Access to full text denied by publisher.

Please contact your local library to acquire the following paper:

Citation:

2-Furyl Phosphines as Ligands for Transition-Metal-Mediated Organic Synthesis Neil G. Andersen and Brian A. Keay pp 997 – 1030.

Charts:

Chart 1. The Tolman Cone Angle

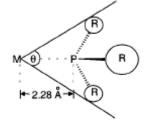


Chart 2. Equations Describing Complexation of TFP with $Pd(dba)_2$

 $Pd(dba)_2 + 2TFP \longrightarrow Pd(dba)(TFP)_2 + dba$ (1)

Pd(dba)(TFP)2 + S - SPd(TFP)2 + dba

$$\frac{K_1 = [SPd(TFP)_2][dba]}{[Pd(dba)(TFP)_2]}$$
(2)

$$Pd(dba)(TFP)_{2} + TFP \xrightarrow{\bullet} SPd(TFP)_{3} + dba$$


$$K_{0} = \underline{[SPd(TFP)_{3}][dba]} \\ \underline{[Pd(dba)(TFP)_{2}][TFP]}$$
(3)

$$SPd(TFP)_{3} \xrightarrow{\bullet} SPd(TFP)_{2} + TFP$$

$$K_{2} = \underline{[SPd(TFP)_{2}][TFP]} = K_{1}/K_{0} \qquad (4)$$

$$SPd(TFP)_{2} + ArX \xrightarrow{\bullet} ArPdX(TFP)_{2} + S \quad k \qquad (5)$$

Chart 3. Selected Trans-Chelating Chiral Diphosphine Ligands (TRAPs)

Tables:

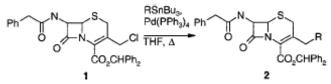
ligand	cone angle (θ^{c})	ligand	cone angle (θ)
PH ₃	87°	P(p-Tol) ₃	145°
P(OMe)3	107°	P(m-Tol) ₃	165°
PMe ₃	118°	PCy ₃	170°
P(OPh) ₃	128°	P(O-t-Bu)3	172°
PEt ₃	132°	$P(t-Bu)_3$	182°
TFP	133°	$P(C_6F_5)_3$	184°
$P(CF_3)_3$	137°	P(o-Tol) ₃	194°
PPh ₃	145°	P(mesityl) ₃	212°

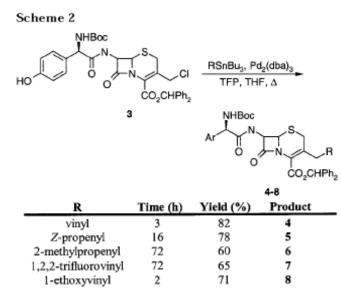
Table 1. Tolman Cone Angle (θ') for a Variety of Phosphines and Phosphinites^3

Table 2. Electronic Parameter v for a Variety of Phosphines and Phosphinites⁸

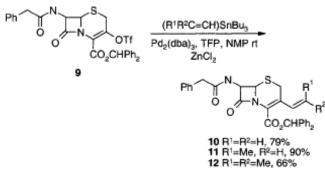
ligand	ν (cm ⁻¹)	ligand	ν (cm ⁻¹)
PF3	2110.8	P(p-Tol) ₃	2066.7
P(C ₆ F ₅) ₃	2090.9	P(o-Tol) ₃	2066.6
P(OPh) ₃	2085.3	PMe ₃	2064.1
PH ₃	2083.2	PEt ₃	2061.7
P(OMe) ₃	2079.5	PBu ₃	2060.3
PPh ₃	2068.9	PCy ₃	2056.4
P(m-Tol) ₃	2067.2	P(t-Bu) ₃	2056.1

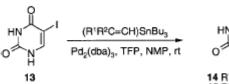
Table 3. ³¹P-⁷⁷Se Coupling Constants for Various Phosphine Selenides (R₃P=Se)⁹

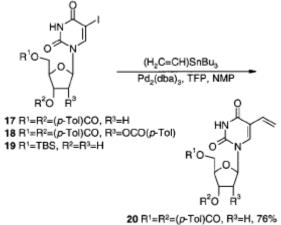

PR_3	^{1}J (Hz)	PR ₃	1J (Hz)
P(p-MeOC ₆ H ₄) ₃	708	PPh ₂ (2-furyl)	754
PPh ₂ (o-Tol)	730	P(2-thienyl) ₃	757
PPh ₃	732	$PPh_2(m-CF_3C_6H_4)$	766
PPh ₂ (2-thienyl)	743	PPh(2-furyl) ₂	774
PPh(2-thienyl)2	752	P(2-furyl) ₃	793

