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Electromyographid (EMG) si- have never been used to predict 

muscle forces of dynamicaily contracting muscles across subjects. The 

purpose of this studywas to pndict dynamic muscle force h m  processed 

EMG, knee and ankle angles, and knee and ankle angularvelocities in the 

cat gastrocnemius and soleus during locomotion. Here. we use an 

artificial neural network IANN) approach to first derive an EMG-force 

relationship of skeletal muscle; second. use this relationship to predict 

individual muscle forces for different dynamic tasks within and across 

subjects; and third, validate the predicted muscle forces against the 

corresponding forces which were experinientaUy recorded. Our within- 

subject results were bettei than those published previously. even though 

we did not incorporate a muscle mode1 or instantaneous contractile 

conditions into the force predictions. The across-subject results were 

considered excellent. 

We conclude that ANNs represent a powerful tool to capture the 

essential features of EMG-force relatlonships of dynamicaUy contracting 

muscle. and that ANNs might be used to predict muscle forces within and 

across subjects accurately from the corresponding EMG signals. 
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Chapter one: fatmduction 

W movement is dependent on muscular contraction. Probably the 

most basic property of muscle in humans and animals is its abiïity to 

produce force. Knowing the forces in muscles at any instant in time 

during a spedfic movement is like having a window to the centrai nemous 

system and its organization and control of movement. 

Contracting skdetal muscles produce an electncai signal which is 

known as the electromyogram (EMC). nie EMG is associated with the 

fibre action potentials which precede active force production in muscle. I t  

has been shown that the EMG signal is the spatial and temporal algebraic 

sum of the individual fibre [motor unit) action potentials. therefore an 

increase in the number of active motor units or an increase in the average 

firing rate of motor unïts is reflected in an inaease in the EMG signal. 

Because of this relation of motor unit activation and EMG. it is intuitive@ 

appeaiing to assodate the EMG signal directiy with the force produced by 

a muscle. The ability to predict individual muscle forces accurately 6rom 

the EMG signal and kinematic information is a challenge for applied 

research. Problems such as the appropriate use of EMG signals to assess 

the rehabilitation process of damaged muscles. or the quantitative 

relationship between the EMG signal and the force of fatiguïng muscle, 
. - 

have been of primary interest. 



1.1 The structute and finrction of skeletal m d e  

My thesis is aimed at relating the electromyogram (EMG) to skeietal 

muscle force production, so the basic concepts about the stnicture and 

h c t i o n  of skeletal muscle will be introduced first, 

Generally, muscles are dÏvided into strkted and non-striated muscles. 

Striated muscles are further subdivided into skeletal and cardiac 

muscles. Skeletal muscle is composed of thousands of muscle bundles, 

which are surrounded by a connective tissue sheath called perimysium. 

Each muscie bundle contains a number of muscle fibres. the individual 

contractile muscle cell is surrounded by a connective tissue sheath called 

endomysium. Muscle fibres are made up of myofibrils 1 .  paralle1 to one 

another. nie systernatic arrangement of the myofibrils gives skeletal 

muscle its typical striated pattern. The repeat unit in this pattern is called 

a sacomere, which is the basic contractïie unit of a muscle. 

Skeletal muscle is organized into motor units, which is the basic 

control unit of skeletal muscle. A motor unit consists of a single motor 

axon and dl muscle fibres it innervates (Figure 1.1). When a motor axon 

is stiniulated strongly enough to cause contraction. dl fibres of the motor 

unit contract simultaneously. 

The intramuscular network of connective tissues becomes continous 

with the dense connective tissue of the tendons at ea& end of the muscle. 

These tendons serve to connect the skeletai muscles to the bony skeleton. 

The muscle fibres themsehres do not corne into direct contact with the 



skeleton; thus the tension developed by muscles is borne entirely by their 

teridinous attachments. 

Figure 1.1 Schematic diagram of a motor unit 

1.2 The EMG signal 

EMG sionnl of a sinale muscie fibre At rest. the electrical potentid inside 

a muscle fibre is relative to its outside about -90 mV. Under normal 

conditions. an action potentid of a motor neuron acthrates al1 the muscle 

fibres of a motor unit (Krnjevic and Miledi, 195W -Paton and Wand. 

1967). When an action potential of a motor neuron reaches the 

presynaptic terminal. a series of chernical reactions takes place that 



culminate in the reIease of acetylcholine &Ch). ACh nosses the spnaptic 

cleft, reaches the fibre membrane. and causes a depolarization (action 

potential) on the muscle fibre which propagates dong the muscle fibre 

causing activation (for review see chapter 2.5 and 3.6, Herzog et aL. 

1994). If an action potential were measured using an electrode inside the 

muscle fibre. it would go fkom about -90 mV (msting potential) to about 

+40 mV (peak depolarization potential) and back again to the resting 

value (Figure 1.2). 

Figure 1.2 The action potemtial of a muscle fiber 

ElMG s i d  - fiorn motor mit The smallest unit of force control in 

skeletal muscle is the motor unit. A motor unit is composed of a motor 
. - 

axon and ail the fibres it innewates (Figure 1.1). Therefore, activation of 

a single muscle fibre is not possible in an intact muscle, rather an action 



potentiai in a motor neuron will cause contraction of ai i  fibres in the 

corresponding motor unit The EMG signal recorded h m  the 

depolarization of a motor unit. called a motor unit action potentiai 

(MüAP), is the algebraic sum of the individuai fibre action p o t e n e  b m  

that motor unit 

EMC &mcd of a muscle In general. the EMG signal obtained from a 

contracf3ng muscle ïs the spatial and temporal algebrafc sum of the 

individu& motos unit action potentials. 

1.3 The pmperties of skeletal muscle 

The force-length and the force-velotity relation of muscles are two 

important properties of muscle. They are repeatediy used in 

biomechanid experiments involving muscles or the musculo-skeletai 

system. Force-lem relations describe the relation bebween the al 

force a muscle [or fibre. or sarcomere) can exert and its length. Force- 

length relations are obtained under isometric conditions and for maximal 

activation. Isornetric inay refer to the length of the entire muscle. the 

length of a fibre. or the length of a sarcomere. depending on the system 

that is studied. Force-velocity relations are defined as the relation that 

exists between the maximai force of a muscle (or fibre) and its 

instantaneous rate of change in length. Force-velocity relations are 

determined for maximal activation conditions of the muscle, and are 

typicaiiy obtained at optimai length of the sarcomeres. 



Most studies aimed at dating EMG signals to muscle force are 

performed for isometrically contracting muscle (e.g.. Lippold. 1952; 

hrIilner-Brown and Stein, 1975; Moritani and deVries, 1978). It has been 

shown that the relationship between force and processed EMG in 

isometric contractions is linear (Bouisset and Maton, 1972; Hof and Van 

den Berg. 1977: Ericson and Hagberg. 1978; Johnson, 1978) or slightly 

non-linear with the EMG increasing more rapiaiy than the force [Kramer 

et al., 1972; Vredenbregt and Rau. 1973; Komi and Viitasalo. 1976). 

The force-EMG relationship in dynamic contractions is undoubtedly 

complex since muscular properties such as the force-length and force- 

velocity relations may influence the EMG-force relation (e-g.. Hof and van 

den Berg, 198 1a.b.c.d; Olney and Winter, 1985). Instantaneous force- 

length-velodty properties of muscles are hard to measure in vivo. Most of 

the dynamic experirnents have been performed using isokinetic 

contractions on strength dynamometers. These dynamometers typically 

enforce a relattvely constant anguiar velodty of joint movement. Ody a 

few studies have attempted to relate EMG and force during normal, 

unrestrained movements &lof and van den Berg, 198 la. 1977; Olney and 

Winter, 1985; Sherif et al., 1983: van den Bogert et al.. 1988; Norman et 

al., 1988; van Ruijven and Weijs. 1990; Savelberg and Henog, 1995). 

' M o  basic approaches have been used to predict individual muscle 



force using EMG during dpnarmc actlvity. One involves the dwelopment 

of mathematical models based upon biologrcal behaviour* using EMG as 

an input variable (Hof and van den Berg. 198 la; OIney and Winter, 1985; 

van den Bogert et al.. 1988; Norman et al. 1988; van Ruijven and Weijs. 

1990). Tbese methods often employ calibration procedures in which 

parameter values are adjusted until predicted and obsaved f o m s  match. 

A second approach, and that of the present stuciy, îs an adaptive filtering 

approach; a purely mathematical approach linking the EMG to the force 

signai (Herzog et al., 1994; Savelberg and Herzog; 19%). 

The predictions of dpamïc muscle force have been limited by the 

inability to capture the highly non-liaear* and temporally distorted 

relation which appears to erdst between muscle force and EMG (Hof and 

van den Berg. 1981: van den Bogert et al.. 1988). Even approaches relying 

on complex numerical procedures. such as some of the complex adaptive 

filtering techniques have ody met with partial success (Herzog et al.. 

1994). Recently. arfificial neural network (ANM approaches have been 

proposed as an alternative tool to pattem recognition and classification 

problems. 

Savelberg and Herzog (1995) used an artifidal neural network approach 

based on a back-propagation algorithm to predict dynamic muscle forces 

fkom EMG. In their study, the relatïonship between EMG plus kinematics 

and force. as well as the relationshîp between EMG and force alone were 

derived for the cat gastrocnemius muscle. Preliminaxy results indicated 

that the ANN approach is promising and might be used for general 



predictions of muscle force from EMG. 

In the past two decades, man. direct EMG and muscie force 

measmements have been perfonned in animal models, partidariy in the 

cat anlde exteasors muscle. Howeser these data have not been used 

systematically to derive the EMG-force relationship for dynamic 

contractions. 

nie purpose of this study was to revisit dynamic force predictions 

fiom EMG signais using an artifidal neural network (ANM approach. 

Artificid neural networks are excellent for pattern recognition schemes 

which invohre highly non-kear and temporally dlstorted signal relations. 

The ability to generalize resuits fkom sample input makes ANNs 

potentially very powerful for d e m g  dynamic EMG-force properties for 

skeletal muscle. In studying the EMGforce relationship of skeletal 

muscle, we used the cat gastrocnemius and soleus as our experimental 

model. 

The cat gastrocnemius and soleus behave very differently for dinerent 

speeds and modes of locomotion. Peak forces and EMGs in the 

gastrocnemius increase in paraile1 with inaeasing speeds of locomotion, 

whereas peak soleus forces remain nearly constant while EMGs increase 

fkom stiii standing to waking to trotüng and galloping (Henog et al., 

1993). Using two muscles which behave so dinerently might be a good 

test for evaluating the potential of ANN to capture dynamic EMG-force 

relationships. 



1.5 The o~ambation of the thesis 

The layout of the thesis is as follows: 

In chapter 1. the basic concepts of skeletai muscle and the approaches 

used in schernes of muscle force predictions nom EMG are introduced. 

In chapter 2, the basic concepts of the EMG signal and the EMGforce 

relationship are introduced. Also. a rwiew of previous works aimed at 

predicting individual muscle forces fkom EMGs during dynamic activities 

is presented. A bnef description of the experirnental methods and the 

Artificial neural nemorks [m used in this study. is @en in Chapter 3. 

The force predictions for the cat gastrocnemius and soleus muscles are 

described in Chapters 4 and 5. respectively. The corresponding 

discussion is given in Chapter 6. 

In chapter 7. an outlook for future work is presented. 



Chapter Two: Littratum Review 

In this part of the thesis, EMG signal recording and processing 

techniques are described, and the EMG-force relationship is introduced. 

Also, relevant published works are summarized in this chapter. 

2.1 EMG signai n c o ~  

For EMG recordings. a bi-polar ekctrode con fi su ratio^ is typically used. 

In a bi-polar configuration, two recording electrodes are used. The 

potential recorded by each electrode is compared to a reference electrode, 

and the dinerence of the two recording electrodes relative to the reference 

electrode is amplified (differential amplification)). Using a bi-polar 

recording configuration and differential amplification. noise common to 

both electrodes is cancelled in the process. 

Figure 2.1 .a shows a schematic record of an EMG signal fkom a sïngie 

muscle fibre measured using an indwelling (inside the muscle fibre), bi- 

polar electrode configuration. Figures 2.l.b and c (Basmajian and De 

Luca. 1985) show schematicaliy the generation of an EMG signal fkom a 

single motor unit and fkom a voluntarily contracting muscle. respecthrely. 
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Figure 2.1.a Schematic representation of the recording of EMG 
signai fimm a single mwcle fibre 



MOTOR UNIT ACTION POTENT~ AL 

a rnatoneuron 
muscle fiber 

Figrire 2.1.b Schematic representtation of the generation of the motor 
unit action potmtial designated as h(t). The shape and the amplitude 
of the motot unit action potential are dependent on the geometric 
arrangement of the active muscle fibres with respect to the eiectrode 
site . 
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Figure 2.l.c Schematic representation of the EMG signal. 

in Figure 2.l.b. the integer n represents the total number of muscle 

fibres of one motor unit that are sufficiently near the recording electrode 

for their action potentials to be detected by the electrode. The action 

- potentials associated with each muscle fmre are presented on the right 

side of Figure 2.l.b. The individual muscle fibre action potentiah 

represent the contribution that each active muscle fibre makes to the 



signal detected at the electrode site. A depolarization approaching h m  

the right side is reflected as a negative phase in the action potential and 

vice versa. 

The motor unit action potential. designated as h(t) (Figure 2.1 h). is the 

superposition of the contributions of the indlvidual action potentials. 

In Figure 2.1 .c. The integer p represents the total numbu of motor unit 

action potential trains which contribute to the potential field at the 

recording site. The superposition at the recording site foms the 

physiologicai EMG signal. mp (t, F) . The observable EMG signal (m ( t ,  F) ) 

also includes electrical noise (n ( t )  ) and the filtering properties of the 

recording equiprnent (r  ( t )  ). 

Raw EMG signals resemble white noise with a distribution around the 

zero point. It  is apparent that averaging oi the signal wili not provide 

usefûl information with respect to force production of the muscle. 

Therefore, EMG signais are typicaily processed before they are used for 

muscle force predictions. Pmcessing of the EMG signal can be done in the 

time or fkequency domain. In our study, two methods of processing were 

used: rectification and smoothing. 
A - 

The process of rectification involved conversion of the raw signal 

a signal of absolute values. Smoothing of the rectified signal 

into 

was 



accomplished 

offfkequency. 

