
1

The HAPTICTOUCH Toolkit:
Enabling Exploration of Haptic Interactions

David Ledo1, Miguel A. Nacenta1, Nicolai Marquardt1, Sebastian Boring1 and Saul Greenberg1
1Department of Computer Science

University of Calgary, 2500 University Drive NW
Calgary, AB, T2N 1N4, Canada

2Department of Computer Science
University of St. Andrews, College Gate,

St Andrews, Fife KY16 9AJ, Scotland, UK
 [dledomai, nicolai.marquardt, sebastian.boring, saul.greenberg]@ucalgary.ca, mans@st-andrews.ac.uk

ABSTRACT
In the real world, touch based interaction relies on haptic
feedback (e.g., grasping objects, feeling textures). Unfortu-
nately, such feedback is absent in current tabletop systems.
The previously developed Haptic Tabletop Puck (HTP)
aims at supporting experimentation with and development
of inexpensive tabletop haptic interfaces. The problem is
that programming the HTP is difficult due to interactions
when coding its multiple hardware components. To address
this problem, we contribute the HAPTICTOUCH toolkit,
which allows developers to rapidly prototype haptic tab-
letop applications. Our toolkit is structured in three layers
that enable programmers to: (1) directly control the device,
(2) create customized combinable haptic behaviors (e.g.
softness, oscillation), and (3) use visuals (e.g., shapes, im-
ages, buttons) to quickly make use of the aforementioned
behaviors. Our preliminary study found that programmers
could use the HAPTICTOUCH toolkit to create haptic tab-
letop applications in a short amount of time.

Author Keywords
Haptics, Tabletop, Touch Interface, Haptic Tabletop Puck,
API, Toolkit, Rapid Prototyping, Enabling Technologies.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces – haptic I/O, input devices and strategies; D.2.2
[Software Engineering]: Design Tools and Techniques.

General Terms
Design, Human Factors.

INTRODUCTION
Touch based interfaces let users interact with computers
through touch. In the vast majority of these systems, the
communication back from the computer happens exclusive-
ly through visual and auditory channels. This represents a
lost opportunity in human-computer interaction, as we
know that haptics can provide a rich bi-directional channel
that goes beyond the homogeneous and unchanging rigid
plane offered by most interactive touch surfaces. Unfortu-
nately, and despite the enormous development of the field

of haptics, developing hardware and software that provides
a compelling haptic experience is still expensive and re-
quires specialized knowledge making programming this
kind of interfaces difficult.

As one promising approach for exploring haptic feedback
within tabletop interaction, Marquardt et al. introduced an
open source haptic device platform called the Haptic Tab-
letop Puck (or HTP) [13]. It uses inexpensive do-it-yourself
(DIY) hardware and low-level software. The HTP offered
(1) a single-point rod providing haptic output via rod
height, (2) the same rod reacting to finger pressure for in-
put, and (3) controllable friction as the puck was moved
across the surface. Collectively, the HTP enables users and
programmers to experience and experiment with a rich hap-
tic channel in a multi-user tabletop environment, where it
provides an opportunity for researching haptics in a broad
range of applications.

The problem is that programming even this simple haptic
device requires the programmer to learn complex haptics
models (e.g., the interaction between input pressure and
output force). In addition, programmers have to understand
low-level details of the multiple underlying hardware com-
ponents (i.e. pressure sensor and servo motors).

To encourage research in tabletop haptics, we contribute the
HAPTICTOUCH toolkit that simplifies the development of
haptic-enabled applications for surface-based interfaces via
a multi-level API and an interactive Behaviour Lab. Our
work offers four contributions:

Cite as:
Ledo, D., Nacenta, M., Marquardt, N., Boring, S., and Greenberg, S.
(2011) The HapticTouch Toolkit: Enabling Exploration of Haptic In-
teractions. Research Report 2011-1012-24 Department of Computer
Science, University of Calgary, Calgary, AB, Canada T2N 1N4, July.

Figure 1. Behavior Lab lets developers explore, combine
and feel diverse haptic behaviors before writing code.

2

 a working downloadable toolkit that
simplifies programming on the HTP
platform;

 a series of abstractions and applica-
tion programming interface (API) or-
ganization to enable programming
surface-based (2D) haptic interfaces
(Figure 3), some of which may be
generalizable to other haptic devices;

 the Behavior Lab (Figures 1 and 3)
that lets developers explore, combine
and feel diverse haptic behaviors be-
fore writing code, and

 a preliminary exploration on the usability of the API and
its abstractions

BACKGROUND
The toolkit and its API described in this paper are exten-
sions of the Haptic Tabletop Puck [13]. In this section, we
revisit this device and its functionality. We then review
other relevant haptic platforms and devices, and APIs.

