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Abstract

Electromyographical (EMG) signals have never been used to predict
muscle forces of dynamically contracting muscles across subjects. The
purpose of this study was to predict dynamic muscle force from processed
EMG, knee and ankle angles, and knee and ankle angular velocities in the
cat gastrocnemius and soleus during locomotion. Here, we use an
artificial neural network (ANN) approach to first derive an EMG-force
relationship of skeletal muscle; second, use this relationship to predict
individual muscle forces for different dynamic tasks within and across
subjects; and third, validate the predicted muscle forces against the
corresponding forces which were experimentally recorded. Qur within-
subject results were better than those published previously, even though
we did not incorporate a muscle model or instantaneous contractile
conditions into the force predictions. The across-subject results were
considered excellent.

We conclude that ANNs represent a powerful tool to capture the
essential features of EMG-force relationships of dynamically contracting
muscle, and that ANNs might be used to predict muscle forces within and

across subjects accurately from the corresponding EMG signals.
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Chapter one: Introduction

All movement is dependent on muscular contraction. Probably the
most basic property of muscle in humans and animals is its ability to
produce force. Knowing the forces in muscles at any instant in time
during a specific movement is like having a window to the central nervous
system and its organization and control of movement.

Contracting skeletal muscles produce an electrical signal which is
known as the electromyogram (EMG). The EMG is associated with the
fibre action potentials which precede active force production in muscle. It
has been shown that the EMG signal is the spatial and temporal algebraic
sum of the individual fibre (motor unit) action potentials, therefore an
increase in the number of active motor units or an increase in the average
firing rate of motor units is reflected in an increase in the EMG signal.
Because of this relation of motor unit activation and EMG, it is intuitively
appealing to associate the EMG signal directly with the force produced by
a muscle. The ability to predict individual muscle forces accurately from
the EMG signal and kinematic inforrnation is a challenge for applied
research. Problems such as the appropriate use of EMG signals to assess
the rehabilitation process of damaged muscles, or the quantitative
relationship between the EMG signal and the force of fatiguing muscle,

have been of primary interest.



1.1 The structure and function of skeletal muscle

My thesis is aimed at relating the electromyogram (EMG) to skeletal
muscle force production, so the basic concepts about the structure and
function of skeletal muscle will be introduced first.

Generally, muscles are divided into striated and non-striated muscles.
Striated muscles are further subdivided into skeletal and cardiac
muscles. Skeletal muscle is composed of thousands of muscle bundles,
which are surrounded by a connective tissue sheath called perimysium.
Each muscle bundle contains a number of muscle fibres, the individual
contractile muscle cell is surrounded by a connective tissue sheath called
endomysium. Muscle fibres are made up of myofibrils lying parallel to one
another. The systematic arrangement of the myofibrils gives skeletal
muscle its typical striated pattern. The repeat unit in this pattern is called
a sacomere, which is the basic contractile unit of a muscle.

Skeletal muscle is organized into motor units, which is the basic
control unit of skeletal muscle. A motor unit consists of a single motor
axon and all muscle fibres it innervates (Figure 1.1). When a motor axon
is stimulated strongly enough to cause contraction, all fibres of the motor
unit contract simultaneously.

The intramuscular network of connective tissues becomes continous
with the dense connective tissue of the tendons at each end of the muscle.
These tendons serve to connect the skeletal muscles to the bony skeleton.

The muscle fibres themselves do not come into direct contact with the



skeleton; thus the tension developed by muscles is borne entirely by their

tendinous attachments.

Nerve fibre

Figure 1.1 Schematic diagram of a motor unit

1.2 The EMG signal

EMG si of a sinqgle le fibre At rest, the electrical potential inside
a muscle fibre is relative to its outside about -90 mV. Under normal
conditions, an action potential of a motor neuron activates all the muscle
fibres of a motor unit (Krmmjevic and Miledi, 1958a; -Paton and Wand,
1967). When an action potential of a motor neuron reaches the

presynaptic terminal, a series of chemical reactions takes place that



culminate in the release of acetylcholine (ACh). ACh crosses the synaptic
cleft, reaches the fibre membrane, and causes a depolarization (action
potential) on the muscle fibre which propagates along the muscle fibre
causing activation (for review see chapter 2.5 and 3.6, Herzog et al.,
1994). If an action potential were measured using an electrode inside the
muscle fibre, it would go from about -90 mV (resting potential) to about
+40 mV (peak depolarization potential) and back again to the resting

value (Figure 1.2).

Fibre potential 4 ak depolarization
[mv] ~ 50 i

| -50
resting potential

=100 Time[g]

Figure 1.2 The action potential of a muscle fiber

EMG signal from motor unit The smallest unit of force control in

skeletal muscle is the motor unit. A motor unit is composed of a motor
axon and all the fibres it innervates (Figure 1.1). Therefore, activation of

a single muscle fibre is not possible in an intact muscle, rather an action



potential in a motor neuron will cause contraction of all fibres in the
corresponding motor unit. The EMG signal recorded from the
depolarization of a motor unit, called a motor unit action potential
(MUAP), is the algebraic sum of the individual fibre action potentials from
that motor unit.

EMG signal of a muscle In general, the EMG signal obtained from a
contracting muscle is the spatial and temporal algebraic sum of the

individual motor unit action potentials.

1.3 The properties of skeletal muscle

The force-length and the force-velocity relation of muscles are two
important properties of muscle. They are repeatedly used in
biomechanical experiments involving muscles or the musculo-skeletal
system. Force-length relations describe the relation between the maximal
force a muscle (or fibre, or sarcomere) can exert and its length. Force-
length relations are obtained under isometric conditions and for maximal
activation. Isometric may refer to the length of the entire muscle, the
length of a fibre, or the length of a sarcomere, depending on the system
that is studied. Force-velocity relations are defined as the relation that
exists between the maximal force of a muscle (or fibre) and its
instantaneous rate of change in length. Force-velocity relations are
determined for maximal activation conditions of the muscle, and are

typically obtained at optimal length of the sarcomeres.



1.4 Studies of dynamic EMG-force relationships in skeletal muscle

Most studies aimed at relating EMG signals to muscle force are
performed for isometrically contracting muscle (e.g., Lippold, 1952;
Milner-Brown and Stein, 1975; Moritani and deVries, 1978). It has been
shown that the relationship between force and processed EMG in
isometric contractions is linear (Bouisset and Maton, 1972; Hof and Van
den Berg, 1977; Ericson and Hagberg, 1978; Johnson, 1978) or slightly
non-linear with the EMG increasing more rapidly than the force (Kramer
et al., 1972; Vredenbregt and Rau, 1973; Komi and Viitasalo, 1976).

The force-EMG relationship in dynamic contractions is undoubtedly
complex since muscular properties such as the force-length and force-
velocity relations may influence the EMG-force relation (e.g., Hof and van
den Berg, 1981a,b.c,d; Olney and Winter, 1985). Instantaneous force-
length-velocity properties of muscles are hard to measure in vivo. Most of
the dynamic experiments have been performed using isokinetic
contractions on strength dynamometers. These dynamometers typically
enforce a relatively constant angular velocity of joint movement. Only a
few studies have attempted to relate EMG and force during normal,
unrestrained movements (Hof and van den Berg, 1981a, 1977; Olney and
Winter, 1985; Sherif et al., 1983; van den Bogert et al., 1988; Norman et
al., 1988; van Ruijven and Weijs, 1990; Savelberg and Herzog, 1995).

Two basic approaches have been used to predict individual muscle



force using EMG during dynamic activity. One involves the development
of mathematical models based upon biological behaviour, using EMG as
an input variable (Hof and van den Berg, 1981a; Olney and Winter, 1985;
van den Bogert et al., 1988; Norman et al., 1988; van Ruijven and Weijs,
1990). These methods often employ calibration procedures in which
parameter values are adjusted until predicted and observed forces match.
A second approach, and that of the present study, is an adaptive filtering
approach; a purely mathematical approach linking the EMG to the force
signal (Herzog et al., 1994; Savelberg and Herzog; 1995).

The predictions of dynamic muscle force have been limited by the
inability to capture the highly non-linear, and temporally distorted
relation which appears to exist between muscle force and EMG (Hof and
van den Berg, 1981; van den Bogert et al., 1988). Even approaches relying
on complex numerical procedures, such as some of the complex adaptive
filtering techniques have only met with partial success (Herzog et al.,
1994). Recently, artificial neural network (ANN) approaches have been
proposed as an alternative tool to pattern recognition and classification
problems.

Savelberg and Herzog (1995) used an artificial neural network approach
based on a back-propagation algorithm to predict dynamic muscle forces
from EMG. In their study, the relationship between EMG plus kinematics
and force, as well as the relationship between EMG and force alone were
derived for the cat gastrocnemius muscle. Preliminary results indicated

that the ANN approach is promising and might be used for general



predictions of muscle force from EMG.

In the past two decades, many direct EMG and muscle force
measurements have been performed in animal models, particularly in the
cat ankle extensors muscle. However these data have not been used
systematically to derive the EMG-force relationship for dynamic
contractions.

The purpose of this study was to revisit dynamic force predictions
from EMG signals using an artificial neural network (ANN) approach.
Artificial neural networks are excellent for pattern recognition schemes
which involve highly non-linear and temporally distorted signal relations.
The ability to generalize results from sample input makes ANNs
potentially very powerful for deriving dynamic EMG-force properties for
skeletal muscle. In studying the EMG-force relationship of skeletal
muscle, we used the cat gastrocnemius and soleus as our experimental
model.

The cat gastrocnemius and soleus behave very differently for different
speeds and modes of locomotion. Peak forces and EMGs in the
gastrocnemius increase in parallel with increasing speeds of locomotion,
whereas peak soleus forces remain nearly constant while EMGs increase
from still standing to walking to trotting and galloping (Herzog et al.,
1993). Using two muscles which behave so differently might be a good
test for evaluating the potential of ANN to capture dynamic EMG-force

relationships.



1.5 The organization of the thesis

The layout of the thesis is as follows:
In chapter 1, the basic concepts of skeletal muscle and the approaches

used in schemes of muscle force predictions from EMG are introduced.

In chapter 2, the basic concepts of the EMG signal and the EMG-force
relationship are introduced. Also, a review of previous works aimed at
predicting individual muscle forces from EMGs during dynamic activities
is presented. A brief description of the experimental methods and the
Artificial neural networks [ANN] used in this study, is given in Chapter 3.
The force predictions for the cat gastrocnemius and soleus muscles are
described in Chapters 4 and 5, respectively. The corresponding
discussion is given in Chapter 6.

In chapter 7, an outlook for future work is presented.
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Chapter Two: Literature Review

In this part of the thesis, EMG signal recording and processing
techniques are described, and the EMG-force relationship is introduced.

Also, relevant published works are summarized in this chapter.

2.1 EMG signal recording

For EMG recordings, a bi-polar electrode configuration is typically used.
In a bi-polar configuration, two recording electrodes are used. The
potential recorded by each electrode is compared to a reference electrode,
and the difference of the two recording electrodes relative to the reference
electrode is amplified (differential amplification). Using a bi-polar
recording configuration and differential amplification, noise common to
both electrodes is cancelled in the process.

Figure 2.1.a shows a schematic record of an EMG signal from a single
muscle fibre measured using an indwelling (inside the muscle fibre), bi-
polar electrode configuration. Figures 2.1.b and c¢ (Basmajian and De
Luca, 1985) show schematically the generation of an EMG signal from a

single motor unit and from a voluntarily contracting muscle, respectively.
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Figure 2.1.a Schematic representation of the recording of EMG
signal from a single muscle fibre
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Figure 2.1.b Schematic representation of the generation of the motor
unit action potential designated as h(t). The shape and the amplitude
of the motor unit action potential are dependent on the geometric
arrangement of the active muscle fibres with respect to the electrode
site .
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Figure 2.1.c Schematic representation of the EMG signal.

In Figure 2.1.b, the integer n represents the total number of muscle
fibres of one motor unit that are sufficiently near the recording electrode
for their action potentials to be detected by the electrode. The action
potentials associated with each muscle fibre are presented on the right
side of Figure 2.1.b. The individual muscle fibre action potentials

represent the contribution that each active muscle fibre makes to the
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signal detected at the electrode site. A depolarization approaching from
the right side is reflected as a negative phase in the action potential and
vice versa.

The motor unit action potential, designated as h(t) (Figure 2.1.b), is the
superposition of the contributions of the individual action potentials.

In Figure 2.1.c, The integer p represents the total number of motor unit
action potential trains which contribute to the potential field at the

recording site. The superposition at the recording site forms the

physiological EMG signal, m, (1, F) . The observable EMG signal (m (¢, F) )

also includes electrical noise (n(z)) and the filtering properties of the

recording equipment (7 (z) ).

2.2 EMG signal processing

Raw EMG signals resemble white noise with a distribution around the
zero point. It is apparent that averaging of the signal will not provide
useful information with respect to force production of the muscle.
Therefore, EMG signals are typically processed before they are used for
muscle force predictions. Processing of the EMG signal can be done in the
time or frequency domain. In our study, two methods of processing were
used: rectification and smoothing.

The process of rectification involved conversion of ihe raw signal into

a signal of absolute values. Smoothing of the rectified signal was
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accomplished using second-order Butterworth low pass filter, 5 Hz cut-
off frequency.

