1. Introduction

People who employ interactive text editors are frequently confronted with
simple, but repetitive, editing tasks. These can be frustrating to perform
manually, too variable and individually not significant enough to automate by
a custom-built program, and difficult to address with structured editors
because the text lacks formal structure.

Three such tasks are illustrated in the Appendix. They all involve
reformatting a textual database: in the first case an address list, in the second
a database of match scores, and in the third a list of references. Each can be
accomplished using an editor with a macro definition capability (e.g. EMACS;
Stallman, 1981) or a stand-alone macro facility (e.g. TEMPO; Pence &
Wakefield, 1988), but this requires careful advance planning and is hard to
get right first time. Moreover, any programming solution suffers from
excessive rigidity—there is no avoiding the fact that the tasks are defined
incrementally and may be extended as more examples are encountered.
Editing macros in particular tend to be difficult to extend unless they are
expressed in some abstract form, and this is likely to put off the non-
programming user. In practice, people are likely to accomplish such tasks by
manually editing each entry, perhaps using global search-and-replace to
perform sub-tasks where feasible.

Programming by example seems a natural way to approach these problems.
Rather than having users program a task, they need only specify examples of
how to perform it, from which a program is synthesized that performs the
task itself. Programming-by-example schemes have been proposed for office
information systems (e.g. Halbert, 1984; MacDonald & Witten, 1987),
operating system interaction (e.g. Waterman et al., 1986), robot programming
(e.g. Andreae, 1984, 1985; Heise, 1989), and graphical editing (e.g. Maulsby
et al., 1989).

Another possible approach is to use techniques of predictive text
generation—which exploit the statistical redundancy of language to
accelerate and amplify user inputs—in conjunction with adaptively-formed
language models. For example, we have built a device called the REACTIVE
KEYBOARD that accelerates typewritten communication with a computer by
predicting what the user is going to type next (Darragh ez al., in press). While
this is suitable for enhancing the ease and rate of initial text entry, especially
for physically limited people, it is not particularly well-matched to the task of
editing structured or semi-structured data.

Nix (1983, 1984) has investigated the application of “by example” techniques
to text editing. His approach is to seek a transformation that maps blocks of
input text into corresponding blocks of output text. While this works well for
rigidly-structured editing tasks like that of Task 2 in the Appendix (which
was in fact taken from Nix’s thesis), it breaks down when faced with less
artificial transformations that involve rules and exceptions, like those of
Tasks 1 and 3. In contrast, the scheme developed in the present paper adopts
a procedural stance: editing actions are recorded and generalized into a
program that transforms input into output. This seems to offer better potential

2

for complex, ill-structured, editing problems where many different cases may
arise. ‘

2. Principles

We begin by stating some simple principles on which the work is based.
Some of these were suggested by an informal preliminary experiment in
which we presented 12 subjects with a number of different editing tasks, all
involving reformatting blocks of semi-structured information, and observed
them while they went about the task using a simple interactive editor (the
Macintosh MINIEDIT; Chemicoff, 1984).

Use an abstract editing model that provides a small set of simple operations.
As Nix (1983, 1984) pointed out, users can accomplish an editing task in
different ways, and this confounds procedural models of their performance.
For example, moving down to the end of the second line of the next
paragraph can be done with innumerable different combinations of basic
move commands. Consequently our editing model provides a single select
operation that subsumes all sequences of moves. Many editing actions—such
as search-and-replace—are in effect canned procedures and need not be
provided in an effective programming-by-example environment.

Record the local context of each editing action in a rich, redundant, manner.
To recover the information lost by ignoring the details of individual move
commands it is necessary to infer what information determines the target of a
select action. Because the user might have in mind any of a variety of
different selection procedures (e.g. skipping a constant number of words or
lines, moving to the beginning of a word or paragraph, finding a certain left
or right context), it is advisable to record as much relevant information as
possible.

Base the program on the sequence of commands performed when editing a
single block of information. We assume that the user wishes to edit semi-
structured databases that comprise clearly-defined blocks of text, as
illustrated in the Appendix. Programming by example is made much easier if
the user demonstrates the procedure on the first block and informs the system
when it is complete. The alternative on the one hand of predicting the next
editing action whenever enough evidence has been accumulated to do so with
confidence (as the METAMOUSE system for graphical editing does; see
Maulsby et al., 1989) inevitably exacts a price either in conservatism or over-
eagerness to predict. The alternative on the other of allowing the user to
demonstrate the procedure on several blocks invites free variation in task
execution, which exacerbates the difficulty of learning.

Extend the program dynamically if errors occur in subsequent blocks. In
actual repetitive editing tasks, subsequent blocks of text often diverge from
the format of the first—the databases do not have a completely rigid,
repetitive, structure. To accommodate this the user must be able to extend the
procedure on the fly to account for new circumstances. This is a kind of on-
line debugging of programs taught by example.

Allow the user a practice period in which to discover a suitable procedure.
We observed that users perform repetitive editing tasks by trial and error in
the beginning, and settle on a suitable editing procedure only after some
experimentation. It is valuable to provide a practice mode to allow a suitable
procedure to be discovered. This could simply take the form of a command
that resets the first block of text to its original state, to be invoked after each
practice attempt.

