaning of the correctness

proofs may become too obscure to be useful.

The HOL system is a very widely used proof assistant in hardware verification.

Not only has it been proven a reliable tool, but there is a growing body of worked

examples and a large and growing library of supporting work, including extensive

sets of theorems characterising defined datatypes such as integers and bit strings.

Additionally, assistance in learning HOL was readily and well provided by colleagues

at Cambridge, for which the author is grateful.

2.2 A Brief Introduction to HOL

This chapter closes with a brief look at the HOL system used for the formal rep-

resentation and verification of the SECD system. The following owes much of its

organization to the example of [Coh89b]. A full description is beyond the scope of

this work, and the reader is referred to [Cam89a, Cam89b, Cam89c] for full docu-

mentation.

HOL is a machine implementation of a conventional higher-order logic in which

problems can be expressed, and interfaced to the programming language ML in which

proof procedures and strategies can be encoded. The type discipline of ML ensures

that the only way to creating objects of type thm is by the application of inference

rules to other theorems or axioms. Theorems are identified by the turnstyle symbol

I-, with assumptions to the left, and conclusion to the right.

New types, constants and axioms can be introduced by the user, and are organised

in logical theories. Proved theorems may be saved in and retrieved from the theories,

CHAPTER 2. 14

which are organized into hierarchies in which types, constants, axioms, and theorems

are inherited from ancestor theories.

The HOL system uses the ASCII characters -, /\, \/, ==>, <=>, !, ?, , and \ to

represent the logical symbols -, A, V, D, , V, 3, c and .A respectively. Throughout

this thesis, the symbols , \, /\ and \/ will be replaced by the conventonal logical

symbols. A term of higher-order logic can be one of the following:

• A variable;

• A constant, including natural numbers, the boolean values T and F, etc;

• A function application of the form ti t2;

• An abstraction of the form Ax. t;

• A negation of the form - it;

• A conjunction of the form ti At2;

• A disjunction of the form ti Vt2;

• An equality of the form ti = t2;

• An implication of the form ti ==> t2;

• A universal quantification of the form ! x.t;

• An existential quantification of the form ?x.t;

• An c-term of the form @x . t,1 expressing some arbitrary value x such that the

predicate t is true;

• A conditional of the form t=>tl It2, expressing if t then ti else t2;

• A local declaration of the form let x = ti in t2;

is a higher-order version of Hubert's choice operator.

CHAPTER 2. 15

• A list of the form [ti; t2; t3;.. . ;tn] where all elements have the same

type;

A pair of the form (tl,t2), where ti and t2 may each be of any type.

Double quotes distinguish HOL terms in the ML interface, and a typewriter

font will be used for HOL terms consistently throughout this thesis. The ML an-

tiquotation operator permits ML identifiers bound to HOL terms to be included

within HOL terms. ML comments are enclosed within % characters.

All terms in HOL have a type. The expression t: ty means t has type ty. Built-

in types include : bool and : num for booleans and natural numbers. Three type

operators are ->, +, and #, for describing function types, sum types, and product

types respectively. Type' s may be parameterized, for example : (bool)list is the

type of boolean lists. Polymorphism is allowed, and type variables are typically *,

**, and so on. Nonempty new types may also be defined by mapping to an existing

type within the logic. Types will consistently be shown preceded by a colon.

Many constants are built into the HOL system, including the boolean con-

stants and natural numbers, arithmetic operators +,-,*,<,<=,>,>=, DIV, MOD,

EXP, SUC, and PRE, the list operations CONS, HD and TL, and FST and SND selectors

on pairs to name some of the more commonly used ones. The reader's attention

is particularly directed to the infix function composition operator o, which is used

repeatedly in abstraction functions.

There are two general approaches to proof within HOL: forward and backward.

Forward proof works by applying inference rules to existing theorems and axioms

to derive a desired result in the form of a new theorem. Where to start on a large

complex proof is problematic, and managing the many branches involved is often-

times exceedingly difficult. An alternative methodology, backward proof, starts with

a statement of the theorem you would like proved (a goal), which the user incremen-

CHAPTER 2. 16

tally splits into smaller, more manageable subgoals. The HOL system manages the

state of the proof on a goal stack, and when each subgoal is reduced to a theorem, it

assembles the entire proof and returns the desired theorem. This methodology does

not provide a distinct means of construction of thm type objects, rather it allows

the user to generate the proof, which will use the same inference rules as the for-

ward proof methodology with a top-down approach, leaving the system to manage

the details. Both methods have advantages and both are used in this work. The

choice of forward or backward proof will often be an important consideration in the

methodology.

The HOL notation will be used for the formal definition of the SEOD system,

but first is a description of the abstract SECD architecture, and the development of

the SEOD chip design.

Chapter 3

LispKit and the SECD Architecture

This chapter introduces LispKit, a high-level programming language, defines the

abstract SECD architecture, and shows how the architecture can support execution

of programs written in the high-level language. The definitions of LispKit and SECD

given by Henderson [Hen8O] are used. Henderson also defines a LispKit interpreter,

and a LispKit to SECD compiler.

LispKit is a pure functional subset of the Lisp language.. A pure functional subset

means that LispKit has no destructive assignment operation, so that the value of an

expression is uniquely determined by the value of its constituent parts, and identical

expressions always have the same value. S-expressions are defined, and then a syn-

tax for LispKit is given. This is followed by an informal semantics for the language,

defined within Franz Lisp as an interpreting function. Issues fundamental to sup-

porting the language with a hardware system such as bindings and representation of

function-valued objects are discussed.

The SECD machine architecture is described by its machine instructions and state

transitions effected by each, giving a semantics for the machine language. Following

this, a translation schema for well-formed LispKit expressions into SECD machine

code is the basis for a LispKit compiler, and defines an operational semantics for

LispKit.

To ease distinguishing between the different languages presented, different fonts

will be used: Sans Serif Italics for LispKit expressions, Roman Italics for Franz Lisp

expressions, and Sans Serif for SECD machine code expressions.

17

CHAPTER 3. 18

3.1 The Syntax of LispKit

Fundamental to the Lisp programming world is the class of objects known as symbolic

expressions, or S-exprssions for short. These are defined recursively as:

S-expression ::= atom I (S-expression . S-expression)

Atoms are of two types: numeric and symbolic. A numeric' atom is a possibly signed

sequence of digits, which is taken as representing a decimal integer. Symbolic atoms,

either constants or variables, appear as a series of letters or digits or other characters,

beginning with a character. There are three special symbolic atoms: NIL, T, and F,

which are symbolic constants and have a particular meaning attached to them.

A dotted pair is the result of a Lisp cons operation on two S-expressions. If a

and b are S-expressions, then (cons a b) produces a dotted pair (a . b). The dot

notation used here is often replaced by the list form where possible. The rules for

transforming from dot to list notation are simply:

• (a . NIL) may be written as (a)

• (a . (b)) may be written as (a b)

where a and b may be any S-expressions. NIL is interpreted as the empty list.

LispKit provides sixteen primitive operators which are reserved symbolic con-

stants. In order to distinguish constants from variables, constants are represented

by the dotted pair whose first component is the QUOTE operator. Structural opera-

tors are CONS, CAR, CDR, and ATOM, which perform the standard list operations

common to all Lisp variants. Arithmetic operators include ADD, SUB, MUL, DIV

and REM. The relational operators are limited to EQ and LEQ. In addition, there is

the conditional operator IF, the \ operator LAMBDA, used for defining functions, and

two block defining operators, LET and LETREC, the latter being used for recursive

bindings.

CHAPTER 3. 19

Well-formed expressions in LispKit form a subset of the set of S-expressions, as

determined by the derivation rules of Table 3.1.

X
(QUOTE s)
(ADD e1 e2)
(SUB e1 e2)
(MUL e1 e2)
(DIVe1 e2)
(REM e1 e2)

(EQ el e2)
(LEQ e1 e2)

(CAR e)
(CDR e)
(CONS e1 e2)
(ATOM e)
(IF e1 e2 e3) conditional form
(LAMBDA (x1 . . . x,) e))-expression
(f e1 . .. e,) function call
(LET e(xl.el) ... (xk.ek)) simple block
(LETREC e (xi.ei) . .. (xj.ej)) recursive block

I
}

variable
constant

arithmetic expressions

relational expressions

structural expressions

where e, e1 are well-formed expressions,
x, xi are symbolic atoms (variables),
s is any S-expression,
f is a)-expression.

Table 3.1: Well Formed LispKit Expressions

• Constants may be other than just numbers, as the restriction to S-expressions

implies. However, all constants must be preceded by the QUOTE operator.

The arithmetic and relational operators are all binary operators, unlike

those in many variants of Lisp. The structural expressions are typical of

most Lisps.

CHAPTER 3. 20

• The conditional form takes three arguments, the -first of which is the con-

ditional expression. The second argument is evaluated only if the conditional

expression evaluates to T, otherwise the third is evaluated.

• Lambda expressions are used for defining functions of one or more argu-

ments. A list of ,\-bound variables is followed by an expression which will

usually include all occurrences of these variables.

• Function calls follow the form of primitive operators, with a function-valued

expression being the first item in a list, followed by the values to be bound to

its local variables.

• Blocks are another means of creating local bindings. The expression con-

taining the bound variables follows immediately after the LET operator, fol-

lowed by any number of dotted pairs of variables and expressions to be bound

to the variables. The only difference between the LET and the LETREC is

that the expressions to be bound to the variables in the LETREC may in-

clude (recursive) references to any of the bound variables, while in a LET they

do not reference any of the locally bound variables. We shall see, in fact,

that the LET form is unnecessary, as it is equivalent to the function call of

a LAMBDA expression. The LETREC, however, is needed to define recur-

sive functions. Furthermore, each expression ei bound to a variable within

a LETREC must evaluate to a function-valued object. The meaning of a

function-valued object will become clear when the interpretation of LispKit

is discussed below. This restriction eliminates meaningless expressions such

as: (LETREC x (x ADD (QUOTE 1) x)) wherein an attempt is made to define

x as its own successor.

Despite the derivation rules above, those expressions which will give rise to mean-

ingful computations have not as yet been precisely defined. For the most part, the

CHAPTER 3. 21

primitive operators, as well as any functions we may define, are partial. For example,

(ADD (QUOTE 2) (QUOTE (A B C))) is not meaningful in LispKit, because ADD

requires integer-valued arguments. Similarly, (CAR (QUOTE NIL)) is not mean-

ingful, since the CAR operation is only defined on dotted pairs. For a complete

denotational semantics of LispKit see [SGB89].

3.2 The Interpretation of LispKit

A full interpreter for the LispKit language adapted from [Hen8O] to Franz Lisp is

given in Table 3.2. A brief description of its more interesting features follows. Two

sample programs give a taste of the language in use.

Bindings of variables within LispKit are represented using the concept of con-

texts. A context consists of a set of bindings that associate variables with values,

implemented using corresponding lists of variable names and values. The value of

a variable is the value located in the corresponding position in the valuelist to the

location of the variable in the namelist, with the added restriction that if the vari-

able occurs more than once, the location closest to the front of the list is used. This

permits new bindings to override existing bindings within a context. For example,

the namelist and valuelist:

namelist: ((x y) (z x))

valuelist: ((1 3) (5 NIL))

represent the bindings: x 4-* 1, y 4-* 3, z 5. The second occurrence of x is ren-

dered inaccessible in this example. This environment could have been generated by

a LispKit program of the form:

(LET (LET (...)
(x.(QUOTE 1)) (y.(QUOTE 3)))

(z.(QUOTE 5)) (x.(QUOTE NIL)))

CHAPTER 3. 22

(def EVAL
(lambda (e n v)

(if (atom e) ; variable
(assoc e n v)
(lei (('key (car e)))
(if (eq key (quote QUOTE)) ; constant

(let ((consi (cadr e)))
(if (eq consi 'NIL)

nil
(if (eq consi 'TRUE)

(if (eq consi 'FALSE) nil consi))))
(if (eq key (quote ADD)) (+ (EVAL (cadr e) n v) (EVAL (caddr e) n v))
(if (eq key (quote SUB)) (- (EVAL (cadr e) n v) (EVAL (caddr e) n v))
(if (eq key (quote MUL)) (* (EVAL (cadr e) n v) (EVAL (caddr e) n v))
(if (eq key (quote DIV)) (/ (EVAL (cadr e) n v) (EVAL (caddr e) n v))
(if (eq key (quote REM)) (rem (EVAL (cadr c) n v) (EVAL (caddr e) n v))
(if (eq key (quote EQ)) (eq (EVAL (cadr e) n v) (EVAL (caddr e) n v))
(if (eq key (quote LEQ)) (< (EVAL (cadr e) n v) (EVAL (caddr e) ii v))
(if (eq key (quote CAR)) (car (EVAL (cadr e) n v))
(if (eq key (quote CDR)) (cdr (EVAL (cadr e) n v))
(if (eq key (quote CONS)) (cons (EVAL (cadr e) n v) (EVAL (caddr e) n ii))
(if (eq key (quote ATOM)) (atom (EVAL (cadr e) n v))
(if (eq key (quote IF)) (let ((el (cadr c)) (e2 (caddr e)) (eS (cadddr e)))

(EVAL (if (EVAL ci n v) c2 cS) n v))
(if (eq key (quote LAMBDA)) (cons (cons (cadr e) (caddr e)) (cons n v))
(if (eq key (quote LET)) (let ((y (var, (cddr e))) (z (evlis (eprs (cddr e)) n v)))

(EVAL (cadr e) (cons y n) (cons z v)))
(if (eq key (quote LETREC)) (let* ((y (van (cddr e)))

(vi (cons (quote PENDING) v))
(z (evlis (eprs (cddr e)) (cons y n) vi)))
(EVAL (cadr e) (cons y n) (rplaca vi z)))

(let ((c (EVAL key n v)) (z (evlis (cdi' e) n v))) ; application
(EVAL (cdar c) (cons (caar c) (cadr c)) (cons z (cddr c)))

(del APPLY
(lambda (f x)
(let ((c (EVAL I nil nil)))
(EVAL (cdar a) (cons (caar c) (cadr c)) (cons x (cddr c))))))

Table 3.2: LispKit Interpreter Written in Franz Lisp

LispKit expressions will always be evaluated within some context. New bindings

are added to the existing context by LET and LETREC operators. Thus, the inter-

pretation of a variable x in a context (n,v), is simply the value in the location in

v that corresponds to the location of x in n. The interpretation of a LET expres-

sion is the interpretation of the expression part in the current context extended by

adding the list of bound variables to the front of the variable namelist, and adding

CHAPTER 3. 23

the values, obtained by evaluating the value expressions in the existing context, to

the front of the valuelist. Thus

(EVAL (LET e (Xi- 61) . . . (x.e,)) n v) =

(EVAL e ((xi . . . xk).n)(((EVAL e1 n v).. . (EVAL ek n v)).v)

Function definitions may contain both free and bound variables within the body of

the lambda expression. Bindings are defined to be static, in that values bound to

free variables within a A-expression are determined from the context in which they

are defined, rather than in the context in which the function is called. To facilitate

this, the notion of a closure is introduced for the interpretation of a function. The

closure will consist of the defining context, along with the list of A-bound variables,

and the body of the LAMBDA expression.

(EVAL (LAMBDA (x1 . . . x,) e) n v) = (((rn . . .

The defining context consists of the namelist and valuelist. The namelist is the

collection of bound variable names, and the valuelist is the corresponding collection

of the values associated with each variable name. When the expression is applied to

a list of arguments, the list of A-bound variables will be added to the namelist. The

evaluated arguments are added to the valuelist, creating a new context for evaluating

the body of the function, in which the local variables are defined.

In a LETREC expression, the variables are to be bound to (possibly mutually)

recursive functions, thus the context in which these functions are evaluated must

include the values of the functions themselves. This is accomplished by evaluating

the expressions in a context which has the values of the recursively bound variables

still pending. In practice, an empty list is used as a place-holder at the beginning

of the valuelist. Since each expression is required to evaluate to a function-valued

object, each will evaluate to a closure, with the context part of all being identical.

Thus, a single destructive rplaca operation can be used to alter the pending value of

CHAPTER 3. 24

the valuelist to instead point to the list of closures that are created. A circular data

structure is thus created. A simplified example illustrates the idea.

(EVAL (LETRECe (fi.e1). .. (f,.e)) n v) = (EVAL e (y.n) (rplaca v' z)

where y = (fi . . . fk)

where v' = (PENDING.v)

where z = ((EVAL el (y.n) v') ... (EVAL ek (y.n) v'))

The reader should recognize that the use of a destructive Lisp operation in defin-

ing the interpretation of the LispKit expression does not conflict with the status of

LispKit as a purely functional language. The LispKit programmer does not have a

destructive operator to use in programming; the destructive operator is only used in

creating a context to represent recursive function definitions.

To complete the interpretation, the interpretation of each well-formed LispKit

expression is given.

• Constants are represented by a dotted pair with the atom QUOTE as the

car. Regardless of its context, it will evaluate to the cadr of the pair. Thus

(QUOTE 2) evaluates to 2, and (QUOTE (a b c))evaluates to (a b c). The

three special symbolic atoms, NIL, T, and F are mapped to the Franz Lisp

values of nil, t, and nil respectively in the interpreter.

• The arithmetic operators work as one would expect. For example,

(ADD e1 e2) in the context (n, v) will evaluate to the sum of the values of

e1 and e2, both evaluated in (n,v). SUB, MUL, DIV, and REM work similarly.

• The relational operators, EQ and LEQ, evaluate their arguments in the same

fashion as the arithmetic operators. However, EQ is interpreted as working the

same way as the eq function in Franz Lisp1, in that two S-expressions are equal

1This differs from the definition given in [Hen8O] pp. 22, 53, which defines EQ only when at
least one of its arguments is an atom.

CHAPTER 3. 25

if they are both atoms and they evaluate to the same value, or if they are both

dotted pairs and they are both pointers to the same cons cell.

• The structural operators, CAR, CDR, CONS and ATOM are interpreted as

performing the same operations as the corresponding car, cdr, cons and atom

operations in Franz Lisp, when applied to the interpreted arguments. Again,

arguments are evaluated as for arithmetic operators.

• The conditional form evaluates its first argument in the given context, and

if this evaluates to T, then the second argument is evaluated; otherwise the

last argument is evaluated. This form evaluates only one of the two branches,

permitting, for example, testing for terminating conditions of recursive function

definitions.

• The function call is interpreted by adding the value of the function's argu-

ments, interpreted in the current context, to the start of the valuelist in the

context part of the closure. Similarly, the list of bound variables is added to

the start of the namelist in the context part of the closure, and the body of

the closure is evaluated in the thus extended context.

Finally, the top level program must evaluate to a function-valued object which

is applied to a list of arguments. Free variables are not permitted in the top level

program, so that our starting context consists of a pair' of empty lists.

Example 1

The first example is a nonrecursive function that takes a function as an argument

and returns a function-valued object:

(LET (twice double)
(twice LAMBDA (f) (LAMBDA (x) (f (f x))))
(double LAMBDA (x) (ADD x x))))

CHAPTER 3. 26

Let E represent this expression, and e1 and 62 the expressions to be bound to

twice and double respectively.

(EVAL E 0 0)
= (EVAL (twice double)

((twice double))
(list (cons (EVAL e1 nil nil)

(cons (EVAL e2 nil nil)
nil))))

The two expressions, e1 and e2, evaluate to function closures as follows:

(EVAL e1 nil nil)

== (((f) LAMBDA (x) (1 (f x))) nil)

(EVAL 62 nil nil)
= (((x) ADD r x) nil)

The next stage evaluates the application (twice double) in the context extended

with the new variables and values. It is expected that the first item in the application

will evaluate to a function valued object, and both it and the single argument are

evaluated in the context extended with el and e2, and then the body of the function

valued object (LAMBDA (x) (f (f x))) is evaluated in a new context extended with

the variable f and the value of double, producing a closure as a result.

(EVAL '(LAMBDA (x) (f (f x)))

'(((((x) ADD x x) nil))))
(((x)
f(fx))

((f))
((((x) ADD x x) nil))))

A valid LispKit program requires a list of arguments to which a function is

applied. The argument list (7) will be used for this example. Thus evaluating the

previous function applied to the argument list causes the body of the function to be

evaluated in an environment with bindings for both x and f.

CHAPTER 3.

(EVAL (f (fx))
((x) (f))
((7) ((((x) ADD x x) nil))))

27

The variable f is bound to a function closure, but its argument f z must be

evaluated. This is done in the same context, so that f is bound to the function

closure of double and x to 7.

(EVAL (Ix)

((x) (f))
(('7) ((((x) ADD x x) nil))))

= (EVAL (ADD x x) ((x))((7)))

(+ (EVAL x
(EVAL x

(-i- 7 7)

The result of this evaluation is installed in the context as the value to be bound

to x when the outer function application is evaluated.

(EVAL (f(fx))

((x) (f))
((7) ((((x) ADD x x) nil))))

==' (EVAL (ADD x x) ((x)) ((14)))
(+ (EVAL x ((x)) ((14)))

(EVAL x (('x)) ((14))))

(+ 14 14)
= 28

Example 2

The next example is the even function, defined using mutually recursive functions:

even =)x. if (x = 0) then TRUE else (odd (x - 1))

odd = Ax. if (x = 0) then FALSE else (even (x - 1))

CHAPTER 3. 28

(LETREC even
(even LAMBDA (x)

(IF (EQ x (QUOTE 0))
(QUOTE TRUE)
(odd (SUB x (QUOTE 1)))))

(odd LAMBDA (x)
(IF (EQ x (QUOTE 0))

(QUOTE FALSE)
(even (SUB x (QUOTE 1)))))))

To apply the function to the argument list (1), first evaluate the LETREC expres-

sion. Each of the two items bound therein is evaluated in a context with the namelist

augmented by (even odd) and the initially empty valuelist onto the start of which is

cons 'ed the special PENDING atom. Since both expressions are A-expressions, they

will evaluate to function closures, both containing identical contexts (pointers to the

same context), with PENDING as the first item in the valuelists.

The body of the LETREC, the bound variable even, is then evaluated in the same

context, but modified by destructively replacing the PENDING atom with the list

of closures obtained for the A-expressions above. This will create a circular valuelist

structure, so a graphical representation will be used.

(EVAL example-2 nil nil)
(EVAL even

((even odd))
(rplaca (PENDING)

(((('x)
IF (EQ x (QUOTE 0))

(QUOTE TRUE)
(odd(SUB x (QUOTE 1))))

((even odd))
PENDING)

(((x)
IF (EQ x (QUOTE 0))

(QUOTE TRUE)
(even (SUB x (QUOTE 1))))

((even odd))

CHAPTER 3. 29

PENDING)))

(x) bOdyeven fl

(x) b0dy0dd 1

valuelist

am

PENDING NIL

NIL

Figure 3.1: Valuelist Structure Before Destructive Operation

The important thing to note in Figure 3.1 is that the atom PENDING occurs

in only one place, with pointers to it from several places. Thus, doing a destructive

rplaca operation on the list with PENDING as the first item, will change the value

of PENDING in all locations, and create a circular list structure, so that references

to the recursive functions within the body of the functions, properly refer to the

closure value used to represent the function.

The next step consists of evaluating the expression even. This returns a closure

from the valuelist bound to this name. Evaluating the application of this function

to the argument list (1), the body of even is evaluated in a context augmented with

the binding 1 to the lambda bound variable x. It should be readily apparent from

the valuelist of Figure 3.2 that recursive references to even and odd are possible as

the appropriate function closures are included.

CHAPTER 3. 30

valuelist

NIL

(x) bOdyeven rz NIL

(z) body0dd 1

Figure 3.2: Circular Valuelist Structure After Destructive Operation

Once the circular environment structure has been established, the remainder of

the function evaluation continues in a similar fashion to the previous nonrecursive

example.

In summary, the LispKit language has been described, and its syntax and its

semantics defined, the latter by means of an interpreter. The concept of closures to

represent the value of a function object, and the use of context to define bindings,

was illustrated by two examples, using both higher order and recursive functions.

3.3 SECD Architecture

Now follows a detailed description of a machine architecture, called the SECD ar-

chitecture, that will support the execution of programs compiled from LispKit Lisp.

A complete description of the machine instructions and state transitions effected by

each will define the semantics of the machine language.

CHAPTER 3. 31

The SECD architecture, so named because of its four principal registers, was

invented by Landin [Lan64] and described in detail by Henderson [Hen8O]. Each of

the four registers is referred to as containing an S-expression, which in the actual

implementation will be a pointer to a data structure representing the expression.

The term "stack" is used to refer to the data structure "within" a register. The four

registers are:

S stack holds intermediate computation results

E environment holds values bound to variables during evaluation

C control list holds the machine-language program being executed

D dump saves values of other registers on calling a new function.

It is important to note that the entire state of the machine can be denoted

by giving the content of its four registers. Thus instructions are defined by state

changes, enabling an interpreter to be developed by pattern matching, and the use

of structural induction in proofs about the machine execution.

Each instruction is defined in terms of its effect on the machine state. For exam-

ple, the ADD instruction definition is:

(a b.$) e (ADD.c) d - (b+a.$) e c d

This instruction expects two arguments on top of the S stack. After execution, the

two arguments are replaced by their sum, which is cons'ed onto whatever was below

the arguments on the stack. The E and D registers are unaltered, but the C stack

contains the rest of the control list that followed the ADD instruction.

Similarly to the interpreter presented previously, a means of storing bindings is

provided by a valuelist stored in the environment stack E, which is, as before, a

list of lists. Instead of an associated namelist, variable names are replaced with

a LD instruction and a pair of arguments telling it where to find the value in the

CHAPTER 3. 32

environment. The first determines which list and the second which element from

that list to retrieve. Two auxiliary functions, index and locate, are defined:

index(n,$) = if (n_—U) then (car(s)) else (index(n-1, cdr(s)))
locate(i, e) = index (cdr(i), index (car(i).e))

For example, the namelist ((x O N z)) would be translated as position indices

(((0.0)(0.1))((1.0)(1.1))). Thus the transition for LD in Table 3.3 shows that the

value loaded on the stack is the value retrieved by applying the function locate to

the arguments and, the environment list.

INITIAL STATE
S E a D

TRANSFORMED STATE
S E C D

$

S

(a b.$)
(a b.$)
(a b.$)
(a b.$)
(a b.$)
(a b.$)
(a b.$)

((a.b).$)
((a.b).$)
(a b.$)
(a.$)

(x.$)

S

S

((c'.e')v.$)
((c'.e')v.$)
(x)
S

e (LDC x.c)
e (LD (m.n).c)

e (ADD.c)
e (SUB.c)
e (MUL.c)
e (DIV.c)
e (REM.c)
e (EQ.c)
e (LEQ.c)

e (CAR.c)
e (CDR.c)
e (CONS.c)
e (ATOM.c)

e (SEL ct c1.c)

• (JOIN)

• (LDF c'.c)
e (AP.c)

(cl.e) (RAP.c)
e' (RTN)
e (DUM .c)

d - (x.$) e
d -+ (x.$) e

where x = locate ((m.n),e)
d -+ (b+a.$) e
d -+ (b—a.$) e
d - (b*a.$) e
d .- (b/a.$) e
d -. (b rem a.$) e
d -+ (ba.$) e
d - (b<a.$) e

d
d
d
d

d

(c.d)

d
d
d

(s e c.d)
d

-

-

-

(a.$)
(b.$)
((a.b).$)
(t.$)
where t =

e
e
e
e

(a is an atom)

C

C

-• $ e cx
where c5, = if (xT) then ct else Cf

-+ S e C

-

-

e C

(v.e') C'

rplaca(e',v) c'
e c

(cl.e)

d
d

d
d
d
d
d
d
ci

d
d
ci
d

(c.d)

d

d
(s e c.d)
(s e c.d)

d
d

s e (STOP) d -+ s e (STOP) d

Table 3.3: Machine Instruction Definitions

Loading a constant is achieved by the LDC instruction, which takes an inline

constant as an argument, and places it on top of the stack.