The Haptic Tabletop Puck
The HTP is an active tangible device that works on a sur-
face that recognizes fiduciary markers, e.g., the Microsoft
Surface. It contains the following elements (see Figure 2).

a) Haptic output via a movable vertical rod. A movable
cylindrical rod comes out of a small brick-shaped cas-
ing. A small servo motor hidden inside the case controls
the up and down movement of the rod.

b) Haptic input, also via the rod. A pressure sensor atop
the rod measures a user’s finger pressure on it.

c) Friction. A friction brake at the bottom of the HTP is
implemented by a small rubber plate whose pressure
against the surface is controlled by another servo motor.

d) Location. The location of the HTP on the table is
tracked through a fiducial marker on its bottom.

Collectively, the HTP enables three main sources of haptic
information:

 Height. The vertical movement of the rod can represent
irregular surfaces and different heights.

 Malleability. The feedback loop between applied pres-
sure and the rod’s height can simulate the dynamic
force-feedback of different materials.

 Friction. The brake can modify the puck’s resistance to
movement in the horizontal plane.

These information sources can be controlled dynamically
according to different parameters, such as the puck’s posi-
tion and orientation on the table, time, and so on.

Haptic Platforms and Devices
Haptics and tactile interfaces are very active research areas.
In this section we focus on reviewing work that relates to
the facilitation of programming and prototyping of haptic
interfaces. Correspondingly, we do not cover comprehen-
sively tangible development APIs (e.g., [11]), since they

focus mostly on passive tactile experiences which do not
have programmable tactile behaviors. We also disregard
hardware prototyping APIs and toolkits (e.g., Phidgets [6]),
which are not focused on creating tactile experiences even
though they can be used to develop haptic hardware.

Haptic interactive devices that have application building
and prototyping support available can be separated into two
largely distinct groups: one-dimensional haptic output de-
vices, and multi-dimensional haptic input-output devices.
The most common representatives of the first class are vi-
brotactile interfaces built into consumer devices such as
game controllers and mobile phones. These haptic devices
are relatively easy to program, since the haptic channel is
unidirectional (i.e., they serve only as output—it is a haptic
open-loop). Examples of output with this kind of haptic
channel are haptic icons [2], which can be designed with
the help of specific tools [4,24]. Further, the MOTIV SDK
[7] facilitates using vibrotactile feedback in mobile phones
and tablets. It provides functions translating sound and vis-
ual feedback into vibrotactile signals on touch-based mobile
interface platforms (e.g., Android phones).

In comparison, the HTP provides a bi-directional haptic
channel that is richer than the one present in these devices
and tools. The extended interactivity puts different require-
ments on the design of the HAPTICTOUCH toolkit. However,
our work resembles the work above, as we adopt a simple
and more familiar GUI paradigm (as in MOTIV), and pro-
vide a tool – the Behavior Lab – which is similar to existing
haptic icon and waveform design tools [4,24].

The second category of interactive haptic devices are multi-
dimensional (usually > 3 DOF) closed-loop devices such as
Immersion’s PHANToM [14] or Novint’s Falcon [17]. Pro-
gramming these haptic interfaces can require significant
expertise [15], and its difficulty has often been identified as
an obstacle in the popularization of this type of interfaces
[20,22]. Multiple APIs exist that enable higher-level pro-
gramming of these haptic devices. Many are low-level and
provide access to specific haptic devices (e.g., Novint’s
HDAL [18]), although there are also ongoing efforts to pro-
vide generalized haptic libraries that work on several devic-
es (e.g., H3D [23], ProtoHaptic [5], and OpenHaptics [8];
also see survey in [10]). Some introduced drag-and-drop
interfaces for allowing non-programmers to customize hap-
tic systems (e.g., [22]). In general, these APIs assume a

Figure 2. The HTP’s main components [13].

3

model of interaction based on the simulation of physical
objects and surfaces, often directly linked to 3D virtual real-
ity models.

The HTP is closer to these devices than to the first group
because it enables bi-directional communication and pro-
vides multi-dimensional haptic channels. However, the
HAPTICTOUCH toolkit was designed to avoid the program-
ming complexity inherent to 3D models and the simulation
of physical models. Our 2D GUI-based programming mod-
el also enables a more flexible relationship between haptic
interaction and graphical components because it is not con-
strained to physical behavior such as objects moving in 3D
and colliding with each other. This corresponds to the needs
of flexible prototyping tools advocated in [15,16]. Our ap-
proach is most similar to tools such as HITPROTO [20],
which make use of haptics to represent abstract data or hap-
tifications. In a way, our approach takes relevant features
from both groups of haptic devices, yet avoiding high de-
velopment complexity.