Figures 

using second-order Butterworth low pass filter, 5 Hz cut- 

2.2.a. b and c show raw EMG signais h m  the cat 

gastrocnemius muscle during waJking* the corxesponding full-wave 

rectified signals. and the comesponding smoothed signais. respectively. 

Figure 2.2 Rocessing of EMG signal: (a) raw, (b) rectifled, and 
(cl rectified+smoathed EMG signal. 



An increase in the tiring rate of motor units or an increase in the 

number of recruited motor uni& is known to iaaease the m u d a r  force 

and the integrated form of the EMG (Baszmjian and De lum, 1985). 

Therefore. there must be a (at least) qualitative relation between the EMG 

signal and the corresponding muscie force. Figure 2.3 shows the raw 

EMG signal and the corresponding soleus force for a single step of 

waiking. The goal of thïs study was to predict musdar  force during 

dpamic contraction from the corresponding EMG signal. 

2.3 Fora and EMG signai obtained fkom a cat soleus muscle 



2.4 A brief rtvicw of prcoious modds of the EMGfora dationship 

In the last decade. o d y  a few studies have attempted to relate EMG and 

force (moment, torque) durfng normal movements (Hof and van den Berg. 

198la: Olney and Winter? 1985; Van den Bogert et al., 1988; Ruijven and 

Weijs, 1990; Savelberg and Herzog, 1994). Most muscle models used for 

EMG to force predictions were based on the muscle model of Hill 

(1938.l949). 

The HïU muscle mode1 

CC 

SEC 

PEC 

+ 
load 

Figure 2.4.1 Schematic diagram of the Hiiî muscle model 
- - 

Hül (1938) proposed a muscle model based upon the behaviour of 



t h e  muscle components: the contractile component (CC). an elastic 

component placed in series with the contractile component (SEC). and an 

elastic component located in paraile1 to the other two elements (PEC) 

(Figure 2.4.1). The CC and SEC determine the behavfour of the active 

muscle; the PEC represents the eiasticity of the passive muscle. In hïs 

model. Hiil assumed that the mean rectified EMG is proportional to the 

s o - d e d  active state of the muscle, a property of the CC. Furthemore. 

the CC is typicaiiy assumed to obey a characteristic force-velocity 

relationship which was described by Hill (1938) based on experiments on 

entire frog skeletal muscle. 

-td studies on the dunamic EMGforce relationshÿ! 

In order to relate EMG to force (torque) for ankle plantarflexors, Hof and 

van den Berg (1981a-d) used an analogue processor of the EMG signai 

with an extensive calibration procedure to determine an EMG gain factor, 

the force-length (torque and joint angle) relationship. and the properties 

of the series and parailel elastic elements. The EMGs were recorded 

separately fiom the gastrocnemius and soleus muscles. Both EMGs were 

preamplified (100 times) and bandpass fiitered with Merent gain factors 

for gastrocnemius and soleus. Then, the EMGs were fiill-wave rectified 

and smoothed by means of a third order averaging- fflter with a time 

constant .r of 25 ms. Hof and van den Berg (1981a-d) incorporated all 



components of the HiiI model înto tbeir system (Figure 2.4.2). 

<P 
joint 
angle 

2 

u active MO, 
state 

prepmessed 
EMG 

Ffgprt 2.4.2 Block diagram of the Hof s muscle model 

* 

The properties of the contractile component were desaibed by an 

active state fUnction (Mo(t)). and the force-length and force-velocity 

relationship of the muscle of interest. The SEC ( 9,) and the PEC[ cp) were 

represented by purely elastic elements. The torque developed by the CC 

was a h c t i o n  of three state variables: the active state M&), the CC 

length( <pc)  and the rate of change in the CC length [Cp,). The isometric 

P M ~ I  
eiastic 

M~ 

component 



force-iength relationship was descrïbed by the notation: Ma = MJ(cp,) . 
where the fiuiction f (c) is equal to 1 around the optimum muscle length 

and decreases for smaller and for larger length. The sum of the active 

states of aIl motor unie is taken to be the active state of the muscle which 

was derived fkom the EMG signal. Using this model, they were able to 

predict reasonably well the ankle joint moments during human waikïng 

(Hof et cd.. 1987). The limitations of this study were that no force 

predictions of individual muscles could be made. but just some 

generalized muscle force (the ankle moment) couid be d d a t e d .  Force 

predictions. therefore. were not validated against the actud muscle 

forces. and fkom a practicd point of view, the study was not important 

because ankle joint moments can be derived quite accurately wihout 

EMG input of the muscles by using an inverse system's analysis (e-g. 

Andrews, 1974)- 

Sherif et al. (1983) presented an 'intervention model' to associate the 

force produced by the cat medial gastrocnemîus (MG) during 

unrestrained treadmill locomotion with the comsponding EMG signals. 

Representative EMGs and muscle forces were recorded fkom the cat 

medial gastrocnemius at 0.67 and 2 -24 m/s. EMG signals were processed 

by a differential amplifiers at a band-width of 30-3000 HZ. and force 

signals were processed by a low pass filter (cutoff at 300 Hz). The EMG 
- -  - 

and corresponding force were then related using an inte~ention d y s i s  

based on an autoregressive-integrated moving average (.RIMA) model. 



Sherif et al. (1983) proposed that the MG myoelectric activity during a 

singie step cycle may be dMded into two parts. The primary burst of 

activity precedes foot contact and produces a wjor portion of MG force 

at the tendon by settiag muscle s-ess prior to -und contact for 

"storîng energy in the system. Duning stance. a second burst (E2 burst) 

of EMG activity was obsaved by an almost criticai@ damped second order 

system, and this burst (the residual te=) dtd not contribute significantly 

to the total MG force at the tendon. Sherif et al. (1983) proposed that the 

Mtial burst of EMG acttvity in the cat MG was driven by the centrai 

nervous system, irrespecthre of the înstantaneous contractile conditions 

of the muscle. The rimitations of this study were that the model used was 

very complicated and couid not be used to make u s a  predictions of 

force from EMG during normal movernents. 

Ohey and Winter(1985) developed a biologicaUy deteraiinistic model 

to calculate instantaneous joint ankle and knee moments during normal 

waiking using processed EMG (rectified and smoothed with a second 

order low pass filter. cutoff at 1 Hz), kinematic infoxmation (e.g., 

instantaneous joint angle as a correlate of muscle length and an- 

velocity as a correlate of muscle velocity), and instantaneous joint 

moments fkom the pivticipating muscles. The data of the EMG and 

instantaneous joint moments from two muscles. tibialis anterior and 

soleus. were used for the prediction of ankle moments. The model 

assumed that the moment-angle and moment-velocity relationships were 

Iinear. The joint angle and anguiar veloüly were assumed to be 



proportional to muscle length and muscle iinear velocity respectively. A 

linear regression between joint moment and processed EMG was used to 

determine the static EMGmoment relationship. Tbere were eight 

parameters used and determined by the caiibration procedures and 

estimation techniques. Using the resultant moment for optimization. the 

results showed that the predicted moment was proportionally augmented 

for longer muscle lengths and proportionaiiy reduced for short- lengths. 

Further, predicted moments were reduced for shortening contraction and 

increased for lengtheming contraction. The limitations of this study were 

that muscle forces couid not be predicted or validated. Aiso. in order to 

obtain acceptable results, model parameters were optimized based on the 

experimentd moments. 

van den Bogert et aL(1988) developed and validated a muscle model 

of the deep digital flexor of the horse. The muscle model was a Hill-type 

model. I t  predicted muscle force. F, fkom the length of the muscle. L . 
and its activity, U ( t )  . EMG was used as the activation input into the 

model. The muscle and its tendon were described by a four-element 

model. The series elastic component. S. represents the tendon (Figure 

2.4.3). Tendon force. F, , is an experimentally determined fùnction of 

tendon length, L - x .  The parallel elastic element. P, represents the 

passive properties of the muscle. Its force, F, . where Fp = k ( x  - xo) when 
- -  - 

the series elastic element length. x .  is larger than the resting length. xo. 

and zero otherwise. 



Fjgure 2.4.3 The muscle model 

The force-length relationship. F, (x) . of the contractile element was 

taken kom Hof and van den Berg (1981a). The contractile element force 

was assumed to be proportional to the active state of the muscle. U[t). 

with a gain. G. A linear damper, D. was included as a bt-order 

approximation of ail velodty-dependent effects. 

The state equation for the muscle model is Figure 2.4.3): 

The instantaneous force output of the muscle was found by s 0 1 . g  



this non-bear equation for x and using F = F, (L - x) +DL, where D is 

the daxnping coef8dent. Thetefore. this model was length and velociv- 

dependent The parameters used in the muscle model were derived h m  

"imeguiar" waIking triaIs and the force predictions were made for "nomd' 

wdking trials. Force predictions were made for one home at one speed of 

locomotion. 

Norman et al. (1988) attempted to predict dynsunic muscle forces h m  

EMG signals during muscular activity occurring in normal movements. 

In their model, EMG signal and isometric muscle force were required as 

model input. Cat soleus forces were measured during treadmill waUnrig. 

The corresponding raw EMG signals from soleus muscle were digitized 

(2000 Hz). fidl wave rectified and smoothed (double-pass Butterworth 

filter, 2-10 Hz). Soleus forces were predicted by the following equation: 

EMG 
F s  = Fis0 EMGisO 

where Fs is the instantaneous predicted soleus force. F,, is the 

measured isometrtc tendon force when the animal was standing stïil, 

EMG is the instantaneous value of the fûll-wave rectified and smoothed 

Ilnear envelope of the dynamic EMG. and EMG, is the average of the 
- -  - 

EMG signal over two seconds while the cat was standing stül (isometric). 

Norman et al. (1988) validated the* model using force measurements 



obtained for four step cycles in one animal while wallring at one speed. No 

force predictiorzs were made for other speeds of locomotion or across 

animalS. Nomian et al. (1988) obtained reasonable force predictions only 

after opümïzing their model based on the dynamic muscle force resuîts. 

van R w e n  and Weijs (1990) used eletromyography (EMG). muscle 

length and speed of contraction to predict muscle forces in jaw muscles 

of rabbits. The muscle model was a W-type model and the properties of 

the muscle were derived in part by the twitch response of the muscle. The 

model was tested by predicttng the bite forces produced by the jaw 

muscles during mastication. AU input data (muscle length. length 

change. EMG) and output data (forces) were defined for 13 ms periods. 

The force of a muscle during a 13 ms interval (Fi) was equal to 

where F,, is the maximai tetanic force (30 ~ / c m ~ ) ;  FL is a factor 

desaibing the force-length properties of the muscle; F V  is a factor 

describing the force-velocity properties of the muscle. FQ is the activation 

factor which depends on the EMG; FP is a scaling factor for the force in 

the parallel elastic element. FL, and FVi depend on the average Iength 

and length change of the sarcomeres during the 13 ms interval. 

respectively. FQ, depends on the EMG during the cwent and the 



preceding 13 ms interval. The results h m  their study showed that the 

accuracy of the prediction was rimiteci; the correlation between the 

predicted and the measured bite force was o d y  0.57. 

One method that is diffierent h m  the methods describeci above is 

adaptive Bltering- Adaptive filtering techniques are not based on Hill-type 

muscle models; the- u e  mathematicai approaches Ilnkùig EMG and 

muscle force without concern about the biological properties of the 

muscle. Adaptive ffltering approaches have been chosen to predict 

dynamic forces h m  EMG because the characteristics of force and EMG 

are time-dependent. or non-stationaxy, during dynamic contractions. 

Adaptfve filtering techniques can account for non-stationarites and have 

been used successfblly in the analpis of a variety of biological signals 

(F'errara and Widrow. 1982; Yelduman et aL.1983; Kentie et al., 1981; 

Chen et al., 1990; m g  et al.. 199 1). 

Herzog et aL(1994) used an adaptive filtering procedure with the least 

mean square (LMS) algorithm (for detail see chapter 3.6. Henog et al.. 

(1994) to estimate force in the cat plantaris h m  the corresponding EMGs 

obtained during walking and ninning. The* results were obtained 

without prior bowledge of the statistics of the signal and the noise, and 

without a mode1 of the target muscle. The onIy assumption made in the 

force predictions was that the signal components in the primary input 

(the force signal plus additive noise) and the referenee input (full-wave 

rectified and low pass flltered EMG signal) were correlated with each 

other, but were uncorrelated with the noise. Using a LMS algorithm. they 



obtained good estimates 

predictions were of W t e d  

of dynsunic plantaris force. but the force 

accufacy. 

Savelberg and Herzog (1995) used an Araficial Neural Network LANN) 

approach with the back-propagation aigorithm to predict forces from 

EMG in the cat gastrocnemius durlng locomotion. ANN, one of the 

adaptive fütering approaches, is based on biological neural systems. 

Similar to their bioioglcal namesakes. they consist of intercomected cells 

organized in layers. The essence of an ANN is that inforniation is 

distrîbuted through connections between ceils making up the network. 

The connections have adjustable weight factors. By adjusting these 

weights, an ANN is able to leam. that is. to match an input pattem to an 

output pattern. Depending on the number of layers and the number of 

ceils in each of these layers. the information distributed over the network 

can mimic complex relationships. Apart nom the ability to leam. ANNs, if 

properly trained. can be used to generaiize knowledge. In Savelberg and 

Henog's (1995) study. the relationship between EMG plus kinematics 

and force, as weii as the relationship between EMG and force in the cat 

gastrocnemius were considered. Fkeliminary resuits indicated that the 

ANN approach might be used for general pndictions of muscle force from 

EMG- 

We used the Artificial Neural Network approach to predict individual 

muscles forces h m  the corresponding EMG signals. The results 

confmned that ANNs are a promising technique to predict dynamic forces 

nom EMG signais. 



Force. EMG. and locomotion kinematics were obtained h m  soleus and 

gastrocnemius muscles of three cats w-g at nominal speeds of 0.4. 

0.8. and 1.2 m/s. and trotting at a speed of 1.8 m/s. The aninial 

preparation. force measurexnents, EMG recording, and kïnematic 

anaiysis were described elsewhere (Herzog et d. 1993). Only a brief 

description of the experimental method is glven here for the sake of 

clarity. 

