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Abstract 

Computer animation systems often fail to meet the requirements of their users. Ani-

mators find that they are unable to create the results they desire, or that the task is 

too difficult. In this thesis, the methods used to produce three-dimensional modelled 

animation are examined, as well as their implementation in animation systems. Some 

flaws in the system designs which cause animators to be hindered unnecessarily are 

discussed, and a set of general criteria or guidelines for system design is proposed. 

A design for an animation kernel which adheres to the criteria is presented. The 

close integration of the data structures that store model and animation data is pro-

posed as a solution to many of the flaws. This integration allows the kernel to be 

extensible, script and interactive interfaces to be used, high-level motion control to 

be added, and model and animation data to be specified in a unified format. 

Examples are provided to illustrate the success of the kernel design in satisfying 

the criteria. 
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Chapter 1 

Introduction 

The design of a kernel for three-dimensional computer animation systems is inves-

tigated in this thesis. Existing animation systems are seen as too inflexible in the 

set of tools that they provide to their users. The users are not satisfied with the 

systems: it is often difficult to perform a particular modelling or animation task 

with them; sometimes it is impossible. These problems can be attributed, in part, 

to the design of the user interface of a system, or because the system is being used 

for applications to which it is not suited. However, many of the problems are due to 

deeper flaws in the design of the systems such as the techniques chosen for modelling 

objects and controlling motions, the data structures used, the lack of integration of 

the various processes involved in creating an animated film, and the lack of extensi-

bility of the system, that would allow it to be used for new applications. The kernel 

design presented in this thesis overcomes these problems, or provides the potential 

to overcome them; it forms a solid basis on which computer animation systems for 

many applications can be built. An initial paper on the design of this system is 

published as [Chmilar 89]. 

1.1 Statement of Thesis 

The close integration of the data structure used to store descriptions of three-

dimensional (3D) models in a scene and the data structure that stores motion data 
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provides the ability for animators to access and control all possible degrees of free-

dom in the scene. The integration mechanism is effected via parameters which are 

specified for instances of the basic data elements within scene descriptions. The val-

ues of parameters are controlled over time to cause changes to occur in the scene. 

Each parameter represents one degree of freedom. 

The integration mechanism provides these advantages: 

• Degrees of freedom may be controlled from many sources, such as low and 

high-level motion control techniques and user interaction. 

• The communication of data through the parameter mechanism allows new 

scene data types to be added to a system with superficial modification. The 

degrees of freedom of the new data elements are immediately available for 

manipulation. 

• The changes in parameter values may be monitored so that, between two frames 

in an animated sequence, only those data elements which have parameter values 

that are altered need to be re-evaluated. 

• The processes of specifying models and animation are unified. 

The kernel design presented in this thesis illustrates how the integration mecha-

nism is central to the provision of the following capabilities: 

• Interchangeable use of script and graphical user interfaces. 

• The ability to extend the set of tools made available to animators by adding 

new modelling primitives, attribute types, transforms, motion interpolation 

functions, and motion control techniques to the system. 
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• Exploitation of temporal coherence to avoid performing unnecessary recalcu-

lations between animation frames. 

The animation kernel design presented in this thesis is motivated by a desire to 

create, or have the ability to create, a system which satisfies the following general 

criteria. A system which satisfies these criteria will serve as a good testbed for ani-

mation research, and as a production environment for many animation applications. 

It will be free of many of the problems that affect other systems. 

• Access and control should be granted to all possible degrees of freedom within 

a modelled scene. This includes control over the position, orientation, and size 

of models, the attributes of models, and the shape of models. Access should be 

granted for interactive manipulation, low-level motion control, and high-level 

motion control. 

• The system should be extensible. It must be possible to add new modelling 

and motion control techniques to the system, in order to satisfy the demands 

of users and applications. It should be possible to extend the system without 

disturbing existing facilities. New facilities should be made accessible to users 

in a manner which is consistent with old facilities. 

• High-level and low-level motion control techniques should be available within 

the same working environment. 

• Both scripting and interactive interfaces should be available. It should be easy 

to switch between them. Many styles of interactive interface should be possible, 

in order to satisfy different applications and user types. The script language 
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should be designed in such a way that novices can use it easily, and experienced 

users may describe very complex models and motions. 

• Efficiency is always a concern in graphics systems. It is important for main-

taining interactive speed and production rendering speed. 

Some of these criteria are applicable to the design of any system or kernel. These 

particular criteria were formulated from a survey of the requirements of various 

applications of computer animation, and an examination of existing systems to see 

where they fail to meet these requirements. They are also influenced by criteria 

or guidelines specified in [Gomez 86], [Csuri 79], and the requirements of character 

animation as described in [van Baerle 86] and [Lasseter 87]. This will be discussed 

in greater detail in the following section, and in chapter 2. 

The primary problem with the designs of existing systems is that they use a 

"reductionist" approach. This is the philosophy whereby a complex system is broken 

down into its component parts, and each piece performs one task in a process. In an 

animation system, this means that modelling and animation techniques are isolated. 

The problems that result from this approach will be illustrated in chapter 2. 

The opposite design philosophy is "holism." Holism is the idea that all of the parts 

interact at such a low level that they cannot be dealt with properly in isolation. The 

kernel design presented here follows this philosophy. The mechanism for integrating 

the model and animation data is central to this holistic approach. 
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1.2 Computer Animation 

An overview of computer animation is presented in this section. It describes the 

basic processes involved in the production of animation, its applications, and the 

role of an animation system. Some terms are defined. This background provides the 

context of the kernel's design, and shows some of the motivation for it. Readers who 

are familiar with computer animation may skip this section. 

Computer generated animation is finding widespread application in many fields, 

including art and entertainment, manufacturing, and data visualisation for science 

and medicine. The style called three-dimensional modelled animation [Thalmann 85] 

is most commonly associated with the term "computer animation," although the 

computer is used as an aid in other styles. In 3D modelled animation, a scene is 

described using representations of objects, called models. The models may be moved 

around, or their shapes and attributes may be changed. Two-dimensional (2D) 

images of the scene are rendered, one for each frame of animation. The rendering 

algorithms are becoming increasingly sophisticated, producing very realistic images. 

As with ordinary motion pictures, computer animation relies on the property 

that a rapid succession of incrementally varying static images appears to be fluid 

motion to the human eye. These images are called frames. If the animation is to be 

stored to film, 24 frames must be generated for every second of animation; for video, 

it is 30 frames per second (NTSC), or 25 (PAL, SECAM). 

Modelled animation requires three processes to be performed: models of objects 

that comprise a scene are described; the motions of the models over time are specified; 

and the images for the frames are rendered and stored. [Ostby 89] states that this is 
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an attractive paradigm, because models are described only once, in complete detail, 

and the movements of the models are specified from frame to frame. 

1.2.1 Modelling 

Modelling is the process of building geometric descriptions of 3D objects from which 

images may be generated. Mathematical descriptions, including numbers, equations, 

and the relationships among them, are used to describe the shapes of objects; they 

may represent the surfaces of the objects, or they may contain additional information 

about objects, such as volume [Mantyla 88]. A model, then, is a representation of 

an object. The representation must contain enough information about an object to 

render and animate it. 

A model may represent real or imaginary objects or even non-physical ideas or 

abstractions. A number of individual components may be required to model one 

complete object. A model may be constructed from components in a hierarchical 

fashion. The collection of models is a scene. 

There are many techniques available for representing models. They include poly-

gons, polygon meshes, bicubic spline patches, implicit surfaces, constructive solid 

geometry, and quadrics, among others. A general taxonomy of modelling techniques, 

taken from [Allan 88] is presented in figure 1.1. Allan evaluates a number of mod-

elling techniques according a set of criteria: expressive power, precision and resolu-

tion, representational fidelity, geometric consistency, convertibility, space efficiency, 

computational efficiency, manipulation speed, applicability to animation, and appli-

cability to rendering. The large variety of techniques is available because each has 

properties which are suited to particular applications. 
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Allan defines a modelling technique to consist of three components: the descrip-

tion supplied by the animator, a number of manipulation methods or operations for 

altering the description, and the resulting model produced from the description. An 

example is the polygon mesh modelling technique. Polygons are bounded regions 

of a plane, and are useful for modelling fiat surfaces; a polygon mesh is a collec-

tion of connected polygons which share common edges and vertices, and is useful 

for modelling polyhedral surfaces. Polygon meshes may be described by listing their 

vertices (points in 3D space) and the edges connecting the vertices. They may be 

manipulated by "grabbing" and "pulling" vertices into new positions. 

A modelling primitive is an instance of a modelling technique; primitives may 

have parameters which determine their individual characteristics. (A "sphere" prim-

itive has one parameter which defines its radius.) 

Models also have attributes such as colour, surface texture, reflectivity, and trans-

parency. The attributes just listed are used by rendering programs but, in a more 

general sense, an attribute may be any additional data that is specified for a model, 

such as temperature, mass, or age. These attributes may provide information for 

motion control programs or specialised renderers. The parameters of an attribute 

indicate its value. For instance, a colour attribute may have three parameters which 

indicate the intensities of the red, green, and blue components of the colour. 

Finally, there is a class of 3D geometric transformations which are generally ap-

plicable to all modelling primitives [Foley 82]. These are commonly referred to as 

transforms or coordinate transforms. They can be used to translate (move), rotate, 

and scale primitives along the three coordinate axes (x, y, and z). A transformation 

matrix represents a transform. Matrices may be concatenated together so that one 
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matrix represents a series of transforms. The order of concatenation is important. 

The matrix is applied to 3D coordinate points contained in a model's data to trans-

form it. The parameters of transforms indicate the degree to which the transform is 

to be applied: for translation, they indicate the number of coordinate units to move; 

for rotation, the number of degrees of rotation; and, for scaling, the scaling factor. 

Attributes and transforms are generally independent of a particular modelling 

technique. 

Modelling primitives, attributes, and transforms will be referred to collectively 

as scene data. They are the basic data types from which all scenes are created. 

1.2.2 Animation 

Motion can be defined as any change that occurs in a scene over time [Thalmann 85]. 

This applies not only to changes in the positions of models, but also to changes in 

attributes (ie. colour), or shape—to be precise, it applies to any change in a degree 

of freedom. This is not an intuitive definition of motion, but it serves to make the 

following discussions consistent. A motion control technique is a method by which 

the changes may be specified and controlled. 

Animators specify motions in relation to animation time. This is the time, or 

the frame number, when the action will occur on the final film or videotape. When 

generating animation frames, animation time may proceed more quickly or slowly 

than real time. 

Motion control techniques are typically categorised as low-level and high-level. 

Low-level techniques require explicit control of the motion of each degree of freedom. 

High-level techniques use algorithms to calculate the motions, based on knowledge 
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about models and the scene. High-level techniques can be seen as "surrogate" ani-

mators: they ultimately manipulate the same degrees of freedom that an animator 

would with low-level techniques. 

1.2.3 Rendering 

Rendering is the process of generating an image from a set of models [Hall 89]. In 

the case of 3D modelled animation, it is the process of creating a 2D image from a 3D 

scene. The scene is rendered from a viewpoint; this is akin to the use of a "synthetic 

camera." There are several algorithms used for rendering; the images they generate 

vary in complexity and realism from simple wireframe drawings to ones which could 

be mistaken for photographs of real objects. 

A close relationship exists between rendering programs and models: the rendering 

program generates a 2D image from the 3D models; it must be able to ascertain where 

a model lies in 3D space, in order to determine where it will appear in the 2D image, 

whether it is occluded by other models, and how its surface will be shaded. The 

renderer also examines the attributes of models, to determine their colour, texture, 

etc. 

1.2.4 Animation Specification Media 

Two specification media for model and motion data have emerged: 

Graphical, interactive interfaces allow animators to interact with the models 

in the scene; they may "select" models displayed on the screen, and manipulate 

them. Manipulation may include creating and deleting models, positioning them, 

and altering their shapes. 



11 

Language interfaces can be divided into two types: programming languages that 

are enhanced with data structures and function libraries useful for computer graphics; 

and script languages that are designed specifically for describing scenes or motions. 

With the first type, programs are written, compiled, and executed to render images 

or generate image data for a renderer. One drawback is that the program may have 

to be recompiled whenever changes are made. With the script approach, the anima-

tor is not encumbered with the more complex syntax of a programming language: 

all language statements are related to the specification of model and motion data. 

The difference between the two approaches can be seen by comparing the program 

written in the LISP-based ASAS language [Reynolds 82] on page 23 with the script 

on page 60. The model is shown in figure 2.2 (page 21). Scripts are read into a 

modelling program and built into a data structure to be processed. 

The merits of a graphical interface are clear: computer graphics is a visual 

medium, so designers of computer graphics should be allowed to work in a visual 

fashion [Gomez 85]. Using an interactive interface for modelling and animation, it is 

easy to refine or "tweak" motions until they look correct [Hanrahan 85] [Ostby 89]; 

Van Baerle considers this to be especially important in character animation, where 

subtle differences in motion can make large differences in the emotional appeal of 

characters [van Baerle 86]. 

[Entis 86], [Sturman 86], [Reynolds 82], [Hanrahan 85], and [Ostby 89] all argue 

the merits of a language-based approach to model and animation specification: 

• Models and motions may be generated according to algorithms. 

9 A same motion may be difficult to create by interactive techniques; it may also 
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be "incorrect." This is especially true of scientific applications of animation. 

• A script is a precise notation of how a model is to be built, or a motion per-

formed. It may be edited to progressively refine a model or a motion sequence 

until it is correct. The actions specified in a script are repeatable. 

. Scripts may be written on machines which do not have graphics capabilities. 

Reynolds states that language-based systems are flexible, and may be easier to extend 

into "unexpected realms" than interactive systems. 

[Ostby 89] and [Hanrahan 85] describe systems which make use of both graphical 

and script interfaces. In these systems, models are specified in a script, and parame-

ters are defined which may be used to control motions. A model may then be loaded 

into a graphical interface program, and interactively manipulated. 

My personal experience with an interactive modelling interface and a scripting 

system has shown that it is easier and more efficient to define the general structure 

of models with a scripting system, but that interactive interfaces are superior for 

manipulating and "fine-tuning" the models. This is confirmed by Hanrahan. 

1.2.5 Applications 

The most visible application of computer animation is its use for commercial and 

entertainment purposes. It is impossible to watch television without seeing com-

mercials and station identifications that use computer graphics (often in the form of 

"flying logos"). Some theatrical films, such as Tron (1982), Star Trek H. The Wrath 

of Khan (1982), and The Last Starfighter (1985) have featured sequences of com-

puter animation used as "special effects." The film Tin Toy (1988), which features 
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character animation, won an Academy Award for Best Animated Short. 

Character animation is perhaps the most refined form of animation. The goal is 

to "bring to life" characters so that they have an emotional impact on the viewer. 

This is done through subtle use of motion and timing. The thoughts and emotions 

of characters in a story are conveyed through "body language." Specific principles 

that are useful in creating character animation are listed in [van Baerle 86] and 

[Lasseter 87]; they are derived from [Thomas 81]. These are the ones that are relevant 

to animation system design, in regarding to providing the facilities to apply them: 

Squash and stretch: Defining the rigidity and mass of an object by distorting its 
shape during an action. 

Timing: Spacing actions to define the weight and size of objects and the personality 
of characters. 

Slow in and slow out: The spacing of "inbetween" frames to achieve subtlety of 
timing and movement. 

Exaggeration: Accentuating the essence of an idea via the design and the action. 

Secondary Action: The action of an object resulting from another action. 

It is possible to animate 3D character models, using the same techniques em-

ployed for flying logos and special effects. Lasseter gives examples of how this may 

be done. In order that an animator may adhere to the animation principles, an 

animation system must allow the shapes, attributes, and positions of models to be 

finely controlled; subtle control must be possible over the timing and speed of mo-

tions; and the cycle of modifying a motion or model and seeing the animated result 

must be short. 

Computer graphics and animation also have technical application. Computer-

aided design (CAD) is used in manufacturing. Prototypes of items that are to be 
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manufactured, from circuit boards to automobiles, may be modelled. In some cases, 

the computer will control the manufacturing of the modelled item as well. The 

military uses computer graphics for realtime flight simulation, and other forms of 

training simulation. 

Computer animation is used in science and medicine to visualise data for studying 

fluid dynamics, molecular modelling, geophysics [Upson 89], biology [Leith 89], mod-

elling natural phenomena [Prusinkiew 88], prosthetics [Allan 88], and many other 

data. The goal is to represent data in a meaningful manner. Representations may 

be 2D or 3D, abstract or realistic, animated or static; some may allow interactive 

manipulation of the data. Often, the graphical display is managed through low-

level graphics libraries such as GICS and CORE, but it is sometimes possible to 

represent and animate the data using the modelled animation techniques described 

earlier in this section. The animation systems from Alias and Wavefront, and the 

MOVIE.BYTJ system, which all use these techniques, have been used for some visu-

alisation applications [Upson 89]. The common process in data visualisation is that 

data is gathered from a source—either gathered from observation, or generated from 

a simulation—and mapped into a form which can be displayed. Each application of 

scientific visualisation may have a unique form of data, and unique display require-

ments. If the data can be mapped into the geometric modelling primitives that are 

used in modelled animation systems, then such a system can be used as the display 

medium. Otherwise, a more specialised system is required. 

