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Abstract 
Standard quantum key distribution (QKD) protocols typically assume that the 
distant parties share a common reference frame. In practice, however, estab­
lishing and maintaining a good alignment between distant observers is rarely a 
trivial issue, which may significantly restrain the implementation of long-dis­
tance quantum communication protocols. Here we propose simple QKD pro­
tocols that do not require the parties to share any reference frame, and study their 
security and feasibility in both the usual device-dependent (DD) case—in which 
the two parties use well characterized measurement devices—as well as in the 
device-independent (DI) case—in which the measurement devices can be 
untrusted, and the security relies on the violation of a Bell inequality. To 
illustrate the practical relevance of these ideas, we present a proof-of-principle 
demonstration of our protocols using polarization entangled photons distributed 
over a coiled 10-km long optical fiber. We consider two situations, in which 
either the fiber spoolʼs polarization transformation freely drifts, or randomly 
chosen polarization transformations are applied. The correlations obtained from 
measurements allow, with high probability, to generate positive asymptotic 
secret key rates in both the DD and DI scenarios (under the fair-sampling 
assumption for the latter case). 
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1. Introduction 

Quantum key distribution (QKD) [1] is arguably the most developed area in quantum 
information processing, and has recently reached the commercial level. Currently the main 
limitation of QKD is the distance between the parties. State of the art experiments have reported 
key exchanges up to distances of ∼250 km [2]. It is a great challenge in this area to reach much 
longer distances, such as intercontinental distances, and tremendous effort is made in this 
direction. Significant progress has been recently reported, with promising developments in 
quantum repeaters [3], as well as in satellite-based quantum communications [4, 5]. 

The main reason for this challenge to practical implementations of QKD protocols, and 
more generally all long-distance quantum communication tasks, is the effect of noise and loss. 
Many studies have been devoted to these problems. There is however another key issue, often 
overseen, which is the alignment of a common reference frame between the parties. While 
usually being assumed a priori (hence not discussed) in theoretical works, the alignment of a 
common reference frame is rarely a trivial task in practice. Furthermore, when performing 
experiments outside of the laboratory, this issue can become highly cumbersome, and may 
significantly restrain—and even hinder—the implementation of certain quantum protocols. For 
instance, in fiber-based quantum communications, polarization rotations are induced by 
unavoidable temperature changes, which makes it challenging to maintain a good alignment for 
polarization qubits. In the case of phase-encoding, interferometer phases at distant locations 
must remain locked [6], which, while only depending on local environments and not the 
channel, is also a challenge over long distances. Also, in satellite-based quantum 
communications, establishing and maintaining a good alignment between the satellite and the 
ground station is a challenge [5], given the fast movement of the satellite and the limited amount 
of time for completing the protocol. 

It is therefore relevant to consider quantum communication protocols in which the 
requirement of a common reference frame can be dispensed with. An elegant solution to this 
problem is to use decoherence-free subspaces [7, 8]. However, this generally amounts to using 
high-dimensional quantum systems, the practical implementation of which is challenging— 
although progress has been achieved recently [9]. It turns out however that one can in fact relax 
the shared reference frame assumption in certain simple quantum communication protocols that 
only involve qubits. This approach has received some attention in the context of tests of 
quantum non-locality [10]: in particular it was recently shown [11, 12], and experimentally 
illustrated [11, 13], that Bell inequality violations can be guaranteed even if the parties share no 
common measurement basis. In the context of QKD, Laing and colleagues [14] presented a 
protocol—dubbed ‘reference frame independent’, and recently implemented in [15]—which 
requires the parties to only have one common measurement basis. While the latter approach is 
well suited and proposes an interesting solution for certain QKD implementations, it is however 
not adapted to all systems. 

Here we propose QKD protocols that do not assume the existence of any shared reference 
frame. Our protocols can be adapted to any qubit implementation of QKD. We analyze their 
security and feasibility in two scenarios. In the first, ‘device-independent’ (DI) case [16, 17], the 
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two communicating parties Alice and Bob use untrusted measurement devices and do not make 
any assumption on their functioning; the security of the protocol is ensured by the violation of a 
Bell inequality (for a recent review, see [18]). In the second, standard ‘device-dependent’ (DD) 
case, Alice and Bob trust that their devices faithfully implement the prescribed measurements— 
which further constrains the possible attacks by an eavesdropper, Eve, detectable by Alice and 
Bob. We show in both cases that if Alice and Bob do not share a common reference frame but 
measure entangled pairs of quantum systems along randomly orientated measurement bases, 
they can still expect to generate, with reasonably large probability (which depends on the 
assumptions for the security analysis), secret keys with positive key rates. We then demonstrate 
the experimental relevance of these ideas by presenting a proof-of-principle implementation of 
our protocols using a photonic QKD setup with polarization entangled photons. For all cases 
under consideration, we could calculate, with non-zero probability, positive (asymptotic) secret 
key rates as obtained from the preceding security analysis (assuming the fair sampling 
assumption in the DI case to calculate the violation of a Bell inequality). This suggests that the 
requirement of a common reference frame can indeed—if need be—be completely dispensed 
with in experimental QKD, thus opening promising perspectives for long-distance and satellite-
based QKD. 

2. Device independent protocol 

In our first protocol, Alice and Bob can each perform one out of three possible local 
measurements, labeled by x = 1, 2, 3 for Alice and y = 1, 2, 3 for Bob, on a shared entangled 
quantum state ρ

AB
. All measurements are dichotomic, giving a binary outcome a for Alice and b 

for Bob. The protocol is device independent in the sense that we shall not make any assumption 
on which measurements are physically implemented by Alice and Bobʼs measuring 
apparatuses, nor of the dimension of the state ρ

AB
. 

