
THE UNIVERSITY OF CALGARY

Optimal Tunneling:

A Heuristic For Learning Macro Operators

by

Mark L. James

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES,

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

APRIL, 1993

© Mark L. James 1993

If' National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your file Votre tilfOrence

Our file NoIre rilfilrence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du

droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-83166-9

Cmadci

Name

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondmy 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Language

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Agriculture

General
Agronomy
Animal Culture and

Nutrition
Animal Pathology
Food Science and
Technology

Forestry and Wildlife
Plant Culture
Plant Pathology
Plant Physiology
Range Management

Biol Wood Technology
ogy
General 0306
Anatomy 0287
Biostatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biageachemistry 0425
Geochemistry 0996

Geodesy 0370
Geology 0372

0473 Geophysics 0373
0285 Hydrology 0388

Mineralogy 0411
0475 Paleobotany 0345
0476 Paleoecology 0426

Paleontology 0418
0359 Paleozoology 0985
0478 Palynology 0427
0479 Physical Geography 0368
0480 Physical Oceanography 0415
0817
0777
0746

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Iin munology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religjon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies _ 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology 0460
Toxicology 0383

Home Economics 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General 0605
Acoustics 0986
Astronomy and
Astrophysics 0606

Atmospheric Science 0608
Atomic 0748
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0 3 C.'
SUBJECT CODE

UMI

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family

Studies 0628
Industrial and Labor

Relations 0629
Public and Social Wel(are 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

Engineering
General 0537
Aerospace 0538
Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554
System Science 0790

Geotechnology 0428
Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

UMI
SUJEI

Categories par sujets

HUMANITES ET SCIENCES SOCIALES
COMMUNICATIONS ET LES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de 'art 0377
Journalisme 0391
Musique 0413
Sciences de 'information 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communautaires 0275
Commerce 0688
Economie domestique 0278
education pormanente 0516
education prescolaire 0518
Education sanitaire 0680
Enseignement agricole 0517
Enseignement bulingue et

muiticulturel 0282
Enseignement industriel 0521
Enseignement primaire. 0524
Enseignement professionnel 0747
Enseignement religleux 0527
Enseignement secondaire 0533
Enseignement special 0529 Nnseignement supérieur 0745
evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire do l'éducation 0520
Longues et littérature 0279

Lecture 0535
Mathématiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de 'education 0998
Physique 0523
Programmes d'études et
ensegnement 0727

Psychologie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de l'éducation 0340
Technoiogie 0710

LANGUE, LITfERATURE ET
LINGUISTIQUE
Langues

énéralités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Genéralités 0401
Anciennes 0294
Comparée 0295
Mediéva!e 0297
Moderne 0298
Africaine 0316
Américaine 0591
Anglaise 0593
Asiatique 0305
Canadienne Anglaise) 0352
Canadienne Francaise) 0355
Germanique 0311 Lot

ino-amérucaune 0312
Moyen-orientale 0315
Romane 0313
Slave et est-européenne 0314

SCIENCES ET INGENIERIE
SCIENCES BIOLOGIQUES
Agriculture

Généralutés 0473
Agronomie. 0285
Alumentation et technologie

alimentaire 0359
Culture 0479
Elevage et alimentation 0475
Exploitation des péturages 0777
Pathologie animale 0476
Pathologie véétale 0480
Physiologie vegetale 0817
Syiviculture et taune 0478
Technologie du bois 0746

Biologie
Généralités 0306
Anatomie 0287
Biologie (Stotistiques) 0308
Bioloqie moléculaire 0307
Botanique 0309
ellule 0379

Ecologie 0329
Entomologie 0353
Genétique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Oceonographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicole 0760

SCIENCES DE LA TERRE
Biogeochimie 0425
Géochimie 0996
Géodésie 0370
Géographie physique 0368

Géologie 0372
Géophysique 0373
Hydrologie 0388
Mineralogie 0411
Oceanographie physique 0415
Paléobotanique 0345
Paléoecologie 0426
Paleontologie 0418
Paleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences de Ia sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothérapie 0992
Dentisterie 0567
Développement humain 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Médecine du travail et
therapie 0354

Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathoiogie 0571
Pharmacie 0572
Pharmocologie 0419
Physiothérapie 0382
Radio!ogie 0574
Sante mentale 0347
Sante publique 0573
Soins infirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Généralités
Clerg
Etudeés bibliques
Histoire des religions
Philosophie de Ia religion

Théologie

SCIENCES SOCIALES
Anthropologie

Archeologie
Culturelle
Physique

roit
Economie

Généralites
Commerce-Affaires
conomie agricole
Economie du travail
Finances
Histoire

- Théorie
etudes omCricoines
etudes canadiennes
Etudes féministes
Folklore
Geographic
Gérontologie
Gestion des a(Iaires

Genéralités
Administration
Banques
Comptabilite
Marketing

Histoire
Histoire generale

CODE DE SUJET

Ancienne 0579
Médiévale 0581

0422 Moderne 0582
Histoire des noirs 0328

0318 Africaine 0331
0319 Canadienne 0334
0321 Etats-Unis 0337
0320 Européenne 0335
0322 Moyen-orientale 0333
0469 Latino-américaine 0336

Asie, Australie et Océanie 0332
Histoire des sciences 0585
Loisirs 0814

0324 Planilicotion urbaine et
0326 regionole 0999
0327 Science politique
0398 Géneralités 0615

Administration publique 0617
0501 Droit et relations
0505 internationales 0616
0503 Sociologie
0510 Genéralités 0626
0508 Aide et bien-àtre social 0630
0509 Criminologie et
0511 établissements
0323 pénitentiaires 0627
0385 Pemographie 0938
0453 Etudes del' individu et
0358 de Ia famille 0628
0366 Etudes des relations
0351 interelhniques et

des relations raciales 0631
0310 Structure et developpement
0454 social 0700
0770 Théorie et méthodes. 0344
0272 Travail et relations
0338 industrielles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Generalités 0485
Biochimie 487
Chimie ogrico!e 0749
Chimie anafrtuque 0486
Chimie minerale 0488
Chimie nucléaire 0738
Chimie organique 0490
Chimie pharmaceutique 0491
Physique 0494
Poiymcres 0495
Radiation 0T54

Mathématiques 0405
Physique

Genérolités
Acoustique
Astronomie et
astrophysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Meteorologie 0608
Optique 0752
Particules (Physique

nucléoire) 0798
Physique atomique 0748
Physique de l'état solide 0611
Physique moléculaire 0609
Physique nucléaire 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
Inlormatique
Ingénierie

Généralités
Agricole
Automobile

Biomédicole 0541
Chaleur et ther
modynamique 0348

Conditionnement
(Emballage) 0549

Genie aérospatial 0538
Genie chimique 0542
Genie civil 0543
Genie é!ectronique et

electrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucléaire 0552
ln?énierie des systämes 0790
Mecanique navale 0547
Metallurgie 0743

06 5 Science des matérioux 0794
Technique du pétrole 0765

0986 Technique minière 0551
Techniques sonitoires et

municipales 0554
Technologie hydroulique 0545

Mecanique appliquee 0346
Geotechnologie 0428
Matières plastiques

(Technologie) 0795
Recherche operotionnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnolité 0625
Psychobiologie 0349
Psychologie clinique 0622
Psychologie du comportement 0384

0984 Psychologie du développement 0620
Psychologie expérimentale 0623

0537 Psychologie industrielle 0624
0539 Psychologie physiologique 0989
0540 Psychologie sociale 0451

Psychometrie 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Optimal Tunneling: A Heuristic

For Learning Macro Operators" submitted by Mark L. James in partial fulfillment of

the requirements for the degree of Master of Science.

Supervisor, Bruce MacDonald,

Department of Computer Science

Robin Cockctt,

Department of Computer Science

Jun Gu,

Department of Electrical Engineering

Date (VA/ 7t"h c1 9 3

11

Abstract

This thesis discusses methods for efficiently solving puzzles by heuristic (best first)

search, concentrating on techniques for learning macro operators. The thesis focuses

on the Optimal Tunneling heuristic for learning macros, which produces shorter, more

useful macros than previous techniques. The Optimal Tunneling heuristic proposes

macros from a state at a minimum to the next state with the same heuristic value.