CHAPTER 3. 33

All the arithmetic instructions work similarly to the ADD instruction described

earlier: the stack is expected to have two arguments on top and they are replaced

with the value obtained from applying the arithmetic operation to them. Notice the

order of arguments for the noncommutative arithmetic operations SUB, DIV, and

REM. The instructions effecting the structural operations CAR, CDR, CONS, and the

ATOM similarly expect suitable values on top of the stack, and replace them with

the result of applying the primitive structural operation.

Two commands are used to implement the conditional branch. The SEL command

expects a boolean value on top of the stack S, and two code sequences as arguments.

If the value on the stack is T, then the first argument is installed in the control register

C, otherwise the second argument is so installed. In either case, the remainder of the

control list after the two arguments is saved on the dump register D, to be restored

once the selected branch control sequence is finished executing. That is the purpose

of the JOIN command, which will be the last item in each of the two control list

arguments to the SEL command. Thus, the execution of the code in either control

sequence must leave the value stored in the D register untouched at the end of its

execution.

The final set of instructions is used in implementing functions and function calls.

In the interpreter for LispKit, functions are represented by a closure, containing

the bound variables, the expression part of the function, and the context in which

free variables are be evaluated. In the SECD machine, the expression consists of

a control list and the context is represented by an environment list. A function

object is created by the LDF instruction. It takes a code sequence as an argument,

and cons'es it onto the current environment, leaving this on top of the stack S.

The function object is usually loaded into an environment and recalled with an LD

instruction to apply to different arguments.

CHAPTER 3. 34

The AP instruction is used to apply a function to a list of parameters found

immediately below the function object on top of the stack S. AP installs the pa-

rameters in the environment using the context part of the function object, loads the

control part in the C register, empties the stack 5, and saves the existing register

contents for later restoration by the RTN instruction. From inside the function code,

parameters are accessed by selecting items in the first list in the environment, using

position indices (0.0), (0.1), etc., while variables free to the body are accessed using

position indices (1.0), ..., (2.0). The RTN instruction expects the dump D to

be unaltered by the execution of the control list, so that it can restore the state of

the registers upon completion of the function call, with the value returned by the

function call installed on top of the stack S.

Recursive functions are more complicated, since the environment must contain a

copy of the function object itself, for recursive calls to the function. Thus, a circular

data structure is necessary. As in the interpreter, an rplaca operation is used to

replace the value representing the pending value of the environment, represented

here by the term f, with the intended environment.

DU M creates the environment with the installed fl placeholder.

• The RAP instruction is similar to the AP instruction, except that in creating the

environment in which the function is executed, the parameters are installed by using

the rplaca operation on an environment whose car is the pending value Q. RAP

will always be executed in a state where the environment part of the function value,

e', is the same object as the contents of the environment register (1.e). The list

of parameters must consist of only function objects, and they will all contain the

same environment component, so the single destructive operation creates a circular

context for all the mutually recursive definitions.

CHAPTER 3. 35

3.4 Compiling LispKit to SECD Machine Code

The execution of LispKit programs on the SECD architecture requires their compi-

lation into machine code. The compiled program, a function-valued object, loaded

into the C register of the SECD machine, with an argument list loaded into the

S register, should, upon completion of execution, leave a single result on the stack

S, and that value should match the result of executing the LispKit program in the

interpreter. The compiler will be defined by describing the translation of each well

formed LispKit expression.

The machine code is generated with respect to a namelist, which is built up as the

expression is compiled. This namelist is used to keep track of where values associated

with variables will be found in the environment at execution time. Once again, a

function is defined to extract a position for any variable in the namelist.

location (x, n) =
if (member(x, car(n))) then (cons(O, position (x, car(n))))

else (cons(car(z)+1, cdr('z)))
where z = location(x, cdr(n))

Following the usage of Henderson, the definition in Table 3.2 makes use of the

infix operator "i" to represent the append function. The namelist with respect to
which the expression is being compiled is represented by "* n".

A simple variable is compiled into code that loads the value from the environ-

ment list that is located in the corresponding location to the variable in the namelist.

A constant value becomes a LDC instruction with the constant as argument.

An arithmetic expression compiles to a code sequence that first loads the

values of the arguments, followed by the appropriate machine code instruction to

execute the operation. The order of arguments is easily understood if we expect the

LispKit expression (SUB e1 e2) to evaluate to e1— e2. The code generated will cause

the value of e1 to be loaded on the top of the stack, and then the value of e2 will be

CHAPTER 3. 36

LispKit expression Compiled code

x*n

(QUOTE s)*n

(ADD el e2)*n

(SUB el e2)*n

(MU!. e1 e2)*n

.(DIVei e2)*n

(REM el e2)*n

(EQ el e2)*n

(LEQ e

(CAR e)*n

(CDR e)*n

(CONS el e2)*n

(ATOM e)*n

(IF eel e2)*n

(LAMBDA (xi . . . xj) e)*n

(e el . . . ek)*Th

(LETe (xi.ej) ...(xk.e,))*n

(LETREC e (xi .el) ... (xk.ek))*n

(LD i) where i = location(x,n)

(LDC s)

el*n I e*n I (ADD)
e*n e*n (SUB)

e*n e2*n I (MUL)
el*n e2*n J (DIV)
el*n e2*n (REM)

el*n j e2*n I (EQ)
el*n e2*n I (LEQ)

(CAR)

e*n (CDR)

e2*n I el*n I (CONS)
e*n I (ATOM)
e*n (SEL el*n I (JOIN) e2*n I (JOIN))
(LDF e*((xj . . . x).n) I (RTN))
(LDC NIL) I e*n I (CONS) I • .. I el*n I
(CONS) I e*n I (AP)

(LDC NIL) Iek*nI(CONS) l...Iel*n f

(CONS) I (LDF e*m I (RTN) AP)
where in = ((xi . . . X).fl)

(DUM LDC NIL) I ek*m I (CONS) I ..
el*m I (CONS) I (LDF e*,n j (RTN) RAP)

where in = ((xi . . .Xk).fl)

Table 3.4: SECD Machine Code Generated for Well-Formed Expressions

placed on top of that. Thus the stack looks like (val(e2) val(ei).$), which clarifies why

the machine transition definitions consider the top of stack as the second argument

to the arithmetic operation. Notice that the CONS instruction is just the opposite,

and the code sequence for the arguments is reversed in the resulting code sequence.

The conditional expression is compiled to a code sequence that first loads the

value of the conditional part of the expression, followed by a SEL instruction, and

CHAPTER 3. 37

this in turn is followed by the code sequences for each of the two branches of the

conditional, both of which end with a JOIN instruction.

A function defined by the use of LAMBDA is compiled into a control sequence

that consists of a LDF instruction followed by the code for the function body compiled

with respect to the namelist augmented with the list of locally bound variables, and

with a RTN instruction appended to the end. The LDF instruction takes the control

list for the function body as its argument, and creates a closure at run time by

cons'ing this onto the current environment.

The code generated for a function application will build a list of values of each

of the arguments to the function on top of the stack S. This is followed by the code

for the function object being applied. This could consist of a nameless LAMBDA

expression generating the code just seen, or the name of the function, which would

also cause the function closure to be loaded on top of the stack with a LD instruction.

The last instruction is AP, which will effect the application of the function to the

arguments placed on the stack. It should be noted that a LET expression compiles

into precisely the same code sequence as an application of a LAMBDA expression.

The final well formed LispKit expression is the recursive block. An initial DU M

instruction modifies the current environment by installing a placeholding f value.

This is followed by a code sequence that builds a list of the values to be bound to each

of the local variables. Each of these is expected to be a function-valued object, and

will thus contain a copy of the environment in its closure. The expression is treated as

a function, with a LDF instruction and the code sequence for the expression followed

by a RTN instruction. The RAP instruction is used instead of the AP instruction to

create the required circular environment structure.

For completeness, Henderson's LispKit to SECD code compiler is included, writ-

ten in LispKit in Table 3.5. For ease in reading, all LispKit keywords are upper case,

while all locally bound values have lower case labels.

CHAPTER 3. 38

(LETREC compile
(compile LAMBDA (e)
(comp e (QUOTE NIL) (QUOTE (4 21))))

(comp LAMBDA (e it c)
(IF (ATOM e)

(CONS (QUOTE 1) (CONS (location e it) c))
(IF (eq (CAR e) (QUOTE QUOTE))

(CONS (QUOTE 2) (CONS (CAR (CDR e)) c))
(IF (EQ (CAR e) (QUOTE ADD))

(comp (CAR (CUR a)) it (comp (CAR (CDR (CUR e))) it (CONS (QUOTE 15) c)))
(IF (EQ (CAR a) (QUOTE SUB))

(comp (CAR (CDR a)) it (comp (CAR (CDR (CDR a))) it (CONS (QUOTE 16) c)))
(IF (EQ (CAR a) (QUOTE MUL))

(comp (CAR (CDR a)) it (comp (CAR (CDR (CDR e))) it (CONS (QUOTE 17) c)))
(IF (EQ (CAR a) (QUOTE Dlv))

(comp (CAR (CUR e)) it (comp (CAR (CDR (CDR a))) it (CONS (QUOTE 18) c)))
(IF (EQ (CAR e) (QUOTE REM))

(comp (CAR (CDR e)) it (comp (CAR (CDR (CUR e))) it (CONS (QUOTE 19) c)))
(IF (EQ (CAR e) (QUOTE LEQ))

(comp (CAR (CUR e)) it (comp (CAR (CUR (CDR a))) it (CONS (QUOTE 20) c)))
(IF (EQ (CAR e) (QUOTE EQ))

(comp (CAR (CUR e)) it (comp (CAR (CDR (CUR e))) it (CONS (QUOTE 14) c)))
(IF (EQ (CAR a) (QUOTE CAR))

(comp (CAR (CUR e)) it (CONS (QUOTE 10) c))
(IF (EQ (CAR a) (QUOTE CUR))

(comp (CAR (CUR e)) it (CONS (QUOTE 11) c))
(IF EQ (CAR e) (QUOTE ATOM))

comp (CAR (CUE. a)) it (CONS (QUOTE 12) c))
(IF EQ (CAR a) (QUOTE CONS))

comp (CAll. (CUR (CUR a))) it (comp (CAR (CUR a)) n (CONS (QUOTE 13) c)))
(IF (eq (CAR a) (QUOTE IF))

(LET (comp (CAR (CUR a)) it (CONS (QUOTE 8)
(CONS thenpt (CONS alsept c))))

(thenpt comp (CAR (CDR (CUR a))) it (QUOTE (9)))
(elsept comp (CAR (CDR (CUR (CUR a)))) it (QUOTE (9)))

(IF (EQ (CAR a) (QUOTE LAMBDA))
(LET (CONS (QUOTE 3) (CONS body c))

(body comp (CAR (CUR (CDP. a))) (CONS (CAR (CUP. a)) it) (QUOTE 5)))
(IF (EQ (CAP. a) (QUOTE LET))

(LET (LET (complis arge it (CONS (QUOTE 3) (CONS body (CONS (QUOTE 4) a))))
(body comp (CAR (CUR a)) m (QUOTE 5)))

(m CONS (vare (CUR (CUR a))) it)
(arge expre (CDR (CD?. e))))

(IFQ (CAR a) (QUOTE LETREC))
rET (LET (CONS (QUOTE 6)

(complis arge en (CONS (QUOTE 3) (CONS body (CONS (QUOTE 7) a)))))
(body comp (CAR (CUR e)) m (QUOTE 5)))

(m CONS (vats (CUR (CUP. a))) it)
(arge exprs (CUR (CUR e))))

(complis (CUR e) it (comp (CAR a) it (CONS (QUOTE 4) c))))))))))))))))))))

(compile LAMBDA (e it c)
(IF (EQ e (QUOTE NIL)) (CONS (QUOTE 2) (CONS (QUOTE NIL) c))

(complis (CUR e) it (comp (CAR e) it (CONS (QUOTE 13) c)))))

(location LAMBDA (a it)
(LETREC

(IF (member e (CAR it)) (CONS (QUOTE 0) (posit e (CAR it)))
(incar (location a (CUR it))))

(member LAMBDA (e it)
(IF (EQ it (QUOTE NIL)) (QUOTE F)
(IF (EQ e (CAR it)) (QUOTE T) (member e (CUR it)))))

(posit LAMBDA (e it)
(IF (EQ a (CAR it)) (QUOTE 0) (ADD (QUOTE 1) (posit e (CUR it)))))

(incar LAMBDA (I) (CONS (ADD (QUOTE 1) (CAR I)) (CUR 1)))))

(vats LAMBDA (d)
(IF (EQ d (QUOTE NIL)) (QUOTE NIL)

(CONS (CAR (CAR d)) (expre (CUR d)))))

(expre LAMBDA (d)
(IF (EQ d (QUOTE NIL)) (QUOTE NIL)

(CONS (CUR (CAR d)) (axprs (CUR d)))))

Table 3.5: LispKit to SECD Compiler Written in LispKit

CHAPTER 3.

3.5 Summary

39

This chapter has described the LispKit language, and used it to illustrate the op-

eration of the SECD architecture transitions. The LispKit syntax was given, and

an informal semantics provided in the form of an interpreter function. The abstract

SECD architecture was defined by giving the set of SECD language instructions, and

defining state transitions for each instruction. A translation schema for LispKit into

SECD code was described, and its implementation as a compiler written in LispKit

supplied. This translation along with the SECD definition provides an operational

semantics for LispKit. A proof of correctness of the translation and a full description

of the semantics of LispKit may be found in [SGB89]. While not central to this work,

the introduction of a higher level language demonstrates the operation and poten-

tial of the SECD architecture. More extensive programming examples in LispKit

are available, for example [HJJ83a, HJJ83b]. Furthermore, the simple translation

from the higher level language to SECD code demonstrates the suitability of the

architecture for executing functional programs.

The following chapter proceeds to develop the architecture in greater detail, com-

ing eventually to the design of a working hardware system.

Chapter 4

SECD Architecture: Silicon Synthesis

A wide variety of different implementations can satisfy the informal definition of

the SECD machine given in the previous chapter. The choice of implementation was

not driven entirely- by the abstract specification, but evolved in concert with other

criteria that constrained the design. -

This chapter focuses on two major themes: development of the external archi-

tecture (the machine as seen by its users), largely influenced by external constraints

and decisions, and development of the internal , architecture (how the machine is

physically organized), through a progressive elaboration of the system model. Both

are developed within a framework of increasingly detailed levels of description of the

system.

4.1 Project Context

The SECD chip arose within a larger ongoing research effort by the VLSI group

at the University of Calgary. The chip was used as a vehicle to explore the use

of specification to drive design synthesis. The methodology entails elaborating a

design hierarchically as a tree of nodes and formally specifying the behaviour at

each node. Verifying that the composition of behaviours of a node's children agrees

with the node's specification assures a correct design. By deductive argument, the

correctness or otherwise of a complete design can be shown. While the chip provided

the team with hands-on experience with a nontrivial design, the focus of study was

the design process, and this strongly influenced the dominant design criteria.

40

CHAPTER 4. 1 41

• The most important criterion was that a correct, working device be produced.

Correctness is the primary objective of the specification-driven process.

• The next criterion was simplicity. Simplicity was necessary on two counts:

to ensure that verification could cope with what promised to be the most

complex microprocessor proof attempted to date, and secondly, to improve the

likelihood of meeting the first criterion.

• Testability of the design was considered essential. In the event of malfunction,

determination of the source of the error requires examining the state of the

machine extensively. Furthermore, correct output from test problems does

little to assure total design correctness. Rather, each step of the computation

should be accessible for examination.

• Lastly, utility should be considered. It was preferable that the design could

be given tractable problems, rather than be considered a toy device, incapable

of all but the most trivial tasks. A particularly relevant problem would be

compiling LispKit programs to SECD code.

Equal in importance to the selection of criteria is the explicit statement of items

that will not be given priority. Speed was specifically eliminated as a determining

criterion, both in terms of clocking rate, and optimality of the operation sequences,

insofar as they could conflict with the simplicity criterion.

4.2 Levels of the Design

The wide gulfs between the external architecture view, captured abstractly in the

top level specification, the internal architecture, expressed as an assembly of logical

devies, and the layout, expressed as a set of masks, are most easily bridged by a suc-

cession of levels of description, with detail increasing at each lower level. Associated

CHAPTER 4. 42

with each level is an interpreter expressed as a simulation model. The simulation

model has both a control structure, and a set of operations. The operations may be

further expanded at the next lower level. There were seven major major levels of

description used in the development of the SECD chip.

Abstract machine is the high level definition of the machine characterized by the

contents of 4 stacks, defined by the state transitions of Table 3.3.

Abstract System level views the SECD machine as a batch mode co-processor,

with external 'read' and 'print' routines to download problems and return re-

sults. The decomposition of transitions into operation sequences begins here.

Top level FSM (finite state machine) describes the control of the system in terms

of major states and transitions, introducing control inputs for initialization and

state transition.

Abstract RTL (register transfer level) view begins elaborating the internal archi-

tecture, adding registers, combinational logic devices, the bus, and memory,

and determining data representation and word configuration.

Concrete RTL develops the control part of the internal architecture as a microcode

program.

Mossim defines the design down to the transistor level, and determines the design

of memory elements and the clocking scheme.

Layout level generates a set of masks, after resolving floorplanning, electrical and

similar low level concerns.

The first 3 levels of description mainly develop the external architecture, while

the remaining levels are concerned with developing the internal architecture.

Several programs from Gabriel [Gab85] and Henderson [Hen8O] were run on all

simulation models above the Mossim level. The largest test was the compilation

CHAPTER 4. 43

of the LispKit compiler from [llen8O]. A smaller LispKit program with 3 mutually

recursive functions was used to test the Mossim models of the control unit and

datapath.

4.3 External Architecture

The top level definition of the SECD machine given in [Hen8O] (and shown in

Table 3.3) defines a set of machine transitions, one for each of the 21 SECD ma-

chine instructions, in terms of contents of the four stacks. This concise- specification

hardly begins to define how a machine would operate. The initial development of the

SECD chip filled in the external architecture definition, bridging the gap between

the abstract machine and a workable specification for a hardware system.

4.3.1 Abstract Machine

In order to gain a better understanding of the way high level constructs in the source

language (LispKit) were implemented by the compiled machine instructions, the ab-

stract machine was modelled by an interpreter written in Franz Lisp ([HBGS89]),

together with a LispKit compiler ([SBGH89]). Error checking on operation argu-

ments was performed, and run-time statistics on instruction counts and environment

accesses were recorded. This stage was simply a learning exercise, and did not seek

to flesh out the implementation design. Thus, the interpreter did not need to define

special data structures or elemental machine operations, but rather relied entirely

upon the Franz Lisp data structure representation, as well as the cons, car, and cdr

operations and the five arithmetic operations that SECD uses. Furthermore, funda-

mental implementation concerns were ignored, with recursive functions used to locate

values in the environment list, and resource management (i.e. garbage collection of

records) completely omitted.

CHAPTER 4. 44

4.3.2 Abstract System: the First Refinement

Realizing the SECD machine as a working system required that it be able to accept

a task, compute a result, and return it. The abstract machine definition required

that problems be in the form of a function to be applied to a list of arguments. The

interface to permit a user to pose a problem and the machine to return a result was

the first major design decision. Two major options were considered: a co-processor

role and a stand-alone system.

Using the SECD as a co-processor to another system would permit i/o to be

handled by the other system rather than the SECD chip. For instance, using SECD

as a co-processor for a SUN workstation would see the SUN able to read in an

S-expression, set up a memory image for the problem, signal the SECD to begin

computation, receive a signal back on completion of the calculation, and print out

the S-expression solution. This has the advantage of simplifying the tasks the SECD

must perform.

Implementing the SECD chip as a stand-alone system would have required incor-

porating primitive read and write operations into the definition of the machine, and

defining an operating system, ideally written in the higher level LispKit language.

The infinite "while" loop required for an operating system could only be implemented

using LETREC, but as the system was defined, this was not possible since each new

level of recursion uses up more memory, so eventually system resources would be

exhausted. Thus further modifications would be needed.

The co-processor option was chosen as most appropriate to the scope of the

project. Major phases in the operation of the system are: 1) load problem into

RAM (done by main processor), 2) send start signal to SECD system, 3) run, 4)

stop and signal completion to main processor, and 5) return result (again, main

processor task).

CHAPTER 4. 45

Representation of S-expressions (the "stuff" of programs and data in the SECD

machine) is not determined at this level, but it is known that they will be stored

within a finite memory, and this necessitates garbage collection. A simple mark

and sweep garbage collector is used, and a "memory exhausted" error can arise. A

simulation at this level (written in "C") used external read and print routines to

model the 'load problem' and 'return result' tasks of the system. These functions

prepare a memory image within a finite memory data structure and extract an 5-

expression from a memory image respectively. The SECD system was modelled

making free use of high level language constructs including complex data types to

represent data records, and recursive tree traversal in the garbage collector mark

routine.

When designing a control sequence for the simulation, a precedence (partial or-

dering) was established on registers for each machine instruction to prevent overwrit-

ing. As an example, consider generating a control sequence for the AP instruction

transition. The abstract machine transition is given by:

((c'.e')v.$) e (AP.c) d -.• NIL (v.e') c' (s e c.d)

from which the following precedence on registers is observed:

E
D-< < S.

C

The control sequence then takes the following form.

D = (cons (cdr (cdr S)) (cons B (cons (cdr C) D)))
C = (car (car 5))
B = (cons (car (cdr 5)) (cdr (car 5)))
S=NIL

CHAPTER 4. 46

4.3.3 The Top FSM Level

The previous abstract views of the SECD system were concerned primarily with

manipulating the S-expressions in the four stacks. The finite state machine view

concerns the development of a control interface for operating the system. The top

level FSM has only four states, and the earlier view of the machine's state as being

represented by the contents of the 4 main stacks (S, E, C, and D) is incorporated as

annotations to transitions where these stack contents change (see Figure 4.1)_

button

Errorl
reset

-'button

-'button button

button

car(C)=STOP

Top of
Cycle

car(C)=LD

ErrorO -'button

s , e , (LD (m.n).c) , d -+ (x.$) , e , c , d

memory
exhausted

car(C)=RAP

(c'.e')v.$) , ((2.e) (RAP.c) , d -+
NIL, rplaca(e',v) , c' , (s e c.d)

Figure 4.1: Top Level Finite State Machine View of SECD

The four states are Idle, Top of Cycle, and two Error states. The Idle state

permits the chip to be turned on but prevents it from starting computation until

signalled after a problem has been loaded. It also permits completion of the corn-

CHAPTER 4. 47

putation to be recognizable. The concept of control state suggests the existence of

state values as outputs, particularly for this purpose. The Idle state also introduces

the idea of repeated executions, as opposed to the earlier models which permitted

single computations only.

The Top of Cycle state corresponds to the state the machine is in at the start of

execution of any SECD machine instruction. There are 21 transitions leading from

this state, one for each machine instruction, forming an instruction fetch/execute

style of loop. The abstract machine transition for the STOP instruction is clarified

by transferring to the idle state, instead of looping infinitely. The Error states

are only entered upon exhaustion of memory. This is a necessary error condition,

consistent with the previous level view.

An external input labelled button controls the state transitions from the Error

and Idle states. The use of separate inputs could have eliminated the need for the

second error state at this level', but a concern over the number of pins available for

inputs mandated a single signal. An external reset input has also been included to

permit a deterministic startup of the machine. Simulations to this point have always

begun with the same sequence of operations, and modelling the controller as a finite

state machine similarly required selection of the startup state. The assumption of

this initial state was most simply implemented by the reset input, along with a

constraint that the reset be asserted in the initial clock cycle.

This level is not independent from the abstract system or abstract register transfer

views of the SECD. Instead, it is a particular view of the system that is useful in

formalising the behaviour of the system. Nor is a simulation model directly related

to this level. Instead, we see the next level simulation incorporating the notion of

major state by adding a state value at suitable points in the control sequence.

'Requiring distinct values on incoming transitions from those for outgoing transitions from the
state make the signal timing less critical.

CHAPTER 4. 48

4.4 Internal Architecture

The Top FSM Level describes the external architecture control interface, but leaves

some other aspects of the external architecture unresolved, such as data representa-

tion, clocking, and external memory interface. Each of these are affected by decisions

taken at lower levels of design, and are determined in concert with the internal ar-

chitecture.

4.4.1 The Abstract Register Transfer Level

The internal architecture of the SECD chip begins development with the definition

of the Register Transfer Level view. The SECD machine at this stage is seen as

a set of registers, combinational logic units, a bus linking the components, and a

memory. The state transformations are effected by shifting values between registers

and memory, using combinational logic to perform such functions as cons, car, and

cdr. The sequence of operations required is the model for the controller, which at this

stage still retains some higher level control structures such as "if ... then . . . else",

"case", and "while".

The S-expression data type, which is the "stuff" of SECD machine programs and

data, is composed of three types of objects: numbers, symbols, and cons records. A

simple mark and sweep garbage collector required the use of two bits in each record.

Two additional bits indicate the "type" each record contains.

Numbers were permitted to range over integers (rather than the natural numbers),

consistent with the definition of SECD.

Symbols represent atomic values which can only be tested for equality with each

other. Thus, a distinct symbol identification number is a suitable representa-

tion. The "meaning" of the symbol (or its written form) is of concern only

on input and output operations, and hence assignment and interpretation can

CHAPTER 4. 49

be handled entirely outside the SECD chip (by the compiler, since new sym-

bols cannot be created in the course of executing programs). Three symbolic

constants (NIL, TRUE, and FALSE) are required by the SECD chip, and were

"built-in" at this stage.

Cons records represent a pairing operation of S-expressions. In typical Lisp fashion,

these are implemented by pairs of pointers to other cells. The size of pointer

determines the memory address space, and hence the maximum problem size

that the machine can compute. As a minimum, it was felt that the SECD

machine should be able to run the Lispkit compiler on Lispkit programs, and

this required approximately 212 words. This set a lower bound of a 28 bit word

((2 x 12) + 4). The availability of memories in multiples of 8 bits made 32 bit

words an appealing choice.