Three outbred. male. adult cats were anesthetized. intubated. and then 

maintained using 1 - 1.5% halothane. 'E'-shaped. stainless steel tendon 

force transducers were surgicaiiy implanted ont0 the separated tendons 

of the soleus and gastrocnemius muscles under strictly sterile conditions. 

Bipolar. indweling wire electrodes of Tefion-insulated. multistranded. 

stainless steel biomedical wire (Bergen, BW94) were d r a .  through the 

mid-belly of soleus and gastrocnemius using a surgeoris needle (Mïitex, 

MS-140) to record EMG signals. The electrodes were arranged 

approximately paralle1 to the muscle fibres and the interelectrode 

distance ranged fkom 5 to 7 m m .  Leads of ail force and EMG devices were 

d r a .  subcutaneously to a backpack connecter fkom - -  - which all signals 

were transmitted by cable or telemetry to a cornputer (PC. 386). Qpicaiiy. 

forces and EMG signals were recorded at 2240 Hz. 



After implantation of the force and EMG transducers. cab were 

ailowed to recover compietely from surgery (five to seven days). Recovery 

was assessed by visual inspection and by cornparison of stance times 

between implanted and contralaterai hincîiimbs during locomotion. Cats 

were enticed to p d o m  Iocomotor tasks for which they were trained for 

4 8  weeks prior to surgery. These tasks consisted of wallring at 0.4.0.8. 

and 1.2 m/s, and trotting at a speed exceeding 1.4 m/s on a motor-driven 

treadniill on a level surface. 

For each locomotor task, A video camera with its optical a s  

perpendicular to the plane of motion of the animais and running at 60 Hz 

was used to monitor locomotion kinematics, and a tirne code generator on 

the video image (mode1 9300, Datum Inc.) was used to synchronize the 

video and computer records. Synchronization of force and EMG records 

with video data was obtained using a series of pulses that appeared as 

spikes on the computer records and as a light-emitting diode on the video. 

Reflective skin markers placed over the hip, hee, ankïe, and 

metatarsophalangeal joints before data acquisition were digïtized fkom 

the video records (60 Hz, Motion Analysis, VP310) to obtain ankle and 

knee joint angles. 

AU methods were approved by the Animal Ethics Review Cornmittee 

of the University of Calgary. 



3.2 Fora. ElldG. .nb Etaunatic &ta pfocessing 

in this study? force and EMG signais were obtained fkom the 

gastrocnemius and soleus of three cats walking at speeds 0.4.0.8.1.2 mf 

S. and trotting at a speed 1.8 m/s. Eight to sixteen step cycles were 

available for a given cat and speed of locomotion. The EMG data were full- 

wave rectified. or full-wave recfiûed and smoothed (second-order 

Butterworth low pass filter). The N1-wave rectified signal retains the 

information contained in the entire signal; the smoothing eiiminates the 

high-fiequency content of the EMG records in order to better relate the 

EMG signal to the contractile propertïes of the muscle. For determining 

the suitable cutoff frequency of the filter used in our study, we predicted 

forces with the EMG data filtered using a secondsrder Buttemorth low 

pass filter with cutoff fkequencies 2. 5. 15. and 30 Hz. The results 

indicated that the cutoff frequency of 5 Hz was best in terms of 

minimiang the Merence between the predicted and the actual muscle 

forces. However, for the sake of comparison. we will show the prediction 

results in the following chapters using the full-wave rectified and 

smoothed (second-order Butterworth low pass filter. 5 Hz cutoff 

fiequency) EMG and the full-wave rectified. unsmoothed EMG. 

The processed EMG and the corresponding tendon forces were 

reduced to a nominai sampling fkequency of 140 Hz, and the 
*- - 

corresponding kinematic data (knee and ankle angles, and h e e  and 

ankle angular velodties) were sampled at 140 Hz in order to match al1 



input data for the force predictions perfectly. 

Artifiaal neural network [ANN) based signal pmcessing methods have 

been shown to be robust when processing cornplex, degraded. noisy. and 

unstable signais (Hassoun et al.. 1994). ANNs have uniqye properties. 

such as the ability for generalizatïon and leaming fkom experience. and 

the abiiity for modifjling themselves in accordance with a changîng 

environment. 

The field of artificial n e d  networks is a h o s t  five decades old 

(McCulloch and Pitts, 1943; Hebb, 1949). it has only become widely 

accepted in research with the recent efforts of Hopfield (1982). RunieIliart 

et aL (1986). and Grossberg (1988). Robotic manipulators have utilized 

neurai networks to replace inverse dynamics algorithms (Kawato et d, 

1987). but it is only withïn the past few years that ANNs have been 

applied to study real biologïcal systems (Zipser and Andersen. 1988; 

Massone and Bizzi, 1989; Weils and Vaughan. 1989). 

An artifk5a.I neuml network, as the name ïmplies. comprises a group 

of neurons which are interconnected and distributed in layers. Networks 

Mer in t m s  of learning and processing mechanisms, the acthration 

function. the number of layers and neurons. and-the distribution of 

connections. The basic structure of the network used in tus study has 

one input layer. two intermediate hidden layers, and an output layer, 



fiiustrated in Figure 3.3.1. The circles in Figure 3.3.1 represent the 

neurons. and the solid Iines represent intemeUron connections of varying 

strengths, known as the synaptic weights. This so-called three-layer 

neural network has been reported to be suBiCient to model prob1enis of 

EMG signal 
[+I 

Input F i t  Second Output 
la~er hidden hidden la~er 

kyer I ~ Y -  

Figure 3.3-1 Architectural graph of a muitilayer network 

any degree of complexity (Wanna, 1990). We used an emor back- 

propagation algorithm (Rumehart et al.. 1986b) to train the ANN in a 

supervised manner (Figure 3.3 -2). The back-propagation training 

algorithm is an iterative gradient descent algorithm designed to minimize 

the mean square error between the actual output of a multüayer 

percepbon and the desired output. In the back-propagation feedfoxward 

algorithm. some of the desfred output of the network is assumed to be 

known a priori. The back-propagation algorithm is composed of two 



stages: a feedfo-d step. where neuron output is spedfted; and a 

feedback stage, where the connection weïghts are updated. The fxo steps 

are repeated with a training set (EMG-Force examples) untiï the Merence 

berneen the network output and the desfred values is below a speciûed 

vdue. This procedure is d e d  the leaming phase. The goal of the 

Ieaniing phase is to enable the neural network to generdk results so 

INPUT 1 

/ vector v 

E m r  signal 1 

Figure 3.3.2 Block diagram of supervised 1earning with 
the hk-propcislcrtron algorithm 

that the input-output mapping is excellent even when the input is 

nerent from the examp1es used to train the network. 

When an ANN is created. the weights in each neuron are randomly 

and unifonnly initialized using a standard random number generator. In 

the EMG to Muscle force mapping used h m .  the input layer had 20 .- - 

neurons containhg EMG information. and an output layer with one 

neuron. corresponding to the muscle force. The training set in our study 



was denoted by ([an), d(n)l: n= 1.2. .. .. PQ. with the input vector x(n] given 

to the input Iayer. and the desired response d(n) represented in the 

output layer. 

In the feedforward step. the output signais of the network were 

caiculated by proceeding forward through the network, layer by layer. 

Outputs from each middle layer neuron are @en by the following 

activation hction: 

y i 9  (n) = 1 
1 + exp (-vi(O (n) ) 

where vJ0 (n) is a simple linear summer for neuron j in layer 1 : 

where $-O (n) is the output signal of neuron i in the previous layer 1 - 1 

at iteration n. and w p  is the synaptic weight of neuron j in layer 1 that 

is fed h m  neuron i in layer 1 - 1. 

Ifneuron j is in the first hfdden layer (Le.. k1). set 

y jo )  (n) = xi (n) 



where xj (n )  is the jth elexnent of the input vector x(n). If the neuron is In 

the output layer (Le., t 4). then 

y (n) = y{ ' )  = 1 
1 + exp ( - v ~ ( ~ )  (n )  ) 

where 

9 
vf3) (n) = C w{:)y/2) (n) 

i = l  

where q is the number of neurons in the second hidden layer. 

Hence. compute the emor signal 

where d (n) is the desired response. 

In the back-forward step, compute the local gradient. S of the network 

by proceeding backward. layer by layer: 

q3) (n) = e ( n ) y ( n )  D - y ( n ) I  

and 

for the neuron in the output layer, 



610 ( n )  = yi(O ( n )  [ 1 - yi(O (n) ] ZSf + ( n )  w#+ (n) 
k 

for neuron j in the hidden layer 1. 

The synaptic weights of the network in layer 1 are determined by 

where q is the adaptive learning-rate parameter and a is the momentum 

constant which was set to 0.9 in our  study. 

The change for q . initiaiized by 0.2 in the training procedure, is based 

on the error of the network: 

q ( n + l )  = 0 . 7 a n ( n )  if' e ( n )  >1.04.e(n-1) 

and 

q ( n + l )  = 1.05@q(n) if e ( n )  < e ( n - 1 )  

otherwise 

Q ( n +  1) = q (n )  - 

In this study. an ANN architecture with one input layer, two hidden 

layers. and one output layer was used. There is O* one neuron in the 

output layer. 20 or 30 neurons in the input layer. 20 neurons in the first 
-- - 

hidden layer, and 10 neurons in the second hidden layer. For the input 

vector ~ ( n ) ,  x(n) is viewed as the curent value of the EMG input, the 



mmining M (M=19) tap inputs. an-1). .... x(n-M). reprrsent past values of 

the EMG input; however. dn-20) is vîewed as the current value of the 

lcinematics input, the last 9 tap inputs. 2&t.-21). .... x(n30). ~present past 

vahies of the kfnematîcs input. When a criticai thrcshold was reached 

(Haykin. 1994). the two step cycle procedure (the foIward-fooIward step 

and the comsponding back-fomard step] cailed learning phase. was 

stopped. in our study, it was repeated about 6004000 times dudng the 

training of the ANN. Our qeriments showed that the force prediction 

can not be improved by increasing arbitrarily the number of the Ieaming 

phase: learning got worse when the number of the learning steps was 

greater than 5000. 

in this study. the relationship between EMG and force (EMG-force 

mapping). as weli as the re1ationship between EMG plus kinematics (e.g. 

knee and ankie angles. knee and ankle aagular veLocities) and force 

(EMG+-force rnapping) in the gastrocnemïus and soleus were considered 

during locomotion. The ANN was trained in a supeivised mode. The 

muscle force was the desired response of the network. For the 

determination of the rdationship between EMG and force. the EMG signal 

was the input to the nemrk; for the relationships between the EMG plus 

kinematics and force. the input to the netmrk was the EMG signal. the 

knee and anlde angles. and/or the lmee and ankle angular veIocities. 
--. 



3.4 Muscle force pndiction 

Muscle forces were predicted in three dlffefent ways: 

(1) For the b t  prediction scheme. force estirnates were made across 

animais in two ways: (a) the ANN was trained with EMG (with and without 

kinematics) input nom two cats walldng/trotang at a @en speed of 

locomotion (0.4. 0.8, and 1.2 mfs); the force predictions were made for 

the third cat using its EMG for walkïng/trotting at the same speed as the 

training was done (inter-subject-A tests), and (b) the ANN was trained 

with EMG and force input from all available data of two cats walkîng/ 

trotting; the force predictions were made for the third cat wakïng/trotting 

at a given speed of locomotion (inter-subject-B tests). For 'inter-subject- 

A' predictions, force values were normalized with respect to the peak force 

of the muscle at a given speed of locomotion. Values of the full-wave 

rectified. or the Ml-wave rectified and smoothed EMG signal were 

normalized with respect to the mean value of the hill-wave rectified EMG 

signai at a given speed of locomotion. For 'inter-subject-B' predictions, 

force values were normaiîzed with respect to the absolute peak force of 

the muscle at any of the tested speeds of locomotion in the same cat. 

Values of the firll-wave rectified, or the füii-wave rectified and smoothed 

EMG signai were normalized with respect to the mean value of the full- 

wave rectified EMG signal for walking at 1.2 mfs in a given cat. 
-- - 

(2) For the second prediction scheme. the ANN was trained with EMG 

(with and without kinematics) and force input from one cat walkjng/ 



trotting at three dif5erent speeds oflocomotion: the force predictions were 

made for the fourth speed of locomotion of that same cat (intra-subject 

tests). Muscle forces and EMG signais were not nomaiized. 

(3) For the tliM pTediction scherne. the ANN was trained with force 

and EMG (with and without kiaematics) input h m  an inc~easing number 

of step cycles of a gtven cat walking/trotting at one speed of locomotion; 

the force predictions were made for different steps of the same cat walking 

at the same speed Cmtra-session tests). Muscle forces and EMG signais 

were not nonnalized, 

hraluation of the force predlctions h m  the EMG signals was made 

by caidating the coefficients of cross-correlation. and the mot mean 

square mMS) emrs between the predicted and the actuai force-time 

histories. Every resuït shown in this studywas an average value obtained 

h m  four independent leaming precedures (with the same ANN structure 

and number of leaming steps). Predictions were considered good if the 

coefficient of cross-comlation was -ter than 0.91,. RMS error was 

equal to or smaller than 14% of the comsponding maximm peak force. 

and the pndicted force-tïme histories did not systematicaUy deviate h m  

the actual force-time histories. 



Chapter four: Force Predictiom for the Cat GIIstrocnemias 

4.1 mttr-~objjec-A t m t ~  

Force predictions for the inter-subject-A tests are shown in Tables 1.a 

and 1.b. AU trainhg examples wen h m  cat 1 and 2. and the force 

predictions were made for cat 3. The coefedents of cross-correlation for 

the tests ranged between 0.91-0.96. The comsponding RMS prediction 

emrs  are listed in the third and fiffh columns of the Table. The input to 

the tests shown Ln Table 1.a were the fuli-wave rectifieci (the fourth 

column of the TabIel or fiAl-wave rectifled and smoothed (the second- 

third columns of the Table) EMG signal (EMG Model); the input to the 

tests shown in Table 1.b were the fÜU-wa. d e d  (the fourth-fifth 

columns of the Table) or fa-wa.ve rectified and smoothed (the second- 

third columns of the Table) EMG plus the knee and ankle angle-time 

histories @MG+ Model). In each table the results for the fiill-wave rectified 

EMG. and the fidi-wave rrctifled and smoothed EMG are given. 