3. Design

Here we discuss the design of a procedural programming-by-example editing
system; specific implementation decisions are covered in Section 4. It is
assumed that the editor supports the notion of current text position and the
following primitive actions (summarized in Table 1):

» insert places text at the current position, replacing selected text if any;
* locate allows the user to specify the current position;

* select takes a stretch of text and makes it the current position;

« delete deletes the currently-selected text.

There are, of course, alternative ontologies of editing actions. For example,
delete could be considered a special case of insert using the empty string;
locate could be treated as selecting the empty string. From our point of view,
these are not important issues.

These actions constitute an extremely primitive editor, whose usefulness
would be greatly enhanced by additional operations. Many common ones can
be accommodated within the programming-by-example scheme but do not
affect its design. Examples are

» search finds a specified text pattern and selects it;
» cut deletes the currently-selected text and saves it in a buffer;
» paste inserts the contents of the buffer at the current position.

Programming by example takes place in three stages: recording a trace,
generalizing it into a program, and executing and extending it. Following a
brief practice session in which they settle on an editing strategy for the task at
hand, users perform normal editing operations on the first block of text.
These are silently recorded. Once the first block is finished, the user signals
the system to enter the second stage, creating an initial program based on the
trace that has been recorded. The system then begins to execute the program
on the next block of text, generating predictions which the user may accept or
reject. When a prediction is rejected the user must indicate the correct action,
and the program is automatically extended to accommodate it.

3.1 RECORDING TRACES

Editing traces are recorded as sequences of actions and attributes. The four
primitives above—insert, locate, select, delete—correspond to four types of

4

action. In practice these operations may not be primitive as far as the user is
concermned—for example, locating a position may require many next-line and
next-character commands; selecting text may require mark and copy-region
commands—however, they are mapped into actions by the recording process.
Insert and select have a parameter that records the text string involved.

Locate and select require positional information. With these actions are
recorded a number of attributes that characterize the place at which the action
occurred. The attributes rely on a lexical decomposition of the text into units
such as characters, words, lines, paragraphs, and the file itself. Of course,
many difficult issues are involved here (e.g. see Witten & Bell, 1990, for a
discussion of the question of word identification alone), and different
applications will involve different lexical categories. However, we are not
promoting our particular choice of attributes but rather the methods of
generalization that are based on them.

Three basic kinds of attribute have been identified, and are summarized in
Table 1. The first characterizes the local context of the current position by
specifying a stretch of preceding text and of succeeding text. The second
gives positional information relative to enclosing units of text, such as
beginning, middle, or end of a file, paragraph, or line: we call these “lexical”
attributes. They provide less local, but much less detailed, information than
the local context. The third measures relative distance from the previous
position, and can be expressed in various units such as characters, words,
lines, and paragraphs.

We deliberately leave open the details of these attributes. Particular choices
are discussed in Section 4, but the idea of editing through procedural
programming-by-example transcends them. Note that it is not necessary to
include as attributes local lexical features such as capitalization and
punctuation, for these can be determined by generalizing the local context
(and the parameter in the case of a select action).

3.2 CREATING PROGRAMS

Creating programs involves generalizing a trace—which is in effect a
straight-line program—into a procedure that includes both variables and
control structures such as loops and branches. The idea is to identify steps
that are to be merged into a single procedure step, and generalize their
attributes.

This is a process of induction, and it is inevitable that any proposed solution
will have shortcomings in particular situations. Fortunately, however, the
interactive nature of the editing environment allows the user to correct for
deficiencies in induction. Here we identify desirable properties of any
generalization algorithm: designing specific algorithms that fulfil these
properties is a topic of current research. A simple method is described in
Section 4 and evaluated, through examples of its performance, in Section 5.

Identifying steps to merge. The aim of merging different steps of the trace is
to increase the predictability of actions. In general terms, one seeks the
smallest procedure that accounts adequately for the trace. However, there is
an inevitable trade-off between the accuracy with which the procedure

5

“accounts for” the trace and the size of the procedure. This can be formulated
in terms of the entropy of the predictions. Unfortunately, algorithms to find
the best procedure that represents a particular trade-off are infeasible because
they involve enumeration of all possible procedures (Gaines, 1976).
Consequently practical systems form “context” models that merge steps when
they are sufficiently similar and when they occur in sufficiently similar
contexts (Witten, 1987). Translated into the editing domain, this results in
these rules of thumb:

» only merge steps that involve the same primitive actions;

+ when deciding whether to merge two steps, take account of their
neighbors.

The first rule results from the fact that the procedure formed must be
executable in order to provide any advantage to the user—underspecified
actions such as insert-or-select will not help. However, actions with different
parameters can be merged. For example, there may be circumstances under
which two select actions with different character strings should be merged by
finding a regular expression that covers them both. Similarly, insert actions
that specify different text may be merged: although this will not produce an
executable program step it may reflect unpredictability that is inherent in the
task.

Just because the steps involve the same actions does not necessarily mean
that they play the same role in the procedure. Merging steps indiscriminately,
even though they match, can reduce predictability by losing the correct
context within the procedure. The second rule highlights the importance of
context, but does not provide a rationale for deciding how much context to
use.

