
THE UNIVERSITY OF CALGARY 

On the Computation of Total Claims Distributions 

by 

Abu Bashar Md. Shafiqur Rahman 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF MATHEMATICS AND STATISTICS 

CALGARY, ALBERTA 

August, 2002 

© Abu Bashar Md. Shaflqur Rahman 2002 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of 

Graduate Studies for acceptance, a thesis entitled "On the Computation of Total 

Claims Distributions" submitted by Abu Bashar Md. Shafiqur Rahman in partial 

fulfillment of the requirements for the degree of MASTER OF SCIENCE. 

Supervisor, Dr. R. Ambagaspitiya 
Department of Mathematics and Statistics 

X , 3 - /,&W• 

2 19- 00-1-

Date 

Dr. M. D. Burke 
Department o thematics and Statistics 

Dr. A. Sesay 
Department of Electrical and Computer 
Engineering 

11 



Abstract 

In this thesis we implement a recursive algorithm for computing total claims distri-

bution with generalized poisson claim counts in Visual Basic For Application. The 

program that we implement can be used as an add-in to Excel. The intended au-

dience is practicing actuaries in the property and casualty area. They use Excel 

extensively in pricing insurance policies. 

In the introduction we discuss total claims distribution. We also present an exten-

sive review of claim counts models and some results on claim sizes modelling. We 

briefly review techniques available to compute total claims distributions outlining 

advantageous and disadvantageous. 
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Chapter 1 

Introduction 

In the collective risk model the basic concept is that of a random process that 

generates claims for the portfolio of policies. This process is characterized in terms 

of the portfolio as a whole rather than in terms of the individuals policies comprising 

the portfolio.The mathematical formulation is as follows: Let N denote the number 

of claims produced by a portfolio of policies in a given time period. Let X1 denote 

the amount of the first claim, X2 the amount of the second claim and so on. Then 

S=X1+X2+ +XN (1.1) 

represents the aggregate claims generated by the portfolio for the period under study. 

The number of claims, N, is a random variable and is associated with the frequency of 

claim. In addition, the individual claim amounts Xi, X2,... are also random variables 

and are said to measure the severity of claims. 

In order to make the model tractable, two fundamental assumptions are made in the 

actuarial literature. These are 

1. X1, X2, ..., are identically distributed random variables. 

2. The random variables N, X1, X2,... are mutually independent. 

The expression (1.1) will be called a random sum, and assumptions (1) and (2) will 

always be made concerning its components. 

A first step in exploring this alternative model will be the study of the distribution 

of S in terms of the distribution of N and of the common distribution of the Xi's. 

1 
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A second step, is the discussion of choices for the distribution of N and the common 

distribution of the X 's. For N a poisson or a negative binomial distribution is often 

selected. For the claim amount distribution, a normal, gamma or other, perhaps 

empirical, distribution may be used. When a Poisson distribution is chosen for N, 

the distribution of S is called a compound Poisson distribution; when a negative 

binomial distribution is selected for N, the distribution of S is called a compound 

negative binomial distribution. 

The distribution of aggregate claims in a fixed time period can be obtained from 

the distribution of the number of claims and the distribution of individual claim 

amounts. 

Let P(x) denote the common distribution function (df) of the independent and 

identically distributed X 's. Let X be a random variable with this d.f.; let 

Pk = E[X''] 

denote the kth moment about the origin and 

Mx(t) = E[etX] 

the moment generating function (mgf) of X. In addition, let 

MN(t) = E[etN] 

denote the mgf of the distribution of number of claims, and let 

Ms(t) = E[etS] 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

denote the mgf of aggregate claims. The df of aggregate claims will be denoted by 

Fs(x). 
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There are some general formulas relating the moments of random variables by con-

ditional expection. For mean and variance these are 

E[W] = E[E[WIV]] 

Var[W] = Var[E[WIV]] + E[Var[WIV]] 

Using (1.6) and (1.7), in conjunction with assumption(1) and (2) we obtain 

E(S) = E[E[SIN]1 = p1E[NJ 

and 

Var[S] = E[Var[SIN]] + Var[E[SIN]] 

= E[NVar[X]] + Var[piN] 

= E[N]Var[X] +pVar[N] 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

where Va'r[X] = P2 - Al 

The result stated in (1.8), that the expected value of aggregate claims is the product 

of the expected individual claim amount and the expected number of claims, is not 

surprising. Expression (1.9) for the variance of aggregate claims also has a natural 

interpretation. The variance of aggregate claims is the sum of two components where 

the first is attributed to the variability of individual claim amounts and the second 

to the variability of the number of claims. 

In a similar fashion we derive an expression for the mgf of S: 

Ms(t) = E[et] = E[E[etslN]] 
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= E[Mx(t)N] = 

= MN(logMx(t)) (1.10) 

In Chapter 2 we present an extensive discussion of models that have been proposed 

as claims counts distributions. In Chapter 3 we discuss modelling claim sizes. In 

Chapter 4 we review the methods available in the literature to compute claims distri-

butions. Also in Chapter 4 we discuss some implementation issues in visual basic for 

applications (VBA) of a recursive algorithm. Finally, we present a selected sample 

of outputs and the VBA codes. 



Chapter 2 

Models for Claim Count 

2.1 Introduction 

It is obvious that claim counts have to be modeled by discrete random variables 

with nonnegative support. In the Statistical literature we may find a large number 

of discrete distributions. Johnson, Kotz and Kemp (1992) is a book length account 

of univariate discrete distributions. However, actuaries used only a subset of these 

distributions to model claim counts; discrete distributions that yield easily com-

putable total claims distributions have been suggested as alternatives to the Poisson 

distribution. 

In this chapter we represent a comprehensive survey of the discrete distributions 

that have been used to model claim counts. We divide them into four broad classes. 

The (a, b) class distributions, compound distributions, mixture distributions and the 

class(a + b, b) distributions, 

2.2 The (a, b) Class of Distribution 

Consider the class of counting distributions ( with support on the non-negative in-

tegers) for which the recurrence relation 

Pn b 
—=a+—, n=1,2,3  (2.1) 
Pn—i fl 

5 
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holds. In the actuarial literature, this class is identified as class (a,b) distributions by 

Sundt and Jewell (1981). This recursion describe the relative size of successive prob-

abilities in the counting distribution. The probability at zero, Po, can be obtained 

from the recursive formula since the probabilities must add up to 1. This provides 

a boundary condition. The (a,b) class of distributions is a two-parameter class, the 

two parameters being a and b. By substituting in the probability function for each 

of the Poisson, binomial, and negative binomial distributions on the left hand side 

of the recursion, it can be seen that each of these three distributions satisfies the 

recursion and that values of a and b are as given in the table. In addition the table 

gives the value of Pa, the starting value for the recursion. 

Table 2.1: Recurrence relation 
Distribution a b Pa 
Poisson 0 A exp(—A) 
Binomial _A_. 