Figures 2.2.a, b and ¢ show raw EMG signals from the cat
gastrocnemius muscle during walking, the corresponding full-wave
rectified signals, and the corresponding smoothed signals, respectively.

(@
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Figure 2.2 Processing of EMG signal: (a) raw, (b) rectified, and
© rectiﬁgd-bsmoothed EMG signal.
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2.3 EMG-force relationship

An increase in the firing rate of motor units or an increase in the
number of recruited motor units is known to increase the muscular force
and the integrated form of the EMG (Basmajian and De luca, 1985).
Therefore, there must be a (at least) qualitative relation between the EMG
signal and the corresponding muscle force. Figure 2.3 shows the raw
EMG signal and the corresponding soleus force for a single step of
walking. The goal of this study was to predict muscular force during

dynamic contraction from the corresponding EMG signal.

EMG

Force Time

[ms]

8
g
g
H
8

Figure 2.3 Force and EMG signal obtained from a cat soleus muscle
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2.4 A brief review of previous models of the EMG-force relationship

In the last decade, only a few studies have attempted to relate EMG and
force (moment, torque) during normal movements (Hof and van den Berg,
1981a; Olney and Winter, 1985; Van den Bogert et al., 1988; Ruijven and
Weijs, 1990; Savelberg and Herzog,1994). Most muscle models used for
EMG to force predictions were based on the muscle model of Hill

(1938,1949).

The Hill muscle model

CcC

PEC

SEC

!

load

Figure 2.4.1 Schematic diagram of the Hill muscle model

Hill (1938) proposed a muscle model based upon the behaviour of
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three muscle components: the contractile component (CC), an elastic
component placed in series with the contractile component (SEC), and an
elastic component located in parallel to the other two elements (PEC)
(Figure 2.4.1). The CC and SEC determine the behaviour of the active
muscle; the PEC represents the elasticity of the passive muscle. In his
model, Hill assumed that the mean rectified EMG is proportional to the
so-called active state of the muscle, a property of the CC. Furthermore,
the CC is typically assumed to obey a characteristic force-velocity
relationship which was described by Hill (1938) based on experiments on

entire frog skeletal muscle.

Experimental studies on the dynamic EMG-force relationship

In order to relate EMG to force (torque) for ankle plantarflexors, Hof and
van den Berg (1981a-d) used an analogue processor of the EMG signal
with an extensive calibration procedure to determine an EMG gain factor,
the force-length (torque and joint angle) relationship, and the properties
of the series and parallel elastic elements. The EMGs were recorded
separately from the gastrocnemius and soleus muscles. Both EMGs were
preamplified (100 times) and bandpass filtered with different gain factors
for gastrocnemius and soleus. Then, the EMGs were full-wave rectified

and smoothed by means of a third order averaging filter with a time

constant t of 25 ms. Hof and van den Berg (1981a-d) incorporated all



components of the Hill model into their system (Figure 2.4.2).
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Figure 2.4.2 Block diagram of the Hof's muscle model
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The properties of the contractile component were described by an

active state function (My(t)), and the force-length and force-velocity

relationship of the muscle of interest. The SEC ( ¢,) and the PEC( ¢) were

represented by purely elastic elements. The torque developed by the CC

was a function of three state variables: the active state My(t), the CC

length( ¢_) and the rate of change in the CC length (¢_). The isometric
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force-length relationship was described by the notation: M, = Mf(o,) .
where the function f(¢_) is equal to 1 around the optimum muscle length

and decreases for smaller and for larger length. The sum of the active
states of all motor units is taken to be the active state of the muscle which
was derived from the EMG signal. Using this model, they were able to
predict reasonably well the ankle joint moments during human walking
(Hof et al, 1987). The limitations of this study were that no force
predictions of individual muscles could be made, but just some
generalized muscle force (the ankle moment) could be calculated. Force
predictions, therefore, were not validated against the actual muscle
forces, and from a practical point of view, the study was not important
because ankle joint moments can be derived quite accurately without
EMG input of the muscles by using an inverse system’s analysis (e.g.
Andrews, 1974).

Sherif et al. (1983) presented an 'intervention model' to associate the
force produced by the cat medial gastrocnemius (MG) during
unrestrained treadmill locomotion with the corresponding EMG signals.
Representative EMGs and muscle forces were recorded from the cat
medial gastrocnemius at 0.67 and 2.24 m/s. EMG signals were processed
by a differential amplifiers at a band-width of 30-3000 Hz, and force
signals were processed by a low pass filter (cutoff at 300 Hz). The EMG
and corresponding force were then related using an ix;iéervention analysis

based on an autoregressive-integrated moving average (ARIMA) model.
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Sherif et al. (1983) proposed that the MG myoelectric activity during a
single step cycle may be divided into two parts. The primary burst of
activity precedes foot contact and produces a major portion of MG force
at the tendon by setting muscle stiffness prior to ground contact for
"storing” energy in the system. During stance, a second burst (E2 burst)
of EMG activity was observed by an almost critically damped second order
system, and this burst (the residual term) did not contribute significantly
to the total MG force at the tendon. Sherif et al. (1983) proposed that the
initial burst of EMG activity in the cat MG was driven by the central
nervous system, irrespective of the instantaneous contractile conditions
of the muscle. The limitations of this study were that the model used was
very complicated and could not be used to make useful predictions of
force from EMG during normal movements.

Olney and Winter(1985) developed a biologically deterministic model
to calculate instantaneous joint ankle and knee moments during normal
walking using processed EMG (rectified and smoothed with a second
order low pass filter, cutoff at 1 Hz), kinematic information (e.g.,
instantaneous joint angle as a correlate of muscle length and angular
velocity as a correlate of muscle velocity), and instantaneous joint
moments from the participating muscles. The data of the EMG and
instantaneous joint moments from two muscles, tibialis anterior and
soleus, were used for the prediction of ankle moments. The model
assumed that the moment-angle and moment-velocity relationships were

linear. The joint angle and angular velocity were assumed to be



proportional to muscle length and muscle linear velocity respectively. A
linear regression between joint moment and processed EMG was used to
determine the static EMG-moment relationship. There were eight
parameters used and determined by the calibration procedures and
estimation techniques. Using the resultant moment for optimization, the
results showed that the predicted moment was proportionally augmented
for longer muscle lengths and proportionally reduced for shorter lengths.
Further, predicted moments were reduced for shortening contraction and
increased for lengthening contraction. The limitations of this study were
that muscle forces could not be predicted or validated. Also, in order to
obtain acceptable results, model parameters were optimized based on the
experimental moments.

van den Bogert et al.(1988) developed and validated a muscle model
of the deep digital flexor of the horse. The muscle model was a Hill-type

model. It predicted muscle force, F, from the length of the muscle, L ,

and its activity, U(r) . EMG was used as the activation input into the
model. The muscle and its tendon were described by a four-element

model. The series elastic component, S, represents the tendon (Figure

2.4.3). Tendon force, F,, is an experimentally determined function of
tendon length, L-x. The parallel elastic element, P, represents the
passive properties of the muscle. Its force, Fp , where F p = k{(x-x,) when
the series elastic element length, x, is larger than the resting length, x,.

and zero otherwise.



Figure 2.4.3 The muscle model

The force-length relationship, F_(x) , of the contractile element was

taken from Hof and van den Berg (1981a). The contractile element force
was assumed to be proportional to the active state of the muscle, U(t),
with a gain, G. A linear damper, D, was included as a first-order
approximation of all velocity-dependent effects.

The state equation for the muscle model is (Figure 2.4.3):

F (L-x) = Fp(x) +GeU(r) oF_(x)

The instantaneous force output of the muscle was found by solving
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this non-linear equation for x and using F = F_(L-x) +DL, where D is

the damping coefficient. Therefore, this model was length and velocity-
dependent. The parameters used in the muscle model were derived from
"irregular” walking trials and the force predictions were made for "normal”
walking trials. Force predictions were made for one horse at one speed of
locomotion.

Norman et al. (1988) attempted to predict dynamic muscle forces from
EMG signals during muscular activity occurring in normal movements.
In their model, EMG signal and isometric muscle force were required as
model input. Cat soleus forces were measured during treadmill walking.
The corresponding raw EMG signals from soleus muscle were digitized
(2000 Hz), full wave rectified and smoothed (double-pass Butterworth

filter, 2-10 Hz). Soleus forces were predicted by the following equation:

< EMG
s iso” EMG.

1so

where F_ is the instantaneous predicted soleus force, F, , is the
measured isometric tendon force when the animal was standing still,
EMG is the instantaneous value of the full-wave rectified and smoothed
linear envelope of the dynamic EMG, and EMG, , is the average of the

EMG signal over two seconds while the cat was standing still (isometric).

Norman et al. (1988) validated their model using force measurements



obtained for four step cycles in one animal while walking at one speed. No
force predictions were made for other speeds of locomotion or across
animals. Norman et al. (1988) obtained reasonable force predictions only
after optimizing their model based on the dynamic muscle force results.
van Ruijven and Weijs (1990) used eletromyography (EMG), muscle
length and speed of contraction to predict muscle forces in jaw muscles
of rabbits. The muscle model was a Hill-type model and the properties of
the muscle were derived in part by the twitch response of the muscle. The
model was tested by predicting the bite forces produced by the jaw
muscles during mastication. All input data (muscle length, length

change, EMG) and output data (forces) were defined for 13 ms periods.

The force of a muscle during a 13 ms interval (F;) was equal to

F; = F,, ® (FL,e FV,¢FQ,+ FP)

where F, , is the maximal tetanic force (30 N/ cm?); FL is a factor

describing the force-length properties of the muscle; FV is a factor
describing the force-velocity properties of the muscle. FQ is the activation
factor which depends on the EMG; FP is a scaling factor for the force in
the parallel elastic element. FL, and FV,; depend on the average length

and length change of the sarcomeres during the 13 ms interval,

respectively. FQ; depends on the EMG during the current and the
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preceding 13 ms interval. The results from their study showed that the
accuracy of the prediction was limited; the correlation between the
predicted and the measured bite force was only 0.57.

One method that is different from the methods described above is
adaptive filtering. Adaptive filtering techniques are not based on Hill-type
muscle models; the: are mathematical approaches linking EMG and
muscle force without concern about the biological properties of the
muscle. Adaptive filtering approaches have been chosen to predict
dynamic forces from EMG because the characteristics of force and EMG
are time-dependent, or non-stationary, during dynamic contractions.
Adaptive filtering techniques can account for non-stationarities and have
been used successfully in the analysis of a variety of biological signals
(Ferrara and Widrow, 1982; Yelderman et al.,1983; Kentie et al., 1981;
Chen et al., 1990; Zhang et al., 1991).

Herzog et al.(1994) used an adaptive filtering procedure with the least
mean square (LMS) algorithm (for detail see chapter 3.6, Herzog et al.,
(1994) to estimate force in the cat plantaris from the corresponding EMGs
obtained during walking and running. Their results were obtained
without prior knowledge of the statistics of the signal and the noise, and
without a model of the target muscle. The only assumption made in the
force predictions was that the signal components in the primary input
(the force signal plus additive noise) and the reference input (full-wave
rectified and low pass filtered EMG signal) were correlated with each

other, but were uncorrelated with the noise. Using a LMS algorithm, they
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obtained good estimates of dynamic plantaris force, but the force
predictions were of limited accuracy.

Savelberg and Herzog (1995) used an Artificial Neural Network (ANN)
approach with the back-propagation algorithm to predict forces from
EMG in the cat gastrocnemius during locomotion. ANN, one of the
adaptive filtering approaches, is based on biological neural systems.
Similar to their biological namesakes, they consist of interconnected cells
organized in layers. The essence of an ANN is that information is
distributed through connections between cells making up the network.
The connections have adjustable weight factors. By adjusting these
weights, an ANN is able to learn, that is, to match an input pattern to an
output pattern. Depending on the number of layers and the number of
cells in each of these layers, the information distributed over the network
can mimic complex relationships. Apart from the ability to learn, ANNs, if
properly trained, can be used to generalize knowledge. In Savelberg and
Herzog’'s (1995} study, the relationship between EMG plus kinematics
and force, as well as the relationship between EMG and force in the cat
gastrocnemius were considered. Preliminary results indicated that the
ANN approach might be used for general predictions of muscle force from
EMG.

We used the Artificial Neural Network approach to predict individual
muscles forces from the corresponding EMG signals. The results
confirmed that ANNs are a promising technique to predict dynamic forces

from EMG signals.
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Chapter three: Method

3.1 Animal preparation, force, EMG, and kinematic measurements

Force, EMG, and locomotion kinematics were obtained from soleus and
gastrocnemius muscles of three cats walking at nominal speeds of 0.4,
0.8, and 1.2 m/s, and trotting at a speed of 1.8 m/s. The animal
preparation, force measurements, EMG recording, and kinematic
analysis were described elsewhere (Herzog et al, 1993). Only a brief
description of the experimental method is given here for the sake of
clarity.