After repeating the above operations sufficiently many times, Alice and Bob can, by 
communicating a random subset of their measurement choices and results, estimate the 
correlations they share, i.e. the probability distribution P a b  x y  ). For now we will focus on ,( , 
the correlators Exy = P a  = b x, y). From these, Alice and Bob can in 
particular calculate the 36 values (for all x x′ and 

x, y) − P (a ≠ b( 
, ,  y y′) of the Clauser–Horne–Shimony–Holt 

(CHSH) [19] parameters 

S = Exy + Exy′ + Ex y ′ − Ex y ′ ′  .  (1)  ′ ′  xx yy 

If any of these CHSH values is greater than 2, Alice and Bob can certify that the observed 
correlations are ‘non-local’, in the sense that they violate Bellʼs local causality assumption [20]. 
Observing quantum non-locality is not only interesting for testing the foundations of quantum 
theory, it can also have practical applications—in our case of interest it can indeed allow one, 
for a large enough value of a CHSH parameter together with a large enough value for at least 
one correlator, to prove the security of QKD protocols in a DI way [16, 17, 21, 22, 25]. 

Interestingly, it was shown in [11, 12] that if Alice and Bob share a maximally entangled 
two-qubit state, say the singlet state |Ψ −〉 =  1

2 ( 01〉 −  10〉), and can each choose among three 

⃗orthogonal measurements, represented for Alice (Bob) by three orthogonal vectors a ⃗ (b ) onx y 
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the Bloch sphere, there is always at least one of the 36 CHSH values  that is above the ′ ′  xx yy 

local bound of 2—unless Alice and Bobʼs orthogonal measurement triads are perfectly aligned. 
Moreover, if Alice and Bob do not share any common reference frame and the relative 
orientation of their measurement triads is random, the largest CHSH value they observe is 
typically quite large: its average value was empirically found to be ∼2.6 for random relative 
orientations drawn from a uniform distribution on the Bloch sphere [11]. 

This suggests that it should be possible to extract reasonably large secret key rates from the 
correlations obtained by Alice and Bob, without the requirement that they share a common 
reference frame (i.e. their orthogonal measurement triads are not pre-aligned). We study this 
idea below, following the security analyses of both Pironio et al [21]—which proves the 
security against collective attacks—and of Masanes et al [22]—which considers the security 
against general (coherent) attacks, only assuming memoryless devices. Note that full security 
proofs of DI-QKD, considering the most general attacks, were recently reported [23, 24]. 
However, these proofs are not robust to noise, hence of limited practical interest, and we do not 
consider these in this work. 

2.1. Device independent security analysis along the lines of Pironio et al [21] 

Reference [21] considered a DI-QKD protocol with three inputs for Alice (in our notations, 
x = 1, 2, 3) and two inputs for Bob (y = 1, 2). Considering the CHSH parameter 1212 and the 
correlator E31 (see equation (1) above), it was shown that (if 1212 > 2) a secret key can be 
extracted through one-way classical post-processing (from Bob to Alice) from the data obtained 
when using the settings x = 3 and y = 1—the ‘raw key’—at an asymptotic rate (see details in 
[21])


⎡
 ⎤
⎤
⎦

⎡
⎣⎢ ⎥ 

where h p  = −p log  
2
p − −  p) log

2 (1 −( )  (1 p) is the binary entropy function. This bound on 
the secret key-rate ensures the security of the QKD protocol in the DI scenario against collective 

 −( 2) 11212 
2−
 1
 +
1
 E
31⩾ −1 −
 (2) 
  R
 h
 h
⎢

⎣⎢
⎥
⎦⎥
,


2
 2
 

1 − Eattacks [1], in the limit of infinite key lengths. The term h ⎡⎣ 31 ⎤⎦
 represents the (minimum) 
2 

amount of information that Alice and Bob need to classically exchange in order to correct the 
+ −⎡ 

⎣⎢
⎤ 

⎦⎥
( )21212 

2
1 1

in their raw keys, while the is a bound on Eveʼs Holevoterm herrors 
2 

information conditioned on Bobʼs measurement result. Both need to be reduced through privacy 
amplification. 

The same protocol as in [21] can be run by following the protocol detailed above, in which 
Alice and Bob do not share a common reference frame (see start of section 2), with three 
settings for both Alice and Bob, by using any four correlators E ( )  ( )  to estimate a CHSH x y′ ′  
parameter  , and any pair of settings (x , y ) to define the raw key—with the important ′ ′ raw rawxx yy 

condition that either xraw ∈ { ,  ′ or y ∈ {y y, ′}. Let us then definex x } 
raw 
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Figure 1. Estimated distribution of the bound rDI1 
(3) on the secret key rate (in the DI 

scenario, following the analysis of [21]—i.e. ensuring security against collective 
attacks), obtained by generating 107 random pairs of orthogonal measurement triads 
uniformly distributed on the Bloch sphere, to be measured on Werner states of 
visibilities V = 1, 0.98 and 0.95. For each value of V, each data point corresponds to the 
number of samples (out of 107) giving a value rDI1 

within an interval of sive δr = 0.01. 