Another way of restricting merging is to take into consideration the structure
of the program being created. For example, the discipline of structured
programming suggests the rule

+ do not merge nodes if this creates a branch into an already-formed
loop.

This eliminates overlapping loops but permits nested ones, and is used in the
implementation described in Section 4.

Generalizing attributes and parameters. With locate and select actions are
associated attributes that must be combined when steps are merged, as must
the parameters of select actions. A number of different methods of
generalizing items having various data types have been identified in the
machine learning literature (e.g. Michalski, 1983). We need ways of
generalizing character strings (select parameters and local contexts), lexical
attributes (beginning, middle, or end of textual unit), and numeric attributes
(relative distances).

The last two are simple. In virtually all realistic procedures, lexical attributes
affect the procedure only if they remain constant at every occurrence of a
step. This will allow a step to be restricted to the beginning of a line or
paragraph, for example—a common requirement when editing structured

6

data. Thus lexical attributes are discarded whenever they differ between
steps.

The same holds for numeric attributes—executing a step on every third word,
for example, causes the “word” measure to remain constant. These attributes
also serve the purpose of restricting the region or “focus of attention” in
which the system must search for a certain context. For example, if the
number of words and lines skipped since the last editing action varies but the
number of paragraphs remains constant at zero, attention is restricted to the
current paragraph when seeking a new context in which to execute the current
step. Moreover, the sign of these attributes dictates the direction of search
when locating a new position.

Generalizing character strings. Character strings, such as the parameters of
select actions, can be generalized by identifying a string expression (for
example, a regular expression) that covers the different examples. Here we
identify some of the issues in designing a generalization method for strings; a
practical, heuristic, method will be sketched in Section 4.2.

It is trivial to find a regular expression that satisfies a given set of examples,
for it need be no more than a list of the examples. To further constrain the
problem one might seek the smallest regular expression that satisfies the
examples. This can be found by enumerating all expressions from the
smallest up, but unfortunately this is computationally intractable and, in fact,
efficient procedures do not exist (Angluin, 1978).

A much simpler approach is to seek the longest common contiguous
substring occurring in the examples. Then one could define a generalization
to be any string that contains this substring. This effectively treats strings as a
fixed part flanked by variable parts—not a very comprehensive basis for
detecting lexical structure in strings.

Nix (1983) generalized this approach by defining a “gap pattern” to be a
sequence of alternating strings and gaps, strings being constant and gaps
matching any text. The general problem of finding a gap pattern that fits a set
of sample data is intractable when the strings are long. However, he
developed a heuristic procedure that attempts to find the “best” gap pattern
that matches a set of strings, namely the one that

» maximizes the number of constant symbols;
 minimizes the number of gaps (subject to the previous constraint).

The procedure first finds the longest common (non-contiguous) subsequence
of the set of strings. The maximal-length ordered sequence of characters
common to two strings can be found efficiently using dynamic programming
(Hirschberg, 1975), and the method can be adapted to deal with more than
two strings. Nix’s procedure then places sufficient gaps in the longest
common subsequence to make it unify with all strings in the set.

Many editing tasks are sensitive to the pattern of character classes in the
strings being manipulated, where classes are assigned according to a
hierarchy such as that of Figure 1. An improvement on Nix’s formulation is
to consider typed gaps that specify the class of omitted character strings.

Although identifying mergeable steps only provides positive examples of
character strings that are associated with the step, negative examples will
come from executing the procedure on different blocks of text. Indeed,
having formed a procedure from a trace, negative examples may be found by
re-applying that procedure to the same trace and finding places where
incorrect predictions are made because of over-generalization. None of the
above methods cater for negative examples, except the enumeration
technique for regular expressions.

The problem of generalizing the context attribute is slightly different from
that of generalizing select parameters, for their extent is not well-defined—it
is not clear how far the preceding context should extend to the left, nor the
succeeding context to the right. The simplest solution is to select a unit that
constitutes the context, say a word. However, this eliminates the possibility
of finding rules that depend on larger contexts. It would be better to carry
along contexts at several different lexical levels: word, line, sentence. Since
different examples at each level will be amalgamated by the character-string
generalization method, this would allow the discovery of any regularities that
occur, regardless of their level.

3.3 EXECUTING AND EXTENDING PROGRAMS

Once a program has been created from the trace of actions on the first block
of text, it is executed on subsequent blocks. The process of “executing” a
program step depends on the particular action involved. For actions that need
to find a position in the text it is essentially a process of pattern recognition,
while for other actions it is more straightforward.

Consider the simple cases first. A step that specifies an insert action may or
may not specify the text that is to be inserted. If not, the user is simply invited
to type it. If so, the suggested insertion is presented for approval. If it is not
approved, the system has to decide whether to generalize the program step
into an insert action with unspecified text, or create an alternative step with
the new text parameter and link it in to the program. This is the same decision
as whether to merge two trace steps together when constructing the procedure
from the trace.

If the user indicates that an insert action is inappropriate, the system has no
option but to ask for the correct action and amend the procedure accordingly
using the same method as for initial procedure construction.

Other actions, like delete, cut and paste, are executed in the same way, by
informing the user of the proposed action, awaiting confirmation, and
soliciting the correct action in the case of an error.