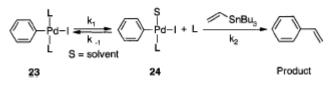

Table 4. Relative Rates of Stille Coupling between Iodobenzene and Vinyltributyltin with Various $Pd_2(dba)_3/Ligand$ Catalysts at 50 °C in THF¹⁰

	ligand ^a	cone angle	relative rate ^b	inhibition factor ^e	yield (%) ^d
1	PPh ₃	145°	1	19	15.2
2	(p-Tol) ₃ P	145°	< 0.07	>100	<2
3	(o-Tol) ₃ P	194°	35.2	3.4	19
4	TFP	133°	105	3.7	>95
5	P(C6F5)3	184°	e		13.2
6	Ph ₂ As	142°	1100	1.3	>95

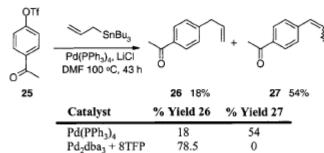

 a Pd:L ratio = 1:4. b For PPh₃, $k = 4.6 \times 10^{-5}$ min⁻¹. c Ratio of PdL₂ catalyst rate to PdL₄ catalyst rate. d HPLC yield after 72 h, o Catalyst decomposition was instantaneous (<2 min).

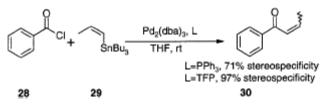

Schemes:

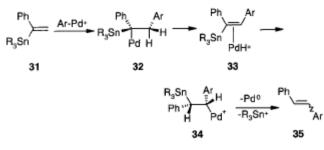




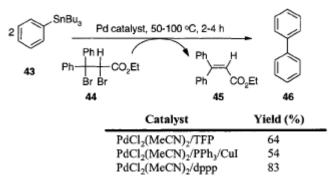
14 R¹=R²=H, 89% 15 R¹=Ph, R²=H, 92% 16 R¹=H, R²=Me, 70%

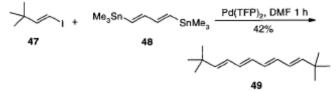


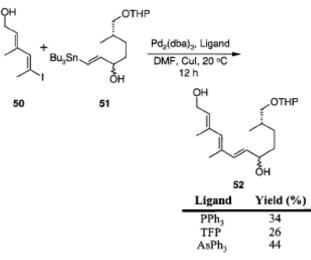

21 R¹=R²=(*p*-Tol)CO, R³=OCO(*p*-Tol), 98% 22 R¹=TBS, R²=R³=H, 91%

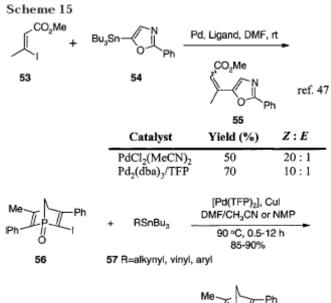

Scheme 6

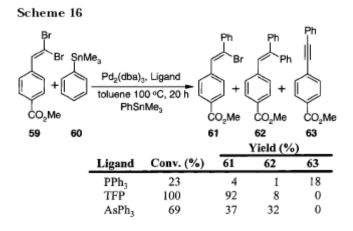
Scheme 7

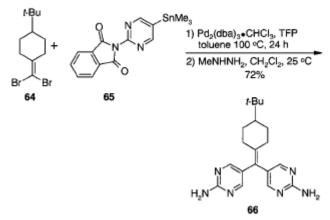


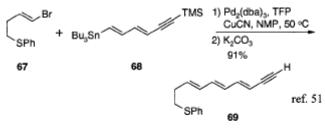


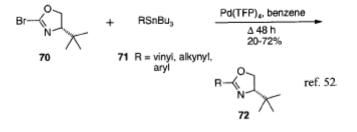

Scheme 10			
Me SnBu ₃	+	Pd ₂ (dba) ₃ , Li NMP, cat. Ci	
36	37	,сн₂он	Ar, ,CH₂OH
	Me	e Ar *	Me
	38 5	Stille Product	39 cine Product