⎡ ⎡⎡1 − Ex y  ⎤ 1 +⎢ raw raw ⎢rDI = max 1 − h − h 
1 x x, ,′ y y  , ,′ xraw,yraw, ⎢ ⎣⎢ ⎦⎥ ⎢ ⎥ 

s.t .   >2,  2 2′ ′xx yy 
x ∈{ ,x x  ′}or  y ∈{ ,  y y  ′}⎣ ⎣ ⎦ ⎦ 

raw raw 

corresponding to the rate (2) for the optimal choice of settings used to define the CHSH 
parameter and the raw key (by convention, if no violation  > 2 is found we define′ ′xx yy 

rDI1 
= −1. From the analysis of [21], if rDI1 

is found to be non-negative, then Alice and Bob will 

indeed be able to extract a secret key with an asymptotic rate of (at least) rDI1
, in the DI scenario, 

secure against collective attacks5. 
In order to study the experimental feasibility of such a protocol the questions we need to 

address are the following: How likely is rDI1 
to be positive? What are its typical values, and how 

are they distributed if Alice and Bobʼs orthogonal measurement triads are randomly chosen? 
To answer these questions, we estimated the distribution of rDI1 

by generating 107 pairs of 

random orthogonal measurement triads ax⃗ and by 
⃗ , independently drawn from a uniform { } { }

distribution on the Bloch sphere. For each pair of triads, we computed the nine correlators Exy 

assuming that Alice and Bob receives pure (noise-free) maximally entangled states 

(hence, E = − ⃗ · ⃗ ), and calculated the bound rDI1 
(3) on the secret key a bρ

AB 
= Ψ −〉〈Ψ − 

xy x y

rate that Alice and Bob can extract. The results of our simulation are plotted on figure 1. We  
found that ∼83.9% of our samples of rDI1 

were positive (i.e. we estimate the probability for Alice 

5 Note that instead of throwing some raw data away, Alice and Bob could additionally try to extract some secret 
key from their measurement results obtained by using other settings than the optimal (xraw, y

raw
), if any other choice 

also leads to a positive bound on the key rate through (2). For simplicity we do not consider this possibility in this 
paper, and only focus on rDI1 

as defined in (3). 

 −′ ′  
⎤⎥

⎤⎥
⎥

( 2) 1 
, (3)  

xx yy 
2 
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and Bob to obtain rDI1 
> 0 to be ∼83.9%), with a maximum value for the distribution of rDI1 

observed around rDI1 
∼ 0.25. The average value of rDI1 

was found to be ∼0.173; if we post-select 

only the cases in which rDI1 
> 0, the average value becomes ∼0.226. The maximum value for rDI1 

is found to be ∼0.450, obtained if two of Alice and Bobʼs measurement settings coincide (say, 

a ⃗ ′ = by 
⃗
′), while the other two pairs of settings, used to define xx yy , are coplanar (with an angle x ′ ′

∼0.642 rad from one pair to the other). We also note that for these numerical calculations we 
have assumed that each measurement triad is fixed for the duration of the measurement. If the 
measurement alignment were changing during the measurement the only effect would be 
decreased correlations and Bell violation, leading to lower secret key rates. However, the 
distributed key would still be secure. 

It is also important to study the effect of noise on the secret key rates rDI1
. For that, we 

similarly estimated the distribution of rDI1 
if the measurements are now performed on noisy 

Vsinglet states (Werner states [26]) ρ
AB 

= V Ψ −〉〈Ψ − + (1 − V )  4 (which gives 

E = −Va ⃗ · b ⃗ ), for V = 0.98 and 0.95; see figure 1. As expected, the secret key rates are xy x y

reduced as V decreases. For V = 0.98 and V = 0.95, the probabilities that rDI1 
> 0 are, however, 

still ∼72.1% and ∼38.0%, respectively. Note in this respect that the violations of a CHSH 
inequality were found in [11] to be quite robust to noise; for instance, the probability that at 
least one value of  is greater than two is still above 99.9% for V = 0.95.′ ′xx yy 

2.2. Device independent security analysis along the lines of Masanes et al [22] 

[22] provides a different approach to prove the security of a DI-QKD scheme. For the same 
protocol as in [21], Masanes et al proved that (for 1212 > 0) a secret key—now secure against 
coherent attacks, but under the assumption that their measurement devices are causally 
independent (or memoryless)—can be extracted at an asymptotic rate [22] 

⎡1 − E31 ⎤ ⎢ 1 + 2 − (1212 2)  
R ⩾ −h ⎣⎢ ⎦⎥ − log

2 ⎢
⎡ 2 ⎥⎤ 

.  (4)  ⎥2 ⎣ 2 ⎦ 

⎡⎣1 − E ⎤Again, the term h 
2 

31 ⎦ is due to the necessary error correction, while the term 
2 ⎤ 

log 
⎡ 1 + 2 − (1212 is now a bound on the min-entropy of Aliceʼs raw key conditioned on 

2 ⎣⎢ 2 

2) 

⎦⎥ 

Eveʼs information. The information of both must be removed through privacy amplification to 
extract a secret key. 

Let us then now define, for our experimental procedure with three settings for Alice and 
Bob, 

⎡ ⎡⎢ ⎡1 − Ex yraw raw 
⎤ ⎢ 1 + 2 − (xx yy ′ ′ 2)  2 ⎥⎤ ⎥⎤ 

r = max −h − logDI2 x x, ,′ y y  , ,′ x yraw, ⎢ ⎣⎢ 
2 ⎦⎥ 

2 ⎢ 2 ⎥ ⎥raw, 
s.t .   >2,  ′ ′xx yy 

x ∈{ ,x x  ′}or  y ∈{ ,  y y  ′}⎣ ⎣ ⎦ ⎦
. (5)  

raw raw 

As before, if rDI2 
is found to be non-negative, then Alice and Bob will indeed be able to extract a 

secret key with a rate (at least) rDI2 
. 
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Figure 2. Estimated distribution of the bound rDI2 
(5) on the secret key rate for Werner 

states of visibilities V = 1, 0.98 and 0.95 (in the DI scenario, following the analysis of 
[22]—i.e. showing security against coherent attacks, for memoryless devices), obtained 
as in figure 1. 