Table la: Inter-subject-A W G  ~odell) 

setg 1 rectified & smoothed EMG 
Training 

rectified EMG 

Force fredictions 
, 

comcoeff 1 RMS error' 

- - -  - - - - - - - - - - .  - -  - - - 

1, The input to the network is the EMG signal, 
2. Training data are fiom cat 1 and 2. 
3. The unit of values is Newton, and the percentage of the corresponding maximum 

peak force also is shown in this column- 

Table 1.b: Inter-subject-A (EMG+ ~odel ' )  

1- The input to the network is the EMG signal and the knee and anklc angles. 
2, TraUiing data are fiom cat 1 and 2. 
3. The unit of values is Newton, and the percentage of the comsponding maximum 

peak force also is shown in this column. 

Training 

sets2 

T-  
- - - - - -  - - - - 

Force Predictions 
, 

rectified & smoothed EMG rectïfied EMG 



(a): 0.4 m/s 

n (b): 0.8 m/s 

(c): 1.2 m/s 

Time (s) 

4.1.1 Inter-subject-A tests:CompansOns of the predicted forces 
(dashed-line) with the actual gastrocnemius forces (solid-line) for cat 3 
walldng at (a) 0.4 m/s. when the network was trained with the fidi-wave 
rectified and smoothed EMG and muscular force data b m  catl and 2 
wallring at 0.4 mis; (b) 0.8 m/s. when the network was trained with the 
full-wave recaed and smoothed EMG and muscular force data h m  cat 
1 and 2 wallohig at 0.8 m/s: (c) 1.2 m/s. when the network was train& 
with the fdl-wave rectiGed and smoothed EMG and muscufar force data 
fkom catl and 2 waiktng at 1.2 m/s. 



(a): 0.4 mis 

(b): 0.8 mis 

(c): 1.2 m/s 

4.1.2 Inter-subject-A tests:Comparkons of the predicted forces 
(dashed-&ne) wïth t h  actual gastrocnemius forces (soiid-line) for cat 3 
walklng at [a) 0.4 m/s. when the network was traîned with the full-wave 
recttûed EMG and muscular force data fkom catl and 2 walldng at 0.4 
m/s; (b) 0.8 m/s, when the network was trained with the fidl-wave rect- 
ified EMG and musdar force data h m  catl and 2 walking at 0.8 m/s; 
Ic) 1.2 m/s, when the network was trained with the fiail-wave rectified 
EMG and muscular force data h m  catl and 2 waiking at 1.2 m/s. 

--  - 



Figures 4-1.1 and 4.1.2 show cornparisons of the predicted and the 

actuai gastrocnemius forces for cat 3 walkïng at 0.4 m/s (Figure 4.1.1 (a) 

and 4.1.2(a)). 0.8 m/s (Figure 4.1.l(b) and 4.1.2(b)).and 1.2 mis  (Figure 

4.1.M and 4.1.2(c)). nspectively- The corresponàing co&cients of 

cross-correlation are shown in the second and fourth colunixl of Table 1 .a. 

The correspondhg RMS emrs between the pndicted and actual forces 

are shown in the third and fSth column of Table 1.a- For the test shown 

in Fig.4.1.1. the predicted and actual force curves were sirnilar. and the 

root mean square [RMS) mors were 2.1 N (at 0.4 m/s) with the maximum 

peak force 23.2 N, 2.7 N (at 0.8 m/s) with the maximum peak force 38.4 

N. and 4.6 N (at 1.2 m/s) with the maximum peak force 42.2 N, 

respectivey. The correlation coefficients were genedy better for walking 

at 0.4 and 0.8 m/s compared to wa-g at 1.2 m/s. After the force 

predictions for the Brst three steps. the differences in the peak magnitude 

between predicted and actual forces were generaUy large (> 10°h) when the 

peak of the current step was much lower (>10Oh) than the peak of the 

previous step at a speed of 0.4 m/s; and when the peak of the curent 

step was much larger (> 1û%] than the peak of the prevïous step at speeds 

of 0.8. 1.2 m/s. There was a shift to the left of the predicted compared to 

the actual forces in several steps at a speed of 1.2 m/s. For the test shown 

in Fig. 4.1.2, the predicted force curves included more noise. espedally 

for wallring at 0.4 m/s, compared to the predicted forces in Fig. 4.1.1. 

This indicates that the high ficequency content in the raw EMG signal is 

an unwanted component of the input to the netwok for the muscle force 



(a): 0.8 Ws 

(b): 1.2 mis 

TlME (s) 

4.1.3 Mer-subject-A tests:Comparisons of the predicted forces 
(dashed-line] with the actuai astrocnemius forces (solid-line) for cat 3 
walking at (a) 0.8 m/s. whui 8, e network was trained wÏth the full-wave 
rectified and smoothed EMG plus the knee and ankle angle-tirne 
histories. and muscular force data h m  catl and 2 walking at 0.8 m/s: 
(b) 1.2 m/s. when the network was trained with the fdi-wave rectified 

and smoothed EMG plus the knee and ankle angle-time histories, 
and muscuïar force data nom catl and 2 walking at 1.2 m/s. 
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(b): 1.2 m/s 
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4.1.4 Inter-subject-A tests: CompansOns of the predicted forces 
(dashed-line) with  the actud astrocnemius forces (solid-line) for cat 3 
wallàng at [a) 0.8 m / S. when & e network was trajned with the full-wave 
rectified EMG plus the knee and ankle angle-time histories. and mus- 
cular force data fiom catl and 2 walldng at 0.8 m/s. (b) 1.2 mis, when 
the network was trained with the M-wave rectifled EMG plus the knee 
and ankle angle-tïme histories,and muscular force data h m  catl and 
2 walking at 1.2 m/s. 



Figures 4.1.3 and 4.1.4 show cornparisons of the pndicM and the 

actual gastromemius forces for cat 3 wakhg at 0.8 mis (Figure 4.1.3[a) 

and 4.1 A[a)),and 1.2 m/s (Figure 4.1.3(b) and 4.1.4(b)). respectiveiy for 

the tests in Table 1.b. The correlation coefficients shown in Fig 4.1.3 are 

similar to those shown in Fig. 4.1.1. and so are the predïction results 

shown in Fig. 4.1.2 and 4.1.4. The results indicate that adding the 

kinematics to the input for the ANN did not improve the force predictions 

in these tests. 

4.2 bta-~abj je~t -B  tesb 

Force predictions for the inter-subject-B tests are shown in Tables 

2.a. and 2.b. The coefficients of cross-correlation ranged fkom 0.73-0.95 

(the third and fifth column of Tables 2.a and 2.b). The RMS errors are 

shown in the fourth and sixth column of Tables 2.a and 2.b. respective@ 

The training data were taken fkom cat 1 and 2 and the muscle predictions 

were made for cat 3 for walking at speeds of 0.4.0.8. 1.2 m/s respective@. 

For the predictions shown in Table 2.a. only EMG signal was used as 

input (EMG Model); for the predictions shown in Table 2.b. EMG plus 

knee and ankle angles were used as input (EMG+ Model). Results are 

shown for the full-wave rectified and the fidi-wave rectified and smoothed 

EMG. Adding the kinematics to the input improved the correlation 

coefficients and deaeased the RMS emors in the tests using the rectified 
-- - 

and smoothed EMG as input but not in the tests using only the rectified 

EMG as input mable 2.a). 



Table 2a: Inter-subjecî-B tests (EMG ~odel') 

Force Redictiom 1 
r d e d  & smoothed 

EMG 

data ftom catl 
and 2 

1 - The input to the network is the EMG signal- 
2. nie unit of values is Newton, and the percentage of the conesponding rwcimum peak force 

dso is showa in tbis column. 

Table 2.b: Inter-subject-B tests @MG+ ~odel') 

Force Predictions 

tectified & smoothed 
EMG 

rectified EMG speed 

( m m  

AiI available H 
1 data nom cat 1 t 

1. The input to the network is the EMG signal and the knet and aakle angles. 
2. The unit of values is Newton, and the percentage of the conesponding maximum peak force 

ais0 is shown in this column- 



(a): 0.4 rnls 

(b): 0.8 m/s 

(c): 1.2 m/s 
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Figure 4.2.1 Inter-subject-B tests:Comparisons of the pndicted forces 
(dashed-Une) with the actual gastrocnernius forces (solid-line) for cat 3 
waikïn at (a) 0.4 mis; (b) O S  m/s: (c) 1.2 m/s, when the network was 
train af with ali available firll-umve recafied and smootbed EMG and mu- 
scular force h m  cat 1 and 2- --. 



(a): 0.4 m/s 

(b): 0.8 mls 

(c): 1.2 m/s 
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4.2.2 hter-subject-B tests:Comparisons of the predicted forces 
(dashed-Une) with the actual gastrocnemius forces (solid-line) for cat 3 
walking at (a) 0.4 m/s; (b) 0.8 m/s: (c) 1.2 m/s, when the network was 
trained with aii available firll-wave rectifiecl EMG and muscuiar force 
fkom cat 1 and 2. 



(a): 0.4 m/s 
I T 1 1 

(b): 0.8 rn/s 

(c): 1.2 m/s 

TlME (s) 

eieprc 4.2.3 Inter-subject-B tests: C o m p ~ o n s  of the predicted forces 
(dashed-llne) with the actuat aSsOCIlemius forces (solid-Une) for cat 3 
walldng at (a) 0.4 m/s: Ibl O. 1 m/s; [c) 1.2 m/s. when the network was 
trafned with aU availab1e fuu-wave rectifiexi and smoothed EMG plus the 
knee and ankle angle-time histories. and muscular force data nom 
catl and 2. 



(a): 0.4 m/s 

(b): 0.8 mls 

(c): 1.2 m/s 

TlME (s) 

Figure 4.2.4 inter-subject-B tests:Comparisons of the predicted forces 
(dashed-linel with the actual gastrocnemius forces (solid-Une) for cat 3 
waMng at (a) 0.4 m/s: tb) 0.8 m/s: (cl 1.2 mis. whm the netinork was 
traïned with aU available fidi-wave rectilled plus the knee and ankle 
angle-time histories. and muscular force data h m  cat 1 and 2. 



Figures 4.2.1 and 4.2.2 show the cornparison between the predicted and 

the actual forces for waiking at 0.4 m/s. 0.8 m/s. and 1.2 m/s Figure 

4.2.l(a) and 4.2.2(a), 4.2.11bf and 4.2.2113). 4.2.l[c) and 4.2.2(c), 

respectiveiy)). when the network was trained with all available data h m  cat 

1 and 2. input for these tests was the N1-wave rectified and smoothed EMG 

signai (Figure 4.2. 1). or the fiail-wave rectified EMG signal (Fig. 4.2.2). The 

coefficients of cross-correlation and RMS m o r s  of the results are listed in 

Table 2.a. While the coefficients of cross-correlation and RMS errors of the 

results shown in Figures 4.2.3 and 4.2.4 are Usted in Table 2.b. The time 

histories of the predicted forces deviate systematically from those of the 

actual forces. The RMS prediction enors were generally high (A2% of the 

corresponding maximum peak force)). Comparing the results in Figure 4.2 

with the results in Figures 4.1. it is apparent that force predictions for the 

inter-subject-A tests were better than the corresponding predictions for the 

inter-subject-B tests. Therefore. increasing the number of training 

examples with non-specific walking trials decreased the predictive abiiity of 

the ANN in the gastrocnemius muscles. 

4.3 bmdubjje~t t ~ r -  

Force predictions for the intra-subject tests are shown in Table 3.a and 

3.b. 



rable 3.a: Intra-subject tests @MG ~0de1') 

-- - - - - - - - - - 

1. The input to the network is the EMG signai- 
2. Training data are h m  cat 3. 
3. The unit of vdues is Newton, and the percentage of the conespondhg maximum peak farce also 

is shown in uris colurnn. 

Training sets2 
(speed) 

0.8, 12, 1.8 m / s  

bble 3.b: Intrambject tests (EMG+ ~odel') 

1 Force Predictions 1 

Veed 

( m m  

0-4 

- - - - - - - - 

1. The input to the network is the EMG signal and the knee and adde angles 
2. Training data are h m  cat 3. 
3. The unit of values is Newton, and the percentage of the correspanding maximum peak force &O 

is shown in this column. 

Training sets2 
(speed) 

0.8, 1.2, 1.8 m/s 

rectSed & smoothed 
EMG 

. 
comcoeff. 

0.87 

rectified EMG 

s~eed 
( m m  

0.4 

RMS err02 
3.96 (17%) 

co~~coeff.  RMS e& 

rectified & smoothed 
EMG 

0.85 

, 

corr.coeff- 

rectifiai EMG 

4.07 (18%) 

em02 

0.83 

C O K . C ~ ~ ~  
- 

RMS e r r d  

4.61 (20%) 1 0.80 4.7 3. (20%) 
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(b): 0.8 m/s 
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(c): 1.2 m/s 

Time (s) 



1 2 3 4 5 

Tirne (s) 

4.8.1 Intra-subject tes= Cornparisons of the predicted forces 
(dashed-line) with the actuaî gastrocnemius forces [solid-Eue) for a repre- 
sentath cat walking at (a) 0.4 m/s. whui the network was trained with 
the fhü-wave rectified and smoothed EMG and force data fkorn the same 
cat while wallang/trotting at speeds of 0.8, 1.2. 1.8 m/s; (b) 0.8 m/s. 
when the network was trained with the fa-wave rectïfied and smoothed 
EMG and force data h m  the same cat while walking/trotting at speeds of 
0.4, 1.2, 1.8 m/s; [c) 1.2 m/s, when the network was trained with the fitll 
-wave rectified and smoothed EMG and force data h m  the same cat while 
wallang/trotting at s ds of 0.4.0.8. 1.8 m/s; (d) 1.8 m/s. when the net- 
work was trained wi tr= the fitll-wave rectifieci and smoothed EMG and force 
data from the same cat while walkaig at speeds of 0.4.0.8.1.2. mis. 