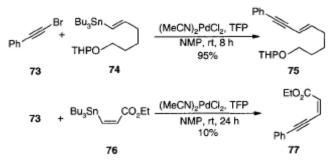

Ligand	Time (h)	Conversion (%)	Stille:cine
TFP	90	30	4:1
Ph ₃ As	160	>90	2:1

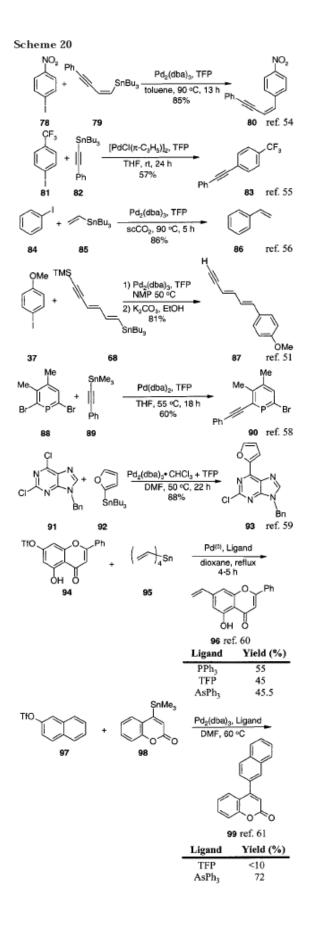

	CoDu	f, Pd ₂ (dba) ₃ , L LiCl, rt, 48 h	
40	TMS	Ph + TMS	Ph
		41	42
Ligand (L)	Yield (%)	41 (% E isomer)	α:γ
Ligand (L) PPh ₃	Yield (%) 66	41 (% E isomer) 15	α:γ 61:39