In these technical applications, the need for subtlety and interactive control is 

often very low, and the need for precision in modelling and motion control is very 

high. 
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1.3 Thesis Organisation 

A critical review of previous work on animation systems is presented in chapter 2. 

The evolution of scene description and motion specification techniques is examined. 

This is followed by a review of animation systems. Critical case studies of three 

animation systems are made. 

The general design of an animation kernel is given in chapter 3. The design satis-

fies the criteria proposed in chapter 1. This is done by making the kernel extensible 

and independent of specific applications, and by closely integrating the processes 

of scene description, motion specification, and rendering. A powerful scripting lan-

guage, called Charli, is described; it allows integrated specification of scene descrip-

tion and motion control data. 

The details of the kernel's design are presented in chapter 4. These include 

the mechanisms which allow the kernel to be extensible, and by which the data 

structures used to store model descriptions, motion control data, and rendering data 

are integrated. 

In chapter 5, the kernel's design is examined in relation to the criteria for anima-

tion systems. Examples are given to show how it meets these criteria. Conclusions 

of this research, and suggestions for further research, are offered. 



Chapter 2 

Review of Previous Work 

This chapter provides the following: 

• A review of the basic techniques employed in most 3D modelled animation 

systems, and in the kernel presented here. The purpose is of this persentation 

is to demonstrate their utility and indicate their diversity. This serves to 

illustrate the need for an extensible system, and the motivation for integrating 

the techniques. 

• The historical development of computer animation systems is presented. 

• Case studies are made of three existing systems 'to illustrate flaws in them. 

These case studies influence the design criteria and the kernel's design. 

2.1 Techniques 

The basic Techniques used in modelling and animation are presented in this section. 

2.1.1 Scene Description 

Modelling techniques and scene description media have already been discussed. The 

third element of scene description is the method of structuring the data. The struc-

ture has an important impact on what degrees of freedom are available to be ani-

mated, and how easy it is to create complex objects that may be animated. The 

16 
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kernel provides a complex structuring method for an extensible set of scene data 

types. 

The methods of structuring scene description data range from simple enumeration 

of all modelling primitives, their attributes, and positions, through to complex, gen-

erative structures that employ recursive self-references and programming language 

constructs. Hierarchical structure is used in most systems. 

Hierarchical Structure 

Structuring models in a hierarchical fashion is logical and useful. Even the earli-

est modelled animation systems ([Catmull 72] and [DeFanti 76]) used a hierarchical 

model structure. It allows models that are constructed as separate entities to be 

bound together. An example is a cup sitting atop a table: they are separately 

defined models which together form a composite "table assembly" model. 'Table as-

sembly" may be manipulated as a single entity; if it is moved, both of its components 

maintain their relative positions. 

A more sophisticated example is a model of a human figure. The hierarchical 

structure of a simple human figure is given in figure 2.1. Each segment of the body 

is represented by a box made from a cube primitive that has been scaled to the 

correct proportions; a more realistic model would have accurately modelled limbs. 

Modelling primitives are at the leaf nodes of the tree; the other nodes represent the 

structural links. Model components must be placed correctly relative to each other, 

using transforms. A transformation matrix is associated with each node in the tree. 

Transforms are "inherited" by children in the hierarchy. The transforms which are 

applied to any node in the hierarchy are also applied to all of its children. This is 

0 
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Figure 2.1: A hierarchical human body model 
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done by concatenating the transformation matrices at the nodes together as a branch 

is descended. The tree is traversed using a depth-first algorithm. When an edge is 

descended, the current transformation matrix and attribute list are pushed onto a 

stack; they are popped upon the return. 

With a hierarchical structure, each model is defined in a "local" coordinate space. 

When it is attached to another model, it inherits the origin of its parent, and so 

it becomes part of its parent's local coordinate space. Eventually, all models are 

attached to the "world," and thus become defined in global coordinate space. 

Transforms may be applied at any node in the hierarchy tree. This allows models 

like the human figure to be treated as articulated bodies. An articulated body is 

made from rigid segments that are connected at joints. In an articulated model, 

each node is a joint, and parameters are available at each joint to control the angle 

of rotation around the three axes. The parameters affect the transformation matrix 

of the joint. 

[Gomez 86] suggests the possibility of propagating only a selection of transforms 

down the hierarchy to achieve different forms of attachment (ie. segments that do 

not inherit rotation transforms, and thus appear to "hang" from their points of 

attachment). For a "hanging" segment, the object to which it is attached may be 

moved freely, and the animator does not have to compensate by specifying counter-

motions for the segment. An example where this is desirable is a weight attached 

to a string which is held in a figure's hand; the hand may move, but the weight will 

always hang down. 

The hierarchical structure has problems. They arise from the need to rearrange 

the tree structure. The classic problem is to make a figure pick up a cup from a 
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table assembly: initially, the cup is attached to the table assembly, but, at some 

point in time, it should become attached to the figure's hand. The problem has two 

parts: first, the tree must be rearranged so that the cup, which is a subnode of the 

table assembly, becomes a subnode of the hand; second, the absolute position of the 

cup at the moment of transferral must remain the same—this requires recalculation 

of its local transformation matrix. [Kroyer 86] proposes the rearrangement of the 

hierarchical structure, but provides no detail on how this may be best accomplished. 

[Ostby 89] proposes a simple and elegant solution to this problem: the cup is not 

structurally attached to either the table or the figure's hand. The global transfor-

mation matrix of both attachment points may be determined and stored, and the 

correct transformation matrix is applied to the cup according to the current anima-

tion time (ie. for the first second of animation, the table assembly's matrix is used, 

and after that, the matrix Irom the figure's hand is used). 

[Kroyer 86] discusses the importance of using a hierarchical structure for animat-

ing models. His main point is that the grouping and articulation capabilities that a 

hierarchical structure can provide are very important in controlling the complexity 

of animating articulated models. 

Recursive Structure 

[Wyvill 75] (for 2D systems) and [Wyvill 84] for 3D (in the PG modelling language) 

enhances the hierarchical structure by adding recursion. In this structure, a model 

may be self-referential, as in figure 2.2. This creates a generative structure: the 

original data is amplified when the structure is traversed. Some classes of fractals 

[Mandelbrot 82] may be generated using this structure. 
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Figure 2.2: Recursive picture and data structure (recursion depth = 5) 
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A recursion counter must be added to each node in the tree; this counter is used 

to determine when the recursive traversal will end. The counter is initially set to 

the number of recursive passes through the model definition that are allowed. It is 

decremented an each pass, and incremented on each return. When it reaches zero, 

the next pass is refused, and the recursive descent stops. The depth-first algorithm 

described for hierarchy traversal is employed; it is modified to use the recursion 

counter. 

Recursive structure is employed in the kernel. 

Language Enhancements 

Programming languages offer some control facilities that are useful in generating 

models. They can provide additional generative capabilities. Some of these facilities 

can be incorporated into script languages and interactive systems. 

If an enhanced programming language is used to generate models, it may not use 

an explicit hierarchical data structure to store model data. However, the structure 

may be implicit in the flow of execution of the program as it generates the model. 

Figure 2.3 shows an ASAS [Reynolds 82] program that creates the recursive "H" 

model; the essential recursive structure of the model can be seen in the "H" definition. 

(The parameter "H-element" to "H-fractalizer" is a line primitive.) ASAS is an 

animation language that is an extension of LISP. 

The flow control and data structuring constructs available in many programming 

languages suggest further enhancements to the basic hierarchical data structure: 

• Variables may be used to link parameters of primitives, attributes, and trans-

forms, so that a change made to the value of the variable updates a number of 
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(def op H-fractalizer 

(param: H-element levels) 

(local: (total-levels levels) 

(off set-dist 0.5))) 

(sub-H-offset-I (vector off set-dist 0 0)) 

(sub-H-offset-2 (mirror x-axis 

sub-H-offset-1))) 

(H levels)) 

(def op H 

(param: levels) 

(if (zerop levels) 

(then nothing) 

(else (add-H-level (H (dif levels 

(def op add-H-level 

(param: sub-H) 

(grasp sub-H 

(scale 0.7) 

(move (vector 0)) 

(rotate 0.25 z-axis)) 

(grasp H-element) 

(subworld (group H-element 

(move sub-H-offset-I sub-H) 

(move sub-H-off set-2 sub-H)))) 

Figure 2.3: Sample ASAS script that generates the recursive "H" model 
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elements of scene data. 

• Multiple instances of one model may be made, and each may have unique 

parameters which control its behavior. 

• Conditional statements may check the values of variables and parameters, and 

cause execution to proceed accordingly. 

• Looping constructs such as "while" and "for" loops may be used to amplify 

model data. 

Some of these enhancements are employed in the kernel's data structure and 

script language. These will be discussed in chapter 3. 

2.1.2 Motion Control 

Low-level Motion Control 

The lowest level of motion control requires animators to "pose" each model for every 

frame in a sequence. Usually, however, the computer is harnessed to calculate a 

portion of the models' motions over a series of frames. 

The BBOP system developed at the New York Institute of Technology [Stern 83] 

is a 3D keyframing system. The keyframe method, for 3D modelled animation, 

involves interactively "posing" all of the models at certain "key" frames in the se-

quence. At each key frame, the state of the models is saved. Articulated models are 

used in the system and parameters to the transforms at each joint are saved. The 

animation system interpolates the parameters to the transforms for the frames in 

between the key frames (called imbetween frames). 
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Fine control over motions requires a large number of key frames to be stored. 

Another problem is that, at most of the keyframes, only the parameter changes of a 

few transforms are really important. In the BBOP system, all parameters are saved, 

even though they have not changed, or do not need finer control. 

NYIT's experience with BBOP led to development of EM [Hanrahan 85]. EM 

employs the motion control method called parameter interpolation. It is known by 

many other names: key-parameter interpolation, track animation, parameter paths, 

direct kinematics. Each parameter is controlled independently. The values of a pa-

rameter at various times in the animation are given, and the system interpolates 

between the values for intermediate times. Mathematical functions are used to vary 

the rate of change of the interpolant, to simulate the effects of steady motion, accel-

eration, and deceleration. 

[Gomez 85] attempts to formalise this style of animation as event driven anima-

tion. He defines a track to be set of events that describe the activity of a parameter 

over the duration of animation time. A track is an abstract data type; it may be 

queried to find a value for a parameter at a given time. The implementation of 

a track is hidden, so the value of a parameter may be found by interpolation, or 

by some others means, such as random number generation or table look-up. This 

abstract data type is used in the kernel as the mechanism for integrating the model 

and animation data. 

The minimum set of information that is required to animate one parameter is the 

initial and final values for the parameter, the animation time when the parameter 

should begin changing, and when it should reach its final value, and the interpolation 

function. At the start of the sequence, the parameter has its initial value; once the 
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animation time reaches the point where the parameter should start changing, the 

interpolation function is used to compute each intermediate value, until the end time 

for the parameter change is reached. The time/value pairs for parameters are called 

cue points. 

A popular and versatile method for interpolating values uses cubic splines to spec-

ify an interpolation curve [Kochanek 84]. The spline, as an interpolation function, 

provides continuity of motion (first derivative) and continuity of acceleration (second 

derivative). Cue points become the control points of the spline. The animator may 

also exercise control over the "shape" of the spline curve (as it would be graphed) by 

altering the control points. When precise time and motion control is required for a 

parameter, the spline may be subdivided by inserting additional cue points. This is 

usually done with B-splines, as they guarantee second derivative continuity between 

spline sections. The user can then exercise "local" control at critical points in the 

action. 

Spline interpolation has been criticised by [Voelpel 86] as being responsible for the 

"sameness" of computer animation, because the resultant motions are too "smooth." 

This is due to the first and second degree continuity for which splines have also been 

praised. Van Baerle points out that in character animation, idiosyncratic motion, 

which may include "jerks" and "limps" and other noncontinuous motions, are desir-

able. If Gomez's track formulation is used, this type of motion can be accommodated. 

It is possible to generate any motion using the parameter interpolation technique, 

given a rich enough set of interpolation functions. The only limiting factor is the set 

of parameters which are available to be animated. 
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High-level Motion Control 

The following brief survey of high-level motion control techniques shows their di-

versity and utility. The kernel provides an interface to incorporate them. A more 

complete discussion is available in [Wilhelms 86]. 

Motion trajectory involves moving models along paths in 3D space. The path 

may be constructed from a 3D spline. The orientation of the model may also be 

controlled. The rate of travel is controlled from another source. 

Inverse kinematics deals with the movement of articulated bodies. With inverse 

kinematics, the animator may specify a final position for a substructure in a hierar-

chical model (eg. A figure's hand should be in position to grasp a cup). The system 

will then decide what movements are required to reach that position from the current 

one (ie. rotate the shoulder joint by 10 degrees around the x axis, and the elbow by 

40 degrees around the z axis). 

Stochastic or fractal methods are used in animation to generate random per-

turbations in motions, or to vary the lengths and starting times of motions. If sparks 

are to be animated, they could be modelled as a particle system, where each spark is 

given a life-length, initial velocity, and initial direction, based on stochastic sampling 

[Reeves 83]. 

Dynamic simulation involves the use of Newton's laws of mechanics to control 

animation. Realistic looking motion is achieved by simulating the effects of forces 

and torques on masses. This requires that the masses of models must be specified, as 

well as the forces and torques that act on them. Dynamic equations of motion are de-
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veloped for each degree of freedom, describing the relationships between masses and 

the forces and torques acting on them. Once all the forces and torques in the system 

are known, the dynamic equations can be solved, and the motions of the segments 

are revealed. The use of dynamic control in computer animation has been explored 

by Wilhelms and Barsky[Wilhelms 85], and Armstrong and Green[Armstrong 85]. 

Some of the problems involved in controlling the results of dynamic simulation are 

discussed in [Wyvill 88b]. 

Goal-directed motion is a term which is applied to many different techniques. 

What is common among them is the ability for an animator to specify a goal in a 

high-level manner, and the system works out how to accomplish it. The ideal system 

would understand very high-level commands and generate the appropriate motions. 

Some goal-directed systems have been implemented ([Zeltzer 82] and [Calvert 89]), 

but they operate in highly constrained environments. 

Metamorphosis is a type of animation that modelled animation systems do not 

handle well. Metamorphosis involves the drastically changing the shape of a model, 

such as changing a teapot into a Volkswagon. The two models may not even be 

topologically similar. It would be very difficult to animate such a change using the 

motion control techniques that have already been discussed. Some techniques that 

attempt to generate intermediate models between two defined models are given in 

[Hong 88] and [Wyvill 88a]. 

Algorithmic control involves the use of algorithms to generate very specific mo-

tions. The term is generally applied to motion control programs that are written to 
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generate one particular motion, and are not generally applied. 

2.1.3 Scene Realisation 

The scene realisation is the data that is produced when the scene description data 

structure is traversed. This is the complete list of modelling primitives, their absolute 

positions, and their attributes. If a modelling primitive has multiple instances, all 

instances are explicitly created. This data is used by rendering programs. 

The difference between a scene realisation and a scene description is an important 

one. This is especially true if the scene description is generative. A scene description 

contains the instructions for constructing the scene. The scene realisation is the 

constructed scene. 

Pixar has proposed the RenderMan interface [Pixar 88] as a standard interface 

for data exchange between 3D modellers and rendering programs. It defines a set of 

function calls which are used to pass data to a rendering program from modelling or 

animation programs. It contains functions which may be called to describe modelling 

primitives and their parameters, set attributes, specify transforms, and save and 

restore the graphics state. 

Previously, most systems used ad hoc data exchange formats and interfaces. 

If the sequence of calls made to the RenderMan interface is saved in a list, a scene 

realisation data structure is created. 

The kernel explicitly stores the scene realisation data in order to avoid regener-

ating portions of it while rendering a series of frames. 
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2.2 Historical Background 

2.2.1 Conventional Animation 

The information sources of the following discussion are [Thomas 81], [Peary 80], and 

[Heraidson 75]. 

The best known form of "conventional" animation is the hand drawn type, which 

is most familiar from the "cartoons" of the Walt Disney, Warner Brothers, and 

Hanna-Barbera studios. In this type of animation, artists are required to draw an 

image for every frame in a sequence. 

Credit for the creation of the first animation, like the creation of the motion 

picture camera, is a matter of dispute. It is primarily a matter of defining what is 

considered as animation. James Stuart Blackton performed a vaudeville act in which 

he drew faces on a blackboard, and changed them slowly by erasing and redrawing 

lines; in 1906, he filmed Humorous Phases of Funny Faces, by taking single exposures 

of his changing blackboard drawings. In 1907, Frenchman Emile Cohl created Mr. 

Stop, which used crude individual drawings for each frame. 

Many uncredited animated films followed these early attempts; they were used 

as gags or filler between movie features. Most of these featured simple drawings, and 

usually forsook background images. 

Winsor McCay's Gertie the Dinosaur (1909) is usually credited as the first real 

cartoon animation; it features the "character" of Gertie, drawn before a drawn back-

ground, and required 10,000 drawings. This was actually McCay's third animated 

film; the first two were Little Nemo, which required 4000 drawings, and How a 

Mosquito Operates, the first "scientific visualisation." 
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Early animators such as Winsor McKay drew every frame, including the back-

ground, on separate sheets of paper. In 1913, Earl Hurd developed the eel animation 

technique, where characters are drawn on transparent celluloid sheets, and overlaid 

upon a painted background. This not only reduced the artists' labour, but provided 

for a more stable background image. 