Few devices exist that enable haptic feedback on tabletop
surfaces; most notably, shape displays (e.g., Lumen [21]
and Relief [12]), tangible actuators (e.g., Madgets [25]), or
ferro-magnetic tactile feedback devices (e.g., MudPad [9]).
As none of these haptic devices provide any development
support or prototyping tools yet, our concepts of the
HAPTICTOUCH toolkit design might be applied these and
similar platforms in order to facilitate haptics exploration.

API DESIGN OBJECTIVES AND DESIGN DECISIONS
When designing the HAPTICTOUCH API we set out to
achieve two major goals:

(1) we want to enable the creation of a wide range of appli-
cation prototypes and sketches for haptic tabletop envi-
ronments (currently the HTP) without requiring pro-
grammers to understand 3D models or the physics of
objects and materials, and

(2) we want to provide a simple programming interface for
haptics development.

These goals can be considered as specific instantiations of
Olsen’s general goals for interface systems research [19].

Based on these goals we designed an API architecture that
is different from existing haptic API approaches reviewed
in the previous section. Our design principles are summa-
rized as follows:

GUI Model. We base our architecture on a GUI model ra-
ther than the simulation of three dimensional physical be-
haviors. This leads to a more abstract and generic paradigm
with higher flexibility, which corresponds to our first gener-
ic goal. Furthermore, not only are programmers more famil-
iar with the GUI paradigm, but it also seems to better fit the
two-dimensional constraints of surface based systems.

3-Layered Architecture. We structure our architectural de-
sign in three abstraction levels. The raw layer provides ac-
cess to physical properties of the device. The behavior layer

enables haptic interactions packaged as behaviors. The
graphical layer allows creating two dimensional objects
(e.g., shapes, images) extending traditional GUI concepts to
the control of haptics. Programmers can use select layers to
access functionality required for different projects, but each
layer can be learnt separately and used independently.

Although layering is not uncommon in the design of SDKs
and APIs, many tools decide to hide the details related to
the device (e.g., HITPROTO [20]). This has two conse-
quences. First, due to the higher level of abstraction, the
creation of new haptic interaction techniques can be con-
strained. Second, different programmers take different ap-
proaches to a problem initially: bottom up and top down.
We divided our API design into three levels of abstraction
to enable both styles.

ARCHITECTURE AND PROGRAMMING INTERFACE
Each layer of the HAPTICTOUCH Toolkit is successively
closer to the underlying hardware. We expect the needs of
most programmers require programming only at the highest
abstract level, as this will ease programming effort while
still being highly expressive [19]. For flexibility, program-
mers can work at lower layers when more direct or nuanced
control is required with only slightly more effort [19].

Figure 3 shows the toolkit’s structure. It contains a hard-
ware manager layer which accesses underlying commercial
APIs, three API layers accessible to programmers, and the
behavior lab utility. The toolkit’s layers build on top of
each other, with higher levels using lower level compo-
nents. In this section, we explain the architecture by review-
ing the function and main components of each layer.

Hardware Manager
The core of the HAPTICTOUCH toolkit is the hardware man-
ager. It merges higher-level services from commercial
APIs. Specifically, it manages the Phidget [6] servos and
sensors that comprise the HTP, and the interaction between
the Microsoft Surface SDK and the HTP. The manager
takes care of hardware calibrations of each individual
HTP’s, and abstracts the HTP’s built-in Phidget compo-
nents to control its height, friction and pressure, where val-
ues are normalized in a scale from 0 to 1. We use the Mi-

Figure 3. The HAPTICTOUCH toolkit’s architecture.

4

crosoft Surface tag events to gather information about a
HTP’s location and orientation and detect when a puck is
placed down, moved or lifted up. Combining all abstracted
information, an HTP is characterized by pressure, friction,
height, location, orientation and id (i.e., the tag’s id). The
hardware manager contains all HTP information and their
states at any time. The hardware manager is not accessible
to programmers directly from the API, but several attributes
of the hardware can be modified through human-readable
XML configuration files.

The hardware manager module can be substituted to recog-
nize other hardware. For example, we are replacing
Phidgets with Arduino [1] so that our HTPs can work wire-
lessly, which only requires updating the hardware manager.

Raw Layer: Access to Device-Independent Hardware
This first layer is intended for experts: it allows direct con-
trol of the HTP physical properties and actuators. To avoid
conflict with higher layers, users have to enable manual
control in the HTPManager. Programmers can then access
the applied pressure returned by the pressure sensor, and
determine the height and friction values of the HTP. This is
all done in a device-independent manner; no knowledge of
the underlying Phidget hardware is required. As mentioned
before, friction, height and pressure are represented within a
range from 0 to 1 rather than (say) the angle of the servo
motor as implemented in the Phidget API.