Three outbred, male, adult cats were anesthetized, intubated, and then
maintained using 1-1.5% halothane. 'E’-shaped, stainless steel tendon
force transducers were surgically implanted onto the separated tendons
of the soleus and gastrocnemius muscles under strictly sterile conditions.
Bipolar, indweling wire electrodes of Teflon-insulated, multistranded,
stainless steel biomedical wire (Bergen, BW9-48) were drawn through the
mid-belly of soleus and gastrocnemius using a surgeon’s needle (Miltex,
MS-140) to record EMG signals. The electrodes were arranged
approximately parallel to the muscle fibres and the interelectrode
distance ranged from 5 to 7 mm. Leads of all force and EMG devices were
drawn subcutaneously to a backpack connector from which all signals
were transmitted by cable or telemetry to a computer (PC, 386). Typically,

forces and EMG signals were recorded at 2240 Hz.
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After implantation of the force and EMG transducers, cats were
allowed to recover completely from surgery (five to seven days). Recovery
was assessed by visual inspection and by comparison of stance times
between implanted and contralateral hindlimbs during locomotion. Cats
were enticed to perform locomotor tasks for which they were trained for
4-8 weeks prior to surgery. These tasks consisted of walking at 0.4, 0.8,
and 1.2 m/s, and trotting at a speed exceeding 1.4 m/s on a motor-driven
treadmill on a level surface.

For each locomotor task, A video camera with its optical axis
perpendicular to the plane of motion of the animals and running at 60 Hz
was used to monitor locomotion kinematics, and a time code generator on
the video image (model 9300, Datum Inc.) was used to synchronize the
video and computer records. Synchronization of force and EMG records
with video data was obtained using a series of pulses that appeared as
spikes on the computer records and as a light-emitting diode on the video.
Reflective skin markers placed over the hip, knee, ankle, and
metatarsophalangeal joints before data acquisition were digitized from
the video records (60 Hz, Motion Analysis, VP310) to obtain ankle and
knee joint angles.

All methods were approved by the Animal Ethics Review Committee

of the University of Calgary.
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3.2 Force, EMG, and kinematic data processing

In this study, force and EMG signals were obtained from the
gastrocnemius and soleus of three cats walking at speeds 0.4, 0.8, 1.2 m/
s, and trotting at a speed 1.8 m/s. Eight to sixteen step cycles were
available for a given cat and speed of locomotion. The EMG data were full-
wave rectified, or full-wave rectifitd and smoothed (second-order
Butterworth low pass filter). The full-wave rectified signal retains the
information contained in the entire signal; the smoothing eliminates the
high-frequency content of the EMG records in order to better relate the
EMG signal to the contractile properties of the muscle. For determining
the suitable cutoff frequency of the filter used in our study, we predicted
forces with the EMG data filtered using a second-order Butterworth low
pass filter with cutoff frequencies 2, 5, 15, and 30 Hz. The results
indicated that the cutoff frequency of 5 Hz was best in terms of
minimizing the difference between the predicted and the actual muscle
forces. However, for the sake of comparison, we will show the prediction
results in the following chapters using the full-wave rectified and
smoothed (second-order Butterworth low pass filter, 5 Hz cutoff
frequency) EMG and the full-wave rectified, unsmoothed EMG.

The processed EMG and the corresponding tendon forces were
reduced to a nominal sampling frequency of 140 Hz, and the
corresponding kinematic data (knee and ankle ang"lézs. and knee and

ankle angular velocities) were sampled at 140 Hz in order to match all
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input data for the force predictions perfectly.

3.3 Artificial Neural Network (ANN)

Artificial neural network (ANN) based signal processing methods have
been shown to be robust when processing complex, degraded, noisy, and
unstable signals (Hassoun et al., 1994). ANNs have unique properties,
such as the ability for generalization and learning from experience, and
the ability for modifying themselves in accordance with a changing
environment.

The field of artificial neural networks is almost five decades old
(McCulloch and Pitts, 1943; Hebb, 1949), it has only become widely
accepted in research with the recent efforts of Hopfield (1982), Rumelhart
et al. (1986), and Grossberg (1988). Robotic manipulators have utilized
neural networks to replace inverse dynamics algorithms (Kawato et al.,
1987), but it is only within the past few years that ANNs have been
applied to study real biological systems (Zipser and Andersen, 1988;
Massone and Bizzi, 1989; Wells and Vaughan, 1989).

An artificial neural network, as the name implies, comprises a group
of neurons which are interconnected and distributed in layers. Networks
differ in terms of learning and processing mechanisms, the activation
function, the number of layers and neurons, and -the distribution of
connections. The basic structure of the network used in this study has

one input layer, two intermediate hidden layers, and an output layer,
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illustrated in Figure 3.3.1. The circles in Figure 3.3.1 represent the
neurons, and the solid lines represent interneuron connections of varying
strengths, known as the synaptic weights. This so-called three-layer

neural network has been reported to be sufficient to model problems of

Input First Second Output
layer hidden hidden layer
: layer layer

Figure 3.3.1 Architectural graph of a multilayer network

any degree of complexity (Khanna, 1990). We used an error back-
propagation algorithm (Rumelhart et al., 1986b) to train the ANN in a
supervised manner (Figure 3.3.2). The back-propagation training
algorithm is an iterative gradient descent algorithm designed to minimize
the mean square error between the actual output of a multilayer
perceptron and the desired output. In the back-propagation feedforward
algorithm, some of the desired output of the network is assumed to be

known a priori. The back-propagation algorithm is composed of two
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stages: a feedforward step, where neuron output is specified; and a
feedback stage, where the connection weights are updated. The two steps
are repeated with a training set (EMG-Force examples) until the difference
between the network output and the desired values is below a specified
value. This procedure is called the learning phase. The goal of the

learning phase is to enable the neural network to generalize results so

Desired response

INPUT vector d s&etunlforce)
{EMG-Force
examples)

Input

vector

x
(EMG)

Figure 3.3.2 Block diagram of supervised learning with
the back-propagation algorithm
that the input-output mapping is excellent even when the input is
different from the examples used to train the network.

When an ANN is created, the weights in each neuron are randomly
and uniformly initialized using a standard random number generator. In
the EMG to Muscle force mapping used here, the input layer had 20
neurons containing EMG information, and an output layer with one

neuron, corresponding to the muscle force. The training set in our study
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was denoted by {[x(n), d(n)}; n=1,2,..., N}, with the input vector x(n) given
to the input layer, and the desired response d(n) represented in the
output layer.

In the feedforward step, the output signals of the network were
calculated by proceeding forward through the network, layer by layer.
Outputs from each middle layer neuron are given by the following

activation function:

1

o () =
7 e O )

where v j.(’) (n) is a simple linear summer for neuron j in layer {:

r
vib(m) = Y wiDy =9 (m)
i=1
where y(/-9 (n) is the output signal of neuron i in the previous layer /-1
at iteration n, and w{? is the synaptic weight of neuron j in layer / that

is fed from neuron i in layer /-1.

If neuron j is in the first hidden layer (i.e., I=1), set

yj(o) (n) = xj(”)



35

where x;(n) is the jth element of the input vector x(n). If the neuron is in

the output layer (i.e., /=3), then

1
1 +exp (-v{3) (n))

y(n) =y =

where

9
vid (n) = Y wDy2 (n)

i=1

where q is the number of neurons in the second hidden layer.

Hence, compute the error signal

e(n) =d(n) -y(n)

where d (n) is the desired response.

In the back-forward step, compute the local gradient, & of the network

by proceeding backward, layer by layer:

33 (n) =e(m)y(n) [1-y(n)] for the neuron in the output layer,

and



36

80 (m) =yB () 1~y (n)]zklﬁk(’*” (mywg*D (n)

for neuron j in the hidden layer !.

The synaptic weights of the network in layer ! are determined by
wi (n+1) = wih (n) +a[w® (n) ~wP (r-1)]+0(n+ 1) D (m) y-1 (n)

where 1 is the adaptive learning-rate parameter and « is the momentum
constant which was set to 0.9 in our study.
The change for n, initialized by 0.2 in the training procedure, is based

on the error of the network:

nn+1l) =07en(n) if e(n) >1.040e(n-1)
and

N(n+1l) = 1.05en(n) if e(n) <e(n-1)
otherwise

n(n+1) =n(n).

In this study, an ANN architecture with one input layer, two hidden
layers, and one output layer was used. There is only one neuron in the
output layer, 20 or 30 neurons in the input layer, 20 neurons in the first
hidden layer, and 10 neurons in the second hidden layer. For the input

vector x(n), x(n) is viewed as the current value of the EMG input, the



remaining M (M=19) tap inputs, x(n-1)...., x{n-M), represent past values of
the EMG input; however, x(n-20) is viewed as the current value of the
kinematics input, the last 9 tap inputs, x(n-21)...., x(n30), represent past
values of the kinematics input. When a critical threshold was reached
(Haykin, 1994), the two step cycle procedure (the forward-forward step
and the corresponding back-forward step) called learning phase, was
stopped. In our study, it was repeated about 600-1000 times during the
training of the ANN. Our experiments showed that the force prediction
can not be improved by increasing arbitrarily the number of the learning
phase; learning got worse when the number of the learning steps was
greater than 5000.

In this study, the relationship between EMG and force (EMG-force
mapping), as well as the relationship between EMG plus kinematics (e.g.
knee and ankle angles, knee and ankle angular velocities) and force

(EMG*-force mapping) in the gastrocnemius and soleus were considered
during locomotion. The ANN was trained in a supervised mode. The
muscle force was the desired response of the network. For the
determination of the relationship between EMG and force, the EMG signal
was the input to the network; for the relationships between the EMG plus
kinematics and force, the input to the network was the EMG signal, the

knee and ankle angles, and/or the knee and ankle angular velocities.
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3.4 Muscle force prediction

Muscle forces were predicted in three different ways:

(1) For the first prediction scheme, force estimates were made across
animals in two ways: (a) the ANN was trained with EMG (with and without
kinematics) input from two cats walking/trotting at a given speed of
locomotion (0.4, 0.8, and 1.2 m/s); the force predictions were made for
the third cat using its EMG for walking/trotting at the same speed as the
training was done (inter-subject-A tests), and (b) the ANN was trained
with EMG and force input from all available data of two cats walking/
trotting; the force predictions were made for the third cat walking/trotting
at a given speed of locornotion (inter-subject-B tests). For ‘inter-subject-
A’ predictions, force values were normalized with respect to the peak force
of the muscle at a given speed of locomotion. Values of the full-wave
rectified, or the full-wave rectified and smoothed EMG signal were
normalized with respect to the mean value of the full-wave rectified EMG
signal at a given speed of locomotion. For 'inter-subject-B' predictions,
force values were normalized with respect to the absolute peak force of
the muscle at any of the tested speeds of locomotion in the same cat.
Values of the full-wave rectified, or the full-wave rectified and smoothed
EMG signal were normalized with respect to the mean value of the full-
wave rectified EMG signal for walking at 1.2 m/s in a given cat.

(2) For the second prediction scheme, the ANN Wa;tra.ined with EMG

(with and without kinematics) and force input from one cat walking/
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trotting at three different speeds of locomotion; the force predictions were
made for the fourth speed of locomotion of that same cat (intra-subject
tests). Muscle forces and EMG signals were not normalized.

(3) For the third prediction scheme, the ANN was trained with force
and EMG (with and without kinematics) input from an increasing number
of step cycles of a given cat walking/trotting at one speed of locomotion;
the force predictions were made for different steps of the same cat walking
at the same speed (intra-session tests). Muscle forces and EMG signals
were not normalized.

Evaluation of the force predictions from the EMG signals was made
by calculating the coefficients of cross-correlation, and the root mean
square (RMS) errors between the predicted and the actual force-time
histories. Every result shown in this study was an average value obtained
from four independent learning precedures (with the same ANN structure
and number of learning steps). Predictions were considered good if the
coefficient of cross-correlation was greater than 0.91,. RMS error was
equal to or smaller than 14% of the corresponding maximum peak force,
and the predicted force-time histories did not systematically deviate from

the actual force-time histories.



Chapter four: Force Predictions for the Cat Gastrocnemius

4.1 Inter-subject-A tests

Force predictions for the inter-subject-A tests are shown in Tables 1.a.
and 1.b. All training examples were from cat 1 and 2, and the force
predictions were made for cat 3. The coefficients of cross-correlation for
the tests ranged between 0.91-0.96. The corresponding RMS prediction
errors are listed in the third and fifth columns of the Table. The input to
the tests shown in Table 1l.a were the full-wave rectified (the fourth
column of the Table) or full-wave rectified and smoothed (the second-
third columns of the Table) EMG signal (EMG Model); the input to the
tests shown in Table 1.b were the full-wave rectified (the fourth-fifth
columns of the Table) or full-wave rectified and smoothed (the second-

third columns of the Table) EMG plus the knee and ankle angle-time

histories (EMG™* Model). In each table the results for the full-wave rectified

EMG, and the full-wave rectified and smoothed EMG are given.



Table 1.a: Inter-subject-A (EMG Modell)

.. Force Predictions
Training
Sets2 rectified & smoothed EMG rectified EMG
(speed) com.coeff | RMSerror’ | comcoeff | RMS error’
04 m/s 0.95 2.10 (9%) 094 2.69 (11%)
08 m/s 0.96 2.74 (7%) 0.95 3.32 (9%)
1.2 m/s 092 4.63 (11%) 091 4.73 (11%)

1. The input to the network is the EMG signal.

2. Training data are from cat 1 and 2.

3. The unit of values is Newton, and the percentage of the corresponding maximum
peak force also is shown in this column.