(a): 0.4 rnls 

n (b): 0.8 R ~ / S  

(c): 1.2 m/s 
L I a 1 1  



TlME (s) 

Figrne 4.3.2 Intra-subject tests: Cornparisons of the predicted forces 
(dashed-iine) with the actual gasffoc~emius foms (solid-line) for a repr- 
esentative cat walkin at (a) 0.4 m/s, when the network was trained with 
the full-wave rectifl 3 EMG and force data h m  the same cat while waik- 
ing/tmttin at speeds of 0.8. 1.2. 1.8 m/s;(b) 0.8 m/s. when the network 
was traine d with the fidi-wave rectifieci EMG and force data h m  the sanie 

speedsof 0.4. 1.2. 1.8m/s; (c) 1.2mfs. 
with the full-wave rectïfied EMG and force 

data h m  the same cat whiie walking/trotting at s e s  of 0.4.0.8, and 
1.8 m/s; (d) 1.8 m/s, when the net work was trained with the full-wave 
rectifiecl EMG and force data h m  the same cat whnt Waneag at speeds 
of 0.4, O.SJ.2, m/s. 



(a): 0.4 m/s 
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(b): 0.8 m/s 

(c): 1.2 mis 



(d): 1.8 m/s 
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TlME (s) 

4.S.s Intra-subject tests: Cornparisons of the predicted forces 
(dashed-line) with the actual gastrocnemius forces (solid-line) for a repr- 
esentative cat w a W  at (a) 0.4 m/s,when the network was trained with 
the fiiU-wave rectifiecf and smoothed EMG plus the knee and ankle 
angle-thne histories. and muscular force data Mm the same cat while 
walktn /trotmg at speeds of 0.8. 1.2. 1.8 m/s: (b) 0.8 m/s. when the I ne- was traïned with the fa-wave rectifieci and smoothed EMG plus 
the knee and ankle angle-Ume histories. and muscular force data 
fiom the same cat whiie walking/trotting at speeds of 0.4. 1.2, 1.8 m/s; 
(cl 1.2 m/s. when the network was trained wîth the full -wave rectified 
and smoothed EMG plus the knee and ankle angle-time histories. 
and muscular force data h m  the same cat while walking/trotting at 
speeds of 0.4. 0.8. 1.8 m/s: (d) 1.8 m/s. when the network was trained 
with the fiill-wave rectified and smoothed EMG plus theknee and 
ankle angle-tirne histories. and muscular force data h m  the same 
cat while waïking at speeds of 0.4.0.8.1.2. m/s. 
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(d): 1.8 m/s 

TlME (s) 

Figure 4.3.4 Intra-subject tests: Cornparisons of the predicted forces 
(dashed-he) -th the actual gastrocnemius forces (solid-line) for a repn- 
sentame cat walking at (a) 0.4 m/s. when the network was traïned with 
the fitll-wave rectfaed EMG plus the knee and ankle ange-time hist- 
ories. and muscular force data h m  the same cat while walking/trotting 
at speeds of 0.8. 1.2. 1.8 m/s: (b) 0.8 m/s.when the network was trained 
with the f;un-wave rectifieci EMG plus the knee and ankle angie-time 
histories, and muscutar force data h m  the same cat while walldng / 

at speeds of 0.4. 1.2.1.8 m/s; (c) 1.2 m/s. when the network was 
train tro%f with the U-wave rectified EMG plus the h e e  and ankle angle- 
time histories,and muscular force àata h m  the same cat wbiîe waiking 
/trotting at speeds of 0.4.0.8.1.8 m/s: (d) 1.8 m/s.when the network was 
trained with the fidl-wave rectified EMG plus the knee and adde angle- 
time histories.and muscular force data h m  the same cat while walking 
at speeds of 0.4.0.8.1.2, m/s. 

Figures 4.3.1 and 4.3.2. respectively show the predicted forces for one 

representative cat walking/trotting at one speed white the network was 

trained with the full-wave rectified and smoothed EMG (Figure 4.3.1) or 

the M-wave rectified EMG Figure 4.3.2) and force data from the same 

cat walking/trotting at the three remaining speeds. The coefficients of 

cross-correlation for the experiments shown in Figures 4.3.1 and 4.3.2 



are kted in the third and fifth column of Table 3.a, respective&. The 

cross-comlation coefl8cients for the experirnents shown in Figures 4.3.3 

and 4.3.4 are hted in the third and fiftb column of Table 3.b. The 

corresponding RMS prediction mors shom in Figure 4.3 are listed in the 

fourth and last column of Tables 3.a and 3.b. respective&. The root mean 

square m o r s  shown in Figure 4.3.1 are 4.0 N (at 0.4 m/s) with the 

maximum peak force of 23.2 N, 4.3 N (at 0.8 m/s) with the maximum 

peak force of 38.4 N, 4.5 N (at 1.2 m/s) with the maximum peak force of 

42.2 N. and 5.7 N (at 1.8 m/s) with the maximum peak force of 43.0 N. 

respectiveIy. 

The coe5üents of cross-correlation were higher (>0.9) when the speed 

for the force predictions was intennediate compared to the situation when 

the speed for the force pndictions was hi- or lower than the speeds 

used for training the network. Mnerences in the peak force were larger at 

0.4 than at 0.8 or 1.2 m/s (compare Figure 4.3. la (0.4 m/s) to Figure 

4.3.lb,c (0.8 and 1.2 m/s). respectively). The RMS mors ranged fkom 

11%-2û% of the corresponding maximum peak forces. niere is a 

systematic shift to the right of the time histories in the descending part 

of the predicted compared to the actual force time histories at 1.8 m/s 

Figure 4.3.l(d), 4.3.2(d). 4.3.3(d). and 4.3.4(d)). and a systematic shift to 

the left for the corresponding cornparison at 0.4 m/s Figure 4.3.l(a), 

4.3.2(a), 4.3.3(a), and 3.4(a)). The shifts resulted in low (~0.90) 

coefficients of cross-correlation and high RMS m o r s  (12%-14% of the 

comesponding maximum peak forces) for walking at 1.8 m/s. 



Force predictions for the intra-session tests are shown in Tables 4.a. 

and 4.b. 

Table 41: I n t r a d o n  tests (EMG ~ o d e l l )  

Force predictions I 
Training 

1 
l rectified & smoothed ' 

set2 EMG rectified EMG 

(steps) steps 
1 i 

1. The input to the network is the EMG signal- 
2. Training data are fiom an increasiag number of step cycles of a rcpresentaave cat walkhg 

at 0.8 m/s, 
3, The unit of values is Newton, and the percentage of the conesponding maximum peak 

force aiso is shown in this column 



Tobie 4.b: Intia-session onMs m G +  ~odel3 

Force Predictions 1 
rectified & smoothed 

EMG rectified EMG 

1- The input to the network is the EMG signal and the h e e  and d e  angles. 
2. Training data are h m  an increasing nurnber of step cycles of a representative cat walking 

at 0.8 ds. 
3. The unit of vaiues is Newton, and the percentage of the correspondiag maximum peak 

force also is shown in this column. 

Force predictions for the intra-session tests were good when the EMG 

signal was Wi-wave rectified and smoothed (the third and fourth 

columns of Table 4.a and 4.b). The coefficients of cross-correlation for the 

tests ranged fkom 0.95-0.98 (the third column of Table 4.a and 4.b) and 

the RMS prediction mors ranged from 6%- 9% of the maximum peak 

force of 35.2 N (the fourth column of Table 4.a and 4.b). when the 

network was trained with information of 1.5 steps or more. 



-0 1 2 

Time (s) 

- 
O 1 2 

Time (s) 
"O 1 2 

Time (s) 

4.4.1 Intra-session tests: Cornparisons of the predicted forces 
(dashed-he) with the actual gastrocaemius foras (solid-Une) for the last 
five steps of a representatfve cat at 0.8 m/s. whm the network was train- 
ed using the fdl-wave rectifiecl and smoothed EMG and force data h m  
the first 1.5 (a). 2.5 (b). 3.5 (c). 4.5 (dl. 5.5 (e). 6.5 (0. 7.5 (g). 8.5 @II, and 
9.5 (i) steps of that session. 



TlME (s) TlME (s) TiME (s) 

4.4.2 Intta-session tests: Cornparisuns of the pndicted forces 
(dashed-Une) with the actuai gastmmemius forces (solid-iine) for the last 
five steps of a representative cat at 0.8 m/s, when the network was train- 
ed using the fidi-wave rectifieci EMG and force data nom the filrst 1.5 (a). 
2.5 (b), 3.5 (c). 4.5 (d). 5.5 (e). 6.5 (0. 7.5 (g). 8.5 (h), and 9.5 (i) steps of 
that session. 



TlME (s) 
-0 1 2 

TlME (s) 

4.4.3 htra-session tests: Cornparisons of the predicted forces 
(dashed-me) with the actual gastrocnemius forces (solid-line) for the last 
five steps of a mpresentative cat at 0.8 m/s. when the network was train- 
ed using the fdl-wave rectiiied and smoothed EMG phis the knee and 
ankle angle-time histories. and force data rom the first. 1.5 (a). 2.5 (b). 
3.5 (c1.4.5 [d). 5.5 (el. 6.5 (0.7.5 (d.8.5 (h).and 9.5 (i) steps of that session. 



-0 1 2 

TlME (s) TlME (s) TlME (s) 

4.4.4 Intra-session tests: Cornparisons of the predicted forces 
(dashed-Une) with the actuai gasffocnemius forces (soiid-Une) for the iast 
five ste s of a representative cat at 0.8 m/swhen the network was trained 
using &e wi-wave nctifd EMG plus the knee and m e  angle-time 
histories. and force datafrom the b t  1.5 (a). 2.5 (b), 3.5 (c),4.5 (d), 5.5 
(el. 6.5 (0, 7.5 0. 8.5 (hl, anci 9.5 (i) steps of that session 



Figures 4.4.l(a)-(i) and 4.4.2(a)-(i) show the compansOns of the 

predicted and the actuaî forces for the Iast fke steps of a representative 

cat in one session when the network was tdned using the fid-wave 

rectified and smoothed EMG or the fitn-wmve rectified EMG, and force 

data h m  an inmeasingnumber of steps (1.5.2.5.3.5.4.5.5.5, 6.5. 7.5, 

8.5. and 9.5 steps) of that session. respective@. The corresponding 

coefficients of cross-correlation for the tests are shown in the third and 

fdkh columns of Table 4.a. The corresponding RMS enors are shown in 

the fourth and sixth columns of Table 4.a. 

Figures 4.4.3(a)-(i) and 4.4.4(a)-(1) show the prediction results listed 

in Table 4.b. The coe5uents of cross-correlation were higher (>0.95) 

when the network was trained using the full-wave rectified and smoothed 

EMG (the third column of Table 4.a and 4.b) compared to using the full- 

wave rectified and unsmoothed EMG (the fifth column of Table 4.a and 

4.b). Also. the RMS ermrs were lower (c90/0 of the maximum peak force) 

when the network was trained using the smoothed (the fourth column of 

Table 4.a and 4.b) compared to usïng the unsmoothed EMG (the last 

column of Tables 4.a and 4.b). For the tests shom in Figures 4.4.2 and 

4.4.4. the predicted force cuves included more noise compared to the 

predicted forces in Figures 4.4.1 and 4.4.3. 

For the results shown in F'igures 4.4.1 and 4.4.3, the coeflicient of 

cross-correlation ranged fkom 0.97-0.98. the RMS mors rangecl h m  2.2- 

2.5 N with the maximum peak force of 35.2 N, and the time histories of the 

predicted and actual forces matched almost perfectly when the number 



of steps used for the training session was 4.5 or more (Figure 4.4.1 and 

4.4.3) . 



Chapter flve: Force Predictioms for the Cat Soleus 

5.1 fnttr-~ubjtct-A t-a 

Soieus force predictions for the inter-subject-A tests are shown in 

Tables 5.a and 5.b. AU training examples wae h m  cat 1 and 2 and the 

force predictions were made for cat 3. The coefficients of cross-correlation 

for the tests rangeci between 0.93-0.96 (the second and fourth columns 

of Table 5.a and 5.b). The corresponding RMS emrs between the 

predicted and actud force were 1 1% of the corresponding maxiniun peak 

force of 14.8 N at 0.4 m/s, 12% of the comsponding maximum peak force 

of 16.7 N at 0.8 m/s. and 10% of the comsponding maxbnum peak force 

of 17.3 N at 1.2 m/s (the thid and f l fb  columns of Tables 5.a and 5.b). 

in each table, the results for the fdl-wave rectified EMG (the fourth-£ifth 

columns of the Table). and the fbll-wave rectified and smoothed EMG (the 

second-third columns of the Table] are ghnn. 

Figures 5.1.1 and 5.1.2 show compaxisons of the predicted and the 

actuai soleus forces for cat 3 walldng at 0.4 m/s (Figures 5.1.11a) and 

5.1.2(a)). 0.8 m/s (Figures S.l.l(b) and 5.1.2(b)).and 1.2 m/s (Figures 

5.1.l(c) and 5.1.2(c)). respectively. The correspondiag &cients of 

crossccorrelation are shown in the second and fourth columns of Table 

5.a The comsponding RMS emxs between the predicted and actual 
. . 

forces are shown in the third and f i f b  column of Table 5.a. Figures 5.1.3 

and 5.1.4 show the resuits bted in Table 5.b. The figures and statistical 



Table Sa: Inter-subject-A (EMG M-1') 
- - -  - - 

Force prediction 
Training 

rectified & smoothed EMG rectifiai €MG 
sets2 1 

RMS em02 

1-70 (12%) 

1. The input to the network is the EMG signal, 
2- Training data are from cat 1 and 2. 
3- The unit of values is Newton, and the pcrcentage of the corresponding maximum 

peak force aisc is shown in this column. 

Table 5.b: Inter-mbject-A @MG+ ~odel') 

I Force prediction I 

1. The input to the networic are the EMG signal and the knee and ankle angles. 
2. Training data are fram cat 1 and 2. 
3. The unit of values is Newton, and the ptrcentage of the conespondhg maximum 

peak force also is show in this column- 

Training 
reciified & smoothed EMG 1 rectified EMG 



(a): 0.4 m/s 

(b): 0.8 rnls 

(c): 1.2 m/s 

TlME (s) 

F m  8.1.1 Inter-subject-A tests: Cornparisons of the predicted forces 
[dashed-lines) with the actual soleus forces [soiid-iines) for one cat waik- 
ing at (a) 0.4 m/s, when the network was trained wïth .the fd-wave rect- 
i&d and smoothed EMG and muçcular force data h m  the * .  

two cats walkïng at 0.4 m/s: (b) the corresponding resuits for 
0.8 m/s: (c) the co~~esponding results for aralkirig at 1.2 m/s. 