Again, we wish to determine how likely it is that rDI2 
is positive, and how its typical values 

and distribution look like when Alice and Bobʼs orthogonal measurement triads are randomly 
chosen from a uniform distribution on the Bloch sphere. For that, we estimated the distribution 
of rDI2 

in a similar way as for rDI1
. The results of our simulation are plotted in figure 2. We found 

that ∼49.0% of our samples of rDI2 
were positive, and observed a peak in the distribution of rDI2 

for values around ∼0.08. The average value of rDI2 
was found to be ∼−0.034; if we post-select 

only the cases in which rDI2 
> 0, the average value becomes ∼0.093. The maximum value for 

is obtained if two of Alice and Bobʼs measurement settings coincide, while the other two rDI2 

pairs of settings, used to define  , are coplanar, at 45° from one another—i.e. they ′ ′  xx yy 

correspond to the optimal choice of settings for testing the CHSH inequality (which was not the 
1 1  2case for the optimal settings for rDI1

). In that case, one gets r 1 h ( −= −  ) ≃ 0.399 .DI2 2 

We also, as before, considered the effect of depolarizing noise on the secret key rates rDI2 

(see figure 2). For V = 0.98, we found the probability that rDI2 
> 0 to be ∼18.0%; for V = 0.95, 

however, no positive secret key rate rDI2 
is obtained any more. 

Note that rDI2 
is always smaller than rDI1

. This comes from the different techniques used in 

the proofs: [22] is based on the calculation of min-entropies to estimate Eveʼs information, 
while [21] is based on the calculation of Eveʼs Holevo information (which involves von 
Neumann entropies). The security analysis of [22] is more stringent in that it considers 
more general attacks. It is an open question whether any of the two analyses can be improved 
to account for more general attacks or to lead to higher bounds on the secret key rates 
(e.g. whether the higher bound of [21] also holds for the same class of attacks as considered in 
[22]). 
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3. Device dependent protocol 

We now turn to the more standard device dependent scenario, in which Alice and Bob trust their 
measurement apparatuses. We assume that the apparatuses implement dichotomic qubit 
measurements, that ρ

AB 
is a two-qubit state, and that the three measurement settings they can 

each choose from, as before, trustfully correspond to orthogonal projective measurements, 
represented by three orthogonal Bloch vectors ax⃗ for Alice, and by three orthogonal Bloch 

⃗vectors by for Bob. 
It is convenient here to think of Aliceʼs and Bobʼs measurements along the orthogonal 

directions ax⃗ and by 
⃗ as the application of an adequate local unitary operation on their respective 

qubit, followed by a measurement along the axes X, Y, Z of their Bloch spheres6. Choosing 

random orientations for the orthogonal measurement triads ax⃗ and by 
⃗ is equivalent to choosing 

random local unitary transformations to apply to the two-qubit state ρ
AB
. 

In this view, the QKD protocol we are considering, with a choice of measurement among 
three orthogonal directions, is nothing but the entanglement-based version of the well-known 6­
state protocol [27, 28]. Its standard security analysis can thus directly be applied. The only 
difference in our case here will concern its typical implementation: we shall not assume that 
Alice and Bob can (in the ideal case) share an entangled state with any particular symmetries 
adapted to their measurement bases, but instead, that their qubits undergo some uncontrolled 
rotations before being measured. 

Note already that in the DD scenario, entanglement-based protocols can readily be 
translated into prepare-and-measure ones [1] (whose practical implementations are typically 
simpler), and the following analysis would still apply. 

3.1. Device dependent security analysis à la 6-state protocol 

Following the analysis presented in appendix A of [1], one can show that the asymptotic secret 
key rate one can extract in the 6-state protocol from the data measured (say) with the settings 
x = =y 3 (corresponding to a σz measurement, with the convention that x y  = 1 and ,, x y  = 2 
correspond to σx and σy measurements, resp.), under one-way classical post-processing, and 
secure against the most general coherent attacks (in the DD scenario) is bounded by 

⎡ 1 + E + E − E 1 + E − E + E11 22 33 11 22 33R ⩾ −1 H ⎣⎢⎨⎧ , ,⎩ 4 4 

1 − E11 + E22 + E33 1 − E11 − E22 − E33 ⎫ ⎤ 
, ⎬ ⎦⎥,  (6)  

4 4 ⎭ 

p {p} awhere H ⎡⎣ { }  ⎤⎦ = −∑ p log  p is the Shannon entropy (and is length 4 vector of 
i i i 2 i i 

probabilities). 

6 ⃗Alternatively, one can use the orthogonal directions ax⃗ and by to redefine the X, Y, Z axes of Alice and Bobʼs 
Bloch spheres, and hence their computational bases, and rewrite ρ

AB 
in these new bases (which indeed amounts to 

applying local unitaries to ρ
AB
). 
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Figure 3. Estimated distribution of the bound rDD (6-state) (7) on the secret key rate for 
Werner states of visibilities V = 1, 0.98 and 0.95 (in the DD scenario, following the 
analysis ‘à la  6-state protocol’), obtained as in figures 1 and 2. 

In our case, the association between each of Aliceʼs three measurement settings and one of 
Bobʼs settings is not defined a priori, but can be optimized so as to end up with the largest 
possible secret key rate—that is, we can choose the optimal permutation 
π ( {1, 2, 3}  ) = { ,  ,  yy y  } of Bobʼs settings to be associated to Aliceʼs settings {1, 2, 3}. Taking 

1 2 3 

into account the fact that equation (6) assumes a given handedness for the orientation of Alice 
and Bobʼs settings (that of ⃗ ⃗ ⃗{x, y, z}), we define 
rDD (6-state ) 

⎡ ⎡⎧ 1 + σ E + E − E 1 + σ E − E + E⎢ ⎢⎪ π ( 1y1 2y2 3y3
) π ( 1y1 2y2 3y3

)
= max 1 − H , , 

y y y3} ⎢ ⎢⎢⎪⎨ 4 4{ 1, 2, 

=π ({1,2,3}) ⎢ ⎣⎩⎣ 

⎫ ⎤ ⎤
1 + σπ (−E1y + E2y + E3y ) 1 − σπ (E1y + E2y + E3y ) ⎪ 

1 2 3 1 2 3 ⎥ ⎥
, ⎬ ,  (7)  

4 4 ⎭⎪ ⎥⎥ ⎥
⎥

⎦ ⎦ 

where σπ = ±1 is the signature of the permutation π. rDD (6-state) is thus a lower bound on the 
asymptotic extractable secret key rate of our DD protocol, secure against coherent attacks in the 
limit of infinitely long keys, obtained from the standard analysis of the 6-state protocol7. 

