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Abstract

We introduce an approach for valuing some path-dependent options in a
discrete-time Markov chain market based on the characteristic function of a
vector of occupation times of the chain. A pricing kernel is introduced and
analytical formulae for the prices of Asian options and occupation time call
options are derived.
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1. Introduction

The valuation of options has long been an important issue in financial
economics. The history of this problem may be traced to the early work
of Bachelier (1900) [1], where movements of share prices were modeled by
an arithmetic Brownian motion and an option valuation formula derived.
This important piece of work was re-discovered by Paul Samuelson in the
1960s and re-generated interest in option valuation. The pioneering works
of Black and Scholes (1973) [2] and Merton (1973) [21] provided a solution
to option valuation and hedging. Under the geometric Brownian motion
assumption for the price process of the underlying share price, the assumption
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of a perfect market and the no-arbitrage assumption, they derived a closed-
form pricing formula for the price of a standard European call option. Since
the works of Black and Scholes (1973) [2] and Merton (1973) [21], there has
been tremendous growth in both academic and practical research on option
valuation and hedging, as well as the related trading activities of derivative
securities in global financial markets. Coincidentally, the Chicago Board of
Trade (CBOT) started trading standardized call option contracts in 1973.

A key insight of Black-Scholes-Merton option pricing theory is the use of
risk-neutral valuation, where the appreciation rate of the underlying share
is replaced by the risk-free rate of interest and the pricing is then accom-
plished in the risk-neutral world. This procedure becomes transparent in the
discrete-time binomial option valuation model introduced by Cox, Ross and
Rubinstein (1976) [10]3. Besides giving a transparent relationship between
risk-neutral valuation and no arbitrage, the binomial, or CRR, option valua-
tion model also provides a simple and efficient numerical scheme to approxi-
mate option prices in a continuous-time model. Assuming that the share price
takes one of two possible values in each period may not be accurate enough
to describe real-world movements of share prices, so more complicated tree
structures for option valuation have been proposed in the literature. Boyle
(1986) [3] proposed a trinomial lattice model. As an extension of the binomial
model, the trinomial lattice model assumes that the price of the underlying
share over each time period may take one of the three possible values. In-
deed, the trinomial lattice model motivated by a finite-difference numerical
scheme for solving partial differential equations. He (1990) [18] proposed a
multi-nominal option valuation model, while preserving completeness of the
market.

Discrete-time Markov chain models provide an important class of asset
price models. They have been considered by authors such as Pliska (1997)
[23], Norberg (2005) [22] and van der Hoek and Elliott (2010) [28]. Some
related models include Song et al. (2010) [25] for a multivariate Markov chain
asset price models and Valakevicius (2009) [27] for a continuous-time Markov
chain asset price models. One of the key motives for considering Markov
chain asset price models is that discrete-time Markov chain can provide a
reasonably approximations to continuous-time diffusion processes. Indeed,
Markov chain asset price models may include binomial and trinomial asset

3Indeed, this idea of binomial asset price model was originated by William Sharpe.

2



price models as particular cases. The valuation of some exotic options may
be more simple in a discrete-time Markov chain asset price model.

In this paper, we introduce a characteristic function approach for the
valuation of some path-dependent options, such as Asian options and occu-
pation time options, in a Markov chain market, where uncertainty is modeled
by a discrete-time, finite-state, Markov chain. A characteristic function of a
vector of occupation times of the chain over different states is defined, which
is the key tool for valuing the options. We also discuss the issue of selecting
a pricing kernel in such a Markov chain market. Analytical formulae for the
prices of Asian options and occupation time call options are then derived.

This paper is organized as follows. Section 2 presents the Markov chain
market and the price dynamics. In Section 3, we derive the characteristic
function of a vector of occupation times in different states of the underlying
Markov chain. Section 4 discusses the choice of a pricing kernel in the Markov
chain market. We derive analytical pricing formulae for an arithmetic Asian
option, a geometric Asian option and an occupation time call option using
the characteristic function derived in Section 3. The final section gives a
summary of the paper.