(a): 0.4 m/s 

(b): 0.8 m/s 
20r I I L l I 

(c): 1.2 mls 
I r I 

1.1.2 Inter-subject-A tests: Cornparisons of the predicted forces 
(dashed-iines) with the actual soieus forces (soiid-Unes) for one cat waik- 
ing at (a) 0.4 m/s, when the network was trained with the full-wave rect- 
i8ed EMG and musCUIar force data fkom the remaining two cats walking 
at 0.4 m/s; (b) the conespnding results for walking at 0.8 m/s: (c) the 
corresponâing resuits for waiking at 1.2 m/s. 



(a): 0.4 m/s 

(b): 0.8 m/s 

(c): 1.2 mls 

TiME (s) 

Pigoue S. 1.3 Inter-subject-A tests: Cornparisons of the predicted forces 
(dashed-lines) with the actual soieus forces (solid-lines) for one cat wak- 
ing at (a) 0.4 m/s. when the network was trained with the full-wave rect- 
med and smoothed EMG plus the knee and ankle ange-time histories 
and force data fkom the remammg . - two cats walking at 0.4 m/s; (b) the 
correspondin rrsults for walking at 0.8 m/s: (c) the corresponding 
resuits for & at 1.2 m/s. 





results showed that the pndicted and ertual force curves were sLmilar for 

waiking at speeds of 0.8, 1.2 m/s. The peak force amplittudes matched 

better for waildng at 0.8 and 1.2 m/s cornpareci to w a k h g  at 0.4 m/s. 

The Merences in the peak magnitude bemen predicted and actual 

forces were generally large (~10%) when the peak of the c m n t  step was 

much 10- 010%) than the peak of the prwlous step or the following 

step at a speed of 0.4 m/s; and when the peak of the current step was 

much larger (>IO%) than the peak of the prrvfous step at speeds of 0.8. 

1.2 mfs. There was a systematic shift to the rïght of the descending part 

of the predicted compared to the actual force at a speed of 0.8 m/s 

Figures 5.1.lb. 5.1.2b. 5.1.3b. and 5.1.4b). The shifts iesulted in 

incfeasing RMS ermrs (12%- 14% of the corresponding maximum peak 

forces) for waikïng at 0.8 m/s. The predicted force curves shown in Fig. 

5.1.2 and 5.1.4 included more noise, especially for wallang at 0.4 m/s. 

compared to the predicted foms in Fig. 5.1.1 and 5.1.3. The resuIts 

indicated that adding the lmee and ankie aagle time histories to thk input 

of the ANN did not i m p m  the force predictions in these tests. 

5.2 Inter-sobject-B tests 

Soleus force p ~ c t i o n s  for the inter-subject-B tests are shown in 

Tables 6.a. and 6.b. The coefBcients of cross-correlation ranged belween 

0.9 1-0.94 (the second and fourth columns of Table 6.a and 6.b). n i e  

corresponding RMS emrs between the predicted and actual forces 



ranged h m  1.65 N to 2.17N (the third and Bfth columns of the Table 6.a 

and 6.b). The training data wae taken h m  cat 1 and 2 and the muscle 

predictions were made for cat 3 for walking at speeds of 0.4. 0.8. 1.2 m/ 

s respectively. For the predictions shown in Table 6.a only EMG signal 

was used as input @MG Modell; for the prdictions shown in Table 6.b. 

EMG plus knee and ankle angie time histories were used as input (ECMG+ 

Model). Results are shown for the full-wave recmed and the full-wave 

rectitied and smoothed EMG. Adding the kinematics to the input of the 

ANN Fable 6.b) did not iniprove the co~~elation coefficients and RMS 

errors bebveen the predicted and actual forces in these tests rable 6.a). 

Figures 5.2.1 and 5.2.2 show the comparlson bebveen the predicted 

(dashed Unes) and the actual (solid lines) forces for walking at 0.4 m/s 

(Fig. 5.2.l(a) and 5.2.Xal). 0.8 m/s (Fig. 5.2.l(b) and 5.2.2(b)). and 1.2 m/ 

s (Figure 5.2.l(c) and 5.2.2(c)). respectivey. when the netsmrk was 

trained with all adable data h m  cats 1 and 2. input for these tests was 

the Ml-wave rectifieci and smoothed EMG signal (Figure 5.2.1). or the 

fidi-wave rectiiied, unsmoothed EMG signal Fi. 5.2.2). The coefacients 

of cross-correlation and RMS errors are listed in Table 6.a Figures 5 -2.3 

and 5.2.4 show the results ïisted in Table 2.b. n i e  predictions of the peak 

magnitudes were generally better for walking at 0.8 m/s and 1.2 m/s 

than for walking at 0.4 m/s. midy, the peak magnitudes were 

overestimated at speeds of wallring of 0.4 m/s. and underestimated at 0.8 

m/s. Comparing the results shown in Figure 5.2 with those shown in 



Figure 5.1, soleus force predictiom for the inter-subject-A tests were 

slighüy better than the corresponding predictions for the inter-subject-B 

tests. Therefore. increasing the number of training examples with non- 

spedfic wallaIng triais decreased the predictkve ability of the ANN. 

Table 6a: Inter-subject-B ('MG ~ode l l )  

Training 
Sets 

(speed) 

AU availa- 
ble data 
fiom cat 1 
and 2 

Force Prediction 

rectified & smoothed 
EMG 

1. The input to the network is the EMG signal. 
2. The unit of values is Newton, and the percentage of the correspondiog maximum peak 

force also is show in this column. 

rectified EMG 

( n / s )  

Table 6.b: Inter-mbject-B @MG+ ~odel') 

Training 
Sets 

Ail availa- 
ble data 
fiom cat 1, 
cat 2 

Force Prediction I 

corr.coeff 

rectified & smoothed 
EMG 1 rectinsdEMG. 

con-coeff RMS RMS erro? 

1. The input to the network are the EMG signal and the kace and ankle angles. 
2. The unit of vaIucs is Newton, and the percentage of the corresponding maximum peak 

force also is shown in this column. 

I 

RMS erro? con-coeff corn-coeff RMS e m ?  



(a): 0.4 m/s 

(b): 0.8 mls 

(c): 1.2 mls 

TlME (s) 

3.2.1 inter-subject-B tests: Cornparisons of the predicted forces 
(dashed-hes) with the actual soleus forces (soiid-hes) for one cat waik- 
ing at (a) 0.4 m/s; (b) 0.8 m/s:(c) 1.2 m/s. when the network aras trained 
with al1 a m b l e  W-wave rectified and smoothed EMG and m u d a r  
force data h m  cat 1 and 2* 



(a): 0.4 m/s 
15 

10 

5 

n 

(b): 0.8 mis 

(c): 1.2 m/s 

1 2 3 4 5 
TiME (s) 

5.2.2 Inter-subject-B tests: Cornparisons of the predicted forces 
(dashed-Unes) with the actual soleus forces [solid-iines) for one cat walk- 
ing at (a) 0.4 m/s: [bl 0.8 m/s:(c) 1.2 m/s. when the network was trained 
with ali available fidi-wave recafied EMG and muscular force data fkom 
cat 1 and 2. 



(a): 0.4 mis 

(b): 0.8 mis 

(c): 1.2 m/s 

5.2.3 inter-subject-B tests: Cornparisons of the predicted forces 
(dashed-iixtes) with the actual soleus forces (solid-lines) for one cat walk- 
ing at (a) 0.4 m/s; (b) 0.8 m/s;(c) 1.2 m/s. when the network was trained 
with ail adable full-wave nctified and smoothed EMG plus the knee 
and ankle angle-time histories. and force data h m  cat 1 and 2. 



F O R C E  ( N )  



1. The input to the network is the EMG signal- 
2. Training data are h m  cat 3, 
3, The unit of values is Newton, and the percentage of the corrcsponding maximum peak force also 

is shown in thïs colwin- 

speed 
( m / s  

1 Force prediction 

- - - - -- - - - - - - - - - - - - - - -- - - - - - 

1, nie inputs to the network are the EMG signal and the knee and ankle aigles 
2. Training data are h m  cat 3. 
3. The unit of values is Newton, and the percentage of the corresponding maximum peak force also 

is show in this column- 

rectified & smoothed 
EMG 

' 

s~eed 

colT.c0eff. 

rectifiecl EMG 

RMS C O ~ C O ~ ~ ~ .  

rectified & smoothed 
EMG 

RMS en& 

rectified EMG 



(a): 0.4 mls 

(b): 0.8 mis - 20 z 
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(c): 1.2 m/s 

TlME (s) 



(d): 1.8 mis 

pieme 5.3.1 Intra-subject tests: Cornparisons of the predicted forces 
(dashed-lines) with the actual soleus foms [soiid-lines) for a represent- 

tative cat waiking at (a) 0.4 m/s,when the nettRork was trained with the 
full-wave redifted and smoothed EMG and force data firom the same cat 
while walking/trotting at speeds of 0.8. 1.2. 1.8 m/s: (b) 0.8 mis. when 
the network was traiaed with the fidi-wave rtxtified and smoothed EMG 
and force data h m  the same cat while wakïng ftrotting at speeds of 
0.4, 1.2, 1.8 m/s; (c) 1.2 m/s, when the network was trained with the 
fuU-wave rectifieci and smoothed EMG and force data h m  the same cat 
while walking/trotting at speeds of 0.4.0.8, 1.8 m/s; (dl 1.8 m/s. when 
the network was trained with the fÙU-wave rectifieci and smoothed EMG 
and force data h m  the same cat while waikbg at speeds of 0.4. 0.8.1.2 
m/s. 



(a): 0.4 m/s 

(b): 0.8 m/s 

(c): 1.2 m/s 

o l  
O 1 2 3 

TlME (s) 



(d): 1.8 rnls 

5.3.2 Intra-subject tests: Compansons of the predicted forces 
[dashed-lines) with the actual soieus forces (solid-lines) for a representt- 
atWe cat waiking at (a) 0.4 m/s,when the network was saineci with the 
fidi-wave recttûed EMG and force data h m  the same cat white waiking 
/trotting at speeds of 0.8. 1.2, 1.8 m/s; (bl 0.8 m/s. whm the network 
was trained with the fÜU-wave rectified EMG and force data h m  the 
same cat wnile waking/trotting at speeds of O.4.1.2.LS m/s;(c) 1.2 m/s. 
when the network was trained with the full-wave rectified EMG and 
force data h m  the same cat whae waiking/trotting at speeds of 0.4.0.8. 
1.8 m/s; (d) 1.8 m/s, whm the network was trained with the fuiî-wave 
rectified EMG and force data fiom the same cat while walkjng/trotting 
at speeds of 0.4.0.8.1.2 m/s. 



(a): 0.4 m/s 

(b): 0.8 mls 

(c): 1.2 mis 

TlME (s) 



(d): 1.8 m/s 

TlME (s) 

5.3.3 Intra-subject tests: Cornparisons of the predicted forces 
(dashed-lines) with the actual soleus forces (solid-lines) for a represen- 
tative cat walking at (a) O 4  m/s. when the network was trained with 
the hrll-wave rectifieci and smoothed EMG plus the b e e  and ankle 
angle-time histories,and force data from the same cat while walking 
/trottulg at speeds of 0.8.1.2.1.8 m/s: (b) 0.8 m/s, when the netrnork 
was trained with the full-wave recaned and smoothed EMG plus the 
knee and ankle angle-time histories. and force data h m  the same 
cat while walkin /tmtting at speeds of 0.4. 1.2.1.8 m / s  (c) 1.2 m/s. 
when the networ % was trained with the fuli-wave rectiôed and srnoot- 
hed EMG plus the h e e  and ankle angie-thne histories. and force 
data fkom the same cat while walking /trotting at speeds of 0.4. 0.8, 
1.8 m/s; (d) 1.8 m/s.when the nebvork was trained with the full-wave 
rectifiecl and smoothed EMG plus the knee and ankle an@e-time 
histories. and force data h m  the same cat while wdking/trotting at 
speeds of 0.4.0.8.1.2 m/s. 



(a): 0.4 m/s 
20 [ 1 1 I I 1 I 

CI 
(b): 0.8 m/s 
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(c): 1.2 mis 

TlME (s) 



n 
(d): 1.8 m/s 

5.3.4 Intra-subject tests: Cornparisons of the pdcted  forces 
(dashed-lines) with the actual soleus foras (solid-lines) for a represm- 
tame cat walking at (a) 0.4 m/s. when the netwurlc was traïned with 
the fidi-wave rectifieci EMG plus the knee and ankl e angle-time 
histories, and force data h m  the same cat wMe walking /trotting at 
speeds of 0.8.1.2. 1.8 m/s: (b) 0.8 m/s. when the networkwas trained 
with the fiill-wave rectifiecl EMG plus the lmee and ankle angle-time 
histories, and force data h m  the same cat whiie wallring /trotting at 
speeds of 0.4. 1.2. 1.8 mis; (c) 1.2 m/s. when the network was trained 
with the N1-waw rectii3ed EMG plus the lmee and ankle angle-time 
histones, and force data h m  the same cat whiie walldag /trotting at 
speeds of 0.4. 0.8. 1.8 m/s; (d) 1.8 m/s.when the network was trained 
with the N1-wave rectified EMG plus the knee and ankle angle-thne 
histories, and force data fimm the same cat while wallring /tn,tting at 
speeds of 0.4. 0.8. 1.2 m/s. 

Soleus force predictions for the intra-subject tests are shown in 

Tables ?.a, and 7.b. 