Table 1.b: Inter-subject-A (EMG* Modell)

.. Force Predictions
Training
Sets2 rectified & smoothed EMG rectified EMG
(speed) corrcoeff | RMSerror’ | comcoeff | RMS error
—_—
0.8 m/s 0.96 2.84 (7%) 0.93 3.73 (10%)
12 m/s 0.91 4.73 (11%) 091 4.82 (11%)

1. The input to the network is the EMG signal and the knee and ankle angles.
2. Training data are from cat 1 and 2.
3. The unit of values is Newton, and the percentage of the corresponding maximum

peak force also is shown in this column.
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4.1.1 Inter-subject-A tests:Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
walking at (a) 0.4 m/s, when the network was trained with the full-wave
rectified and smoothed EMG and muscular force data from catl and 2
walking at 0.4 m/s; (b) 0.8 m/s, when the network was trained with the
full-wave rectified and smoothed EMG and muscular force data from cat
1 and 2 walking at 0.8 m/s; (c) 1.2 m/s, when the network was trained
with the full-wave rectified and smoothed EMG and muscular force data
from catl and 2 walking at 1.2 m/s.
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Figure 4.1.2 Inter-subject-A tests:Comparisons of the predicted forces

(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
walking at (a) 0.4 m/s, when the network was trained with the full-wave
rectified EMG and muscular force data from catl and 2 walking at 0.4
m/s; (b) 0.8 m/s, when the network was trained with the full-wave rect-
ified EMG and muscular force data from catl and 2 walking at 0.8 m/s;

(c) 1.2 m/s, when the network was trained with the full-wave rectified
EMG and muscular force data from catl and 2 walking at 1.2 m/s.
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Figures 4.1.1 and 4.1.2 show comparisons of the predicted and the
actual gastrocnemius forces for cat 3 walking at 0.4 m/s (Figure 4.1.1(a)
and 4.1.2(a)), 0.8 m/s (Figure 4.1.1(b) and 4.1.2(b)),and 1.2 m/s (Figure
4.1.1(c) and 4.1.2(c)), respectively. The corresponding coefficients of
cross-correlation are shown in the second and fourth column of Table 1.a.
The corresponding RMS errors between the predicted and actual forces
are shown in the third and fifth column of Table 1.a. For the test shown
in Fig.4.1.1, the predicted and actual force curves were similar, and the
root mean square (RMS) errors were 2.1 N (at 0.4 m/s) with the maximum
peak force 23.2 N, 2.7 N (at 0.8 m/s) with the maximum peak force 38.4
N, and 4.6 N (at 1.2 m/s) with the maximum peak force 42.2 N,
respectively. The correlation coefficients were generally better for walking
at 0.4 and 0.8 m/s compared to walking at 1.2 m/s. After the force
predictions for the first three steps, the differences in the peak magnitude
between predicted and actual forces were generally large (>10%) when the
peak of the current step was much lower (>10%) than the peak of the
previous step at a speed of 0.4 m/s; and when the peak of the current
step was much larger (>10%) than the peak of the previous step at speeds
of 0.8, 1.2 m/s. There was a shift to the left of the predicted compared to
the actual forces in several steps at a speed of 1.2 m/s. For the test shown
in Fig. 4.1.2, the predicted force curves included more noise, especially
for walking at 0.4 m/s, compared to the predicted forces in Fig. 4.1.1.
This indicates that the high frequency content in the raw EMG signal is

an unwanted component of the input to the network for the muscle force
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4.1.3 Inter-subject-A tests:Comparisons of the predicted forces
(dashed-line) with the actual t%ast:rocuex:nius forces (solid-line) for cat 3
walking at (a) 0.8 m/s, when the network was trained with the full-wave
rectified and smoothed EMG plus the knee and ankle angle-time
histories, and muscular force data from catl and 2 walking at 0.8 m/s:

(b) 1.2 m/s, when the network was trained with the full-wave rectified
and smoothed EMG plus the knee and ankle angle-time histories,
and muscular force data from catl and 2 walking at 1.2 m/s.

45



iy
o

FORCE (N)

(=)

FORCE (N)

TIME (s)

4.1.4 Inter-subject-A tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
walking at (a) 0.8 m/s, when the network was trained with the full-wave
rectified EMG plus the knee and ankle angle-time histories, and mus-
cular force data from catl and 2 walking at 0.8 m/s. (b) 1.2 m/s, when
the network was trained with the full-wave rectified EMG plus the knee
and ankle angle-time histories,and muscular force data from catl and
2 walking at 1.2 m/s.
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Figures 4.1.3 and 4.1.4 show comparisons of the predicted and the
actual gastrocnemius forces for cat 3 walking at 0.8 m/s (Figure 4.1.3(a)
and 4.1.4(a)),and 1.2 m/s (Figure 4.1.3(b} and 4.1.4(b)), respectively for
the tests in Table 1.b. The correlation coefficients shown in Fig 4.1.3 are
similar to those shown in Fig. 4.1.1, and so are the prediction results
shown in Fig. 4.1.2 and 4.1.4. The results indicate that adding the
kinematics to the input for the ANN did not improve the force predictions

in these tests.

4.2 Inter-subject-B tests

Force predictions for the inter-subject-B tests are shown in Tables
2.a, and 2.b. The coefficients of cross-correlation ranged from 0.73-0.95
(the third and fifth column of Tables 2.a and 2.b). The RMS errors are
shown in the fourth and sixth column of Tables 2.a and 2.b, respectively.
The training data were taken from cat 1 and 2 and the muscle predictions
were made for cat 3 for walking at speeds of 0.4, 0.8, 1.2 m/s respectively.
For the predictions shown in Table 2.a, only EMG signal was used as

input (EMG Model); for the predictions shown in Table 2.b, EMG plus

knee and ankle angles were used as input (EMG* Model). Results are
shown for the full-wave rectified and the full-wave rectified and smoothed
EMG. Adding the kinematics to the input improved the correlation
coefficients and decreased the RMS errors in the tests using the rectified
and smoothed EMG as input but not in the tests usi;é only the rectified

EMG as input (Table 2.a).



Table 2.a: Inter-subject-B tests (EMG Model!)

Training Sets
(speed)

All available
data from catl
and 2

Force Predictions
rectified & smoothed .
speed EMG rectified EMG
(m/s)
corr.coef. | RMS error® | corrcoef. | RMS error?
e e e e e —————

04 0.73 5.29 (23%) 0.87 3.67 (16%)
0.8 0.88 5.29 (14%) 094 3.90 (10%)

1.2 0.86 6.17 (15%) 0.93 442 (10%)

1. The input to the network is the EMG signal.
2. The unit of values is Newton, and the percentage of the corresponding maximum peak force

also is shown in this column.

Table 2.b: Inter-subject-B tests (EMG* Model)

Training Sets

All available
data from catl
and 2

Force Predictions
rectified & smoothed )

speed EMG rectified EMG

(m/s)
corr.coeff. | RMS emmor?® | corr.coeff. | RMS error®

04 0.79 5.03 (22%) 0.83 4.51 (19%)
0.8 0.95 3.92 (10%) 093 4.57 (12%)
1.2 0.85 6.00 (14%) 091 5.09 (12%)

1. The input to the network is the EMG signal and the knee and ankle angles.
2. The unit of values is Newton, and the percentage of the corresponding maximum peak force

also is shown in this column.
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4.2.1 Inter-subject-B tests:Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line} for cat 3
walking at (a) 0.4 m/s; (b) 0.8 m/s; (¢c) 1.2 m/s, when the network was
trained with all available full-wave rectified and smoothed EMG and mu-
scular force from cat 1 and 2.

49



H
o

FORCE (N)
N
o

TIME (s)

4.2.2 Inter-subject-B tests:Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
ing at (a) 0.4 m/s; (b) 0.8 m/s; (c) 1.2 m/s, when the network was
trained with all available full-wave rectifitd EMG and muscular force
from cat 1 and 2.
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Figure 4.2.3 Inter-subject-B tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
walking at (a) 0.4 m/s; (b) 0.8 m/s; (c) 1.2 m/s, when the network was
trained with all available full-wave rectified and smoothed EMG plus the
knee and ankle angle-time histories, and muscular force data from
catl and 2. ’
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4.2.4 Inter-subject-B tests:Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3
wa.lkg at (a) 0.4 m/s; (b) 0.8 m/s; (c) 1.2 m/s, when the network was
trained with all available full-wave rectified plus the knee and ankle

angle-time histories, and muscular force data from cat 1 and 2.
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Figures 4.2.1 and 4.2.2 show the comparison between the predicted and
the actual forces for walking at 0.4 m/s, 0.8 m/s, and 1.2 m/s (Figure
4.2.1(a) and 4.2.2(a), 4.2.1(b) and 4.2.2(b), 4.2.1(c) and 4.2.2(c),
respectively), when the network was trained with all available data from cat
1 and 2. Input for these tests was the full-wave rectified and smoothed EMG
signal (Figure 4.2.1), or the full-wave rectified EMG signal (Fig. 4.2.2). The
coefficients of cross-correlation and RMS errors of the results are listed in
Table 2.a. While the coefficients of cross-correlation and RMS errors of the
results shown in Figures 4.2.3 and 4.2.4 are listed in Table 2.b. The time
histories of the predicted forces deviate systematically from those of the
actual forces. The RMS prediction errors were generally high (>12% of the
corresponding maximum peak force). Comparing the results in Figure 4.2
with the results in Figures 4.1, it is apparent that force predictions for the
inter-subject-A tests were better than the corresponding predictions for the
inter-subject-B tests. Therefore, increasing the number of training
examples with non-specific walking trials decreased the predictive ability of

the ANN in the gastrocnemius muscles.

4.3 Intra-subject tests
Force predictions for the intra-subject tests are shown in Table 3.a, and

3.b.
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Fable 3.a: Intra-subject tests (EMG Modell)

Force Predictions
Training Sets? rectified & smoothed rectified EMG
(speed) | Peed EMG
(m/s)
corr.coeff. | RMS error® | comrcoeff. | RMS error®
08,12,1.8 m/s |04 0.87 3.96 (17%) 0.85 4.07 (18%)
04,1.2,1.8 m/s | 0.8 0.93 425 (11%) 0.93 4.11 (11%)
04,08,1.8m/s | 1.2 0.92 4.49 (11%) 0.92 4.55 (11%)
04,08,1.2m/s | 1.8 0.88 5.70 (14%) 0.90 5.20 (12%)

1. The input to the network is the EMG signal.

2. Training data are from cat 3.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak force also
is shown in this column.

[able 3.b: Intra-subject tests (EMG* Modell)

Force Predictions
Training Sets2 rectified & smoothed rectified EMG
(speed) speed EMG
(m/s)
corr.coeff. | RMS error® | comrcoeff | RMS error
08,1.2,1.8 m/s | 04 0.83 4.61 (20%) 0.80 4.71 (20%)
04,12,1.8 m/s |08 0.93 4.39 (11%) 0.93 4.08 (11%)
04,08,1.8 m/s | 1.2 0.90 492 (12%) 0.90 4.89 (12%)
04,08,1.2m/s | 1.8 0.88 5.74 (14%) 0.89 5.52 (13%)

1. The input to the network is the EMG signal and the knee and ankle angles

2. Training data are from cat 3.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak force also
is shown in this column. .
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4.3.1 Intra-subject tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repre-
sentative cat walking at (a) 0.4 m/s, when the network was trained with
the full-wave rectified and smoothed EMG and force data from the same
cat while walking/trotting at speeds of 0.8, 1.2, 1.8 m/s; (b) 0.8 m/s,
when the network was trained with the full-wave rectified and smoothed
EMG and force data from the same cat while walking/trotting at speeds of
0.4, 1.2, 1.8 m/s: (c) 1.2 m/s, when the network was trained with the full
-wave rectified and smoothed EMG and force data from the same cat while
walking/trotting at speeds of 0.4, 0.8, 1.8 m/s; (d) 1.8 m/s, when the net-
work was trained with the full-wave rectified and smoothed EMG and force
data from the same cat while walking at speeds of 0.4,0.8,1.2, m/s.
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4.3.2 Intra-subject tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repr-
esentative cat walking at (a) 0.4 m/s, when the network was trained with
the full-wave rectified EMG and force data from the same cat while walk-
ing/trotting at speeds of 0.8, 1.2, 1.8 m/s;(b) 0.8 m/s, when the network
was trained with the full-wave rectified EMG and force data from the same
cat while ing/trotting at speeds of 0.4, 1.2, 1.8 m/s; (c) 1.2 m/s,
when the network was trained with the full-wave rectified EMG and force
data from the same cat while walking/trotting at speeds of 0.4, 0.8, and
1.8 m/s; (d) 1.8 m/s, when the net work was trained with the full-wave
rectified EMG and force data from the same cat while walking at speeds
of 0.4, 0.8,1.2, m/s.
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4.3.3 Intra-subject tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repr-
esentative cat wa]]nne(f at (@) 0.4 m/s,when the network was trained with
the full-wave rectified and smoothed EMG plus the knee and ankle
angle-time histories, and muscular force data from the same cat while

ing/trotting at speeds of 0.8, 1.2, 1.8 m/s; (b) 0.8 m/s, when the
network was trained with the full-wave rectified and smoothed EMG plus
1f:rhe kgfe and ankle angle—tim/e histories;p::ad n}usaﬂar force data
om the same cat while walking/trotting at s of 0.4, 1.2, 1.8 m/s;
(c) 1.2 m/s, when the network was trained with the full -wave rectified
and smoothed EMG plus the knee and ankle angle-time histories,
and muscular force data from the same cat while walking/trotting at
speeds of 0.4, 0.8, 1.8 m/s; (d) 1.8 m/s, when the network was trained
with the full-wave rectified and smoothed EMG plus the knee and
ankle angle-time histories, and muscular force data from the same
cat while walking at speeds of 0.4,0.8,1.2, m/s.
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4.3.4 Intra-subject tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repre-
sentative cat walking at (a) 0.4 m/s, when the network was trained with
the full-wave rectified EMG plus the knee and ankle angle-time hist-
ories, and muscular force data from the same cat while walking/trotting
at speeds of 0.8, 1.2, 1.8 m/s; (b) 0.8 m/s,when the network was trained
with the full-wave rectified EMG plus the knee and ankle angle-time
histories, and muscular force data from the same cat while walking /
trottig% at speeds of 0.4, 1.2,1.8 m/s; (c) 1.2 m/s, when the network was
trained with the full-wave rectified EMG plus the knee and ankle angle-
time histories,and muscular force data from the same cat while walking
/trotting at speeds of 0.4,0.8,1.8 m/s; (d) 1.8 m/s,when the network was
trained with the full-wave rectified EMG plus the knee and ankle angle-
time histories,and muscular force data from the same cat while walking
at speeds of 0.4,0.8,1.2, m/s.