2. A Markov Chain Market Model

In this section, we present a discrete-time Markov chain market model,
where the randomness of the price process of a share is modeled by a discrete-
time, finite-state, time-homogeneous, Markov chain. The Markov chain asset
price model considered here includes the trinomial asset price model as a
special case as explained later in this section. Indeed, similar models were
discussed in some recent work such as Valakevicius (2009) [27], Song et al.
(2010) [25] and van der Hoek and Elliott (2010) [28].

We consider a complete probability space (Ω,F , P ), where P is a real-
world probability measure. Let T := {0, 1, 2, . . . , T} be the time parameter
set, where T is a finite positive integer. Indeed, one may consider an infinite
time parameter set. However, for our purpose, a finite time parameter set is
enough. We suppose that the risk-free interest rate is a constant r ∈ (0, 1).

To describe uncertainty or randomness in the Markov chain market, we
consider a discrete-time, N -state, time-homogeneous Markov chain {Xt}t∈T .
Following the convention in Elliott et al. (1994) [12], we identify the state
space of the chain {Xt}t∈T with the canonical state space given by the set of
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standard unit vectors in RN :

E = {e1, e2, . . . , eN}.

Here, for each i = 1, 2, · · · , N , ei is the unit vector in RN with one as the
i-th element and zeros elsewhere. That is, ei := (0, . . . , 1, . . . , 0)′ with x′ the
transpose of a vector x.

To describe the probability law of the chain, we define the following tran-
sition probabilities and transition matrix:

aji = P (Xt+1 = ej | Xt = ei),

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

 .

Define the martingale increment process {Vt} by

Vt+1 := Xt+1 −AXt

so
E[Vt+1 | Ft] = 0 ∈ RN .

Here {Ft}t∈T is the natural filtration generated by the Markov chain.
We now define a share price process {St}t∈T by assuming that it can only

take values from a finite set of values S = {s1, s2, . . . , sN} ⊂ [0,∞). Write

s := (s1, s2, . . . , sN)′.

Without loss of generality, we suppose that 0 ≤ s1 < s2 < · · · < sN . Then
in our model, the share price process {St} is governed by the Markov chain
{Xt} by means of the definition:

St = 〈s,Xt〉.

Consequently, the price process {St} is, again, a discrete-time, finite-state
Markov chain. Here, 〈·, ·〉 is the scalar product.

It is not difficult to see that a finite time trinomial asset price model
is a particular case of our Markov chain market model as illustrated in the
following example.
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Example 2.1. Consider a three-period trinomial asset price model, where
the share price process is modeled as:

St =


euSt−1 if the share price rises;

St−1 if the share price remains the same;

e−uSt−1 if the share price falls,

, S0 = s

with (real-world) probability that the share price rises, remains and falls in
the next period being pu, pm and pd, respectively.
In this case, the state space of the share price is given by:

S = {e−3us, e−2us, e−us, s, eus, e2us, e3us}
and the transition matrix is

A =



1 pu 0 0 0 0 0
0 pm pu 0 0 0 0
0 pd pm pu 0 0 0
0 0 pd pm pu 0 0
0 0 0 pd pm pu 0
0 0 0 0 pd pm 0
0 0 0 0 0 pd 1


.

Consequently, the three-period trinomial asset price model is a special case of
the Markov chain market model.

Similarly, the binomial asset price model is a special case of our model as
well. When the number of time periods increases, the number of states in-
crease. In fact, for a T -period trinomial or binomial model, the corresponding
state space has 2T + 1 elements.

In the existing literature on Markov regime-switching models, the evolu-
tion of the state of an economy over time is usually modeled by a finite-state
Markov chain, (see, for example, Buffington and Elliott (2002) [5]). Indeed,
the state of an economy in a country, or a region, may be reflected in the
major share indices in that country, or that region. There is a saying that
a share index of a region is a thermometer of the economy in that region.
For example, one may derive some idea about the American, Japanese, UK
and Hong Kong economies by looking at the S&P 500 index, the Nikkei 225
index, the FTSE 100 and the Heng Seng Index, respectively. Consequently,
since the share price process {St} in our model is assumed to follow a finite-
state Markov chain, it may be considered as a proxy for the price process of
a share index.
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3. Characteristic Function of Occupation Times