As an example, we illustrate how a programmer can create
a basic haptic loop that simulates malleability. It changes
the height of the HTP’s rod to vary with the pressure the
person applies to it. That is, the more pressure applied, the
lower the position (height) of the rod. We first initialize the
HTP manager (line 1), and then retrieve a specific HTP
identified by the id of the fiduciary marker attached to it
(here: 0xEF; line 3). Then we enable manual control (line
4). The remaining lines implement an infinite loop in which
the height of the puck drops linearly according to the ap-
plied pressure (lines 5-6).

Behavior Layer: Adding Haptic Behaviors
The Raw Layer requires low-level programming and does
not minimize the complexity of creating and managing hap-
tic loops. To facilitate haptics programming, the Behavior
Layer adds a higher level abstraction as a set of pre-defined
haptic behaviors. We define a haptic behavior as the change
in height or friction as a function and combination of: the
current height, friction, pressure, and external factors, such
as the puck’s location and orientation, and time.

Using Basic Haptic Behaviors
As a starting point for application developers, we included a
pre-defined set of behaviors that proved worthy in practice.

Each behavior has a specific parameter ranging from 0 to 1
that modifies the behaviors further. These behaviors are:

a) Softness: change of height or friction depending on ap-
plied pressure. Adjusting this behavior makes an ‘ob-
ject’ under the puck feel softer (closer to 1) or harder
(closer to 0). That is, a hard object will offer considera-
ble resistance when a person presses on the HTP’s rod,
while a soft object will feel mushy and yielding.

b) Breakiness: a non-linear relationship between pressure
and height produces an irregular tactile sensation. A
configurable number of breakpoints are placed along a
linear softness response. At these points, the height does
not change within a certain range of pressure, contrib-
uting to a tactile sensation that resembles: a dual-press
button (as in photo-camera shutter buttons – with a sin-
gle break point), poking a finger on sand (with many
breaking points), and coarse salt (with fewer points).

c) Oscillation: change of height or friction depending on
time. The behavior follows a sinusoidal change of height
with an adjustable frequency (with 1 being maximum
frequency). Oscillation can be used to notify the user, or
to simulate tactile noise.

d) Static: change of height or friction to a specific pre-
defined value (1 representing maximum height).

These behaviors represent only a small set of the possibili-
ties. For example, each behavior is also invertible, resulting
in interesting alternatives. Inverted softness provides a “re-
sistant” behavior where the height of the puck increases
with the pressure applied.

These behaviors can be used individually, or can be easily
combined (i.e., stacked) to allow for even more expressive-
ness. If combined behaviors are used, programmers can
specify weights for each behavior that defines the propor-
tion of the movement of the rod used for that behavior rela-
tive to others. The weight of each haptic behavior is initial-
ly set to 1. Different weights and the order in which the
behaviors are added create a wide variety of expressive
outputs. Haptic behaviors are assigned to a list, either to the
set of behaviors belonging to the height rod, or the ones
belonging to the brake. The following example shows how
to add two haptic behaviors, each with different weights.

In the example, we set up the HTP as in the previous exam-
ple (lines 1-2), add a softness behavior in line 4 and an os-
cillation with a weight of 2 in lines 5 and 7. This creates 3
partitions of the rod range, with 2 assigned to oscillation
and 1 assigned to softness. Both behaviours also need to be

1. HTPManager manager = HTPManager.Instance;
2. HTP htp = manager.GetHTP(0xEF);
3. // Add the first behavior
4. h.AddHeightBehavior(new SoftnessBehavior(0.5));
5. OscillationBehavior osc
 = new OscillationBehavior(0.03);
6. // Give twice the weight for the oscillation
7. osc.Weight = 2;
8. h.AddHeightBehavior(osc);

1. HTPManager manager = HTPManager.Instance;
2. // Retrieve HTP
3. HTP htp = manager.GetHTP(0xEF);
4. manager.ManualControl = true;
5. while(true)
6. htp.Height = 1.0 – htp.Pressure;

5

created (with a parameter indicating their strength – lines 4
and 5), and added to the height rod (lines 4-8).

The Behavior Lab
To let developers explore various combinations of behav-
iors and weights, we created the Behavior Lab tool (see
Figure 1). It serves as an experimental test bed for interac-
tively examining haptic behaviors without requiring any
programming. Users can experiment with the previously
mentioned basic set of haptic behaviors. They can change
haptic settings (e.g., softness, oscillation speed, number of
breakpoints, static values), and combine behaviors with
different weights. The behaviors can be tested and felt in
real time as they are created, and then its settings saved for
use in an application via code.