A water pouring analogy is used to show that the "horizontal tunnels" learned by

the Optimal Tunneling heuristic are more appropriate than "aqueducts", or "sloping

tunnels". Macros learned by the Optimal Tunneling heuristic avoid expensive search

against the heuristic function, and give the best modification of the search space to

make the heuristic function more accurate. The thesis discusses the high sensitivity of

best first search to arbitrary design choices in selecting states with the same heuristic

value. To minimize the effects of this problem, all testing was performed with a single

problem solver. Comparative tests in the domains of Peg Solitaire, Tile Sliding and

SOKOBAN show that the Optimal Tunneling heuristic results in a clear improvement

over previous techniques for both single trials, and test sequences with cumulative

learning across trials.

111

Acknowledgements

My deepest gratitude to my supervisor, Bruce MacDonald, who was always available

with advice, feedback, and support.

My thanks to Glen Iba who provided helpful advice and interesting commentary

in the early stages of my thesis.

I was fortunate to have many proofreaders: Eric Schenk, Carol Wang, Thomas

Orth, Greg James, Natascha Schuler, Theo Deraadt and my parents, Alan and Mar-

garet James. All provided valuable feedback during the finishing stages of my thesis.

iv

Dedication

This thesis is dedicated to my late grandfather, Ralph James.

Contents

Approval Sheet ii

Abstract iii

Acknowledgements iv

Dedication v

Contents vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1
1.1. Macro-operators 1
1.2. Contribution 3

Chapter 2. Search 5
2.1. State Space Representation 5
2.2. Search Methods 6

2.2.1. Brute Force Methods 8
2.2.1.1. Breadth First Search 8
2.2.1.2. Depth First Search 8
2.2.1.3. Iterative Deepening 9

2.2.2. Heuristic Search 9
2.3. Macro Operators 10

2.3.1. STRIPS 10
2.3.2. Solving Subgoals 11
2.3.3. The Macro Problem Solver (MPS) 13

2.3.3.1. The Macro Table 13
2.3.3.2. The Basic Algorithm 15
2.3.3.3. Partial Match, Bi-directional Search 17
2.3.3.4. Macro Composition 18

2.4. Summary 18

vi

Chapter 3. Minimum to Minimum 19
3.1. Iba's Learning Model 19
3.2. MACLEARN 21

3.2.1. Operator Set 21
3.2.2. Macro Proposer 23
3.2.3. Static Filter 25
3.2.4. Dynamic Filter 25
3.2.5. The Minimum To Minimum Heuristic 25

3.3. Results 26
3.3.1. Discussion 28

Chapter 4. Optimal Tunneling 29
4.1. SOKOBAN 29

4.1.1. Heuristic Functions For SoKOBAN 30
4.2. Search As "Pouring Water" 32
4.3. Optimal Tunneling Macros Reduce Search Cost 32
4.4. Optimal Tunneling Macros Improve Heuristic Function Accuracy 37
4.5. Summary 41

Chapter 5. Results 43
5.1. Implementation Status 43
5.2. Problems With Heuristic Search 44
5.3. Comparative Tests 46

5.3.1. Peg Solitaire 46
5.3.1.1. Heuristic Function 47
5.3.1.2. Static Filter 47
5.3.1.3. Experiment 1 47
5.3.1.4. Experiment 2 51

5.3.2. Tile Sliding 51
5.3.2.1. Heuristic Function 55
5.3.2.2. Static Filter 55
5.3.2.3. Results 56

5.3.3. Sokoban 58
5.4. Summary 60

Chapter 6. Concluding Remarks 61
6.1. Optimal Tunneling 61
6.2. Future Work 62

6.2.1. Analysis of Heuristic Functions 62
6.2.2. Improving the Performance Element 63
6.2.3. More Flexible Problem Representation 63

References 66

vii

Appendix A. Implementation Details 68
A.1. Creating New Operators

viii

68

List of Tables

2.1. Macro Table For The Eight Puzzle 14

5.1 Sokoban Results 59

ix

List of Figures

2.1 Two States Of The Eight Puzzle 6
2.2 Rubik's Cube 11
2.3 The Effect Of Rotating A Cube Face 12
2.4 Sample solution of the Eight Puzzle by MPS 14
2.5 An Arbitrary State Of The Eight Puzzle 15