Now for the more complex cases, when the action involves finding a position
in the text. The text must be scanned from the current position until the
attributes are matched. The direction of scan is indicated by the sign of the
relative-distance attributes. Its extent is given by the size of the smallest unit
(word, line, paragraph, ...) whose relative-distance has remained zero in
previous executions of this step. The match pattern is given by the context
specifications associated with the program step, and the parameter in the case

8

of a select action. The lexical attributes of the position (beginning, middle, or
end of a unit of text such as file, paragraph, or line, etc.) which have
remained constant in previous executions should be respected in the scan.

If a position is found that satisfies these constraints, the user is informed of
the proposed position and action. If the action is correct but the position is
incorrect, the correct location is requested and the attributes associated with
the program text are updated accordingly. If the action is incorrect, the
correct one is solicited and the program amended accordingly.

When updating a program step to accommodate a new location in which it
should be executed, there are two cases. If the correct position was
overlooked by the scanning procedure, the program step is too specialized
and must be generalized so that it would find the correct position next time.
This involves generalizing the context attributes (and the parameter, in the
case of a select action) to subsume the new positive example. However, if the
scan finds a position that precedes the one indicated by the user, the program
step is too general and must be altered to avoid finding the incorrect position
in future. This involves specializing the context attributes (and the parameter,
in the case of a select action) to inhibit matching the new position, effectively
treating the incorrect position as a negative example. It may also be necessary
to generalize these attributes to ensure that the correct position is indeed
matched, if it is not already.

Suppose now that the scan does not succeed in finding a position that satisfies
the constraints represented by the attribute values. Rather than reporting to
the user that the program step cannot be executed, a match can be sought with
a generalized version of the attributes. This can be done in three ways. The
extent of the scan can be increased, the lexical attributes can be over-ruled, or
the context patterns can be generalized. It is not clear how best to balance
these three possibilities. In any case, if weakening the attribute constraints
does allow the scan to find a position for the program step, the system
suggests the action as before, and if it is accepted, generalizes the attributes to
subsume the new position just as it would if the user had suggested it.

In summary, whenever executing a program step involves finding a position,
the attributes associated with that step are used to constrain the position. Two
kinds of bugs are anticipated. Overgeneralization bugs cause the procedure to
match a step with a place which should not have been matched.
Overspecialization bugs cause it to miss places that should have been
matched. Both cases are handled by generalizing or specializing the attributes
of the program step accordingly.

A third kind of bug, incorrect program structure, occurs when a predicted
action is actually incorrect (in contrast to the correct action being predicted at
an incorrect position). Procedure execution is suspended and the user
demonstrates the correct action, or sequence of actions, manually. The system
will then merge the new trace fragment in with the existing program.

4. Implementation

So far the issues have been identified but some details of how to deal with
them remain unresolved. A basic version of these ideas has been
implemented which operates within the Macintosh MINIEDIT, a simple
interactive point-and-click editor (Chernicoff, 1984). This has a text window,
a text cursor, and two pull-down menus, file and edit. Within the window the
user can

* type, in which case text is inserted at the text cursor position;

* click, which moves the text cursor to the position of the mouse cursor;
» press and sweep, which selects (and highlights) a stretch of text;

» double click, which selects the word at the mouse cursor.

The file menu gives access to conventional file operations such as open, save,
and quit; these are not recognized within the learning system. The edit menu
allows

» cut, which deletes the currently-selected text and saves it in a buffer;
* paste, which pastes the contents of the buffer at the cursor position;
+ undo, which revokes the last editing action.

The following subsections parallel those of Section 3 and give more details of
the system’s operation, illustrated on Task 1 of Appendix A, which involves
reformatting a list of addresses.

4.1 RECORDING TRACES

Figure 2 shows a sequence of attributes and actions that constitute an editing
trace. Actions include typing a string of characters, clicking to reposition the
cursor, selecting a stretch of text (or a single word by double-clicking),
cutting (either by menu selection or the delete key), and pasting. File
operations are not considered to be actions. The system ignores extraneous
actions such as consecutive mouse-clicks when recording a trace. The typing
and selecting actions have a parameter that records the text string involved.

4.2 CREATING PROGRAMS

The program-creation mechanism generalizes the trace of Figure 2 into the
procedure of Figure 3.

Nodes are considered to be mergeable whenever their actions (and
parameters, where appropriate) are identical. For example, T1, T3, and T5 are
mergeable, as are T2, T4 and T6. Whenever nodes are merged, loops are
formed. However, mergeable nodes are only actually merged provided this
does not create a branch into the body of an already-formed loop. For
example, step T6 of the trace in Figure 2 is not merged with state S2 of
Figure 3, since this would involve branching into a loop.

10

For select actions, the attributes are discarded. This assumes that the text
selected is the only clue to the location of the action—an oversimplification
for some tasks, but one that sidesteps the difficult problem of balancing
constraints on the context against constraints on the selection parameter when
executing such actions. Thus only for click actions do attributes actually need
to be generalized, and this proceeds as follows.

Relative-position attributes. These are generalized by simply dropping the
attribute if different values are encountered.