Graphical Haptics Layer
The highest level of abstraction defines haptic shapes, im-
ages, and widgets. These allow for rapid programming of
haptics in a GUI-like fashion. The general idea is to com-
plement existing shapes, images and graphical widgets with
a set of haptic behaviors assigned by the programmer. This
level also incorporates events within visuals (fired when an
HTP is down, changed or up), which allows further custom-
ization of currently embedded visuals. We provide three
haptic visual classes: haptic shapes, haptic images and hap-
tic buttons, which we describe in the following subsections
together. We then introduce haptic transparency, which
allows combining them.

Haptic Shapes
Haptic shapes are basic graphical shapes (e.g., rectangles,
ellipses, or paths). The programmer can associate one or
more behaviors to the shape. When the shape is on the
screen, an HTP anywhere within its bounds will reproduce
the shape’s assigned haptic behavior. For example, a pro-
grammer can create an ellipse that produces oscillations
when the HTP is within its bounds, and a line that causes
friction when the HTP is moved across.

To illustrate how haptic shapes are used consider a devel-
oper that wants a rectangle on the screen to cause the puck
to resist horizontal movement in an oscillatory manner
equivalent to shuddering. The developer creates a rectangle
and adds it to the window (not shown), creates a haptic
shape that encapsulates the rectangle (line 1), and registers
that shape with the HTPManager (line 2). He then assigns
the oscillation and the resistance (softness) to friction with-

in that shape (lines 4-5). The rectangle will now produce
those responses when the HTP passes over it, even if that
rectangle is scaled, rotated or translated at runtime.

Haptic Images
Haptic images contain one or several image maps, some of
which can be invisible to the user, that defines haptic be-
haviors. The main difference between shapes and images is
that, in images, the haptic behavior parameter can change
according to the particular grey-level pixel values of the
image where the HTP points. We refer to this as spatial
behavior mapping. The programmer constructs a grey-scale
image (e.g., using a bitmap editor), where the level of each
pixel determines the parameter of the haptic behavior pro-
duced from it. Using these pixel-based haptic image maps
allows creating more sophisticated and complex mappings
of haptic behaviors. For example, Figure 4 illustrates using
image maps for haptic behavior mapping. Image 4a (a satel-
lite image) is normal graphics visible to users. The other
images, which are invisible to the user, represent actual
haptic mappings. Image 4b encodes a relief as a static be-
havior. 4c represents the softness of different terrains, and
4d the ocean depth as different oscillation speeds. Because
images are stacked, behaviors are automatically combined
in a location-dependent manner.

In the example below, the programmer uses the images
shown in Figure 4a (i.e., the visible image), and Figure 4b
(i.e., relief image map) to map the height of the HTP’s rod
as a function of the terrain relief. The developer uses a set
of pre-existing or self-designed images and adds them to
the canvas. Three main objects are created, a HTPImage,
which receives the visible image as its construction parame-
ter (line 1), a StaticBehavior (line 4), and a SpatialBehav-
iorMapping, which belongs to the static behavior, and is
passed the reliefImage as its constructor parameter (line 5).
The image is finally associated to the height produced by
the mapping (line 6). As with all graphical haptics, registra-
tion with the HTP Manager is required (line 2). Similarly,

1. HTPShape shape = new HTPShape(rectangle);
2. this.manager.RegisterWidget(shape);
3. // Add behaviors to the shape
4. hapticShape.AddFrictionBehavior(
 new OscillationBehavior(0.5));
5. hapticShape.AddFrictionBehavior(
 new SoftnessBehavior(1.0));

Figure 4. Haptic Image and the corresponding Behavior Mappings: a) visible haptic image, b) image mapping for
static behavior, c) image mapping for softness behavior, and d) image mapping for oscillation behavior.

6

the programmer can add more behaviors to an image for
height or friction (e.g. Figures 4c and d).

Haptic Buttons
Haptic buttons are graphical widgets with pre-assigned hap-
tic behaviors. While we foresee many haptic widgets, we
have currently only programmed a haptic button whose
haptics depends on how it is pressed. A button implements
three haptic images representing the three basic states (i.e.,
inactive, hover and pressed) with each of them having indi-
vidual haptic behavior mappings. The button state transi-
tions from normal to highlighted (and vice versa) occur
when the HTP enters or leaves the button. The pressure
sensor is then used to determine whether a button has been
pressed or released. By applying certain haptic behaviors, a
button may need more pressure to activate it (e.g., signaling
the user of a critical operation). Likewise, if the action is
impossible at the moment, the button would not allow itself
to be pressed. Buttons allow developers to subscribe to
events when a button is pressed or released. A pressure val-
ue to go from pressed to released and vice versa is initially
set to the default value of 0.5, but can be adjusted during
runtime.