In the early days, one animator would draw an entire cartoon, or a scene in 

a cartoon. Drawings were made in sequence, and the action was "improvised," 

with little regard for timing. With advent of sound movies, cartoons were often 

synchronised to musical soundtracks, creating the need for better control over timing. 

As well, the increasing length of cartoons, and the desire to tell better stories, caused 

more elaborate methods of controlling timing and action to be developed. 

Eventually, the keyframe animation technique evolved. This involved drawing 

the scene at certain "key" times, when characters were in important positions, and 

then drawing the frames that fit in between. 

Disney's studio released the first feature-length cartoon, Snow White and the 

Seven Dwarfs, in 1937. To produce this film, the Disney Studio developed a system 

using a hierarchy of animators. At the top is the director, who manages all of the 

animation processes. Next are the chief animators, who are responsible for drawing 

the key frames which define the action, timing, and characters; below them are 

keyframe animators, who draw additional key frames. The lowest level of animators 

are the inbetweeners, who fill in the gaps between the keyframes; this is mostly 

an automatic process, because the action has been well defined at this point. Ccl 

painting is another low-level task; it involves colouring the drawings on the celluloid 

sheets. This system for animation is in common use today. 
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In some computer animation, various levels of the traditional animation hierarchy 

are automated. In some 2D computer assisted animation systems, the jobs of the 

inbetween animators and the cel painters are taken over by the computer. In 3D 

modelled animation, the interpolation process eliminates the inbetweeners, and the 

rendering programs replace the cel painters. There is also no need to "draw" images: 

each frame is generated automatically by the renderer from the models. Some high-

level motion control techniques attempt to perform tasks at higher levels in the 

animation hierarchy. 

Drawn animation is not the only conventional form of animation. The clay ani-

mation process involves models made from clay which are posed and photographed 

for each frame. The same technique may be employed with models made from other 

materials. This bears a closer resemblance to computer modelled animation than 

drawn animation. 

2.2.2 Early Computer Animation 

Computer generated animated films first began production at Bell Labs in 1961 

with Two-gyro gravity-gradient attitude control system [Zajac 64], [Zajac 66]. It con-

tains a number of sequences of satellite (represented by a box) orbiting a spherical 

earth; the drawings are made in perspective, and the sides of the box which face 

away from the viewer are removed. A dozen films were produced by Bell Labs dur-

ing the 1960's; they consist primarily of two-dimensional mathematical animations 

and two-dimensional abstract animations. These films were mostly generated using 

custom programs written in conventional programming languages. [Knowlton 64] 

and [Knowlton 65] describe a language, BEFLIX, for 2D abstract animation. EX-
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PLOR, a library of FORTRAN functions for 2D abstract animation is described in 

[Knowlton 70]. No attempt was made to emulate the conventional style of animation. 

2.3 Computer Animation Systems 

Animation systems use a selection of the techniques described above. The emphasis, 

in this section, will be on the techniques implemented in a system, the structure of 

the system, the uses of the system, and comments on the system. 

2.3.1 Computer Assisted Animation 

The phrase "computer assisted animation" refers to the automation of the conven-

tional style of hand drawn animation. The computer is used as a tool to facilitate 

the conventional animation process: it is used to compute the in-between frames, or 

to color frames. Computer assisted systems are essentially 2D in nature. 

A very early 2D interactive animation program is Sketchpad [Sutherland 63]. It 

allows 2D images to be drawn on a vector display, and manipulated with a light pen. 

The components of objects in the images may be structured hierarchically. Anima-

tion is created by moving the objects over time, or by making multiple drawings of 

an object, and cycling through them. 

[Baecker 69] describes the GENESYS system, which allows the animator to create 

2D shapes, and bind them together so that composite shapes may be manipulated as 

single entities. Motions are controlled by interpolating the positions of shapes along 

a path. 

ANIMATOR [Talbot 71] is a 2D version of simple modelled animation. Points, 
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lines, and circles may be structured hierarchically, and the three types of coordinate 

transforms may be applied to them. Motion control is specified via a script language. 

[Burtnyk 71a] and [Burtnyk 71b] introduce the principle of performing in-between 

calculation by computer, in the 2D keyframe animation system MSGEN. This system 

worked by interpolating lines between two line drawings, over a series of frames. MS-

GEN was used to created the Academy Award nominated film, Hunger [Foldes 74]. 

The technique of skeleton animation [Burtnyk 76] was developed to provide more 

control over the interpolation process. 

ANTICS [Kitching 73] is a large 2D animation system which provides many forms 

of motion control. The principle method is keyframing, but others include wave 

vibration, path following, random motion, and tracking motion. Multiple "layers" 

of animation may be composited together, similar to cel animation. 

GAAS is a more recent computer assisted animation system. It consists of three 

components: Tween [Catmull 79] is keyframe system that offers an excellent user 

interface, and sophisticated interpolation control; SoftCel [Stern 79] performs the cel 

painting process, and provides antialiasing of the images; Paint [Smith 78] is a paint 

system, used for painting backgrounds. 

2.3.2 Modelled Animation Systems 

Modelled systems are those in which models are constructed, and then motion is 

specified for them. These systems use the 3D modelled animation techniques de-

scribed above, in varying forms, and with varying success. 

Sketchpad III [Johnson 63] is 3D extension of Sketchpad. It allows 3D, hierar-

chically structured models to be constructed and displayed interactively. 
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MOP [Catmull 72] uses polygonal models and parameter interpolation of trans-

forms. Hierarchical models and motion is specified with a script language. A realistic 

human hand animation was produced with this system. 

GRASS [DeFanti 76] produced real-time animation on a vector display. Models 

are contructed from line segments; they may be structured hierarchically. Models 

and motions are specified with a script. 

ANIMA [Csuri 75], ANIMA II [Hackathorn 77], and ANTTS [Csuri 79] are steps 

in the evolution of an animation system. ANIMA was a language-based system 

which provided realtime display of vector graphics. ANIMA II added an interactive 

polygon modeller, enhanced the animation language and rendering, but forfeited 

realtime display. ANTTS provided high quality, shaded images. 

)3BOP [Stern 83], developed at NYIT, is an interactive 3D keyframe system. Ar-

ticulated models are "posed" interactively, and the positions are stored as a key 

frame. Joint angles are interpolated to produce the in-between frames. Experience 

with BBOP led to the development of EM [Hanrahan 85]. EM combines scripting 

with interaction. Models are defined in scripts, and parameters that may be manip-

ulated are declared. The script is read by an interactive program, and the model is 

displayed. Valuators may be used to change the parameter values. 

Twixt [Gomez 85] is an interactive animation system. It uses parameter inter-

polation techniques. Gomez's comments on the design of animation systems, which 

influenced his Twixt design, are given later in this chapter. 

ASAS [Reynolds 82] is a script language that is an extension of LISP. An example 

of an ASAS script is given in figure 2.3. It is a very powerful language for scene and 

motion description. ASAS introduces the concept of "actors" to 3D graphics. An 
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actor is an object which can send and receive messages. In ASAS, an actor is a model 

in a scene; all actors can receive and act on messages to translate, rotate, and scale 

themselves. They may implement additional messages for more complex actions. 

ASAS also makes use of newtons, which are numbers whose values change over time; 

they are used for interpolation. A sample ASAS script is shown in figure 2.3. ASAS 

is a system aimed at computer programmers rather than animators; the sample script 

shows that describing models in ASAS is not a simple process. 

CINEMIRA [Thalmann 85] is claimed to be an actor system by its developers. 

However, it does not contain the message passing facilities of ASAS. It does use 

animated data types which are similar to newtons; the idea is extended to animated 

vectors. CINEMIRA is implemented as an extension to Pascal. Like ASAS, it has a 

very complex syntax, and is very poorly suited for use by animators. 

[Ostby 89] briefly discusses an animation system developed at Pixar. This sys-

tem is notable because many of its design features are similar to those of the kernel 

described in this thesis. The designs were developed independently. Ostby's system, 

like EM, allows models to be described in a script, and then manipulated inter-

actively. The script language has powerful data amplification facilities; however, 

changes made in the interactive system cannot be reconstituted into the script. The 

script is executed to generate all instances of models before they may be used in the 

interactive system. 

Three other modelled animation systems, the Symbolics system, Graphicsland, 

and FRAMES will be examined more closely in the case studies, later in this chapter. 
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2.3.3 Commercial Systems 

A number of commercial systems are now available; they provide the combination 

of modelling, animation, and rendering. These systems do not offer any capabilities 

that are not available in the previously mentioned systems, but they do tend to offer 

good user interfaces that are well suited to inexperienced computer users. They also 

offer very high quality rendering facilities, but they tend to have very simple anima-

tion facilities. The systems from ALIAS [ALIAS 87], Wavefront [Wavefront 89], and 

Vertigo [Vertigo] constrain their users to animating hierarchical models using geomet-

ric transforms, and animating attributes. They offer no high-level forms of motion 

control, and it is not possible to animate shape changes to modelling primitives. 

2.3.4 Specialised Systems 

Specialised systems use the same techniques as the more general systems described 

above, but they provide some combination of a fixed set of preconstructed models, 

high-level motion control, or a user interface that is tailored to a specific type of 

user. 

SAS, the Skeleton Animation System [Zeltzer 82], is aimed at accurately repro-

ducing the motion of human figures, based on skeletal joint motion. The system 

generates very realistic walking motion, using the dynamics of motion. Skeletons 

adjust their motion to take account of slightly uneven surfaces. 

The COMPOSE system [Calvert 89] is a system for dance choreography. Figures 

may be set into predefined dance stances at various times, and in various positions 

on a stage. The system interpolates between the positions. In some cases, such 

as when a figure moves across the stage, high-level motion control takes effect (in 
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this case, to make the figure walk, rather than slide, across the stage). New stances 

may be created, and then used in the system. The user interface to the system is 

oriented specifically towards the requirements of choreography. The system provides 

an interactive display of the sequences, but the figures are crudely drawn, and the 

motion appears jerky. The Cubicomp/ Vertigo 2000 system is used for high quality 

rendering. 

2.4 Case Studies 

This section examines the problems that are found in systems that implement the 

techniques discussed earlier. The source of the problems is traced to the use of a 

reductionist design philosophy. Some motivation is also given for the design criteria 

listed in section 1.1. 

2.4.1 Symbolics 

Three modules comprise the Symbolics animation system [Symbolics]: 

S-Geometry: A modelling system. It allows interactive manipulation of polyhedral 

models. 

S-Dynamics: A motion controller. It implements the parameter interpolation tech-

nique. 

S-Render: A rendering system. It renders polyhedral models with a variety of 

attributes. 
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The system is implemented using Flavors, an object-oriented variety of Lisp. Because 

of the language and operating system environment used on the Symbolics comput-

ers, the three programs may be used separately, or together with a combined user 

interface. The interface allows graphical interaction, and is extremely powerful and 

comfortable to use. 

The S-Geometry modeller gives a comprehensive implementation of operations on 

polyhedra: faces may be extruded, edges and corners bevelled, models twisted, etc. 

The user interface is well matched to the polyhedron modelling technique. For in-

stance, a face on a model may be selected with the mouse, and extruded interactively, 

using mouse movements to control the extrusion motion. New modelling techniques 

may be added to the system; however, models must be converted into polyhedral 

form before they will appear in the graphical window of the user interface, or before 

they are rendered by S-Render. Integrating new techniques into S-Geometry would 

require major reprogramming of the user interface. S-Geometry allows models to be 

structured in a hierarchical fashion. Bounding boxes may be substituted for complex 

models in the graphical display, in order to increase interactive speed. 

S-Dynamics is used to animate models created in S-Geometry. Its user interface is 

extremely well suited to the purpose of the program. It understands the hierarchical 

structure of S-Geometry models, so articulated bodies may be animated. Motions 

are specified by setting cue points for parameter values. Cues may be set at absolute 

times, or at times relative to other cues. This allows a cue to be moved in time, and 

all relatively cued motions will maintain their temporal relationships. Relative cues 

generate a hierarchy of cues in time. Some extensibility is possible—[Reynolds 87] 

describes a high-level motion controller that simulates the motion of flocks. 
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A major problem with this system is that modelling operations cannot be ani-

mated. For instance, a face on a polyhedron may be extruded in S-Geometry, but 

the extrusion cannot be animated by S-Dynamics. This points out a fundamental 

flaw in the system design: model shapes are "baked" before they are passed to the 

motion controller. The only way that the motion controller may animate modelling 

operations is if it contains a re-implementation of the modeller. This problem makes 

it very difficult to animate shape deformation. 

The strong points of the system are: 

• It has a very habitable user interface. 

• The one modelling technique it uses is powerful and fully implemented. 

• The hierarchical cue structure makes it very easy to fine tune motion timing. 

• The system can be accessed and extended by writing programs in Flavours. 

The weak points of the system are: 

• Modelling operations may not be animated. 

• Only one type of modelling technique is implemented in the system. 

• The system may only be used interactively, on a Symbolics machine. 

• The graphical display of objects tends to be rather sluggish. 

2.4.2 Graphicsland 

Graphicsland is a collection of programs for 3D computer modelling and animation. 

It was developed at the University of Calgary, and is used at a few other sites. It has 
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been used to create six short animated films, as well as for numerous other projects. 

I have been involved in the production of two films: The Great Train Rubbery (1987) 

and Lumpy's Quest for Sev (1989). Because Graphicsland is the system which I am 

most familiar with, it will receive the largest share of criticisms, both mine those of 

other users. The kernel design presented in this thesis is influenced to a large degree 

by the stronger aspects of Graphicsland. 

Graphicsland is a loose collection of programs. The primary components of the 

system are a polygon modeller (PG), a simple motion control program (Ani), and a 

number of renderers (Z-buffer, A-buffer, ray tracing). Secondary components include 

interactive viewing programs and interfaces, high-level motion controllers (dynamic 

simulation), and programs which support modelling techniques other than polygons 

(these are linked into PG so that they are accessible through its interface). 

Both PG and Ani have interactive, textual command interfaces. When using 

PG, it is possible to describe models interactively, or load script files that contain 

the commands to build models. Various rendering programs and interactive viewing 

programs may be selected, and model data sent to them. PG stores a log file detailing 

all of the commands that were issued during a session; it is not able to write its scene 

description data structure to a file. Ani works in a similar fashion to PG. 

PG sends data to rendering programs via the Unix pipe facilities. It traverses 

its scene description data structure, and sends the model data to the renderer in a 

binary scene realisation format. The renderers expect to receive polygon modelling 

primitives, so any other type of modelling primitive used in PG must be converted 

into polygons before it can be rendered. The scene realisation is not always sent to 

a renderer; often it is stored in a file, and other programs are used to manipulate the 
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polygons. PG is able to read scene realisation data files, but all of the data in the file 

is regarded as one model which cannot be manipulated via the command interface. 

Ani operates by starting up a copy of PG, and communicating to it in the same 

manner as an interactive PG user, by issuing commands to PG through PG's com-

mand interface. The process is this: 

• PG is asked to load a file containing the model descriptions. 

• For each frame, Ani computes the transformation matrices for models that 

have changed position, and sends them to PG. 

• Ani also computes colour changes and sends these to PG. 

• PG is asked to send the scene data to the renderer. For each frame, it traverses 

the scene description and regenerates the scene realisation. 

Ani cannot properly access the subcomponents of hierarchical models, so animating 

articulated bodies is a tortuous task. Only geometric transforms and colours may be 

animated using Ani. This is mostly due to the interface between Ani and PG. Other 

attributes could be animated, but this would require major modifications to PG. 

Ani provides only simple motion interpolation functions. Any more complicated 

style of motion must be generated from another source. 

For each frame in an animated sequence, non-polygonal models must be converted 

into polygons. This is done for every frame, regardless of whether the model has 

changed. This conversion may be a computationally expensive process, especially in 

the case of the soft object modelling technique [Wyvill 86]. 
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For each frame in an animated sequence, the entire scene realisation is sent to 

the rendering program. For some scenes this involves tens of thousands of polygons. 

Communicating this volume of data through Unix pipes is not an efficient process. 

High-level motion control programs are not linked well into the rest of the system. 

They often produce their results by writing out a separate PG script for every frame 

in an animation. The script contains all of the information about the model that is 

being animated, so the information is often redundant, and time-consuming to read. 

The common occurrence of this process has resulted in features being added into Ani 

to manage the separate PG scripts needed for a sequence of frames. 

Creating models often involves a roundabout process: an initial version of the 

model is made in PG, and the model data is written to a data file; the data file is 

read into a model manipulation program, such as Delta [Allan 88]—a polygon mesh 

manipulation system—where it is changed; the new model is written into a data file; 

the model is included in a new PG script, as part of a scene. Figure 2.4 illustrates 

this process. In order to create one model two PG scripts are required, as well as two 

data files, and one (or more) model manipulation programs. This is an organisational 

nightmare, especially when changes are made to the model. 

There is no single, unified user interface from which all aspects of the system may 

be accessed. 

Lights and the viewpoint are not part of the modelling hierarchy in PG, so they 

cannot be attached to other models. 

When an animation project is small, and an animator knows the system well 

(and is an experienced computer user), Graphicsland proves to be a very flexible 

system. This is due, in part, to the loose organisation that causes many of the other 
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problems. It is possible to write small, custom programs to perform any required 

function. 