Absolute-position attributes. Within each unit (file, paragraph, line, word),
the “beginning” and “end” values can be generalized to “extreme”, while the
“middle” value can only be generalized to “any”. For example, beginning-
of-line and end-of-line are generalized t0 extreme-of-line; if
middle-of-line is present too then the position-within-line constraint is
abandoned. Different absolute-position attributes are treated according to the
word, line, paragraph, file hierarchy. For example, since beginning-of-
line implies beginning-of-word, when both features are present the
second is dropped.

Textual attributes. Character strings are generalized according to a heuristic
that finds common subsequences. Individual characters are related by the
hierarchy of Figure 1, and this relationship is extended in the obvious way to
strings of consecutive characters from the same class. Then common
subsequences are identified. For example, when trace elements 1 and 3 of
Figure 2 are coalesced, the “before” strings “Bix, =” and “N.w., =" must be
combined.! First their common subsequence *, =™ is identified. Then the
pattern “{letter], =” is constructed from the common subsequence and the
first string, where the square bracket notation indicates a sequence of
characters from that class and other characters (comma and space) are
interpreted literally. However, this does not match the second string, and so
the pattern is generalized to “[character], n” (abbreviated to “[c], =" in
Figure 3).

The heuristic method that combines textual attributes is biased towards
discovering maximally specific patterns that characterize common
subsequences of the character classes present in the strings. For example, the
longest common subsequence of “299-2299” and “222-8888” is
“2...22...”, but the heuristic finds the pattern “2...-....” instead.

Example of generalization. An example of generalization is shown in
Figure 4. The sequence generalizer determines that trace elements T1, T3,
and TS should be merged, and their attributes are combined into those for
state S1 of the program in Figure 3.

IThe symbol “r” is used 10 make the space character visible.

11

4.3 EXECUTING AND EXTENDING PROGRAMS

Once a program has been created from the trace of actions on the first block

of text, it is executed on subsequent blocks.2 This is easiest to explain in
terms of an example.

Consider applying the program of Figure 3 to the second block (in this case,
line) of Task 1 in the Appendix. State S1 finds the first comma (after the
name) and S2 suggests a RETURN character, which is accepted by the user. A
position satisfying S1 (after “suiten1, =”) is found before one satisfying S3,
and so S2 suggests another RETURN , also accepted. Now S1 finds the comma
after “BanffrBlvd.” and suggests a RETURN here. This is not what the user
intended. He rejects the prediction and is invited to position the cursor
correctly.

This is an example of an overgeneralization bug. These are handled by
storing with each node “negative examples” (or patterns generalized from
several negative examples) that indicate a mismatch with the node. For
example, in the current circumstance the prior context “Blvd., n” and the
posterior context “N.w., »” are recorded as negative examples with state S1
of the program. These will prevent S1 from matching a position with either of
these contexts in future. Also, the context of the correct position indicated by
the user is merged with that specified in the state to ensure that the correct
position will indeed be chosen in the future. In this case the position’s prior
and posterior contexts are “N.w.,=” and “Calgary, »” which already match
the patterns “[character],»” and “{character]” respectively that are
stored with the state.3

Continuing with the example, the program continues by predicting correctly
the RETURN character following “calgary, =”. This leaves it in state S2. Now
it fails to identify a position for either of S2’s successors, states S1 and S3.
Because the pattern in S3, “284-4983”, is specific, it is generalized up one
level of the hierarchy of Figure 1, to “{digit] [op] [digit]”, and a match is
sought again. This does indeed find the “229-4567" at the end of the second
line of the task, and so the program predicts that this item will be selected. (If
a match had not been found, the pattern “[digit] (op] [digit]” would have
been generalized further, to “[alphanumeric] [non-alphanumeric]
(alphanumeric]”, and so on.) When the user accepts this prediction, the
select action of state S3 is generalized to “2[digit]-4[digit]” to
accommodate the two patterns it has actually been applied to.

2In fact, it might have been better to undo the modifications and re-execute the procedure on
the first block of text as well, both to provide an initial round of debugging and to show the
user what has—and what has not—been learned. In the present case the procedure would fail
on the first block in exactly the same way as it does on the second.

3The current system is blind to other negative examples that may occur prior to the target
position specified by the user. Again, it may be better to undo and re-execute the program
step to identify bugs early.

12

On the third and subsequent blocks of text up to the fifth, the system predicts
all actions correctly. However, on the “HelenmBinnie” line, where the
telephone number “(405)220-6578" has a different format, it selects just
“220-6578” and predicts a cut action. The teacher rejects this action and
selects the whole string “(405) 220-6578". Then the string generalization
algorithm is re-invoked to generalize the pattern, which was previously
“2[digit]-[digit]”, t0 “[character]2([digit]-[digit]”.

On the sixth block a RETURN is predicted immediately prior to “s.E., =”,
because only “N.w., =” is stored as a negative example. When the user rejects
this prediction and indicates the correct position for the click action, the
system generalizes the negative example pattern to match “s.E., =” too.

5. Evaluation

The program has been tested on the three tasks given in the Appendix.
Despite the fact that many components have been implemented in a simplistic
manner, it performed well on all tasks.# Table 2 summarizes the results.