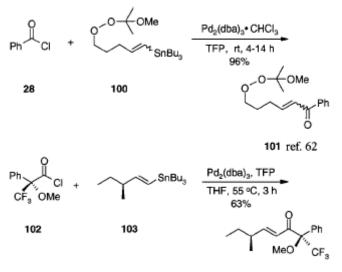


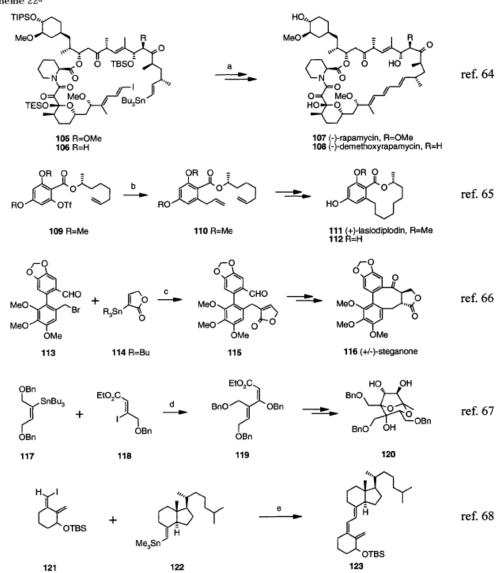


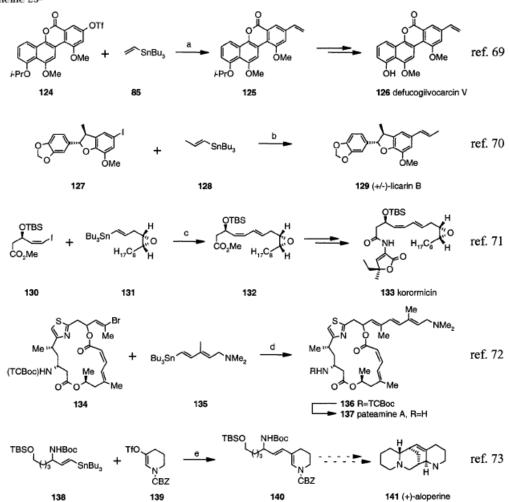


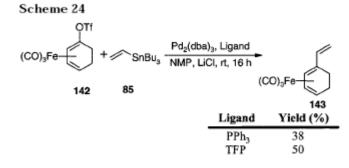


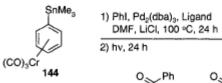


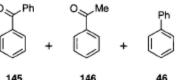


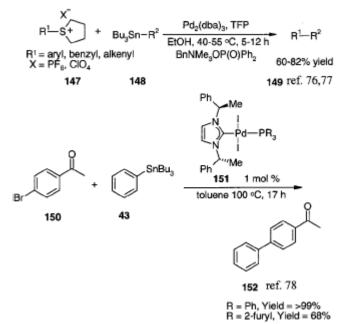


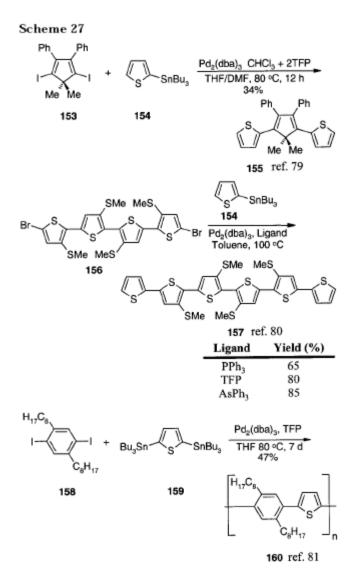

104 ref. 63

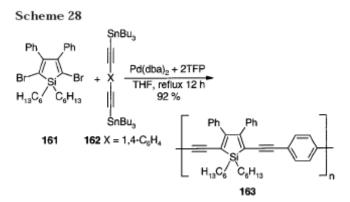


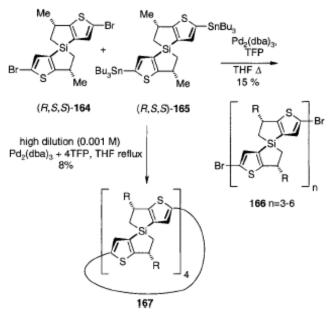

^a Conditions: (a) (TFP)₂PdCl₂, *N*,*N*-diisopropylethylamine (DIPEA), DMF, THF, rt, 74% R = OMe; 65% R = H. (b) allyltributylstannane, LiCl, Pd₂(dba)₃, TFP, 1-methyl-2-pyrrolidinone (NMP), 40 °C, 93%. (c) Pd₂(dba)₃, TFP, *N*,*N*-dimethylacetamide (DMA), 80 °C, 83%. (d) Pd₂(dba)₃, TFP, ZnCl₂, DMF, 50 °C, 4.5 days, 86%. (e) Pd₂(dba)₃, TFP, CuI, DMF, 25 °C, 4 days, 33%.


Scheme 23^a

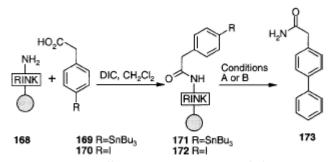

^a Conditions: (a) Pd₂(dba)₃, TFP, NMP, rt, 5 h, 69%. (b) Pd₂(dba)₃, TFP, LiCl, DMF, 120-130 °C, 84-86%. (c) Pd₂(dba)₃·CHCl₃, TFP, NMP, rt, 6 days, 34%. (d) Pd₂(dba)₃, TFP, NMP, 25 °C, 27% (57% based on recovered starting material); TCBoc = 1,1-dimethyl-2,2,2-trichloroethoxycarbonyl. (e) Pd₂(dba)₃, TFP, LiCl, NMP, rt, 1.5 days, 93%.