Figures 4.3.1 and 4.3.2, respectively show the predicted forces for one
representative cat walking/trotting at one speed while the network was
trained with the full-wave rectified and smoothed EMG (Figure 4.3.1) or
the full-wave rectified EMG (Figure 4.3.2) and force data from the same
cat walking/trotting at the three remaining speeds. The coefficients of

cross-correlation for the experiments shown in Figures 4.3.1 and 4.3.2
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are listed in the third and fifth column of Table 3.a, respectively. The
cross-correlation coefficients for the experiments shown in Figures 4.3.3
and 4.3.4 are listed in the third and fifth column of Table 3.b. The
corresponding RMS prediction errors shown in Figure 4.3 are listed in the
fourth and last column of Tables 3.a and 3.b, respectively. The root mean
square errors shown in Figure 4.3.1 are 4.0 N (at 0.4 m/s) with the
maximum peak force of 23.2 N, 4.3 N (at 0.8 m/s) with the maximum
peak force of 38.4 N, 4.5 N (at 1.2 m/s) with the maximum peak force of
42.2 N, and 5.7 N (at 1.8 m/s) with the maximum peak force of 43.0 N,
respectively.

The coefficients of cross-correlation were higher (>0.9) when the speed
for the force predictions was intermediate compared to the situation when
the speed for the force predictions was higher or lower than the speeds
used for training the network. Differences in the peak force were larger at
0.4 than at 0.8 or 1.2 m/s (compare Figure 4.3.1a (0.4 m/s) to Figure
4.3.1b,c (0.8 and 1.2 m/s), respectively). The RMS errors ranged from
11%-20% of the corresponding maximum peak forces. There is a
systematic shift to the right of the time histories in the descending part
of the predicted compared to the actual force time histories at 1.8 m/s
(Figure 4.3.1(d), 4.3.2(d), 4.3.3(d), and 4.3.4(d)). and a systematic shift to
the left for the corresponding comparison at 0.4 m/s (Figure 4.3.1(a),
4.3.2(a), 4.3.3(a), and 3.4(a)). The shifts resulted in low (<0.90)
coefficients of cross-correlation and high RMS errors (12%-14% of the

corresponding maximum peak forces) for walking at 1.8 m/s.



4.4 Intra-session tests
Force predictions for the intra-session tests are shown in Tables 4.a,

and 4.b.

Table 4.2: Intra-session tests (EMG Modell)

Force predictions
Training rectified & smoothed .
Sets2 EMG rectified EMG
(steps) steps
corr.coeff. | RMS error’ | corr.coeff. | RMS error
0-2.5 10-14 0.95 3.31 (9%) 0.89 5.07 (14%)
0-3.5 10-14 0.95 3.41 (10%) 0.93 4.26 (12%)
04.5 10-14 0.97 2.34 ( 7%) 0.91 4.44 (12%)
0-5.5 10-14 0.98 2.36 (7%) 0.92 441 (12%)
0-6.5 10-14 0.98 2.21 (6%) 0.93 3.96 (11%)
0-7.5 10-14 0.97 2.44 ( 1%) 0.92 4.36 (12%)
0-8.5 10-14 0.97 2.55 (7%) 091 4.42 (12%)
0-9.5 10-14 0.97 2.53 (7%) 0.94 3.57 (10%)

1. The input to the network is the EMG signal.

2. Training data are from an increasing number of step cycles of a representative cat walking
at 0.8 m/s.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak
force also is shown in this column



Table 4.b: Intra-session tests (EMG* Modell)
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Force Predictions
Training rectified & smoothed -
Sets? EMG rectified EMG
(steps) steps
comcoeff. | RMS error® | com.coeff. | RMS error
ois |14 097 |306(9%) |02 | 43B(2%) |

0-2.5 10-14 0.97 2.60 (7%) 0.93 3.98 (11%)
0-3.5 10-14 0.96 3.11 (9%) 0.94 3.74 (10%)
0-4.5 10-14 0.97 2.37 (7%) 0.96 3.09 (9%)
0-5.5 10-14 0.98 2.34 (7%) 0.96 3.09 (9%)
0-6.5 10-14 0.98 2.15 (6%) 0.95 3.39 (10%)
0-7.5 10-14 0.97 2.49 (7%) 0.94 3.52 (10%)
0-8.5 10-14 0.97 2.45 (7%) 0.96 2.99 (9%)
0-9.5 10-14 0.98 2.34 (7%) 0.96 290 (8%)

1. The input to the network is the EMG signal and the knee and ankle angles.

2. Training data are from an increasing number of step cycles of a representative cat walking

at 0.8 m/s.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak
force also is shown in this column.

Force predictions for the intra-session tests were good when the EMG

signal was full-wave rectified and smoothed (the third and fourth

columns of Table 4.a and 4.b). The coefficients of cross-correlation for the

tests ranged from 0.95-0.98 (the third column of Table 4.a and 4.b) and

the RMS prediction errors ranged from 6%- 9% of the maximum peak

force of 35.2 N (the fourth column of Table 4.a and 4.b), when the

network was trained with information of 1.5 steps or more.
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4.4.1 Intra-session tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for the last
five steps of a representative cat at 0.8 m/s, when the network was train-
ed using the full-wave rectified and smoothed EMG and force data from
the first 1.5 (a), 2.5 (b), 3.5 (c). 4.5 (d). 5.5 (e}, 6.5 (f), 7.5 (g), 8.5 (h), and

9.5 (i) steps of that session.
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4.4.2 Intra-session tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for the last
five steps of a representative cat at 0.8 m/s, when the network was train-
ed using the full-wave rectified EMG and force data from the first 1.5 (a).
2.5 (b), 3.5 (c), 4.5 (d). 5.5 (e), 6.5 (), 7.5 (g). 8.5 (h), and 9.5 (i) steps of

that session.
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Figure 4.4.8 Intra-session tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for the last
five steps of a representative cat at 0.8 m/s, when the network was train-
ed using the full-wave rectified and smoothed EMG plus the knee and

ankle

angle-time histories, and force data rom the first. 1.5 (a), 2.5 (b),

3.5 (c),4.5 (d), 5.5 (e), 6.5 (f),7.5 (g).8.5 (h).and 9.5 (i) steps of that session.



69

(a) (b) (c)
40 T ‘ | 40 \ 40 N ]
z |l '
w
520 20 20
e
o
il 0 0
0 1 0 1 0 1 2
(d) (e) (f)
40 40 40
—_ )
<
3 20 20 20
c 1
(o]
) 0 0
0 1 0 1 0 1 2
(9) (h) (i)
40 40 40
‘z" ¢
w
020 20} 20
o
T
% 1 2 % 1 2 °o 1 2
TIME (s) TIME (s) TIME (s)

4.4.4 Intra-session tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for the last
five steps of a representative cat at 0.8 m/swhen the network was trained
using the full-wave rectified EMG plus the knee and ankle angle-time
histories, and force data from the first 1.5 (a), 2.5 (b), 3.5 (c).4.5 (d), 5.5
(e), 6.5 (f), 7.5 (g). 8.5 (h), and 9.5 (i) steps of that session
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Figures 4.4.1(a)-(i) and 4.4.2(a)-(i) show the comparisons of the
predicted and the actual forces for the last five steps of a representative
cat in one session when the network was trained using the full-wave
rectified and smoothed EMG or the full-wave rectified EMG, and force
data from an increasing number of steps (1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5,
8.5, and 9.5 steps) of that session, respectively. The corresponding
coefficients of cross-correlation for the tests are shown in the third and
fifth columns of Table 4.a. The corresponding RMS errors are shown in
the fourth and sixth columns of Table 4.a.

Figures 4.4.3(a)-(i) and 4.4.4(a)-(i) show the prediction results listed
in Table 4.b. The coefficients of cross-correlation were higher (>0.95)
when the network was trained using the full-wave rectified and smoothed
EMG (the third column of Table 4.a and 4.b) compared to using the full-
wave rectified and unsmoothed EMG (the fifth column of Table 4.a and
4.b). Also, the RMS errors were lower (<9% of the maximum peak force)
when the network was trained using the smoothed (the fourth column of
Table 4.a and 4.b) compared to using the unsmoothed EMG (the last
column of Tables 4.a and 4.b). For the tests shown in Figures 4.4.2 and
4.4.4, the predicted force curves included more noise compared to the
predicted forces in Figures 4.4.1 and 4.4.3.

For the results shown in Figures 4.4.1 and 4.4.3, the coefficient of
cross-correlation ranged from 0.97-0.98, the RMS errors ranged from 2.2-
2.5 N with the maximum peak force of 35.2 N, and the time histories of the

predicted and actual forces matched almost perfectly when the number
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of steps used for the training session was 4.5 or more (Figure 4.4.1 and

4.4.3).



Chapter five: Force Predictions for the Cat Soleus

5.1 Inter-subject-A tests

Soleus force predictions for the inter-subject-A tests are shown in
Tables 5.a, and 5.b. All training examples were from cat 1 and 2 and the
force predictions were made for cat 3. The coefficients of cross-correlation
for the tests ranged between 0.93-0.96 (the second and fourth columns
of Table 5.a and 5.b). The corresponding RMS errors between the
predicted and actual force were 11% of the corresponding maximum peak
force of 14.8 N at 0.4 m/s, 12% of the corresponding maximum peak force
of 16.7 N at 0.8 m/s, and 10% of the corresponding maximum peak force
of 17.3 N at 1.2 m/s (the third and fifth columns of Tables 5.a and 5.b).
In each table, the results for the full-wave rectified EMG (the fourth-fifth
columns of the Table}, and the full-wave rectified and smoothed EMG (the
second-third columns of the Table) are given.

Figures 5.1.1 and 5.1.2 show comparisons of the predicted and the
actual soleus forces for cat 3 walking at 0.4 m/s (Figurés 5.1.1(a) and
5.1.2(a)), 0.8 m/s (Figures 5.1.1() and 5.1.2(b)),and 1.2 m/s (Figures
5.1.1(c) and 5.1.2(c)), respectively. The corresponding coefficients of
cross-correlation are shown in the second and fourth columns of Table
5.a. The corresponding RMS errors between the predicted and actual
forces are shown in the third and fifth column of Table. 5.a. Figures 5.1.3
and 5.1.4 show the results listed in Table 5.b. The figures and statistical



Table 5.a: Inter-subject-A (EMG Modell)

Force prediction

Training
Sets?
(speed) corr.coeff. | RMSerror’ | corrcoeff. | RMS error®
W

rectified & smoothed EMG rectified EMG

04 m/s 0.96 1.61 (11%) 0.95 1.79 (12%)
0.8 m/s 0.94 221 (13%) 095 2.01 (12%)
12 m/s 0.93 1.83 (10%) 0.93 1.81 (10%)

1. The input to the network is the EMG signal.

2. Training data are from cat 1 and 2.

3. The unit of values is Newton, and the percentage of the corresponding maximum
peak force alsc is shown in this column.