1-q 
(n1 + 1)q q) 

Negative Binomial -- (r - 1) (1 + ,8)" 

Any distribution satisfying the following recurrence relation 

p + b 
= a -, 

Pn-1 fl 
n = m) m + 1, (2.2) 

is called the (a, b, m) class distribution. When m = 2, the resulting family is called 

zero modified class (a, b) distributions. 
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2.3 Compound Distribution 

The history of compound distributions is very large. Neyman(1939) constructed a 

statistical models of the distribution of larvae in a unit area of a field (in a unit 

of habitat) by assuming that the variation in the number of clusters of eggs per 

unit area ( per unit of habitat) could be represented by a poisson distribution with 

parameter A, while the numbers of larvae developing from the cluster of eggs are 

assumed to have independent poisson distributions all with same parameter 0. 

Consider the initial ( zero) and the first generations of a branching process. Let the 

probability generating function (pgf) for the size M of the initial (parent) generation 

be Pi(z), and suppose that each individual i of this initial generation independently 

give rise to a random number Yj of first generation individuals, where Y1, Y2,... have 

a common distribution, that of Y with pgf P2(z). The random variable for the total 

number of the first generation individuals is then 

N — Yl+Y2+ --- +YM , 

where N and Yj, i = 1,2, ..., M are all random variables. The probability generating 

function (pgf) of the distribution of SN is 

E[zN] EM {E[Z njM]} (2.3) 

since E[Z%.nIM] means expected value of the product of N independent random vari-

ables, we have 

E[z"lM] = [P2(Z)IM 

Therefore, E[zN] = EM{[P2(z)]M} = P1(P2(z)) 

PN(z) = Pi(P2(z)) (2.4) 
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Some other researchers have described P1(z) as primary distribution, P2(z) as sec-

ondary distributions and distributions with pgf's of the form P1 (P2 (z)) "compound". 

A compound distribution is a combination of two independent distributions. This 

process was called "generalized" by Feller(1943). Some authors (for example Dou-

glas, 1971,1980) have chosen to use term "stopped-sum" instead for this type of 

distribution, because the principle model for the process can be interpreted as the 

summation of observations from the distribution F2, where the number of observa-

tions to be summed is determined by an observation that is stopped by the value 

of the F1 observation. Another term chosen by some other authors for this type of 

distribution is "contagious" distribution. 

Let us look at an example of employing compound claim frequency distribution in 

a study of claims on automobile insurance. The primary distribution describing the 

number of accidents in a fixed time period is assumed to be poisson and the sec-

ondary distribution describing the number of claims per accident is assumed to be 

logarithmic. i.e. 

P, (Z) = exp (A(z - 1)) 

log[1 —/3(z— 1)] —log(1+B)  
log(1+j3) 

where 
P 

PN(z) = Pi(P2(z)) 

= exp [ log[1 -  /3(z —1)] + 1— 111 (2.5) 
log(1+/13) ii 

= exp (_ log [(1 - /3(z - 1)) Io(+/3)]) 
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1 
A  

1 
[1 - - 1)]r 

Where, r= A >0 
log(1+/3) 

The resulting distribution of the number of claims in the fixed time period is negative 

binomial. Other models are natural extensions of this kind of situation with greater 

choice of primary and secondary distributions and also more levels of modeling by 

considering models with three ( or possibly more) constituent distributions. 

When the various constituent distributions; i.e. the number of accidents and the 

number of claims per accident, can be modeled and estimated separately, compound 

claim frequency distributions aries naturally. However, they are also useful alter-

natives when the actuary has difficulty in fitting one of the distributions to claims 

frequency data. 

The moments of compound claim frequency distributions can be evaluated in terms 

of the moments of the constituent distributions by differentiating the cumulant gen-

erating function (cgf) 

CN(z) = C1(C2(z)) (2.6) 

and setting z = 0. The results for the first four cumulants are: 

KI = K1,11c2,l 

= 1l,212,1 + ici,11c2,2 

13 = /1,3K2,13 + 3/ 1,2/c2,1K2,2 + i1,1lc2,3 

= Ic1,4K2,1 + 6ic1,3ic2,12ic2,2 + 3,cl,2,c2,22 + 4c1,2ic2,1,2,3 + K1,11c2,4 

(2.7) 
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Where ici,j is the jth cumulant for the distribution with cgf C (z). 

An alternative way to compute probabilities is given in the following theorem: 

Theorem 2.1: For compound distributions where the primary distribution is a 

member of the class(a, b) family and where the secondary distribution takes positive 

values only, the pmf satisfies the following recursion: 

P[N=n}= (a + b i) 2 N=n_i1 (2.8) 

with the starting value given by P[N = 0] = P1(0) = P1(0). Here p2(i) is the 

probability function of the secondary distribution. 

In the literature one may find two proofs for this theorem; one proof based on 

generating functions and another proof based on conditional probabilities. Here we 

present the later proof. 

We establish the following lemma to be used in the proof of the theorem. 

Lemma 2.1: For X1, X2, ..., X which are independent and identically distributed 

random variables taking on valus restricted to the positive integers, we have, for 

positive integer values of x 

p*fl(x) = 

i=1 

p*fl(x) = 

P(j)P*(n_l)(X - i) (2.9) 

jp(j)p*(n_l)(X - i) (2.10) 

Proof: 

For n = 1, both (2.9) and (2.10) reduce to p*l(x) = p(x) x p(°) (0). For m > 1 we 

establish (2.9) by using the Law of Total Probability to evaluate Pr (X1 + X2 + ... + 
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= x) by conditioning on the value taken by X1 as 

Pr(X1 =i)P'r(X2+X3+ ...+X,, =x — i) (2.11) 
i=1 

We then note that Pr- (X2 + X3 + ... + X,-, = x - i) and Pr (XI + X2 + ... + X = x) 

can be evaluated by using (n - 1)-fold and n-fold convolutions, respectively, of p(i). 

For n > 1, we establish (2.10) by using the conditional expectations E[XkIXl + 

X2 + X3 + ... + X = x] for k = 0, 1, 2, 3, ..., n. From reasons of symmetry, these 

quantities are the same for all such k. Since their sum is x, each is equal to x/n. 

The conditional expectation E[X1 IXi + X2 + X3 + ... + Xn = v] is evaluated as 

iPr(Xi =i)Pr(X2+Xs+...+X=x—i)/Pr(Xi+X2+X3+...+X=x) 
i=O 

We then note that Pr(X2+Xs+...+X = x—i) and that Pr(X1+X2+X3+ ...+X = 

x) can be evaluated by using (n - 1)-fold and n-fold convolutions, respectively, of 

p(i). Solving for p*n(a,) completes the proof. 

Proof of the theorem: 

First, 

P[N=0] = P[N1=0] 

00 P[N=n] = P[N1=i]p(n), for n>0 

where N1 is the primary random variable. Since N1 is a member of class (a, b) 

distributions 

Pr[N1 = i] = (a+ ) Pr(Ni = i— 1). 