In this section, we derive the characteristic function of a vector of occu-
pation times in different states of the Markov chain {Xt}t∈T . Indeed, the
characteristic function can be regarded as the Discrete Fourier Transform
(DFT) of the joint probability mass function for the vector of occupation
times. Consequently, using the Inverse DFT (IDFT), the joint probability
mass function can be recovered. The characteristic function derived here is
a generalization of the one derived in Elliott and Tsoi (2005) [13], where a
two-state Markov chain was considered. A continuous version of the charac-
teristic function was derived in Buffington and Elliott (2002) [5].

Firstly, for each i = 1, 2, · · · , N , write J i(t, T ) for the occupation time of
the chain in state ei from time t to T . That is,

J i(t, T ) :=
T∑
k=t

〈Xk, ei〉 .

Then we define a vector of occupation times as follows:

J(t, T ) :=


J1(t, T )
J2(t, T )

...
JN(t, T )

 ∈ DN
t,T ,

where Dt,T := {0, 1, · · · , T − t+ 1} and DN
t,T is the N -folded product of Dt,T .

By definition,
N∑
k=1

Jk(t, T ) = T − t+ 1,

which implies that J(t, T ) can actually only take values from a subset D′t,T
of DN

t,T , where

D′t,T = {v ∈ DN
t,T : 〈v,1〉 = T − t+ 1}.

Ross (1976) [24] shows that the number of non-negative integer solutions to
the equation

v1 + · · ·+ vn = r

is equivalent to the number of ways for placing r identical objects into n
distinct boxes, i.e.

(
r+n−1
n−1

)
. So, the number of elements in D′t,T is

(
T+N−t
N−1

)
.
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Let u := (u1, u2, · · · , uN)′ ∈ DN
t,T . Then the conditional characteristic

function of the random vector J(t, T ) is defined as:

φJ(t,T )(u) := E

[
exp

{
− 2πi

T − t+ 2
〈u,J(t, T )〉

} ∣∣∣∣ Ft]
= E

[
exp

{
− 2πi

T − t+ 2

T∑
k=t

〈Xk,u〉

} ∣∣∣∣ Xt

]
.

Here E is expectation under P . The last equality follows from the Markov
property.

Note that, for each k = 1, 2, · · · , N , the random variable Jk(t, T ) is dis-
crete. Consequently, the conditional characteristic function φJ(t,T ) is the
(multi-dimensional) Discrete Fourier Transform (DFT) of the conditional
joint probability mass function for the vector of random variables J(t, T )
given Ft. If pt,T (j) is the conditional probability mass function of J(t, T ), we
can suppose, without loss of generality, that the domain of p is DN

t,T . Then

φJ(t,T )(u) =
∑

j∈DNt,T

exp

{
− 2πi

T − t+ 2
〈u, j〉

}
pt,T (j) .

This formula enables us to recover the conditional joint probability mass func-
tion of J(t, T ) from the conditional characteristic function via inversion. We
shall employ the IDFT instead of the standard Inverse Fourier Transform. To
use the Inverse Discrete Fourier Transform (IDFT) in the multi-dimensional
case, we require the extra coefficient − 2πi

T−t+2
.

Remark. As noted before that J(t, T ) only takes values from D′t,T ⊂ DN
t,T ,

so we would expect pt,T (j) = 0 if j /∈ D′t,T .
The following theorem gives a compact formula for the conditional char-

acteristic function.

Theorem 3.1. Let u = (u1, u2, · · · , uN)′ ∈ DN
t,T Then the conditional char-

acteristic function of J(t, T ) associated with u given Ft under P is:

φJ(t,T )(u) :=
〈
e−

2πi
T−t+2

〈Xt,u〉(B(u)A)T−tXt,1
〉
, (1)

where 1 = (1, 1, · · · , 1)′ ∈ RN ; B(u) := diag(e−
2πi

T−t+2
u1 , · · · , e−

2πi
T−t+2

uN ), the

N ×N diagonal matrix with diagonal elements (e−
2πi

T−t+2
u1 , · · · , e−

2πi
T−t+2

uN ).
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Proof. For notational convenience, write c = − 2π
T−t+2

. For n ≥ t, consider

the RN -valued process defined by:

Zn = Xn exp

{
ci

n∑
k=t

〈Xk,u〉
}
.