On the address-list task (Task 1), manual execution of the procedure on the
first block resulted in a trace of 8 steps (that of Figure 2), which was used to
form a 6-node procedure (Figure 3). Execution of this procedure on the
second block resulted in 10 editing actions, 9 of which corresponded to
predictions accepted by the user. However, since a position selection and a
corresponding action are both presented together to the user, these 9
predictions actually corresponded to only 5 dialog boxes being generated, and
accepted. There were a total of three uses of the debugger (described in the
previous section).

The second task was included since it has been studied by Nix (1983) as an
illustration of his editing-by-example system. The trace was immediately
generalized into the correct program.

The reference-list task (Task 3) was more complex. The second block differs
from the first in that three authors are included instead of one, a volume
number is present, and there is no month. The third block has two authors but
no volume or page numbers. The final two blocks do not introduce any new
cases. Nevertheless, despite this degree of variation, the great majority of
predictions made by the system turned out to be correct.

The effort in performing the three tasks, measured in both keystrokes and
mouse-clicks, was compared with and without the programming-by-example
system. In Task 1 only one-third as many mouse-clicks, and one-third as
many keystrokes, were required using the system. Task 2 produced even
greater savings because without the leamning system the fixed characters
“GameScore [nwinner=’” and “; nlosern’” were typed over and over again

4However, the tasks were used when developing and debugging the program, so this should
not be construed as a proper test of the program’s competence.

13

(although real users would likely be more resourceful). Task 3 required
slightly over half as many mouse-clicks and keystrokes because the debugger
had to be used to instruct the system to form branches and supply inputs. Of
course, these figures depend heavily on the number of blocks that are edited,
but they give some idea of the savings for tasks of this size.

6. Conclusions

Programming by example is a promising way of helping users with repetitive
editing tasks involving semi-structured text. Although particularly suitable
for non-programmers who have no alternative but to perform editing
manually, it is probably useful for programmers too—even knowledgeable
users in a UNIX environment with a rich set of software tools at their disposal
often end up reformatting files manually.

The procedural approach adopted here, in which a trace of user actions is
generalized into a program, offers significant advantages over a pattern-
match-and-replace scheme such as Nix’s (1983, 1984) that operates on input
and output only. The disadvantage that traces are confusing because users
have many ways of doing the same thing is alleviated by (a) using a simple,
abstract model of editing instead of raw low-level commands, and (b)
forming a program as soon as possible and using it to suggest actions to the
user, thereby curtailing free variation in performance of the task. Executing
the program on successive examples and “debugging” it where necessary
provides a natural way to extend it incrementally, thus avoiding the need to
think in advance about problem definition; this fits the procedural model
well.

Our pilot implementation has numerous shortcomings. Embedded in a “toy”
editor, it has no pretensions to being a usable software tool. A decision was
taken to simplify each component as much as possible in order to get a
working prototype. For instance, in select actions the attributes are discarded
and notice is taken of the selected text alone; this means that one cannot
select by context. More generally, no serious attempt has been made to
resolve the general question of conflict between constraints imposed by
different attributes; this deserves further study. There are important
deficiencies in the program-construction method, for despite its attempt to
forbid ill-structured programs, the node-merging policy is rather simplistic
and merges nodes far too readily, constructing spaghetti-like programs that
produce anomalous behavior in all but the simplest situations. For example, if
Task 3 were extended with more examples of references having different
formats (books with publisher and place of publication, papers in edited
collections, etc.) the program construction method would effectively break
down and useful predictions would cease to occur.

Some parts of the system rely on a lexical characterization of text that is
essentially ad hoc. For example, attributes such as distance measures and
position indicators are based on a division of the text into characters, words,
lines and paragraphs. The string generalization method relies on a particular
hierarchy of character classes. The definition of each of these units should
really be sensitive to the type of text being edited.

14

Despite its shortcomings, the pilot implementation has demonstrated the
viability of a procedural programming-by-example approach to repetitive text
editing. It provides a substantial amount of assistance in the three example
tasks, as shown in Table 2, by learning the essence of the procedure on the
first block of text and executing it on the remaining blocks, with only minor
debugging being necessary. However, it is not robust enough to support
proper human factors tests of the efficacy of the procedural approach to semi-
structured text editing with actual users.’

We are beginning a re-implementation in EMACS which is intended to
overcome some of the problems noted above, and provide a useable editing
tool. EMACS already includes comprehensive editing facilities and can be
extended by writing LISP code. User interface aspects, which have consumed
considerable effort in the current implementation, are already taken care of.
Existing code to make lexical decisions (about what constitute words,
paragraphs, etc.) is accessible via procedure calls. The editor can be placed in
different “modes,” and this makes lexical decisions sensitive to the type of
text being edited. The fact that so much is already provided means that we
will be able to concentrate more on programming-by-example aspects such as
the question of identifying nodes to merge, alternatives for which are already
being studied.

Acknowledgements

We gratefully acknowledge the key roles Dave Maulsby and Bruce
MacDonald have played in helping us to develop and articulate these ideas,
and the stimulating research environment provided by the Knowledge
Science Lab at the University of Calgary. This research is supported by the
Natural Sciences and Engineering Research Council of Canada.

References

Andreae, P.M. (1984) “Constraint limited generalization: acquiring
procedures from examples,” Proc. American Association of Artificial
Intelligence National Conference, Austin, Texas; August.

Andreae, P.M. (1985) “Justified generalization: acquiring procedures from
examples.” Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, MIT, Boston, Massachusetts.