We have 

P[N=n] = 

00 
(a+ p{Ni = i - 1]p(n) 

i) 
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and by Lemma 2.1 

Hence 

r00 1 
*(i-i) P[N=n] a P[N1=i-1]p2 (n—j)p2(j) 

j=1 j 

*(i-1) +b [ P[N1 i — i] iP2(i)P2 (n - j)l 
j=1 j 

n 

rn 00 

1 *(i-1) 
= a [ P[N1 = - 1JP2 (n - i)] P2 (A n n 00 

j=1 Li=1 

4 [[ivi = i - - i)] P2(j) 
:,=1 t=1 

P[N=n]=P[N=n—j] (a+p2(j) 
n) 

0 

When the distribution of X is Poisson, the resulting distribution is called Neyman 

Type A distribution. The pgf of the Neyman Type A distribution is 

P(z) = exp{Ai[e2(z_l) - 1]} (2.12) 

Using the pgf, it is easy to show that the Neyman Type A distribution has mean 

= (2.13) 

variance 

skewness 

/22 = A1A2(1 + A2) (2.14) 

1 + 3A2 + A  

(A1A2)(1 + A2)2 
(2.15) 
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kurtosis 

3+ 1+7A2+6 A + A  

A1A2(1 + A2)2 

2.4 Mixture Distributions 

(2.16) 

The notion of mixing often is a simple and direct interpretation of the physical 

situation under investigation. For instance, the random variable concerned may be 

the result of actual mixing of a number of different populations, such as the number 

of car insurance claims per driver, where the expected number of claims varies with 

category of driver. Alternatively, the random variable may come from a number 

of different sources, but the source is known; a mixture ry is then the outcome of 

ascribing a probability distribution to the possible sources. Sometimes, however, 

"mixing" is just a mechanism for constructing new distributions for which empirical 

justification must be sought. 

The two important categories of mixtures of discrete distributions are as follows: 

I. A k-component finite mixture distribution is formed from k different component 

distributions with cdf's P, (x), F2 (x), ..., F, (x) with mixing weights 

where, Wj > 0, 

by taking the weighted average 

j=1 

wj=1 

F(x) = >wjFj(x) (2.17) 
j=1 

as the cdf of the new(mixture) distribution. This corresponds to the actual 

mixing of a number of different distributions. In his book, Medgyessy(1977) 
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calls this superposition of distributions. In the theory of insurance, w, j = 

1, ..., k is called the risk function. It follows from (2.17) that if the component 

distributions are defined on the nonnegative integers with 

P(x)=F(x)—F(x-1) (2.18) 

then the mixture distribution is a discrete distribution with pmf 

k 

Pr[X = =  

Example 2.1: The weighted average of two Binomial distributions 

P[X=x]= 

(2.19) 

lm\ ( m I I pix(1  Pi) rn*wi+ ( p? (1—p2)m*(1—WI) 
x x 

2. A mixture distribution also arises when the cumulative distribution function of 

a ry depends on the parameters 9, 92, 9 (i.e. has the form F(x101, ..., 9)) 

and some (or all) of those parameters vary according to a certain joint distri-

bution. The new distribution then has the cumulative distribution function 

E[F(XIO1,..., 8m)] 

where the expectation is with respect to the joint distribution of the k pa-

rameters that vary. This includes the situation where the source of a random 

variable is unknowable. 

When the points of increase of the mixing distribution are continuous, we will 

call the outcome a continuous mixture. The cdf is obtained by integration over 

the mixing parameter e; if H(s) is the cdf of e, then the mixture distribution 

has cdf 

F(x) = I F(xlO)dH(0) 
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where integration is over all values taken by e. From this equation, the pmf 

for a mixture of discrete distributions formed using a continuous distribution 

via Bayes theorem is 

Pr[X = x] = f Pr[X = x18]h(8)d6 (2.20) 

where integration is over all values of O;the probability density function 

h(9)Pr[X = x19] 
Pr[X = x] 

can be looked upon as a posterior density function for the prior density function 

Example 2.2: Binomial distribution mixed over a Beta distribution 

We have 

f(x19) 
(n 

O(1 - 
x) 

where the pdf of Beta distribution is 

h(9) = r(+)0(1_0)_l 0<9<1 

then, by summing over the random variable 0, we obtain 

- (n) r(a+) F(a+x)  
r()r()r(n+a+) 

2.4.1 Mixed poisson distribution 

0, 1, 2, 

Suppose that any particular risk in the portfolio has a Poisson distribution of claim 

frequencies with mean AO where 0 is itself a random variable with the distribution 
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U(8). 0 can be interpreted as the expected risk inherent in the given portfolio. Then 

the (unconditional) distribution of claim frequencies of an individual risk drawn from 

the portfolio is mixed Poisson. 

The Poisson assumption is made as a matter of convenience. For instance, mixed 

Poisson distributions over Inverse Gaussian have been studied extensively in recent 

years. 

The pgf of the number of claims N is easily seen to be (by conditioning on 9), 

PN(z) = J0, e°1)dU(0) 

If the Laplace transform of the mixing variate 0 is given by 

Lo (z) = f e_zOdU(0) 

then 

PN(z) = Lo[A(1 - z)] 

The mixed Poisson variates have variance exceeding the mean (unlike the Poisson). 

This condition, which is usually the case in particular situations, is normally desir-

able from the insurer's standpoint in that the mixed distribution can be thought of 

as being "safer" than the original Poisson. Moreover, the convolution of two mixed 

Poisson variates is again a mixed Poisson variate. Thus, mixed Poisson distributions 

are closed under convolution. 

2.4.2 An example: Poisson mixture with Gamma distribution 

For Poisson mixture, we write, 

PN(zI0) = e"' 
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then by taking the expectation with respect to the random variable 8, we have 

P00 

PN(z) = / eO(2_l)fo(9)d(9) 
Jo 

If we take Gamma distribution with parameter a and /3 as our mixing distribution, 

we have 

PN(z) = P(a)/3 J'O') 

Upon simplification we have 

PN(z) = pa 1  i' 
Lfi—)(z-1) J ce 

8 ' e °Ip_)(z_1)]d8 

1 

or 

PN(z)= [1—A/3(z-1)] 

This is the pgf of a Negative Binomial distribution with parameters A/3 and a. 

2.4.3 Generalized Poisson-Pascal Distribution 

This three-parameter distribution has a Poisson primary distribution and a secondary 

distribution that is a truncated negative binomial or an extended truncated negative 

binomial. Consequently, its pgf is 

P(z)=exp [ 1__ 1)]_(1+  1] r>-1/3>O. (2.21) 

In the case when r > O,this pgf is that of the Poisson-Pascal distribution with a 

Poisson primary distribution with mean A[1 - (1 + /3)_r]_1 and a negative binomial 

secondary distribution. When r = 1 this distribution is known as the Polya-Aeppli. 

When r = - .5 the distribution is known as Poisson-Inverse Gaussian distribution. 

The Poisson-Pascal distribution is generalized by extending the range of r to —1. 
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It is necessary to consider the primary distribution to be Poisson with mean A and 

the secondary distribution to be truncated at zero. This would lead to recursively 

computable probabilities. 

The probabilities of the generalized Poisson-Pascal distribution can be calculated 

recursively as 

Pn= 

where 

iqjpn-j, n=1,2,..., (2.22) 

Po = (2,23) 

and {q n = 1, 2,j .} are probabilities from the (extended) truncated negative 

binomial distribution which can be calculated recursively as 

qn= 

beginning with 

fl+T_1(/3)qni, n=2,3... (2.24) 
n 1+0 

(2.25) 

2.5 The (a + b, b) class of distributions 

Consul and Jam (1973) and Consul and Shoukri (1985) introduced the generalized 

Poisson distribution (GPD) with the probability function: 

P[N=n]=AO)exp(A_n9), n=O,1, ... , A>O, O9<1 

(2.26) 
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Consul (1990) compared this distribution with a number of other distributions with 

respect to fitting claims counts and concluded that it is a plausible model. 