The final word configuration is as follows:

constant value
or

symbol id
or type,

gc bits bits car cdr

292827 ... 1413 ... 0

The 5, E, C, and D stacks are implemented as 14 bit registers that contain

pointers to S-expressions in memory. The free list, used to allocate unused cells as

required by the computation process, is similarly implemented by a register holding

a pointer to the free list in memory. Further registers were added as their need was

determined. Working registers xl and x2 were added, to permit computation of

intermediate results as arguments to a cons operation. A memory address register

(mar) was added to select memory locations. A 32 bit arg register was added to

hold integer or symbol arguments for alu operations, and generally for holding 32

CHAPTER 4. 50

bit records read from memory, including the machine instruction codes. The output

of the alu is connected to two 32 bit buffer registers. The 32 bit bufl register is

necessary since the integer and symbol inputs to alu operations come from the arg

register and the bus, and the 32 bit output must be written to some other register.

The second buffer, bu12 is used only by the mark routine of the garbage collector,

to prevent any loss of an arithmetic result being held in bufi.

With each addition to the hardware, a functionality or role was determined, and

thereafter this functionality was respected. Non-transparent uses of components

was avoided, with the expectation that this would make the verification task more

manageable. The clearest indication of this approach is the provision of separate

registers: root, parent, yl, and y2 (in addition to buff mentioned above) for use by

the garbage collector.

The description of this level is contained in a simulation characterized by data

records consisting of 32 bits, 14 bit pointers, a fixed set of registers, and the modelling

of memory, control and combinational logic elements by high level routines. Table 4.1

shows the code for the AP instruction for this level simulation.

The instruction sequence in the simulation was systematically derived from the

previous abstract system level simulation. The bus function used for all data transfers

models a gingle bus architecture, which was selected for simplicity. The three data

structure operations are translated as follows:

car(z): bus(mar = z);
bus(xl = carvalue(memory[mar]));

cdr(z): bus(mar = z);
bus(xl = cdrvalue(memory [mar]));

cons(zl,z2): bus(x2 = z2);
bus(xl = zi);

consx1x20;

Five combinational logic elements are indicated. These are the ALU, the fiagsunit,

the consunit, and the carvalue and cdrvalue units. The latter three implement the

primitive operations on records. The first two require further elaboration.

CHAPTER 4. 51

x2 := (cons (cdr c) d)
bus(x2=d);
bus(mar=c);
bus(xl=cdrvalue(memory[mar]);
co11sx1x20;
bus(x2=mar)

bus (xl=e);
consxlx2O;
bus(x2=mar);

bus(mar=s);
bus(xl= cdrvalue(memory [mar]);
bus(mar=xl);
bus(xl=cdrvalue(memory [mar]);
consxlx2O;
bus(d=mar);

bus(mar=s);
bus(x2=carvalue(memory[mar]);
bus(mar=x2);
bus(x2=cdrvalue(memory[mar]);
bus(mar=s);
bus(xl=cdrvalue(memory[mar]);
bus(mar=xl);
bus(xl=carvalue(memory[mar]);
consx1x20;
bus(e=mar);

bus(mar=s);
bus(c=carvalue(memory[mar]);
bus(mar=c);
bus(c=carvalue(memory[mar]);

bus(s=NIL);

resulting cell address is in mar

x2 = (cons e x2)

d = (cons(cdr(cdr s)) x2)

e = (cons (car(cdr s)) (cdr(car s)))

c = (car(car s))

s = NIL

Table 4.1: Initial RTL Microcode Sequence for AP Instruction

The ALU primary function is the computation of values for the arithmetic SECD

machine operations: ADD, SUB, MUL, DIV, and REM. Additional operations were

required for the garbage collector, including setting and clearing of the mark and field

bits, and the destructive replcar and replcdr operations used for the in-place traversal

CHAPTER 4. 52

of the data structures in memory. These operations were masked previously by

recursive functions implementing the garbage collector. Lastly, there was a decrement

operation, used in looking up values in the environment. It was also used in the

"sweep" phase of garbage collecting to step through the memory address space. The

high address value was built-in as a constant to provide a starting point for the

sweep. The two uses had distinct data type arguments: the first used integers, while

the second was applied to addresses. Thus, the 14 bit addresses had to be padded

out with zeros to make 28 bit integers. For this purpose, a constant register (the

clearunit) loads zeros onto the upper 14 bits of the bus when required.

The fiagsunit returns the boolean result of predicates used both for the control

of the if... then ... else and the while structures, as well as computing the SECD

machine operations EQ and LEQ. Figure 4.2 summarises the operational part of

the architeture at this level, and pictures the control part as a classic finite state

machine.

4.4.2 The Concrete Register Transfer Level

The next level of refinement concentrated on transforming the control sequence into

the final series of microcode instructions. The transformation was accomplished in

several steps, and the final resulting sequence was then compiled into a binary image

used to generate a microcode ROM.

A microcode sequence was generated from the abstract register transfer level

model by mechanically translating each of the 4 higher level functions into an in-

struction sequence as follows:

bus(z = w) - rw wz

bus(z = carvalue(memory[mar])) - p rmem wcar; rcar wz

bus(z = cdrvalue(memory[mar])) -* rmem wz

consxlx2() -* call(0onsx1x2,$)

CHAPTER 4. 53

RAM

reset

button

wmem
 rmem

wmar
 rmar

a
0
M

D
E
C
0
D
E

mum

 mu

 rtrue

rfalse

 W8
 rm

- W ree
rime

wparent
.r parent

we
re

wc
 mc

 w
r

wroot
rroot

war
 mar

ralu

alu{12}

 wl, runu

 wrunbu

opcode{9}

 flage{7}

 I MAR I

CLEAR

i-J bdir pa

 ' READMEMJ

NUM

NIL

I TRUE

FALSE

C

S

 1DI

xi

X2

CONS 1
CAR

FREE

 IPARENTI

 ROOT 1

 I Yi

 I Y2 I

FLAGSUNIT

ARG

ALU

t

BUF1

BUF2

Figure 4.2: Register Transfer Level View of SECD Machine

CHAPTER 4. 54

A simple transfer of values on the bus became simultaneous read and write signals

to the appropriate registers. The car operation required that the word be fetched

from memory, and its car field be accessed by writing it first to the car register, and

thence transferring it on the bus to the desired register. It was assumed that the

cdr field could be written directly from the memory to the selected register. Finally,

the cons operation was called from so many different locations that it was treated

as a subroutine call, with the following microcode location as the second parameter

to enable a return from the subroutine on completion. The new control sequence for

the AP instruction is shown in Table 4.2.

The set of datapath register (and memory) control signals was now established,

as were the 12 ALU operations given in the previous level. Control mechanisms for

the microcode (ie. the third column in the above microcode sequence) consisted

of five types: unconditional jumps, conditional jumps, subroutine calls, subroutine

returns, and a jump table that uses the current machine instruction value. Of these,

the conditional jumps and subroutine calls both required two addresses, while the

others required a single address argument. The subroutine mechanism required a

microaddress stack. Eight conditional jump instructions had conditions:

• the value of the button input

• is the argument an atom record

• the EQ operation applied to 2 arguments

• the LEQ operation applied to 2 arguments

• is record equal to the symbolic constant NIL

• is the record equal to the symbolic constant TRUE

• is the mark bit set

• is the field bit set

CHAPTER 4. 55

!D:
112, rd wx2
113, rc wmar
114, rmem wxl
115,
116, rmar wx2
117, re wxl
118,
119, rmar wx2
120, rs wmar
121, rmem wxl
122, rxl wmar
123, rmem wxl
124,
125, rmar wd

126, rs wmar
127, rmem wear
128, rear wx2
129, rx2 wmar
130, rmem wx2
131, rs wmar
132, rmem wxl
133, rxl wmar
134, rmem wear
135, rear wxl
136,
137, rmar we

138, rs wmar (jump 139)
139, rmem wear (jump 140)
140, rear we (jump 141)
141, re wmar (jump 142)
142, rmem wear (jump 143)
143, rear we (jump 144)
!S:
144, rnil ws (jump 145)
145,

(jump 113)
(jump 114)
(jump 115)
(call ("Consx1x2", 116))
(jump 117)
(jump 118)
(call ("Corisx1x2", 119))
(jump 120)
(jump 121)
(jump 122)
(jump 123)
(jump 124)
(call ("Consx1x2", 125))
(jump 126)

(jump 127)
(jump 128)
(jump 129)
(jump 130)
(jump 131)
(jump 132)
(jump 133)
(jump 134)
(jump 135)
(jump 136)
(call ("Consx1x2", 137))
(jump 138)

(jump "top-of-cycle")

bus(x2=d);
bus(mar=c);
bus(xl=cdrvalue(memory[mar]);
consx1x20;
bus(x2=mar);
bus(x1=e);
consx1x2Q;
bus(x2=mar);
bus(mar=s);
bus(xl=cdrvalue(memory[mar]);
bus(mar=xl);
bus(xl=cdrvalue(memory[mar]);
corisx1x20;
bus(d=mar);

bus(mar=s);

bus(x2carvalue(memory[mar});
bus(mar=x2);
bus(x2=cdrvalue(memory[mar]);
bus(mar=s);
bus(xl=cdrvalue(memory[mar]);
bus(mar=xl);

bus(xl =carvalue(memory [mar]);
consxlx2O;
bus(e=mar);

bus(mar=s);

bus(c=carvalue(memory[mar]);
bus(mar=c);

bus(c=carvalue(memory[mar]);

bus(s=NIL)

Table 4.2: Intermediate RTL Microcode Sequence for AP Instruction

These values are the flagsunit outputs. Additionally, the datapath also sends the cur-

rent machine instruction value to the controller. The controller thus has 12 distinct

ways of selecting the next microinstruction address.

CHAPTER 4. 56

This evolution was suitable for mechanical rewriting, ignoring optimizations that

would be obvious to the reader. The final microcode evolved through several succes-

sive refinements, aimed at reducing the ROM size. The major optimizations include:

• A peephole optimization run eliminated unnecessary bus transfers using the

working xl or x2 registers, when the value could be transferred directly to the

required register in one operation.

• The high memory address was used to hold a pointer to a downloaded problem

in memory, and to hold a pointer to the result on completion of computation.

This used the high address constant built in previously for use by the garbage

collector.

• An additional level of subroutining was added to share common code sequences

in arithmetic and logical SECD machine instruction sequences.

• Slight revision to the ordering of conditional jump instructions was made so

that the following microinstruction was always the default next address. This

permitted the elimination of this default address field as an explicit value in

each microcode instruction, since the only other instruction using two addresses

was the subroutine call, and the return address parameter to a subroutine call

was always the immediately following address as well. Thus, at most one ad-

dress field was required in each microinstruction. The unconditional jump

instruction was divided into remote jumps and jumps to the following microin-

struction, with the latter not needing a specified argument. This increased the

number of ways of choosing the next mpc (microprogram counter) contents to

13.

The final version of the microcode for the AP instructions is shown in Table 4.3.

Our modelling of the chip implicitly assumes an external RAM, since an outside

agency is expected to download problems and upload results, and there is no provi-

CHAPTER 4. 57

L("AP");

/*E*/

1* S *1

rd ; wx2

re ; wmar
rmem ; wxl
rmar ; wx2
re ; wxl

rmar ; wx2
rs ; wmar
rmem ; wxl
rxl ; wmar

rmem ; wxl
rmar ; wd

rs ; wmar
rmem ; wear

rcar ; wmar
rmem ; wx2

rs ; wmar
rmem ; wxl
ixi ; wmar
rmem ; wear

rcar ; wxl
rmar ; we

rs ; wmar
rmem ; wear

rcar ; wmar

rmem ; wear

rcar ; we

mu ; ws

(inc 0)
(inc 0)
(call ("Consx1x2"))

(inc ())
(call ("Consx1x2"))

(inc 0)
(inc 0)
(inc 0)
(inc 0)
(call ("Consx1x2"))

(inc 0)

(inc 0)
(inc 0)
(inc 0)
(inc 0)
(inc ())
(inc 0)
(inc ())
(inc 0)
(call ("Consx1x2"))

(inc 0)

(inc ())
(inc 0)
(inc 0)
(inc 0)
(inc ())

(jump ("top_of_cycle"));

11

Table 4.3: Final Microcode Sequence for AP Instruction

sion in the model for handing control of the memory to the external agency. External

RAM is consistent with the simplicity criterion, and focussed our effort on the mi-

croprocessor design, rather than the distinct concerns of RAM design. The RAM

is treated as just another, though addressable, register, with read and write signals

CHAPTER 4. 58

controlling it. It was expected that the RAM would default to a read operation, and

the rmem control line would control its gating onto the bus.

This implementation of the controller is a classical finite state machine design,

with the state held in the mpc register (this is extended to include the microcode

stack registers as well), changing with each microcode instruction executed.

4.4.3 The Mossim Level

The register transfer level defines both a control part (the microcode) and an opera-

tive part (the registers, logical units, bus, and memory). The given operations can be

completed within a clock cycle, and indeed, the time quantum of the model matches

the clock frequency. The next level will model the SECD down to transistors, where

the design of the memory devices and the clocking scheme are the major issues.

The simulation used at this level is an implementation of Randall Bryant's

Mossim simulator, written in C by Jeff Joyce, with a Common Lisp interface, called

CDL, written by Breen Liblong. It models the circuit as a network of asynchronously

operating switches, which settles to a stable state between changes in clock inputs.

The complete CDL definition of the SECD chip is available in [GWB89]. The

Mossim level model was used to capture component design for simulation, and also

guided the actual layout. Layout decisions determined the Mossim definition, and

the Mossim model was used as a suitable form to define the components then imple-

mented in the layout.

Previous views of the SECD divided it into two major functional components:

the controller and the datapath. As described earlier, these two parts were developed

somewhat independently, and it was felt that they should be independently testable.

If a flaw occurred in one component, testing of the other component would still be

possible. To meet this objective, and previously stated testability concerns, it was

decided to add a bank of shift registers between the two components, which could

CHAPTER 4. 59

be used to trap all, or most, signals passing between them.' The largest Mossim

simulation did not include the shift registers. The shift registers are intended to

be transparent during normal operation, and their inclusion would have made the

simulation too massive. The shift registers were specified and tested independently

however.

4.4.3.1 Memory Elements and Clocking

Level-triggered latches were selected largely for reasons of space and transistor count

efficiency. Level triggered latches are also in keeping with the view of circuits pre-

sented in [MC8O] as a system of opening and closing valves. In some sense, level

triggered latches can be viewed as falling edge triggered, although the previous state

is lost at the start of the clock pulse.

Implementing the controller as a finite state machine requires buffering between

current and next states. This was achieved by the use of a two-phase non-overlapping

clocking scheme and paired master/slave registers, along the design style described

in [MC8O]. The state register in the control unit is the mpc register, but in a more

general sense, the values on the 4-deep microcode subroutine stack are also part of

the state. In the following discussion, references to the mpc register can be applied

similarly to the stack registers. The mpc register is actually the slave register, the

master is labelled nextmpc. Nextmpc is clocked on the OA phase, and mpc on

the OB phase. The control unit state is considered to change on B. Using the

terminology of Anceau [Anc86], this arrangement for synchronization of the circuit

uses "mixed polyphase mode", and will be stable if a wait state is present in the

clock cycle. The short time required to pass values from nextmpc to mpc along with

a sufficiently low frequency ensures a wait before OB rises.

2Detai1ed listings of signals in the shift registers are given in [GWS89].

CHAPTER 4. 60

Particular attention was paid to possible race conditions. One example was the

possibility of generating transient "write" signals from the ROM when the value

mpc is changing. The solution was to delay latching of the datapath registers until

after the mpc is latched (and the value propagated). Use of the inverse clock signal

() was still subject to race conditions 3, so the OA phase was used. The clocking

scheme requires that inputs to registers latching on OA be stable prior to the end

of the OA pulse. The overall view of the chip now sees the control unit as changing

state on q' and the datapath changing on OA.

The first layout iteration, and the Mossim simulation, really did not properly

account for the operation of the external memory. It was expected that memory

outputs would float unless the rmem signal were asserted. Capacitance induced

delays of signal switching and power dissipation caused by both memory and SECD

devices driving external lines simultaneously for some overlapping interval were seen

as potential problems later. Thus, a more considered memory interface timing was

developed (described in detail in [GWS89]), and the new control signal logic added

in a design revision.

4.4.3.2 Control Unit

Several key decisions directly affected the design of the control unit:

• the encoding of the microcode

• the interface between the control unit and datapath.

• the choice of signals trapped by shift registers.

A simple view of the ROM has a fully horizontal microcode, with discrete outputs

for each read, write, and alu control signal (23, 17, and 12 signals respectively).

'One could devise a scenario where the signal overlaps the start of the c'B pulse, and thus
random write signals may be generated.

CHAPTER 4. 61

Further, the address field required by the goto, subroutine call, and conditional

jump instructions was nine bits (since the microcode length was approximately 400

instructions). Lastly, the method of selection of the next microinstruction has 13

possibilities. A fully horizontal microcode ROM would be 9 x 400 x 74. With a

square pitch of 12.5A for the ROM layout, in the 3t process, the ROM size was

approximately 2.06 x 7.5 mm, excluding routing to and from, and buffering of inputs

and outputs. While this size ROM might fit on the chip, it was felt that it could

be reduced considerably, and in the process line capacitance would also be lowered,

thereby providing a higher probability of reliable operation.

Microcode characteristics were thus re-examined in the search for an encoding

scheme. The mutually exclusive assertion of individual read, write, alu, and test

signals during any cycle suggested these signals should be encoded. The number

of distinct combinations of control signals in a microinstruction numbered approx-

imately 120, while the number of distinct combinations of read and write signals

numbered approximately 86. Further, the address and alu fields are sparse in the

microcode; alu instructions appeared 17 times in total, while the address field was

used approximately 118 times. The simple encoding of read, write, alu control, and

test fields to microinstruction fields was selected, since it was a natural way of break-

ing up the signals, permitting easier examination for error detection, and would be

a simple encoding to verify later on. This reduced the microinstruction word length

to 27 bits.

Physical arrangements for the ROM layout were also considered. The sparse

address field, and the correspondence between the use of this field and the test field

selecting other than the next instruction, suggested using two ROM devices, one

for the read, write, and alu fields, and the other for the address and test fields.

The two devices would be 9 x 400 x 14 and 9 x 115 x 13 respectively. The alu

fields could be generated directly from the address decoder outputs, and reordering

CHAPTER 4. 62

the decoder outputs (to something conceptually closer to a PLA structure than a

ROM) could enable sharing of a single decoder between the 2 devices. This scheme

was abandoned, largely because of its complexity, and the implicitly inconsistent

treatment of outputs, and the line lengths resulting from the need for the full 9 x

400 decoder. Also, the savings generated by the simple encoding already brought

the ROM into an acceptable size. Reduction of the length of internal lines in the

ROM was achieved by the transformation to a 7 x 100 x 104 ROM, with two bit

column decode. This produced a nearly square device, and considerable flexibility

in the control unit layout. The ROM layout was generated automatically from a bit

pattern produced from the microcode simulation of the previous level. The decoder

component is a fully complementary CMOS device, while the ' OR' is implemented in

a pseudo NMOS design, using pullup transistors in each column, and n-type devices

exclusively in the plane.

Since deciding to have the ROM output encoded signals, decoders were required.

It was possible to decode fully within the control unit, or permit the datapath to

decode. The decoders were included in the control unit because they did not easily fit

with the bitslice dominated layout approach of the datapath. Further, if the decoded

signals were routed through the shift registers, more flexible control was available

in debug operation mode. The same automated ROM/PLA generator was used to

produce the layout of all 3 decoders.

The 13 alternative methods of selecting the next microcode instruction select

from only 4 possible values:

• the address following the current one in the microcode,

• the address supplied as the A field in the microcode,

• the SECD machine instruction code (opcode), and

• the value on top of the microcode subroutine stack.

CHAPTER 4. 63

A 4 x 1 MUX gates these values to nextmpc register. The mux control signals

are generated by a test field of the microcode, in combination with the value of

the flag and button inputs. The logic is implemented in a PLA, again generated

automatically.

A bit-slice approach is used for the mpc and nextmpc registers, the microcode

stack, and the logic to implement the selection of the next microinstruction. The

required control signals for this are generated from a single row of random logic.

Other signals, such as the control for the bidirectional i/o pads, were generated from

random logic that was located with the PLA device.

4.4.3.3 Datapath

While symbol and cons record representation was fixed at an earlier stage, the rep-

resentation of integers was left until the design of the datapath. The use of the

alu to decrement addresses as well as integers required that the mapping of 14 bit

addresses to 28 bit integers (accomplished by clearing the upper 14 bits) should be

consistent with the representation of integers. While both two's complement and sign

magnitude conformed to this constraint, the use of two's complement representation

produced a simpler alu implementation.

The datapath was designed around a 32 bit bus, connecting all the registers and

combinational logic devices. Most registers are simply 14 bits, connected to the cdr

field of the bus, aside from the alu output buffer registers and the arg register which

are all 32 bits. The car register inputs are connected to the upper 14 bit address

field of the bus, while its outputs are connected to the lower (cdi') field. The xl

register inputs and outputs both connect to the cdi' field of the bus, but the output

additionally connects to the car field inputs of the consunit. . The clearunit sets

the upper (car) field of the bus to zeros when the mar or num registers are read,

because these are the sources of addresses that are decremented by the alu. This

CHAPTER 4. 64

operation effectively maps a 14 bit address to a 28 bit integer. The alu was simplified

by omitting the three most complex (in terms of area) operations: mul, div, and rem.

Their op codes were not eliminated however, and the implementation defaults to the

dec operation.

Registers are grouped into subcomponents: regs-14-misc, regs-14-car, regs-

14-y2, regs-32-arg, and regs-32-bufs. No error checking of type bits is imple-

mented for any operations in the datapath. Logical alu operations maintain the

(unaffected) bits, while the arithmetic operations produce 32 bit output with the

type bits set to integer, and both mark and field bits cleared. Similarly, the con-

sunit outputs a 32 bit value with record bits set to cons and mark and field bits

cleared.

Once the padframe was designed, it was found necessary to add one additional

unit to the datapath. This read-mem unit allows the input values from the bidi-

rectional pads to be passed onto the bus only when the rmem signal is high. This

is necessary since the bidirectional pads were designed as write-enabled, and default

to input mode. The busgates prevent the pads from writing onto the bus when not

reading from memory.

4.4.4 Layout

A full custom design was selected in preference to gate array or semi-custom using a

standard cell library. The design was too large for available 1ST gate array dies at the

time, and no semi-custom layout tools were at hand. Our team had the expertise to

undertake full custom design, and it also provided a better learning experience than

the other options. Further, non-custom designs suffered from constraints, including

the number of gates in gate array, and the availability of suitable cell libraries. Full

custom fabrication was available through MOSIS, with a clear and concise set of

CHAPTER 4. 65

scalable design rules. The layout design was completed using the 'Electric' system

([Rub87]).

4.4.4.1 Floorplanning

Mosis offered a 3t double metal p-well CMOS process, in dies that permitted maxi-

mum project sizes of: 2.3 x 3.4 mm, 4.6 x 6.8 mm, 6.9 x 6.8 mm, and 7.9 x 9.2 mm.

Initial estimates indicated the largest size would be required, and this size became a

fixed constraint. A lengthy delay between the completion of the layout (late 1986)

and the chip fabrication (fall 1988) permitted us to use the 2y process introduced

by Mosis in the interim. The use of scalable design rules was vital in enabling us to

take advantage of the new technology without any redesign.

The major functional components, namely the datapath and controller, from the

register transfer level were maintained as major floorplan elements. The shift register

block was located between these two, and all were surrounded by a padframe.

4.4.4.2 Design Guidelines

The project team had already completed a microprocessor layout (the Tamarack24)

and thus had some experience in layout. The design would use a cell library, with

guidelines rigidly controlling the cell designs. Power and ground rails occurred at the

top and the bottom of cells in metal-2, and bit slices were arranged so one rail was

shared between two adjacent slices. Data generally flowed horizontally through the

cells in metal- 1, while control signals and clock lines run vertically in polysilicon. The

use of metal-2 was restricted within cells to the rails, so that it could be freely used

for horizontal interconnect running over the cells without any design rule violations.

Cell height was selected based on the example of past work, and by building

sample cells using different heights. An optimal value of 86A was selected. Each

4A second implementation of the Tamarack chip, an implementation of Gordon's toy com-
puter [Gor83b], was undertaken by the VLSI group as a warm-up for the SECD project.

CHAPTER 4. 66

cell was to be self-sufficient, so all required well/substrate contacts were internal.

Port locations and boundary clearances were standardized, and multiple instances

of ports was encouraged to ease cell composition.

All library cells were defined and exhaustively simulated in Mossim. Layout

cells used the same root name for ports as the Mossim definition, and a one-to-one

correspondence between the two definitions was attempted through all levels in the

design hierarchy. The XOR cell was an exception, since Mossim could not correctly

model the 6 transistor design actually used.

4.4.4.3 Shift Registers

The shift register block is a simple device used in the previous Tamarack2 design. It

uses separate controls and clocks5, and is used to take a "snapshot" of the state of

the chip, or to enter a vector for testing. Every signal that was considered reasonably

useful for testing was routed through the shift registers. This included all read, write

(except the write memory signal which was initially expected to be exported directly),

and alu signals, the status flags from the datapath, and additionally, the mpc contents

(the lines between the mpc register and the ROM), and the control signals for the

4 x 1 MUX feeding the nextmpc register, and controlling the microcode stack. In

total, 72 bits are trapped by the shift registers. The only value passing between these

components that was not trapped was the machine instruction code. Pass through

lines were provided in the shift registers for this signal. Additionally, the control

signal for the bidirectional pads, which was added at a late stage in the design,

was not trapped. This made examining datapath register contents more difficult, as

described in [GWS89], so the wmem signal was also routed through the shift registers

in a later version.

'The use of distinct clocks for system and shift registers was chosen to simplify the logic de-
sign and improve the probability of obtaining working subcomponents on the chip by minimizing
operational dependencies.

CHAPTER 4. 67

4.4.4.4 Padframe

The original die size and package had a limit of 64 pins. Bidirectional pins (32) were

used for the bus to memory link. The MAR output required 14 pins, system clocks 2

pins, control inputs 2 pins, state output signals 2 pins, shift register controls, input,

and output a total of 4 pins. 2 pins were used for the separate shift register clocks,

instead of using one pin for a clock control input. Lastly, 2 power and 2 ground pins

were used. A pair of power and ground pins (called dirty power and dirty ground)

drive the pads only, to reduce noise on the supply lines to the chip, while the other

pair drives the rest of the chip. In the final layout, the distribution of the pads

around the chip perimeter was constrained by the number of bonding fingers along

each cavity edge of the package, and a maximum 45 degree angle of bonding wires.

Simple input and output pads contain no logic, aside from buffering outputs,

but the design of the bidirectional pads required more effort. When used in output

mode, the pad had to increase the drive strength of the signal. A step-up buffer was

used for this, but it must not drive in input mode. Thus the circuitry turns off both

n and p-transistors by providing 0 and 5 volt gate inputs respectively. The designs

were simulated using SPICE, and switching times in the 20 nanosecond range were

achieved using a load capacitance of 50 pf. This speed was quite acceptable, given

the constraints stated earlier.

4.5 Summary and Status

The preceding description of the design process used on the SECD gives a general

context in which the decisions affecting the design were made. The hierarchical levels

of description are summarised in Table 4.4. The scope of the project described was

considerable, and involved a team of up to 9 individuals at various times.