The strong points of Graphicsland are: 

• It contains a very powerful modelling program. 

• Many different types of modelling primitives are available for use. 

• The system is flexible, because new programs can be added to perform new or 

specialised tasks. 

• It can be used on many different types of hardware, including non-graphical 

terminals. 

The weak points of Graphicsland are: 

• Its tools are poorly integrated. 

• Its motion controller cannot animate articulated bodies very easily, has lim-

ited types of motion interpolation, and cannot animate all possible degrees of 

freedom in a scene. 
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• No interactive animation capability exists to allow animators to fine tune their 

work. 

• The system is inherently polygon-based. 

Graphicsland contains a large number of tools, and is capable of producing state 

of the art animation, but the organisation of the tools, and the interfaces between 

them, make it necessary for users to be programmers in order to fully use the system. 

2.4.3 FRAMES 

FRAMES [Potmesil 87] uses a set of "graphics tools" analogous to the "software 

tools" described in [Kernighan 81] to perform 3D modelling, animation, and render-

ing. The process of creating graphics, and especially of rendering, can be seen as 

a pipeline of tasks to be performed on a stream of data [Foley 82]; each FRAMES 

"tool" is a program which implements 011e of these tasks. The programs read an 

input stream which is in a standard format, modify or add to it, and output it to 

the next tool. Tools are provided to create geometric bodies, animate them, shade 

them, texture them, and so on. Instructions for individual tools are mixed into the 

data stream. Each tool recognises the instructions meant for it, and passes the rest 

along. An initial script contains all of the instructions. 

This approach has advantages: 

• The order of operations (programs) can be changed around for different results. 

• New modules may be coded independently and added to the system. 
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• Modules may be substituted for others to do a similar task at a different quality 

level or speed. 

• Bugs can be isolated. 

However, disadvantages also exist: 

• The authors developed a "binary" data format for intertool communication 

because too much system time was spent passing data. 

• The communication is unidirectional—intertool feedback is prohibited. 

• It would be difficult to develop an interactive user interface to sit atop this 

system. 

In the chain of modelling, animation, and rendering, the order of operations are not 

interchangeable, so the first advantage listed above is not valid; it is really only of 

value for a rendering testbed. 

The basic advantage to such a modular system is flexibility and the encapsulation 

of data manipulation algorithms. The primary disadvantage is the assumption that 

bi-directional communication between model generators and motion controllers is 

not needed. 

FRAMES is an extreme case of modularisation, but most systems do isolate the 

processes of modelling, animation, and rendering. The S-Dynamics system provides 

an integrated user interface to modelling and animation, yet treats them as separate 

processes. 
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2.4.4 Critical Discussion 

A trend that is apparent in the designs of these systems is a tendency towards 

"reductionism" (cf. section 1.1). In the computer animation systems studied above, 

it is best illustrated by FRAMES. However, Graphicsland and the Symbolics system 

also subscribe to a reductionist philosophy, to a lesser degree—the modelling and 

animation processes remain segregated. 

The disadvantages of the "reductionist" approach are these: 

• Because the models' geometry and structure has been given before motion con-

trol is specified, animation is limited to using the three basic transformations 

(translation, rotation, and scaling), and changing attributes. It is difficult 

to animate changes in geometry, because the geometry of models has been 

committed at a previous stage, and there is no feedback from the animation 

program to the modelling program. 

• It is inefficient to pass large amounts of scene description data between pro-

grams. This is especially true if the entire scene description, with small changes, 

is retransmitted to the renderer for each frame of animation. 

• The user must specify three or four types of data, in three or four contexts. If 

modelling and animation are done with separate programs, there may be two 

or more interactive interfaces, as it is difficult to provide one unified interface. 

• Integration of external high-level motion control programs, such as for dynamic 

simulation, cannot be done unless they can access information about model 

geometry. 
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• It is impossible, in a system like FRAMES, to provide both interactive and 

script interfaces, and allow interchangeable use of them. 



Chapter 3 

Kernel Design 

An overview of the animation kernel will be given in this chapter. The details of the 

data structures and algorithms used in the kernel will be presented in the following 

chapter and appendix B. 

3.1 Design Decisions 

The primary decision made in the kernel's design is to integrate the data structures 

for models and motion control. The reasons are listed in section 1.1. Many of the 

other design decisions follow from this. 

The other important decision is to provide a kernel for animation systems, rather 

than a "complete" animation system. This is because a kernel, if it is carefully 

designed, forms a more flexible basis for complete animation systems. A number of 

decisions were made regarding the structure of the kernel, and the facilities it should 

provide. 

Other decisions are influenced by the desire to incorporate, or have the mech-

anisms to incorporate, all of the modelling and animation techniques described in 

chapter 2, while avoiding the problems discussed in the case studies—especially those 

of Graphicsland. The intention has been to retain the good elements of the Graph-

icsland system and fix the problems. The kernel is a framework that can tie diverse 

components, like those of Graphicsland, together into a more coherent system, and 
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add considerable power to them. Here is an outline of the major design decisions: 

• Both scripting and interactive user interfaces are available. Animators are free 

to use either type of interface, and they may move between one and the other. 

• The kernel does not include an interactive interface, a renderer, or high-level 

motion controllers as part of its facilities. These are considered to be too 

application-dependent. Programming interfaces are available to add these com-

ponents to the kernel. 

• The set of scene data types may be extended. It is possible to add new mod-

elling techniques, attributes, and transforms to the kernel with superficial mod-

ification. These new resources are available for immediate use by animators, 

high-level motion controllers, and renderers. 

• Parameter interpolation is provided. The set of interpolation functions may be 

extended. Access to the parameter interpolation facilities is available through 

the script language, and through interactive interfaces. In scripts, the motion 

control information is embedded into model descriptions. 

• The scene realisation is stored explicitly. The scene description and scene real-

isation data structures are linked so that, between two frames in an animation, 

only the parts of the scene realisation that change will be updated, avoiding 

unnecessary recalculation of model data. 

• The script language contains features from programming languages. These 

include variables and conditional statements. These features are also available 

through interactive interfaces. 
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• Interaction occurs at the level of the scene description, not the scene realisation. 

This is opposite to Ostby's approach [Ostby 89]. It is necessary in order to 

allow an animator's interactive changes to be stored in a script. 

• Modelling primitives may be explicitly converted from one type to another. 

This is an important and original feature of the kernel. It allows a model to 

be built using one modelling technique, and then converted into the form of 

another modelling technique. The operations that are available for the second 

technique may then be performed on the model, to further refine it. 

Systems intended for specific applications may be made by configuring the ker-

nel with the apropriate components. New tools may have to be implemented and 

interfaced to the kernel. 

A complete animation environment may include a number of differently con-

figured kernels. One may be configured with an interactive user interface and a 

wireframe renderer, to allow animators to design animation sequences; the data is 

then stored. Another configuration may include a high-quality renderer; this version 

is used to read completed scripts, and generate the final frames of the animation. 

3.2 Kernel Approach 

Animation systems become tied to a particular application or type of user accord-

ing to their user interface, rendering style, modelling technique, and motion control 

method. What all applications have in common, however, is a need for these re-

sources. A parallel can be drawn to computer operating systems, which can become 

tied to a particular machine or machine architecture due to poor design—this may 
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make it perform optimally on one machine, but a price is paid in portability and ex-

tensibility An operating system kernel contains the elements of an operating system 

that are independent of machine type; an animation kernel contains the elements of 

an animation system that are independent of application. An attempt is made to 

endow a kernel with very powerful but flexible facilities, in order to satisfy as many 

potential applications as possible. 

3.2.1 Operating System Background 

The concept of a kernel is familiar in computer operating system design [Corner 84]. 

It is used to allow complex operating systems to be portable between machines and 

configurations of machines. An operating system is primarily a resource manager; 

it allows users of the system to access the resources of the computer (memory, CPU 

cycles, file system, printers, etc.). Users issue commands from programs or command 

interfaces which access these resources and use them to perform a task. 

The resources managed by an animation kernel are modelling techniques, at-

tributes, transforms, motion controllers, and renderers. Animators use these re-

sources to create and render animated scenes. They write a script or build a data 

structure that is "executed" by the kernel to generate the animation. 

The resources of a machine may change according to the application of the ma-

chine. However, resources may be classified according to general type (ie. disc drive 

vs. Fujitsu M2392D), and the kernel may treat them generically. 

Similarly, the resources of an animation system may change according to its 

application. 

An operating system kernel embodies some design decisions that limit the range 



53 

of user environments and applications that it may be used for. The decisions are 

fundamental ones, such as whether the system should be single or multitasking, what 

method should be used for interprocess communication, or what measures should be 

taken to handle deadlock. The proliferation of operating systems testifies that no 

one kernel has been developed which satisfies the needs of all users and applications. 

The same can be said of an animation kernel: it embodies design decisions re-

garding the data structures it uses to store information about models and motion 

control, the method of animation it supports, and the interfaces it provides for adding 

resources and extending the system. 

3.2.2 Animation System Structure 

Figure 3.1 depicts the basic structure of the kernel. It shows the major components 

and their relationships. It also shows the external components that make up a 

complete system. 

Within the kernel, the major components are the hierarchical scene description 

data structure, the interpolation functions and specifications, and the track mech-

anism that integrates the two. The track mechanism is also used to interface with 

high-level motion controllers and the user interface, in order to retrieve values from 

them. 

The solid arrows represent strong connections between data structures. The 

directions of the arrows indicate that one component accesses data from another. 

The hierarchical scene description data structure accesses data stored in parameter 

lists and expressions. These may, in turn, be linked to tracks to receive time-changing 

values. Traversing the hierarchy yields the scene realisation. 
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The dotted lines indicate weaker connections. They show that an interface is 

available to an external system component to examine and modify a data structure. 

The user interface is permitted to edit the scene description data structure and the 

the interpolation specifications. The same access is granted to high-level motion 

controllers (not marked in the diagram). The renderer is allowed to read the scene 

realisation. 

The scene realisation makes use of the object-oriented class derivation mechanism 

and virtual functions to make the set of scene data types extensible. The dashed 

line is used to indicate that these extensions, while not part of the kernel, are very 

closely tied to it. (Virtual functions are explained in appendix C.) 

3.2.3 Kernel Facilities 

The kernel manages the following data structures: 

• The hierarchical, recursive scene description data structure holds the defini-

tions of models, which are made from specifications of modelling primitives, 

attributes, and transforms. It provides an interface for external manipulation 

of the data structure, and performs the traversal to generate the scene realisa-

tion. 

• The parameter lists for the scene data types are particularly important. Pa-

rameters are used to communicate with instances of the data types. 

• The interpolation data structure stores the cues and interpolation functions for 

parameters. 
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• An event list is used to manage animation time and synchronise motion con-

trollers. 

• The scene realisation contains data for the renderer. The traversal of the scene 

description hierarchy generates the scene realisation data structure. 

3.3 The Script Language 

The Charli script language is important to the kernel's design. It serves as an appli-

cation independent user interface to the kernel's facilities, as a data storage medium 

for storing model and motion data structures that have been made with interactive 

user interfaces, and as a powerful scene description and motion specification lan-

guage. Charli embodies the integration of model and motion data, as later examples 

will illustrate. The language grammar is given in appendix A. 

Charli examples are presented in advance of the kernel's data structures because 

they provide a means of illustrating the capabilities of the kernel. As well, the 

structure of Charli scripts is identical to that of the scene description data structure, 

so the examples will provide some knowledge of the data structures. Because Charli 

mirrors the kernel's data structure, it is possible to access all of the kernel's data 

creation and structuring facilities through it. 

It is possible to convert the scene description data structure into a Charli script. 

This means that a Charli script may be read and converted into a data structure 

which is then, modified by an interactive interface, and saved as a script. Modi-

fying the kernel's scene description data structure from an interactive interface is 

equivalent to editing a Charli script, with the benefit that immediate feedback is 



57 

provided. 

Model and motion specifications are made together in one Charli script. This 

helps to organise the data for an animation sequence, and it also encourages ani-

mators to think of models as entities which change over time. It also permits all 

accessible degrees of freedom in a scene to be animated. 

Some aspects of the kernel's data structures were designed to permit features in 

the Charli language to operate. These are features modelled after those found in 

conventional programming languages, such as variables, expressions, and conditional 

statements. In some respects, the kernel has been designed as an engine to execute 

Charli scripts. 

Charli is independent of any particular animation application. More precisely, it 

is as independent of any particular application as the kernel. 

Statements 

Statements in Charli are used to create primitives, attributes, and transforms. Here 

are some sample statements: 

polygon( <0,0,0>, <1,0,0>, <1,1,0>, <0,1,0> ); 

colour( 0.2, 0.5, 0.5 ); 

rotatex( 45 ); 

mesh( ... ) extrude( 4, 2 ); 

polygon( <0,0,0>, <1,0,0>, <0.5,0.66,0.66> ) scale( 0.4, 2, 1 ) 
rotatex( 45 ) 
translatex( 10 ); 
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The first causes an instance of a polygon primitive to be made. The parameters are 

points in 3D space that make up the vertices of the polygon. The second causes a 

change in the colour attribute. The parameters indicate the intensity of red, green, 

and blue in the interval from 0 to 1. The third causes a rotation matrix to be 

concatenated onto the current transformation matrix. The fourth creates a polygon 

mesh (the parameters have been omitted) and indicates that the fourth face of the 

mesh is to be extruded a distance of two units. The fifth creates a polygon, and 

applies a list of transforms to it. 

Statements are terminated by a semicolon. 

Definitions 

A model definition is a group of statements that make up a model. The model is 

given a name so that instances of it may be made. It may have parameters. 

def square( size ) 
colour( 0.3, 0.5, 0.02 ); 
polygon( <0,0,0>, <size,O,0>, <size,size,O>, <O,size,0> ); 

end; 

square( 2 ); 

The statements in the body of the definition describe what modelling primitives, 

attributes, and transforms make up a model. 

This example illustrates the use of parameters, and how named values may be 

substituted for numbers in statements. Parameters are passed by value. Parameters 

may be numbers, points (three numbers enclosed between < and >), character strings, 

variables, or references to other models. 
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The model definition does not cause the model to appear in the scene, it only 

defines how the model is made. The final statement in the example specifies that an 

instance of the square model should be made, with the parameter value of 2. 

Instances 

An instance of the square model is specified like this: 

square( 2 ) translate( 0, 10, -5 ); 

As the example shows, a parameter is passed to the instance, and a transform is 

applied to it. 

Structure 

Charli supports hierarchically structured models. The model definition for a simple 

body model, given in figure 3.2, generates the model structure shown in figure 2.1. 

The "cube" statements create an instance of a cube primitive, which is then scaled 

to produce rectangular prisms for the body components. 

This example also demonstrates that models may be defined within a scope. A 

definition that is given inside the body of another definition is said to be defined 

within the scope of the latter. This allows scoping rules similar to those used for 

function names in Pascal [Jensen 74] to apply to model definition names. 

Recursion 

The technique of recursion is used to amplify model data, as in PG [Wyvill 84]. The 

following definition produces the model pictured in figure 2.2. 
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def H 
line( <-0.5,0,0>, <0.5,0,0> ); 
H scalexyz( 0.7 ) rotatey( 90 ) translatex( -0.5 ); 
H scalexyz( 0.7 ) rotatey( -90 ) translatex( 0.5 ); 
limit 5; 

end; 

Variables and Expressions 

Named values have already been seen in the form of parameters for model defini-

tions. It is also possible to declare variables which can be assigned values, used in 

mathematical expressions, and passed as parameters. 

Here is a simple example of using a variable: 

def art ic_segment 
var seg_length; 

seg...length = 1; 

line( <0,0,0>, <seg_length,0,0> ); 
line( <0,0,0>, <2,0,0> ) rotatex( 10 ) 

translatex( seg_length ); 
end; 

The model is made from two line segments that are joined in an articulated fashion 

(the translatex transform moves the second line to the second endpoint of the first 

line). The second line can be made to swing by changing the value of the rotation. 

The way the model is constructed, using the variable seg_length, the length of the 

first segment may be changed, and the second segment will remain attached to it. 

References to variables are resolved using scoping rules similar to those found in 

Pascal. 
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def body 

def upper-body 
def torso cube( 1 ) scale( 1, 2, 0.5 ); end; 

def head cube( 0.5 ); end; 

def arm 

def lower-arm 

cube( 1 ) scale( 0.3, -1, 0.3 ) 
translatey( -0.5 ); 

cube( 1 ) scale( 0.3, 0.5, 0.1 ) 
translatey( -1.25 ); 

end; 

cube( 1 ) scale( 0.3, 1, 0.3 ) translatey( -0.5 ); 
lower-arm; 

end; 

torso translatey( 1 ); 

head translatey( 2.25 ); 

arm translate( -0.65, 2, 0 ); 
arm translate( 0.65, 2, 0 ); 

end; 

def lower-body 

def pelvis cube( 1 ) scale( 1, 0.8, 0.5 ); end; 
def leg 

def lower-leg 

cube( 1 ) scale( 0.4, 1, 0.4 ) 
translatey( -0.5 ); 

cube( 1 ) scale( 0.4, 0.2, 0.6 ) 
translate( 0, -1.1, -0.2 ); 

end; 

cube( 1 ) scale( 0.4, 1, 0.4 ) translatey( -0.5 
lower-leg; 

end; 

pelvis translatey( -0.4 ); 

leg translate( -0.25, -0.8, 0 ); 

leg translate( 0.25, -0.8, 0 ); 
end; 

upper-body; 

lower-body; 

end; 

); 

Figure 3.2: A Charli script for a hierarchical body model 
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Flow Control 

Flow control is provided through the use of an "if" statement: 

def one_or_two( how_many ) 
cube( 1 ); 
if( how-many > 1 ) 

cube( 1 ) translatex( 1 ); 
end; 

end; 

The statements between the "if" statement and the matching end are evaluated if 

the conditional expression is "true," otherwise they are skipped. 