To create a customizable haptic button, the developer first
creates three haptic images for each of the button’s states
and their corresponding behaviors (here: inactive, hover and
pressed) as described previously. She then creates the hap-
tic button with these as parameters (line 1), and registers it
with the HTPManager (line 2). Finally, she registers event
handlers to the button (lines 4-5). Of course, pre-packaged
versions of button behaviors can be supplied, where the
programmer does not have to supply these image maps.

Haptic Transparency
Overlapping graphical widgets can be simultaneously visi-
ble on a given area through transparency. Similarly, several
graphical haptics can share the same space on the tabletop
surface and still contribute to the haptic behavior through
what we call haptic transparency. This mechanism allows
programming complex behaviors by using a combination of
haptic shapes, hatpic images and haptic buttons atop each
other. Haptic transparency is implemented as an extension

of the haptic behavior stacking mechanism in the behavior
layer.

PRELIMINARY EXPLORATION
We conducted a preliminary exploration with three devel-
opers (one undergraduate and one graduate student, plus
one developer from industry) that used our toolkit. While
this does not represent a formal evaluation, it allowed us to
see whether programmers understand the abstractions in our
toolkit, and if they are able to create simple haptic applica-
tions in a short amount of time.

Participants attended a one-hour tutorial workshop. None
had worked with the toolkit before. We demonstrated the
toolkit, and illustrated code samples required to access each
level. We then asked them to perform a series of pre-
defined tasks. Later, participants were asked to create an
application of their own design using the HAPTICTOUCH
toolkit entirely on their own, where we limited them to 3
hours of programming. This section summarizes our results:
the findings from the pre-defined tasks, the applications
they created, and overall observations we made.

Simple Tasks to Explore the Abstraction Levels
Participants were given six pre-defined tasks, each an exer-
cise to explore the higher two layers. We did not test raw
layer programming, as we consider that to be appropriate
for only experts. In the first task, participants were asked to
use the HTP’s up, down and changed events to make the
HTP’s softness vary linearly as a function of moving left or
right across the screen (e.g., soft at the left, hard at the right
side of the screen). On average, participants needed ~15
minutes to complete this first task, most which we ascribe
to the programmers familiarizing themselves with the pro-
gramming environment and the HTP in particular.

For the second task, participants were asked to create two
haptic shapes (the top one with opacity of 0.5): one shape
with a breakiness behavior, the other one with an oscillation
behavior. Shapes would intersect at a certain point to com-
bine these behaviors. This task took participants on average
~7 minutes. In task three, participants were provided with
two images: a visual image and one representing a haptic
mapping for that image. Their task was to program these to
create a haptic image. They did this in ~ 5.3 minutes.

The next three tasks were somewhat more complex. They
had to simulate an invisible cloth on the table which con-
tained a hidden cube. They were then asked to recreate this
case using the HTP through three different methods. We
observed the different levels they chose, how long they took
and what their preference is. All participants chose the same
methods, but in a different order according to their prefer-
ences: a shape with opacity 0 (average: 6.2 min); an invisi-
ble image (average: 3.3 minutes); and haptic events (aver-
age: 3.1 minutes). We observed that the reasons for the ra-
ther long time for shapes were that developers forgot (1) to
give a fill to the shape causing it not to fire any events, or
(2) that the shape can have a transparent fill. These issues

1. HTPButton button =
 new HTPButton(inactive, hover, pressed);
2. this.manager.RegisterWidget(button);
3. // add events
4. button.ButtonPressed +=
 new BeingPressedHandler(BecomesPressed);
5. button.ButtonReleased +=
 new BeingPressedHandler(BecomesReleased);

1. HTPImage hapticImage = new HTPImage(mapImage);
2. this.manager.RegisterWidget(hapticImage);
3. // Create, modify, and add the behavior
4. StaticBehavior behavior = new IntensityBehavior();
5. behavior.IntensityMapping =
 new SpatialBehaviorMapping(reliefImage);
6. image.AddHeightMapping(behavior,
 behavior.IntensityMapping);

7

relate more to unfamiliarity with the nuances of graphical
programming.

Overall, we noticed (as expected) that participants complet-
ed their tasks more quickly when working with pre-defined
shapes and images vs. working at the lower layer.

Example Applications
Participants created diverse and rich haptic applications. By
using the toolkit, developers were able spending a signifi-
cant amount of time on the visual appearance of their appli-
cation rather than coding haptic behaviors from scratch.

Haptic Vet
In the Haptic Vet application (Figure 5a), the goal is to find
the one or more areas where a dog is injured within a 30
second period. People can “scan” the displayed image of a
dog by moving the HTP over it, where injured parts makes
them feel an oscillation haptic feedback. When an injury is
discovered, players press on the HTP to heal the dog, after
which the dog’s facial expression changes. Healing injuries
increases the score of the player until all injuries are healed.