We again estimated the distribution of the bound rDD (6-state) in a similar manner as before, 
i.e. if Alice and Bob share (noisy) singlet states and their measurement orientations (or their 
local unitaries, equivalently—cf above) are chosen at random, uniformly on the Bloch sphere. 
The results are shown in figure 3. In the noiseless case (V = 1) we found that ∼89.2% of our 

7 Note that by considering only two of the three settings of both Alice and Bob, one can follow the security 
analysis for the BB84 protocol [29] (cf e.g. appendix A of [1]), and derive a simpler bound on the asymptotic secret 
key rate, secure against coherent attacks (and actually proven to give one-sided DI security [30, 31], under the ⎡ 1 − E 1 − E ⎤xy x y ′ ′  memoryless assumption), given by rDD  BB  = max , ⎣1 − h ( − h . Numerical simulations ( 84) x x≠ ′ y y≠ ′ 2 ) ( 2 ) ⎦ 
suggest that this bound is in general only slightly lower than rDD (6-state) (7), and gives comparable distributions to 
those of figure 3. 
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samples led to positive secret key rates r > 0. The average value of rDD was found DD (6-state) (6-state) 

to be ∼0.330; if post-selected to the cases in which rDD (6-state) > 0, it becomes ∼0.379. The 
maximum value of rDD ) is 1, obtained e.g. when ρ

AB 
is a pure singlet state and Alice and (6-state

Bobʼs measurement axes are perfectly aligned (as in the standard case of the 6-state protocol). 
For V = 0.98 and 0.95, as the key rates decrease, we still found that ∼84.4% and ∼75.6% of our 
samples, respectively, led to positive secret key rates r > 0.DD (6-state) 

We note that the key rates obtained from (7), in the DD scenario, are typically larger than 
those found in the DI scenario considered in the previous section. This was expected, as the 
assumptions on Eveʼs possible attacks are more restrictive in the DD scenario. For instance, Eve 
cannot act on Alice and Bobʼs measurement apparatuses—which, in the DI scenario, indeed 
allows her to perform more powerful attacks [21]. An interesting difference between the DD 
and DI scenarios is the optimal orientations of settings. In the DD scenario, one only aims at 

maximizing three of the correlators , and the optimal arrangement does not allow the Exy 

violation of any Bell inequality; on the other hand, in the DI scenario a trade-off must be found 

between a large enough violation of a Bell inequality and a large enough correlator (cfEx yraw raw 

above). We also note that in real experiments, data acquisition times might be longer than 
the alignment stability, i.e. the measurement alignment might drift during measurements. 
In this case, the above security analysis still holds, and the distributed key remain secret. 
However, Alice and Bob will find decreased correlation, which will lead to decreased secret key 
rates. 

3.2. Improved device dependent security analysis 

In the security analysis of the 6-state protocol that leads to the closed form (6), one uses the fact 
that an upper bound on Eveʼs information can be obtained, through a ‘depolarization process’, 
by restricting oneself to Bell-diagonal states ρ

AB 
(cf appendix A of [1]). While this use of the 

symmetries of the protocol may be well adapted for standard implementations in which 
Alice and Bob share a common reference frame and indeed expect their state ρ

AB 
to be (close 

to) a Bell-diagonal state, the upper bound thus obtained may in general be over-pessimistic, 
and it may be possible to actually derive larger bounds on the secret key rates—as we now 
show. 

In the experimental situation we consider, Alice and Bob each repeatedly perform one out 
of three orthogonal qubit measurements. Their full statistics—i.e. their correlators Exy, together 

with the marginal probabilities P a( )  and P b  y) (which are expected to be uniformly 1/2 for 
maximally entangled two-qubit states, possibly including white noise)—then actually allow 
them to fully reconstruct the state ρ

AB
, up to local unitary rotations, through quantum state 

tomography [32]. This can be used to estimate Eveʼs information more tightly—e.g., in the 
ideal case in which the state ρ

AB 
would be found to be a pure state (such as a maximally 

entangled state), then one can be assured that Eve is not correlated to it. 
More precisely, to study the security against collective attacks, the information potentially 

available to an eavesdropper can be represented by a quantum system E that is correlated to 
Alice and Bobʼs system in such a way that it ‘purifies’ the reconstructed state ρ

AB 
—i.e. one can 

x ( 
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define a purification of ρ
AB 

(a pure 3-partite state such that TrE = ρ
AB
), and ψ

ABE 
ψ

ABE 
ψ

ABE 

give the quantum system E to Eve. 