Angluin, D. (1978) “On the complexity of minimum inference of regular
sets,” Information and Control 39: 337-350.

Chernicoff, S. (1984) Macintosh revealed: Volume 2—Programming with the
toolbox.

5Tes1ing systems which involve any kind of adaptation or learning is a major undertaking, as
we have found from our experience of testing the METAMOUSE system for graphical

programming by example (Maulsby et al., 1989) and the PREDICT system for keyboard
acceleration (Darragh & Witten, in preparation).

15

Darragh, J.J., Witten, L.H. and James, M.L. (in press) “The Reactive
Keyboard: a predictive typing aid,” IEEE Computer.

Darragh, J.J. and Witten, LH. (in preparation) The Reactive Keyboard. To be
published by Cambridge University Press, Cambridge, England.

Gaines, B.R. (1976) “Behaviour/structure transformations under uncertainty,”
Int J Man-Machine Studies 8: 337-365.

Halbert, D. (1984) “Programming by example.” Research Report OSD-
T8402, Xerox PARC, Palo Alto, California.

Heise, R. (1989) “Demonstration instead of programming.” M.Sc. Thesis,
Department of Computer Science, University of Calgary, Canada.

Hirschberg, D. (1975) “A linear space algorithm for computing maximal
common subsequences,” Communications of the ACM 18(6): 341-343.

MacDonald, B. A. & Witten, I. H. (1987) “Programming computer controlled
systems by non-experts,” Proceedings of the IEEE SMC Annual
Conference, 432-437. Alexandria, Virginia.

Maulsby, D.L., Kittlitz, K.A., & Witten, LH. (1989) “Metamouse: specifying
graphical procedures by example,” Proceedings of ACM SIGGRAPH,
127-136. Boston, Massachusetts.

Maulsby, D.L., James, G.A. and Witten, L.H. (1989) “Evaluating interaction
in knowledge acquisition: a case study,” Proceedings of the European
Knowledge Acquisition Workshop, 406—419. Paris, France.

Michalski, R.S. (1983) “A theory and methodology of inductive inference,”
In Machine Learning: an artificial intelligence approach, edited by R.S.
Michalski, J. Carbonell and T. Mitchell, pp. 83-134. Tioga, Palo Alto,
California.

Nix, R. (1983) “Editing by example.” Ph.D. Dissertation, Computer Science
Department, Yale University.

Nix, R. (1984) “Editing by example,” Proc. ACM Symposium on Principles
of Programming Languages: 186-195. Salt Lake City, Utah; January.

Pence, J. & Wakefield, C. (1988). Tempo II. Affinity MicroSystems, Boulder,
Colorado.

Stallman, R.M. (1981) “EMACS—the extensible, customizable, self-
documenting display editor,” SIGOA Newsletter 2(1/2):147-156; Spring/
Summer.

Waterman, D., Faught, W., Klahr, P., Rosenschein, S. and Wesson, R. (1986)
“Exemplary programming: applications and design considerations.” In
Expert systems: techniques, tools and applications, edited by P. Klahr and
D. Waterman, pp. 273-309. Addison-Wesley.

Witten, LH. (1987) “Modeling behaviour sequences: principles, practice,
prospects,” Future Computing Systems 2(1). 55-81.

Witten, LH. and Bell, T.C. (1990) “Source models for natural language text,”
Int J Man-Machine Studies 32(5): 545-579.

16

Appendix: Example tasks

TASK 1: ADDRESS LIST

Input John Bix, 2416 22 St., N.W., Calgary, T2M 3Y7. 284-4983
Tom Bryce, Suite 1, 2741 Banff Blvd., N.W., Calgary, T2L 1J4. 229-4567
Brent Little, 2429 Cherokee Dr., N.W., Calgary, T2L 2J6. 289-5678
Mike Hermann, 3604 Centre Street, N.W., Calgary, T2M 3X7. 234-0001
Helen Binnie, 2416 22 St., Vancouver, E2D R4T. (405)220-6578
Mark Willianms, 456 45Ave., S.E., London, F6E Y3R, (678)234-9876
Gorden Scott, Apt. 201, 3023 Blakiston Dr., N.W., Calgary, T2L 1L7. 289-8880
Phil Gee, 1124 Brentwood Dr., N.W., Calgary, T2L 1L4. 286-7680

Output John Bix,
2416 22 St., N.W.,
Calgary,
T2M 3Y7.

Tom Bryce,

Suite 1,

2741 Banff Blvd., N.W.,
Calgary,

T2L 1J4.

Brent Little,

2429 Cherokee Dr., N.W.,
Calgary,

T2L 2J6.

Mike Hermann,

3604 Centre Street, N.W.,
Calgary,

T2M 3X7.

Helen Binnie,
2416 22 St.,
Vancouver,
E2D RA4T.

Mark Willianms,
456 45Ave., S.E.,
London,

F6E Y3R.

Gorden Scott,

Apt. 201,

3023 Blakiston Dr., N.W.,
Calgary,

T2L 1L7.

Phil Gee,

1124 Brentwood Dr., N.W.,
Calgary,

T2L 1L4.