3.1 Iba's Learning Model 20
3.2 The Hi-Q Puzzle: An Example Of Peg Solitaire 21
3.3 An Example Of A Macro Operator For Peg Solitaire 22
3.4 An Example Operator Sequence For Macro Composition 24
3.5 Operators Used In Figure 3.4 24
3.6 Macro Operator 24
3.7 The Effect Of Macros Learned By The Minimum To Minimum Heuristic 25
3.8 Peg Solitaire Problems Used For Iba's Experiments 27

4.1 The Parts Of SoKOBAN 29
4.2 The Solution To A SoI<oBAN Problem 30
4.3 The Effects Of "Pouring Water" On Example Search Spaces 33
4.4 Macros As Tunnels 34
4.5 The Optimal Aqueduct Heuristic 36
4.6 Uphill Pipes 36
4.7 The Solution Path Without Macros 38
4.8 The Estimated And Actual Distance To The Goal Without Macros 39
4.9 The Solution Path With Macros 39
4.10 The Estimated And Actual Distance To The Goal With Macros 40

5.1 The Effects Of Operator Choice On Heuristic Search 45
5.2 Problems Used For The Peg Solitaire Experiments 46
5.3 A Peg Solitaire State Whose Evaluation Function Value Is (2,2,15) 47

5.4 First Try With Macro Learning For Peg Solitaire 49
5.5 Retry With Macro Learning For Peg Solitaire 50

x

5.6 After Dynamic Filtering For Peg Solitaire 52
5.7 Run Time For Peg Solitaire Experiment 2 53
5.8 Cumulative Run Time For Peg Solitaire Experiment 2 53
5.9 The Problems Used For The Tile Sliding Experiment 54
5.10 Run Time For Tile Sliding 56
5.11 Cumulative Run Time For Tile Sliding 57
5.12 Number Of Operators For Tile Sliding 58
5.13 Average Branching Factor For Tile Sliding 59
5.14 The Problems Used For The SOKOBAN Experiment 59

6.1 Some Pathological Heuristic Functions 62
6.2 An Unfolded 2D Representation Of The 2 x 2 x 2 Rubik's Cube 64
6.3 The Three Operators For The Unfolded 2 x 2 x 2 Rubik's Cube 65

A.1 The Eight Possible Orientations Of A Macro 68
A.2 The Primitive Operator For Peg Solitaire 69

xi

CHAPTER 1

Introduction

The "Fifteen" puzzle for the last few weeks has been prominently be-

fore the American public, and may safely be said to have engaged the

attention of nine out of ten persons of both sexes and of all ages and

conditions of the community - W.W. Johnson (1879)

Puzzles have facinated people for hundreds, if not thousands of years. For example,

there is stong evidence that the game of Peg Solitaire was played as early as 1697, and

was probably played long before that [4]. Researchers in Artificial Intelligence and

Machine Learning often use puzzles as example domains for problem solving systems.

This thesis investigates methods for efficiently solving puzzles such as the "Fifteen"

puzzle, Peg Solitaire, and SOKOBAN.

1.1. Macro-operators

The classical technique for solving a puzzle by computer involves searching for a

sequence of operators. A typical system will use heuristic search, in which a heuristic

function estimates the distance to the goal from a given state [3]. This allows the

system to examine only the most promising states.

Often it is useful to group subsequences of operators into chunks to form composite

operators. These subsequences are called macro-operators or macros, and can be used

in the same way as primitive operators [12, 15]. Macros can lead to faster solutions

1

1. INTRODUCTION 2

that are obtained by less effort in the search. However, macro generation increases

the size of the operator set and can therefore result in a more expensive search. These

two effects must be managed by the macro generator and filtering, so that the overall

result is computationally beneficial.