Ambagaspitiya and Balakrishnan (1994) observed that the generalized Poisson dis-

tribution (GP]J) satisfies the following recursion 

A _i(A+8,O) p(A,t9)=    
A+ 8 (0+ 0 P 

n=1,2,... (2.27) 

and illustrated that GPD yeld recursively computable total claims distributions. 

Ambagaspitiya (1995) showed that there are large numbers of distributions satisfying 

the following generalized version of the recursion (2.27) 

p(a,b) = (hi (a, b) + h2(ab)) p_1(a+b,b), n = 1,2,... (2.28) 

Where hi (a, b), h2 (a, b) are two functions of the parameters a and b. 

The following list gives a number of important distributions in this class. 

1. Generalized Poisson distribution. 

2. Generalized negative binomial distribution, presented by Consul and Gupta 

(1980), with the probability function 

a  ( a + bn) a(1 - a)an_m, a> 0, a> 0, 1 b < 
a+bn 

(2.29) 

3. Discrete distributions obtained by weighted Generalized Poisson or generalized 

negative binomial distributions. The term weighting stands for multiplying the 

probability pn(a, b) by a function of the form w(a+bn; b) for each n = 0,1,2,... 

and then dividing by the normalizing constant. 



Chapter 3 

Models for Claim Sizes 

3.1 Introduction 

In an insurance portfolio, the smallest possible claim size would be one cent. There-

fore, we could represent claim amounts by discrete random variables. However, this 

would lead to an unmanageable support for portfolios with potentially large claims 

such as in liability insurance. Therefore practitioners use continuous random vari-

ables to represent claim sizes. 

In this chapter we present four distributions that can be used in modeling claim 

sizes. Two of them are well known in the statistical literature but the other two are 

somewhat obscure. 

3.2 Log-normal Distribution 

The probability density function of log-normal distribution is 

1   2 
1 [_1  flX-1L1expux(2)  2( a ) x>0) cr>O (3.1) 

and the cumulative distribution function is 

F(x) = (lnx_ 'i) . (3.2) 

Where (•) is the cumulative distribution function of standard normal variable. It 

can easily be seen that the lognormal random variable is obtained by using the trans-

formation X = e", where Y is normal random variable with mean and variance 

20 
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A three parameter lognormal distribution can be obtained by introducing a location 

parameter 0: 

f(x) =  1  Ox [ 1 (ln(x - 0) - )2]  > 0 > 0• (3.3) 
o(x-0)s./2ir) [2 

The lognormal distribution is sometime called the antilognormal distribution. This 

name has some logical basis in that it is not the distribution of the logarithm of a 

normal variable (this is not even always real) but of an exponential - that is, an-

tilogrithmic - function of such variable. However, "Lognormal" is most commonly 

used. The minor variants logarithmic - or logarithmico-normal have been used, as 

have the names of pioneers in its development, notably Galton(1879) and McAlis-

ter (1879), Kapteyn(1903), van Uven(1917a) and Gilbrat (1930). When applied to 

economic data, particularly production functions, it is sometimes called the Cobb-

Douglas distribution. 

The important case (0 = 0) has been given the name two-parameter lognormal dis-

tribution (parameters and o). The rth moment of lognormal (two-parameter) 

distribution is 

= E[X] = E[e] = exp (r + 2r2) (3.4) 

The expected value of X is 

1 2 
[4 =exp(/.L+) 

and variance of X is 

/12 = exp(2/1 + a2)[exp(o 2) - 1] 
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We can estimate the parameter by taking log of the data and using maximum like-

lihood methods to get the parameter, i.e. 

= log Xi = log [fj xin] 
i=l Li=l 

(log Xi  - 

r 12 rn 1 

logx— log L1Irciu1 

log 

In r il/ni 

— J   I L=i Lri=1  Xi /,,] j 

An additional property of the lognormal distribution is that if X1, X2,..., X,, is a set 

of independently and identically distributed lognormal random variables such that 

the mean of each log X is and its variance is .2 , then the product X1X2X3 .. . X,-, is 

distributed as lognormal with mean and variance of log(X1X2 ... X) as fllh and no2 

respectively. 

3.3 Pareto Distribution 

The Pareto distribution has probability density function 

and distribution function 

a+l 

f(x) = X c+l ' > 18 (3.5)11) 

F(x)=1— (, x> 18 (3.6) 
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The Pareto distribution is named after a Swiss professor of economics, Vilfredo 

Pareto(1848-1923). Pareto's law, as formulated by him(1897),dealt with the dis-

tribution of income over a population and can be stated as follows: 

N=Ax 

where N is the number of persons having income > 0, and A, a are parameters 

(a is known both as pareto's constant and as a shape parameter). It was felt by 

Pareto that this law was universal and inevitable - regardless of taxation and social 

and political conditions. " Refutations" of the law have been made by several well-

known economists over the past 60 years [e.g.,Pigou (1932); Shirras (1935); Hayakawa 

(1951)]. More recently attempts have been made to explain many empirical phenom-

ena using the Pareto distribution or some closely related form[e.g., Steindi (1965); 

Mandeibrot (1960,1963,1967); Hagstroem (1960); Ord (1975)]. 

Harris (1968) has pointed out that a mixture of exponential distributions, with pa-

rameter O having a gamma distribution, and with origin at zero, gives rise to a 

Pareto distribution [Maguire, Pearson, and Wynn (1952)]. In fact, if 

Pr[X x8] = 1 - e'0 

and 9' has a gamma distribution, then 

Pr[X x] / 00 t 1e'(1 - e)dt 
= ,80'r(a)1 F(a) Jo 

=1—(3x+1), x0 

which is the form of the Pareto distribution of the second kind. 

(3.7) 

The pdf of the Pareto distribution (3.5)is the special form of a Pearson Type VI 
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distribution; we denoted it by X r'J P(I)(3, a). The relation given by (3.6) is now 

more properly known as the pareto distribution of the first kind. 

The rth (r < a) moment about zero of a Pareto distribution is 

= - 

In particular the expected value is 

and the variance is 

a— 
r<a• 

E[X] = a/3(a - 1)_i 

a3 

(3.8) 

a> 1, (3.9) 

Var[X] = a,82(a - 1)'(a - 2)' 

a82  

- 

a>2• (3.10) 

In actuarial literature the Pareto distribution function takes the form 

7 A \ 
y0, /\>0,a>0. (3.11) 

We see that this distribution can be obtained from the original Pareto distribution 

by using the transformation Y = X - /3 and then writing A for P. Therefore, it is 

the Pareto distribution of second kind with /3 = 1/A. 

Also, in the actuarial literature the distribution obtained by the transformation 

Z = (X - )3)11T, T> 0 and A = /9 where the distribution of X is pareto, is called the 

Burr distribution. 