The following example shows how the conditional statement may be used to put 

leaves at the ends of the branches of a recursively generated tree. The pseudo-variable 

limit returns the current recursion limit value for the definition being traversed. 

def tree 
def leaves ... end; 

def trunk ... end; 

limit = 0 ) 
leaves; 

end; 
if( 

end; 

limit > 0 ) 
trunk; 

tree scale( 0.5, 0. 

rotatey( 60 ) 
tree scale( 0.5, 0. 

rotatey( -60 ) 
tree scale( 0.5, 0. 

rotatey( 180 ) 
tree scale( 0.4, 0. 

translatey( 3. 

limit 6; 

end; 

7, 0.5 ) rotatez( 30 ) 
translatey( 5 ); 

7, 0.5 ) rotatez( 45 ) 
translatey( 5 ); 

7, 0.5 ) rotatez( 45 ) 
translatey( 5 ); 

5, 0.4 ) rotatez( 60 ) 
5 ); 
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Casting 

Casting is the conversion of a model from one representation, or modelling technique, 

to another. As mentioned earlier, this is an important and original part of the kernel. 

An example of the usefulness of this technique is to build a grid of triangles with 

polygons and recursion, and then convert the grid into a polygon mesh. A hill may 

then be formed from the grid: 

def grid 
def square 

polygon( <0,0,0>, <0,0,1>, <1,0,0> ); 
polygon( <0,0,1>, <1,0,1>, <1,0,0>); 

end; 
def row 

square; 
row translatex( 1 ); 
limit 40; 

end; 

row; 
grid translatez( 1 ); 
limit 40; 

end; 

grid cast to mesh select( <13.4,0,23.87> ) 
range( 5 ) 
decay( "bell" ) 
pull( 3 ); 

Casting between two types of modelling techniques may only be performed if an 

algorithm exists to perform the conversion. 
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Animation 

The kernel provides facilities for low-level motion control. These facilities may be 

accessed through Charli scripts. It is very simple to animate a degree of freedom in a 

scene all that is required is to substitute values that change over time for numeric 

values in scripts: 

polygon( <0,0,0>, <{i at 0 sec linear 2 at 1 sec},0,0>, 
<1,1,0>, <0,1,0> ); 

colour( 0.2, {0.5 at 0.2 sec slowinout 0.7 at 3 sec}, 0.5 ); 

rotatex({ 45 at 3 sec spline 55 at 4 sec spline 70 at 10 sec 

mesh( ... ) extrude( 4, {0 at 0 sec slowinout 2 at 4 sec} ); 

polygon( <0,0,0>, <1,0,0>, <0.5,0.66,0.66> ) 
scale( 0.4, 2, {1 at 4 sec linear 1.2 at 12 sec} ) 
rotatex( {30 at 0 sec slowout 45 at 9 sec} ) 
translatex({ 10 at 3 sec slowin 15 at 13 sec 

The motion specifications are substituted for ordinary numbers in the script; they 

are enclosed in braces ({}). A specification is made from two or more cues. Between 

any two cues, the name of a type of interpolation function is given. A cue is the 

combination of a value and a time specification. 

These examples are based on the original statement examples given on page 57, 

but some of their parameters have been substituted with values that change over 

time: the shape of the polygon changes because one of its vertices moves; the green 

component of the colour attribute grows stronger; the rotation angle changes over 

time; the fourth face of the polygon mesh is extruded; and the polygon performs a 

complex motion. 
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Animation specifications may also be used in expressions that assign values to 

variables: 

def art ic_segment 
var seg_length; 

seg_length = { 1 at 0 sec slowinout 3 at 10 sec 

line( <0,0,0>, <seg_length,0,0> ); 

line( <0,0,0>, <2,0,0> ) rotatex( 10 ) 
translatex( seg_length 

end; 
); 

The current animation time, and the current frame are available through the 

pseudo-variables time, and frame. These may be used in expressions, and passed as 

parameters. 

Special Primitives 

There are certain modelling primitives that are considered to be special. These are 

cameras and lights. To animators, they are treated like any other primitive: they 

may be specified in Charli scripts, and they may be attached to other models in the 

hierarchy. This permits lights to move with objects, and the camera to track along 

with models. 

3.4 Data Structures 

3.4.1 The Scene Description Data Structure 

Structure 

As the Charli examples show, the scene data is structured using a a recursive hier-

archy. The scene description data structure mirrors the structure of Charli scripts. 
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Scripts are read and converted into a data structure where a node in the hierarchy 

corresponds to each model definition, and each node contains a list of records which 

represent statements. In general, one record is made for each statement. The ker-

nel is able to write its scene description data structure as a Charli script. In order 

to do this, information about the names of models, variables, parameters, etc. are 

maintained in the data structure. 

The important point to note here is that the Charli script is not evaluated as it 

is read in. It is merely converted into a new form which represents the script. To 

actually generate the scene realisation, the data structure must be traversed. The 

specification of a scene data item is nothing more than a specification. It contains 

the name of the data type and its unevaluated parameter list. The instances of the 

specification (more than one, if the enclosing model is multiply instanced) actually 

reside in the scene realisation data structure. 

In the hierarchy, a node exists for every model definition. The node contains 

information about the model, such as its name, recursion limit, and the types and 

names of its local variables. It also contains a pointer to a list of all of the statements 

in the body of the model definition. Each statement is converted into a record which 

represents the statement: 

• Statements which specify modelling primitives, attributes, and transforms are 

converted into records which contain the type of scene data that was specified, 

and the list of parameters that were given. 

• Reference statements are converted into records which contain a pointer to 

the node for the model definition that is being referenced, and a list of the 
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parameters that were given. 

• Assignment statements are represented by records which have a reference to 

the variable to which the assignment is being made, and an expression tree 

that stores the expression. Expression trees may contain additional references 

to variables. 

• Conditional statements are represented by records which contain the condi-

tional expression that is evaluated, and a pointer to a node that heads the list 

of statements in the body of the conditional statement. 

• Declaration and limit statements alter values in the definition node. They are 

not represented in the statement list. 

This is the basic form of a model definition: 

definition 
node 

primitive - 

4- assignment - 

4- reference 

to 
definition 
node 

Modelling primitive specifications may be followed by a series of operation, cast, 

and transform specifications; these are added to new lists, which are headed by 

the modelling primitive record. Similarly, reference statements may be followed by 

transform and cast specifications; casts may be followed by operations. These are 

also stored into lists headed by the reference record. 
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An abstract data structure for the following script is shown in figure 3.3. 

def cube 
def square 

polygon( <0,0,0>, <1,0,0>, <1,1,0>, <0,1,0> ); 
end; - 

def tube 
square; 
tube rotatex( 90 ) translatey( 1 ); 
limit 4; 

end; 

colour( 0.7, 0.1, 0 ); 
tube; 
square rotatey( 90 ); 
square rotatey( -90 ) translatex( 1 ); 

end; 

cube; 

The script specifies a cube model, and it uses a recursive reference in the tube 

definition. In the diagram, transforms appear along reference pointers rather than 

in lists attached to references. 

When operations are performed interactively on a modelling primitive, the se-

quence of operations is stored. This is equivalent to saving a "log" of the operations. 

Parameters and Expressions 

Some Charli statement types are followed by a parameter list. In the data structure, 

they are stored in arrays in the statements' records. If a parameter is an expres-

sion, the expression is not evaluated; it is made into an expression tree and stored. 

This is depicted in figure 3.4. The figure shows the data structure built from an 
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"world" 
limit = reference 

"cube" 
limit = 1 

attribute 
colour reference reference 

transform 
rotatey 

  transform 
translatex 

) 

reference 

transform 
rotatey 

"tube" 
limit = 4 reference 

transform transform 
translatey rotatex 

reference 

"square" 
limit = 1 

primitive 
polygon 

Figure 3.3: Data structure for the cube script. 
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texture( "marble", 2*(3+x*{0 at 0 sec linear 2 at 5 sec}, 2 ); 

Figure 3.4: Parameter list example. 

attribute specification that has a complex parameter list including an expression 

(which includes an interpolation specification) and a character string. 

Expressions may also appear in conditional and assignment statements, and are 

treated similarly. 

Traversal 

The traversal of the scene description data structure can be seen as equivalent to 

"executing" a Charli script, as if it was a program written in a procedural pro-

gramming language like Pascal. The basic traversal uses the algorithm mentioned 

in section 2.1.1. The statements in the body of a model definition are executed se-
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quentially. Executing the script generates the scene realisation. This data is stored 

in a separate data structure. The result of executing each statement depends on its 

type: 

• Statements which specify modelling primitives, attributes, and transforms gen-

erate data into the scene realisation data structure. The parameter lists of the 

statements are evaluated, and actual instances of the data types are created. 

Because of the structure of Charli scripts, each specification statement may be 

executed many times during one traversal, and its parameter values may be 

different each time. 

• A reference to a model definition is similar to a procedure call. The definition 

of the referenced model is executed. A stack is maintained during the traversal 

of the data structure for local variable storage. 

• The expressions of assignment statements are evaluated, and the resulting value 

is assigned to the variable. 

• The statements in the body of a conditional statement are executed if its 

condition evaluates to "true." 

Expressions and parameter lists are evaluated when the statement record containing 

them is processed. 

If a modelling primitive has a list of operations, the actual instance of the prim-

itive is generated for the scene realisation, and the operations are applied to it. If a 

modelling primitive is cast, the instance is made, but it is not placed into the scene 
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realisation; instead, the conversion is performed, and the new data is added to the 

scene realisation. 

It is more complicated when a model definition is cast: the model may contain a 

number of modelling primitives. This is handled by traversing the model, the reali-

sation of the model is added into a secondary scene realisation data structure, rather 

than the primary one. This is described fully in chapter 4. The conversion algorithm 

must then examine the secondary data structure to find all of the primitives, and 

work from there. It is therefore necessary for conversion algorithms to understand 

the format of the scene realisation data structure. 

Extension 

The set of scene data types—modelling primitives, attributes, and transforms—may 

be extended. When new types are added, they are accessible through Charli scripts 

and interactive user interfaces. 

To add a new type, the following steps are taken: 

• The details of the new type are implemented in a class which is derived from 

a base class provided by the kernel. The subclass defines the internal rep-

resentation of the new type, as it will be constructed from its parameters, 

and implements the virtual functions. (The base classes are actually part of 

the scene realisation data structure, as the scene description merely contains 

placeholders.) 

• The name of the new class is entered into a table, along with a pointer to a 

function that will create an instance of the class. Separate tables are used for 

primitives, attributes, and transforms. 
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. Instances of the new type may be made by calling functions in the kernel 

interface. 

If a new primitive is added, these additional steps may be performed: 

• For each type of operation that may be performed, a class is derived from class 

operation. This class will implement a function that reads and interprets a 

list of parameters, and operates on an instance of a primitive. 

• The name of the operation, and a pointer to a function that creates an instance 

of the class is added into a table of operations. Each primitive class has its 

own table of operations. 

Algorithms may be implemented to convert one type of modelling primitive to 

another. Pointers to the functions are entered into a conversion table. 

Prototyping 

In order to maintain reasonable performance with interactive interfaces, it may be 

desirable to replace a complex model with a simpler representation, or prototype. 

This is accommodated by adding a field to the model definition node which points 

to the prototype, and a flag indicating whether the prototype is to be activated. 

When the prototype is activated, the model is not traversed. The prototype 

representation is rendered instead. This also has the side effect that any animation 

that is specified within the model is not generated. 

The prototype may be stored to a Charli script, using a prototype statement: 

prototype modelling-primitive; 
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Once a model or a piece of animation has been completed, it may be "turned 

off" with a prototype, so that other aspects of the scene may be worked on. During 

final production, prototypes are ignored. 

3.4.2 Motion Control 

The basic method of producing animation is to traverse the scene description data 

structure once for every frame that is rendered. At each traversal, some of the 

parameters passed to scene data types will be changed from the previous traversal. 

Tracks 

All forms of motion control in the system are realised through a track mechanism 

similar to the type that Gomez formulates. Essentially, any numeric value that ap-

pears in an expression in the scene description data structure (or a Charli script) can 

be replaced with a track. A track is an abstract data type that may be queried to 

return a value for a particular instant in animation time. When a numeric value is 

replaced with a track, then its value can change as animation time changes. The im-

plementation of a particular instance of a track is not important; the only important 

thing is that it returns a value. 

To be practical, the implementation of a track is important. The value it returns 

may result from an interpolation process, it may be computed by a high-level motion 

control algorithm, or it may come from user interaction, as shown in figure 3.1. 

The track is the mechanism that integrates the scene description and motion 

control data structures. 

The implementation of the track data structure is presented in the next chapter. 
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Low-level Motion Control 

The low-level motion control component of the kernel uses interpolation techniques. 

Interpolated values are available through tracks. The Charli examples show how 

the interpolation tracks are specified: the minimum information required for an 

interpolation track is two cues, and an interpolation function. A cue consists of a time 

value and a numeric value. Additional cues and interpolation functions may be added 

to an interpolation track. This information is read and stored in an abstract data 

structure called an interpolator. Interpolators may also be specified from interactive 

user interfaces, or by high-level motion controllers. 

An interpolator is queried with a time value, and it returns a numeric value. 

The set of interpolation functions is extensible. An interpolator is also not strictly 

required to perform interpolation. It may actually return a random value, or a value 

calculated through some other means. 

High-level Motion Control 

High-level motion control tracks are used to interface high-level motion controllers to 

numeric values in the scene description data structure. For every parameter that will 

be controlled, a track is made. The high-level controller is responsible for updating 

the values that are read through the track. 

Some forms of high-level motion control are computationally expensive, so the 

calculations they perform should not be repeated unnecessarily. For this reason, 

high-level motion control tracks capture the values that are passed through them 

at each frame, and store them. The saved values constitute a type of interpolator, 

and may be saved in a Charli script. More importantly, an animator is now free to 
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modify the values received from the high-level controller, if he wishes to. 

User Interaction 

User interaction with models in a scene is implemented via tracks. In this case, a 

track is used to read values from a valuator that an interactive user is controlling, 

such as a mouse or a slider. This type of track differs from the others because its 

value changes in real time, rather than animation time. Animation time may stay 

static while the user interacts with the scene. 

Valuator tracks allow animators to alter degrees of freedom in a scene interac-

tively. Models may be posed by an animator at various points in time. When the 

animator signals that he has finished interacting with a particular track, the track 

is deleted, and its final value is substituted for the number or cue value. 

Synchronising Motion Control 

An event list similar to the type used in discrete event simulation [Birtwistle 79] is 

used to synchronise high-level motion controllers with animation time. An event list 

is a sequence of event notices sorted according to time. Each event notice contains 

a time value, and a pointer to a function that should be executed at that time. The 

kernel steps through the event list, and executes the function belonging to each event 

notice. The time value in the event notice that is currently being processed is the 

current animation time. 

The kernel places a notice in the event list for each frame that is rendered. The 

function that belongs to these frame event notices sets up the kernel to render a 

frame, and tells the kernel to traverse the scene description. 

High-level motion controllers also place event notices in the event list. They 



77 

require an event for each point in animation time that they will want to perform 

some processing function to update the tracks they are controlling. 

Event notices are sorted according to a priority value that they contain, as well 

as by time. This is to allow events that occur at the same animation time as a frame 

event to be processed before or after the frame event. 

While an event is being processed, the processing function may add new event 

notices into the event list. The only restriction is that new event notices must have 

time values later than the current animation time. 

The low-level motion controller in the kernel does not use the event list. The 

values of tracks that are influenced by interpolation are computed during traversal. 

3.4.3 Scene Realisation 

Scene realisation data is generated when the scene description data structure is 

traversed. It is stored. Rendering algorithms access the data. The format of the 

data structure used is similar to the implicit one of the RenderMan interface. 

The data in the scene realisation includes modelling primitives, attributes, and 

transforms. Their parameters have been evaluated (ie. expressions have been eval-

uated) and their internal representations have been built. All specified operations 

have been performed on modelling primitives. 

The basic format of the scene realisation data structure is a linear list of data. 

Each item in the list provides information to a renderer. The information includes 

primitives, attributes, and transforms, and instructions to the renderer to push and 

pop the current graphics state. The graphics state is the current transformation 

matrix, and the current attributes. 
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The scene realisation for the "H" script on page 60 would contain the data in 

figure 3.5. Indentation has been used to accentuate the hierarchical structure create 

by the "push" and "pop" instructions. The data structure is highly repetitive because 

every instance of scene data types is made explicitly. This is necessary because each 

instance may have different parameter values. 