Some systems generate only macros that skip the expensive parts of a search, where

the heuristic function is increasing. Iba's [13] Minimum to Minimum heuristic is an

example. The Minimum to Minimum heuristic proposes macros from a state at a

minimum to the next state at a minimum. However, it creates macros that are longer

than necessary, which may mean they are less useful in some domains. This thesis

presents the Optimal Tunneling heuristic, which proposes macros from a state at a

minimum to the next state with the same heuristic value.

The thesis is organized as follows. Chapter 2 gives an overview of a broad range of

problem-solving techniques that can be grouped under the general heading of search.

These techniques can be used for a wide range of problems, including the solution to

puzzles. Chapter 3 describes Iba's MACLEARN system [13]. MACLEARN improves on

the basic search techniques presented in Chapter 2 by learning macro-operators to

speed up problem solving. These macros can also be applied to more complex prob-

lems in similar domains, allowing MACLEARN to use information learned in simple

training problems to solve more complex problems.

MACLEARN uses a Minimum to Minimum heuristic to learn macro operators. This

heuristic works well for domains where minima are close together. Chapter 4 gives

the motivation for and describes the Optimal Tunneling heuristic, which generates

shorter macros than Minimum to Minimum, allowing it to work well in domains

where minima are farther apart. A water pouring analogy is examined, showing that

Optimal Tunneling should result in an improvement.

1. INTRODUCTION 3

Chapter 5 describes and interprets comparative tests on the performance of the two

macro learning heuristics. Tests on the Peg Solitaire and Tile Sliding domains show

that Optimal Tunneling works better even on domains where Minimum to Minimum

works well. Tests on the SOKOBAN domain show that when minima are farther apart,

Optimal Tunneling can solve complex problems in much less time than the Minimum

to Minimum heuristic.

Chapter 6 contains concluding remarks and discusses future research. It examines

some limitations of Iba's learning model and suggests some possible improvements.

1.2. Contribution

Iba's MACLEARN is a useful problem solving system. It can use macro operators to

solve several complex problems that cannot be solved with heuristic search alone. I

have reimplemented MACLEARN and analyzed its performance for the domains of Peg

Solitaire, Tile Sliding, and SOKOBAN. An analysis of the SOKOBAN domain suggested

that the Minimum to Minimum heuristic would work poorly for SOKOBAN since the

minima are far apart.

This thesis presents the Optimal Tunneling heuristic, an improvement to the Min-

imum to Minimum heuristic. A water pouring analogy suggests that the progress of

a best first search is slowed by "valleys" along the solution path. Macro operators

act like tunnels, allowing the water to drain from valleys without forming "lakes."

This analogy is used to explain why the macros proposed by the Optimal Tunnel-

ing heuristic result in more efficient search than those proposed by the Minimum to

Minimum heuristic, or any similar heuristic.

The thesis discusses the high sensitivity of best first search to arbitrary design

choices in selecting states with the same heuristic value. To minimize the effects of

this problem all testing was performed with a single problem solver. The Optimal

1. INTRODUCTION 4

Tunneling heuristic was compared to the Minimum to Minimum heuristic using the

learning model described in Section 3.1. Comparative tests in the domains of Peg

Solitaire, Tile Sliding and SOKOBAN show that the Optimal Tunneling heuristic re-

sults in a clear improvement over previous techniques for both single trials, and test

sequences with cumulative learning across trials.

These ideas and results presented in this thesis will allow researchers to solve com-

plex puzzles more efficiently. The water pouring analogy can be extended to domains

other than puzzle solving, and provides an easy method of understanding the effects

of macro operators on best first search. The Optimal Tunneling heuristic may prove

useful in a variety of other problem solving domains such as symbolic integration and

robot task planning.

CHAPTER 2

Search

This chapter discusses a broad range of problem-solving techniques that can be

grouped under the general heading of search. Barr and Feigenbaum [2] describe search

as a name for a large body of core ideas that deal with deduction, inference, plan-

ning, common-sense reasoning, theorem proving, and related processes. Applications

of these ideas are found in programs for natural language understanding, informa-

tion retrieval, automatic programming, robotics, scene analysis, game playing, expert

systems, machine learning, mathematical theorem proving, and puzzle solving.

Section 2.1 discusses problem representations that form the basis of search tech-

niques. Section 2.2 examines common search methods. Section 2.3 discusses several

systems that use macro operators to speed up search.