The cdf of it takes the form 

(A+ zT 
A  (3.12) 
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Note that Burr (1942) presented 12 distributions and the 12th distribution has the 

cdf 

F(y)=1— G  YC 

)k 

(3.13) 

If we use the transformation Z = aY and A = ac; a = k we can get the Burr 

distribution in actuarial literature. Moments of the Burr distribution are given by 

E[XTh] = AflAn/,r I'(l+n/'r) (a ) P(a) 

3.4 Gamma Distribution 

a-r>n, n=1,2,... 

The probability density function of gamma distribution is in the form: 

where 

(3.14) 

f(x) = 1 Pa a-i exp(—x/18), x> 0, a,/3>0, (3.15) 

r(a) = fta_1e_tdt. 

The main application of the Gamma distribution in actuarial literature is using it as 

the prior distribution of the Poisson paremeter. 

By introducting a location shift we could obtain the following three parameter gamma 

distribution. 

f(x)= 1  (x—xo)'exp[—(x—xo)/], r(a)/3a x>xo, a,,@>0 • (3.16) 

This distribution is known as the translated gamma distribution and, as we explain 

in Chapter 4 actuaries, use this to approximate compound distributions. 
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When the parameter a = n is an integer, it is called Erlang's distribution. In this 

case the cumulative distribution function can be expressed as 

n 
(x/,8) 

F(x) = 1 - j ! exp (—x//3) 
i=1 

(3.17) 

Also by setting a = r/2 and ,@ = 2, where r is an integer, we obtain the well known 

chi-square distribution. The i4, rth non-central moment, of the gamma distribution 

can be written as 

,F(a+/3') r 
r P(a+r) 

3.5 Weibull Distribution 

The probability density function of the Weibull distribution is 

and the distribution function is 

f(x) = crx(11)e 

(3.18) 

(3.19) 

F(x) = 1 - (3.20) 

The Weibull distribution is named after the Swedish physicist, Waloddi Weibull, who 

(1939a,b) used it to represent the distribution of the breaking strength of materials 

and, in 1951, for a wide variety of other applications. In the Russian statistical 

literature this distribution is often referred to as the Weibull-Gnedenko distribution. 

The Weibull distribution includes the exponential and the Rayleigh distributions as 

special cases. 

The rth non-central moment of the Weibull distribution is 

E[X?] -- r(1+r/r)  
Cr/r 

(3.21) 



Chapter 4 

Computing Aggregate Claims Distribution 

4.1 Introduction 

The main reason behind the analysis of claims data is revising the premiums for a 

portfolio. In the early days of actuarial practice the pure premium was set as the 

mean of the total claims plus a security loading. This security loading was a factor 

of the standard deviation of total claims. Then the pure premium was loaded with 

expenses to compute gross premiums. This method did not take long tail nature of 

the claims distribution. At present actuaries set pure premium as percentiles of the 

total claims distribution. This is due to advances in the computation of total claims 

distributions instead of just means and variances. 

In this chapter we review available methods to compute total claims distribution 

and discuss their advantages and disadvantages. Although, the discussion is general 

attention is focused on computing total claims distribution when claim counts are 

generalized Poisson. Section 2 describes the exact computation. Section 3 describes 

the moment approximation and Section 4 describes the inverting generating functions 

and in Section 5, we present the recursive method. Finally, in Section 6, we describe 

how to use the recursive method with non-arithmetic seventies. We implement this 

method with VBA. 

27 
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4.2 Direct Computation 

To derive the d.f. of S we distinguish according to how many claims occur and use 

the law of total probability 

Fs(x) = Pr(S x) = 
n=O 

Pr(S xN = n)Pr(N = n) 

Pr(Xi+X2+ ... +X<x)Pr(N=n) (4.1) 

But,in terms of convolution operation, we can write 

= F*n(x) (4.2) 

called the nth convolution of F. Thus (4.1) becomes 

00 
Fs(x) = T F*n(x)Pr(N = n) (4.3) 

n=O 

If the individual claim amount distribution is discrete with a p.f. f(x) = Pr(X = 

the distribution of aggregate claims is also discrete. By analogy with the distribution, 

the p.f. of S can be obtained directly as 

where 

fs(x) = 

00 

n=O 

f*fl(x)pr(N = n) (4.4) 

f*fl(x)f *f** f(x)pr(X+X++X x) (4.5) 

Here, the inequality sign in the probability symbol in (4.1) has been replaced by the 

equality sign. 
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Example 4.1: Consider an insurance portfolio that will produce 0, 1, 2, or 3 claims in 

a fixed time period with probabilities 0.1, 0.3, 0.4 and 0.2 respectively. An individual 

claim amount 1, 2, or 3 with probability 0.5,0.4, 0.1 respectively. For this portfolio 

we illustrate the direct computation of total claims distributions. Since there are 3 

Table 4.1: Direct comtutation 
x p*O(x) p*l(x)=p(x) p*2 (x) p*3(x) f(x) F(x) 
0 1.0 - - - 0.1000 0.1000 
1 - 0.5 - - 0.1500 0.2500 
2 - 0.4 0.25 - 0.2200 0.4700 
3 - 0.1 0.40 0.125 0.2150 0.6850 
4 - - 0,26 0.300 0.1640 0.8490 
5 - - 0.08 0.315 0.0950 0.9440 
6 - - 0.01 0.184 0.0408 0.9848 
7 - - - 0.063 0.0126 0.9974 
8 - - - 0.012 0.0024 0.9998 
9 - - - 0.001 0.0002 1.0000 
m 0 1 2 3 - - 

Pr(N = n) 0.1 0.3 0.4 0.2 - - 

claims and each produces a claim amount of at most 3, we can limit the calculations 

to x = 0, 1, 2,...9. Column(2) lists the p.f. of a degenerate distribution with all 

the probability mass at 0. Column (3) lists the p.f. of the individual claim amount 

random variable. Column (4) and (5) are obtained recursively by applying 

f*(fl+l)(x) = Pr (X1 + X2 + ... + X+1 X) 

Pr(X +i=y)Pr(Xi+X2+ --- +X i =x - y) 
V 

f(y)f*fl(x - y) 

V 

(4.6) 

Since only 3 different claims amounts are possible, the evaluation of (4.6) will in-

volve a sum of 3 or fewer terms. Next, (4.4) is used to compute the p.f. displayed 
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in column(6). For this step, it is convenient to record the p.f. of N in the last 

row of the results. Finally, the elements of column (7) are obtained as partial sums 

of column (6). An alternative approach, would have been to perform the convolu-

tions in terms of the d.f.'s, obtain F(x) from (4.3), and finally f(x) = F(x)—F(x-1). 

4.3 Moment Approximations 

The most used moment approximation in the actuarial literature is the normal ap-

proximation. Normal approximation is equating the first two central moment to the 

mean and variance of a normal distribution. 

Example 4.2: Let us assume the claim count distribution is Generalized Poisson 

with parameters = 10, 0 = 0.2) and the claim size distribution is gamma with 

parameters (c = 2) ,@ = 0.5). Since the mean and the variance of the compound 

generalized distribution takes the form 

E[S] = Ap1M 

Var[S] = Ap2M 3 + )(p2 - p)M 

where M = (1 - 0)_i and p, and P2 are first and second non-central moments of 

claim sizes distribution, we have the 

E[S] = 10 2 
1-0.2 0.5 

=50• 

Var{S} = 12.5* + ( 2 / 2 \2 10 —— *  
0.52 0.5) (1 - 0.2) 

= 412.5• 



31 

Therefore, the normal approximation says that the total claims distribution is normal 

with mean 50 and variance 412.5. This gives us the probability of having negative 

total claims is about 0.6%. Although, this is an extreme example, it is obvious that 

the normal approximation is not appropriate in many cases. 