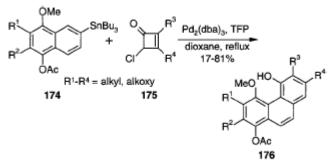


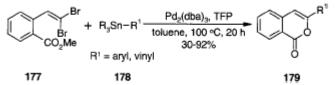


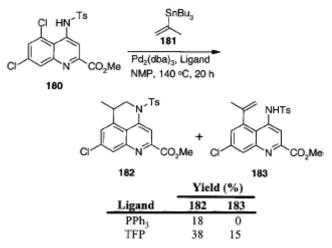


145	140	Yield (%	40	
Ligand	145	146	46	
PPh ₃	44	24	13	
TFP	36	25	2	

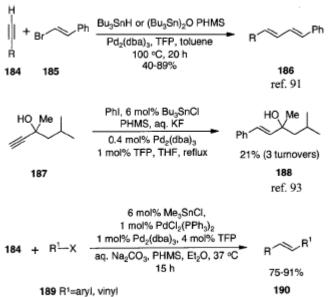


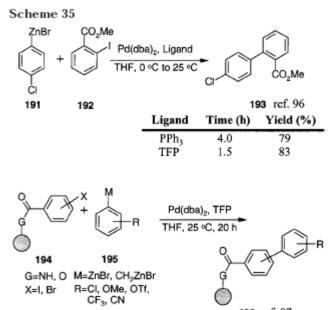


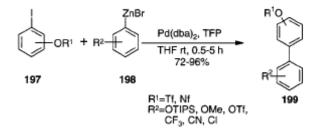

Scheme 30^a

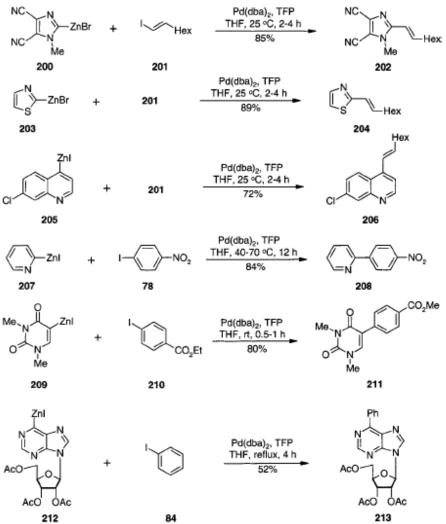


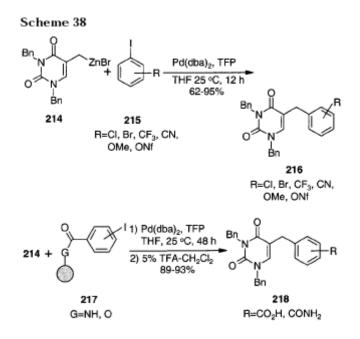
^a Conditions A: (i) 3 equiv of iodobenzene (84), 10 mol % Pd₂(dba)₃, 10 mol % TFP, 2 equiv of LiCl, NMP, 25 °C, 12 h; (ii) 5% TFA-CH₂Cl₂, 15% yield (2 steps). Conditions B: (i) 3 equiv of trimethylphenyltin, 10 mol % Pd₂(dba)₃, 10 mol % TFP, 2 equiv of LiCl, NMP, 25 °C, 12 h; (ii) 5% TFA-CH₂Cl₂, 33% yield (2 steps).