The author's involvement in this process included:

CHAPTER 4. 68

resetbutton flagO flagi

sbin -

sr _PA

shift -

test -*

In
a
r

[14]

pad frame
a a

reset button flagO flagi

control unit bidir

—si opcode write-bit
rom- eel. W

add mpc readwrite flag a u out'esel's

(91 (9] (23] (17] [7] (12] (5) (51 en

I I
hi -

o. srP4
o. erB shift registers shout

shift
test

V

4-

4-

-

p

readwrite flag a u

- opcode [22] (16) (7] (12]

4-
mar.
bits

rmerr

bus,
datapath unit bits

bus.
pins

4-

4-

pad frame

- shout

rmem

b
U

[32]

Figure 4.3: SECD Chip Major Subcomponents

• the design of the Mossim definition of the control unit [GWB+89],

• floorplanning design of the control unit,

• responsibility for the layout of the control unit component of the chip [BGJ89],

• preparation of the operating specification for the chip along with a preliminary

test methodology [GWS89], and

CHAPTER 4. 69

• continued involvement in coordinating later modifications and revised specifi-

cations for the fabricated design.

The detailed description of the design given will aid the reader in understanding

the formal definition of the system presented in the following chapter. Of particular

importance is the timing scheme, and the relation between the levels which are

formally described.

Two versions of the SEOD chip have been fabricated. The first had a design

error in the shift register component which made the chip entirely nonfunctional.

This was purely a layout error, where the layout did not correspond to the Mossim

model. The second design also has a flaw in a primitive gate, and once again, the

cell layout did not correspond to the Mossim description of the circuit. Testing of

this version of the chip is presently continuing, in concert with developing software

for a chip controller board described in [Wil89].

CHAPTER 4. 70

Level time
quantum

Simulation model Introduced concerns/
design decisions

Abstract
Machine

SECD
instruction
cycle

SECD interpreter written
in Franz Lisp:
lisp data structures and op-
erations (car, cdr, cons);
recursive functions

learning exercise only

Abstract
System

SECD
instruction
cycle

written in C:
high level language con-
structs, data types;
external read and print
routines;

finite memory, garbage col-
lection, memory exhausted
error

Top
Level
FSM

SECD
instruction
cycle

none chip control and control in-
puts, states, repeated com-
putations

Abstract
RTL

varied num-
ber of clock
cycles

C simulation:
higher level constructs (if-
then-else, case, while);
high level routines for cons,
car, cdr

operative part of internal
architecture -

logic components, bus, reg-
isters, memory;
record types, data repre-
sentation, word configura-
tion;
in-place garbage collection

Concrete
RTL

clock cycle C simulation:
fully developed microcode
and operative part of archi-
tecture

implemented cons, car,
cdr;
flow control;
reserved memory locations;
memory interface

Mossim instants asynchronous switch level
model of transistors;
clock phases permit set-
tling of all subcircuits

clocking (timing architec-
ture);
memory element design;
testability

Layout none floorplanning, electrical
characteristics

Table 4.4: Levels of Definition Summary

Chapter 5

Formal Specification of SECD

The SECD example differs from previous hardware verification subjects in the

functional nature of the machine. Its support for procedures and recursion provide

more complex instruction and memory state transitions than do traditional archi-

tectures. The chip is also significantly larger than many previous examples. These

concerns combined with the complicated nature of the transitions made the manage-

ment of complexity a larger issue.

Because of the complexity of the SECD chip, it is not possible within the scope of

a thesis to give more than an outline of most of its component specifications: they

are simply too large to be included in their entirety. All we can do is give a flavour

of the work.

A full HOL specification of the SECD system is given in [Gra89a]. The definitions

alone comprise some 70 pages (4000 lines) of HOL source.

The formal specification of the SECD chip consists of three levels of description:

• the top level specification, which defines the programming level model,

• the register transfer level definition, which defines the internal architecture

in terms of multi-bit registers and functional components, and

• the low level definition, consisting of primitive logic gates, single bit latches,

and transistor networks for regular structures such as ROM's and PLA's.

The lowest level corresponds closely to the layout and Mossim hierarchies, although

the definitions of simple logic gates do not go all the way down to the transistor

71

CHAPTER 5. 72

level.' This is the model we wish to relate to the top level specification, but the

problem size demands at least one intermediate level to abstract out some of the

complexity. The intermediate level chosen corresponds very closely to the Concrete

RTL view of the design development, and is the highest level which still expresses

the internal architecture structure and control.

This chapter focuses on the RTL and top levels, limiting discussion of the low

level to a few key elements that impact the sequel. It begins with a description

of how hardware is modelled in HOL, and the data types and primitive operations

common to all levels.

5.1 Modelling Hardware

This research is concerned with bistate logic and logic devices, and uses boolean

values to represent levels of electrical charge, with T and F representing 5v and Ov

respectively. Signals that vary over time are represented by functions from discrete

time, represented as : num values, to values of the appropriate type. For example,

a single bit signal will be of type : num->bool. More complex datatypes may be

built from single bits, particularly bit vectors. At the lowest level, we may describe

a group of signals from time (i.e. :nuin) to : bool, while at a higher level it may be

preferable to describe a signal from time to a group of : bool values, and relate the

two with an abstraction function.

Primitive combinational hardware devices are represented in HOL by predicates

which express logical relations on time-dependent input and output signals. For

example, a 2 input nand gate would be expressed by the relation:

NAND-spec a b c = !t:nuin. c t = (a t A b t)

'[SBGS89] contains a complete library of combinatiOnal logic gates down to a simple transistor
model.

CHAPTER 5. 73

This expresses the fact that the output c at time t will be the value expressed by the

nand relation on a. and b at that same time. Universal quantification over the explicit

time parameter indicates the relation holds at all points of time. Relations expressing

devices with a memory component include an internal state signal as well, and relate

signals at two different points of discrete time. For example, a simple D-type latch

can be expressed by the relation:

D-type cik in out = !t:ni.un. out(t+1) = cik t => in t I out t.

The composition of devices is expressed by conjunction with connected ports

sharing the same parameter. Hidden nodes are expressed using existential quantifi-

cation. For example, a 4 NAND gate implementation of an exclusive-or function

may be defined by the circuit:

XOR_imp a b c =

? ni n2 n3:nnm->bool.

(NAND-spec a b ni) A

(NAND-spec a ni n2) A

(NAND-spec ni b n3) A

(NAND-spec n2 n3 c)

Extensive use is made of signals representing fixed numbers of bits, referred to

as word types.2 This type is defined in terms of specified width buses of discrete

signals, where objects of type : *bus are defined using the constructors Wire for

the base case (discrete signal), and Bus for the addition of each subsequent signal.

They resemble nonempty lists. A specified word type object, such as a : wordl4

value used to represent an address, is created by applying the constant Word14 to a

(bool)bus of Width 14. Word14 is an abstraction function from the representing

type : (bool)bus.- The corresponding abstraction function : Bits 14 maps objects of

type : wordl4 back to : (bool)bus type objects. Constants of word type may be

2This data type definition was implemented by T. Meiham.

CHAPTER 5. 74

written as binary strings: #00000000000011 represents a 14 bit word that would be

interpreted as the number 3.

A simple memory can be defined as a function of type : wordl4->word32. Since

new values can be written to memory, it will be described as a function from discrete

time: : nuiu->wordl4->word32. Other examples of nonprimitive data types include

tuples and lists. [Gor86] gives a general description of describing hardware in the

HOL system.

As the unit of discrete time is different for each level of definition, a convention

is adopted of subscripting the explicit time parameters to indicate the granularity of

time intended, low level (fine grain) time t, RTL (medium grain) time t, and top

level (coarse grain) time t.

5.2 The Top Level Specification

At the most abstract level, the SECD machine is defined in terms of transformations

to S-expressions in the 4 stacks, as shown in Table 3.3. A formal specification of the

top level behaviour is ideally defined in terms of transformations to an S-expression

data type that closely resembles this elegant definition. The closer the resemblance

the better we are assured that the HOL specification captures the intent.

The method used by SECD for implementing recursive function definitions as

closures with a circular environment component raises the complexity of the data

representation problem considerably. Such circular S-expression lists, created by a

destructive operation, cannot be mapped to a simple recursive data type. Further,

structure is shared by S-expressions, particularly the environment component of

closures. Each mutually recursive function closure references the same environment,

which is also in the E stack. When a destructive replace operation is performed (by

CHAPTER 5. 75

executing a RAP instruction) to create the circular list structure, the change affects

the common component of all closures simultaneously.

Thus, a much more primitive representation has been chosen to describe the

top level specification, following on the work of Mason [Mas86, Mas88] on the se-

mantics of Lisp. Rather than directly defining transformations on structures of an

S-expression data type, an abstract memory type is defined which can contain repre-

sentations of S-expressions. Further, a set of primitive operations upon the memory

is defined, corresponding to the operations on S-expressions, namely cons, car, cdr,

atom, rplaca, eq, leq, add, and sub. The 4 state registers contain pointers to the

appropriate S-expression representation. Finally, an additional free pointer to the

free list structure is needed to define the cons operation. The state of the machine

is then defined by a tuple:

(S, E, C, D, Free, memory, FSM_st ate).

where the FSM...state is one of the 4 major states of the top level finite state machine

view of the machine (Figure 4.1).

The abstract memory type p is basically a function type: it = S - (6 x S U a)

where S is the domain of the function and a is the set of atoms: a = integers U

symbols. The set of symbols includes the symbolic constants: T, F, and NIL. The

domain of the function is chosen to be the type of 14 bit words (: wordl4), matching

the type that is used by the lower level definition. The definition of memory is

extended to incorporate garbage collection features by adding mark and field bits to

each cell:

p = S - ((bool x bool) x (S x S U a)).

Additionally, the garbage collection operations replacd, setf, and setm are included,

as well as a garbage-collect function, which was left undefined for this proof effort.

Extractor functions for the mark and field bits, and the integer and atom fields are

CHAPTER 5. 76

provided for the values returned by the p function. The relevant built-in functions

and their types are summarized in Table 5.1. To distinguish these abstract memory

functions, the function names uniformly begin with "M_".

Operation Type

primitive operations

H_Car, M_Cdr

H_Cons

(SxpxS) -+(5)

(5x5xpx5) —.(Sxpxs)

N_Eq, M_Leq

N_Add, N_Sub

(6x5xjix5)—+boot

(5x5xzxS)—.(5xpx6)

M..Replaca, M_Replacd

L.setin, N_setf

(SxSxpxS) —*(SxpxS)

(boot x 5 x p x 5) -+ (S x p x 5)

extractor functions

M..mark, N_field

M_Int_o

M_Atom_o

6 - p - boot

(6 x p x 6) - integer

(6 x p x 6) -+

predicates

H_Atom

HAS-cons

M...is_T

(S x p x 5) - h boot

(5 x p x 5) - boot

(5 x p x 5) - boot

auxiliary functions

H..garbage_collect

H_CAR, N_CDR

N_Cons_tr

(p x 5) -+ (p x 5)

(S x p x 5) -+ (5 x p x 6)

(SxSxpxS)—+(Sxpx6)

Table 5.1: Primitive Operations on Abstract Memory Data Type

For consistency, all functions take both a memory (p) and the free list pointer (5)

as the last items in the tuple argument, although the free pointer is not always used.

Operations such as M_Car, M_Cdr, M..Eq, M_Leq, etc. do not alter memory, while

M_Cons, M.Add, , M_setm, M_setf, M_Replaca, M_Replacd do alter one cell

CHAPTER 5. 77

in the memory, and thus must return the new memory. In order to permit composi-

tion of the primitive memory operations, the M_CAR and M_CDR functions are provided,

returning the unaltered memory and free pointer. For example, to access an argu-

ment to a LD command, we can write:

let m = M_Int_of(M_CAR(M_CAR(M_CDR(c,MEM,free)))).

The function M_Cons_tr simply, transposes the first 2 arguments of the M_Cons

function, to permit composition where the memory and free pointer arguments are

handed on from the computation of the first cons argument instead of the second.

LDF-trans (s:S,e:S,c:ö,d:S,free:5,MEM:p) =

let cell_mem...free_1 = N_Cons_tr(e,M_CAR(H_CDR(c,MEM,free)))

in

let cell..mem_free_2 = 11_Cons_tr(s , cell_mom_free_I)

in

(cell_of cell_mem_free_2, 'I. s %
0, '1.0%

M_Cdr(M_CDR(c,mem_free_of cell_mem_free_2)), 'I. c 7.

free-of cell_mem_free_2, % free %
mem_of cell_mem_free_2, % memory %
top-of-cycle) % state %

Figure 5.1: Transition for LDF Instruction

Figure 5.1 gives the top level transition specification for the LDF instruction.

Following this, in Figure 5.2 the next state of the machine is defined for each in-

struction, using the set of 21 such transitions, and the the top level specification

for the SECD is given. The top level function, SYS_spec, closely resembles the top

level finite state machine of Figure 4.1, with 4 states, 2 possible transitions from 3

of them, and 18 transitions from the top-of-cycle state, one for each (implemented)

machine instruction. The system must be assured of starting out in the idle state.

CHAPTER 5. 78

NEXT (s:5,e:ö,c:6,d:ö,free:ö,MEM:p) =

let instr =

in

((instr = LD)
I (instr = LDC)
I (instr = LDF)

I (instr = LEQ) =>

I%(instr = STOP) %

M_int_of(M_CAR(c,MEM,free))

=>

=>

(LD_trans

(LDC_trans

(LDF_trans

(LEq_trans

(STOP-trans

(s,e,c,d,free,MEM))

(s,e,c,d,free,MEM))

(s,e,c,d,free,MEM))

(s,e,c,d,free,MEM))

(s,e,c,d,free,MEM)))

SYS_spec (s: 6.) (e: 6, (c:5) (d:6)

(free:ô) (MEM:pc)

(button:bool) (state:state) =

(state O = idle) A

tc.

((s(t+1), e(t+1), c(t+1), d(t+1),
free(t0+1), MEM(t+1), state(t+1)) =

((state t, = idle)

> (button-pin t

=> (M_Cdr(M_CAR(NUM_addr, HEM t, free t))

NXL_addr,

H_Car(M_CA1t(NUM_addr, HEM t, free ta)),

NIL_addr,

M_Cdr(NU11_addr, HEM ti,,

HEM t, top-of-cycle)

I (s t, e t, c t, d t,
I(state te = errorO)
=> (button-pin t

> (S t, e t, c t,, d t,

I Cs t, e t, c ti,, d t,
I(state t, = errorl)

=> (button_pin t,

=> (s t,, e t, c t, d t,

I (s t, e t, c t, d t,
I'!. (state t = top-of-cycle) %
(NEXT (s t, e t, c t, d t,

free ta),

free

free

free
tc,

tel

MEN t, idle))

MEN t, errorl)

HEM t, errorO))

free t, MEN t, errorl)

free t, HEM t, idle))

free t, HEM

Figure 5.2: Top Level Specification

The given types of all system parameters have the subscript "a". This identifies them

as signals sampled at a coarse grain of time.

CHAPTER 5. 79

The type a was defined in HOL as the type : atom, and the type z was defined as

the abstract data type : (wordl4,atom) mfsexp...inem. Both types have associated REP

and ABS functions to map between the abstract and representing types. For exam-

ple, the term REP..infsexp...mem(memory: (word14,atom)mfsexpnem) has the type:

:wordl4->((bool # bool) # (wordl4 # wordl4 + atom)).

The type : atom is defined by the simple grammar: atom = mt integer I Symb num,

where mt and Symb are type constructors.

5.3 The Low Level Definition

The low level definition uses simple gates as base components, typically with simple

functions such as AND, OR, XOR, etc., and bears a one-to-one relation to the layout

of gates in the SECD chip.

The representation of time uses the coarsest granularity that captures the be-

haviour of the clock phases: using 4 points per clock cycle, one for each phase and

for the points between phases. The presence of two separate clocks, one for the

normal mode of chip operation, and the other operating the shiftregisters for test

mode, confused the representation. A full set of constraints were defined to describe

the operation of the clocks [GB89].

• A clock cycle always consists of nonoverlapping assertions of OA followed by

for either clock.

• The separate clocks do not cycle simultaneously. Once started each clock

always completes its cycle uninterrupted by the other clock.

• The system clock phase QB is asserted at powerup. The reset input is asserted

at this time as well, forcing the chip into a known initial state (see 5.4).

CHAPTER 5. 80

• Lastly, since the verification will only concern normal mode of operation, the

system clock will be the only clock that cycles.

Although restricting the chip to normal mode of operation, these constraints made

it clear that intervals of the fine granularity of time correspond to advancing either

clock.

The behaviour of level triggered latches at this time granularity would be cap-

tured adequately by the D-type definition given in section 5.1, with a clock phase

line as its first argument. However, the standard design regimen for 2-phase non-

overlapping clocking, that of linking memory devices clocked on opposite clock phases

with combinational logic, was violated in one part of the SECD chip design. Two

registers clocked on the same clock phase were wired in series, with the output of

the first feeding the input of the second through strictly combinational logic. This

odd circuit feature degrades chip performance, but at sufficiently slow clock rates the

chip can still function properly since the output of a level triggered latch changes at

the start of the clock pulse and no circular feedback path exists. This single piece of

questionable design affected the entire chip specification and added an obligation to

prove the impossibility of circular feedback. A modified definition of the primitive

latch was required to express this behaviour appropriately, expressing the present

state as a function of the clock signal and input at the present moment instead of

the previous moment.

latch clk inp state =

!t. state t = (cik t) => inp t I state (PRE t)

The regular structures, such as the microcode ROM, decoders, and a PLA can

be defined as logical functions, but their complexity is quite different from the rest

of the primitive gates. These regular structures were produced by automated layout

tools, and the transistor network produced was specified in HOL. The use of a pseudo

CHAPTER 5. 81

nMOS OR plane in the PLA and ROM required the use of a multi level logic, to

capture the floating value which will "pull up" to 5v in the actual device. The output

of the device will always be at a fully restored level, so the interface converts back

to a boolean data type. This work was similar to that reported in [Joy88].

5.4 Register Transfer Level Specification

The Register Transfer Level (RTL) model of the chip is similar in component hier-

archy to the low level view, but does not have the same depth. The lowest items in

the RTL hierarchy include devices such as multi-bit registers, which are non primi-

tive components of the low level hierarchy. The chip has 3 major components: the

control unit, the datapath, and the pad frame (CU, DP, and PF respectively). Gen-

erally, the primitive components are behavioural specifications for the corresponding

components at the low level.

Notably absent from this view is the shift register component. Under normal

operation, these are intended to be transparent to the operation of the chip, and thus

constraining their controls and the clocks appropriately at the lower level permitted

abstracting them out of this level of description completely. However, for future

compatibility with an extended specification that can include debug mode, a clock

signal SYS_Clocked was included to represent the cycling of the system clock lines.

This signal parameterizes every memory device in this level view.

5.4.1 Temporal representation

The time granularity at this level corresponds to clock cycles. Selecting which point

of the cycle to use for this time grain was complicated by the outputs of registers

clocked on different clock phases multiplexing into a register input (i.e. this is the

case when two registers clocked on the same phase are 'wired in series). The part

CHAPTER 5. 82

of the clock cycle over which the output of the register is stable is determined by

the phase clocking the register. In order to have a uniform temporal abstraction for

the time parameter for each input type, the point of the clock phase selected for

sampling at the RTL (medium) time granularity was during the assertion of the first

clock phase (9A) at the finer grain.

Two different types of registers were used. The control unit used pairs of latches

clocked on opposite clock phases, while the datapath registers clock write operations

on OA to prevent transitory spikes on state transitions from causing unwanted writes.

The low level circuit and the RTL specification for each are shown in Figure 5.3.

in-H latch

OA

—F--

reset

latch out
OB

MPC9 SYS_Clocked in out =

(out 0 = #000000000) A

(!tm .out (tm +1) = SYS_Clocked tm > in tml out tm)

in

OA
wr

out

reg in out SYS_Clocked wr rd state =
(!tm .state tm

SYS_Clocked tm > (wr tm > in tm I state (PRE tm))
I state (PRE tm)) A

(!tm .rd tm > (out tm = state tm))

Figure 5.3: Control Unit and Datapath Register Schematics and Definitions

CHAPTER 5. 83

In both definitions, the clock signal SYS...Clocked is an abstraction of the two

distinct clock phases (OA and and is asserted when the system clock cycles.

(Under the lower level clock constraints, the system clock always cycles.) Note that

the MPC9 register specification does not include the reset input explicitly. However,

the lower level constraints on the reset signal force an initialisation at power up,

and this appears as a determined value in the register at time tm = 0. The typical

datapath register has a gated output, and is clocked by both the system clock phase

and the specific write signal. The clock signal was included here to permit eventual

extension of the verification to the test mode of chip operation. The difference in

the definition of the registers and the choice of point on the time cycle can be seen

from the timing diagram in Figure 5.4.

OB J7

tf to

m

reset

mpc

arg

/
0

to +4 t0+8 to+12

1 2 3

/

Figure 5.4: Relating low and RTL times

The reset signal is held low at the start of the clock operation. The MPC9 register

content (i.e. mpc) at tm+1 is a function of the inputs at time tm . If the ARG register

(a typical datapath register) content at time tm feeds into the first MPC9 latch while

OA is asserted, this relation holds, as it also does if the MPC9 content itself feeds

back into this latch. Sampling one point of the fine granularity earlier would have

CHAPTER 5. 84

required distinct temporal abstractions for the signals arising from registers clocked

on different clock phases.

5.4.2 The Datapath Specification

The definition of the datapath begins with itemizing the data types introduced, spec-

ified constants, and definitions of primitive operation. Component definitions and

the composition of the whole follow. Refer to Figure 4.2 for a visual representation

of all the datapath components and their organization.

Four fixed length word types are needed for the datapath, : word32 for rep-

resenting words from memory, : word2 for record type and garbage collection bits

fields of words, : wordl4 for memory addresses, and : word28 for atom value fields.

Several word constants are defined below.

T_addr = #00000000000001 F...addr

NIL_addr = #00000000000000 NUM_addr

ZERCSI4 = #00000000000000 ZER028

?.T-SYMBOL = #10 RT_NUMBEB. = #11

= #00000000000010

= #11111111111111

= #0000000000000000000000000000

RT_CONS = #00

The first 4 are the addresses of reserved words in memory, ZEROS 14 is used to pad

a 14 bit address to a 28 bit number, ZEROS28 is the representation of the integer 0,

and the last 3 are the record type identifiers.

Field extractor functions extract fields or single bits from words:

garbage-bits, mark-bit, field_bit, rec_type_bits, car-bits, cdr_bits, and

atom-bits. The word, types offer straightforward extractor definitions, without the

need for obscure conversions to different datatypes typical of an earlier word imple-

mentation.

CHAPTER 5. 85

car-bits (Word32(Bus b32 (Bus b31 (Bus b30 (Bus b29

(Bus b28 (Bus b27 (Bus b26 (Bus b25

(Bus b24 (Bus b23 (Bus b22 (Bus b21

(Bus b20 (Bus b19 (Bus b18 (Bus b17

(Bus b16 (Bus biG (Bus b14 (Bus b13

(Bus b12 (Bus bli (Bus blO (Bus b9
(Bus b8 (Bus b7 (Bus b6 (Bus b&

(Bus M (Bus b3 (Bus b2 (Wire (bl:booi)

))))))))))))))))))))))))))))))))) =
Wordi4(Bus b28 (Bus b27 (Bus b26 (Bus b2& (Bus b24 (Bus b23

(Bus b22 (Bus b21 (Bus b20 (Bus b19 (Bus b18 (Bus b17

(Bus b16 (Wire bls))))))))))))))

Recognizer functions compare the record type field of a word with the record type

constants: is-symbol, is-number, is-cons, and is-atom. Conversion func-

tions to map bit values to numbers and integers are defined.

by x = x => 1 I 0

(val n (Wire w) = 2 * n + (by w)) A
(val n (Bus b bus) = va]. (2 * n + (by b)) bus)

Va]. = val 0

(iVal (Wire w) = neg (INT (by w))) A
(iVal (Bus b bus) =

INT (Va]. 0 bus) minus INT ((2 EXP (Width bus)) * bv(b)))

Lastly, constructor functions for each record type are defined, using the Concat

function to join buses together.

bus32_cons_append a b c d =

Word32(Concat(Bits2 a)(Concat(Bits2 b)(Concat(Bitsi4 c)(Bitsi4 d))))

bus32_num_append a =

Word32(Concat(Bits2 #00)(Concat(Bits2 RT_NUMBER)(Bits28 a)))

bus32_symb_append a =

Word32(Concat(Bits2 #00)(Concat (Bits2 RT_SYMBOL)(Bits28 a)))

gc_bu532_append a b c =

Word32 (Bus a (Bus b (Ti-bus (Ti-bus (Bits32 c)))))

CHAPTER 5. 86

The 4 constant "registers": NUM, Nil, TRUE, and FALSE, as well as the clearunit

that pads a 14 hit address with zeros to 28 bits, are all implemented with busgates.

A busgate is simply a set of transmission gates, controlled by a read signal. The 14

bit version is defined as:

busgatel4 in_val rd out =

!tm . (rd tm) ==> (out tm = in_val tm)

When used to gate a constant value onto the bus, the predicate is applied to an ab-

straction of the form (Atm. NIL_addr). The READ_MEM component is also a busgate,

which connects the bus to the bidirectional i/o pad output. This is required to isolate

the pad output from the bus when a read memory instruction is not asserted, since

the pads default to input mode of operation.

The form of the register definition was described earlier. Versions for 2, 14, and

32 bit are defined, as are further variants with input and output connected to the

same node, which is typical for most registers connected to the bus. The definitions

for 14 bit versions follow.

rogl4 in_aig out_zig clocked wr rd st =

(!tm . st tm = clocked tm => (wr tm => in_zig tm I (St (PRE tm)))
I (St (PRE tm))) A

(!tm . (rd tm) ==> ((out_zig tm) = (St tm)))

registerl4 sgl = regl4 sgl sgl

The Cons unit is simply implemented with 4 busgates: two 14 bit busgates con-

nect the car and cdr fields inputs, while two 2 bit busgates are connected to constants

for the garbage bits and record type bit fields. The output is a 32 bit value, with

appropriate field selectors applied to select the connection for each busgate.

The FLAGSUNIT performs various tests on data values and returns 7 status flags

for use by the control unit. Only the LEQ operation needs definition; the others test

particular bits or compare all bits. LEQ compares the integer values represented by

the words being compared.

CHAPTER 5. 87

LEQ_prim (x:word32) (y:w0rd32) =

let ival_x = (iVal o Bits28 o atom-bits) x
in

let ival_y = (iVal o Bits28 o atom_bits) y

in

((ival_x below ival_y) V (ival_x = ival_y))

FLAGSUNIT bus arg

atomf lag bit30ilag bit3lflag zeroflag nilf].ag eqf].ag leqilag =

A

A

A

A

A

A

!tm .(atomflag tm = is-atom (bus tm))

(bit3O±lag tm = field_bit (bus tm))

(bit3lflag tm = mark-bit (bus tm))

(zeroflag tm = (atom_bits (bus tm) = ZERO28))
(nililag tm = (cdr_bits (bus tm) = NIL_addr))

(eqf lag tm = (bus tm = arg tm))

(leqflag tm = LEq_priIn (arg tm) (bus tm))

The ALU can perform 9 distinct operations. Six of these are used exclusively in

garbage collection: replcar, replcdr, set bit3l, setbit30, reset bit 5'!, and resetbitSO. The

remaining operations are the arithmetic operations: add, sub, and dec. The mul, div,

and rem operations were not implemented, and selecting any of these defaults to the

dec operation. All 6 of the garbage collection operations are destructive operations,

replacing a bit or field of the operand word.