Since the normal approximation yields undesirable results, three moment approxi-

mations has been studied in the actuarial literature. Although, any distribution with 

three parameters can be used as the approximated distribution, translated gamma 

distribution is the most promising distribution. Bowers et al. (1997) credit Seal 

(1978a) as the originator of this method. 

The translated gamma distribution is the gamma with a location shift. Its probabil-

ity density function takes the form 

f(xlo,/3,xo) =  " (x - xo)'exp(—,8(x - x0)), x ≥ x0 (4.7) 
T(a) 

The parameters x0, o and /3 are obtained by solving the following equations 

E[S] = 

Var[S] = 

E[(S - E[S])3] 

/32' 

2a 
/33 

Let us look at the previous example again. Since the third central moments of the 

compound generalized distribution takes the form: 

E[(S - E[S])'] = )(3M - 2)pM4 + 3Api(p2 - pi)2M 3 + (p - 3P2P1 + 2p)AM 

where M = (1 - 9)_i and p3 is the 3rd non-central moments of claim severity. For 

our example M = 1.25 and Pi = 4, P2 = 24,P3 = 192 we have the third central 
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moment of S as 5009.375. Therefore we have three equations for parameters 

=50 

= 412.5 

= 5009.375 

Solving these three equations we have 

xO = —17.935 

a = 11.1883 

= 0.1647 

Therefore the approximation indicates that the pdf of S takes the form 

0.164711 .1883 
fs(s) =  / \10.1883 r(11.1883) iX - exp(-0.1647(x + 17.935)), x> —17.935 

A further generalization of the moment approximation would be to compute the first 

four central moments of the total claim distribution and then fitting a distribution 

in the Pearson system. 

Johnson, Balakrishnan and Kotz (1994) present the Pearson system as the system 

satisfying the differential equation 

1 df(x) a+x 

f(x) dx - co+c1x+c2x2 

This family includes a large number of continuous distributions. This method has 

been explored by Kaas, Goovaerts (1985). However, we were unable to find any 

follow up work of this method in the actuarial literature. 
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4.4 Inverting generating functions 

In most cases it is easy to obtain generating functions. Therefore actuarial researchers 

have used this method. If the claim distribution is discrete then we can compute the 

probability function of the total claims distribution through probability generating 

functions. This is best illustrated through an example. 

Example 4.3: Suppose that S has a compound generalized Poisson distribution 

with A = 4/5 and 8 = 1/2 and the individual claim amount distribution is as 

follows: Then the probability generating function of the claim sizes is 

Table 4.2: Claim size distribution 
X 1 2 3 
Pr(X = x) 1 

4 
1 
2 

1 
4 

Then the probability generating function of S takes the form 

Ps(z) = exp (_ W(_ 2 12P(z)) - 

4) 

where W(x) is the inverse function of XCX or W(x)e '(x) = X. 

We could use Maple to find the series expansion of this up to 5 terms to obtain 

Ps(z) = 0.44933 + 0.054508z + 0.11646z2 + 0.085367z3 + 0.051433z4 + 0.0477146z5 + 0(z6) 

From this we could obtain the following probabilities: 
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Table 4.3: Total claim distribution 
S 0 1 2 3 4 5 
Pr[S = s] 0.44933 0.054508 0.11646 0.085367 0.051433 0.0477146 

In theory we could use this method to compute Pr[S = s] for any value of s; how-

ever there are a few problems associated with this method. In realistic situations, 

the individual claim sizes variable could take a large number of values resulting in. 

cumbersome generating function. Also, packages such as Maple and Mathematics 

are not very popular among practising actuaries. 

4.4.1 Continuous individual claim sizes distribution 

In this situation we could invert the characteristic function using the inversion the-

orem. Inversion theorem states that the characteristic function C(t) 

C(t) =00 exp(itx)f(x)dx, 

uniquely determines the pdf f(x) via 

AX) 00 exp(—itx)C(t)dt. 

The proof of this theorem is given in Stuart and Ord (1994, p.126). Since the total 

claim distribution is of mixed type we have 

C(t) = fs(0) + f exp(itx)fs(x)dx, 
with fs(0) = Pr[N = 0]. Therefore 

00 fs(x) = foo (C(t) - fs(0)) exp(—itx)dt. (4.8) 
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In most cases the integral in (4.8) has to be evaluated numerically. Heckman and 

Meyers (1983) illustrate this method for class (a,b) compound distributions. At 

present, Maple can be used to compute (4.8) for this class without using any of 

the details presented in the paper. However Maple is too slow for the compound 

generalized Poisson case. 

4.5 Recursive Methods 

Since the Panjer(1981) and Sundt and Jewell(1981) rediscovery of recursive computa-

tions of compound distributions many actuaries have investigated recursive computa-

tions for various compound distributions. Ambagaspitiya(1994) presents a somewhat 

different recursive method for computing the compound generalized Poisson distri-

bution. The folowing theorem states this method. 

Theorem 4.2: If the claim sizes are random variables on the positive integers with 

probability mass function f(x) = Pr(X = x), x = 1,2, ..., then the probability 

mass function g(a, b; x) of ompound generalized Poisson distribution satisfies the 

recurrence equation 

x 

g(a, b; = a b (b + a) g(a + b, b; x - y)f(y) 

Proof: 

Since 

/ \ 

p(a,b)= a (b+-)p_i(a+b,b), i=1,2,... 
a + b 

and 

g(a, b; 0) = po(a, b) (4.9) 



36 

00 

g(a, b; a; 

we have 

i=1 

A > 0 (4.10) 

00  pj(a,b)f*i(a;) / 00 00 a 
- a + b ( bp_1(a + b, b)f*i(x) + a pj_i(a + b,  

Using the identities, 

we have 

00 / 00 

pi(a, b)f*i (x) - a (b pj_i(a + b, b) f*_l(a; - Y)f(Y)) 
- a + b 

i=1 i=1 y=1 

a + b (a -  Pii (a + b,b) Y f*l(a; - 

i=1 

By interchanging the order of summation 

00 

i=1 

00
pj( IY=I 

a,b)f*i(a;)a+b  i 
\i=1 

Since 

we obtain 

00 

i=1 

00 

i=1 

pj_i(a + b, b)f*(i_l) (a; -  y) ) 

pj_1(a + b, b)f*2_l (a; - y 
00 

(4.11) 

(4.12) 

(b+ ay ) f(Y)] 

= >pi(a + b, b)f*i (a; - y)) 

=g(a+b,b;a—y), 

pj(a,b)f*i(a;) a (b + a-' b a;) g(a + b, b; a; - y)f(y) = —a+ >  

y=1 

which completes the proof of the theorem. 

(4.13) 
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4.6 Recursive Computation with Non-Arithmetic Claim Sizes 

Ambagaspitiya and Balakrishnan (1994) provides the following integral equation for 

the compound generalized distribution when claim sizes are continuous. 

g(a,b;x) = pi (a, b) f (x) + a (b + a- g(a + b, b; x - y)f(y)dy (4.14) 
a+b10 '. 