Now, put uN = 0. Then

ZT = XT exp

{
ci

T∑
k=t

〈Xk,u〉
}

= XT exp

{
ci〈XT ,u〉

}
exp

{
ci

T−1∑
k=t

〈Xk,u〉
}

=
N∑
j=1

(
eciuj〈XT , ej〉ej

)
exp

{
ci

T−1∑
k=t

〈Xk,u〉
}

=
N∑
j=1

(
eciuj〈AXT−1 + VT , ej〉ej

)
exp

{
ci

T−1∑
k=t

〈Xk,u〉
}

=

[
N∑
j=1

(
eciuj〈AXT−1, ej〉ej

)
+

N∑
j=1

(
eciuj〈VT , ej〉ej

)]
exp

{
ci

T−1∑
k=t

〈Xk,u〉
}
.

Conditioning both sides on FT−1 gives:

E[ZT | FT−1] =
N∑
j=1

(
eciuj〈AXT−1, ej〉ej

)
exp

{
ci

T−1∑
k=t

〈Xk,u〉
}

=
N∑
j=1

(
eciuj〈AZT−1, ej〉ej

)
= B(u)AZT−1 .

Consequently,

E[ZT | Ft] = (B(u)A)T−tZt .
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Noting that 〈XT ,1〉 = 1,

〈E[ZT | Ft],1〉 =

〈
E

[
exp

{
ci

T∑
k=t

〈Xk,u〉
}
XT

∣∣∣∣ Ft
]
,1

〉

= E

[
exp

{
ci

T∑
k=t

〈Xk,u〉
} ∣∣∣∣ Ft

]
.

Hence the result follows.

We now derive the characteristic function of the occupation time of the
Markov chain X. For each k = 1, 2, . . . , N , let pkt,T be the conditional proba-
bility mass function of the random variable Jk(t, T ) given Ft. Write φJk(t,T )
for the conditional characteristic function of Jk(t, T ) given Ft, which is given
by:

φJk(t,T )(u) := E

[
exp

{
− 2πi

T − t+ 2
uJk(t, T )

} ∣∣∣∣ Xt

]
=

T∑
j=0

e−
2πi

T−t+2
ujpkt,T (j) .

This is the univariate DFT of pkt,T : Dt,T → [0, 1]. Then the following corollary
gives a compact formula for the conditional characteristic function φJk(t,T )(u).

Corollary 3.1. For each u ∈ Dt,T and k = 1, 2, · · · , N , the conditional
characteristic function of Jk(t, T ) given Ft under P evaluated at u is given
by:

φJk(t,T )(u) =
〈
e−

2πi
T−t+2

u〈Xt,ek〉(B2(u)A)T−tXt,1
〉
. (2)

Here B2(u) := diag(1, 1, · · · , e−
2πi

T−t+2
u, · · · , 1), the (N × N) diagonal ma-

trix with diagonal elements being (1, 1, · · · , e−
2πi

T−t+2
u, · · · , 1), where the term

e−
2πi

T−t+2
u is at the k-th position.

Proof. Note that 〈v,J(t, T )〉 = uJk(t, T ) if v = (0, 0, · · · , u, · · · , 0) ∈ RN ,
where the term “u” appear at the k-th position. The result then follows
directly from Theorem 3.1.
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Using the IDFT, we can invert the conditional characteristic functions to
find the conditional probability mass functions for J(t, T ) and Jk(t, T ) given
Ft under P . We give the formulae in the sequel.