To create this application, the participant made use of a
haptic image with assigned behavior mappings. These map-
pings simulated the dog’s texture, the oscillation behavior
of injured areas, and an additional soft texture for the inju-
ry. The participant used events to determine the pressure
applied in different locations, as well as to start the game
(triggered by placing down an HTP). The participant stated
that the idea came from a similar childhood board game.

Ouija Board
In the Ouija Board application (Figure 5b), a person can
reveal messages of the board (i.e., a sequence of letters). As
the user moves over the characters of the board, certain
letters vibrate (via changing the oscillation speed) when the
HTP is moved over them. The player then presses the HTP
to select the letter; and moves on to discover the next letter.
Once all letters are correctly selected, he or she can spell
the answer to the question by rearranging the letters.

The developer of this application made use of the behavior
layer events to derive the HTP’s location and set the oscilla-
tion frequency, as well as the softness values of the HTP’s
height rod. Alternatively, it could have been implemented
as a haptic shape, e.g., by moving a haptic shape with an
oscillating behavior under the next level. Similar to the de-

veloper of the first application, the participant based his
idea on an existing board game.

Haptic Music
Haptic Music is an application that used a variety of tex-
tures to create a new approach to music (Figure 5c). It in-
troduces various musical instruments, each of them having
a different haptic texture to best represent that particular
instrument. Cymbals and tuba are represented by softness,
and require different amounts of pressure to play them.
Softness corresponds to how easy the instruments are to be
played in real life. The piano had varying pressure levels,
which depended on the key underneath the HTP. Maracas
used friction and the natural sound made by the servo mo-
tors when being pressed. A center box serves as a haptic
metronome: when the player places the HTP atop different
tempo values, the rod’s height is varied to let the player feel
that tempo.

The participant creating this application only used haptic
shapes. Each shape was filled with a transparent brush and
had associated haptic behaviors matched to the various in-
struments and/or parts of that instrument. The participant
stated that he preferred haptic shapes as they are easy to
track in the program.

Observed Problems
While participants were able to create rich applications in a
short amount of time and with very little training, we did
note several places that caused confusion:

1. Haptics and haptic behaviors are a new domain for most
programmers. Some of our participants initially strug-
gled to understand haptic behaviors, and how they are
controlled by their 0 to 1 parameter range.

2. Individuals did not fully understand the distribution of
weights for combined behaviors, nor the importance of
the order when combining them. They interpreted
weights as percentages, rather than proportions of the
rod height used to implement a particular behavior.

Both problems likely occur because people are trying to
associate a physical phenomenon (haptics) with an abstrac-
tion (programming). We believe our Behavior Lab will mit-
igate both of these problems, where people can directly
experiment with and feel the effects of adjusting parameters
as well as how they are combined.

Figure 5. Applications created in our preliminary exploration: a) Haptic Vet, b) Ouija Board, and c) Haptic Music.

8

CONCLUSIONS AND FUTURE WORK
Haptics can be useful in many situations as they introduce
an additional sensorial layer to interaction. They can reduce
the cognitive load and the amount of visual and auditory
cues [3]. They enhance the interaction experience by mak-
ing it more realistic and close to the physical world. They
can be used to make current computer technology accessi-
ble to people with visual disabilities.

With the haptic puck and our HAPTICTOUCH toolkit, we
facilitate programming of simple haptic interfaces for sur-
faces by providing a DIY haptic device [13] and a set of
pre-programmed building blocks (this paper). We intro-
duced meaningful abstractions and concepts to make hap-
tics accessible to developers. Based on our initial explora-
tion with three developers, we assume that our toolkit can
help in the exploration of the design space of haptics as it
allows a new level of expressiveness for developers.

We layered the toolkit to promote flexibility and expressivi-
ty while still minimizing the programming burden for
common tasks. The raw layer allows unconstrained hard-
ware access. Our behavior layer introduces contact events
for HTP devices, and contributes pre-defined haptic behav-
iors. Our graphical haptics layer uses shapes, images and
widgets to associate haptic behaviors to graphical objects.
The three layers give developers the possibility to choose
the layer most suitable for the particular haptics program-
ming task at hand. These layers are augmented with our
Behaviour Lab, which lets developers interactively explore,
combine and feel diverse haptic behaviors before writing
any code.

While the haptic puck is a limited input and output device,
it serves as a good starting point that will hopefully allow a
wider set of researchers to explore haptics until more af-
fordable and richer technology becomes available. The
toolkit itself points the way to the future. While designed
for the haptic puck, its notion of encapsulating haptics as
combinable behaviors is a new contribution. Also new is
the use of shapes and image maps to specify very fine-
grained haptic behaviors. Our Behavior Lab also points the
way for how we can let programmers explore and ‘feel’
available forms of haptic feedback even before they write a
single line of code. These ideas can be applied to other hap-
tic devices that go beyond the haptic puck.