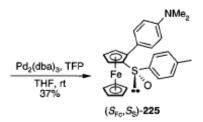


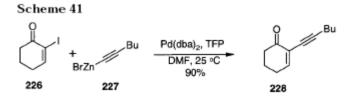


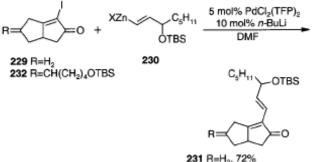


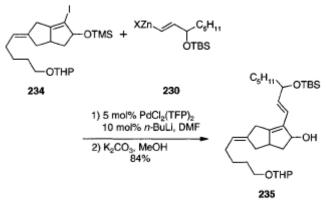


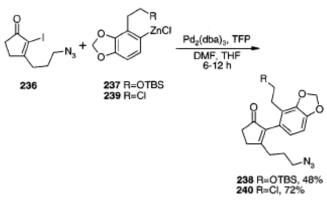


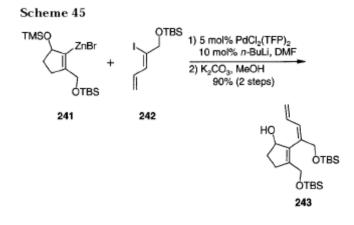


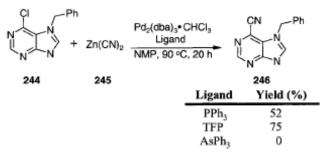


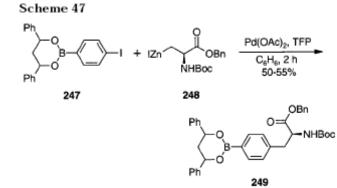


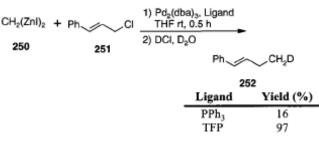




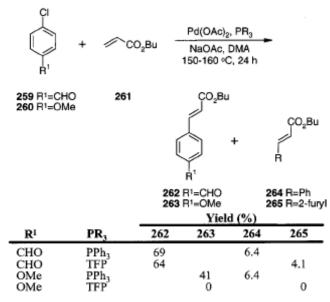


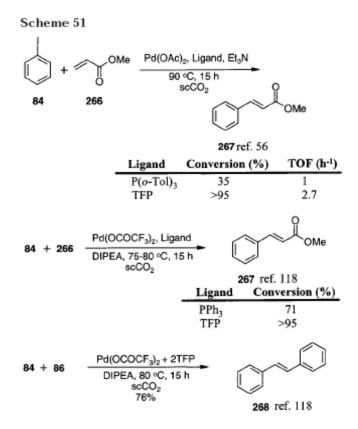

231 R=H₂, 72% 233 R=CH(CH₂)₄OTBS, <5%

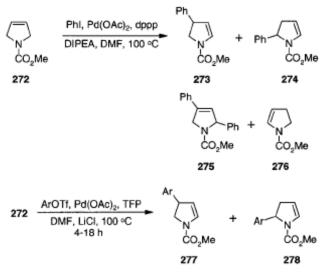


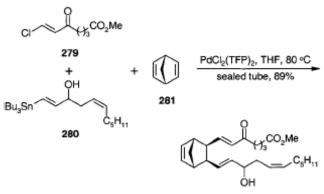




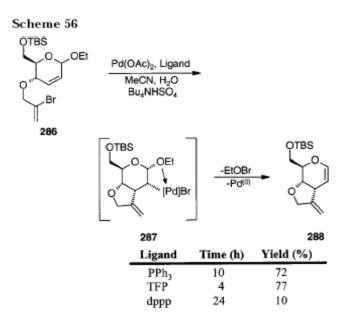


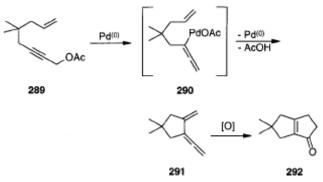


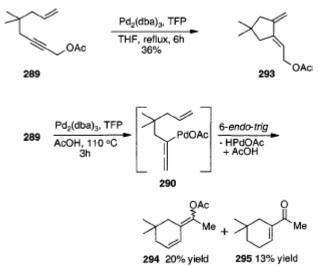


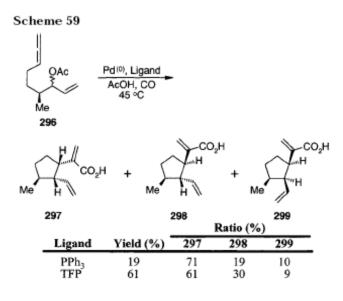


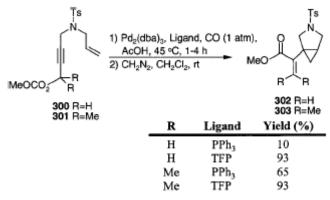


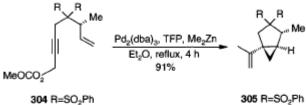


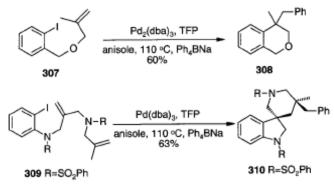


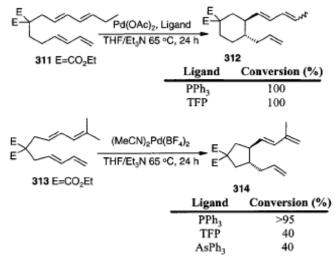


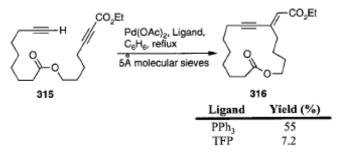


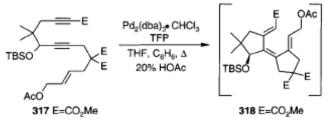


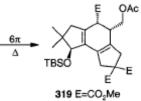


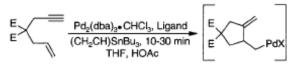

Scheme 61