Certain modelling primitives—those that represent the camera and lights—are 

treated specially. Their transformation matrices are stored, and they are put into a 

special list in the scene realisation. This is because a renderer must know where the 

camera and lights are in the scene before rendering can commence. 

Traversal of the data structure is straightforward. The list is scanned by the 

renderer. At each item in the list, a task must be performed: 

• If the item is push or pop instruction, the graphics state is pushed or popped. 

• If it is an attribute, the value of the attribute is changed in the attribute list. 

• If it is a transform, the transform is concatenated onto the current transfor-

mation matrix. 

• If it is model, the internal representation is read and rendered. This involves 

applying the current transformation matrix to the data, and consulting the 

attribute list. 

Modelling primitives in the scene realisation data structure must be in a form 

which the rendering algorithm can handle. However, primitives which cannot be 

directly rendered may be specified in the scene description. This problem is solved 

by casting modelling primitives into a form that the renderer can cope with, before 
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push 

line( <-0.5,0,0>, <0.5,0,0> ) 
push 

translatex( -0.5 ) 
rotatey( 90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> ) 
push 

translatex( -0.5 ) 
rotatey( 90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> 

POP 
push 

translatex( 0.5 ) 
rotatey( -90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> 

POP 
pop 

push 

translatex( 0.5 ) 
rotatey( -90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> ) 
push 

translatex( -0.5 ) 
rotatey( 90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> 

POP 
push 

translatex( 0.5 ) 
rotatey( -90 ) 
scalexyz( 0.7 ) 
line( <-0.5,0,0>, <0.5,0,0> 

) 

) 

) 

) 

Figure 3.5: The scene realisation for the "H" script 
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they are added to the scene realisation. This conversion is not specified in the Charli 

script or the scene description data structure, it is performed by the kernel. The 

rendering algorithm must provide a list of the types of primitives that it can use to 

the kernel. The kernel then attempts to cast the unlisted primitives to types that 

are on the list. 

Extension 

When new scene data types are being added to the kernel, the hardest task is im-

plementing them for the scene realisation data structure. 

Modelling primitives must read their parameter list, and build an internal rep-

resentation from them. Then they must examine the list of operations, and apply 

them to the internal representation. If a cast is applied, it must call the appropriate 

conversion function to create a new primitive. 

Transforms read their parameters, and construct an appropriate matrix, which 

they store internally. 

Attributes read their parameters, and store them. They may be required to do 

some processing. For instance, if the colours are represented as red, green, and blue 

intensities, but specified as hue, saturation, and value, the conversion between the 

two must be computed. 

The base classes in the scene realisation, and the use of virtual functions, is 

described in the next chapter. 

Linking to the Scene Description 

There is one reason for saving the scene realisation data: between frames in an 

animated sequence, or while an interactive user is modifying the scene description 
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data structure, very little of the scene data actually changes. Therefore, there is no 

need to regenerate the entire scene realisation. It is more efficient to merely update 

the parts of the scene realisation that have changed. This is especially important if 

modelling primitives are used in a scene which must be cast to another representation 

before they can be rendered, and which are computationally expensive to cast. 

In order to update only those parts of the scene realisation data structure that 

have changed, the correspondence between scene data specifications in the scene 

description data structure and their instances in the scene realisation data structure 

must be stored. A change is signaled by a change in the parameter values that are 

passed to scene data types. The problem is compounded because one specification 

in the scene description may create many instances in the scene realisation. The 

following example illustrates the problem: 

def thing( p ) 
colour( p, p, p ); 

end; 

thing( 0.4 ); 
thing( { 0 at 0 sec linear 0.9 at 10 sec  

Two instances of the colour attribute will appear in the scene realisation, but the 

parameters to one of them never change, and it does not need to be updated, while 

the other does have parameters which will change over time. 

Each modelling primitive, attribute, and transform specification in the scene 

description data structure could maintain a list of its instances in the scene realisation 

data structure, but this is not necessary. On each traversal of the scene description, 

the scene realisation data will be generated in the same order, so it is easy to step 

through the existing scene realisation in synchronisation with the traversal. The 
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parameters to the instances in the scene realisation may be compared to the evaluated 

parameters of the specification record. 

3.4.4 Lazy Traversal of the Scene Description 

The notion of lazy traversal is to only update the parts of the scene realisation 

data structure that have changed. This is done to avoid recomputing the internal 

representations of the primitives in the scene realisation, and to avoid recomputing 

casts. 

The approach is as follows: 

• The scene description is traversed once. All instances of modelling primitives, 

attributes, and transforms are created; all operations are performed; and all 

casts are performed. All final data is retained in the scene realisation data 

structure. 

• The scene description is traversed again for each frame. Those parts of the 

description which have altered parameter values need to re-evaluate their pa-

rameters. All subsequent operations and casts must be performed again. 

Problems arise in lazy traversal because casts and "if" statements ruin the cor-

respondence between the scene description and scene realisation data structures. 

With casts, the following problems arise: 

• For models that are cast, the model may change between frames, making it 

necessary to perform the cast operation again. In order to discover if this must 

be done, the secondary realisation of the model that was originally made must 

be saved, so that it can be checked against the model as it is traversed again. 
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The secondary traversal is stored by the cast statement record. There may be 

more than one instance of the secondary realisation, so they are stored in a 

list. 

• The data generated into the scene realisation for a model that is cast will not 

correspond to the records in the scene description. Different primitives are 

created, and there may be more of them. For instance, a polygon mesh that is 

cast into discrete polygons will be represented by a number of instances of the 

polygon primitive in the scene realisation. This situation can be accommodated 

by storing a pointer in the first primitive that references the last primitive. The 

entire set of primitives is now grouped, and may be treated as one entity. 

"If" statements are the only statements that will cause the order of data in the 

scene realisation to change over time. When the value of the conditional expres-

sion is true, the statements in the body of the "if" statement will generate data, 

but when the condition is false, the data is not generated. This causes difficulty 

when the conditional expression contains time-varying values; at certain times in 

the animation, it will generate data, and not at others. This means that data must 

be excised from and added to the scene realisation. To remedy this situation, the 

data from the statements in the body of the "if" statement is stored in a secondary 

scene realisation data structure. When the condition evaluates as "true," the data 

is spliced into the primary scene realisation; when it is "false," the data is removed 

from the scene realisation. 
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3.5 Interfaces 

The interfaces into the kernel allow programmers to implement extensions to the 

kernel. They define the basic functionality of the kernel.. Details of these interfaces 

are given in appendix B. It lists the public members of the kernel's classes. 

3.5.1 User Interface 

The kernel provides facilities so that interactive interfaces may perform useful tasks. 

It provides controlled access to its data structures, or implements functions to ac-

commodate these tasks. However, specific details of the user interface are not im-

plemented. 

• The scene description data structure may be edited. Functions are provided 

to create and delete model definitions, and elements in the bodies of model 

definitions. This is equivalent to editing model definitions in Charli scripts, 

except that it is done interactively, and immediate visual feedback may be 

provided. 

• Access is given to edit parameter lists. 

• Expressions that appear in parameter lists or in assignment and conditional 

statements may be edited. 

• Numerical values that appear in parameter lists or expressions may be specified 

through a valuator, such as a slider, a knob, or through mouse motions. The 

kernel provides the mechanism to link the valuator to the numeric value. The 
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user interface must handle the valuator. Immediate visual feedback may be 

provided. 

• Scene description data to be edited may be selected with a picking device, or 

by moving around in the definition hierarchy. The kernel maintains a "current 

item" which can be set and manipulated. Functions are provided to move to 

the parent of the current item, its siblings, or its children. 

• Interactive picking chores are shared between the kernel, the user interface, 

and modelling techniques. The interface must determine the 3D pick vector. 

The kernel scans the hierarchy, and queries each primitive to see if it intersects 

the vector; it maintains a list of pick paths. The interface is responsible for 

disambiguating between picked items, and notifying the kernel about which 

pick path is chosen. 

• Low-level motion control may be specified. This involves selecting a numeric 

value that appears in a parameter list or expression, and substituting an in-

terpolation specification for it. The interpolation specification consists of two 

or more cues, and the names of interpolation functions that will be used to 

compute intermediate values between the cues. 

• A request can be made to show the animated sequence. This will cause the 

kernel to render each frame of the animated sequence. 

• The animator may specify that the scene be displayed as it would appear at 

a certain frame, or point in animation time. A kernel function is called to set 

the time. 
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. A Charli script may be read in, and added to the scene description and motion 

control data. 

• The current scene may be stored as a Charli script. The kernel handles this 

process. 

3.5.2 High-level Motion Control 

A high-level motion controller is treated much like an interactive user interface. It 

is given the ability to access the model definitions, and numeric values that appear 

as parameters and in expressions. 

Many of the high-level motion control algorithms require a model to be built 

especially for high-level control. Such a model can be specified in a Charli script. 

The high-level controller "attaches" to the parameters in the model that it wishes 

to read or whose values it will control. 

High-level controllers are allowed to place event notices into the event list. An 

event notice specifies a point in animation time when the high-level controller wishes 

to do some processing. When this time arrives, the high-level controller is "awak-

ened." 

For example, a high-level motion controller might be calculating the motion of 

a whip that is held in a figure's hand. The motion of the arm is specified using 

low-level interpolation techniques. The motion controller reads the changes in the 

joint angles of the figure's arm at the wrist, elbow, and shoulder, to determine the 

forces that will be acting on the whip and computes the motion of the whip. To do 

this, it places event notices into the event list for each instant in time when it wishes 
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to read the joint angles, and for each animation frame time, when it will update the 

parameters to the whip model. It is allowed to read the joint angles at closer time 

intervals than the interval between frames. 

3.5.3 Rendering 

Renderers are given access to the scene realisation data structure. They may examine 

the data structure, and they are free to process it. 

3.6 Chapter Summary 

The major decisions that influence the kernel's design have been presented in this 

chapter. The decisions are motivated by the design criteria, and the desire to avoid 

the problems noted in the case studies. 

The chief decisions are to closely integrate the data structures for model and 

motion control data through the track mechanism, and the use of a kernel approach. 

Examples of the Charli script language are given. They illustrate the kernel's 

main features, and the power of integrated model and motion specification. 

Discussions of the kernel's data structures and interfaces demonstrate the utility 

of the data structure integration mechanism in providing the following capabilities: 

• The ability to animate any degree of freedom. 

• An interface for high-level motion controllers and interactive manipulators. 

• The ability to animate operations on primitives. 

• The ability to read and write Charli scripts. 



Chapter 4 

Kernel Implementation 

The details that are crucial to the implementation of the kernel are: 

• The implementation of the track mechanism. 

• The classes used in the scene description and scene realisation data structures, 

and the way in which subclasses may be derived from them to add new scene 

data types to the kernel. 

• The traversal algorithm that generates the scene realisation from the scene 

description. 

4.1 Object-oriented Programming 

A prototype of the kernel has been implemented using the C++ programming 

language [Stroustrup 86]. The design makes extensive use of the object-oriented 

programming mechanisms of class derivation and virtual functions; [Stroustrup 87] 

states that these are the mechanisms that differentiate object-oriented languages 

from others. They are described in appendix C. 

Although C++ was used for implementation, the kernel could be implemented 

in any other object-oriented programming language, such as Simula [Birtwistle 73], 

Smalltalk-80 [Goldberg 85], or Eiffel. 
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4.2 Tracks 

The track mechanism provides the interface between the scene description data struc-

ture, and motion controllers. A track may be associated with a numeric value in a 

parameter list or an expression. This is possible because the data structures which 

store parameter lists and expression trees allow a track reference to be put in place 

of a number. This is done using the following class: 

class trackdouble 

boolean is-track; 
union 

double d; 
track* 1; 

public: 
operator double() 

{ 

3. 
3.; 

if( Us-track ) return d; 
else return t->get_value( current-time ); 

This class is used in parameter lists and expression trees for storing numbers. The use 

of the C++ operator mechanism allows objects of class trackdouble to be treated 

as if they are ordinary C++ doubles. 

The next important class is track. There are three types of tracks: interpola-

tor tracks, high-level motion control tracks, and valuator tracks. These are classes 

derived from track. Class track itself is used as a base class for these others; its 

definition is simple: 
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class track 
{ 
public: 

virtual double get_valueO; 

The interpolator track class stores the data that specifies cues and interpolation 

functions. When it is queried via the get-value function, it computes the interpo-

lated value for the requested time. 

The high-level motion controller track class has a pointer to a memory location 

from which it will read values. The high-level motion controller is responsible for 

updating the value. When the track is queried for a value, it reads the memory 

location, and returns the value. The value is also stored in an array of values; there 

is one array location for each frame of animation. On subsequent display of a frame, 

the kernel may not invoke the high-level controller; the value for the track is read 

from the array. 

The valuator tracks also read a value from a memory location. The user interface 

is responsible for updating the value of the memory location. 

In the scene descriptions data structure, trackdoubles may appear in parameter 

lists, and expressions. 

Parameter Lists 

Parameter lists are stored in arrays. The parameter items may be of many different 

types: numbers, tracks, expressions, strings, vectors, and model references. The 

parameter array is made of elements of this data structure: 
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struct param 

mt 
union 

data-type; 

{ 
trackdouble 

char* 

expr* 

vector* 

reference* 

variable* 

t; 

s; 
e; 

vec; 

r; 

V; 

II double or track 
1/ string 
II expression tree 
II vector (three trackdoubles) 
II reference to model def 
II variable (stack frame & offset) 

The data-type field is accessed to discover the type of the parameter; the ap-

propriate value may then be read from the union. If the parameter is a track, the 

trackdouble class will procure the parameter value from the correct source. 

Expression Trees 

Numeric and conditional expressions are converted into expression trees. A sample 

expression tree is shown in figure 3.4. 

The value of the expression is found by performing an inorder traversal of the 

tree: 

evaluate( tree-node ) 
begin 

if tree-node is a leaf 

return the value 

else 
value = apply-operator( op, evaluate( left ), 

evaluate( right ) ) 
end 

The data elements at the leaf nodes can be numbers, variables, or tracks. This 

data structure is used to represent them: 
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struct expr_value 

mt data-type; 
union { 

trackdouble t; II double or track 
variable* v; II variable (stack frame Sc offset) 

4.3 The Scene Description Data Structure 

The scene description data structure is constructed from two basic classes: node and 

item. A node corresponds to a model definition, and items correspond to statement 

records. These classes are derived from listhead and listitem, respectively. The 

list classes are part of a package that is used for manipulating doubly linked lists; 

classes derived from listitem may be freely manipulated in lists headed by classes 

derived from listhead. 

A node contains data about a model definition. This includes the name of the 

model, the recursion limit, and the prototype information. It also includes the list 

of variables and other models that are defined within its scope. 

The item class is a base class from which other classes will be derived; these 

classes store the data for specific statement types. Figure 4.1 shows the class deriva-

tion tree. The intermediate class paraiu..item is used by classes that represent state-

ments with parameters; it stores the parameter list, as shown in figure 4.2. The 

expr_item class is similar, except that it stores a pointer to the expression tree for 

statements that have expressions. 

The classes for primitive, attribute, and transform are quite simple. The 
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listitem 

item 

primitive 

par am_it em expr_it em 

Figure 4.1: Hierarchy classes 

primitive 

param_item 

assign 

item 

2.0 3.1 

Figure 4.2: An item with parameters 
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kernel maintains tables which list the types of primitives, attributes, and transforms 

that are available. The tables contain the names of items, and pointers to the routines 

that are used to create instances of them. The classes for primitives, attributes, and 

transforms in the scene description data structure merely contain a pointer to the 

appropriate table entry. When the scene description is traversed, the objects of these 

classes evaluate their parameter lists, and the instance creation function is called with 

the evaluated parameters. 

Class reference contains a pointer to the model definition that is referenced. 

Class assign contains information about the variable to which it will assign a 

value. This information is the level of the stack frame in the execution stack where 

the storage for the variable will be found, and the offset into the frame. 

Class if -stmt contains a pointer to a node which holds all of the statements in 

the body of the "if" statement. This is an "anonymous" node; it does not have 

a name or recursion limit. if ...stmt also has a pointer to a scene realisation data 

structure. This is the realisation of the statements in the body of the "if" statement, 

when its condition is "true." 

Finally, records are needed to store operation specifications, and cast specifica-

tions. These are put into special lists that are headed by objects of the classes 

reference and primitive. They are derived from listitem. 

Items of class operation contain a pointer to a parameter list, and a pointer to 

an entry in an operation table that the kernel maintains. It also contains a pointer 

to its last evaluated parameter list; this is to allow the newly evaluated parameter 

list during a traversal to be compared to the previous values, to see if they have 

changed. 
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Items of class cast contain a pointer to the conversion function that will be 

called perform the conversion. They also contain a pointer to a list of secondary 

scene realisations. Each scene realisation is for an instance of the model that is 

being cast. The scene realisations are stored so that the model may be compared 

with its form from the previous traversal, to see if it has changed. 

4.4 The Scene Realisation Data Structure 

The scene realisation data structure is generated when the scene description data 

structure is traversed. The structure of the scene realisation is simple: it is a linked 

list of modelling primitives, attributes, and transforms, and instructions used to push 

and pop the graphics state. 

The items that appear in the scene realisation are fully evaluated. Primitives 

have built their internal representations, and all operations have been performed on 

the them; attributes contain their internal representations; and transforms contain 

their matrices. 