Solving this integral equation is difficult; numerical techniques have to be employed. 

However, the straightforward method is discretizing the continuous claim sizes dis-

tribution and then applying the recurrence scheme outline in Section 4.5. In the 

literature one may find a number of discretization techniques(see, for example, Pan-

jer and Willmot (1992) pages 223-230). However, we used the method of rounding to 

the upper unit. In this method, we construct discrete probability distribution with 

the probability mass at the point x as 

P(X) = P[x - 1 <X x] (4.15) 

p(a) = Fx (x) — Fx (x — 1), x=1,2,,.., (4.16) 

where Fx (x) is the cumulative distribution function of the claim sizes (continuous) 

random variable, In (4.16), x is expressed in terms of smallest monetary unit(for 

example cents). However, if the claim sizes could go upto millions of dollars we may 

not need to compute probabilities of total claims to the last cent. Therefore we may 

use the span of h; that is, we may write 

p(x) = Fx(h*x) —Fx(h*(x— 1)), x = 1,2,..., (4.17) 

h could take any positive integer value. For example h = 100 means our calculations 

are in lOOs. 
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4.6.1 Implementation in Visual Basic for Applications 

In visual basic we could write recursive functions and procedures. However, we found 

recursive functions tend to be very slow. Therefore, we implemented the recursive 

procedure using arrays as described in Ambagaspitiya and Balakrishan (1994). This 

method for computing g(a, b; x), x = 0, 1, 2,3,4 can be summarized in the following 

scheme: 

g(a,b;0) g(a +b,b;0) g(a +2b,b;0) g(a +3b,b;0) g(a +4b,b;0) 

g(a, b; 1) g(a + b, b; 1) g(a + 2b, b; 1) g(a + 3b, b; 1) 

g(a, b; 2) g(a + b, b; 2) g(a + 2b, b; 2) 

g(a, b; 3) g(a + b, b; 3) 

g(a, b; 4) 

The first row of the above scheme is obtained by using the fact that g(a + ib, b; 0) = 

po(a + ib, b) = exp(—a - ib) for i = 1, 2. .... To calculate the probability mass func-

tion given in the (i, j)th location, one has to use the elements in (1, j + 1) where 

1 = 0, 1, ..., i - 1. Since the scheme is of an upper diagonal form, we can carry out 

the computations for each row starting from either left to right or right to left. 

In the program we developed 3 forms to interact with the user. The first form lets the 

user choose parameters of the generalized Poisson distribution. After a valid entry, 

the user will be directed to the second form where he can choose a distribution from 

a list of distributions for claim sizes. The third form lets the user choose parameters 

of the chosen claim size distribution and the span. Then it performs the calculation 

and the results will be stored in an Excel workseet. Some sample outputs are given 

in Table 4.4 and Table 4.5. 

For the Burr and Weibull distributions we have analytical forms for the cdf so we 
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could use them in discretization. However, for lognormal and gamma distributions 

we need to use the functions in the Excel library. 
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Table 4.4: Generalized Poisson distribution with A = 0.8 and & = 0.5; span=1 

Lognormal 
(=2,o=0.5) 

Gamma 
(a=3.5,3=2.7) 

Weibull 
(c=0.62,r=1.3) 

Burr (a = 3.8, 
\= 1.7,r=0.8) 

S P(S = s) s P(S = s) s P(S = a) a P(S = a) 
0 0.449329 0 0.449329 0 0.449329 0 0.449329 
1 6.91E-06 1 0.000435 1 0.100740 1 0.180439 
2 0.000969 2 0.003284 2 0.095325 2 0.104149 
3 0.00681 3 0.007948 3 0.073195 3 0.067862 
4 0.016163 4 0.012715 4 0.055742 4 0.047029 
5 0.023478 5 0.016555 5 0.042957 5 0.033874 
6 0.026612 6 0.019111 6 0.033556 6 0.025066 
7 0.02648 7 0.020444 7 0.026527 7 0.018928 
8 0.024737 8 0.020808 8 0.021184 8 0.014521 
9 0.022609 9 0.020496 9 0.017068 9 0.011285 
10 0.020689 [0 0.019771 10 0.013859 [0 0.008864 
11 0.01912 11 0.018830 11 0.011330 11 0.007027 
12 0.017845 12 0.017809 12 0.009320 12 0.005614 
13 0.01676 13 0.016791 13 0.007707 13 0.004516 
14 0.015785 14 0.015819 14 0.006405 14 0.003655 
15 0.014879 15 0.014913 15 0.005348 15 0.002974 
16 0.014028 16 0.014076 16 0.004479 16 0.002433 
17 0.013228 17 0.013306 17 0.003767 17 0.001998 
18 0.012479 18 0.012595 18 0.003178 18 0.001648 
19 0.011781 19 0.011937 19 0.002690 19 0.001365 
20 0.011131 20 0.011326 20 0.002283 20 0.001134 
21 0.010526 21 0.010755 21 0.001942 21 0.000945 
22 0.009961 22 0.010221 22 0.001656 22 0.00079 
23 0.009433 23 0.009720 23 0.001415 23 0.000663 
24 0.008939 24 0.009248 24 0.001212 24 0.000558 
25 0.008476 25 0.008805 25 0.001040 25 0.000470 
26 0.008041 26 0.008387 26 0.000894 26 0.000398 
27 0.007634 27 0.007992 27 0.000769 27 0.000337 
28 0.007251 28 0.007620 28 0.000663 28 0.000286 
29 0.006891 29 0.007269 29 0.000573 29 0.000244 
30 0.006553 30 0.006937 30 0.000495 30 0.000208 
31 0.006234 31 0.006624 31 0.000429 31 0.000178 
32 0.005034 32 0.006327 32 0.000372 32 0.000152 
33 0.005651 33 0.006046 33 0.000323 33 0.000131 
34 0.005384 34 0.005780 34 0.000280 34 0.000113 
35 0.005131 35 0.005528 35 9.72E-05 
36 0.004893 36 0.005289 36 8.41D-05 
37 0.004668 37 0.005063 37 7.28E-05 
38 0.004455 38 0.004847 
39 0.004253 39 0.004643 
40 0.004062 40 0.004449 
41 0.003881 41 0.004265 
42 0.003710 
43 0.003547 
44 0.003393 
45 0.003246 
46 0.003107 
47 0.002975 
48 0.002849 



41 

Table 4.5: Generalized Poisson Distribution with )'. = 0.9 and 8 = 0.6; span=100 

Lognormal 
(IL= 4.2, a= 0.8) (a = 

Gamma 
10, ,6 = 100) (c = 

Weibull 
0.0025, r = 1.0) 