REPLCAB. (x:word32) (y:wordl4) =

bu532_cons_append (garbage-bits x)

REPLCDB. (x:word32) (y:wordl4) =

bu532_cons_append (garbage-bits x)

(rec_type_bits x) y (cdr_bits x)

(rec_type_bits x) (car-bits x) y

SETBIT3O (x:word32) = gc_bu532_append (mark-bit x) T x

SETBIT31 (x:word32) = gc_bus32_append T (field-bit x) x

RESETBIT3O (x:word32) = gc_bu532_append (mark-bit x) F x

RESETBIT31 (x:word32) = gc_bus32_append F (field_bit x) x

The output of the ALU is gated onto the bus under the control of the ralu signal.

When no ALU operation is selected, the value computed is not significant. The

CHAPTER 5. 88

definition uses implication to define the computed output only when one of the alu

control signals is asserted. If none of the control signals is asserted, the value of

alu is undefined. Likewise,, if more than one control line is asserted, the computed

output is also unimportant. This is expressed in the specification by the use of a

one-asserted predicate on the control lines which implies the desired behaviour.

This predicate states that if one of the signals is asserted, the remainder are not.

ALU repicar repicdr sub add dec miii div rem

setbit30 setbit3l resetbit30 resetbit3l

ralu arg y2 bus alu =

(one-asserted-12 repicar replcdr sub add dec mul div rem

setbit30 setbit3l resetbit30 resetbit8i. >

(it.. let bus28 = (atom-bits (bus tm))

in

let arg28 = (atom_bits (arg tm))

in

((repicar tm ==> (alu tm = REPLCAD. (arg tm) (y2 tm))) A
(rep].cdr tm ==> (alu tm = REPLCDR. (arg tm) (y2 tm))) A
(sub tm > Cain tm = SUB28 arg28 bus28)) A

(add tm ==> (alu tm = ADD28 arg28 bus28)) A

(dec tm > (alu tm = DEC28 arg28)) A

(mul tm > (alu tm = DEC28 arg28)) A

(div tm > (alu tm = DEC28 arg28)) A

(rem tm > (alit tm = DEC28 arg28)) A

(setbit3l tm > (alu tm = SETBIT31 (arg tm))) A

(setbit30 tm > (alit tm = SETBIT3O (arg tm))) A

(resetbit3l tm > (alit tm = RESETBIT31 (arg tm))) A

(resetbit30 tm => (alit tm = RESETBIT3O (arg tm)))))

A

(!tm . ralu tm ==> (bus tm = alu tm)))

(The SUB28 and ADD28 functions are the specifications for the operations performed

by the low level component, and match what is specified at the top level.)

The datapath DP, defined in Figure 5.5, consists of the conjunction of subcom-

ponents, closely resembling the diagram in Figure 4.2. The bus is expressed as the

wiring together of the components. The CAR register is unique in having the input

connected to the car field of the bus, and the output to the cdr field. All other 14

CHAPTER 5. 89

DP bus-bits mem_bits SYS_Clocked rmem mar wmar rinar mum rnil rtrue rtalse

s vs rs e we re c wc rc d wd rd free wfree rtree parent wparent rparent

root wroot rroot yl wyl ryl xl wxl rxl x2 wx2 rx2 y2 wy2 ry2 rcons

car wcar rcar atomf lag bit30t1ag bit3lt lag zeroflag niltlag eqf lag leqtlag

arg warg rarg but 1 vbuf 1 rbuf 1 but2 wbuf 2 rbut2 repicar replcdr
sub add dec mul div rem setbit30 setbit3l resetbit30 resetbit3l ralu

? alu.

let a_bus = (X tm. car_bits (bus-bits t))

and d_bus = (X tm. cdr_bits (bus-bits t))

in

((READ-HEM mem_bits rmem bus-bits) A

(MAR a_bus d_bus SYS_Clocked wmar rmar mar) A

(NUN mum a_bus d_bus) A

(Nil mu d_bus) A

(TRUE rtrue d_bus) A

(FALSE rtalse d_bus) A

(S_meg d_bus SYS_Clocked we vs s) A

(E_reg d_bus SYS_Clocked we me e) A

(C_meg d_bus SYS_Clocked wc rc c) A
(D-reg d_bus SYS_Clocked wd rd d) A

(FREE_meg d_bus SYS_Clocked wtree rtree tree) A

(PARENT_rag d_bus SYS_Clocked wparent rparent parent) A

(ROOT_meg d_bus SYS_Clocked wroot mroot root) A

(Yl_reg d_bus SYS_Clocked wyl ryl yl) A

(XI_reg d_bus SYS_Clocked wxl rxl xi) A
(X2_reg d_bus SYS_Clocked wx2 rx2 x2) A

(Cons xi x2 mcons bus-bits) A

(CAR_reg a_bus d_bus SYS_Clocked wcar rcar car) A

(FLAGSUNIT bus-bits arg atomfiag bit30f].ag bit3lflag

zerof lag nut lag eqf lag leqf lag) A

(Y2_reg d_bus SYS_Clocked wy2 ry2 y2) A

(ARG_reg bus-bits SYS_Clocked warg rarg arg) A

(ALU replcar replcdr sub add dec mul div rem

setbit30 setbit3l resetb1t30 mesetbit3l

ralu arg y2 bus-bits alu) A

(BUF1_reg alu bus_bits SYS_Clocked wbuf 1 rbuf 1 but 1) A

(BUF2_reg alu bus-bits SYS_Clocked wbut2 rbuf 2 but 2))

Figure 5.5: Definition of the DP Component

bit registers have inputs and outputs connected to the cdv field of the bus (as well

as other connections in some cases).

CHAPTER 5. 90

5.4.3 The Control Unit Specification

The CU differed most from the lower level. The layout hierarchy was replaced by one

that better reflected its functionality, using three components for its definition: a

state register, a microcode ROM, and a decode section. Conjoining the definitions of

these 3 prts gives a typical finite state machine behaviour, defining the next state

and current output values as a function of the current state and current input values.

The control unit utilizes several fixed length word types: : word27 for the microin-

struction word (ROM output), : word4 for test and alu fields of a microinstruction,

word5 for read and write fields, and : word9 for the A field and the micro pc (ROM

input). Field extractor functions include: Read-field, Write-field, Alu.1 ield,

Test-field, and A-field. An increment function for : word9 values is used to find

the next address value for sequential microcode execution. It is defined in 2 parts,

the inc function operates on boolean buses, and presents a very implementation-like

view. Inc9 works on values of type : word9, first extracting the bus value, then ap-

plying the inc function, taking only the bus part of the returned value, and casting

it as a : word9 result.

(inc (Wire b) = (Wire (b),b)) A

(inc (Bus b bus) = (let (bs,fg) = (inc bus)

in (Bus (±g => b I b) be, (fg A b))))

Inc9 = Word9 o FST o inc o Bits9

The state register component for the control unit includes not only the mpc

register, but a 4-deep stack for microcode subroutine calls as well. The definition of

these registers differs slightly, lacking any provision for resetting. The clock signal

fed to these latches is the same system clock, and the load signal is the OR of the pop

and push control signals, so latching only occurs when a stack command is issued.

CHAPTER 5. 91

Stack_1atch9 Clocked load in...sig out_sig =

!tm . out_sig (tm+i) =

Clocked tm => (load tm => in_sig tm I OUt_Sig tm) I Out-Sig tm

STATE_REG Clocked load

(next_mpc,next_sO,next_sl,next_s2,next_s3)

(mpc, SO, Si, s2, s3) =

(MPC9 Clocked next_mpc mpc) A

(S_1atch9 Clocked load next_sO SO) A

(S_1atch9 Clocked load next_si si) A

(S_1atch9 Clocked load next-s2 s2) A

(S_1atch9 Clocked load next-s3 53)

The microcode ROM was defined by a set of introduced theorems giving the value

of the ROM function output for every relevant input. The theorems were generated

from the intermediate form of the microcode that was used to produce a binary

image for the ROM layout generator. A typical ROM theorem is:

I- RCM_ti.m #000000000 = #0000i0ii0000100000000000000

This reliance on introduced theorems is unfortunate, as any such introduced theorems

cast suspicion on the security of the results. In this case, however, an argument may

be made that the addition of these theorems does no more than define a new function,

and is a conservative extension to the HOL theory. A conservative extension means

that there are no results provable in HOL after the extension that were unprovable

before, aside from theorems which contain the introduced term. This property must

hold whenever a new constant is defined in HOL.

It was necessary to specify the ROM outputs for approximately 400 different : word9

inputs. This serves as a specification for the ROM, which should be verified from a

transistor level model of its implementation. However, the lack of regularity of the

function, aside from its expression of the microprogram, meant each distinct output

would have to be listed in the definition of the function, and the data structure that

resulted was simply too large for the system to manipulate. So instead of defining

CHAPTER 5. 92

a new constant using the normal HOL system definition functions, a new constant

ROM-fun was declared, and separate theorems defining the value of the function for

each of 400 input values were created. Although the function is not totally defined,

the constraints under which the system operates limit the ROM inputs to those for

which the output is defined.

CU-DECODE

button mpc sO si s2 s3 rom_out opcode atomfiag ... leqf lag

flagO flagi nextmpc next-sO ... next-s3 push-or-pop

ralu ... rcons write-bit ... wy2 dec ... resetbit30

!tm . let mpc_plus_1 = Inc9 (mpc tm) in

let read_bits = Read-field (rom_out tm)

in

let idle-state = mpc tm = #000010110

in

let se].Op = (test = #0010)

in

((flagO tm = idle-state V error-state) A
(nextmpc tm = (selA) => A_address I

((pop) => sO tm I
((selOp) => opcode tm I mpc-plus-W) A

((next-sO tm , next_si tm , next_s2 tm, next_s3 tm) =

push => (mpc-plus-1, sO tm, si tm, s2 tm) I
pop => (si tm , s2 t, 33 tm, #000000000) I

(SO tm , s1 tm, s2 tm, s3 tm)) A

(ralu tm = (read_bits = #00001)) A

(resetbit30 tm = (alu_bits = #1100)))

The CU-DECODE component has 61 outputs: 12 ALU control signals, 18 write

signals, one of which controls the bidirectional i/o pads, 23 read signals, 2 state

flags, a stack control signal (push_or_pop),.the input for the MPC9 state register, and

inputs for each of the 4 stack registers; 15 inputs: the button input, the current mpc

value, the value in each stack cell, the 27 bit ROM output; the machine instruction

input, and 7 status flags from the datapath. There are no hidden lines as such, but

the definition makes extensive use of let bindings to simplify the term. The let

bound terms represent the incremented mpc value, the 5 fields of the ROM output,

CHAPTER 5. 93

flags for each of the 3 states identified by the state flags, and complex logical values

that control the next state outputs for the MPC9 and stack. The entire control unit

definition is given in Figure 5.6.

CU SYS_Clocked button mpc sO si s2 s3 opcode

atomfiag bit30f1ag bit31f].ag zerof lag nilf lag eqf lag leqtlag

:f lagO flagi ralu rmem rarg rbu±i rbut2 rcar rs re rc rd rmar

rxi rx2 rfree rparent rroot ryl ry2 mum rnil rtrue rtalse rcons
write-bit bidir warg wbuti wbuf2 wcar ws we wc wd wmar wxi wx2

wfree wparent wroot wyl wy2 dec add sub mul div rem

setbit30 setbit31 resetbit3i replcar replcdx resetbit30

? rom_out nextmpc next-sO next_si next-s2 next-s3 push-or-pop.

(STATE_REG SYS_C].ocked push-or-pop

(nextmpc, next-sO, next_si, next-s2, next-s3)

(mpc, sO, si, s2, s3))

(ROM_t mpc mom-out)

(CU-DECODE button mpc sO si s2 s3

setbit30 setbit31 resetbit3i repicar replcdr resetbit30)

A

A

Figure 5.6: Definition of the CU Component

5.4.4 The Padframe

The padframe definition includes input, output, and bidirectional pads. The input

and output pads are defined by stating the equality of the pairs of nodes connected by

the pads. The bidirectional pads off-chip connections are bus-pins, bus-bits are the

bus nodes, and mem_bits are the nodes linking the pads to the input of the READ-MEN

unit described earlier. The component parts of the pads are not defined separately

however, but the definition of the functionality appears in the PF definition, shown

in Figure 5.7.

CHAPTER 5. 94

PF

button

bus-bits

% chip side %
f].agO f].agl bidir write_bit rmem

mem_bits mar-bits

button-pin ilagO_pin ilagi_pin

bus-pins mar-pins

!tm .(buttOn t

(ilagO_pin t

(ilagi_pin. t

(write_bit_pin t

(rmem_pin t

(bidir t => (mem_bits

I (bus-pins
(mar-pins t

% pin side %
write-bit-pin rmem_pin

= button-pin t) A

= ilagO t) A

= ilagi t) A

= write-bit t) A

=rmemt) A

t = bus_pins t) % read from memory
t = bus_bits t)) A % write to memory
= mar-bits t)

Figure 5.7: Definition of the PF Component

5.4.5 Composing the Whole

The SECD chip is the composition of the CU, DP, and PF. The parameters to the def-

inition include the SYS_Clocked signal; control unit state values mpc, sO, si, s2

and s3; datapath state values s, G. c d, free, xl, x2, yl, y2, car, root,

parent, bufi, buf 2 and arg; input button-pin; state outputs flagO_pin and

flagi_pin; memory interface outputs write-bit-pin, rmem_pin and mar-pins; and

the bidirectional memory bus bus-pins. A multitude of signals are hidden, includ-

ing the read, write and alu control signals generated by the CU, status flag signals,

and on-chip signals connected through the pads, including button, flagO, flagi,

bus-bits, mem_bits and mar-bits.

The external memory is represented only at the top level, and the conjunction

of the chip description and a simple memory with Fetch and Store commands

constitutes the definition of the system shown in Figure 5.8.

CHAPTER 5. 95

Fetch14 mar bus (mem:wordl4->w0rd32) = (bus = mem mar)

Store14 mar bus (mem:wordl4->word32) = (Aa. (a = mar) => bus I mem a)

SRAM mem W_bar G_bar address-in in-out =

(!tm . (mem(SUC t) = ((- i W_bar t) => Store 14(address_in Win-out t)(mem t)

I mem t)) A
(W-bar t A G_bar t ==> Fetch14 (address_in t)(in_out t)(mem t)))

SYS memory SYS-Clocked mpc sO si s2 s3

button-pin flagO_pin flagi_pin

write_bit_pin rmem_pin bus-pins mar-pins

s e c d free xl x2 yl y2 car root parent

buf 1 buf 2 arg

(SECD SYS-Clocked mpc sO si s2 s3

button-pin flagO_pin flagi_pin

write-bit-pin rinem_pin bus-pins mar-pins

s e c d free xi x2 yl y2 car root parent

buf 1 buf2 arg) A

(SRAM memory write-bit-pin rmem_pim mar-pins bus-pins)

Figure 5.8: Definition of the SECD SYS Component

5.5 Relating the Levels

5.5.1 Memory Abstraction

Abstracting from the SRAM memory of the RTL level to the abstract memory type

maintains the mark and field bits unchanged, and maps the 28 bit field to the appro-

priate cons, integer, or symbol record based on the record type bits. The memory

abstraction function is defined in two steps: first a function maps records in the range

of the SRAM memory function into the range of the representative type for abstract

memories, and then ABS_mt sexp_mem is applied to this function composed with the

SRAM memory:

CHAPTER 5. 96

Mem_Range_Abs : w0rd32->((bool#bool)#((wordl4#wordl4)+atom))w =

((mark-bit w),(field_bit w)),

((is-symbol w) => INR(Symb(Val(Bits28(atom_bita w))))

I(is_number w) => INR(Int(iVal(Bits28(atom_bits w))))

I INL(car_bits w, cdr_bits w))

mem_abs (M:wordl4->word32) = ABS_mfsexp_mem(Mem_Range_Abs 0 H)

The Mem_Range_Abs function is total, and the unused record type (#01) gets mapped

to the cons type record of the abstract memory. This ensures that the result of com-

posing it with an implementation memory always returns an object in the representa-

tive type of the abstract memory, and thus applying REPmfsexp.nem to (mem_abs M)

at some value v will be Mem_Range_Abs (M v). It further ensures the desirable prop-

erty that every non-atomic record is a cons type record.

5.5.2 Temporal Abstraction

The coarsest grain of time used to describe the system corresponds to the points

when the system is in a major state of the top-level FSM (Idle, ErrorO, Errorl, and

Top-of-Cycle). We map from this coarse granularity to the medium grain points of

time when specific addresses are in the MPC9 register. The mapping is not a linear

I- Next ti t2 f = (ti < t2) A (1 t2) A

t.(tl < t) A (t < t2) ==> - ' f t

I- (IsTimeOf 0 f t = f t A ! t'.(t'<t) ==> -, f t') A

(IsTimeOf (SUC it) f t = ? t'. IsTimeOf it f t' A Next t' t f)

I- TimeOf f it = Ot.IsTimeOf n f t

F- when (s:num->*) (p:rnun->bool) = .\n.s (TimeOf p it)

Figure 5.9: Temporal Abstraction Function Definitions

CHAPTER 5. 97

function, since the number of cycles needed to execute any machine instruction varies,

and can vary between executions of the same instruction. The latter differences

arise due to garbage collection calls during instruction execution, as well as varying

search distances required to load values from the environment. The definitions of

the required mapping functions are well described in [Mel88].

5.6 Summary

This chapter has presented two levels of formal specification of the SECD system,

the top level specification and the register transfer level implementation. Important

issues at the lowest level that impact the higher levels were discussed. Lastly, two

important abstractions used to relate the different levels were presented.

The top level specification needed to express transformations to S-expression data

objects. Their representation was complicated by the destructive operation used to

create circular environment components, and the fact that the expressions could

be shared by the different registers, so that a destructive operation to the E stack

could also affect the S stack. An abstract memory data type was defined in which

the data structures could be imbedded. A set of operations on abstract memory

data objects expressed transformations to the data structures. This technique has

provided a clearer specification than would have been possible by using a lower level

view of a memory and system state. Additional motivation was the complexity of the

machine instruction transitions, which involve multiple updates to memory, giving

rise to considerably more complexity than previous microprocessor specification and

verification examples, which typically were limited to single memory updates in any

transition. It is also a step in the right direction to providing a suitable specification

to interface with a software system.

CHAPTER 5. 98

The discussion of the low level specification focussed on fundamental issues of

clock operation and initialization, and the definition of primitive memory devices.

The notion of fine grain time integrated the operation of two distinct clocks, where

units of time relate to the advance of either clock.

The register transfer level is an appropriate level of representation for VLSI de-

signs. Most of the primitive components used should become available as verified

library components, as the field of verification matures. The control part of the

design is expressed more succinctly than the lower level, but relating the two rep-

resentations is relatively simple. This representation closely resembles the informal

Concrete RTL model created in designing the chip. The closeness suggests that for-

mal specification may integrate into the design process quite naturally, providing a

useful tool for expressing the information that the designers actually use.

The absence of a definition for the garbage collection function illustrates how a

formal specification could be incrementally developed in a top down manner, when

not all parts have been fully elaborated. The precise nature of the garbage collection

function was not defined, but its type could be established, knowing simply that it

would make some changes to a memory. By defining a constant of the appropriate

type, filling in the detail could be deferred.

One of the more important and difficult parts of the specification concerned the

temporal representations, and abstractions relating the different time granularities.

Considerable time was spent defining precisely how the clocks should operate, and

determining how to represent the behaviour at the next higher level. These issues

were fundamental to the operating specification for the SECD chip [GWS89], which

was the basis for the design of the chip controller [Wil89].

A great deal of computational effort resulted from the use, of a well-defined

wor4 type. Previous HOL proofs relied on insecurely introduced constants

([Coh88, Joy88]), or infinite vectors of which values beyond a certain size were as-

CHAPTER 5. 99

signed an "arbitrary" value ([Joy89a]). The advantage of the well defined types used

herein include the higher confidence level from avoiding the arbitrary introduction of

new axioms, and the more natural definition of subfield functions on word values.

This latter advantage is not insignificant, since the resulting specifications are much

more clear, and less prone to error.

The sheer size of this system made the specification a daunting task. In retro-

spect, some of the most challenging aspects of the project involved the development of

clear and concise definitions in the specification. Definitions were repeatedly revised,

as the design itself, and issues in verifying the design became better understood. The

simplicity of many definitions belie the amount of care taken in their design.

The organization of the HOL theory hierarchy in which the system is defined bears

mentioning. Whenever a definition is altered, all theories that inherit the definition

need rebuilding. A change to a data type theory high in the hierarchy could require

many hours of updating of HOL theories. The maintenance was aided considerably

by keeping a well documented makefile, and rebuilding overnight. Careful design

of the theory hierarchy and separation of dependencies can save a lot of time. It

should be noted that even at the last stages of the proof, changes high in the theory

hierarchy were made, as clumsy definitions done at the early stages of the project

were replaced.

The introduction of new datatypes and function definitions was often accompa-

nied by at least a partial axiomatisation. Thus statistics on primitive inferences

for the specifications include both. Data type definitions took over 47,000 primitive

inferences, and associated theorems over 37,000 primitive inferences. These high

numbers result from recursive definitions on the word, datatypes. Specifications re-

quired over 1,700 primitive inferences, while proofs about the memory abstractions

added up to over 28,000 primitive inferences.

Chapter 6

Verification of the SECD Design

A proof of correctness relates two levels of description of a design, proving that,

subject to stated constraints, the behaviour of the lower level of description ensures

the behaviour specified at the higher level. Parameters to the higher level description

are abstractions of the lower level ones, with regard to temporal granularity and

data type. The lower level can be considered an implementation of the higher level

specification. Using this terminology, the goal of a proof has the form:

constraints J

implementation (state) (inputs) (outputs) j

specification (abs o state) (abs o inputs) (abs o outputs)

It is desirable that a series of such correctness proofs relate the lowest level description

(that closest to the physical device), to the highest level (that which comes closest

to the designer's intention).

This chapter will describe the proof of correctness relating the top and register

transfer levels, under normal mode of operation, and exclusive of garbage collection.

The abstractions on signal and state values must map between two granularities of

• time, as well as different data types, particularly for the memories. The register

transfer definition includes a memory function with simple Fetch and Store oper-

ations only, while the top level uses the abstract memory data type. The task of

the verification is to show that the sequence of operations performed at the register

100

CHAPTER 6. 101

transfer level commutes with the specification transition at the abstracted top level.

System State

abstractioni

specification

transition

 System State'

abstraction

RTL State * > RTL State'
RTL

transitions

This level of the proof is largely concerned with control operation, almost completely

ignoring arithmetic and logical comparison operation semantics. A proof of correct-

ness relating the lowest level and register transfer level must address these issues,

defining precisely the modulo arithmetic operations. While this lowest level proof

has not been completed, and is not described herein, certain logical subcomponents,

for example the random logic generating the state flag signals and the bidirectional

i/o pads, were proved to correctly implement the register transfer level specification,

as the most straightforward and reliable way of checking their design.

The constraints on the scope of the proof are addressed first, then the form of the

correctness goal and the approach used in achieving the proof are given. Following

that, each major stage in the proof is outlined, using the LDF transition as the

running example.

6.1 Constraints

Constraints limiting the scope of the proof to normal mode of operation and excluding

garbage collection need to be translated into the formalism. Additionally, the proof

is limited to valid programs, which expresses the pattern matching in the left side

of transitions defining the informal machine (Table 3.3), and to properly configured

free lists. Lastly, two assumptions about the decrement operation are added. These

two assumptions describe things that the lowest level definition must ensure, and

CHAPTER 6. 102

may thus be eliminated when the lower level proof is undertaken. The constraints

are as follows.

clock-constraint The chip is running in normal operating mode (i.e. the shift reg-

isters are not operating).

clock-constraint SYS_Clocked = ! tm. SYS...Clocked tm

reserved-words-constraint There are three reserved words in memory that con-

tain the symbolic constants for NIL, T, and F.

reserved-words-constraint mpc memory =

!tm .(state_abs (mpc tm) = top-of-cycle) >

((memory tm NIL_addr = bus32_symb_append #0000000000000000000000000000) A

(memory tm T_addr = bus32_symb_append #0000000000000000000000000001) A

(memory tm F_add.r = bus32_symb_append #000000000000000000000000001o))

well_formed_free_list Informally, the free list must be a linear cdr linked list, con-

taining only cons cells, aside from the last cell which is NIL. Only cells that

are not used in any data structure that is part of the computation (i.e. cells

accessible from the s, e, c, or d registers), and cells that , are not reserved

words should appear in the free list. For the formal specification, there must

be enough cells in the free list for the maximum number of cons operations in

any SECD instruction: the AP instruction performs the operation four times.

The definition of this constraint makes use of a path function which traces

through an S-expression data structure in a memory, taking the car or cdr at

each step according to whether the head of the : (bool)list argument is F or

T respectively. The predicate all-cdr-path holds when every element in the

(bool)list argument will cause the cdr direction to be selected.