For the conditional probability mass function of J(t, T ) given Ft under
P ,

pt,T (j) =
1

(T − t+ 2)N

∑
u∈DNt,T

e
2πi

T−t+2
〈u,j〉φJ(t,T )(u) , (3)

and for the conditional probability function of Jk(t, T ), k = 1, 2, . . . , N given
Ft under P ,

pkt,T (j) =
1

T − t+ 2

T−t∑
u=0

e
2πi

T−t+2
ujφJk(t,T )(u). (4)

Relevant details of the DFT and the IDFT can be found in Frazier (1999)
[14] and Stein and Shakarchi (2003) [26].

For the case of pkt,T (j), a simpler method is available. Let

ψJk(t,T )(u) = E[exp{iuJk(t, T )} | Xt] .

Then it can be shown that

ψJk(t,T )(u) =
〈
eiu〈Xt,ek〉(B3(u)A)T−tXt,1

〉
, (5)

where B3(u) := diag(1, · · · , 1, eiu, 1, · · · , 1), the N ×N diagonal matrix with
diagonal elements (1, · · · , 1, eiu, 1, · · · , 1); the term eiu is at the k-th position.

Consequently,

pkt,T (j) =
1

2π

∫ 2π

0

eijxψJk(t,T )(x)dx.

A similar account can be found in Elliott and Tsoi (2005) [13], where the
special case of a two-state Markov chain was presented.

4. Selection of a Pricing Kernel

In this section, we first present a measure change for the Markov chain
and then discuss a method to determine a pricing kernel, or measure, based
on the measure change. In particular, the transition matrix of the chain
under the selected pricing measure is characterized.
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4.1. A Measure Change

Suppose C := (cji)i,j=1,2,··· ,N is an N ×N matrix with real-valued entities
such that 0 ≤ cji ≤ 1, for all i, j = 1, 2, · · · , N and

N∑
j=1

cjk = 1 .

for all k = 1, 2, · · ·N . Consequently, this matrix C can be a candidate of a
transition probability matrix of the Markov chain.

Define, for each l = 1, 2, · · · , T ,

λl :=
N∑
i=1

N∑
j=1

cji
aji
〈Xl, ej〉〈Xl−1, ei〉 .

Here we assume that aji > 0, for each i, j = 1, 2, · · · , N , so that λl is well-
defined.

Consider an {Ft}-adapted process {Λt}t∈T defined by:

Λt :=
t∏

k=1

λk; Λ0 = 1 .

Then we can define a probability measure Q ∼ P by putting:

dQ

dP

∣∣∣∣
Ft

:= Λt ,

for all t ∈ T .
The following lemma is standard. We state the result without giving the

proof.

Lemma 4.1. {Λt}t∈T is an ({Ft}, P )-martingale.

The next proposition gives the dynamics of the chain {Xt} under the new
measure Q. This result is also standard and can be found in Elliott et al.
(1994) [12]. So we state the result here without giving the proof.

Proposition 4.1. Under Q, {Xt}t∈T is a Markov chain with transition prob-
ability matrix C.
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4.2. Risk Neutral Transition Matrix

To determine a price for a contingent claim in the Markov chain market,
we need to determine a transition matrix under a pricing measure, say a
measure Q of the form introduced in Proposition 4.1.

The fundamental theorem of asset pricing by Harrison and Kreps (1979)
[15] and Harrison and Pliska (1981, 1983) [16], [17] states that the absence
of arbitrage opportunities is “essentially” equivalent to the existence of an
equivalent martingale pricing measure under which discounted price pro-
cesses are martingales. In our model, this martingale condition is equivalent
to saying that if Q is an equivalent martingale measure, then

St−1 = EQ[e−rSt | Ft−1] , t = 1, 2, · · · , T . (6)

Here EQ is expectation under Q.
The following proposition gives the martingale condition, or the martin-

gale restriction, in the Markov chain market model.

Proposition 4.2 (Martingale Condition). Suppose Q is an equivalent mea-
sure of the form introduced in Proposition 4.1 so that under Q, X is a Markov
chain with transition matrix C. Then Q is a martingale measure if

〈s, (e−rC− I)ek〉 = 0 , (7)

for all k = 1, 2, . . . , N .

Proof. Using (6) and the Markov property,

St−1 = EQ[e−rSt | Ft−1].