ACKNOWLEDGMENTS
This research is partially funded by the AITF/NSERC/
SMART Chair in Interactive Technologies, Alberta Inno-
vates Technology Futures, NSERC, and SMART Technol-
ogies Inc.

REFERENCES
1. Arduino. Open-source Electronics Prototyping Plat-

form. http://www.arduino.cc (access 9/2/2011).
2. Brewster, S. and Brown, L.M. Tactons: structured tac-

tile messages for non-visual information display. Proc.
of AIUC '04, Australian Comp. Soc., (2004), 15–23.

3. Chang, A., Gouldstone, J., Zigelbaum, J., and Ishii, H.
Pragmatic haptics. Proc. of TEI, ACM (2008).

4. Enriquez, M.J. and MacLean, K.E. The hapticon edi-
tor: a tool in support of haptic communication re-
search. Proc. of HAPTICS '03. IEEE (2003).

5. Forrest, N. and Wall, S. ProtoHaptic: Facilitating Rap-
id Interactive Prototyping of Haptic Environments.
Proc. of HAID '06, Springer (2006), 18–21.

6. Greenberg, S. and Fitchett, C. Phidgets: easy develop-
ment of physical interfaces through physical widgets.
Proc. of UIST '01, ACM (2001), 209–218.

7. Immersion. MOTIV Development Platform.
http://www.immersion.com/products/motiv (access
9/2/2011).

8. Itkowitz, B., Handley, J., and Zhu, W. The OpenHap-
tics Toolkit: A Library for Adding 3D Touch Naviga-
tion and Haptics to Graphics Applications. Proc. of
WHC'05, (2005).

9. Jansen, Y., Karrer, T., and Borchers, J. MudPad: local-
ized tactile feedback on touch surfaces. Adj. proc. of
UIST '10, ACM (2010), 385–386.

10. Kadlecek, P. A Practical Survey of Haptic APIs. BSc
Thesis, Charles University in Prague (2010).

11. Klemmer, S.R., Li, J., Lin, J., and Landay, J.A. Papier-
Mache. Proc. of CHI ’04, ACM (2004), 399-406.

12. Leithinger, D. and Ishii, H. Relief: a scalable actuated
shape display. Proc. of TEI, ACM (2010), 221–222.

13. Marquardt, N., Nacenta, M.A., Young, J.E., Carpen-
dale, S., Greenberg, S., and Sharlin, E. The Haptic
Tabletop Puck: tactile feedback for interactive tab-
letops. Proc. of ITS '09, ACM (2009), 85–92.

14. Massie, T. and Salisbury, J.K. The PHANTOM Haptic
Interface: A Device for Probing Virtual Objects. Proc.
of ASME Symp. on Haptic Interfaces for Virt. Envi-
ronments and Teleoperator Systems, (1994).

15. Moussette, C. and Banks, R. Designing through mak-
ing: exploring the simple haptic design space. Proc. of
TEI '11, ACM (2011), 279–282.

16. Moussette, C. Feeling it: sketching haptic interfaces.
Proc. of SIDeR ’09, (2009), 63.

17. Novint Technol. Inc. Falcon. http://www.novint.com/~
index.php/products/novintfalcon (access 9/2/2011).

18. Novint Technol. Inc. Haptic Device Abstraction Layer
(HDAL). http://www.novint.com/index.php/support/~
downloads (access 9/2/2011).

19. Olsen, J. Evaluating user interface systems research.
Proc. of UIST '07, ACM (2007), 251–258.

20. Panëels, S.A., Roberts, J.C., and Rodgers, P.J.
HITPROTO: a tool for the rapid prototyping of haptic
interactions for haptic data visualization. Haptics Sym-
posium, IEEE (2010), 261–268.

21. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J.,
and Yamaji, Y. Lumen. SIGGRAPH '04 Emerging
technologies, ACM (2004), 17.

22. Rossi, M., Tuer, K., and Wang, D. A new design para-
digm for the rapid development of haptic and telehap-
tic applications. Proc. of CCA 2005, IEEE (2005).

9

23. SenseGraphics AB. H3DAPI. http://www.h3d.org (ac-
cess 9/2/2011).

24. Swindells, C., Maksakov, E., and MacLean, K.E. The
Role of Prototyping Tools for Haptic Behavior Design.

Symp. on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, IEEE (2006), 25.

25. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers,
J. Madgets: actuating widgets on interactive tabletops.
Proc. of UIST '10, ACM (2010), 293–302.