Table 5.b: Inter-subject-A (EMG* Model')

Force prediction

Training

Sets®
(speed) corrcoeff. | RMSemor | corrcoeff. | RMS error

04 m/s 0.95 1.69 (11%) 0.95 1.82 (12%)

0.8 m/s 0.94 2.32 (14%) 0.93 2.25 (13%)

rectified & smoothed EMG rectified EMG

1.2 m/s 0.94 1.75 (10%) 0.93 1.84 (11%)

1. The input to the network are the EMG signal and the knee and ankle angles.

2. Training data are from cat 1 and 2.

3. The unit of values is Newton, and the percentage of the corresponding maximum
peak force also is shown in this column.
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Figure 5.1.1 Inter-subject-A tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s, when the network was trained with the full-wave rect-
ified and smoothed EMG and muscular force data from the remaining
two cats walking at 0.4 m/s; (b) the corresponding results for walking at
0.8 m/s; (c) the corresponding results for walking at 1.2 m/s.
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5.1.2 Inter-subject-A tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s, when the network was trained with the full-wave rect-
ified EMG and muscular force data from the remaining two cats walking
at 0.4 m/s; (b) the corresponding results for walking at 0.8 m/s; (c) the
corresponding results for walking at 1.2 m/s.
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Figure 5.1.3 Inter-subject-A tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s, when the network was trained with the full-wave rect-
ified and smoothed EMG plus the knee and ankle angle-time histories
and force data from the remaining two cats walking at 0.4 m/s; (b) the
corresponding results for walking at 0.8 m/s; (c) the corresponding
results for wa%lﬁng at 1.2 m/s.
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results showed that the predicted and actual force curves were similar for
walking at speeds of 0.8, 1.2 m/s. The peak force amplitudes matched
better for walking at 0.8 and 1.2 m/s compared to walking at 0.4 m/s.
The differences in the peak magnitude between predicted and actual
forces were generally large (>109%) when the peak of the current step was
much lower (>10%) than the peak of the previous step or the following
step at a speed of 0.4 m/s: and when the peak of the current step was
much larger (>10%) than the peak of the previous step at speeds of 0.8,
1.2 m/s. There was a systematic shift to the right of the descending part
of the predicted compared to the actual force at a speed of 0.8 m/s
(Figures 5.1.1b, 5.1.2b, 5.1.3b, and 5.1.4b). The shifts resulted in
increasing RMS errors (12%-14% of the corresponding max:mum peak
forces) for walking at 0.8 m/s. The predicted force curves shown in Fig.
5.1.2 and 5.1.4 included more noise, especially for walking at 0.4 m/s,
compared to the predicted forces in Fig. 5.1.1 and 5.1.3. The results
indicated that adding the knee and ankle angle time histories to the input

of the ANN did not improve the force predictions in these tests.

5.2 Inter-subject-B tests

Soleus force predictions for the inter-subject-B tests are shown in
Tables 6.a, and 6.b. The coefficients of cross-correlation ranged between
0.91-0.94 (the second and fourth columns of Table 6.a and 6.b). The

corresponding RMS errors between the predicted and actual forces



ranged from 1.65 N to 2.17N (the third and fifth columns of the Table 6.a
and 6.b). The training data were taken from cat 1 and 2 and the muscle
predictions were made for cat 3 for walking at speeds of 0.4, 0.8, 1.2 m/
s respectively. For the predictions shown in Table 6.a. only EMG signal

was used as input (EMG Model); for the predictions shown in Table 6.b,

EMG plus knee and ankle angle time histories were used as input (EMG”
Model). Results are shown for the full-wave rectified and the full-wave
rectified and smoothed EMG. Adding the kinematics to the input of the
ANN (Table 6.b) did not improve the correlation coefficients and RMS
errors between the predicted and actual forces in these tests (Table 6.a).
Figures 5.2.1 and 5.2.2 show the comparison between the predicted
(dashed lines) and the actual (solid lines) forces for walking at 0.4 m/s
(Fig. 5.2.1(a) and 5.2.2(a)), 0.8 m/s (Fig. 5.2.1(b) and 5.2.2(b)), and 1.2 m/
s (Figure 5.2.1(c) and 5.2.2(c)). respectively, when the network was
trained with all available data from cats 1 and 2. Input for these tests was
the full-wave rectified and smoothed EMG signal (Figure 5.2.1), or the
full-wave rectified, unsmoothed EMG signal (Fig. 5.2.2). The coeflicients
of cross-correlation and RMS errors are listed in Table 6.a. Figures 5.2.3
and 5.2.4 show the results listed in Table 2.b. The predictions of the peak
magnitudes were generally better for walking at 0.8 m/s and 1.2 m/s
than for walking at 0.4 m/s. Typically, the peak magnitudes were
overestimated at speeds of walking of 0.4 m/s, and underestimated at 0.8

m/s. Comparing the results shown in Figure 5.2 with those shown in
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Figure 5.1, soleus force predictions for the inter-subject-A tests were
slightly better than the corresponding predictions for the inter-subject-B
tests. Therefore, increasing the number of training examples with non-

specific walking trials decreased the predictive ability of the ANN.

Table 6.a: Inter-subject-B (EMG Modell)

Force Prediction
Training .
rectified & smoothed .
Sets speed EMG rectified EMG

(speed) (m/s)

corrcoeff | RMS error® | corrcoeff | RMS error®
1.91 (13%) 0.91 2.17 (15%)

All availa- | 04 0.92

ble data

fromcatl | 08 0.94 1.82(11%) | 093 2.01 (12%)
and 2 1.2 0.92 2.08 (12%) | 093 1.73 (10%)

1. The input to the network is the EMG signal.
2. The unit of values is Newton, and the percentage of the corresponding maximum peak

force also is shown in this column.

Table 6.b: Inter-subject-B (EMG* Modell)

Force Prediction
Training rectified & smoothed .
Sets speed EMG rectified EMG.
(m/s)
corr.coeff { RMS error? | corr.coeff | RMS error?

All availa- | 0.4 091 2.04 (14%) 091 2.14 (14%)
ble data

fromcat 1, 0.8 094 1.67 (10%) 093 2.01 (12%)
cat2 1.2 092 1.94 (11%) 094 1.65 (10%)

1. The input to the network are the EMG signal and the knee and ankle angles.
2. The unit of values is Newton, and the percentage of the corresponding maximum peak
force also is shown in this column.
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5.2.1 Inter-subject-B tests: Comparisons of the predicted forces
{dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s; (b) 0.8 m/s;(c)1.2 m/s, when the network was trained
with all available full-wave rectified and smoothed EMG and muscular
force data from cat 1 and 2.
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5.2.2 Inter-subject-B tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s; (b) 0.8 m/s;(c)1.2 m/s, when the network was trained
with1 all 3vgjlable full-wave rectified EMG and muscular force data from
cat 1 and 2. .
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5.2.3 Inter-subject-B tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s; (b) 0.8 m/s;(c)1.2 m/s, when the network was trained
with all available full-wave rectified and smoothed EMG plus the knee
and ankle angle-time histories, and force data from cat 1 and 2.
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Figure 5.2.4 Inter-subject-B tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for one cat walk-
ing at (a) 0.4 m/s; (b) 0.8 m/s;(c)1.2 m/s, when the network was trained
with all available full-wave rectified EMG plus the knee and ankle angle
time histories, and force data from cat 1 and 2.
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5.3 Intra-subject tests

Cable 7.a: Intra-subject (EMG Model})

Force prediction
Training S ets2 rectified & smoothed rectified EMG
(speed) speed EMG
(m/s)
comr.coeff. | RMS error® | comcoeff. | RMS error
08,12,18m/s |04 0.75 3.52 (24%) 0.79 3.12 (21%)
04,12,18m/s |08 0.87 2.53 (15%) 0.89 2.21 (13%)
04,08,18m/s |12 0.91 1.98 (11%) 0.92 2.05 (12%)
04,08,12m/s | 1.8 0.84 2.63 (15%) 0.87 2.24 (13%)

1. The input to the network is the EMG signal.

2. Training data are from cat 3.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak force also
is shown in this column.

[able 7.b: Intra-subject (EMG* Modell)

Force prediction
Training Sets’ 4 ‘“ﬁﬁ"d&g‘m‘he‘i rectified EMG
(speed) spee

(m/s)
comr.coeff. | RMS error® | corrcoeff. | RMS error

==_—-======_—_—===F=
08,12,18m/s | O. 0.66 4.08 (27%) 0.75 341 (23%)

04,1.2,18m/s |08 0.94 1.68 (10%) |093 1.88 (11%)
04,08, 18 m/s | 1.2 093 194(11%) | 093 1.70 (10%)
04,08, 12m/s | 1.8 0.85 257(15%) | 0.88 2.26 (13%)

1. The inputs to the network are the EMG signal and the knee and ankle angles

2. Training data are from cat 3.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak force also
is shown in this column.
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5.3.1 Intra-subject tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for a represent-
tative cat walking at (a) 0.4 m/s,when the network was trained with the
full-wave rectified and smoothed EMG and force data from the same cat
while walking/trotting at speeds of 0.8, 1.2, 1.8 m/s; (b) 0.8 m/s, when
the network was trained with the full-wave rectified and smoothed EMG
and force data from the same cat while walking/trotting at speeds of
0.4, 1.2, 1.8 m/s; (c) 1.2 m/s, when the network was trained with the
full-wave rectified and smoothed EMG and force data from the same cat
while walking/trotting at speeds of 0.4, 0.8, 1.8 m/s; (d) 1.8 m/s, when
the network was trained with the full-wave rectified and smoothed EMG
an/d force data from the same cat while walking at speeds of 0.4, 0.8,1.2
m/s.
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(d): 1.8 m/s
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5.3.2 Intra-subject tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for a represent-
ative cat walking at (a) 0.4 m/s,when the network was trained with the
full-wave rectified EMG and force data from the same cat while walkin,
/trotting at speeds of 0.8, 1.2, 1.8 m/s; (b) 0.8 m/s, when the networ
was trained with the full-wave rectifietd EMG and force data from the
same cat while walking/trotting at speeds of 0.4,1.2,1.8 m/s;(c)1.2 m/s,
when the network was trained with the full-wave rectified EMG and
force data from the same cat while walking/trotting at speeds of 0.4.0.8.
1.8 m/s; (d) 1.8 m/s, when the network was trained with the full-wave
rectified EMG and force data from the same cat while walking/trotting
at speeds of 0.4,0.8,1.2 m/s.
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5.3.3 Intra-subject tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for a represen-
tative cat walking at (a) 0.4 m/s, when the network was trained with
the full-wave rectified and smoothed EMG plus the knee and ankle
angle-time histories,and force data from the same cat while walking
/trotting at speeds of 0.8,1.2,1.8 m/s; (b) 0.8 m/s, when the network
was trained with the full-wave rectified and smoothed EMG plus the
knee and ankle angle-time histories, and force data from the same
cat while walkin, %{/trothng at speeds of 0.4, 1.2,1.8 m/s: (c) 1.2 m/s,
when the network was trained with the full-wave rectified and smoot-
hed EMG plus the knee and ankle angle-time histories, and force
data from the same cat while walking /trotting at speeds of 0.4, 0.8,
1.8 m/s; (d) 1.8 m/s,when the network was trained with the full-wave
rectified and smoothed EMG plus the knee and ankle angle-time
histories, and force data from the same cat while walking/trotting at
speeds of 0.4,0.8,1.2 m/s.
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(d): 1.8 m/s
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5.3.4 Intra-subject tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for a represen-
tative cat walking at (a) 0.4 m/s, when the network was trained with
the full-wave rectified EMG plus the knee and ankl e angle-time
histories, and force data from the same cat while walking /trotting at
speeds of 0.8,1.2, 1.8 m/s; (b) 0.8 m/s, when the network was trained
with the full-wave rectified EMG plus the knee and ankle angle-time
histories, and force data from the same cat while walking /trotting at
speeds of 0.4, 1.2, 1.8 m/s; (c) 1.2 m/s, when the network was trained
with the full-wave rectified EMG plus the knee and ankle angle-time
histories, and force data from the same cat while walking /trotting at
speeds of 0.4, 0.8, 1.8 m/s; (d) 1.8 m/s,when the network was trained
with the full-wave rectified EMG plus the knee and ankle angle-time
histories, and force data from the same cat while walking /trotting at
speeds of 0.4, 0.8, 1.2 m/s.

Soleus force predictions for the intra-subject tests are shown in
Tables 7.a, and 7.b.

Figures 5.3.1 and 5.3.2 show the predicted soleus forces for one
representative cat walking/trotting at a given speed while the network
was trained with the full-wave rectified and smoothed EMG or the full-

wave rectified and unsmoothed EMG and force data from the same cat
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walking/trotting at the three other speeds. The coefficients of cross-
correlation for the experiments shown in Figures 5.3.1 and 5.3.2 are
listed in the third and fifth columns of Table 7.a, respectively; the
corresponding RMS errors are listed in the fourth and sixth columns of
Table 7.a. The cross-correlation coefficients and RMS errors for the
experiments shown in Figures 5.3.3 and 5.3.4 are listed in Table 7.b. The
time histories of the predicted forces deviated systematically from those
of the actual forces at a speed of 0.4 m/s in all intra-subject prediction
tests. At speeds of 0.8 and 1.2 m/s, the predicted forces underestimated
the actual forces when the input for the ANN was the EMG signal only
(Figure 5.3.1 and 5.3.2). Adding the kinematics to the input for the ANN
improved significantly the cross-correlation coefficients and produced an
improved match of the peak amplitudes between predicted and actual
forces at speeds of 0.8 and 1.2 m/s. The corresponding prediction results
(Figures 5.3.3 and 5.3.4) at 0.8 and 1.2 m/s were almost as good as those
in the inter-subject-A prediction tests. For example, when adding the
kinematic information to the training input of the ANN, the coefficients of
cross-correlation were improved (from 0.87 (Figure 5.1.1b) to 0.94 (Figure
5.1.3b) at 0.8 m/s; from 0.91 (Figure 5.1.1c¢) to 0.93 (Figure 5.1.3c) at 1.2
m/s) (the third column of Table 3b) and the RMS errors decreased (from
2.5 Nto 1.7N at 0.8 m/s, and from 2.0 N to 1.9 N at 1.2 m/s) (the fourth
column of Table 3b). Differences between the predicted and actual peak
forces were larger at a walking speed of 0.4 than at 0.8 or 1.2 m/s. Also,

there was a systematic shift of the time histories to the right on the
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descending part of the predicted compared to the actual force time
histories at 1.8 m/s (Figure 5.3.3(d),and 5.3.4(d)). and a systematic shift
to the left for the corresponding comparison at 0.4 m/s (Figure
5.3.3(a).and 5.3.4(a)). This shift resulted in low (<=0.88} coefficients of
cross-correlation and slightly large RMS errors (>= 13% of the
corresponding maximum peak forces) for walking at 1.8 m/s (Figure
5.3.1(d), 5.3.2(d). 5.3.3(d),and 5.3.4(d)).