That is:

〈s,Xt−1〉 = EQ[e−r〈s,Xt〉 | Ft−1]
= 〈s, e−rEQ[Xt | Ft−1]〉
= 〈s, e−rEQ[Xt | Xt−1]〉
= 〈s, e−rCXt−1〉.

This means that

〈s, (e−rC− I)Xt−1〉 = 0

or

〈s, (e−rC− I)ek〉 = 0

for all k = 1, 2, . . . , N .
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In the case of N = 2, the “risk-neutral” transition probability matrix C
can be determined uniquely as

C =

(
α 1− β

1− α β

)
,

where

α =
ers1 − s2
s1 − s2

, β =
s1 − ers2
s1 − s2

.

However, in the case where N > 2, the uniqueness is not guaranteed. There-
fore, we need to determine a “risk-neutral” transition probability matrix C
subject to some additional conditions. One possible way to determine C
is by calibration to option prices data. The idea would be to determine C
so that the sum of squared deviation of the actual option prices from the
theoretical ones is minimized. In practice, this calibration exercise is usually
done using price data of simple options, such as standard European-style call
or put options.

Suppose the vector of share prices s, the current share price S0 and the
interest rate r are given. Then the theoretical price of a vanilla European
call option in the Markov chain market model is:

c(K,C, τ) = e−rτEQ[max{Sτ −K, 0} | X0]

= e−rτ
N∑
i=1

N∑
j=1

(sj −K)+(Cτ )ji〈X0, ei〉.

Here K is the strike price and τ ∈ T is the time-to-maturity.
Then a risk-neutral transition probability matrix C := (cji)i,j=1,2,··· ,N can be
determined using the following conditions:

1. 0 ≤ cji ≤ 1 for all i, j = 1, 2, · · · , N ;

2.
∑N

j=1 cjk = 1 for all k = 1, 2, · · ·N ;

3. 〈s, (e−rC− I)ek〉 = 0 for all k ∈ K;

4.
∑L

j=1

∑M
i=1 |c(Ki,C, τj)− cmarket(Ki, τj)|2 is minimized, for given strike

prices K1, K2, · · · , KM and maturities τ1, τ2, · · · , τL.

Note that by imposing Condition 4, we are using the minimum square devia-
tion price calibration to select a risk-neutral measure. A similar account can
be found in Cont and Tankov (2006) [8] and references therein, where the
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least-square calibration was used to select a risk-neutral measure to price op-
tions under an exponential Lévy model, (see Section 3, Problem 2, therein).
The basic idea of the calibration is to select a set of risk-neutral parameters
in the model dynamics so as to minimize the discrepancy between the the-
oretical prices implied by the model and the observed market option prices.
The calibration idea in Cont and Tankov (2006) [8] could be applied to our
Markov chain framework. This would provide a topic for further research.
Carr and Cousot (2011) [7] mentioned that discrete-time, finite-state, Markov
chain asset price models are among the very few models which are arbitrage
free and which can be calibrated to a finite number of observed option quotes.
Indeed, the issues of arbitrage-free and exact calibration to option quotes go
hand-in-hand. Inspired by the results developed in Carr and Madan (2005)
[6], Buehler (2006) [4], Cousot (2007) [9] and Davis and Hobson (2007) [11]
established, independently, the existence result of an arbitrage-free Markov
chain asset price model which can calibrated exactly to the data under certain
explicit conditions.

5. Derivatives Pricing

In Section 3, the conditional characteristic function of the vector of oc-
cupation times of a Markov chain in different states was obtained. The
conditional joint probability mass function of the occupation times can then
be determined from this conditional characteristic function. This result can
be applied for derivatives pricing. In particular, the conditional joint mass
probability function may be used for option valuation in regime-switching
markets. Further, several derivative securities involving occupation times of
share prices, such as cumulative options (see Jeanblanc et al. (2009) [19]),
step options, switch options, day-in/day-out options, occupation time options
(see Linetsky (1999) [20]), require the conditional probability mass function
to determine their fair prices. In the sequel, we illustrate the use of the con-
ditional joint probability mass function to price an arithmetic Asian option,
a geometric Asian option and an occupation time call option.