Let us denote by ρ
E 

= TrAB Eveʼs partial state and by ρ her conditional ψ
ABE 

ψ
ABE E A  =ax 

state corresponding to Aliceʼs measurement result Ax = a for the choice of setting x, and let us 
define Eveʼs Holevo information conditioned on Aliceʼs outcome as 

χ A E) = S ρ
E 
) − ∑p A  = a) ( E A  =a),  (8)  ( : ( ( S ρx x 

x 
a 

⎤where S denotes the von Neumann entropy ⎡⎣ ρ = −Tr  (ρ log
2
ρ) ⎦.S ( )  We similarly define 

χ (B Ey: ) to be Eveʼs Holevo information conditioned on Bobʼs measurement result for the 

choice of setting y. A lower bound on the asymptotic secret key rate one can extract through 
one-way post-processing from the data Ax , By obtained from the measurement of the settings 

raw raw 

xraw and y
raw 

is then given by the Devetak–Winter bound [33] 

R ⩾ I (Ax : Byraw
) − min  ⎡⎣χ (Ax : E), χ (B 

raw
: E)⎤⎦,  (9)  yraw raw 

where I Ax : By is the mutual information between Aliceʼs and Bobʼs measurement results ( )raw raw 

Ax and By which, after randomization of Alice and Bobʼs marginals (through a simultaneous 
raw raw 

1 Ex yrandom flipping of their results), is equal to I A( x : By ) = −1 h ⎡⎣ 
− 

raw raw ⎤⎦. The bound (9)
raw 2raw 

ensures the security of the secret key against collective attacks (in the limit of infinitely long 
keys); using a de Finetti type of argument, one can show that the same secret key rate is also 
secure against coherent attacks [34]. 

In our case, Alice and Bob still have the possibility to choose the settings from which they 
will attempt to extract a secret key. Let us accordingly define 

⎡ ⎡1 − Ex y  ⎤ ⎤ 
raw rawrDD = max ⎢⎢1 − H ⎣⎢ ⎦⎥ − min ⎡⎣χ (Axraw

: E), χ (B 
raw

: E)⎤⎦ ⎥⎥, (10) y
xraw,yraw ⎣ 2 ⎦

If rDD is found to be non-negative, then Alice and Bob will actually be able to extract a secret 
key with a rate (at least) rDD —which is larger than the previous bound rDD (7).(6-state) 

In the ideal case in which Alice and Bob find that they share noiseless singlet states, the 
state ρ

AB 
is pure. This implies in particular that Eveʼs Holevo information is null: 

χ (Ax : E) = χ (By : E) = 0. The bound rDD (10) on the secret key rate then just depends 
raw raw 

on the largest correlator (in absolute value) E = − ⃗ · ⃗ observed by Alice and Bob. One can a bxy x y 

show in that case that if Aliceʼs and Bobʼs three measurements settings are orthogonal, this 

largest correlator is necessarily greater than 2

3 
(obtained if all scalar products a b· 

3x⃗ y 
⃗ are either ± 2 

), and hence DD 1 ( )  0; on the other hand, the maximum value 1 of rDD 

is attained if any two of Alice and Bobʼs settings are aligned. As in the previous cases, we 
estimated the distribution of for randomly chosen orientations for Alice and Bobʼs 

or ± 1

3 
r ⩾ − h 

6

1 ≃ 0.350 > 

rDD 

measurement triads; see figure 4. Its average value was found to be ∼0.745. 
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Figure 4. Estimated distribution of the bound rDD (10) on the secret key rate for Werner 
states of visibilities V = 1, 0.98 and 0.95 (in the DD scenario, improving on the 
standard analysis for the 6-state protocol), obtained as in figures 1–3. 

If Alice and Bob determine that they find a noisy Werner state with V < 1, 
they calculate Eveʼs Holevo information to be (for all x, y) χ ( x : = χ (By: E)=A E) 

+ V 1 − V 1 − V 1 −1 3  V 1 − VH ⎡⎣ { , , , } ⎤⎦ − h ⎡⎣ ⎤⎦ . The distribution of rDD, estimated as before, is also 
4 4 4 4 2 

shown on figure 4 for V = 0.98 and V = 0.95. In both cases we always find positive bounds rDD 

on the secret key rates (in fact, rDD is always positive for V ≳ 0.875). 
Also, as discussed above, if measurement alignment were to change or drift during actual 

experiments the only affect would be that Alice and Bob would find a density matrix closer to 
completely mixed (i.e. the recovered density matrix would be an average over all observed 
transformations). The result would be for them to overestimate Eveʼs information and perform 
more than the necessary privacy amplification, leading to lower secret key rates. Nevertheless, 
the protocol remains secure. Finally, as Alice and Bob are performing quantum state 
tomography, they can estimate the transformation in the channel. This means that they could 
attempt a correction with each iteration of the protocol to increase key rates. Of course, if the 
transformation is not stable during an iteration of the protocol, they will never be able to 
perfectly correct it. Also, in practice, there is likely a trade-off between the time spent on 
alignment and time spent generating key that leads to optimal secret-key generation rates. 

4. Proof-of-principle experiments 

To demonstrate the practical relevance of our theoretical discussions, we performed a proof-of­
principle demonstration of QKD using the four security analyses discussed above. In our 
experiment Alice generated a sequence of pairs of polarization entangled photons and sent one 
photon of each pair to Bob via a channel with an unknown polarization transformation. Both 
parties projectively measured the polarization state of their photon in one of three mutually 
unbiased bases. Neither Alice nor Bob attempted to align their measurement devices, as we do 
not want to assume that they share a common reference frame. After collecting sufficient data 
on each pair of projectors—giving the nine correlators Eij as described above and allowing for 
the tomography of the quantum state shared by Alice and Bob (for the calculation of rDD)— 

12 
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Figure 5. Experimental setup. A horizontally polarized, pulsed (50 ps), 532 nm 
wavelength laser beam is rotated to diagonal polarization via a half wave-plate (HWP), 
is then split by a polarizing beam splitter (PBS) and travels both clockwise and counter­
clockwise through a polarization Sagnac interferometer. The interferometer contains two 
type-0, spontaneous parametric down-conversion (SPDC), periodically-poled lithium 
niobate (PPLN) crystals configured to produce collinear, non-degenerate, 810/1550 nm 
wavelength photon pairs. The clockwise-travelling, vertically polarized (counter-clock­
wise travelling, horizontally polarized) pump light passes through the first crystal without 
interaction (as SPDC is polarization dependent) and may down-convert in the V-PPLN 
crystal (H-PPLN) to produce two vertically (horizontally) polarized photons. After exiting 
the interferometer, the remaining pump light is filtered out using a high-pass filter and the 
entangled photons are separated on a dichroic mirror (DM) and sent to qubit analyzers 
consisting of waveplates, a PBS and single-photon detectors. 

asymptotic secret key rates from each of the above analyses were calculated. Note that our 
demonstration is proof-of-principle only as we do not randomly select bases nor perform the 
required error correction or privacy amplification, which is required to generate actual secret 
keys (and which would require a rigorous finite-key analysis, which would go beyond the scope 
of this paper). Nor do we close the detection loophole as necessary to generate key for DI-QKD. 