Figures 5.3.1 and 5.3.2 show the predicted soleus forces for one 

representative cat walking/trotting at a aven speed while the network 

was tained with the full-mve rectified and smoothed EMG or the full- 

wave rectified and unsmoothed EMG and force data f?om the same cat 



walking/tmtting at the t h e  other speeds. nie coefficients of cross- 

correlation for the experinrents shown in Figuns 5.3.1 and 5.3.2 are 

listed in the third and fUth columns of Table 7.a. respectiveiy: the 

coxresponding RMS mrs are kted in the fourth and sixth columns of 

Table ?.a. The cross-correlation coefficients and RMS errors for the 

experïments shown in Figures 5.3.3 and 5.3.4 are listed in Table 7.b. The 

time histories of the predicted forces deviated systematitcay. from those 

of the actuai forces at a speed of 0.4 m/s in ail intra-subject prediction 

tests. At speeds of 0.8 and 1.2 mfs. the predicted forces underestimated 

the actual forces when the input for the ANN was the EMG signal ody 

(Figure 5.3.1 and 5.3.2). Adding the kirtematics to the input for the ANN 

improved sign.cantly the cross-correlation coefficients and produced an 

improved match of the peak amplitudes between predicted and actual 

forces at speeds of 0.8 and 1.2 m/s. The correspondhg prediction results 

(Figures 5.3.3 and 5.3 -4) at 0.8 and 1.2 m/s were almost as good as those 

in the inter-subject-A prediction tests. For example. when adding the 

binematic information to the training input of the ANN, the coefficients of 

cross-correiation were improved (hm 0.87 (Figure 5.1. lb) to 0.94 (Figure 

5.1.3b) at 0.8 m/s: fkom 0.9 1 (Figure 5.1. lc) to 0.93 [Figure 5.1.3~) at 1.2 

m/s) (the third column of Table 3b) and the RMS emors decreased (fkom 

2.5 N to 1.7 N at 0.8 m/s. and h m  2.0 N to 1.9 N at 1.2 m/s) (the fourth 

column of Table 3b). Dinerences between the predicted and actual peak 

forces were larger at a walking speed of 0.4 than at 0.8 or 1.2 m/s. Also, 

there was a systematic shift of the time histories to the right on the 



descending part of the predicted compared to the actual force time 

histories at 1.8 mfs (Figure 5.3.3(d).and 5.3.4(d)). and a systematïc shift 

to the left for the comsponding cornparison at 0.4 m/s (Figure 

5.3.3(a),and 5.3.4(a)). niis shift resulted in low (c=0.88) coefficients of 

cross-comlation and s&ghtS large RMS errors (>= 13% of the 

corresponding maximum peak forces) for waîkïng at 1.8 m/s (Figure 

5.3.Ud). 5.3.2(d). 5.3.3(d),and 5.3.4(d)). 

Force predictions for the intra-session tests are shown in Table 8.a. 

and 8.b. 

Soleus force predictiom for the intra-session tests were excellent 

(Table 8.a. and 8.b) when the EMG signal was fbU-wave rectified and 

smoothed. The coefficients of cross-correlation for the tests ranged from 

0.96-0.98 (the third column of Table 8.a and 8.b). and the corresponding 

RMS emrs were small (<= 803 of the corresponding maximum peak 

forces), when trained with information h m  1.5 steps or more. Figures 

5 4 . 1  (a)-(i) and 5.4.2(a)-(i) show the cornparisons of the predicted and the 

actual forces for the last &e steps of a representative cat in one session 

when the network was trained using the fdl-wave rectified and smoothed 

EMG. or the fÙiI-wave rectified EMG alone. and force data from an 

increasing number of steps (1.5.2.5. 3.5.4.5. 5.5. 6.5. 7.5. 8.5, and 9.5 

steps) of that session, respective&. The correspondhg coefficients of 



I Force prodiction 1 

force dso is shown in this col~ma- 
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1 .O3 ( 6%) 
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Tabk &b: Intramion (EMG* ~ o d e l l )  

1- The inputs CO the network are the EMG signal and the knee and ankie angles. 
2- Training data are fiom an increasing number of step cycles of a tepresentative cat wallang 

at 0.8 d s .  
3, The unit of values is Newton, and the percentage of the correspondhg maximum peak 

forcc also Is shown in this column. 
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Fiepve 5.4.2 Intra-session tests: Cornparisons of the predicted forces 
(dashed-lines) with the actuai soleus forces (solid-Unes) for the last five 
steps of a re resentative cat at 0.8 mis. when the network was trained 
usin the fd -wave rectifieci EMG and force data Mm the first 1.5 (a). 
2.5 ),3.5(c).4.5(d). 5.5(e). 6.5 (a. 7.5@. 8.5(h).and9.5(i)stepsof 
that session. 



O 1 2 

TlME (s) TlME (s) 
"O 1 2 

TlME (s) 

Flgia s.4.3 Intra-session tests:Comparisons of the predicted forces 
(dashed-Unes) with the actual d e u s  forces [soiid-lines) for the iast five 
steps of a representative cat at 0.8 mfs. when the network was trained 
us i .  the full-wave rectifieci and smoothed EMG plus the h e e  and 
ande angle-tinie histories. and force data îrom the fmt 1.5 (a). 2.5 
(b). 3.5 (cl. 4.5 (d). 5.5 (e). 6.5 (8. 7.5 Ig). 8.5 (h).and 9.5 (i) steps of that 
session. 
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8.4.4 Intra-session tests: Cornparisons of the predicted forces 
(dashed-lines) with the achial soleus forces (solid-lines) for the last five 
steps of a n resentative cat at 0.8 m/s. whm the network was trained 
using the d-wave rectifieci EMG plus the knee and ankle angie-time 
histories. and force data h m  the h t  1.5 (a). 2.5 (b). 3.5 (c). 4.5 (dl. 
5.5 (e). 6.5 (0. 7.5 (g). 8.5 (h), and 9.5 (i) steps of that s-sion. 



Fi- 5 -4.3 (a) -(i) and 5.4.4(a) -(il show the force-time predictions for 

the resuits listed in the third and Bfth columns of Table 8.b. The soleus 

f o m  predictions were virtually pdect. when the network was trabed 

using the fidi-wave rectîfled and smoothed EMG and when the number of 

steps used for taining urceeded 4.5 (the third and fourth columns of 

Tables 8.a and 8.b). For the tests shown in Figures 5.4.2 and 5.4.4. the 

predicted force curves contained more noise compared to the predicted 

forces in Figures 5.4.1 and 5.4.3. 



chapter six: DiSc118sioIls 

The cat gastrocnemius and soleus have Werent architecture and 

mechanid, morphological. and biochemid properties which S e c t  the 

force output of these muscles durhig locomotion. Peak forces and EMGs 

of the gastrocnemius increase in pafallel with inmasing speeds of 

locomotion. whereas peak soleus forces remain about constant and 

EMGs increase with increasing speeds of locomotion (Herzog et al.. 1993). 

In this study. we made force predictions for the cat gastxocnemius and 

soleus using an ANN approach. The r e d t s  fouad hem demonstrated that 

adequate force predictions could be made for two vexy dinerent muscles 

with different properties functional abilities, and control function. 

6.1 Dynamic force predictions for the cat gastrocaemius 

The dynamic force predictions made using the ANN were excellent for 

the inter-subject-A and the intra-session prediction schemes for the 

gastrocnefnius. The coefficients of cross-correlation in these tests 

exceeded 0.91 and RMS m o r s  were equai to or l e s  than 11% of the 

comesponding maximum peak forces in ail cases. The time histories of 

the predicted forces agreed weli with those of the actual forces. These 

results suggest that the dynamic EMG-force relationships and the 

mechanical properties of gastrocnemius muscles are sWar across cats 



waIk[ng/trotang at a given speed of locomotion. One limitation of the 

inter-subject-A predictions was that the predicted peak forces were over- 

or underestimated when the peak force of the target step was much lower 

or higher than the peak force of the previous step. This rimitation could 

probably be ellminated if data h m  more cats had been a m b l e  for the 

training of the ANN. 

For the intra-session predictions of gastrocnemius forces, the force 

predictions were bad if the number of steps used for training the ANN was 

Iess than one (i-e. 0.5 steps, Figure 6.1.1). A n  example where 0.5 steps 

were used for training is shown in Figure 6.1.1. The RMS em>r was 5.1 N 

with the maximum peak force of 35.2 N, (14%). However, the force 

predictions were excellent and the coefficients of cross-correlation 

remained virhially constant (Figure 6.1.2. Tables 4.a. 4.b) once the 

number of steps used for training the ANN exceeded &e. This result 

indicates that the essential features of the EMGforce relationship for a 

cat wallnng at a @en speed are captured by the ANN within about five to 

six fidl step cycles. 

The inter-subject-B predictions were not as good as the inter-subject- 

A predictions for the cat gastrocnemius. The mot mean square W S )  

errors were large (e.g. Figure 4.2.1). about 23% (0.4 m/s). 14% (0.8 m/s), 

and 15% (1.2 m/s) of the corresponding maximum peak forces. The 

prirnary dinerence between the inter-subject-B and the inter-subject-A 

schemes was that in the former all speeds of locomotion were used in the 

training set. whereas in the latter, only the speed of locomotion for which 



the predictions were made was used in the training set. Therefore, it 

appears that the ANN can generaiize better when üttle but spedfic 

training input is provided compand to when a great deal of non-specific 

input is added. 

-0 1 2 

Time (s) 

6.1.1 Intra-session test: - 
Cornparisons of the predicted forces (dashed-line) with the 

actuai gastrocnemius forces (solid-iine) for the last five steps of 
the same representatkve cat as used in Figure4.41(0.8 m/s).whm 
the network was trained using the full-wave recafied and smoot- 
hed EMG and force data nom the first 0.5 steps of that session. 
corr.coef.=0.90, RMS erra-5- 1 N- 



Number of steps 

6.1.2 The dependency of the cross-correlation coefficient on the 
number of steps used to train the ANN in the Intra-session prediction 
tests for the last five steps of cat 1 w a l ' g  at 0.8 (soiid-he with -*). 1.2 
m/s (solid Une with *+').and cat 2 walldng at 0.8 m/s (dd-Une with 'O*). 
and cat 3 walldng at 0.4 (dashed-line)). 0.8 (soiid-Une). 1.8 m/s (dashed- 
dot-&ne) . 



6.1.3 (a) The average peak values (mnrked by **y of the processed 
EMG sigoals measured h m  a representative cat at speeds of locomotion 
of 0.4. 0.8. 1.2. and 1.8 m/s. (b) The average peak force values (marked by 
' 1  measured h m  a representative cat at speeds of locomotion of 0.4. 0.8. 
1.2. and 1.8 m/s. (c) Cornparison of the average fedicted peak force (mark- 
ed by 'O*) with the average actual peak force (mar g ed by ***) for a representa- 
tive cat wallring at 0.4 m/s when the network was trained with the full-wave 
recti6ed and smoothed EMG and force data h m  the same cat while 
walking ftrotting at speeds of 0.8. 1.2. 1.8 m/s. 

The neural network could not predict well the force in the intra-subject 



prediction schemes for the gastroc11emius for walking at 0.4 m/s (e.g. 

Figure 4.3.l(a)). The RMS errors (Figure 4.3.1) were 17% (0.4 m/s). 1 1% 

(0.8 m/s). 11% (1.2 m/s). and 13% (1.8 m/s) of the corresponding 

maximum peak forces. The predictions were worse for the lowest and 

W e s t  speeds of locomotion. This result is probably caused by an 

insufficient amount of information (EMG-force pattern) in the training 

phase. 

Figure 6.1.3(a) shows the average peak values of the processed EMGs 

ikom the gastrocnemius of one cat at speeds of walking/trotting of 0.4, 

0.8, 1.2, and 1.8 m/s. e l .  e2. and e3 represent the dopes of the lines 

connecting the average peak EMG values at speeds of 0.4 m/s to 0.8 

m/s, 0.8 m/s to 1.2 m/s. and 1.2 m/s to 1.8 m/s, respectiveiy. Figure 

6.1.3(b) shows the corresponding average peak force values. fl . f2, and 

f3. represent the slopes of the lines connecting the average peak force 

values at speeds of 0.4 to 0.8 m/s. 0.8 to 1.2 m/s, and 1.2 to 1.8 m/s. 

The value for el. e2. and e3 are sidar (Figure 6.1.3(a)), whereas the 

d u e  for f l  is much larger than that for f2 and B. This result may explain 

why the peak forces for walliing at 0.4 m/s were consistent@ predicted to 

be higher than the corresponding actual peak forces. Obviously. the 

EMG-force relationship had a Merent character for waking at 0.4 m/s 

than for any of the other speeds of locomotion. This fact may also 

influence the gastrocnemius force predictions at speeds of 0.8 and 1.2 

m/s. 
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6.1.4 Intra-subject tests: Cornparisons of the prrdicted forces 
(dashed-iine) with the actual gastrocnemius forces (solid-line) for a repre- 
sentative cat waïking (a) at 0.8 m/s. when the network was trained with 
the fiill-wave rectified and smoothed EMG and force data h m  the same 
cat whiie T / t r o t t i n g  at speeds of 1.2. 1.8 m/s. RMS aror = 3.8N: 
(b) at 1.2 m/s, w en the network was trained with the fdl-mve mctified 
and smoothed EMG and force data h m  the same cat while waMng/ 
trottmgt speeds of 0.8. 1.8 m/s. RMS ermr = 4.1N: and (c) at 1.8 m/s. 
when e nemork was trained with the fdi-wave rectified and smoothed 
EMG and force data fiom the same cat wMe walkhig/trotting at speeds 
of 0.8, 1.2 m/s, RMS error = S A N .  



Based on our previous experience (inter-subject-B testsl in whîch it 

was found that non-spedc training idorniation couîd jeopardize the 

a c m c y  of the force predictions for the gastmcnemius, we repeated the 

intra-subject force predictions at 0.8. 1.2. and 1.8 m/s without using the 

Iliformation at 0.4 m/s as input into the ANN [Figure 6.1.4). When 

omitting the 0.4 m/s ùiformation for training the ANN, the coefficients of 

cross correlation for the remaining errperllflents irnproved (fiom 0.93 to 

0.94 at 0.8 m/s; h m  0.92 to 0.93 at 1.2 m/s; and fkom 0.88 to 0.89 at 

1.8 m/s] and the RMS mors decreased (fkom 4.3 N to 3.8 N at 0.8 m/s: 

fkom 4.5 N to 4.1 N at 1.2 m/s; and fkom 5.7 N to 5.4 N at 1.8 m/s) 

compared to the intra- subject predictions induding the 0.4 m/s values 

in the training input Again, additional but non-specific input mto the 

ANN appeared to be detrimental to the predictive ability of the ANN. 