5.1. Asian Options

Consider a fixed-strike arithmetic Asian option with maturity at time T ,
strike price K and discrete monitoring at time points 0, 1, . . . , T . Denote the
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arithmetic average of the share prices up to time T as A1(T ). Then

A1(T,J(0, T )) =
1

T + 1

T∑
t=0

St

=
1

T + 1

N∑
k=1

skJ
k(0, T )

=
〈s,J(0, T )〉
T + 1

.

Denote the geometric average of the share prices up to time T as A2(T ).
Then

A2(T,J(0, T )) = (S0S1S2 · · ·ST )1/(T+1)

= exp

{
1

T + 1

T∑
t=0

lnSt

}

= exp

{
1

T + 1

N∑
k=1

Jk(0, T ) ln sk

}

= exp

{
〈ln s,J(0, T )〉

T + 1

}
,

where ln s = (ln s1, ln s2, · · · , ln sN)′.
The payoff of the Asian call option at time T is given by:

max{Ai(T )−K, 0}

where i = 1, 2, depending on the type of averaging of the option.
A price of the Asian option can then be determined as:

pasian = EQ[e−rT max{Ai −K, 0} | X0]

= e−rT
∑

j∈D′t,T

max{Ai(T, j)−K, 0}Q(J(0, T ) = j | X0) ,

15



where

Q(J(0, T ) = j | X0)

=
1

(T + 2)N

∑
u∈DN0,T

e
2πi
T+2
〈u,j〉〈e−

2πi
T+2
〈X0,u〉(B(u)C)TX0,1〉

=
1

(T + 2)N

∑
u∈DN0,T

e
2πi
T+2

[(j1−x1)u1+···+(jN−xN )uN ]〈(B(u)C)TX0,1〉 ,

following Theorem 3.1, if X0 := (x1, · · · , xN); j := (j1, · · · , jN); u :=
(u1, · · · , uN).

The analytical formula we have for the Asian option gives the exact price
rather than an approximation.

5.2. Occupation Time Options

An occupation time call option, as mentioned in Linetsky (1999) [20], is
an option on the occupation time whose the payoff is given by:

max{τ−B − αT, 0} ,

where τ−B is the amount of time that the share price is lower than the fixed
barrier level B, and α is a fixed constant. The payoff of an occupation time
put option can be defined similarly.

Suppose sk ≤ B < sk+1, for some k = 1, 2, . . . , N−1. Note that the cases
where B < s1 and where sN ≤ B are trivial, so we do not discuss them.
Then,

τ−B = J1(0, T ) + J2(0, T ) + · · ·+ Jk(0, T )

= 〈J(0, T ),1k〉 ,

where 1k = (1, 1, · · · , 1︸︷︷︸
kth

, 0, · · · , 0) ∈ RN .

The characteristic function of τ−B is given below, as a corollary of Theorem
3.1. The proof is omitted.

Corollary 5.1. The characteristic function of τ−B is given by:

ψτ−B
(u) := E[eiuτ

−
B | X0]

=
〈
eiu〈Xt,ek〉(B4(u)C∗)T−tXt,1

〉
where B4(u) = diag(eiu, eiu, · · · , eiu︸︷︷︸

kth

, 1, · · · , 1).
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Similarly to the argument in previous section,

Q(τ−B = k | X0) =
1

2π

∫ 2π

0

eijxψτ−B
(x)dx.

Given a barrier level B and α, the price of the occupation time call in
our model is:

poccupation = EQ[e−rT max{τ−B − αT, 0} | X0]

= e−rT
T+1∑
k=0

max{k − αT, 0}Q(τ−B = k | X0).

6. Conclusion

We considered the valuation of Asian options and occupation time op-
tions in a Markov chain market model, where uncertainty of share price
movements is modulated by a discrete-time, finite-state, Markov chain. The
characteristic function for occupation times of the chain was derived. It was
then used to derive pricing formulae for Asian options and occupation time
options. The issue of selecting a pricing kernel in the Markov chain market
model was also discussed.
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[1] L. Bachelier, Théorie de la spéculation, Annales Scientifiques de l’École
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