4.1. Experimental setup 

Figure 5 shows a schematic of our experiments. Alice holds a source of polarization-entangled 
qubits and a qubit analyzer (details below). Her entanglement source is based on two 
spontaneous parametric downconversion (SPDC) crystals in a polarizing Sagnac interferometer, 
described and characterized previously in [35, 36]. Diagonally polarized pump light from a 
pulsed 532 nm wavelength laser is placed in a superposition of traveling clockwise (CW) and 
counter-clockwise (CCW) around the Sagnac interferometer. In the CCW path, vertically 
polarized pump light passes unaffected through the first SPDC crystal, which is oriented to 
down-convert horizontally polarized pump light, and then produces pairs of vertically polarized 
photons in the second SPDC crystal. Similarly, the CW path produces pairs of horizontally 
polarized photons. Each pair consists of one photon at around 810 nm wavelength and one 
photon at around 1550 nm. By recombining the two paths at the output of the interferometer, 
and keeping pump powers sufficiently low, Alice generates a two-qubit state close to the Φ+〉 
Bell state8. Performing quantum state tomography based on a maximum likelihood optimization 
[32] with the source revealed an average tangle of  = 0.85 ± 0.02 (note that  = 1 implies a 

8 Note that all maximally entangled two-qubit states (such as Φ+〉) are equivalent, up to a local unitary 
transformation, to the singlet state Ψ −〉 considered in the previous sections. 
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maximally entangled state and that we observed the tangle to oscillate between 0.82 and 0.88 
over the course of the experiment); this value of the tangle corresponds, for an ideal Werner 
state, to an average visibility of about V = 0.95 ± 0.01. Note that the coherence time of the 
photon pairs, compared to the duration/coherence time of the pump, is sufficiently short to 
ensure that multi-photon pair emissions are produced in uncorrelated product states, meaning 
that photon-number attacks are not a significant concern in our experiments. 

During experiments, Alice separates the two entangled photons with a dichroic mirror and 
measures the 810 nm photon directly with her qubit analyzer, which consists of waveplates, a 
polarizing beam splitter (PBS) and a free-running silicon avalanche photo-diode (APD). Alice 
also sends the 1550 nm photon to Bob via a 10 km fiber spool with approx. 6 dB loss, which 
serves as the quantum channel with unknown and varying polarization transformation, and, in 
parallel, generates an electronic signal to inform Bob of the incoming photon. Bob then 
projectively measures the photon with his own qubit analyzer, also consisting of waveplates, a 
PBS and a gated InGaAs APD. Measurement results from both Alice and Bob are recorded on 
the same PC for analysis. 

4.2. Experimental results 

To demonstrate the feasibility of QKD without a shared reference frame with our setup, we 
performed two experiments. In both experiments Alice and Bob collected statistics on one of 
the nine correlators for 2 min and then either Alice or Bob would change measurement 
settings9. Hence, 18 min were required to collect statistics on all nine correlators. Note that the 
polarization transformation of the fiber link drifted noticeably during this time, but, as discussed 
earlier, this has no affect on the security of the distributed key. In the first experiment, Alice and 
Bob cycled through the measurement settings for nearly three hours while the polarization 
transformation of the fiber spool was allowed to freely drift, which generated nine complete 
iterations through the measurements of the correlators. For our second experiment, we inserted 
three waveplates into the channel connecting Alice and Bob to randomly vary the polarization 
transformation and measured the nine correlators for each transformation. 

In the first (free-drifting) experiment we analyzed the nearly three hours of data with a 
sliding 18 min window: We first analyzed the nine correlators and performed state tomography 
with the data within a window beginning at time t = 0 and going to t = 18 min. We then 
repeatedly stepped the window forward by 2 min, yielding a total of 73 sets of data (e.g. the 
second data set is between t = 2 min and t = 20 min, etc), and analyzed each set independently. 
For each data set we calculated the asymptotic secret key rates rDI1

, rDI2
, rDD (6-state) and rDD one 

could extract in each of the four scenarios, according to equations (3), (5), (7) and (10), 
respectively. In order to illustrate the role of the CHSH violation in the DI scenario and the 
importance of having large correlators, we also calculated the maximal CHSH value10 

9 In fact, as Alice and Bob each have one detector, each 2 min correlator measurement is composed of four 30 s 
projection measurements that are used to later calculate the correlator. This makes the observation of double clicks 
and their appropriate treatment during post-processing [1] impossible. 
10 Note that we do not claim that this maximal max value is necessarily the one that grants the maximum secret 
key rate (as the latter also depends on the correlator Ex ; cf equations (3) and (5)). However, as having a large 

rawyraw 

value of max > max value as an ( 2)  is a necessary condition for positive DI secret key rates, we will use the 
indicator of the ability to generate key in the DI scenario. 
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Figure 6. Results from our free-drifting experiment, as a function of time (for each of 
our 72 data sets; see main text). (a)–(b) Our figures of merit: the maximal CHSH value 
 and the maximal sum of correlators C , as defined in the main text. (c)max max