CHAPTER 6. 103

(path (mem:wordl4->word32) (v:wordl4) 0 = v) A
(path mem v (CONS 1 L) =
(is-cons (mem v)) => 1 => (path mem(cdr_bits(mem v))L)

I (path mem(car_bits(mem v))L)
I v)

(all_cdr_path 0= T) A
(all_cdr_path (CONS h ti) = h A (all_cdr_path tl))

Using these two.functions, the desired properties of the free list are defined. The

linear-free-list function requires that if any two different path arguments

return the same address, then that address is the address of. the NIL reserved

word in memory. The not-in-free-list predicate requires that a particular

address not appear in the free list. This will apply to the high address reserved

word, which is used to hold a pointer to the computation result upon executing

the STOP instruction. The nonintersecting predicate states that no path in

the free list leads to the same address as a path from a given cell. Lastly, the

predicate n_cells_in_free_list requires that the first it addresses following

cdr's from the free address all point to cons cells in memory. The function nth

applies its 2nd argument n times to the last argument (i.e. nth n f b = f'b).

linear_free_list (mem:wordl4->word32) (tree : wordl4) =

11 12. (al]._cdr_path 11) A (all_cdr_path 12) ==>

-i(11 = 12) ==>

(path mem tree 11 = path mem free 12) ==>

(path mem free 11 = NIL_addr)

not-in-free-list (inem:wordl4->word32) (tree:wordl4) (v:wordl4) =
U. (all_cdr_path 1) ==> -'(path mem free 12 = v)

nonintersecting (inem:wordl4->word32) (free:wordl4) (v:wordl4) =

!11 12. (all_cdr_path 12) ==>

-(path mem tree 12 = NIL_addr) ==>

-'(path mem v 11 = path men tree 12)

n_cells_in_tree_list (mem:wordl4->word32)(tree : wordl4) (n:num) =

W. (n' < 11) ==> (is-cons (nth n' (men o cdr_bits)(mem tree)))

CHAPTER 6. 104

The full constraint conjoins the above predicates applied to the appropriate

values. From this and the reserved-words-constraint, theorems are derived

which assert that the first four addresses in the free list are not NIL_addr, and

that these same addresses are all distinct.

well-formed-free-list memory mpc free s e c d =

!tm . (state-abs (mpc tm) = top-of-cycle) ==>

(n-cells-in-free-list (memory tm) (free tm) 4) A

(linear-free-list (memory tm) (free tm)) A

(let nonintersecting_with_free_list =

(nonintersecting (memory tm) (free tm))
in

(nonintersecting_with_free_list (s tm) A

nonintersecting_with_free_list (e tm) A

nonintersecting_with_free_list (c tm) A
nonintersecting_with_free_list (d tm))) A

(not_in_free_list (memory tm) (free tm) NIJR_addr)

valid-program-constraint The state of the machine must pattern match with the

left side of the abstract machine transition for one of the 18 implemented ma-

chine instructions, or have a problem loaded in memory when the machine is

directed to start computation. The constraint gives a quite detailed specifica-

tion of the type and in some cases the value of each record in memory involved in

the pattern match. The constraint on record types is necessary for the abstrac-

tion from simple to abstract memory types. This valid-program-constraint

must be assured by the correctness of the compilation process. As with the

free_list-constraint it is restricted to times after the machine is initialised.

The component constraining the arguments for the LD instruction requires

further explanation. First it is required that the argument is a cons cell, and

each branch points to a number cell. The integer values represented by these

cells are nonnegative, and furthermore, the environment has a value in the

position indicated; i.e. it is composed of at least in lists, and the rnth list has

at least n elements.

CHAPTER 6. 105

valid-program-constraint memory mpc button-pin s e c d =

!tm .

(((state_abs(mpc tm) = idle) A button-pin tm) >

(is_cons(memory tm NUM_addr)) A

(is_cons(memory tm (cax_bits(memory tm NUM_addr))))) A

((state_abs(mpc tm) = top-of-cycle) >

let head_c = memory tm (ctm)

in

((is-cons head-c) A

let instr' = memory tm (ca.r_bits head-c)
and next_c = cdr_bits head_c

in

(Us-number instr') A
let instr = atom-bits instr'

in

(((instr = LD_instr28) A

(is_cons(mernory tm next-c)) A

let arg_cons_cell = memory tm (car_bits(memory tm next-c))

in

(Us-cons arg_cons_cell) A

let rn_cell = memory tm (car_bits arg_cons_cell)

and n_cell = memory tm(Cdi_bjts arg_cons_ce].].)

in

((is-number rn_cell) A (is-number n_cell) A

let m = (iVal(Bits28(atom_bits rn_cell)))

and n = (iVal(Bits28(atorn_bits n_cell)))
in

((NEG rn) A (NEG n) A
(!m'.(m'<=(pos_num_of rn)) ==>

(is_cons(nth m'((memory tm) 0 cdr_bits)

(memory tm (e tm))))) A
(!n'.(n'<=(pos_num_of n)) ==>

(is_cons(nth n'((mernory tm) o cdr_bits)

(memory tm(ca.r_bits

(nth (pos_num_of rn)

((memory tm)o cdr_bits)

(memory tm (e tm)))))

))))))) V
((instr = LDF_instr28) A

(is_cons(memory tm next-c))) V

DEC28 assumptions The first assumption states that the :Mum equivalent ob-

tained by decrementing a 28-bit value that represents a positive integer is the

same value obtained by taking the predecessor of the : num equivalent repre-

sented by the original value. The second states that if the 28-bit value rep-

CHAPTER 6. 106

resents a positive integer, the result of applying DEC28 will produce a value

that represents a nonnegative integer. Both of these properties are what is

expected of a decrement operation, and must be assured by the lower level im-

plementation. The properties enable us to assure termination of LD instruction

sequences retrieving values from the environment.

DEC28_assiunl =

!w28. PRE(pos_num_of(iVal(Bits28 w28))) =

pos_num_of(iVal(Bits28((atom_bits o DEC28)w28)))

DEC28_assum2 =

!w28. (POS(iVal(Bits28 w28)))==>

- (NEG(iVal(Bits28((atom_bits o DEC28)w28))))

6.2 Structure of the proof

The goal for the proof of correctness is shown in Figure 6.1. Most of the signals

are simply abstracted from the medium to the coarse time granularity. Additionally,

the memory and state are abstracted to the appropriate data type. The temporal

abstraction of the single input signal argument to the top level specification (i.e. the

button-pin) should be carefully considered. It can be shown that this input affects

the next state of the machine at the medium time granularity in only 3 places in the

microcode, and these 3 places correspond to points in coarse grain time, since they

are all major states.

Although the lower (RTL) level definition of the system for this proof consists of

the wiring together of high-level components defined behaviourally, it is not feasible

to undertake the proof of the goal in Figure 6.1 directly. The size of terms generated

alone makes this impossible to manage. The proof is instead undertaken in several

stages.

First, a simplified, flattened specification for the register transfer level definition

was obtained. Second, this specification was used to derive theorems for the change

CHAPTER 6. 107

((clock-constraint SYS_Clocked) A

(reserved_words-constraint mpc memory) A

(well-formed-free-list memory mpc free s e c d) A

DEC28_assuml A DEC28_assum2 A

(valid-program-constraint memory mpc button-pin s e c d)) ==>

(SYS memory SYS_Clocked

mpc sO si s2 s3

button-pin

flagO_pin flagi_pin write-bit-pin rmem_pin
bus-pins mar-pins

s e c d free

xi x2 yl y2 car root parent buf I buf2 arg) >

SYS_spec ((mem..abs o memory) when (is-major-state mpc))

Cs when (is-major-state mpc))

(e when (is-major-state mpc))

(c when (is-major-state mpc))

(d when (is-major-state mpc))

(free when (is-major-state mpc))
(button-pin when (is-major-state mpc))

((state-abs o mpc) when (is-major-state mpc))

Figure 6.1: RTL D top level goal

of state effected by each microcode instruction. These theorems represent the cumu-

lative effect of asynchronous events through the phases of one full clock cy1e, and

roughly correspond to the "Phase level" of description of Anceau [Anc86]. Third, a

sort of microcode level simulation used the microinstruction theorems to step through

the microcode to produce theorems that summarized the behaviour of instruction

sequences. This corresponds to the "Microprogramming level" of Anceau. Fourth,

the sequence theorems were used to prove a liveness property for the system. And

last, the state transitions resulting from the register transfer level definition were

proved to correspond to those defined at the top level, for all transitions possible

under the constraints.

CHAPTER 6. 108

At the time of this writing, the first four stages are fully completed. The last

stage has been analysed, the top level goal was split into subgoals for each transition,

as well as the initial state, and a sample proof of one transition, that for the LDF

instruction, has been constructed. The completion of the proof foresees no major

obstacles, but requires, as has each preceding stage, considerable investment in time

spent managing the proof. As with the specification of the system in the previous

chapter, the size of theorems prevents inclusion in their entirety. Using the HOL

pretty printer, a complete listing of the theorems is estimated at over 15,000 lines

(250 pages!), three times as much as the definitions. A complete listing of the HOL

proof is presently under preparation in [Gra90b]. A description of each stage of the

proof follows.

6.3 Unfolding the System Definition

The register transfer level of description consists of a conjunction of behavioural de-

scriptions of major components. For example, the control unit consists of a state reg-

ister (with five fields), a ROM and a decode unit. A specification for the conjunction

of these three subcomponents is not appreciably simpler than the conjunction of the

component behaviours individually. It is only when the whole system is assembled

that simplifications become possible. A good example involves the one-asserted

property of the ALU control lines. The property is a constraining part of the defini-

tion of the ALU, but it is provable from the control unit definition that it holds for the

ALU control lines generated by the control unit definition of the control unit. This

constraint can be eliminated when the control unit and datapath are conjoined.

Thus the simple hierarchical approach, where both implementations and speci-

fications are defined independently for each component of the hierarchy and a cor-

rectness proof of the top component is achieved by using the correctness results of

CHAPTER 6. 109

subcomponent parts, was abandoned. Instead starting with the definitions of the

major subcomponents of the chip, each was simplified by expanding all definitions,

and UNWIND'ing1 existentially quantified variables (hidden wires) where possible.

When the only remaining occurrence of the existentially quantified variable is the

left side of an equation, it may be PRUNE'd, or eliminated from the expression. This

was continued up to the top of the hierarchy where more substantial simplifications

could be made. The process of creating these proofs was relatively straightforward,

complicated only by the relatively large size of terms involved. However, the large

term size forced extremely careful management of the proof process. Only primi-

tive rules and tactics were usable, the more powerful tactics would easily exhaust

memory, and thus the problem was compounded.

Simplifying the datapath and control unit was undertaken first. Rather than

using a forward proof approach, since it was easier to prove two terms equivalent

than to "massage" a term into a particular desired form, considerable time was

spent defining goals for tactical proofs. The goal for the datapath introduced two

antecedents: the one-asserted property applied to the ALU control lines, and the

clocked-constraint, while the consequent was the equality of the DP and its ex-

panded and simplified version. The proof expanded all definitions and let expressions,

rewrote with the two antecedents to simplify the resulting expressions, flattened and

reordered all conjuncts, and moved the universally quantified time parameter out to

enclose all conjuncts. The single existentially quantified value alu remained, outside

the level of (and enclosing) the time parameter in the theorem.

The control unit was treated similarly. The goal was a simple equality of the CU

expression and its expanded and simplified version. All definitions were expanded

and let expressions unfolded, the expression for the next state values of the five

'UNWIND is a HOL conversion which unfolds the equations for existentially quantified variables
that occur as conjuncts in an expression.

CHAPTER 6. 110

field state register was split into distinct expressions for each field, the time pa-

rameter in moved out to enclose all conjuncts, the seven existentially quantified val-

ues: rom_out, nextmpc, next_sO, next_si, next-s2, next_s3, and push_or_pop

were unwound and pruned, and a few logical simplifications were made.

A theorem showing that the ALU control outputs from the control unit have a

one-asserted property was proved. The intensive computation required to prove

inequality of two constants of a specified word, type made it desirable to prove an

exhaustive set of theorems for all possible values of each subfield of the microcode RUM

output. Rather than repeatedly proving the cases for each of the 400 RUM addresses,

this required 68 theorems all told. These theorems were of the form:

A1u_base_0001 =

I- (A1u_field(ROM_fun(mpc tm)) = #0001) >

((A1u_field(ROM_fun(mpc tm)) = #0001) = T) A

((A1u_field(RQM_fun(ntpc tm)) = #0010) = F) A

((A1u_field(ROM_fun(mpc tm)) = #1011) = F) A

((A].u_ie1d(RCM_fun(mpc tm)) = #1100) = F)

In addition, theorems for the value of the Inc9 function, used to calculate the

next mpc address for sequential microcode, for each of 400 addresses were proved,

typified by the theorem for the lowest address.

F Inc9 #000000000 = #000000001

At the next level, SECD is simplified by expanding the PF and DP components, but

not the CU. The one-asserted constraint is eliminated, the clocked-constraint

is included, hidden lines connected directly to input or output pads are unwound

and pruned, including button, flagO, flagi, write-bit, and mar-bits, and all

remaining existentially quantified variables are moved to the outermost level.

2A theorem for each possible value is required, including the no-op value, hence there are 13
possible values for the alu and test fields, 18 for the write field, and 24 for the read field.

CHAPTER 6. 111

Base-thin =

[clock-constraint SYS_C].ocked; -SYS-imp]

I- ? bus_bits_t mem_bits_t alu_t.

(mpc(SUC tm) =

(((Test_f ield(ROM_fun(mpc tm)) = #0001) V

(Test_f ield(ROM_fun(mpc tm)) = #0011)A

field_bit bus_bits_t V

(Test_f ield(RCM_fun(mpc tm)) = #1011))

=> A_f ield(ROM_fun(mpc tm))

i((Test_field(ROM_fun(mpc tm)) = #1100)

=> so tm

I((Test_field(ROM_fun(mpc tm)) = #0010)

> Opcode arg tm

Inc9(mpc tm))))) A

(meinory(SUC tm) =
((Write_f ield(ROM_fun(mpc tm)) = #00001)

=> Store 14 (mar_pins tm)(bus_pins tm)(memory tm)

I memory tm)) A

((Read_f ield(ROM_fun(mpc tm)) = #00010) >

(bus_bits_t = mem_bits_t)) A

((Alu_field(RCM_fun(mpc tm)) = #0001) >

(alu_t = DEC28(atom_bits(arg tm)))) A

(-i (Writ e_field(ROM_fun(mpc tm)) = #0000l)A

(Read_f ield(ROM_fun(mpc tm)) = #00010) ==>

(bus-pins tm = memory tm (m&V_pins tm))) A

(s tm = ((Write_f ield(ROM_fun(mpc,tm)) = #00110)
=> cdr_bits bus_bits_t I s(PRE tm))) A

(flagi_pin tm = (mpc tm = #000101011) V (mpc tm = #000011000))

Figure 6.2: Base_thm: the RTL definition simplified

At the top of the definition hierarchy, the static RAM definition of memory was

added in, and the CU and SECD simplifications were applied to create one flattened

expression for the SYS implementation. All internal read and write control lines

CHAPTER 6. 112

were unwound and pruned. The only remaining existentially quantified variables,

bus-bits, mem_bits, and alu, were quantified over all conjuncts. The most impor-

tant step involved moving the time parameter outside the existentially quantified

internal lines, and replacing these time varying lines with static values. The equiva-

lence of this transformation was proved giving the following theorem.

I- (!(t:nuin). ?(a_t:*). P t a_t) =
(?(a:nuin->*). !(t:num). P t(a t))

A set of specialised conversions was designed to pinpoint precisely where in the goal

term to apply the theorem, resulting in the theorem of Figure 6.2. Importantly, the

time parameter can be generalized over the entire theorem conclusion, so that the

expression can be evaluated when constraining some value at a given time tm; in

fact the simplified expression for the system description was evaluated repeatedly

under the constraint mpc tm x, where x is one of the 400 microcode addresses.

From this stage onward, equivalence was no longer attempted, so the final form of

the theorem has the clock-constraint and the SYS definition as assumptions, and

the conclusion is the simplified expression for the system, with the three existentially

quantified variables. Also the conjunct giving the initial value of the mpc (i.e. at

time tm = 0) was dropped from the expression. Representative samples of each type

of conjunct in the resulting theorem are shown in Figure 6.2. Generating this stage

of the proof required over 500,000 primitive inferences, with just about half this

number devoted to the proofs for the values of the Inc9 function.

6.4 Phase Level: Effect of Each Microinstruction

The simplified expression for the system was next utilised to produce theorems giv-

ing the effect of each microinstruction execution on the system state. A sample

'This constraint will be abbreviated as SYS_imp in the following material.

CHAPTER 6. 113

theorem for the system when the value #001100001 is in the MPC9 register is shown

in figure 6.3. This is the first instruction of the microcode sequence for the LDF

instruction, and effects a transfer of the content of the E_reg register to the X2_reg

register.

SYS_leinxna_97 =

[clock-constraint SYS_Clocked; -SYS-imp]
I- (mpc tm = #001100001) ==>

(mpc(SUC tm) = #001100010) A

(s0(SUC tm) = so tm) A

(sl(SUC tm) = si tm) A

(s2(SUC tm) = s2 tm) A
(s3(SUC tm) = 33 t) A

(memory(SUC tm) = memory tm) A

(x2 tm = e(PRE tm)) A

(rmem_pin tm = F) A

(buf 1 tm = bufl(PRE tm)) A

(buf 2 tm = buf2(PRE tm)) A
(mar-pins tm = mar_pins(PRE tm)) A

(s tm = s(PRE tm)) A

(e tm = e(PRE tm)) A

(c tm = c(PRE tm)) A

(d tm = d(PRE tm)) A

(free tm = free(P1tE tm)) A

(xi tm xl(PRE tm)) A

(car tm = car(PRE tm)) A

(arg tm = arg(PE tm)) A

(parent tm = parent(PRE tm)) A

(root tm = root(PRE tm)) A

(yl tm = yl(PRE tm)) A
(y2 tm = y2(PRE tm)) A

(write-bit-pin tm = T) A

(f lagO_pin tm = F) . A

(flagi_pin tm = F)

Figure 6.3: Theorem for execution of microcode instruction at address 97

The large number of such theorems (337 excluding garbage collection sequences)

required that they be generated without direct user intervention. A single proof

function was designed for this purpose, capable of generating the required theorems

CHAPTER 6. 114

in a forward proof manner, without prior statement of the specific content of each.

Although the verifier did not know in advance what each theorem would state, this

could have been determined. Specific samples were worked out for help with de-

veloping the proof function. As failures or unsatisfactory theorems were observed,

the proof function was revised. Generating the set of theorems took approximately

36 hours for each attempt, running on a dedicated Sun 3/60 workstation with 16

megabyte memory, and required in excess of 4.6 million primitive inferences. The

theorems were divided among seven theories, each containing adjacent instruction

code sequences, to reduce search times for theorems at the next proof stage.

The proof function works as follows:

1. Fetch the theorem defining the value of the microcode function ROM-fun for the

given address, add the assumption that mpc tm is equal to the address, and

substitute this term for the address in the theorem. The resulting theorem has

the form:

F- ROM_fun(mpc tm) = #000000000000000000110001000

In this case and similarly in all following theorems, the dot to the left of the

turnstile symbol represents the assumption mpc tm = #001100001.

2. Apply a conversion to transform the 27 bit constant value output to the equiv-

alent form expressed as Word27 applied to a 27 bit : (bool)bus, in this case

Word27(Bus F(Bus F. .. (Bus T(Bus F(Bus F(Wire F)))))). For each field

of the ROM output, apply the field selector function, expand its definition, and

convert the resulting bus form of the field value back into the word.7 constant

representation. Five theorems, one for each field, are produced, typically of

the form:

I- Read_field(ROM.Iun(mpc tm)) = #01000

F- A_f ie1d(ROM.±un(mpc tm)) = #000000000.

CHAPTER 6. 115

3. The four theorems for the Test_, A].u_, Write..., and Read-field values are

then each resolved with the control unit theorem for the appropriate constant

and field, and split into conjuncts, giving a set of theorems each having the

form:

• I- (ReacLfield(ROM..fun(mpc tm)) = #00001) = F, or

I- (Rea&.field(ROM..fun(mpc tm)) = #01000) = T.

4. The relevant Inc9 theorem is retrieved from Inc9...proofs and specialised:

• I- Inc9(mpc tm) = #001100010.

5. The expressions for state flag values are evaluated with the mpc value substi-

tute1 in, to generate a theorem of the form:

I- (mpc tm= #000010110) V (mpc tm = #000011000) = F.

6. The set of all the preceeding theorems is assembled as a list, and substituted

into the Base-thin from the previous stage, using the primitive inference rule

SUBST and a template. A series of rewrites reduces constant boolean expressions

and removes eliminated existentially quantified variables, and is followed by a

PRUNE'ing of remaining existentially quantified variables.

7. Any remaining existentially quantified variables will not have been removed

because they occur in a conjunct in which only one field is defined. This

occurs when a 14 bit value is transferred over the bus, for example. They are

eliminated by a specialised rule that uses theorems about the existence of fields

of an existentially quantified variable:

car-bits-thin = F- ! y. ?x. car-bits x = y

cdr_bits_thin = F- ! y. ?x. cdr_bits x = y.

8. Discharge the original assumption of the value of the mpc.

Only one of the 337 microinstruction theorems required additional simplification.

The last microinstruction (308) of the sequence for the SECD STOP instruction

CHAPTER 6. 116

stores a pointer to the result of the computation in the cdr field of the highest memory

address. This is effected by reading the S_reg register and writing to memory. Only

the cdr field of the bus is driven, so only that field of the memory record has a

determinable value, and even the record type is indeterminate. This is clearly an

example of imprecise specification that formal methods will bring to our attention. It

is a moot point whether this could, in practice, present any difficulty in the system

operation. However, the problem here was the inability of the proof function to

eliminate the existentially quantified value bus-bits-t, leaving the subterm:

I- ... (?bus_bits_t.

(memory(SUC tm)=Store14(mar_pins(PRE tm))bus_bits_t(memory tm))A

(cdr-bits bus_bits_t = s(PRE tm)) A...

To resolve this problem, the expression for the state of memory was changed to:

Oa. ((a = mar_pins(PRE tm))

=> (cdr_bits (memory (SUC tm)a) = s(PRE tm))

I (memory(SUC tm)a = memory tm a))).

This expression only defines part of the memory output at the subject address, and

allowed the expression for bus_bits_t to be substituted in the memory expression,

laving a single occurrence of bus_bits_t in the theorem, which could be pruned.

6.5 Microprogramming Level: Symbolic Execution

Each one of the 337 lemmas about the RTL description gave the immediately fol-

lowing state in terms of the present state. These results were next combined to give

the state after a number of steps from some starting state.

The top level system definition, SYS_spec, describes a four state finite state ma-

chine, with two transitions from each of three states controlled by the button input,

an initial transition from a deterministic startup state, and 18 possible transitions,

CHAPTER 6. 117

one for each machine instruction code, from the fourth state. Further, four instruc-

tion sequences have a branch conditional upon some function of the state, and one

(the sequence for the LD instruction) contains two loops. Thus there are minimally

29 paths to consider. Additionally, several instruction sequences call subroutines,

and subroutine calls are nested. Under the welLlormed.lreeJ.ist constraint, the

subroutines have a deterministic execution time.

The proofs generated in this section required a total of 1,144,000 primitive infer-

ences. The number of inferences for each proof was in quite direct proportion to the

number of microcode instructions in the sequence.

This section begins with a simple proof for the initial transition, and continues

with a description of the general approach to developing the longer sequence proofs,

using the LD F instruction as a typical example. Following this is a description

of the more complicated LD sequence proof, and the application of the developed

methodology to the proofs for the most complex AP and RAP instruction sequences.

6.5.1 The initial transition

The first proof stage produced an expanded definition of the system which included

a conjunct giving the initial mpc value. Taking this first conjunct gives the theorem:

H IflpC 0"'= #000000000.

Applying modus ponens to SYS_lenuua_0 and this theorem, and taking the first con-

junct, gives the theorem:

I- mpc(SUC 0m) = #000010110.

Applying the predicate is-major-state to mpc at both time 0m and SUC 0m , then

expanding all ctefinitions produces the two theorems:

I- —is-major-state mpc °m

I- is—major—state mpc(SUC 0m).

CHAPTER 6. 118

The final theorem appears deceptively simple:

I- TimeOf (is-major-state mpc)Om= SUC Cm .

The proof begins by expanding the definition of TimeOf, but this introduces the

SELECT operator Q used in its definition. It is necessary to show that there is a

unique value which satisfies the body of the operator, and a specially devised tactic

SELECT_UNIQUE_TA C [Gra9Oa] does just that, splitting the goal into two parts.

The first requires a proof that the value SUC Cm satisfies the predicate, while the

second must show that the satisfying value is unique. This property is provable from

the definition of IsTiineOf, and is captured by the theorem IsTimeOf_IDENTITY.

H ! n ± ti t2. IsTimeOf n ± tlAlsTimeOf n ± t2 ==> (ti = t2)

6.5.2 The general approach: LDF

The proof for the initial transition was simply concerned with the time the machine

gets to a major state, and what that state is. For most of the remaining transitions,

the state of the rest of system, comprising the external memory as well as the on-chip

registers, is of equal concern.

Central to the method is the idea of symbolic execution. Given a base theorem

expressing the accumulated change to the system state after execution of some mi-

crocode sequence, one conjunct states the value of mpc at the next point in time.

The next microinstruction is symbolically executed by applying MATCH-MP (a

HOL variant of Modus Ponens) to the appropriate microinstruction lemma from the

previous stage and the conjunct from the base lemma, and rewriting the resulting

theorem with the base theorem conjuncts to include the previous accumulated com-

putation. It was also necessary (and convenient) to prove whether or not the system

was in a major state at each step. This second result was accumulated in a theorem

giving a defined interval in which the system was not in a major state. The sequence

CHAPTER 6. 119

proof would end when a major state was reached, whereupon a specific value for the

Next time the system is in a major state i determined.

Once again, the number of theorems demanded minimizing user intervention. A

proof function was designed to effect the single step computation described above,

producing a new pair of theorems from a theorem pair argument. A higher level

function calls it recursively to effect a series of steps, producing a pair of theorems

summarizing the computation of a sequence of microinstructions. The sequence for

a machine execution, in this case the LDF instruction, is summarized in the two

theorems in Figure 6.4.

The mpc value at the end 'of the sequence corresponds to the t op-of -cycle state.

The memory has had two cells altered: the first cell has pointers to the code argument

to the LDF instruction, and the current environment e, effectively representing a

closure. The second cell has pointers to the first cell, and the original s value. The

s pointer is updated to point to the latter cell, effectively storing the closure on top

of the s stack. The c pointer now points to the rest of the control list following

the LDF instruction and its argument. Notice that the cdr operation is performed

on different memories: the first on the original memory, and the second after the

memory is updated with the two rewritten cells. The free pointer has similarly

been updated to the the third cell in the original free list. The content of the other

registers is irrelevant to the abstracted state, and they are removed in the final

theorem shown. The expression for the updated memories appears several times, so

they have been bound in let expressions to simplify reading.

The first sequences proved were the subroutines. Base theorems were of the form

(this is for the consxlx2 subroutine):

F- (mpc t,,= #101000101) A((free(PRE tm)NIL_addr) = F), and

F ! tm". ((PRE tm)<tm") A(tm "<tm)>'is..ivaj or_state mpc tm".

with the assumptions of the first matching the conjuncts of its conclusion. The

CHAPTER 6. 120

LDF_state =

 I- let memi =

Store14 (free tm)

(bus32_cons_append

#00 RT_CONS

(car-bits (memory tm (cdr_bits (memory tm (c

(e tm))

(memory tm)

tm)))))

in

let mem2 = Store14 (cdr_bits(memory tm (free tm)))

(bus32_cons_append #00 RT_CONS(free tm)(5 tm))

memi

in

((mpc(tm +26) = #000101011) A

(memory(tm +26) = mem2) A

(s(tm+26) = cdr_bits(memory tm (free tm))) A

(e(tm+26) = e tm) A

(C(tm +26) = cdr_bits(mem2(cdz_bits(mem2(c tm))))) A

(d(tm +26) = d tm) A

(free(tm+26) = cdr_bits(meml(cdr_bits(memory tm (free tm))))))

LDF_Next = F Next tm (tm +26)(is_major_state mpc)

The assumptions are:

C clock-constraint SYS_Clockect
SYS_imp

reserved-words-constraint mpc memory

well_formed_free_list memory mpc free s e c d

mpc tm = #000101011

opcode_bits(memory tm (car_bits(memory tm (c tm)))) = #000000011

]

Figure 6.4: Microprogramming level theorems for OF instruction

second theorem is vacuously true, since it describes the property over an empty

interval.