The traversal of the scene realisation is also simple: the list is scanned, and the 

appropriate action is taken for each item: 

• For transforms, the matrix is concatenated onto the current transformation 

matrix. 

• For attributes, the values in the attribute list are updated. 

• For primitives, the internal representation is accessed, and dealt with by the 

renderer. 
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sr-primitive 

sr_param_item 

sr-attribute 

sr-push 

sr-transform 

user user user 
derived derived derived 
types types types 

sr-pop 

Figure 4.3: Scene realisation classes 

• For push and pop instructions, the current graphics state is saved or restored. 

When the set of scene data types is extended, the new types must be added to 

the scene realisation. This is made easier by the use of some classes: the classes 

sr-primitive, sr-attribute, and sr-transform are derived from sr-item, which 

is derived from listitem. 

New primitive classes are derived from sr-primitive. They implement the func-

tion that generates the internal representation from the parameter list and the data 

structure needed to store it. The operation functions are implemented separately; 

they access the internal representation, and modify it. 

Class sr-transform contains storage for a matrix. Specific transforms are derived 

from this class; they construct a matrix according to their parameters. 

Specific attribute types are derived from the sr-attribute class. They contain 

the specific data for the attributes. 
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The renderer must understand the format of the data for the primitives and 

attributes that it is rendering. 

4.5 The Traversal Algorithm 

The basic hierarchy traversal algorithm is simple. However, it is complicated by 

the use of casting, the ability to pass models as parameters, and the desire to only 

recalculate the portions of the scene realisation that have changed. 

4.5.1 Basic Algorithm 

The basic traversal algorithm is this: 

traverse-node( current-node, transform-matrix ) 
begin 

if recursion counter != 0 

begin 

decrement recursion counter 
concatenate the transformation matrix for this node 

onto current-matrix 
for current-item = each item in the node's list 

begin 

perform the appropriate action for the item 

(if reference item, call 

traverse-node( ref-node, current-matrix )) 
end 

increment recursion counter 

end 

end 

traverse-node( world-node, identity-matrix ) 

For each type of item in a node's list, a different action is performed: 
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Primitive: The parameter list is evaluated, and an instance of the primitive type 

is created. The list of operations and casts is performed on the primitive. The 

final data is added to the scene realisation. The special requirements of casting 

will be described later. 

Attribute: The parameter list is evaluated, and an instance of the attribute is 

created and added to the scene realisation. 

Transform: The parameter list is evaluated, and an instance of the transform is 

created and added to the scene realisation. 

Reference: The parameters that are to be passed to the model are evaluated. Stack 

space on the execution stack is allocated for the parameters, and for the local 

variables of the model; an activation record is also added to the stack. The 

traversal function is called for the referenced node. If transforms follow the ref-

erence, they are evaluated first. The method of handling casts will be described 

later. 

Assignment: The expression is evaluated, and the value is assigned to the variable. 

If statement: The condition is evaluated. If it is true, then the node containing 

the statement records for the body of the "if" statement is traversed. 

4.5.2 Handling Casting 

If a primitive or model is cast into a new representation, this is handled as a special 

case of the traversal algorithm. The basic idea is that the scene realisation data 

from the primitives or model that is being converted should not be added into the 
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scene realisation. To accomplish this, the current scene realisation data structure 

is "pushed," and a new one is started. The current transformation matrix is also 

saved, and replaced by an identity matrix. The model is then traversed in the normal 

fashion; its data will be put into the new scene realisation data structure. When the 

traversal is finished, the new scene realisation is given to the conversion algorithm. 

The conversion may cause one or more new primitives to be generated; they are 

generated into a new "dummy" node, which is, in effect, a new submo del. The scene 

realisation data is "popped," as well as the old transformation matrix. The submodel 

is then traversed. 

The same special traversal, up to the point where the conversion algorithm is 

called, is performed for model instances that are passed as parameters. The opera-

tion, primitive, attribute, or transform that receives the new scene realisation data 

structure must deal with it. 

4.5.3 Updating the Scene Realisation 

The traversal algorithm is called once to generate the initial scene realisation. After 

this, the traversal is done to discover which elements of the scene realisation have 

changed, and to update them. 

The update traversal algorithm is essentially the same as the initial traversal algo-

rithm. The only difference is that the parameters to modelling primitives, attributes, 

and transforms are checked to see if they have changed. If they have, then their data 

is regenerated; if they have not changed, then no work needs to be performed. 

If a model that has been cast has changed, then the conversion must be recom-

puted. This is checked by traversing the model, and setting a flag if any changes 
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occur to it. When the traversal returns to the point where the cast is specified, the 

flag is checked. If it is true, the conversion is computed again. 

If the parameters to an operation have changed, the model is regenerated from 

its original data, and all operations are performed on it again. 

Some types of modelling primitive may change even if their parameters have 

not changed. An example of this is two soft objects [Wyvill 86] that are moving 

in proximity to each other; a property of soft objects is that their surfaces blend 

together, so moving them might cause their shapes to change; this happens even 

though their parameters have not changed. These types of primitives are considered 

as "volatile," and are re-evaluated on every traversal. It is the responsibility of the 

primitive to decide if it has changed. 



Chapter 5 

Conclusions 

A kernel for 3D modelled animation systems has been presented in this thesis. It 

has been shown that many existing animation systems suffer from design flaws which 

hinder animators from producing the results that they desire. The chief design flaw 

is the lack of integration of the data structures and processes that are employed in 

the tasks of building models and specifying motions. Secondary design problems 

involve the medium or interface through which scenes and motions are specified, and 

the lack of appropriate tools, in the form of techniques for modelling, motion control, 

interaction, and rendering, that are available to animators. 

The kernel design presented here solves some of these problems. The principal 

accomplishments of this work are: 

• The techniques and data structures that are common to many applications of 

3D modelled animation have been isolated and incorporated into a kernel. 

• Extension interfaces have been developed to allow the kernel to be built into 

complete systems that are aimed at specific applications. 

• The integration of the data structures for scene description and motion control 

has been accomplished through the use of an abstract data structure, the track. 

• A language for scene and motion description, Charli, has been developed. It 

permits integrated specification of model and animation data. The script lan-
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guage and interactive interfaces may be used interchangeably; this is a unique 

feature of the kernel. 

• The notion of casting, or converting between different modelling techniques to 

represent an object, has been introduced. This is another unique and important 

feature of the kernel design. It cannot be found in any other system. 

5.1 Addressing the Design Criteria 

The purpose of this section is to demonstrate how the kernel's design satisfies the 

general design criteria listed in section 1.1. 

5.1.1 Access to All Degrees of Freedom 

The ability to access all degrees of freedom in a scene, and control their changes, is 

at the heart of the kernel's design. This ability is possible primarily because of the 

close integration of the data structures that store the scene description and motion 

control data: the parameters of any item of scene data may be animated. 

However, this does not mean that any type of motion may be generated; nor 

does it mean that motions are easy to specify. The only types of motions that may 

be generated are those that are possible through parameter interpolation. Consider 

the metamorphosis of a model from one shape to another; there are three ways that 

this may be done: 

• The parameters to the primitives in the model, and the use of transforms, may 

provide sufficient control over the shape of the model to perform the task. The 

parameter values are changed, causing the model's shape to change. 
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• Operations (eg. extrusion) may be applied to the primitive to change its shape. 

• A mapping must be established between the data of the models such that 

intermediate shapes may be generated. 

The first two methods may be accomplished using the kernel's native facilities. The 

third requires a high-level motion controller, or a special type of modelling technique, 

to be added to the kernel. 

The problem encountered with the Symbolics system, where the extrusion of a 

face on a polyhedron cannot be animated, is solved by the low-level integration of the 

scene description and motion control data structures in the kernel. The parameters 

to the extrusion operation may be animated. 

5.1.2 Extensibility 

Four types of extensibility are provided. 

Scene Data Types 

The set of basic scene data types may be extended. This includes the addition 

of modelling techniques, attributes, and transforms. Modifications to the kernel 

entail the addition of information to tables, and relinking. These new resources are 

immediately available for use via Charli scripts and interactive interfaces. They may 

be used in model definitions, and animated by controlling their parameter values. 

High-level Motion Control 

High-level motion controllers may be interfaced to the kernel. They are permitted to 

interact with the scene description data structure. They may examine the structure 
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of models, and access the parameters that are passed to scene data items. Through 

the track mechanism, they may supply values that change over time to parameters. 

The changes in parameters may be "captured" so that they can be stored in a Charli 

script, and so that the calculations made by the high-level controller do not need 

to be performed unnecessarily. This is a very "thin" interface: it requires the high-

level motion controllers to have specific knowledge about models and their structure, 

and it requires models to be constructed in a special manner so that the high-level 

controllers may find the parameters they wish to control. However, the high-level 

controllers are able to "react" to other motions in the scene that are generated 

through other means, and the "captured" values may may be "tweaked." 

This type of interface is preferable to generating a new Charli script for every 

frame in an animated sequence. It solves the problem encountered in the Graphic-

sland system where high-level motion controllers generate complete PG scripts for 

every frame of animation. 

Graphical User Interfaces 

An interface is provided so that graphical user interfaces may be added to the kernel. 

The interface allows access to the scene description data structure and interpolation 

data structure, so that they may be modified. Valuator tracks are provided so that 

parameter values may be interactively controlled. 

Renderers 

Renderers are given access to the scene realisation data structure. Any type of 

renderer may be added to the kernel. A specialised renderer, such as a volumetric 

renderer for scientific data, may require special modelling primitives and attributes to 
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be implemented. This is accommodated by the first type of extensibility mentioned 

above. 

Because of the highly extensible nature of the kernel, it is easy to imagine it at the 

core of very specialised systems like COMPOSE [Calvert 89] or SAS [Zeltzer 82] This 

would require a user interface to be built which is linked to a high-level controller. 

The kernel would used to store the data required to represent the models, and its 

rendering facilities are used to generate images. 

The kernel is unsuitable for a specific application only if its basic hierarchical 

data structuring method is inappropriate. 

5.1.3 High and Low-level Motion Control 

The kernel incorporates low-level motion control, in the form of parameter inter-

polation, as part of its basic facilities. The set of interpolation functions may be 

extended. 

As already discussed, an interface is provided for high-level controllers. 

5.1.4 Script and Interactive Interfaces 

The kernel provides a script language, and it provides an interface that allows inter-

active user interfaces to be added to it. Section 3 discusses how Charli scripts are 

converted into the kernel's scene description data structure, and how the data struc-

ture may be converted back into a script. This allows scripts to be read, modified 

via an interactive interface, and saved. 

The potential is available to implement a variety of interactive interfaces. Each 
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may be tailor to a particular task or user type. Because of Charli, it will be possible 

to alternate between kernels that are configured with different interfaces. 

Charli and each interface may be used where it is most appropriate. For instance, 

a complex model (ie. a human figure) may be designed in a Charli script, and an 

interactive interface can be used to determine that it appears correct, and to fix any 

problems (ie. limbs that do not meet). The interactive interface may also be used 

to pose the figure for animation. 

5.1.5 Efficiency 

There are many aspects of the kernel that have been designed with efficiency in 

mind. Efficiency, in the kernel, is primarily sought through avoiding unnecessary 

and redundant calculations. 

There are two mechanisms that are used to avoid making redundant calculations: 

• The scene realisation is updated between frames rather than recalculated. This 

allows expensive computations like generating instances of primitives from their 

specification and performing casts to be avoided. 

• The streams of parameter values that are generated by high-level motion con-

trollers are captured for each frame. High-level motion control techniques like 

dynamic simulation typically operate very slowly, so running them should be 

avoided when possible. Capturing the values allows the animation to be re-

played, and allows other portions of the animation to be changed, without the 

expense of running the high-level motion system. 

As well, the prototype mechanism may be used to "turn off" parts of the scene 
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description which are not of immediate interest to the animator, and which are 

causing a system to operate too slowly. 

Whether these gestures towards efficiency are successful depends largely on the 

type of animation that is being done. For instance, if an "expensive" modelling 

primitive is used in a scene, and its parameters change for every frame, then it must 

be regenerated for every frame, and the first point above is invalidated. The second is 

invalidated if there is no interest in replaying the animation that has been generated 

by a high-level motion controller. This might be the case if the system incorporating 

the kernel is a flight simulator. 

5.2 Additional Advantages to the Kernel Design 

5.2.1 Recursive Animation 

Because motion control data may be embedded into recursive model definitions, 

recursive animation may be generated. This is demonstrated by the Charli script in 

figure 5.1. The series of frames that accompany the script illustrate the recursive 

"H" model being animated. This complex motion is the result of animating two 

parameters in the scene description. 

The recursive animation capability can be used to animate fractal images, and 

also to create animated sequences that feature complex, organised motions. 

This capability has not been claimed for any other system, although it is likely 

that ASAS could perform the same function. 
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Figure 5.1: Recursive animation 
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5.2.2 High-level Motion Control Using Variables 

The ability to use variables and expressions in a model description makes it possible 

to implement a form of high-level motion control. 

def thing( same-rot, opposite-rot ) 
line( <0,0,0>, <1,0,0> ) rotatex( same-rot + opposite-rot ); 
line( <0,0,0>, <-P1,0,0> ) rotatex( same-rot opposite-rot ); 

end; 

Two parameters are available to control the angle between the two line segments. 

One causes them to rotate around their joined ends in the same direction and to the 

same degree, and the other causes them to rotate to the same degree at opposite 

angles. 

This simple example illustrates the potential of this technique. It is conceivable 

that a character model for character animation could be defined in this manner, and 

motions like squash and stretch could be controlled through a set of parameters. The 

model, and the set of parameters, would likely be quite complex. 

A large, complex model that uses this capability has not been created, due to 

time constraints. 

5.3 Discussion 

The kernel design satisfies the design criteria, solves many of the problems encoun-

tered in other animation systems, and provides the new capabilities of modelling 

primitive conversion and recursive animation. 

It forms a basis on which powerful systems for many applications of 3D modelled 

animation may be constructed. 
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5.4 Future Work 

The kernel design provides the potential to develop a very powerful animation system. 

All that is required is the implementation of new scene data types, motion controllers, 

user interfaces, and renderers. Of course, the development of a large system is a 

daunting task. 

On a more specific basis, some additions and improvements can be made to the 

kernel design: 

• Dependency tables may be used to determine which parameter values have 

changed [Hanrahan 85] [Ostby 89]. This would increase the speed of the sys-

tem, as all parameter values are checked for each animation frame during the 

update traversals. 

• The mechanism used by [Ostby 89] to allow models to have different attach-

ment points in the hierarchical structure should be added. This would require 

a new data type for matrices to be added, as well as the functions to read and 

apply the current transformation matrix at points in the hierarchy. 

Another graduate student at the University of Calgary, Charles Herr, is currently 

developing a system for dynamic simulation [Herr 90]. The system is being designed 

to integrate into the kernel, and the Charli language, at a low level. 



Appendix A 

Charli Grammar 

The formal grammar for the Charli language is presented in this appendix. The 

grammer has been used in conjunction with the Yacc parser generator [Johnson 75] 

to implement the Charli parser that is used in the kernel. 

Non-terminal symbols are italicised. Terminal symbols are given in Roman 

typeface—these are either key words in the Charli language or special symbols (ie. 

commas, parentheses and other single-character tokens). These terminal symbols 

have special meaning: 

• "name" tokens mean that an undefined name has appeared in the script. It is 

not in the symbol table in the current scope. 

• "object" tokens mean that the name of a defined model has appeared in the 

script. 

• "variable" tokens mean that the name of a declared variable has appeared. 

• "primitive", "transform", "attribute", and "operation" tokens mean that the 

name of one of these types of data (ie. "polygon" as a primitive) has appeared. 

These names are entered into the symbol table depending on the configuration 

of the kernel. 

• "interpolation" means that the name of an interpolation function has appeared. 

• "string" represents a string, enclosed in quotation marks ("), has appeared. 
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• "number" represents a number that has appeared in the script. 

The lexical analyser is responsible for returning the correct non-terminal symbol in 

these cases. 

The grammar shows that interpolation specifications interp.spec may appear in 

any expression (expr). However, in the case where an expression occurs in an inter-

polation specification, this will result in undefined behavior by the system. 

Yacc allows precedence rules to be defined for expressions. The following is the 

precedence definition. The order is lowest to highest precedence, with symbols that 

appear on the same line being equal, and having either left or right associativity. 