6.2 Dynrmic fotcc predictionr for the cat soleru 

The dynamic force predictions for the cat soleus were excellent for the 

inter-subject-A and the intra-session prediction schemes. The 

coefficients of cross-co~e1ation in these tests exceeded 0.92 in aii cases, 

and the Wne histories of the predlcted forces generally agreed w d  wïth 

those of the actual forces. The RMS emors between the predicted and 

actuaï forces were equal to and less than 14% of -the corresponding 

maximum peak forces in aU inter-subject-A and the intra-session 

prediction tests. These resuïts suggest that the dynamic EMGforce 



relationship and the mechanical propertïes of soleus muscies are similar 

across cats wandng/trotting at a @en sped of locomotion. One 

Iimitation of the inter-subject-A predictions for the soleus was that the 

predicted peak forces were over- or underestimated when the peak force 

of the target step was much lower or higher, respectively than the peak 

force of the prwlous step. Another limitation of the inter-subject-A 

predictions was that the predicted peak forces were generally 

overestimated for wallang at 0.4 m/s. 
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FIBpre 6.2.1 Intra-session test: 
Cornparisons of the predicted forces (dashed-line) with the 

actual soleus forces (soiid-lines) for the iast fie steps of the same 
cat as used in F'igure5.4. l(O.8 m/s).when the netwakk was trained 
using the f d l - w a .  recti6ed and smoothed EMG and force data 
fkom the Brst 0.5 step of that session, com.coef.=O.86. RMS enor= 
3.6 N. 

In the intra-session predicaon scheme for thë soleus. the force 

predictions were bad if the number of steps used for training the ANN was 



less than one (i.e. 0.5 step, Figure 6.2.1). An example of preâictions using 

just 0.5 steps for training is shown in Figure 6.2.1. The coefficient of 

cross-correlation was 0.86, the RMS emor was 3.6 N with the maximum 

peak force of 16.4 N, (22%). However. the force predictions were excellent 

and the ccdlcients of cross-correlation remained virtuaUy constant 

(0.98, third column of Table 8a) and the RMS errors were about 6 O h  of the 

corresponding maximum peak forces. once the number of steps used for 

training the ANN exceeded five (Tables 8a and 8b). Therefore. the 

essential features of the EMG-force relationship for wallring at a @en 

speed are fidly captured by the ANN within about Bve fùil step cycles. 

The inter-subject-B predictions for the soleus were not as good as the 

inter-subject-A predictions despite the fact that the ANN was trained with 

the same plus additional information in the inter-subject-B compared to 

the inter-subject-A tests. Comparing this resuit with that of the inter- 

subject-B predictions in the gastrocnemius. one might conclude that the 

ANN can make better predictions (in both muscle) when little but specific 

training input is provided compared to when a great deal of non-spedfic 

input is added to the speciec input. 

The neural network did not pdorm weli in the intra-subject prediction 

schemes for cat soleus when predicting the forces for walldng at 0.4 m/s 

(Figures 5.3.l(a) and 5.3.2(a). 5.3.3(a). and 5.3.4(a)). and when only the 

EMG signal was used as input into the ANN (Figure 5.3.1). in Figure 5.1. 

the RMS errors were 24% (0.4 m/s), 15% (0.8 m/s), 11% (1.2 mis). and 

1596 (1.8 m/s) of the corresponding maximum peak forces. Addïng the 



kinematics to the input for the ANN tmproved the prediction resuits for 

the two intermediate speeds but not for the lowest and W e s t  speeds of 

locomotion (Figure 5.3.2(a)-(d)). This resuit is probably caused because 

there is a limited amount of infoxmation provided to the training sets. It 

appears that the EMGforce relationship in the soleus had a mirent 

character for walking at 0.4 m/s than for any of the other speeds of 

locomotion. As the ANN is abstracting patterns fiom a data set that is 

averaged across subjects, it rnay be expected that more information. such 

as force and EMG data at speeds between 0.4 m/s and 0.8m/s. or at 

speeds below 0.4 m/s might have helped the force predictions for walkïng 

at 0.4 m/s. The results shown in Figure 5.3.1 and 5.3.3 also indicate that 

the kinematics play an important role in the intra-subject force 

predictions for the soleus muscle. 

6.3 A bdef cornparison of dfnrmic force predictions between the 

in our study. we were able to predict and validate dynamic muscle 

forces for cat soleus and gastrocnemius across subjects based on 

measured EMG signals. 

The force predictions across cats gave excellent results for the inter- 

subject-A but not the inter-subject-B tests. One limitation of the inter- 

subject-A predictions for both muscle was that the predicted peak forces 

were over- or underestimated when the peak force of the target step was 



much lower or higher. respectiveiy than the peak force of the previous 

step. The pattem recognition scheme of the ANNs may partly explain this 

result. in our study. the training set only contained input-output 

patterns fkom two cats and eight to sixteen step cycles per speed of 

locomotion. This iimited input may part& explain some of the 

inaccurades in the force preâictions. 

Comparing the inter-subject-B prediction results of the gastrocnemius 

(Figures 4.2.1-4-2.4) with those of the soleus Figures 5.2.1-5.2.4). it 

becomes apparent that the peak forces generally matched better for the 

soleus than the gastrocnemius. The inter-subject-B training sets 

contained aIl data which were used in the inter-subject-A training sets 

plus the data of aII speeds of locomotion which were different fkom the 

speed for which the force predictions were made. This result suggests 

that the d-c EMGforce relationship across cats is more simiiar than the 

relationship between speeds of locomotion in a givm cat. For the 

gastrocnemius. the muscle force predictions were more variable auoss speeds 

than for the soleus. 

For the force predictions a m s s  speeds in a @en cat. the intra-subject 

prediction schemes. the neural network did not predict weli the forces in 

the gastrocnemius and soleus for waiking at 0.4 m/s. Obviously. the 

EMG-force relationship for both muscles had a different character for 

walking at 0.4 m/s than for any of the other speeds of locomotion. Adding 

the kinematics to the input for the ANN improved the prediction resuits 

for the soleus but not for the gastrocnexnius. So. it seems that the soleus 



forces do not depend on the EMG primarily. but other factors, such as the 

length or rate of change ia length. influence the muscle force 

substantiaîïy- The peak forces of soleus remained neariy constant for 

speeds of locomotion h m  0.4 to 1.8 m/s as had been shown previousiy 

(e-g. Watmsley et d. 1978), but the magnitudes of the comsponding 

EMG signals increased with increasing speeds of locomotion. GMng only 

EMG signals as input to the ANN couid not successfullp predict the 

dynamic soleus forces in the intra-subject prediction scheme. This result 

showed that the kinematics (or better, the contractile conditions of the 

muscle) appear to play an important role in soleus force prediction. 

wherease the contractile conditions might not be as important for the 

gastromemius, at least not at the relative& slow speeds of locomotion 

tested here. Mutsky et al. (1994) reported that the relative shortening 

ve10cities of the soleus fibres were high compared to those of the 

gastrocnemius at dl walking and slow trotting speeds. Therefore, these 

authors argued that the soleus could not produce an increased force at 

increasing speeds of locomotion. despite increased activation, because 

the contractile conditions imposed severe limitations on the force 

producing abiiity of the soleus. 

The correlation coefkients were similar for ali force predictions 

independent of whethe.r the EMG signal input was smoothed or not. This 

result illustrates that the ANN couid relate EMG and-force signals quite 

successfully in most cases. independent of whether the fkequency content 

of the EMG was completely different fkom that of the force (unsmoothed 



EMG) or not. 

Can the neural network generalïze dynamc force predktions across 

muscles? The answer is no- The coefficient of cross-cordation of soleus 

force predictions using an ANN trained with gastrocnemius EMGs and 

forces was 0.5495, and the RMS error was 4.35 N with the maximum 

peak force of 16.7 N. Based on tbis result, it was concluded that the EMG- 

force relationship of different muscles in the same cat is inherently 

Werent. 

6.5 Comparing cwrent force predictions with previomsly published 
rt8ults 

Revious research on the dynamic relationship between EMG and 

force suggested that the muscle contractile conditions must be known for 

adequate modelling of this relation (Hof and van den Berg. 1981a: Sherif 

et al., 1983; Olney and Winter, 1985; van den Bogert et al.. 1988; Norman 

et al., 1988; van Ruijven and Weijs, 1690). The calibration procedures or 

estimation techniques used to determine parameters of the muscle mode1 

are lengthy and require extensive pretrials. However, the validity of 

estimating the variable contractile conditions of the muscle fibres durhig 

locomotion must stiU be established thoroughly in future experiments 



(Herzog et al.. 1994). Most of the studies mentioned above gave 

acceptable intra-subject force predictions fkom EMG over a W t e d  range 

of conditions. However in none of these studies were inter-subject 

predictions made or were intra-subject predictions attempted across a 

variety of movernents. Also, in none of the above studies were force 

predictions made and vaiidated for more than one muscle. 

The approach presented here does not consider the force-length- 

velocity properties of the target musde. Nwertheless. the dynaaiic force 

predictions made here were comparable or better than those presented 

prevïously in similar studfes [van den Bogert et al. 1988; Norman et al.. 

19881. In the study of van den Bogert et al. (1988). the force predictions 

were made for the deep digital flexor muscle in the hindlirnb of the horse. 

The muscle force predictions corresponded to what we termed the intra- 

subject prediction scheme. The panameters used in the muscle mode1 

were derived fkom "imegulaf walking trials and the force predictions were 

made for "nomai" walking of that same home. Force predictions were 

made for one home at one speed of locomotion only. The RMS pmdiction 

error for swen consecuthre step cycles was 143 N (12% of the maximum 

peak force 1200 N). No cross-corre1ation coefacients were @en. The RMS 

error was comparable to those obtained in our intra-subject tests for 

àifferent speeds of locomotion in the same animal which covered walMng 

and trottïng gaits. The predicted forces in the study of van den Bogert et 

al. (1988) became negaaVe when the actual forces were close to zero. No 

attempts were made to predict forces in the same home for different 



speeds of locomotion. or to attempt force predictions across horses. 

Norman et al. (1988) attempted to predict dynamic soleus forces 

fiom EMG in a waIldng cat. For their prediction model, the fidl wave 

rectified and smoothed (double-pass Butterworth £ilter. 5 Hz cut-off 

frequency) EMG signai and the soleus force during standing were 

required as input. The coefedents of cross-comelation and the RMS error 

between the predicted and measured soleus force while wallring at 1.6 m/ 

s were 0.91 and 23%. respectively. At &st glance it appears that the 

result obtained by Norman et  al. (1988) were close to those found in our 

studies. however the& results were o d y  obtained for four steps of a single 

walldng condition after the model parameters had been adjusted to gtve 

the best least square fit between the actual and the "predicted" (Le. fitted) 

forces. No attempts were made to pedorni predictions for other walking 

speeds of the same animal or across animais. 



Chapter s o e ~ :  Conclusions 

The objective of this thesis was to revisit dynamic force predictions 

fkom EMG signe using an artIfidal neural network (ANN) approach. The 

basic concepts of predicting dynamic muscle forces h m  EMG were 

introduced and reviewed in Chapters 2 and 3. In Chapters 4, and 5, the 

results of our studies were described. in Chapter 6, the results were 

discussed. 

The dynamic force predictions made using the ANN approach were 

good for the inter-subject-A and the intra-session prediction schemes. 

The inter-subject-B predictions were not as good as the inter-subject-A 

predictions. I t  appears, therefore that the ANN can generalîze better when 

little but specific training input is provfded compared to when a great deal 

of non-specific input is added to the spedfic input. This result may 
* 

suggest that the dynarnic EMGforce relationship across cats is more 

simîlar than the relationship between speeds of locomotion in a @en cat. 

From the results of the intra-session prediction tests. it becomes 

apparent that the correlation coef]Eidents were similar whether the EMG 

signal input was smoothed or not. 

The neural network could not perfoxm weU in the intra-subject 

prediction schemes. when predicting the force for walking at 0.4 m/s. It 

appears that the EMEforce relationship in the gastromemius and soleus 

had a dinerent character for walkîng at 0.4 m/s than for any of the other 

speeds of locomotion. I t  may be expected that more idonnation. such as 



force and EMG data at speeds between 0.4 m/s and O.8m/st or at speeds 

below 0.4 m/s. might have helped the force predictions for wallring at 0.4 

m/s. Adding the kfaematics to the input for the ANN improved the 

prediction resuits for the soleus but not for the gastrocnemius. Ço. it 

seems that the soleus forces cannot be easily eqîained just by the EMG 

signais. The kinematics (or better. the contractile conditions of the 

muscle) appear to play an important role in soleus force production. The 

predictions were also not good for the highest speeds (1.8 m/s) of 

locomotion. This result is probabIy assodated with the limited amount of 

information in the training sets. Robably. force and EMG data at speeds 

above 1.8 m/s might have helped the force predictions for trotting at 1.8 

m/s. 

One of the advantages of the ANN for predicting dynamic muscular 

forces from EMG is that it fs simple to implement. Contractile conditions 

(i-e.. the length and rate of change in length of the contractile element of 

the muscle). as well as the force-length and force-velocity relationsbips of 

the muscle do not need to be measured. which is partidarly useful since 

it is nearly impossible to determine lengths and velocities of contractile 

elements of muscles accurately in-vivo. Therefon, m o t .  advantage of 

the ANN for predicting dynarnic muscular forces 6rom EMG is that 

complex muscle models are not required. 

One of the limitations of the ANN appmach is that the network must 

be trained at one stage; thus requiring force and EMG as input to train 

the network before meanin@ predictions are possible. Another 



limitation of this approach is that the ANN method does not provide 

insight into the phystological and biologicaî relationship of the EMG and 

muscle force because the method is punly numerical. However. these 

Wtations shodd not detract h m  the excellent predicttve ability o f m s  

across movement patterns (wandng and trotth@ and amss animais. 

once an appropriate data set of subjects and a minimal numbu of step 

cycles are available for training- 

The results of thîs stuüy uidicate that ANNs are able to identify the 

highly non-linear relation between EMG and muçcular force. and that 

ANNs are able to generalize. to a certain d e p .  this relationship. 

Although, the ANN approach can not give additional insight into the 

physiological relation between EMG and force. it îs able to provide force 

predictions fiom the EMG signals which are accurate. and so. may prove 

to be useful in practicai applications in which the result is important 

rather than the underiying mechanism. for example, in fwlctionai 

electrical stiniuiation or the control of prosthetic devices. 
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