The first theorem evolves at each step as described earlier. The second uses the

theorem Next-step:

F- ! ts tf f.(-'f tf)A

CHAPTER 6. 121

(!t.(ts<t)A(t<tf)==>(-if t)) ==>

(!t.(ts<t)A(t<(SUC tf)) ==> ('f t))

Once the value of the mpc at the given time is used to prove the system is not in a

major state, it is combined with the accumulated interval theorem and Next-step

to give a new theorem, covering an interval one time unit longer. The results for the

consxlx2 subroutine are shown in Figure 6.5.

The proof strategy for the instruction transition sequences saw the completion

of theorems for each of the subroutines exclusive of garbage collection. Next, the

sequence common to all instructions, essentially a fetch instruction operation starting

at top_of_cycle state, was proved up to where the control stream branches to each

individual instruction code sequence. For each of the 18 instructions, an assumption

about the value of the next SECD instruction was added to the base theorem, and one

more step proved. The results were used as arguments to the proof function, which

advanced through the microinstruction sequence until a major state was encountered.

The starting theorem for the proof function in these cases was slightly different

from that used for the subroutines. The final theorem had to express the final

state for all state variables at the same time, in terms of the initial values at time

tm, unlike the form of the microinstruction theorems typified by the example in

Figure 6.3. Thus, only the conjuncts describing the next state of mpc, sO, si, s2,

s3, and memory from the microinstruction lemma for the top_of_cycle address form

the base theorem. The starting theorem for the range in which it is not in a major

state differs as well:

F ! tm".(tm<tm")A(tm"<(SiJC tm)) ==> -is-major-state mpc tm ".

The proof function is composed of a recursive function applied to a function which

can prove single steps. The decision tree for the recursive function is shown in Fig-

ure 6.6. When the next instruction is not a simple constant, it must be either a con-

ditional branch or a case split on the SECD instruction code. In the latter case, user

CHAPTER 6. 122

Consx1x2_state =

I- (mpc(SUC(SUC(SUC(SUC tm)))) = 30 tm) A

(so(SUC(SUC(SUC(SUC tm)))) = si tm) A

(S1(SUC(SUC(SUC(SUC tm)))) = s2 tm) A
(s2(SUC(SUC(SUC(SUC tm)))) = 33 tm) A

(s3(SUC(SUC(SUC(SUC tm)))) = #000000000) A

(memory(SUC(SUC(SUC(SUC tm))))

Store14 (free(PRE tm))

(bus32_cons_append #00 RT_CONS(xl(PRE tm))(X2(PRE tm)))

(memory tm)) A
(bus_pins(SUC(SUC(SUC tm))) =

bus32_cons_append #00 RT....CONS(x1(PRE tm))(X2(PRE tm))) A

(rmem_pin(SUC(SUC(SUC tm))) = F) A

(bufl(SUC(SUC(SUC tm))) = bu±1(PRE tm)) A

(bUf2(SUC(SUC(SIJC tm))) = bu2(PRE tm)) A
(mar_pins(SUC(SUC(STJC tm))) = free(PRE tm)) A

(s(SUC(SUC(SUC tm))) = s(PRE tm)) A

(e(SUC(SUC(STJC tm))) = e(PRE tm)) A

(c(SUC(SUC(SUC tm))) = c(PRE tm)) A

(d(SUC(SUC(SUC tm))) = d(PRE tm)) A

(froe(SUC(SUC(SUC tm))) = cdr_bits(mefltory tm (free(PRE tm)))) A

(XI(SUC(SUC(SUC tm))) = xl(PRE tm)) A

(X2(SUC(SUC(SUC tm))) = x2(PRE tm)) A

(car(SUC(SUC(SUC tm))) = car(PFtE tm)) A
(arg(SUC(SUC(SUC tm))) = arg(PRE tm)) A

(parent(SUC(SUC(SUC tm))) = parent(PRE tm)) A

(root(SUC(SUC(SUC tm))) = root(PRE tm)) A

(yl(SUC(SUC(SUC tm))) = yl(PRE tm)) A
(y2(SUC(SUC(SUC tm))) = y2(PRE tm)) A

(writ e_bit_pin(SUC(SUC(SUC tm))) = F) A

(ilagO_pin(SUC(SUC(SUC tm))) = F) A

(ilagl_pin(SUC(SUC(SUC tm))) = F)

Consx1x2_nonmaj or =

I !t' m .(PRE tm) < t'm A t'm < (SUC(SUC(SUC(SUC tm)))) >

- 1 is-major-state mpc t'm

The assumptions are:

C clock-constraint SYS_Clocked
'SYS_imp

(free(PRE tm) = NIL_addr) = F

mpc tm = #101000101

3

Figure 6.5: Microprogramming level theorems for consxlx2 subroutine

CHAPTER 6.

single step
& recurse

123

recurse after
subroutine
interval

Figure 6.6: Decision Tree for Recursive Microprogramming Level Proof Function

intervention is required to add an appropriate assumption determining which instruc-

tion code is to be executed, as well as any other assumptions related to that instruc-

tion. These assumptions are taken directly from the valid-program-constraint.

In the case of a simple branch, both legs of the proof are followed, one by adding

the conditional expression as an assumption, and the other by adding the negation.

Subroutine calls encountered in the computation sequence use the subroutine the-

orems to accumulate the effect of the subroutine execution, using an interval proof

function. Most instructions will cause a recursive call on the result of executing one

more microinstruction. When a major state is encountered execution must stop, but

only after the step function completes updating the state of the datapath registers.

This is required since these registers are not part of the starting state theorem, and

their final value needs to catch up one step. The state values that are not relevant

CHAPTER 6. 124

to the next level of the proof are culled out at this point. At the last step, the time

parameters are changed to a sum of tm and a constant. A further simplification

binds the intermediate values of memory in let expressions to produce a theorem

as in Figure 6.4.

6.5.3 Proving the complex sequences

Three sequences were impossible to prove using the proof function described. Two

of them, the sequences describing the effect of executing an AP or RAP instruction,

produced terms which were simply too large, and memory faults occurred. Two

aspects of the term were excessive in size: expressing the time parameter for the

resulting state in terms of repeatedly applying SUC to the start time tm, and the

repeated occurrence of the expression for the state of memory after successive store

operations. Both of these are reduced in the sample LDF theorem of Figure 6.4,

but the reduction takes place after the theorem proof is essentially complete. As an

example, the completely unfolded (i.e. with all let expressions removed) version of

the state theorem for the RAP instruction is 2,436 lines long, compared to 50 lines for

the form containing let expressions. It is considerably more difficult, if it is indeed

possible, to effect the proof without unfolding let bindings in intermediate results.

The overhead of converting time parameters to simple addition of with a constant is

reduced by performing it once only, at the end of the proof.

The proof for the LD sequence had to demonstrate termination of execution of the

microcoded "while" loops, and the accumulated effect of executing these loops was

proven first. This part of the proof method provided an approach which was later

successfully applied to the previously described sequences. The major difference was

that segments of the microcode were proven just as for the subroutine sequences,

the time parameter was converted to a sum with a constant, and then the intervals

were assembled much as had been done for the subroutines in the earlier proofs. A

CHAPTER 6. 125

complex conversion from a time parameter consisting of a sum of several constants

was required once only, and the proofs were successfully completed. While this is

not significant in terms the logical formalism, it is typical of the problems encoun-

tered when applying formal methods to substantial systems. Much time was spent

managing complexity. Creating a proof is often not in itself a problem, creating a

large proof within fixed resource limits is.

The proof of termination of the microcoded "while" loops required proving that

under the two DEC28 assumptions, the nt1 application of DEC28 to the 28 bit value

that represents n gives the value ZERO28, and for any fewer than n applications, the

value is not ZERO28.

loop-terminates-lemma =

I- ! w28.

NEG(iVal(Bits28 w28)) ==>

(nth(pos_num_of(iVal(Bits28 w28)))(atom_bits o DEC2B)w28 = ZER028)

nth-DEC-NOT-ZERO =

F in w28.

-' NEG(iVal(Bits28 w28)) ==>

n < (pos_num_of(iVa1(Bits28 w28))) ==>

- i (nth n(atom_bits o DEC2B)w28 = ZERO28)

A pair of theorems summarizing the accumulated effect of one pass through

the while loop, with the assumption that the termination condition is false at the

start, were proved. Next, using the nth-DEC-NOT-ZERO theorem and the one pass

theorems, the accumulated computation effect of up to n iterations through the loop

was captured in the pair of theorems in Figure 6.7. The proof proceeded by induction

on n.

Finally, loop_terminates_lemma was used to derive that the exit condition held

after n iterations. The theorems for each sequence, consisting of the two loop se-

quences, and the sequences between, and before and after the loops, were assembled

and simplified to give the final theorems shown in Figures 6.8 and 6.9. Aside from the

CHAPTER 6. 126

loopl_nth_state =

!fl tm.

NEG(iVa1(Bits28(atom_bits(arg(PRE tm))))) >

n < (pos_num_of(iVal(Bits28(atom_bits(arg(PRE tm)))))) >
(mpc tM = #000111000) ==>

(mpc(tm + (5 * ii)) = #000111000) A

(sO(tm + (5 * fl)) = 80 tm) A

(31(tm + (5 * n)) = si tm) A

(32(tm + (5 * n)) = s2 tm) A

(s3(tm + (5 * fl)) = 53 tm) A

(memory(tm + (5 * fl)) = memory tm) A

(arg(PRE(tm + (5 * n))) = nth n(DEC28 0 atom_bits)(arg(PRE tm))) A

(buf2(PRE(tm + (5 * it))) = buf2(PRE tm)) A

(S'(PRE(tm + (5 * it))) = s'(PRE tm)) A

(e'(PRE(tm + (5 * U))) = e) (PRE tm)) A

(C'(PRE(tm + (5 * it))) = C'(PRE tm)) A

(d'(PRE(tm + (5 * U))) = d' (PRE tm)) A

(free(PRE(tm + (5 * it))) = free(PRE tm)) A

(x1(PRE(tm + (5 * fl))) =

nth n(cdr_bits o (memory tm))(x1(PRE tm))) A

(X2(PRE(tm + (5 * it))) = x2(PRE tm)) A

(car(PRE(tm + (5 * it))) = car(PRE tm)) A

(parent(PRE(tm + (5 * n))) = parent(PRE tm)) A

(root(PRE(tm + (5 * it))) = root(PRE tm)) A

(Y1(PRE(tm + (5 * n))) = yl(PRE tm)) A

(y2(PRE(tm + (5 * n))) = y2(PRE tm))

loop 1_nth_noninaj or =

!n tm.

NEG (Val (Bits28(atom_bits(arg(PRE tm))))) >

it <= (pos_num_of (Val (Bits28(atom_bits(arg(PRE tm)))))) >

(mpc tm = #000111000) >

(!t'.

(PRE tm) < t' A t' < (tm + (5 * it)) ==> -is-major-state mpc t')

Figure 6.7: Theorems for n iterations through ioopi

assumptions typical of each instruction proof, there are the two DEC28 assumptions,

as well as the assumptions that the parameters to the LD instruction both represent

nonnegative integers.

CHAPTER 6. 127

LD_State =

I- let m =

pos_num_of

(iVal

(Bits28
(atom-bits

(memory tm

(car-bits

(memory tm

(car_bits(memory tm (cdr_bits(memory tm(C tm)))))))))))
in

let n =

pos_num_of

(iVal

(Bits28

(atom-bits

(memory tm

(cdr_bits
(memory tm

(car-bits (memory tm (cdr_bits (memory tm (C tm)))))))))))
in

let memi =

Store14 (tree tm)

(bus32_cons_append #00 RTCONS

(car_bits
(memory tm

(nth it

(cdr_bits o(memory tm))
(car-bits

(memory tm (nth m(cdr_bits o(memory tm))(e tm)))))))

(S tm))

(memory tm)

in

((mpc(tm + (40 + (5 * (iii + n)))) = #000101011) A
(memory(t + (40 + (5 * (rn + n)))) = meml) A

(S(tm + (40 + (5 * (m + it)))) = free tm) A

(e(tm + (40 + (5 * (m + it)))) = e tm) A

(c(tm + (40 + (5 * (m + it)))) =
cdr_bits(meml(cdr_bits(meml(c tm))))) A

(d(tm + (40 + (5 * (m + n)))) = d tm) A

(free(tm + (40 + (5 * (m + it)))) = cdr_bits(memory tm (free tm))))

Figure 6.8: Microprogramming level State theorem for LD instruction

CHAPTER 6. 128

LD_Next =

 I- Next

tm

(tm + (40 +
(5 *

((pos_num_of
(iVal

(Bits28

(atom-bits

(memory tm

(car-bits

(memory tm

(car_bits(memory tm (cdr_bits (memory tm(c

(pos_num_of

(iVa].

(Bits28

(atom-bits

(memory tm

(cdr_bits

(memory tm

(car-bits (memory tm (cdr_bits (memory tm (c

(is-major-state mpc)

tm)))))))))))) +

tm))))))))))))))))

Figure 6.9: Microprogramming level Next theorem for LD instruction

6.6 Liveness

If the SECD system initially reaches a major state, and if every time it starts in a

major state all possible paths eventually return it to a major state, then the temporal

abstraction function from the coarse granularity of time to the medium granularity

is total. This important property is essential for the last stage of the proof.

The function state-abs is well-defined only when one of four values is in the

MPC9 register, and these are precisely the four values for which the temporal ab-

straction predicate is-major-state mpc is true. Unfortunately, one, cannot prove

that the abstraction predicate holds at the abstracted time, i.e.(is_major_state

CHAPTER 6. 129

mpc) when (is-major-state mpc))t, or in general (P when P) t (which is defi-

nitionally equivalent to P(TimeOf P t)). This limitation arises from the use of the

SELECT operator D in defining the temporal abstraction function TimeOf ', given

in Figure 5.9. This obstacle was overcome by proving a "liveness" property for the

predicate used for the abstraction (is-major-state mpc). Liveness as defined by

Inf states that the predicate is true infinitely often.

I- Inf f = !t. ?t'. (t<t') A (f t')

The proof of this property is simplified by using the following theorems.

laf_tiun =
I- If. (?t'. 0 < t' A f t') A

(It. f t ==> (?t'. t < t' A f t')) ==> Inf f

Next_exists_tluu =
F- !t ti i. Next t ti f => (?t'. t < t' A f tO

The first limits the proof requirement to showing that a major state is reached

initially, and every time the machine starts in a major state it will reach a major

state again in the future. This reduces the number of starting points to four, instead

of every possible machine state (consisting of 400+ values that mpc can have). The

microprogramming level theorems defining the Next times the temporal abstraction

function holds are used for each branch of the proof. The second theorem expresses

that part of the definition of Next that satisfies the proof requirement for times

starting in major states.

4From the defining axiom for the SELECT oper-
ator SELECT_AX: E-V(P:*->bool) (x:*). P x ==> P($Q P), it is necessary to show that P
holds at some value x in order to derive that P($ (D P) holds. See [Gra9Oa] for further description.

CHAPTER 6. 130

liveness =

C clock-constraint SYS_Clocked
SYS_imp

valid-program-constraint memory mpc button-pin s e c d

reserved-words-constraint mpc memory

well_formed_free_list memory mpc free s e c d

DEC28_assuml

DEC28_assum2

]
I- Inf (is_major_state mpc)

The proof is achieved by a series of case splits: first using Inf_thm it is split

into time 0 and times t such that is-major-state mpc t. The latter is split

into the four major states using the definition of is-major-state, and finally

valid-program-constraint divides the possible transitions from top_of_cycle state

into 18 cases, each of which is solved by the appropriate *_Next theorem from the

previous stage. This was the simplest stage of the proof, requiring only about 1,000

primitive inferences.

6.7 Relating the Computations over Abstraction

The microprogramming stage provided a set of theorems that defined the lower level

view of the effect of computation of each instruction, giving new values for each of

the s, e, c, d, and free state variables and the low level memory in terms of low

level operations on the memory and register contents.

The specification for each transition defines the new values for the same state

variables and the abstract memory in terms of abstract memory operations on the

previous state values and abstract memory. To complete the verification, it must

be proved that each of these low level computations correspond to the transition on

the abstracted state specified by the top level specification. A few of the theorems

relating abstract memory operations to RTL level operations are given in Figure 6.10.

CHAPTER 6. 131

cax_cdr_mem_abs_lemma =

F is_cons(memory v) ==>

!x. (M_Car(v,mem_abs memory, x) = car-bits (memory v)) A

(M_Cdr(v,mem_abs memory, x) = cdr_bits (memory v))

nuniber_mem_abs _]. emma =

F is_number(memory v) ==>

!x. N_int_of(v,mem_abs memory, x) =

iVal(Bits28(atom_bits (memory v)))

opcode_mem_abs_lemma =

F is_cons(memory v) ==>

is_number (memory(car_bits (memory v))) ==>

!x. M_int_of(M_CAR(v,mem_abs memory,x)) =

iVal(Bits28(atom_bits(memory(car_bits(memory v)))))

cons_unfold_i_lemma =

I- is_cons(memory free) ==>

!v w. M_Cons(v,w,mem_abs memory,free) =

(free,

mem_abs(Storei4 free(bus32_cons_append #00 RT_CONS v w)memory),

cdr_bits(memory free))

cons-unfold-2-lemma =

I- -n (free = cdr_bits(memory free)) >

is_cons(memory(cdr_bits(memory free))) ==>
!v w Z.

M_Cons(v,w,mem_abs(Storei4 free z memory),cdx_bits(memory free)) =

(cdr_bits(memory free),

mem_abs(Storei4 (cdr_bits(memory free))

(bus32_cons_append #00 RT_CONS v w)

(Store14 free z memory)),

•cdr_bits(Store14 free z memory(cdr_bits(memory free))))

Figure 6.10: Abstract Memory Theorems

The antecedents in each theorem express conditions under which the low level

operations correspond to well-defined operations on abstract memory type objects.

An initial obstacle to the proof is that the function from the representing type for

abstract memories to the abstract memory type is only well-defined for appropriate

CHAPTER 6. 132

representing memories. It was necessary to show that the function Mem...Range...Abs

applied to a low level memory would return an object in the representing type

for abstract memories. With this result, the composition of REP..xnfsexp...mem with

ABS...infsext_mem was the identity when applied to Mem..Range..Abs o memory. This

result is expressed in the the following theorems:

Mem_Range_Abs_lemma =

I- ! memory. IS_mfsexp_mem(Mem_Range_Abs o memory)

REP_ABS_Mem_Range_Abs =

I- REP_mfsexp_mem(ABS_msexp_mem(Mem_Range_Abs o memory)) =
Mem_Range_Abs o memory

The proofs of the theorems in Figure 6.10 are achieved by expanding definitions of

the operations and the mem_abs function, applying the above theorems to eliminate

the REP and ABS functions, expanding the definition of Mem_Range_Abs, and using the

distinctness of record types. The theorem opcode_mem_àbs_lemma combines the two

previous theorem results for the machine instruction code value evaluation. The last

theorem, cons_unfold_2_lenuna, is used when two M_Cons operations are performed

on a memory.

The top goal for the final proof (Figure 6.1) splits into two parts: the state when

the machine first reaches a major state, and the state of the machine when it is next

in a major state, in terms of its state in the previous major state (i.e. at time ta).

The first goal is quite simply solved by using phase-lemma-0 to show that at time

SUC Om a major state is reached, and that at all times before that (namely time

tm 0), the system is not in a major state; The required theorem has the form:

F clock-constraint SYS_Clocked ==>

SYS_imp ==>

(((state-abs o mpc) when (is-major-state mpc))O = idle)

The second goal may be split into a set of subgoals, corresponding to each tran-

sition defined in the SYS_spec. The transitions are determined by the state at time

CHAPTER 6. 133

t, which is a function of the mpc at TimeOf (is-major-state mpc)t. Using the

liveness theorem from the previous stage, with the theorem TimeOf -TRUE:

Hf. mt f ==> On. f (TimeOf f n)),

to obtain the result that is-major-state mpc is true at all points of the coarser

granularity of time. With this result, the state abstraction function is well defined,

and mpc has one of four values at all points in the coarser granularity of time.

Theorems for the correctness of each top level transition are typified by the LDF

transition theorem in Figure 6.11. The last 4 assumptions in the theorem match the

applicable portion of valid-program-constraint for the LDF instruction branch.

The major steps in proving this theorem follow.

• Using the fifth assumption, derive the assumption that the system is in

top-of-cycle state at time t.

• derive the value of the lowest 9 bits of the 28 bit instruction code from the bot-

tom assumption, for resolving with the less specific assumption of LDF-state

and LDF-Next,

Expand the definition of when, and perform a /3-reduction.

• Add the assumption obtained by resolving LDF-Next with the other assump-

tions.

• Resolve the previous assumption with TimeOf -Next -lemma and rewrite with

the resulting theorem. This substitutes TimeOf (is-major-state mpc)t+26

for TimeOf (is-major-state mpc)(SUC ta).

• Unfold the definition of LDF-trans.

• Using the abstract memory theorems of Figure 6.10 resolved with the given

assumptions rewrite the right side of the goal, producing expressions for the

next state in the terminology of the lower level definition.

CHAPTER 6. 134

C "clock-constraint SYS_Clocked"
SYS_imp

"reserved-words-constraint mpc memory"

"well_formed_free_list memory mpc free s e c d"

"mpc(TimeOf (is_major_state mpc)t) = #000101011"

"is_cons(memory(TimeOf(is_major_state mpc)t)

(c(TimeOf (is_major_state mpc)t)))"

"is_number(memory(TimeOf (is_major_state mpc)t)

(car_bits (memory(TimeOf (is_major_state mpc)t)

(c(TimeOf(is_major_state mpc)t)))))"

"is_cons(memory(TimeOf(is_major_state mpc)t)

(cdr_bits(memory(TimeOf(is_major_state mpc)t)

(c(TimeOf(is_maj or_state mpc)t)))))"

"atom_bits(memory(TimeOf(is_major_state mpc)t)

(car_bits(meiuory(TimeOf (is_major_state mpc)t)

(c(TimeOf(is_major_state mpc)t))))) =

#0000000000000000000000000011"

J
I- (Cs when (is_major_state mpc))(SUC t),

(e when (is-major-state mpc))(SUC t),

Cc when (is-major-state mpc))(SUC t),

(d when (is-major-state mpc))(SUC t),

(free when (is-major-state mpc))(SUC t),
((mom-abs o memory) when (is-major-state mpc))(SUC t),

((state-abs o mpc) when (is-major-state mpc))(SUC t)) =

LDF_trans ((s when (is-major-state mpc))t,

(e when (is-major-state mpc))t,

Cc when (is-major-state mpc))t,

(d when (is-major-state mpc))t,

(free when (is-major-state mpc))t,

((mom-abs o memory) when (is-major-state mpc))t)

Figure 6.11: The Correctness result for the LDF instruction

• Rewrite with the triplet selector function definitions (cell-of, mem_of,

free_of, mem..free_of, etc.) used in the definition of LDF_trans.

• Unfold the left side of the goal equation by rewriting with the LDF_state

theorem.

CHAPTER 6. 135

• Split into separate subgoals for each of the s, e, c, d, free, memory, and

state components. The remaining subgoals are trivially solved for all but

the c values, which require use of a derived theorem to establish that the cells

accessible from the c pointer have not been altered by the writing of two records

to the memory. This is necessary since the new value for c is computed after

the records are written.

Splitting the top goal (Figure 6.1) on the state, and for top_of_cycle state,

on the instruction codes permitted by the valid-program-constraint, reduces the

problem to cases solved by similar theorems for each top level transition.

As this stage was not completed at the time of this writing, statistics for the

entire stage are lacking. However, we can extrapolate from the LDF example, which

required approximately 20,000 primitive inferences. This sample is of average com-

plexity, so the entire proof should be achievable with, just under a half a million

primitive inferences.

6.8 Summary

This chapter has presented the proof of the correctness theorem relating the RTL

and top level specifications of the SECD system. Constraints limiting the scope re-

stricted the chip to normal mode of operation and a properly configured memory.

This latter component involved the values in reserved memory locations, the form

of the free list, and the permissible machine codes and system state associated with

each. The latter constraint effectively defines the pattern matching inherent in the

informal state transitions defining the abstract machine in Table 3.3. The constraints

on the free list concern both its structure, and its separation from data structures

in the memory. By requiring a minimum number of records in the free list, consid-

eration of garbage collector correctness is deferred. Lastly, two assumptions about

CHAPTER 6. 136

the decrement operation will eventually be discharged upon completion of the lower

level proof.

The design of the constraints evolved as the proof proceeded. What in retrospect

appears as an obvious collection of conditions was the result of incremental exten-

sions, reflecting a strong desire to minimize the constraints to those necessary to

achieve the proof. The final versions capture complicated conditions quite elegantly,

and express some of the properties central to a specification for the garbage collector.

The proof presented in this chapter compares in size with the largest of previous

efforts. The problem size relates largely to the complexity of individual instruction

semantics, as well as the system size.

The staged approach to the proof owes much to previous efforts in microproces-

sor verification, particularly those of Gordon [Gor83b], Cohn [Coh88, Coh89b], and

Joyce [Joy88, Joy89a], as well as the work of Meiham [Mel88] and Dhingra [Dhi88]

on temporal abstraction. The methodology at each stage differs mainly from prior

work in the sheer size of proof effort required, demanding much less user intervention

at each level, and the generality of the approach.

Problem size dominated the proof strategy at each stage. The first stage of

proof had enormous terms, which were many times larger than could be displayed

on a workstation screen. Term size also limited the use of powerful tactics such

as rewriting, since intermediate steps in the tactic could exhaust available memory,

and cause a failure. Limiting the tools to the most primitive rules and tactics made

otherwise trivial proofs both tedious and time consuming.

The phase proof stage had to cope with both large size terms and large numbers

of theorems. The high overhead required to prove inequality of word constants led

to exhaustive case theorems for the possible values, which were then used repeatedly

as required by other proofs. User intervention was minimized by use of a proof

function, although many hours of work went into the latter's design. Any alteration

CHAPTER 6. 137

to the proof function required regenerating all theorems, impeding progress for a

day and a half. The theorems had to be divided among several HOL theories, as

once again available memory would be exhausted. This had the advantage of more

efficient theorem retrieval at later stages.

The microprogramming stage offered some of the more interesting proof chal-

lenges. The number of theorems generated was still large enough to demand mini-

mizing user intervention, but the stronger motivation was the length of time required

for each proof, much of which was spent retrieving phase theorems. Timing infor-

mation about the execution time for each sequence is part of the proof result, rather

than input required of the user.

Term size became a factor as the number of records written to the memory during

a single machine instruction transition rose. The expression size grew exponentially

in this number, so that some sequences could not be proved with the original proof

function. While the final theorem could be simplified by the use of let expressions,

the intermediate terms generated during the proof were so large and complex as to

be completely incomprehensible, and only the machine based proof assistant could

reliably cope.

The proof of termination of the microcoded loops has not appeared in previous

microprocessor proofs in the form shown here 5, although such proofs have been part

of the domain of software verification ([Gor88b]).