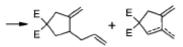

305 R=SO₂Ph


Лe

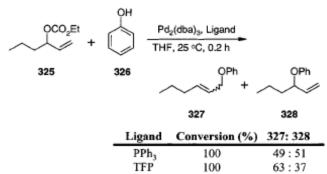

306 (-)-α-thujone

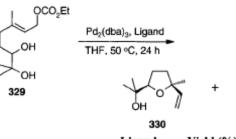


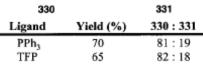




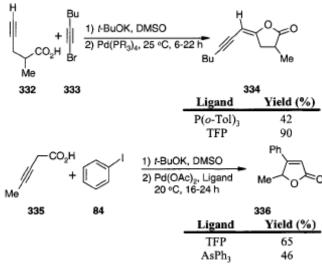
Scheme 66

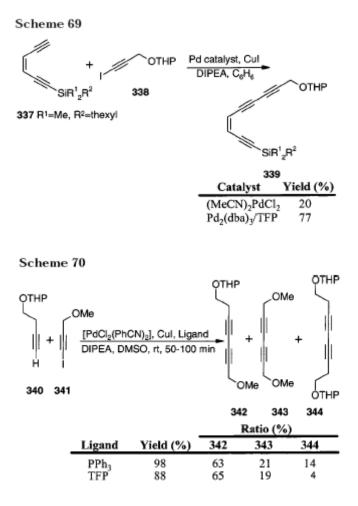

320 E=CO2Bn

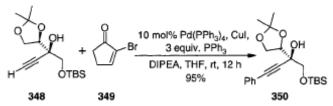

321 E=CO₂Bn

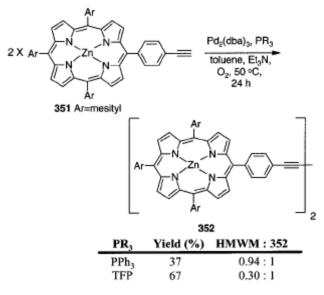


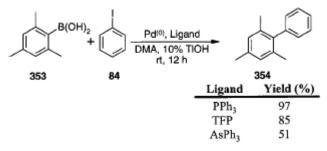
322 E=CO ₂ Br	323/324 E=CO2Bn	
	Yield (%)	
Ligand	322	323/324
PPh ₃	28	30
TFP	trace	69
none	45	0

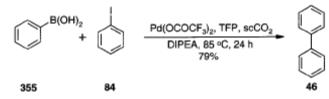


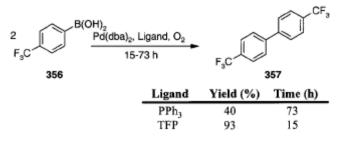


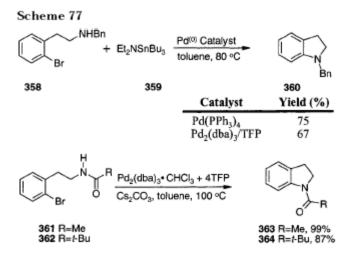




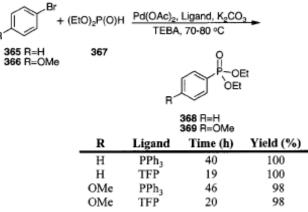

^a Conditions: (a) PdCl₂(PhCN)₂, TFP, DIPEA, DMSO, 50 °C. (b) Pd₂(dba)₃, TFP, CuI, DMSO, rt.

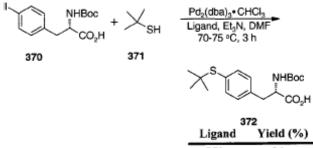




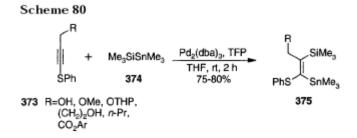

Scheme 74

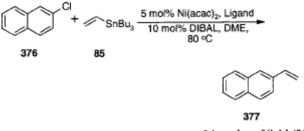
Scheme 75





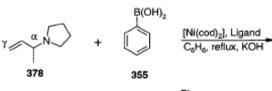
Scheme 78^a

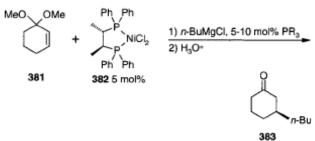

B



^a TEBA = benzyltriethylammonium chloride.