Input

QOutput

17

TASK 2: SIMPLE DATABASE

Cardinals 5, Pirates 2.
Tigers 3, Red Sox 1.
Red Sox 12, Orioles 4.
Yankees 7, Mets 3.
Dodgers 6, Tigers 4.
Brewers 9, Braves 3,
Phillies 2, Reds 1.

GameScore[winner 'Cardinals'; loser 'Pirates'; scores [5, 2]].
GameScore[winner 'Tigers'; loser 'Red Sox'; scores {3, 1]].
GameScore[winner 'Red Sox'; loser 'Orioles'; scores [12, 4]].
GameScore[winner 'Yankees'; loser 'Mets'; scores [7, 3]}.
GameScore[winner 'Dodgers'; loser 'Tigers'; scores [7, 3}].
GameScore[winner 'Brewers'; loser 'Braves'; scores [9, 3]].
GameScore[winner 'Phillies'; loser 'Reds'; scores [2, 1]].

18

TASK 3: REFERENCES

Input %A Abi-Ezzi, S.S.
%D 1986
%T An implementer's view of PHIGS
%J Computer Graphics and Applications
%P 12-23
%0 February
*

%A Ackley, D.H.

%A Hinton, G.E.

%A Sejnowskl, T.J.

%D 1985

%T A learning algorithm for Boltzmann machines
%J Cognitive Science

%V 9

%P 147-169

%K *

%A Addls, T.R.
%A Hinton, G.E.
%D 1987
3T A framework for knowledge elicitation
%J Proc First European Conference on Knowledge Acquisition
%0 September
x

%A Allen, J.F.

%A Koomen, J.A.

%D 1986

%T Planning using a temporal world model
%J Artificlal Intelligence

%0 March

$K *

%A Allen, J.F.
%D 1983
%T Maintaining knowledge about temporal instances
%¥J Comm ACM
%V 26
%P 832-843
%0 May
*

Output Abi-Ezzi, S.S. (1986), "An implementer's view of PHIGS", Computer
Graphics and Applications, pp. 12-23, February.

Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., (1985), "A learning
algorithm for Boltzmann machines™, Cognitive Science, Vol. 9, pp.
147-169.

Addis, T.R. and Hinton, G.E. (1987), "A framework for knowledge
elicitation", Proc First European Conference on Knowledge
Acquisition, September.

Allen, J.F. and Koomen, J.A. (1986), "Planning using a temporal
world model™, Artificial Intelligence, March.

Allen, J.F. (1983), "Maintaining knowledge about temporal
instances™, Comm ACM, Vol. 26, pp. 832-843, May.

Captions for Tables and Figures

Table 1 Summary of actions and attributes
Table 2 Performance of the system on three example tasks

Figure 1 Hierarchy of character classes

Figure 2 Trace for first block of address list task (Task 1)

Figure 3 Program created from trace of Figure 2

Figure 4 Generalizing trace elements T1, T3, and T5 into program step S1

Primitive actions parameter positional
information
insert <text>
locate <attributes>
select <text> <attributes>
delete
Attributes details
context before, after
lexical beginning file
middle of paragraph
end line
relative distance
characters
words
lines
paragraphs

Table 1 Summary of actions and attributes

Task 1

Task 2

Task 3

Block Actions | Predictions| Uses of Nodes in
number performed | accepted debugger | procedure
1 (trace) 8 6

2 10 9 1 6

3 8 8 0 6

4 8 8 0 6

5 8 7 1 6

6 8 7 1 6
the rest 8 8 0 6

1 (trace) 11 13
the rest 11 11 0 13

1 (trace) 20 20

2 26 18 3 28

3 22 20 2 28
the rest 20 20 0 28

Table 2 Performance of the system on three example tasks

{a=zA-20-9!"(...{\~n]

=

[a-zA-Z20-9]

non-alphanumeric \~m

alphanumeric

[a=2zA-2Z]

[0-9]

(o) ()

[a-z] [A-2]

[IO ", a2 2[1{)] [+=%/7<>=] ([$%&|\~] (=]

Figure 1 Hierarchy of character classes

=B+~~~ 0=0

Action Attributes
...context... ... distance position

before after chars words lines word line para
click Bix,n 2416 +10 +2 0 beg mid mid
type ‘\r’
click N.W.,= Calgary +19 +4 0 beg mid mid
type ‘\r’
click Calgary,= T2M +9 +1 0 beg mid mid
type ‘\r’
select 3Y7.= \0 +9 42 0 beg mid mid

1284-4983"

type ‘\r’

Figure 2 Trace for first block of address list task (Task 1)

file

mid

mid

mid

mid

State

OG-0+

Action Attributes
...context... ... distance position
before after chars words lines word line para file
start
click [c],m [c] 0 beg mid mid mid
type *\r’
select
'284-4983"
type *\r’
stop

Figure 3 Program created from trace of Figure 2

T1

TS

S1

Figure 4 Generalizing trace elements T1, T3, and T35 into program step S1

click
click
click

click

... context

before
Bix,m

N.W.o
Calgary, =

[c],=

after
2416

Calgary
T2M

[c]

..... distance

position

chars words lines word line para

+10
+19
+9

+2
+4
+1

beg
beg
beg

beg

mid
mid
mid

mid

mid
mid
mid

mid

file

mid
mid
nid

mid