The liveness stage of proof was made trivial by the design of the constraints

and the careful design of the theorems deiiving from the microprogramming stage.

Only the simple initial transition caused some difficulty, forcing the development of

techniques for dealing with the Q operator used in the definition of the temporal

'Joyce [Joy89a] uses a form of temporal logic in a microprocessor proof with an asynchronous
memory interface.

CHAPTER 6. 138

abstraction function. This work resulted in a technical report [Gra9Oa] which has

had wide distribution within the community of HOL users worldwide.

The current incompleteness of the final proof stage leaves some uncertainty about

the completeness of the proof development so far. However, the completion of the

sample proof for the LDF transition, and the analysis of the remaining problems,

gives a high degree of confidence that there are no serious obstacles remaining.

Development of the proof often revealed failings or inadequacies in the definition

of components, datatypes, and functions, and even of the top level specification. In

many cases, most particularly for the constraints, the increased understanding of the

problem distilled the definitions to their essence. However, any such changes had to

propagate through the theory hierarchy, which took several days to accomplish at

the late stages of the proof.

The use of different datatypes to define state transitions at each level contributes

a useful case study in the use of data abstraction. While the benefits in this particular

abstract memory data type may be argued, the concept of higher level data structures

with a limited number of primitive operations, representing much more complex lower

level manipulations, can clearly be useful in presenting information more clearly and

concisely. The added proof effort is minimal, since proof of the correspondence

between operations must be done only once for each operation, and these results

may be used repeatedly.

Chapter 7

Conclusions

7.1 What has been accomplished

Work described in this thesis has covered the whole spectrum from abstract archi-

tecture through VLSI design and layout, to formal specification and formal proof of

correctness. The thesis has

• described the abstract SECD architecture and shown how it supports execution

of a high level functional language,

• described the evolution of a realized system specification and hardware imple-

mentation,

• presented the formal definitions of the specification and an implementation

view of the realized system,

• formalized the constraints under which the system is designed to function, and

• shown the method of achieving a machine proof of correctness that the lower

level correctly implements the top level specification.

The end result of the work described will be the production of a partially verified

hardware implementation of a functional architecture. Although many gaps remain

between the hardware device and the formal description, some advances in linking

formal methods with hardware design have been achieved. The path taken, beginning

with the physical design followed by formal representation and partial verification,

was a direct result of availability of talents and the long and sometimes painful

process of becoming adept at the use of the HOL system. The intimate knowledge of

139

CHAPTER 7. 140

design issues was necessary in the formalization of representations, but the physical

layout did not benefit from the use of formal methods in the design evolution. In

several aspects of the design, this lack was apparent at later stages, particularly the

odd write-through of the ARG register when fetching a machine instruction, and also

the storing of a pointer to the computation result in executing the STOP instruction.

The former most likely arose from incremental modifications, where originally the

instruction was fetched but not stored in a datapath register. The implications

of such incremental changes are not always obvious, whereas creating the formal

specification drew attention to this feature.

In all fairness, the points made above are minor compared to the other problems

discovered in the physical layout: the wiring errors in the shift registers, and the

wiring error in an XOR gate. Rather than arguing against the use of formal methods,

they show up the limitations of their use. In representing a physical device, we are

proposing that a formal description captures the abstract essence of the device. We

need to ensure that the formal description accurately represents the circuit, which

in both cases it did not. The use of tools to automatically generate layout, such as

described in [SBHS89] that transforms HOL specifications into LSI Logic gate array

net-lists, or tools to check consistency of layout with a formal representation, could

have avoided the problems we encountered. Indeed, even the Electric layout tool has

a Mossim circuit extractor which could have been used to compare with the Mossim

simulation model. An argument for verification of such tools themselves parallels

the argument for the use of formal methods in specifying the design.

Aside from the scope of the work including actual chip design, some innovations

have added to previous work on microprocessor verification. The use of an abstract

data type and operations thereon to capture the top level behaviour and the result-

ing proof of the correspondence of the abstract and more primitive operations has

provided a more understandable specification at the top level. It is essential that

CHAPTER 7. 141

this level be understandable if we are to realistically relate it to the intention of the

designer.

'The top level specification also explicitly includes an initial state requirement,

which necessitates lower level constraints on clocking and the reset input. Such ex-

plicit treatment of constraints is a step forward in providing meaningful information

to designers using a product. In hand with the initial state specification, the next

state transition specification has been defined more generally, with the explicit time

parameter generalized internally in the definition, unlike the single step specification

used in [0oh88, Coh89b]. This produces a clearer correctness statement than the

examples cited, particularly in that the temporal relation between the granularity of

time in the two levels is expressed entirely in terms of the when function applied to

the predicate identifying points of time in the finer grain that correspond to points

at the coarser grain. This avoids the need for an explicit function to give the time

between synchronization points relating the two time granularities. These values in

fact were never supplied, but were generated by the proof process, which is sensible

when the system complexity is considered.

The proof of the effect of computation of the microcoded while loops presents

techniques which may be useful in similar control sequences. The approach shows

how the principles of proof of while loop constructs in Floyd-bare logic are adaptable

to hardware, when the explicit time of completion of the loop execution is also a factor

in the proof.

One other difference has been the use of a well-defined multi-bit word data type.

This data type has advantages in representing constants of specific types and sim-

plicity of defining typical operations such as subfield extraction. Some examples of

low level recursive component definitions based upon this type required explicit con-

straints of equality of word widths of parameters to the :(bool)bus level definition,

and some involved tactics to provide the same data representation format for each

CHAPTER 7. 142

parameter through the inductive proof of correctness. This low level definition is eas-

ily overlayed with a word, instantiation, where the fact that the parameters are of

the same type ensures the word width constraint is fulfilled, and thus the correctness

statement simply states equality of the implementation and specification.

7.2 Putting the proof result into context

The completion of the single level of correctness proof of such a complex device is a

substantial accomplishment. Comparison with the proof of the Viper microproces-

sor [Coh89b], the most substantial previous example, indicates the proofs are of the

same magnitude, using the number of primitive inferences as a measure. The Viper

is a fairly simple 32-bit microprocessor designed for safety critical applications, and

is commercially available. It is hard-wired rather than microcoded, and consists of

approximately 5000 gates.

proof stage

primitive inferences

Viper SECD

definition 95,000 199,000

expanding definitions

5,130,000

506,000

phase proofs 4,600,000

microprogramming proofs 1,028,000 1,144,000

liveness proof 1,000

total 6,253,000 6,440,000

Table 7.1: Comparison of Viper and SECD proofs

CHAPTER 7. 143

The proof organizations for the two chips differed, and the results in Table 7.1'

assemble Viper results into roughly corresponding stages of the SECD proof. The

results for both omit the final stage of the proof. The Viper proof included proofs of

correctness of the implementation of arithmetic operations, which the SECD proof

did not.

The HOL system has proved a reliable platform for such a project, although

forcing very careful management of proofs at times. One observation has arisen re-

peatedly through the work: the difficult problem is not the proof of specific theorems,

but rather the creation of useful and correct specifications and constraints, and the

formulation of a strategy to achieve a result which entails a series of theorems. This

highlights the need for specification tools such as Camilleri's tools for executable

specification [Cam88]. Becoming sufficiently competent in the use of the HOL sys-

tem to undertake significant proofs takes considerable time and dedicated effort, but

in many cases the management of the proof complexity was far more challenging

than the management of the thread of the proof, which was often quite mechanical.

Where difficulties arose in completing a proof, it was more often a flaw in the def-

initions or the constraints, and thus the proof process fed back to the specification

and constraints constantly.

The scope of this project has been extended by other works. An analysis and

informal proof of correctness of the compilation algorithm by Simpson [SGB89] is a

significant step towards the verified system ideal: verified software, compiled by a

verified compiler, being executed on a verified hardware system. One hopes some day

that such a system may be used to implement a proof environment as well. More

important perhaps than the continuity of trustworthiness at each level gained by

verification would be the formal specification interfacing each, so that the abstract

'Statistics for Viper were taken from [Coh89b]

CHAPTER 7. 144

domain of algorithms can be related to the finite world of hardware in an explicit

manner.

Several omissions limit the accomplishment. No attempt was made to verify that

garbage collection was correctly implemented. While some provision was included

in the model for this later extension, the meaning of what the garbage collector

does has not been formalized. A suitable datatype to represent this function may

be found in set theory, where a state set may consist of all cells reachable from the

state registers, disjoint from the set of cells reachable from the free register. A cons

operation on the abstract memory moves a cell from the free set to the state set.

The garbage collect function causes the universe of cells to be equal to the disjoint

union of the two sets, while not altering the state set. It may be possible to define

such sets using the path function, but this has not been explored.

The constraints also limit the verification to normal mode of operation, omitting

the test mode use of the shift registers. Once again, the low level model and clocking

constraints were designed for this possible extension. In other constraints, such as

the initializing of the MPC9 register by constraining the clocks and reset input, we

are trading off completeness of the specification against utility and simplicity of the

specification. We really are unconcerned with how the device may operate under

circumstances when these constraints are not in force. The action of the chip when

illegal instruction codes are encountered is perhaps an exception. A predictable and

traceable recovery may be desirable, but this omission is at least clearly discernable

from the valid-program-constraint in the correctness result.

The limitation of the verification to the two upper levels of description of the

system has resulted from a limitation of time rather than any difficulty in the problem

itself. The extension of the proof to the lower level is expected to be considerably

more simple in many respects, since it will be feasible to treat components such as

registers and the ALU individually. The datapath composition of these components

CHAPTER 7. 145

matches the RTL level view almost identically, hence the composition itself would not

require much consideration. Given a library of datapath components, the RTL level

is an appropriate level at which to stop in VLSI specification. Similarly, a verification

that the low level definition of the control unit ROM correctly implements the RTL

ROM should derive from a library ROM model, tailored with a particular transistor

layout. The remainder of the control unit hierarchy differs between the two levels,

and will require a more complex proof effort, but not one which raises new problems.

7.3 Retrospective Improvements

Looking back, there is much that could be improved, particularly in the design of

the chip. The lack of concern with speed of operation was explicit, but some aspects

of the design could be improved dramatically without increasing complexity. Among

the most inefficient features is the memory fetch operation. With an external RAM,

the memory interface will be the determining timing constraint, and the timing is

further dlayed be passing it through the ARC register, which delays its propagation

by part of a clock phase. The addition of an extra cycle for this operation could well

be made up by a higher clock rate.

The imbalance of the clock phases, with only a single logic element separating the

output of the latch clocked on OA from the input of the latch clocked on 4'B, versus

the entire rest of the chip and memory logic for the other phase, means much more

computation occurs during one half of the cycle than the other half. Separating the

pair of latches holding the controller state, placing the OA triggered latch after the

ROM for example, could even out this imbalance considerably, and perhaps contribute

to i better overall clocking scheme. The datapath registers could be clocked on

thus having both datapath and control unit changing on the same clock phase.

CHAPTER 7. 146

A modification driven by the formal specification would separate the functionality

of the decrement operations of numbers and addresses. The added complexity from

duplicating functional components is mitigated by avoiding the devices needed to

pad address values with zero's.

In the formal representation of the system, the relationship of the formal model

to the layout deserved far more careful attention. At the other extreme, if starting

over again, I would reconsider the top level representation, and try to use a datatype

that could more readily encompass the garbage collection operation. The top level

specification could also be relaxed somewhat. As presented here, it specifies the

sequence of operations even at times when the sequence is immaterial to the effect of

the computation. It would be preferable to specify the properties of the new values in

each of the s, e , c, and d registers, rather than the result of specific abstract memory

operations. Is is quite possible to define a more abstract level specification that has

this property, and prove that the present top level ensures the specified behaviours.

The SECD chip project is continuing, and the verification relating the top two

levels will be completed shortly. The lower level specification and verification relative

to the RTL definition will be at least partly completed as well. A third version of

the chip will be submitted for fabrication after a full check of correspondence of the

extracted circuit and the formal model.

The SECD architecture may well be superceded as the choice for future projects,

as it is somewhat more complex and inefficient than others developed later, such as

CAM [Cur86] or TIM {FW87} machines. However, as a study of the verification

of a complex design, it will be useful for those who follow. The specification and

verification methodology are quite general and will provide useful guidelines.

CHAPTER 7. 147

7.4 Hardware Verification: the future

So where does this leave hardware verification as a contributor to the development

of complex systems? First, we have shown that a formal specification can not only

express the behaviour of a moderately complex system, but indeed can help clarify

what the behaviour is or should be. Second, using formal inference methods, we can

relate two levels of description of the system, and gain a high degree of assurance that

the lower level model correctly implements the behaviour of the high level model.

By extending this process to a low enough level, say the model extracted from the

circuit layout, or by automated transformation of formal definitions to layout, we

may decrease the likelihood of wiring errors in the layout. By extending the process

to the compiler and software levels, we may be able to better relate algorithms and

their execution on hardware.

There remains a vital point. Verification cannot in any way ensure that any

hardware device is "correct". At best we deal only with abstract models of things,

rather than the actual devices themselves. Even if our model is "correct" in terms

of bearing a one to one correspondence to the circuit in the device, the abstraction

loses much relevant information. We are constrained immediately by how accurately

our formal model captures the behaviour of the device. Errors that occur in the

fabrication of the device destroy any accurate relationship in any event. At the

other end of the range, we have formal models of some abstract ideas in the head

of the designer. The relation between the two is not something that we can ever be

sure is accurate. Confidence in the correctness of a specification can be gained by

exercising it with a high level (perhaps symbolic) simulator and by subjecting it to

public scrutiny (hence the requirement for readability and succinctness).

Of course, these same limitations apply equally to the use of simulation to "verify"

design correctness. Simulation at the switch level and above uses the same under-

CHAPTER 7. 148

lying model as formal specification. The difference lies in how the model is used.

Simulations run many individual tests to cover all input possibilities. Formal proofs

take the same model and the same specifications as are used in the simulation model

and manipulate the latter formally to prove the correctness of the design elaboration.

Full coverage, that is correctness over all input values, comes automatically. Further,

most VLSI designs are regular or contain regular subsystems (e.g. the n-bit adder

is a row of 1-bit full adders). Regular sub-systems can be verified using induction.

Inductive proofs split into two cases; the base case and the inductive case (show the

correctness of a sub-system of size n+1 assuming the correctness of a sub-system of

size n). So proofs of regular systems do not balloon in length with n, whereas the

number of simulation runs required does. Whilst it must be admitted that carry-

ing out a proof is much harder than writing a simulation program, we should also

remember that the simulation program will be unproven.

Adopting verification techniques does not impose a new design methodology.

Information already present is used in a much more formal way to guarantee the

correctness of a design elaboration. Thus verification techniques should embed well

into CAD systems.

The methodology, tools, and experience are not yet there, i.e. the subject is still

in its infancy. There is a strong need for libraries of speèifications to be established,

and for large case studies to be published so work can proceed towards establishing

a robust and reliable technology and automating (part of) it. Despite these cur-

rent drawbacks, it remains an approach with a promising future. Formal verification

should be considered as another weapon in the armoury of hardware designers, par-

ticularly useful for showing the correctness of regular systems and for conducting

proofs of functionality at the sub-system level and above.

References

[Anc86] Francois Anceau. The Architecture of Microprocessors. Addison-Wesley
Publishing Company, 1986.

[Bev87] W. R. Bevier. A Verified Operating Systems Kernel. Technical Report
CU-11, Computational Logic Inc, Austin, Texas, 1987.

[BG9O] G. Birtwistle and B. Graham. Verifying SECD in HOL. In
J. Staunstrup, editor, Formal Methods for VLSI Design. Proceedings of
the 1990 IFIP WG 10.5 Summer School to be held at Lyngby, Denmark,
North Holland, 1990.

[BGJ89] G. Birtwistle, B. Graham, J. Joyce, S. Williams, M. Brinsmead,
M. Keefe, W. Kroeker, B. Liblong, and W. Voilmerhaus. The SECD
Machine on a Chip. In mt. Conf. on CAD and CG, Beijing, 1989. also
University of Calgary, Computer Science Department, Research Report
89/354/16.

[BGMS88] G. Birtwistle, B. Graham, T. Melham, and R. Schediwy. Hardware Ver-

ification by Formal Proof. In Vijay K. Bhargava, editor, Canadian Con-
ference on Electrical and Computer Engineering, pages 379-384. Cana-
dian Society for Electrical Engineering, 1988.

[BGS89] G. Birtwistle, B. Graham, T. Simpson, K. Slind, M. Williams, and
S. Williams. Verifying an SECD Chip in HOL. In L. J. M. Claesen, ed-
itor, Proceedings of the IFIP TC1O/WG1O.5 Workshop on Applied For-
mal Methods for Correct VLSI Design, Leuven, November 13-16, 1989,
pages 149-158, Amsterdam, 1989. North Holland.

[BJL86] G. Birtwistle, J. Joyce, B. Liblong, T. Melham, and R. Schediwy. Spec-
ification and VLSI design. In G. J. Milne and P. A. Subrahmanyam,
editors, Formal Aspects of VLSI Design, pages 83-97, Amsterdam, 1986.
North Holland.

[BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[Bur75] W. Burge. Recursive Programming Techniques. Addison-Wesley, New
York, 1975.

[Cam88] A.J. Camilleri. Executing Behavioural Definitions in Higher Order
Logic. PhD thesis, University of Cambridge Computer Laboratory,
1988.

149

CHAPTER 7. 150

[Cam89a] Cambridge Research Center, SRI International, Cambridge, England.
The HOL System: Description, 1989.

[Cam89b] Cambridge Research Center, SRI International, Cambridge, England.
The HOL System: Reference Manual, 1989.

[Cam89c] Cambridge Research Center, SRI International, Cambridge, England.
The HOL System: Tutorial, 1989.

[Coh88] A. J. Cohn. A Proof of Correctness of the VIPER Microprocessor:
The First Level. In G. Birtwistle and P. A. Subrahmanyam, editors,
VLSI Specification, Verification and Synthesis, pages 27-71, Norwell,
Massachusetts, 1988. Kluwer. Also University of Cambridge, Computer

Laboratory, Tech. Report No. 104.

[Coh89a] A. J. Cohn. The Notion of Proof in Hardware Verification. Journal of
Automated Reasoning, 5:127-13, 1989.

[Coh89b] A. J. Cohn. A Proof of Correctness of the VIPER Microprocessors:
The Second Level. In G. Birtwistle and P. A. Subrahmanyam, editors,
Trends in Hardware Verification and Automated Theorem Proving, pages
1-91, New York, 1989. Springer Verlag.

[Cra89] Dan Craigen. Position Paper for FM89. Submitted to FM89, Confer-
ence on the Use of Formal Methods in Systems Design, Halifax, July
1989.

[0u188] W. J. Cullyer. Implementing Safety Critical Systems: The VIPER Mi-
croprocessor. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI
Specification, Verification and Synthesis, pages 1-26, Norwell, Mas-
sachusetts, 1988. Kluwer.

[Cur86] P-L. Curien. Categorical Combinators, Sequential Algorithms, and
Functional Programming. Pitman, London, 1986.

[Dhi88] I. S. Dhingra. Formal Validation of an Integrated Circuit Design Style.
PhD thesis, University of Cambridge Computer Laboratory, 1988.

[FH88] A. J. Field and P. G. Harrison. Functional programming. Addison—
Wesley, New York, 1988.

[FW87] J. Fairbairn and S. Wray. TIM: A simple, lazy abstract machine to
execute supercombinators. In G. Kahn, editor, Functional Languages
and Computer Architecture, pages 34-45. Springer Verlag, 1987.

[Gab85] P. Gabriel. Performance and Evaluation of LISP Systems. MIT Press,
Boston, 1985.

CHAPTER 7. 151

[GB89] B. Graham and G. Birtwistle. Formalising the Design of an SECD chip.
In M. Leeser and G. Brown, editors, Proceedings of the Cornell Workshop
on Hardware Specification, Verification, and Synthesis: Mathematical
Aspects, pages 40-66, New York, 1989. Springer-Verlag.

[Gor79] M. J. C. Gordon. The Denotational Description of Programming Lan-
guages. Springer Verlag, London, 1979.

[Gor83a] M. J. C. Gordon. LCF-LSM: A System for Specifying and Verifying
Hardware. Technical Report 41, Computing Laboratory, University of
Cambridge, 1983.

[Gor83b] M. J. C. Gordon. Proving a Computer Correct using the LCK.LSM
Hardware Description Language. Technical Report 42, Computing
Laboratory, University of Cambridge, September 1983.

[Gor85] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical report 68, Computing Laboratory, University of Cam-
bridge, 1985.

[Gor86] M. J. C. Gordon. Why higher-order logic is a good formalism for spec-
ifying and verifying hardware. In G. Mime and P.A. Subrahmanyam,
editors, Formal Aspects of VLSI Design, pages 153-177, Amsterdam,
1986. North-Holland.

[Gor88a] M. J. C. Gordon. HOL: A proof generating system for higher-order
logic. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI
Specification, Verification and Synthesis, pages 73-128, Norwell, Mas-
sachusetts, 1988. Kluwer.

[Gor88b] M. J. C. Gordon. Programming language theory and its implementa-
tion. Prentice Hall, London, 1988.

[Gor89] M. J. C. Gordon. Mechanizing programming logics in higher order logic.
In G. Birtwistle and P. A. Subrahmanyam, editors, Trends in Hardware
Verification and Automated Theorem Proving, pages 387-439, New York,
1989. Springer Verlag.

[Gra89a] B. Graham. Formal Specification of the SECD Chip, Top and Reg-
ister Transfer Levels. Research Report 89/370/32, Computer Science
Department, University of Calgary, 1989.

[Gra89b] B. Graham. SECD: Design Issues. Research Report 89/369/31, Com-
puter Science Department, University of Calgary, 1989.

[Gra90a] B. Graham. Dealing with the Choice Operator in HOL88. Research
Report 90/382/06, Computer Science Department, University of Cal-
gary, 1990.

CHAPTER 7. 152

[Gra90b] B. Graham. Formal Proof of the SECD Chip, Top and Register Trans-
fer Levels. Research Report, Computer Science Department, University
of Calgary, 1990. in preparation.

[GWB89] B. Graham, S. Williams, G. Birtwistle, J. Joyce, and B. Liblong.
The Mossim Specification of the SECD DESIGN. Research Report
89/341/03, Computer Science Department, University of Calgary, 1989.

[GWS89] B. Graham, S. Williams, and G. Stone. Operating Specification for the
SECD Chip. Research Report 89/353/15, Computer Science Depart-
ment, University of Calgary, 1989.

[HBGS89] M. J. Hermann, G. Birtwistle, B. Graham, and T. Simpson. The Ar-
chitecture of Henderson's SECD Machine. Research Report 89/340/02,
Computer Science Department, University of Calgary, 1989.

[Hen80] P. Henderson. Functional programming; applications and implementa-
tion. Prentice Hall, London, 1980.

[HJJ83a] P. Henderson, G. A. Jones, and S. B. Jones. The Lispkit Manual, vol-
ume 1. Technical Monograph, PRG-32(1), Oxford University Comput-
ing Laboratory, 1983.

[HJJ83b] P. Henderson, G. A. Jones, and S. B. Jones. The Lispkit Manual, vol-
ume 2. Technical Monograph, PRG-32(2), Oxford University Comput-
ing Laboratory, 1983.

[Hun85] W. A. Hunt. FM8501: a Verified Microprocessor. Technical Report 47,
Computer Science Department, University of Austin at Texas, Austin,
Texas, 1985.

[Joy88] J. Joyce. Formal verification and implementation of a microprocessor.
In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 129-157, Norwell, Massachusetts, 1988.
Kluwer.

[Joy89a] J. Joyce. Case Study: Microprocessor Systems, 1989. In The HOL
System: Tutorial, pages 115-232.

[Joy89b] J. Joyce. Multi-Level Verification of a Simple Microprocessor. Progress
Report, December 1989.

[Joy89c] J. Joyce. A Verified Compiler for a Verified Microprocessor. Technical
Report 167, University of Cambridge Computer Laboratory, 1989.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308-320, 1964.

CHAPTER 7. 153

[Mas86] Ian A. Mason. The Semantics of Destructive LISP. Center for the
Study of Language and Information, 1986.

[Mas88] Ian A. Mason. Verification of Programs that Destructively Manipulate
Data. Science of Computer Programming, 10:177-210, 1988.

[MC8O] Carver Mead and Lynn Conway. Introduction to VLSI Systems.
Addison-Wesley Publishing Company, 1980.

[Mel88] T. F. Melham. Abstraction mechanisms for hardware verification. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Ver-
ification and Synthesis, pages 267-291, Norwell, Massachusetts, 1988.
Kluwer.

[Moo88] J. Strother Moore. PITON: A Verified Assembly Level Language.
Technical Report CLI-22, Computational Logic Inc, Austin, Texas, 1988.

[Neu89] Peter G. Neumann. Illustrative risks to the public in the use of com-
puter systems and related technology. Position paper submitted to
FM89, Conference on the Use of Formal Methods in Systems Design,
Halifax, July 1989.

[NS89] P. Narendran and 3. Stillman. Formal Verification of the Sobel Image
Processing Chip. In G. Birtwistle and P. A. Subrahmanyam, editors,
Current Trends in Hardware Verification and Automated Theorem Prov-
ing, pages 92-127, New York, 1989. Springer Verlag.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value, and the lambda calculus.
Theoretical Computer Science, 1(1):125-159, 1975.

[Rub87] S.M. Rubin. Computer Aids to VLSI Design. Addison-Wesley, Read-
ing, MA, 1987.

[SBGH89] T. Simpson, G. Birtwistle, B. Graham, and M. J. Hermann. A Compiler
for Lispkit Targetted at Henderson's SECD machine. Research Report
89/339/01, Computer Science Department, University of Calgary, 1989.

[SBGS89] S. Stodart, G. Birtwistle, B. Graham, and K. Slind. Chrestomathy of
HOL Specifications and Proofs. Technical Report, Computer Science
Department, University of Calgary, 1989. Prepared under Contract
No. W2213-8-6362/01-SS with the Department of National Defence, 146
pages.

[SBHS89] K. Slind, G. Birtwistle, M. Hermann, and T. Simpson. From Specifica-
tion to Layout: Transforming HOL Specifications into Gate Array Net-
Lists. In Proceedings of Canadian Conference on Electrical and Com-
puter Engineering, 1989.

CHAPTER 7. 154

[SGB89] T. Simpson, B. Graham, and G. Birtwistle. From LispKit to SECD
Chip: Some Steps on the way to a Verified System. In Proceedings of
the Third Banff Verification Workshop, 1989. Submitted for publica-
tion.

[S589] R. C. Sekar and M. K. Srivas. Formal Verification of a Microproces-
sor Using Equational Techniques. In G. Birtwistle and P. A. Subrah-
manyam, editors, VLSI Specification, Verification and Synthesis, pages
171-217, New York, 1989. Springer Verlag.

[Wi189] M. Williams. SECD Controller Board Implementation. Technical Re-
port #89/359/21, Computer Science Department, University of Calgary,
Calgary, 1989.

[You88] W. D. Young. A Mechanically Verified Code Generator. Technical Re-
port CLI-37, Computational Logic Inc, Austin, Texas, 1988.