Ligand	Yield (%)
PPh ₃	26
TFP	trace
dppf	99

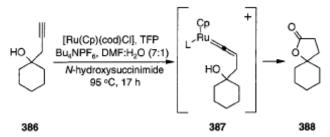



•

Ligand	Yield (%)
PPh ₃	86
TFP	64

Scheme 82

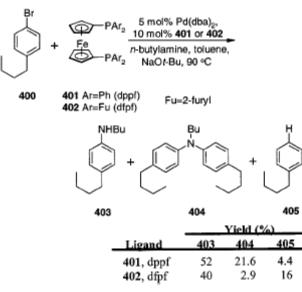


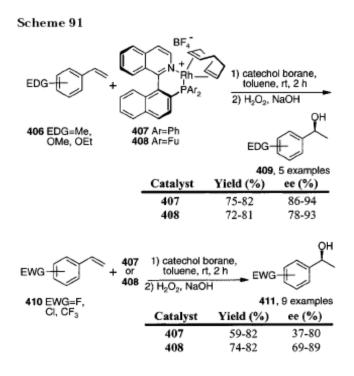

55	h + Ph	~~r
379		380
Ligand	Yield (%)	α:γ
PPh ₃	72	1.6:1
TFP	54	1.6:1

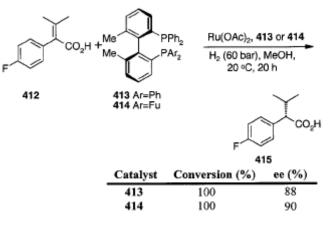
PR3	Conversion (%)	ee (%)
PPh ₃	61	82
TFP	60	40



Scheme 86

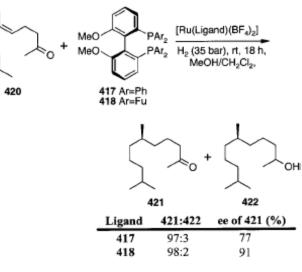

N H2 (1 kg/cm/	6, TRAP Ligano), 50 °C, 24 h, I ₂ CH ₂ CI	•	
390 R=i-Bu			391
TRAP Ligand	Conv. (%)	ee (%)	Config.
(S,S)-(R,R)-PhTRAP (389a)	100	90	S
(S,S)-(R,R)-FurTRAP (389b)	100	35	S

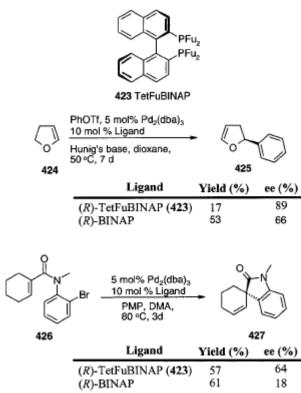

MeO.C. TRAP	d) ₂]BF ₄ , Ligand m ²), CH ₂ Cl ₂ , 3-6 h	► MeO ₂ C	CO ₂ Me
TRAP Ligand	Conv. (%)	ee (%)	Config.
(R,R)-(S,S)-EtTRAP (389d)	100	96	S
(R,R)-(S,S)-PhTRAP (389a)	100	26	R
(R,R)-(S,S)-FurTRAP (389b)	100	7	R
$MeO_2C \underbrace{\bigcirc}_{CO_2Me} \underbrace{\xrightarrow{[Rh(cod)_2]BF_4,}_{TRAP Ligand}}_{IPA, 20 \circ C, 24 h} MeO_2C \underbrace{\bigcirc}_{CO_2Me} \underbrace{\bigcirc}_{CO_2Me}_{395}$			
TRAP Ligand	Conv. (%)	ee (%)	Config.
(R,R)-(S,S)-BuTRAP (389d)	98	71	S
(R,R)-(S,S)-PhTRAP (389a)	trace		
(R,R)-(S,S)-FurTRAP (389b)	13	6	R

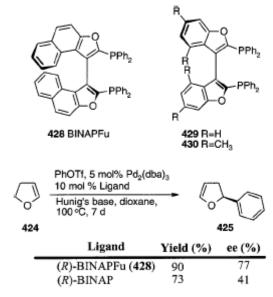



Scheme 89

Î /	O 1) [Rh(cod) ₂]BF ₄ , TRAP Ligand ↓ Ph ₂ SiH ₂		
398	2) K ₂ CO ₃ , MeOH		он 399
TRAP Ligand		dl:meso	ee (%)
(R,R)-(S,S)-FurTRAP (389b)		86:14	91
(R,R)-(S,S)-PhTRAP (389a)		49:51	29







DOI: <u>10.1021/cr0000240</u>