5.4 Intra-session tests

Force predictions for the intra-session tests are shown in Table 8.a,
and 8.b.

Soleus force predictions for the intra-session tests were excellent
(Table 8.a, and 8.b) when the EMG signal was full-wave rectified and
smoothed. The coefficients of cross-correlation for the tests ranged from
0.96-0.98 (the third column of Table 8.a and 8.b), and the corresponding
RMS errors were small (<= 8% of the corresponding maximum peak
forces), when trained with information from 1.5 steps or more. Figures
5.4.1(a)-(i) and 5.4.2(a)-(i) show the comparisons of the predicted and the
actual forces for the last five steps of a representative cat in one session
when the network was trained using the full-wave rectified and smoothed
EMG, or the full-wave rectified EMG alone, and force data from an
‘increasing number of steps (1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, and 9.5

steps) of that session, respectively. The corresponding coefficients of
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cross-correlation for the tests are shown in the third and fifth columns of

Table 8.a.

Table 8.a: Intra-session (EMG Modell)

Force prediction
Tl::::g rectified E‘lg\ld ?oothed rectified EMG
(steps) steps |
corr.coeff. | RMSerror® | com.coeff. | RMS error’
0-2.5 10-14 0.97 1.29 (8%) 0.92 1.99 (12%)
0-3.5 10-14 0.97 1.15 (7%) 0.93 1.78 (11%)
0-4.5 10-14 0.97 1.14 ( 7%) 0.94 1.67 (10%)
0-5.5 10-14 0.97 1.08 ( 6%) 0.95 1.52 (9%)
0-6.5 10-14 0.98 1.02 (6%) 0.96 1.37 (8%)
0-7.5 10-14 0.98 1.03 (6%) 0.95 1.51 (9%)
0-8.5 10-14 0.98 1.04 ( 6%) 0.96 1.37 (8%)
0-9.5 10-14 0.98 1.00 ( 6%) 0.96 1.37 (8%)

1. The input to the network is the EMG signal.
2. Training data are from an increasing number of step cycles of a representative cat walking

at 0.8 m/s.
3. The unit of values is Newton, and the percentage of the corresponding maximum peak

force also is shown in this column.
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Table 8.b: Intra-session (EMG* Modell)

Force prediction
Training -
Sets? rectified & smoothed rectified EMG
(steps) steps
corr.coeff. [ RMS error’ | corr.coeff. [ RMS error’

0-1.5 10-14 | 0.96 1.57(9%) |0.91 2.42 (15%)
0-2.5 10-14 | 096 1.55(9%) |0.92 2.05 (12%)
0-3.5 10-14 | 0.97 132(8%) |0.93 1.81 (11%)
0-4.5 10-14 | 097 1.15(7%) | 0.94 1.74 (11%)
0-5.5 10-14 | 0.97 128 (8%) |0.94 1.74 (11%)
0-6.5 10-14 | 0.97 120(8%) |0.94 1.69 (10%)
0-7.5 10-14 | 097 1.16(7%) | 0.94 1.82 (11%)
0-8.5 10-14 | 0.97 1.08 (6%) |0.95 1.59 ( 9%)
0-9.5 10-14 |0.97 1.08(6%) |0.95 1.54 (9%)

1. The inputs to the network arc the EMG signal and the knee and ankle angles.

2. Training data are from an increasing number of step cycles of a representative cat walking
at 0.8 m/s.

3. The unit of values is Newton, and the percentage of the corresponding maximum peak
force also is shown in this column.
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Figure 5.4.1 Intra-session tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for the last five
steps of a representative cat at 0.8 m/s, when the network was trained
using the full-wave rectified and smoothed EMG and force data from the
first 1.5 (a).2.5 (b), 3.5 (c), 4.5 (d).5.5 (e).6.5 (). 7.5 (g).8.5 (h),and 9.5 (i)

steps of that session.
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5.4.2 Intra-session tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for the last five
steps of a representative cat at 0.8 m/s, when the network was trained
using the -wave rectified EMG and force data from the first 1.5 (a),
2.5 (b). 3.5 (c), 4.5 (d), 5.5 (e). 6.5 (f), 7.5 (g), 8.5 (h), and 9.5 (i) steps of

that session.
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5.4.3 Intra-session tests:Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for the last five
steps of a representative cat at 0.8 m/s, when the network was trained
using the full-wave rectified and smoothed EMG plus the knee and

e angle-time histories, and force data from the first 1.5 (a), 2.5
(b), 3.5 (c). 4.5 (d), 5.5 (e), 6.5 {f), 7.5 (g). 8.5 (h),and 9.5 (i) steps of that
session. -
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5.4.4 Intra-session tests: Comparisons of the predicted forces
(dashed-lines) with the actual soleus forces (solid-lines) for the last five
steps of a representative cat at 0.8 m/s, when the network was trained
using the full-wave rectified EMG plus the knee and ankle angle-time
histories, and force data from the first 1.5 (a), 2.5 (b), 3.5 (c), 4.5(d),
5.5 (e), 6.5 (), 7.5 (g). 8.5 (h), and 9.5 (i) steps of that session.
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Figures 5.4.3(a)-(i) and 5.4.4(a)-(i) show the force-time predictions for
the results listed in the third and fifth columns of Table 8.b. The soleus
force predictions were virtually perfect, when the network was trained
using the full-wave rectified and smoothed EMG and when the number of
steps used for training exceeded 4.5 (the third and fourth columns of
Tables 8.a and 8.b). For the tests shown in Figures 5.4.2 and 5.4.4, the

predicted force curves contained more noise compared to the predicted

forces in Figures 5.4.1 and 5.4.3.
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Chapter six: Discussions

The cat gastrocnemius and soleus have different architecture and
mechanical, morphological, and biochemical properties which affect the
force output of these muscles during locomotion. Peak forces and EMGs
of the gastrocnemius increase in parallel with increasing speeds of
locomotion, whereas peak soleus forces remain about constant and
EMGs increase with increasing speeds of locomotion (Herzog et al., 1993).
In this study, we made force predictions for the cat gastrocnemius and
soleus using an ANN approach. The results found here demonstrated that
adequate force predictions could be made for two very different muscles

with different properties functional abilities, and control function.

6.1 Dynamic force predictions for the cat gastrocnemius

The dynamic force predictions made using the ANN were excellent for
the inter-subject-A and the intra-session prediction schemes for the
gastrocnemius. The coefficients of cross-correlation in these tests
exceeded 0.91 and RMS errors were equal to or less than 11% of the
corresponding maximum peak forces in all cases. The time histories of
the predicted forces agreed well with those of the actual forces. These
results suggest that the dynamic EMG-force relationships and the

mechanical properties of gastrocnemius muscles are similar across cats
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walking/trotting at a given speed of locomotion. One limitation of the
inter-subject-A predictions was that the predicted peak forces were over-
or underestimated when the peak force of the target step was much lower
or higher than the peak force of the previous step. This limitation could
probably be eliminated if data from more cats had been available for the
training of the ANN.

For the intra-session predictions of gastrocnemius forces, the force
predictions were bad if the number of steps used for training the ANN was
less than one (i.e. 0.5 steps, Figure 6.1.1). An example where 0.5 steps
were used for training is shown in Figure 6.1.1. The RMS error was 5.1 N
with the maximum peak force of 35.2 N, (14%). However, the force
predictions were excellent and the coefficients of cross-correlation
remained virtually constant (Figure 6.1.2, Tables 4.a, 4.b) once the
number of steps used for training the ANN exceeded five. This result
indicates that the essential features of the EMG-force relationship for a
cat walking at a given speed are captured by the ANN within about five to
six full step cycles.

The inter-subject-B predictions were not as good as the inter-subject-
A predictions for the cat gastrocnemius. The root mean square (RMS)
errors were large (e.g. Figure 4.2.1), about 23% (0.4 m/s), 14% (0.8 m/s),
and 15% (1.2 m/s) of the corresponding maximum peak forces. The
primary difference between the inter-subject-B and the inter-subject-A
schemes was that in the former all speeds of locomotion were used in the

training set, whereas in the latter, only the speed of locomotion for which
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the predictions were made was used in the training set. Therefore, it
appears that the ANN can generalize better when little but specific
training input is provided compared to when a great deal of non-specific

input is added.

Force (N)
S

0 1 2
Time (s)

Figure 6.1.1 Intra-session test:

Comparisons of the predicted forces (dashed-line) with the
actual gastrocnemius forces (solid-line) for the last five steps of
the same representative cat as used in Figure4.41(0.8 m/s),when
the network was trained using the full-wave rectified and smoot-
hed EMG and force data from the first 0.5 steps of that session,
corr.coef.=0.90, RMS error=5.1 N.
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Figure 6.1.2 The dependency of the cross-correlation coefficient on the
number of steps used to train the ANN in the Intra-session prediction
tests for the last five steps of cat 1 walking at 0.8 (solid-line with "*), 1.2
m/s (solid line with "+’),and cat 2 walking at 0.8 m/s (solid-line with "o0’),
calnd l:::t)s walking at 0.4 (dashed-line), 0.8 (solid-line), 1.8 m/s (dashed-
ot-line).
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Figure 6.1.3 (a) The average peak values (marked by *') of the processed

EMG signals measured from a representative cat at speeds of locomotion

of 0.4, 0.8, 1.2, and 1.8 m/s. (b) The average peak force values (marked by

"*') measured from a representative cat at speeds of locomotion of 0.4, 0.8,
1.2, and 1.8 m/s. (c) Comparison of the average itedicted peak force (mark-
ed by '0’) with the average actual peak force (marked by '*) for a representa-

tive cat walking at 0.4 m/s when the network was trained with the full-wave
rectified and smoothed EMG and force data from the same cat while
walking /trotting at speeds of 0.8, 1.2, 1.8 m/s.

The neural network could not predict well the force in the intra-subject
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prediction schemes for the gastrocnemius for walking at 0.4 m/s (e.g.
Figure 4.3.1(a)). The RMS errors (Figure 4.3.1) were 17% (0.4 m/s), 11%
(0.8 m/s), 11% (1.2 m/s), and 13% (1.8 m/s) of the corresponding
maximum peak forces. The predictions were worse for the lowest and
highest speeds of locomotion. This result is probably caused by an
insufficient amount of information (EMG-force pattern) in the training
phase.

Figure 6.1.3(a) shows the average peak values of the processed EMGs
from the gastrocnemius of one cat at speeds of walking/trotting of 0.4,
0.8, 1.2, and 1.8 m/s. el, e2, and e3 represent the slopes of the lines
connecting the average peak EMG values at speeds of 0.4 m/s to 0.8
m/s, 0.8 m/s to 1.2 m/s, and 1.2 m/s to 1.8 m/s, respectively. Figure
6.1.3(b) shows the corresponding average peak force values. f1, f2, and
3, represent the slopes of the lines connecting the average peak force
values at speeds of 0.4 to 0.8 m/s, 0.8 to 1.2 m/s, and 1.2 to 1.8 m/s.
The value for el, e2, and e3 are similar (Figure 6.1.3(a)), whereas the
value for f1 is much larger than that for f2 and £3. This result may explain
why the peak forces for walking at 0.4 m/s were consistently predicted to
be higher than the corresponding actual peak forces. Obviously, the
EMG-force relationship had a different character for walking at 0.4 m/s
than for any of the other speeds of locomotion. This fact may also
influence the gastrocnemius force predictions at speeds of 0.8 and 1.2

m/s.
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6.1.4 Intra-subject tests: Comparisons of the predicted forces
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repre-
sentative cat walking (a) at 0.8 m/s, when the network was trained with
the full-wave rectified and smoothed EMG and force data from the same
cat while wa.lkin%/trotting at speeds of 1.2, 1.8 m/s, RMS error = 3.8N;
(b) at 1.2 m/s, when the network was trained with the full-wave rectified
and smoothed EMG and force data from the same cat while walking/
trottintgbat speeds of 0.8, 1.8 m/s, RMS error = 4.1N; and (c) at 1.8 m/s,
when the network was trained with the full-wave rectified and smoothed
EMG and force data from the same cat while walking/trotting at speeds
of 0.8, 1.2 m/s, RMS error = 5.4N.
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Based on our previous experience (inter-subject-B tests) in which it
was found that non-specific training information could jeopardize the
accuracy of the force predictions for the gastrocnemius, we repeated the
intra-subject force predictions at 0.8, 1.2, and 1.8 m/s without using the
information at 0.4 m/s as input into the ANN (Figure 6.1.4). When
omitting the 0.4 m/s information for training the ANN, the coefficients of
cross correlation for the remaining experiments improved (from 0.93 to
0.94 at 0.8 m/s; from 0.92 to 0.93 at 1.2 m/s; and from 0.88 to 0.89 at
1.8 m/s) and the RMS errors decreased (from 4.3 N to 3.8 N at 0.8 m/s;
from 4.5 N to 4.1 N at 1.2 m/s; and from 5.7 N to 5.4 N at 1.8 m/s)
compared to the intra- subject predictions including the 0.4 m/s values
in the training input. Again, additional but non-specific input into the

ANN appeared to be detrimental to the predictive ability of the ANN.