%right 

%left  
%left SC' 

%left Eq NE 

%left '<' '>' LEQ GEQ 

%left  

°hleft  

%left UNARYMINUS  

%r±ght 

Conditional expressions are handled as special arithmetic expressions. "True" 

expressions return the numeric value of 1, and "false" returns 0. Any non-zero value 

from an arithmetic expression is considered "true." 

script = decilist deflist stmtlist 

deflist = e I definitions 

definitions = objectdef I definitions objcctdef 
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objectdef =' def name paramdef script limitstmt end 

paramdef e I ( namelist ) 

namelist = name I namelist , name 

decllist = € I declarations 

declarations = declaration I declarations declaration 

declaration = var name 

limitstmt C I limit number 

stmtlist e I stmts 

stmts =' stmt ; I stmts stmt 

stmt =' refstmt I primstmt I transtmt I attrstmt I assign I 
ifstmt I prototype primstmt 

refstmt object paramlist taclist 

primstmt = primitive paramlist taoclist 

taclist => cI tacs 

taoclist e I taocs 

tacs = ta I tacs ta I tacs caststmt taoclist 
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ta = transtmt I attrstmt 

taocs taoc I taocs taoc 

taoc => transtmt I attrstmt I operstmt I caststmt 

transtmt => transform paramlist 

attrstmt => attribute paramlist 

operstmt ==> operation paramlist 

caststmt => cast to primitive 

assign => variable = expr 

ifstmt => if expr stmtlist end 

paramlist = e I (params ) 

params = param I params , param 

param = expr I string I object paramlist I triplet 

triplet = < expr , expr , expr> 

interpspec => { interp )-

interp ='- expr at timespec interpfune expr at timespec I 
interp interpfunc expr at timespec 

timespec => expr sec I frame expr 

interpfunc interpolation paramlist 

expr = number I variable I interpspec I ( expr ) I ! expr I - expr I 
expr [+ I I * I / 1% I I & 1<1> leqineql 
leq I geq] expr 



Appendix B 

Kernel Interfaces 

The kernel provides interfaces for adding user interfaces, high-level motion con-

trollers, renderers, and new scene data types. The interfaces are minimal and allow 

access to the public members of the classes that comprise the kernel's primary data 

structures. The approach is to allow user code to access and manipulate data values 

directly, except where it crucial to maintain the integrity of a data structure. Such a 

case is the hierarchy data structure, where functions are provided to add and delete 

items from it. 

The following examples describe the public members of various classes. The 

true implementations of the classes contain other private members that are used 

internally. 

Base classes are not described. The public members of the base classes are listed 

in the set of public members for their subclasses. 

B.1 Class Kernel 

Class kernel is the primary interface into the kernel. An instance of class kernel is 

an instance of the animation kernel. The class is the gateway to deeper access into 

the kernel data structures. 

The following are details of the public elements of class kernel. They may be 

divided into a number of categories. 
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B.1.1 Hierarchy Access and Manipulation 

Current Node 

The kernel maintains a current node in the hierarchy. The current node pointer may 

be manipulated. 

void init_current_nodeO; 
node* get_current_nodeO; 

node* next...node_in_scopeO; 

node* parent_node_in_scope 0; 
node* first_child_in_scope 0; 

node* new-node( char* name ); 

set to "world" 

pointer to current 

set current to next node 

in this textual scope 

set to parent in scope 

set to first node defined 

in current's scope 

make a new node and place 

it in list of nodes 

defined in current 

scope; current = new node 

Current Item 

A current item is maintained within the current node. If the current node is changed, 

the current item is set to null. 

item* get_current_item 0; 
item* next_item 0; 
item* previous_item 0; 
item* null_item 0; 
item* first_in...ref( reference* 

item* 

I-
II 

II 
); II 

/I 
II 

first-in-co( reference*  
I-
/I 

item* first-in-co( primitive* 
item* first-in-if( primitive* 

); 
); 

NULL if none current 

set to next item in node 

set to NULL 

set to first item in a 

reference item's list of 

transforms 

set to first item in a 

reference item's list of 
casts and opers 

II ditto, for primitive item 
II ditto, for items in body 
II of if statement 
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The next group of functions are used to create data elements that are placed into 

nodes. The are inserted after the current item, and current item is set to the new 

item. If there is no current item, they are inserted into the head of the node's list. 

item* 
item* 
item* 
item* 
item* 
item* 
item* 

void 

new..primitive( 
new-attribute( 
new_transform( 
new-operation( 
new_assignO; 
new-reference( node* ref-to 

if_stmtO; 

remove-item( item* ); 

char* name ); 
char* name ); 
char* name ); 
char* primnaine, char* opername ); 

); 

Picking 

A direct method of choosing a current node and item is via interactive picking. This 

is a complex operation shared between the kernel and the user interface. 

The kernel maintains a pick buffer, which may contain multiple pick paths. A 

pick path is a string of numbers. Each node and primitive has a unique number for 

its pick name. The interface must determine a pick vector, which is given to the 

kernel. The kernel polls the primitives in the scene realisation to discover which are 

picked, and fills the pick buffer. The user interface is responsible for disambiguating 

picked items, and informing the kernel of which is correct. 

mt number_pickedO; II 
void next_pick_pathO; II 

/I 
void parent_in_pickO; II 

/I 
void perform-pick( line  

B.1.2 Time 

how many pick paths 
use next path; set current 

item and node to it 
shorten path by one name and 

set item and node 
pick items that intersect line 

The animation time can be manipulated through these functions: 
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double current_timeO; II returns current time 
void goto_time( double time ); II set the current time 
mt current_frameQ; 

void goto_frame( mt frame ); 
mt fps(); 
void set-fps( mt rate ); 

II returns frames per second 
II sets frame rate 

void schedule( event_notice* ev ); II place an event in the 
II event list 

As an aside, here is the event notice class: 

class event-notice 

{ 
public: 

double 
mt 

event_notice(double time, mt prio, void (*func)Q); 
ev_time; 
ev_prio; 

Rendering 

The rendering functions cause frames to be rendered. The kernel performs any 

necessary updating of the scene realisation, and calls the renderer. 

void renderO; II render current frame 
void animate( double stime, double etime ); 

II render frames from start to end time 

Tables 

The kernel maintains tables of its current configuration. These list the primitives, 

attributes, transforms, operations, and interpolation functions that are available. 

desc 

desc 
desc 
desc 
desc 

the-primitives[] ; II 
the_ attributes 0; 
the-transforms[]; 
the- interps[]; 
the-systems[]; 

each has operation table 

If other item types 
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The public portion of the descriptor class is this: 

class desc 

{ 
char* name; 
table* subtable; 

Miscellaneous 

The kernel maintains a number of other odds and ends. 

matrix global-matrix; II current matrix value during 
II traversal 

II read and write Charli scripts 
void read-script( char* filename ); 

void write-script( char* filename ); 

mt use-prototypes; II global prototype switch 

scene-realisation sr; /1 the scene realisation 

B.2 Hierarchy Classes 

Through the kernel, access can be gained to the hierarchy data structure. This 

allows hierarchy elements to be manipulated by user interfaces and high-level motion 

controllers. 

B.2.1 Class Node 

Once a pointer to a node is acquired, the following functions and data are accessible. 

Data Elements 

These data items can be read and modified: 
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char* 
mt 
mt 

name; II name of model 
pick-name; II unique integer 
recursion-limit; 

Definitions 

New nodes can be defined in the scope of another node. The list of nodes can be 

scanned with these functions: 

node* 
node* 
void 

first_def 0; 
next_def( node* ); 

del_def( node* ); II delete 

These do not change the kernel's current node pointer. New nodes are created 

through kernel functions. 

Variables 

The list of variables that are declared within a node can be manipulated. Parameter 

specifications are treated like other variable declarations. 

variable* 
variable* 

variable* 

first_var 0; 
next_var( variable* ); 

new_var( char* name ); // makes new and inserts into 
II current node's list 

void del_var( variable* ); // delete 

Miscellaneous 

Other functions are: 

void bounding_sphere(pomnt*, double*); II returns a bounding 
II sphere for the 

II model 
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B.2.2 Item Classes 

Class item is a base class from which others are derived. It is not used directly, but 

it defines some data and virtual functions that are used by its subclasses. Further 

base classes, param.item and expr_item are derived from item. The subclasses of 

these are actually used. 

Param Items 

These classes are derived from class param.item. The first is used to represent 

statements which set an attribute. 

class attribute 

param parameters[]; 
desc* descriptor; 1/ entry in descriptor table 
mt get_typeO; /1 returns type of this item 

The rest are essentially similar, but may add some additional fields. The following 

definitions indicate the addition information: 

class reference 
{ 

node* ref-node; 

class primitive 

void bounding-sphere( point*, double* ); 

class transform 
{ 

matrix xform; 
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class operation {}; II no change 

Expr Items 

These items contain an expression: 

class assign 

expr root; II root node of expression tree 
desc* descriptor; 
mt get_typeO; 
double evaluateO; II evaluate the expression tree 
var_info var; 

class if-stmt 
{ 

expr root; 
desc* descriptor; 
mt get_typeO; 
double evaluate 0; 
node* stmt-list; 

B.3 Scene Realisation 

The scene realisation data structure is accessed by the renderer. Scene realisations 

are also used by the casting algorithms. The extension of types for primitives, at-

tributes, and transforms is done by deriving new types from base classes defined 

here. 

The scene realisation class heads the list of items in the scene realisation. Picking 

is done by scanning through the scene realisation to see what is hit. Functions are 

provided to do this. 
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class scene-realisation 

sr_head* sr; II heads the scene realisation list 
void traverseO; II traverse for rendering 
void pick_traverseO; II traverse for picking; fills 

II the pick buffer in the kernel 

class sr-head 

sr_item* firstO; II pointer to first item 

The class sr-item is the base class for all scene realisation data elements. From it 

is further derived class sr_param_item which is a base class for items with parameters. 

These are derived directly from sr-item: 

class sr-push 
{ II a record that indicates stacks should be pushed 

mt get_typeO; 

class sr-push 
{ II a record that indicates stacks should be popped 

mt get_typeO; 

These are derived from sr_param..item: 

class sr-primitive 
{ 

sr_paralns parameters[]; 
mt get_typeO; 

virtual void drawO; 

virtual void touchO; 

virtual void is-picked( 

II perform rendering action 
II touch is called if params 
1/ have been changed 

II test if picked 
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class sr-attribute 
{ 

sr_params parameters C]; 
mt get_typeO; 

virtual void drawO; 

virtual void touchO; 

class sr-transform 

sr_params parameters []; 
mt get_typeO; 

virtual void drawO; 

virtual void touchO; 

matrix xform; 

The last three classes are used as base classes by implementors of new scene data 

types. They must implement suitable functions for the virtuals. These are dependent 

on the internal representation of the data type, and the renderer that is used. 

B.4 Parameters and Expressions 

Parameters and expressions play a key role in the integration of model and motion 

control data. There are two types of parameters: those used by items in the hierarchy, 

and those used in the scene realisation. 
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B.4.1 Hierarchy Parameters 

Parameter lists in param_items can contain many data types. Parameter lists are an 

array of this structure: 

struct param 
{ 

mt data-type; 
union { 

trackdouble t; 

char* s; 

expr* e; 

vector* vec; 

reference* 

struct { mt 1ev, off; } v; 

Class trackdouble is explained in section 4.2. 

B.4.2 Scene Realisation Parameters 

The parameters to sr_param_items are much simpler, because they contain only 

evaluated items: 

struct sr_param 

mt data-type; 

union 

double d; 

char* s; 

vector* vec; 
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B.4.3 Expressions 

Expressions are stored as expression trees. They are constructed from this class: 

class expr 
{ 

mt is-leaf; 
union { 

struct C 
mt is-literal; 
union C 

trackdouble t; 

var_info v; 

} leaf; 
struct .1 

mt operator; 

expr* left; 

expr* right; 
} node; 

double evaluateO; II evaluate this expr 

B.5 Tracks 

Classes derived from track are used to provide values that change over time. 

class interp_track 

double get-value( double time ); 

mt get_typeO; 

cue* first_cueO; 

cue* next-cue( cue* ); 

cue* new_cueQ; 

cue* del_cueO; 

II get first cue point 
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class cue 

{ 
expr* time; 

expr* value; 

char* interp_name; 

double (*interp_func) 0; 



Appendix C 

Virtual Functions 

The virtual function mechanism is used extensively in the implementation of the 

kernel. It, combined with the complementary mechanism of class derivation, are 

central to the extensible nature of the kernel. Because of the importance of these 

mechanisms in the kernel's design, a description of their operation in the C++ pro-

gramming language is presented in this appendix. 

Classes 

A class defines an abstract data type. It describes the data elements and member 

functions that make up the data type. Here is a sample class that contains an integer 

and one member function: 

class X 
{ 
public: 

mt ±; 

mt fO; 

Instances of classes, called objects, may be created. The values of an object's data 

elements may be accessed, and its member functions may be called. For class X, the 

following statements are valid: 

X xl; 

X* x2; 

x2 = new X; 

II declare an instance of X 
II a pointer to an instance of X 

II make an instance of X 

128 
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mt ± = xl.i; II access the data element 
± = 

± = xl.fO; 
± = x2->fO; 

II call the member function 

Some portions of a class may be defined as private and cannot be accessed except 

by member functions. In class X, "1" could be defined as private and the access 

statement examples would be illegal. 

Class Derivation 

The class derivation mechanism allows new classes to be created which are extensions 

of existing ones; they inherit all of the data elements and member functions from the 

parent class. Derived classes are called subclasses. The original class is a superclass. 

Superclasses are also called base classes, because others are constructed on them. 

Class Y can be derived from class X: 

class Y : public X 

{ 
public: 

double d; 

mt gO; 

Class Y has an additional data element and member function. Here are some sample 

statements: 

X X; 

Y y; 

y.d = 2.0; 

y.i = 1; 
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x.i = 2; 
x.d = 2.0; II this is illegal: x is an X, not a Y 

y.gO; 

y.fO; 

All public portions of X and Y are accessible in an instance of Y, but an instance of 

X can be treated only as an X. 

An instance of Y can be treated as an X. However, an X cannot be treated as a 

Y. 

X* X; 

Y y; 

X = &y; II pointer to X actually points to instance 
II of  

x->i = 1; 

x->d = 3.0; 
y.d = 3.0; 
x->gO; 
y.gO; 

II illegal 

II illegal 

Virtual Functions 

Virtual functions permit a base class to "know" about classes derived from it. In 

the example above, the members of "y" cannot be accessed through the pointer "x", 

even though they exist. This is because class X does not "know" that classes are 

derived from it. 

With virtual functions, this knowledge can be defined in a base class. Here is an 

example: 
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class A 

{ 
public: 

A* next; 

virtual char ±() -( return 'a'; } 

class B : public A 

public: 

char f() { return 'b'; } 

A a; 

B b; 

A* ap; 

ap 

a.f 0; 
b.(); 

ap->:f 0; 

II pointer to A actually points to B 

II returns 'a' 

II returns 'b' 

1/ returns 'b' !!! 

The final statement in the example magically returns the character "b" rather than 

"a", even though the pointer is declared to reference an instance of A. This is due 

to the "virtual" declaration; it specifies that classes may be derived from A, and 

may redefine the function "f".' When an instance of B is created, its underlying A 

component is informed that the function has been redefined, and given the address 

of the new one. Even if the instance is accessed as an A, the correct function is 

executed. This allows derived types to be manipulated generically. 

A new class, C, can be derived from A and redefine "f": 
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class C : public A 

public: 

char f() { return 'c'; 3-
3-; 

Consider that a list of instances of A, B, and C has been created, using the "next" 

pointer to link them together. The list must be treated as a list of A's. The following 

code will iterate through the list: 

A* ap; If assume this points to the first 
II item in the list 

while( ap != NULL ) 
{ 

ap->f 0; 
ap = ap->next; 

3-

The function "f" is called for each item in the list, and the correct value of "a", "b" ) 

or "c" will be returned for each item. 

This is a trivial example, but it serves to illustrate the virtual function mechanism. 

Extensibility 

The virtual mechanism promotes extensibility. In the example above, new classes 

(eg. D) can be derived from A and the list iteration code does not have to be changed. 

A less trivial example is a simple 2D graphics system. It allows instances various 

shapes to be created and displayed. The shapes are stored in a list. Each type of 

shape stores a position on the screen, but otherwise their internal data is different: 

a square stores two corner points; a circle stores a centre and a radius. 
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A base class, "shape", can contain the position data and a virtual function called 

"draw". Each subclass will then define its unique data elements, and implement 

an appropriate drawing function. Drawing is accomplished by iterating through the 

shape list, and calling the virtual draw function for each shape. 

Again, new shapes may be added without modifying the iteration code. 

Use in the Kernel 

Virtual functions are class derivation are used in the kernel to permit the set of 

modelling techniques, attributes, and transforms to be extended. Figure 4.3 shows 

the class derivation tree for the base classes. There are three levels of derivation. 

While sr-item is the primary base class, some more specialised classes are derived 

from it. Class sr-item defines these virtual functions: 

draw: The action to be performed for drawing the item. For primitives, this is the 

function to draw the item, or pass its data on to the renderer. For attributes, 

the function will change the value in the attribute list. Transforms will apply 

their matrix to the global one. 

touch: This informs an instance of a scene data type that its parameters have been 

changed, and it should re-evaluate them and construct a new internal repre-

sentation. 

get-type: This returns the specific type of the class derived from sr-item. 

Specialised base classes are sr-primitive, sr-attribute, and sr-transform. 

They implement get-type to return the specialised type. They do not implement 

the other two virtual functions; this is the responsibility of user derived subclasses. 
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Class sr-primitive defines an additional virtual function, is-picked, which is called 

to determine if a primitive has been picked. Class sr-transform declares a matrix. 

The kernel "understands" sr-item and the specialised base classes, and contains 

the routines necessary for processing them. The main processing task the kernel 

performs is to iterate through the scene realisation which contains sr-items and call 

the draw function of each one. System implementors derive specific scene data types 

from the specialised base classes, and implement the virtual functions. The kernel's 

processing routines do not have to be modified to handle any of the new types. 
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