Burr (a = 2.25, 
A = 5, ,r = 0.7) 

a P(S = s) s P(S = a) a P(S = a) s P(S = a) 
0 0.40657 0 0.40657 0 0.406570 0 0.40657 
1 0.139314 1 2.24E-08 1 0.042849 1 0.197285 
2 0.100148 2 9.32E-06 2 0.038975 2 0.113843 
3 0.071088 3 0.000212 3 0.035517 3 0.072724 
4 0.052989 4 0.001412 4 0.032425 4 0.049545 
5 0.040609 5 0.004759 5 0.029655 5 0.035277 
6 0.031794 6 0.010462 6 0.027168 6 0.025938 
7 0.025315 7 0.017188 7 0.024932 7 0.019544 
8 0.020433 8 0.022879 8 0.022918 8 0.015012 
9 0.016682 9 0.026001 9 0.021100 9 0.011712 
10 0.013752 10 0.026173 10 0.019457 10 0.009256 
11 0.011431 11 0.024034 11 0.017968 11 0.007394 
12 0.009571 12 0.020706 12 0.016618 12 0.005961 
13 0.008065 13 0.017279 13 0.015391 13 0.004844 
14 0.006812 14 0.014501 14 0.014274 14 0.003964 

15 0.012689 15 0.013256 15 0.003264 
16 0.011799 16 0.012326 16 0.002702 
17 0.011567 17 0.011475 17 0.002248 
18 0.011654 18 0.010696 18 0.001879 
19 0.011767 19 0.009981 19 0.001576 
20 0.011717 20 0.009325 20 0.001327 
21 0.011433 21 0.008721 21 0.001122 
22 0.010942 22 0.008165 22 0.000951 
23 0.010326 23 0.007651 23 0.000808 
24 0.009679 24 0.007177 24 0.000689 
25 0.009080 25 0.006739 25 0.000589 
26 0.008573 26 0.006333 26 0.000505 
27 0.008167 27 0.005957 27 0.000433 

28 0.005607 28 0.000373 
29 0.005283 29 0.000322 
30 0.004981 30 0.000278 
31 0.004700 31 0.000241 
32 0.004438 32 0.000209 
33 0.004194 33 0.000181 
34 0.003965 34 0.000158 
35 0.003752 35 8.35E-05 
36 0.003552 
37 0.003365 
38 0.003190 
39 0.003026 



Appendix A 

Visual Basic Code 

Attribute VB_Name = "Modulel° 

Option Base 1 

'Lambda and theta are the parameters of generalized Poisson 

distribution 

'DIST hold the index for the appropriate claim size distribution 

Parameter(3) holds upto three parameters of claim size distribution 

Span is the span of the claim sizes distribution 

Public Lambda As Double, Theta As Double 

Public DistributionList(4) As String 

Public DIST As Integer, Span As Integer, Nmax As Long 

Public Parameter(3) As Double 

Public Vector() As Double, Compound() As Double 

'This sub displays appropriate forms then get the user input 

Sub GetDataO 

General izedPoisson. Show 

DistributionList(1) = "Gamma Distribution" 
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DistributionList(2) = "Log Normal Distribution" 

DistributionList(3) = "Weibull Distribution" 

DistributionList(4) = "Burr Distribution" 

Claimsizes . Show 

Select Case DIST 

Case 1 

Gamma. Show 

Case 2 

Lognormal . Show 

Case 3 

Weibull. Show 

Case 4 

Burr. Show' 

End Select 

End Sub 

Private Sub Workbook_OpenO 

On Error Resume Next 

Worksheets("Report") . Add 

Worksheets("Report") . Active 

End Sub 
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Sub Main() 

Call GetData 

Call Discretization(DIST) 

Call Recur(Nmax, Compound) 

End Sub 

'This sub discretize one of the chosen continous distributions 

Sub Discretization(DIST As Integer) 

Dim I As Long, Alpha As Double, Beta As Double, Xmax As Double 

Dim xl As Double, x2 As Double, Nmaxl As Long 

Alpha = Parameter(1) 

Beta Parameter(2) 

Xmax INVDistribution(DIST, (0.9999)) 

Nmax = Xmax / Span + 1 

If Nmax > 60000 Then Nmax = 60000 

ReDim Vector(Nmax, 4) 

x2 = Span 

Vector(1, 1) = 0 

Vector(l, 2) = x2 
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Vector(1, 3) = Distribution(DIST, x2) 

Vector(1, 4) = Vector(1, 3) 

For ± = 2 To Nmax 

xl = (i - 1) * Span 

x2=i*Span 

Vector(i, 1) xl 

Vector(i, 2) = x2 

Vector(i, 3) = Distribution(DIST, x2) - Distribution(DIST, xl) 

Vector(i, 4) = Vector(i - 1, 4) + Vector(i, 3) 

Next 

Range("al :12000") ClearContents 

With Range("Al") 

Range(.Offset(0, 0), .Offset(Nmax - 1, 3)).Naine = "Vector" 

End With 

Range(" Vector") .Value = Vector 

End Sub 

Function INVD±stribution(DIST As Integer, Prob As Double) As Double 

Select Case DIST 

Case 1 
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INVDistribution = Application.WorksheetFunction.Gairinialnv(Prob, (Parameter(1)) 

(Parameter(2))) 

Case 2 

INVDistribution = Application.WorksheetFunction.Loglnv(Prob, (Parameter(1)), 

(Parameter(2))) 

Case 3 

INVDistribution = (-Log(1 - Prob) / Parameter(1)) (Parameter(2)) 

Case 4 

INVDistribution = (((1 - Prob) (-1 / Parameter(1)) - 1) * 

Parameter(2)) (1 / Parameter(3)) 

End Select 

End Function 

Function Distribution(DIST As Integer, x As Double) 

Select Case DIST 

Case 1 

Distribution = Application.WorksheetFunction.GanimaDist(x, Paranieter(1), 

Parameter(2), True) 

Case 2 

Distribution = Application.WorksheetFunction.LogNormDist(x, Parameter(1), 

Parameter(2)) 

Case 3 

Distribution = 1 - Exp(-Parameter(1) * x Parameter(2)) 
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Case 4 

Distribution = 1 (Paraineter(2) / (Parameter(2) + x Parameter(3))) 

Parameter (1) 

End Select 

End Function 

Sub Recur(Nup As Long, Compound As Variant) 

Dim i As Integer, j As Integer, Temp As Double, y As Integer 

Dim Nupi As Long 

Dim ScaleFactor As Double 

ScaleFactor = 10 300 

Nupi = (300 * Log(10) - Lambda) / Theta 

If Nup > Nupi Then 

Nup = Nupi 

Else 

ScaleFactor = 1 

End If 

ReDim Compound(Nup + 1, 2) 

ReDim CGPD(Nup + 1, Nup + 1) 

For j = 1 To Nup 

CGPD(1, j) = Exp(-Lambda - (j - 1) * Theta) * ScaleFactor 

Next 
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For i = 1 To Nup 

For j = 0 To Nup - i 

Temp = 0 

For y = 1 To ± 

Temp = Temp + (Theta + (Lambda + j * Theta) * y / i) * CGPD(± + 1 - y, 

j + 2) * Vector(y, 3) 

Next 

CGPD(± + 1, j + 1) = Temp * (Lambda + j * Theta) / (Lambda + 
(j + 1) * Theta) 

Next 

Next 

For I = 1 To Nup + 1 

Compound(i, 1) = ± - 1 

Compound(±, 2) = CGPD(±, 1) / Sca].eFactor 

Next 

With Bange("G1") 

Range(.Offset(O, 0), .Offset(Nup, 1)).Name = "Compound" 

End With 

Range("Compound") .Value = Compound 

End Sub 
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