Asymptotic secret key rates rDI1
, rDI2

, rDD (6-state) and rDD corresponding to each of the four 
scenarios studied in sections 2 and 3. 

max = max , ′ y y ′xx yy ′ ′, and the largest sum of three correlators defined asx x , , 

C = max + E + E y .x y  ′ ′max ≠ ≠x′′ y≠ ≠y′ y′′x x′ , Exy  x′′ ′′ 

These results are presented in figure 6. Initially, and by chance, the channel transformation 
turned out to be such that a reasonably high parameter max was found, favoring DI-QKD, but 
over the course of the experiment, the channel transformation slowly drifted close to a point 
where Aliceʼs and Bobʼs measurement bases were aligned. At this point we observed three high 
correlators (i.e. a large value for C ) and a low parameter  , which favours DD-QKD. max max

Indeed, when one examines the key rates as a function of time (i.e. window position) one 
observes steadily decreasing DI key rates (in fact, rDI2 

quickly falls to zero, whereas rDI1 
remains 

positive for longer) and steadily increasing DD key rates. 
These observations align with our discussion at the end of section 3.1 in that the alignment 

of bases optimal for DD- and DI-QKD are different. All our protocols require a source with a 
high degree of entanglement (characterized, for instance, by a high visibility or high tangle). 
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However, DD-QKD is optimal when Aliceʼs and Bobʼs measurement bases are well aligned 
such that one finds three large-valued correlators with which to generate key, which minimizes 
key reduction due to error correction. On the other hand, in DI-QKD one requires a set of four 
correlators that generate a high S-parameter (to minimize the bound on Eveʼs information and 
thus key reduction during privacy amplification) with one correlator Ex y being large so that 

raw raw 

error correction is minimal, which are conflicting requirements. This conflicting nature is indeed 
illustrated in figure 6, where one observes that max decreases in time while C increases—just as 
rDI1 

and rDI2 
decrease as rDD (6-state) and rDD increase. 

Furthermore, the difference between secret key rates granted by the two DD analyses, 
rDD (6-state) and rDD, are apparent in figure 6(c). The difference between these techniques, as 
discussed in section 3.2, is how one bounds an eavesdropperʼs information: rDD uses the Holevo 
information based on a reconstruction of the density matrix ρ while rDD uses three 

AB (6-state) 

correlators. If the quantum state that Alice and Bob share contains a high tangle, then Eveʼs 
Holevo information will be low and thus rDD mainly depends on the strength of the correlator 
used to generate key. On the other hand, the privacy bound for rDD does depend on (6-state) 

alignment as three high correlators are needed for key generation. We see that in our results: 
first, rDD always outperforms rDD (as mentioned in section 3.2) and, second, the difference (6-state) 

between the two key rates is largest initially (when bases are the most misaligned) and slowly 
decreases as Aliceʼs and Bobʼs bases begin to align. 

As mentioned above, for our second experiment, we inserted three waveplates into the 
channel connecting Alice and Bob to randomly vary the polarization transformation. All 
nine correlators were measured 17 times, and state tomography was performed indepen­
dently each time. Before each iteration the waveplates were re-positioned based on 
randomly generated numbers, thus generating a random channel transformation (note that 
the fiberʼs own transformation continued to drift as above). In figure 7 we present the 
results. We again plot the figures of merit max and Cmax for each of the 17 measurements, 
as well as the derived asymptotic secret key rates rDI1

, rDI2
, rDD (6-state) and rDD. For DI-QKD, 

we found positive secret key rates for in ten out of 17 measurements (i.e. withrDI1 

probability of 59%) and one out of 17 measurements (i.e. 6%) for rDI2 
. For DD-QKD, we 

found positive secret key rates for rDD in 17 of 17 measurements (i.e. 100%) and in 15 of 
17 measurements (i.e. 88%) for rDD (6-state). Although the size of our experimental sample is 
too small to really be statistically significant, our observations appear to agree reasonably 
well with the predictions from the numerical simulations above, assuming a source of 
entangled Werner states of visibility V slightly larger than 0.95, i.e. a tangle of ≃0.856—in 
agreement with the measured tangle of the state, which was found to oscillate from 0.82 to 
0.88. 

Lastly, we again point out that a consistently high tangle, which our experiment 
maintained (up to the oscillations), is required but not sufficient to generate positive secret key 
rates. A high-quality source does not guarantee the high S-parameter needed for DI-QKD, nor 
the high correlators needed for DD-QKD. An appropriate channel transformation is also 
required. 
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Figure 7. Results from our randomized polarization transformation experiment, for each 
of our 17 experimental runs (see main text). (a)–(c) as in figure 6. 

5. Discussion 

We have presented a practical QKD setup in which the requirement of a common reference 
frame can be completely dispensed with. A proof-of-principle demonstration of our protocols, 
which covers both the usual device dependent case and the device independent case, was 
performed over 10 km of spooled fiber. Specifically, we have shown that a secret key can in 
principle be established, considering both a freely drifting spool and randomly chosen 
transformations, even in the DI case (assuming fair sampling, and infinitely long keys). 

We believe that the present ideas have potential to find applications in future long-distance 
quantum communication protocols, in particular in situations where the amount time available 
to perform the protocol is severely constrained, e.g. in satellite based quantum communications. 
The present results should be considered as a proof-of-principle experiment, and several 
technical improvements are required, such as implementing random choices of measurement 
settings, and a finite-key security analysis [37]. For the DI approach, an essential step is to close 
the detection loophole, which has recently been achieved in fully optical systems [38, 39]. 
Finally, another challenge consists in devising efficient error-correction protocols for high error 
rates, as our protocols typically lead to higher error rates compared to the standard approach in 
which the parties share a common reference frame. 
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