6.2 Dynamic force predictions for the cat soleus

The dynamic force predictions for the cat soleus were excellent for the
inter-subject-A and the intra-session predicion schemes. The
coefficients of cross-correlation in these tests exceeded 0.92 in all cases,
and the time histories of the predicted forces generally agreed well with
those of the actual forces. The RMS errors between the predicted and
actual forces were equal to and less than 14% of the corresponding
maximum peak forces in all inter-subject-A and the intra-session

prediction tests. These results suggest that the dynamic EMG-force
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relationship and the mechanical properties of soleus muscles are similar
across cats walking/trotting at a given speed of locomotion. One
limitation of the inter-subject-A predictions for the soleus was that the
predicted peak forces were over- or underestimated when the peak force
of the target step was much lower or higher, respectively than the peak
force of the previous step. Another limitation of the inter-subject-A

predictions was that the predicted peak forces were generally

overestimated for walking at 0.4 m/s.

20
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Figure 6.2.1 Intra-session test:

Comparisons of the predicted forces (dashed-line) with the
actual soleus forces (solid-lines) for the last five steps of the same
cat as used in Figure5.4.1(0.8 m/s),when the network was trained
using the full-wave rectified and smoothed EMG and force data

g%nlxq the first 0.5 step of that session, corr.coef.=0.86, RMS error=

In the intra-session prediction scheme for the soleus, the force

predictions were bad if the number of steps used for training the ANN was



112

less than one (i.e. 0.5 step, Figure 6.2.1). An example of predictions using
just 0.5 steps for training is shown in Figure 6.2.1. The coefficient of
cross-correlation was 0.86, the RMS error was 3.6 N with the maximum
peak force of 16.4 N, (22%). However, the force predictions were excellent
and the coefficients of cross-correlation remained virtually constant
(0.98, third column of Table 8a) and the RMS errors were about 6% of the
corresponding maximum peak forces, once the number of steps used for
training the ANN exceeded five (Tables 8a and 8b). Therefore, the
essential features of the EMG-force relationship for walking at a given
speed are fully captured by the ANN within about five full step cycles.

The inter-subject-B predictions for the soleus were not as good as the
inter-subject-A predictions despite the fact that the ANN was trained with
the same plus additional information in the inter-subject-B compared to
the inter-subject-A tests. Comparing this result with that of the inter-
subject-B predictions in the gastrocnemius, one might conclude that the
ANN can make better predictions (in both muscle) when little but specific
training input is provided compared to when a great deal of non-specific
input is added to the specific input.

The neural network did not perform well in the intra-subject prediction
schemes for cat soleus when predicting the forces for walking at 0.4 m/s
(Figures 5.3.1(a) and 5.3.2(a), 5.3.3(a), and 5.3.4(a)), and when only the
EMG signal was used as input into the ANN (Figure 5.3.1). In Figure 5.1,
the RMS errors were 24% (0.4 m/s), 15% (0.8 m/s), 11% (1.2 m/s), and

15% (1.8 m/s) of the corresponding maximum peak forces. Adding the
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kinematics to the input for the ANN improved the prediction results for
the two intermediate speeds but not for the lowest and highest speeds of
locomotion (Figure 5.3.2(a)-(d)). This result is probably caused because
there is a limited amount of inforrnation provided to the training sets. It
appears that the EMG-force relationship in the soleus had a different
character for walking at 0.4 m/s than for any of the other speeds of
locomotion. As the ANN is abstracting patterns from a data set that is
averaged across subjects, it may be expected that more information, such
as force and EMG data at speeds between 0.4 m/s and 0.8m/s, or at
speeds below 0.4 m/s might have helped the force predictions for walking
at 0.4 m/s. The results shown in Figure 5.3.1 and 5.3.3 also indicate that
the kinematics play an important role in the intra-subject force

predictions for the soleus muscle.

6.3 A brief comparison of dynamic force predictions between the
cat gastrocnemius and soleus

In our study, we were able to predict and validate dynamic muscle
forces for cat soleus and gastrocnemius across subjects based on
measured EMG signals.

The force predictions across cats gave excellent results for the inter-
subject-A but not the inter-subject-B tests. One limitation of the inter-
subject-A predictions for both muscle was that the prédicted peak forces

were over- or underestimated when the peak force of the target step was
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much lower or higher, respectively than the peak force of the previous
step. The pattern recognition scheme of the ANNs may partly explain this
result. In our study, the training set only contained input-output
patterns from two cats and eight to sixteen step cycles per speed of
locomotion. This limited input may partly explain some of the
inaccuracies in the force predictions.

Comparing the inter-subject-B prediction results of the gastrocnemius
(Figures 4.2.1-4.2.4) with those of the soleus (Figures 5.2.1-5.2.4), it
becomes apparent that the peak forces generally matched better for the
soleus than the gastrocnemius. The inter-subject-B training sets
contained all data which were used in the inter-subject-A training sets
plus the data of all speeds of locomotion which were different from the
speed for which the force predictions were made. This result suggests
that the dynamic EMG-force relationship across cats is more similar than the
relationship between speeds of locomotion in a given cat. For the
gastrocnemius, the muscle force predictions were more variable across speeds
than for the soleus.

For the force predictions across speeds in a given cat, the intra-subject
prediction schemes, the neural network did not predict well the forces in
the gastrocnemius and soleus for walking at 0.4 m/s. Obviously, the
EMG-force relationship for both muscles had a different character for
walking at 0.4 m/s than for any of the other speeds of locomotion. Adding
the kinematics to the input for the ANN improved the prediction results

for the soleus but not for the gastrocnemius. So, it seems that the soleus
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forces do not depend on the EMG primarily, but other factors, such as the
length or rate of change in length, influence the muscle force
substantially. The peak forces of soleus remained nearly constant for
speeds of locomotion from 0.4 to 1.8 m/s as had been shown previously
(e.g. Walmsley et al., 1978), but the magnitudes of the corresponding
EMG signals increased with increasing speeds of locomotion. Giving only
EMG signals as input to the ANN could not successfully predict the
dynamic soleus forces in the intra-subject prediction scheme. This result
showed that the kinematics (or better, the contractile conditions of the
muscle) appear to play an important role in soleus force prediction,
wherease the contractile conditions might not be as important for the
gastrocnemius, at least not at the relatively slow speeds of locomotion
tested here. Prilutsky et al. (1994) reported that the relative shortening
velocities of the soleus fibres were high compared to those of the
gastrocnemius at all walking and slow trotting speeds. Therefore, these
authors argued that the soleus could not produce an increased force at
increasing speeds of locomotion, despite increased activation, because
the contractile conditions imposed severe limitations on the force
producing ability of the soleus.

The correlation coefficients were similar for all force predictions
independent of whether the EMG signal input was smoothed or not. This
result illustrates that the ANN could relate EMG and force signals quite
successfully in most cases, independent of whether the frequency content

of the EMG was completely different from that of the force (unsmoothed
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EMG) or not.

6.4 Dynamic force predictions across muscles

Can the neural network generalize dynamic force predictions across
muscles? The answer is no. The coefficient of cross-correlation of soleus
force predictions using an ANN trained with gastrocnemius EMGs and
forces was 0.5495, and the RMS error was 4.35 N with the maximum
peak force of 16.7 N. Based on this result, it was concluded that the EMG-
force relationship of different muscles in the same cat is inherently

different.

6.5 Comparing current force predictions with previously published
results

Previous research on the dynamic relationship between EMG and
force suggested that the muscle contractile conditions must be known for
adequate modelling of this relation (Hof and van den Berg, 1981a; Sherif
et al., 1983; Olney and Winter, 1985; van den Bogert et al., 1988; Norman
et al., 1988; van Ruijven and Weijs, 1990). The calibration procedures or
estimation techniques used to determine parameters of the muscle model
are lengthy and require extensive pretrials. However, the validity of

estimating the variable contractile conditions of the muscle fibres during

locomotion must still be established thoroughly in future experiments
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(Herzog et al., 1994). Most of the studies mentioned above gave
acceptable intra-subject force predictions from EMG over a limited range
of conditions. However in none of these studies were inter-subject
predictions made or were intra-subject predictions attempted across a
variety of movements. Also, in none of the above studies were force
predictions made and validated for more than one muscle.

The approach presented here does not consider the force-length-
velocity properties of the target muscle. Nevertheless, the dynamic force
predictions made here were comparable or better than those presented
previously in similar studies [van den Bogert et al., 1988; Norman et al.,
1988]. In the study of van den Bogert et al. (1988), the force predictions
were made for the deep digital flexor muscle in the hindlimb of the horse.
The muscle force predictions corresponded to what we termed the intra-
subject prediction scheme. The parameters used in the muscle model
were derived from "irregular” walking trials and the force predictions were
made for "normal” walking of that same horse. Force predictions were
made for one horse at one speed of locomotion only. The RMS prediction
error for seven consecutive step cycles was 143 N (12% of the maximum
peak force 1200 N). No cross-correlation coefficients were given. The RMS
error was comparable to those obtained in our intra-subject tests for
different speeds of locomotion in the same animal which covered walking
and trotting gaits. The predicted forces in the study of van den Bogert et
al. (1988) became negative when the actual forces were close to zero. No

attempts were made to predict forces in the same horse for different
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speeds of locomotion, or to attempt force predictions across horses.
Norman et al. (1988) attempted to predict dynamic soleus forces
from EMG in a walking cat. For their prediction model, the full wave
rectified and smoothed (double-pass Butterworth filter, 5 Hz cut-off
frequency) EMG signal and the soleus force during standing were
required as input. The coefficients of cross-correlation and the RMS error
between the predicted and measured soleus force while walking at 1.6 m/
s were 0.91 and 23%, respectively. At first glance it appears that the
result obtained by Norman et al. (1988) were close to those found in our
studies, however their results were only obtained for four steps of a single
walking condition after the model parameters had been adjusted to give
the best least square fit between the actual and the "predicted” (i.e. fitted)
forces. No attempts were made to perform predictions for other walking

speeds of the same animal or across animals.
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Chapter seven: Conclusions

The objective of this thesis was to revisit dynamic force predictions
from EMG signals using an artificial neural network (ANN) approach. The
basic concepts of predicting dynamic muscle forces from EMG were
introduced and reviewed in Chapters 2 and 3. In Chapters 4, and 5, the
results of our studies were described. In Chapter 6, the results were
discussed.

The dynamic force predictions made using the ANN approach were
good for the inter-subject-A and the intra-session prediction schemes.
The inter-subject-B predictions were not as good as the inter-subject-A
predictions. It appears, therefore that the ANN can generalize better when
little but specific training input is provided compared to when a great deal
of non-specific input is added to the specific input. This result may
suggest that the dynamic EMG-force relationship across cats is more
similar than the relationship between speeds of locomotion in a given cat.

From the results of the intra-session prediction tests, it becomes
apparent that the correlation coefficients were similar whether the EMG
signal input was smoothed or not.

The neural network could not perform well in the intra-subject
prediction schemes. when predicting the force for walking at 0.4 m/s. It
appears that the EMG-force relationship in the gastrocnemius and soleus
had a different character for walking at 0.4 m/s than for any of the other

speeds of locomotion. It may be expected that more information, such as
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force and EMG data at speeds between 0.4 m/s and 0.8m/s, or at speeds
below 0.4 m/s, might have helped the force predictions for walking at 0.4
m/s. Adding the kinematics to the input for the ANN improved the
prediction results for the soleus but not for the gastrocnemius. So, it
seems that the soleus forces cannot be easily explained just by the EMG
signals. The kinematics (or better, the contractile conditions of the
muscle) appear to play an important role in soleus force production. The
predictions were also not good for the highest speeds (1.8 m/s) of
locomotion. This result is probably associated with the limited amount of
information in the training sets. Probably, force and EMG data at speeds
above 1.8 m/s might have helped the force predictions for trotting at 1.8
m/s.

One of the advantages of the ANN for predicting dynamic muscular
forces from EMG is that it is simple to implement. Contractile conditions
(i.e., the length and rate of change in length of the contractile element of
the muscle), as well as the force-length and force-velocity relationships of
the muscle do not need to be measured, which is particularly useful since
it is nearly impossible to determine lengths and velocities of contractile
elements of muscles accurately in-vivo. Therefore, another advantage of
the ANN for predicting dynamic muscular forces from EMG is that
complex muscle models are not required.

One of the limitations of the ANN approach is that the network must
be trained at one stage; thus requiring force and EMG as input to train

the network before meaningful predictions are possible. Another
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limitation of this approach is that the ANN method does not provide
insight into the physiological and biological relationship of the EMG and
muscle force because the method is purely numerical. However, these
limitations should not detract from the excellent predictive ability of ANNs
across movement patterns (walking and trotting) and across animals,
once an appropriate data set of subjects and a minimal number of step
cycles are available for training.

The results of this study indicate that ANNs are able to identify the
highly non-linear relation between EMG and muscular force, and that
ANNs are able to generalize, to a certain degree, this relationship.
Although, the ANN approach can not give additional insight into the
physiological relation between EMG and force, it is able to provide force
predictions from the EMG signals which are accurate, and so, may prove
to be useful in practical applications in which the result is important
rather than the underlying mechanism, for example, in functional

electrical stimulation or the control of prosthetic devices.
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