2.1. State Space Representation

A state space is a convenient way to represent a search problem. The state space

representation of a problem consists of states, which represent the configuration of a

problem at a given time, and operators, which transform the problem from one state

to another. A common example of state space representation is the Eight puzzle [4]

(Figure 2.1). The Eight puzzle consists of eight tiles in a square grid with a space

in place of the ninth tile. A tile may be moved either horizontally or vertically by

sliding it into the empty square. The problem is to find a sequence of operators that

5

2. SEARCH 6

2 7 8

1 6 3

5 4

(a)

1 2 3

8 4

7 6 5

(b)

FIGURE 2.1. Two States Of The Eight Puzzle

will transform a given sliate, such as that in Figure 2.1(a) into a goal state, such as

that in Figure 2.1(b). The states may be represented as a 3 x 3 array. The operators

can be defined as moving tiles into the blank square, giving four operators:

UP Move the tile below the blank up one square.

DOWN Move the tile above the blank down one square.

LEFT Move the tile to the right of the blank left one square.

RIGHT Move the tile to the left of the blank right one square.

The complete specification of a state space problem consists of 0, the description

of the operators, S, a set of one or more initial states, and G, a predicate defining

goal states. A solution to the problem is a sequence of operators that transforms

an initial state into a goal state. Section 2.2 describes several algorithms for solving

state space problems.

2.2. Search Methods

A search algorithm for a state space problem attempts to find a sequence of oper-

ators that will transform an initial state into a goal state. Expanding a state is the

basic operation used in the search algorithms presented in this section. A state is

expanded by applying all applicable operators to it to generate a list of new states.

The basic search algorithm is shown in Algorithm 2.1.

2. SEARCH '7

ALGORITHM 2.1 (BASIC SEARCH).
(1) Put the start state in a list of unexpanded states called OPEN. If the start

state is a goal state, a solution has been found.
(2) If OPEN is empty, no solution exists.
(3) Remove the first state, i, from OPEN, and place it in a list of expanded states

called CLOSED.
(4) Expand state i. For every successor j of i: If j is neither in OPEN nor

CLOSED, add j to OPEN. The order that states are inserted into OPEN
depends on the search algorithm used. Attach a pointer from j back to its
predecessor i (to trace a solution path once a goal is found).

(5) If any of the successors of i is a goal state, a solution has been found, otherwise,
go to (2).

2. SEARCH 8

ALGORITHM 2.2 (BREADTH FIRST SEARCH).
(1) Use the basic search algorithm (Algorithm 2.1), placing newly generated states

at the end of the OPEN list.

2.2.1. Brute Force Methods. The simplest method for solving a search prob-

lem is a brute force search. This technique needs no domain knowledge. For this

reason, it is often called a blind search. The three types of brute force search dis-

cussed in this section are based on Algorithm 2.1, and differ only in the order that

they insert new states into the OPEN list in step (4).

2.2.1.1. Breadth First Search. The Breadth First Search (Algorithm 2.2) expands

those states that are closest to the start state. It examines all possible sequences of

n operators, then all possible sequences of n + 1 operators, nd so on. Since it always

examines shorter paths first, it is guaranteed to find the shortest solution if one exists.

The biggest disadvantage of the Breadth First Search is its space complexity. If there

are b applicable operators from each state in a search space, and the length of the

shortest solution is 1, then the Breadth First Search needs 0(b') time, and O(b'')

memory. Iterative Deepening (Section 2.2.1.3) simulates a Breadth First Search, but

uses only 0(l) space, at some cost to the time required.

2.2.1.2. Depth First Search. As the name suggests, Depth First Search (Algo-

rithm 2.3) expands the deepest state first. It expands a single path through the

search space until the last state of that path has no successors, and only then does

it consider a different path. Unlike the Breadth First Search, Depth First Search is

not guaranteed to find the shortest solution. Since only the current path through the

search space is stored, Depth First Search requires 0(l) space, where 1 is the length of

the longest path considered. Like Breadth First Search, Depth First Search must, in

the worst case, examine every state in the search space. If each state has b successors,

2. SEARCH 9

ALGORITHM 2.3 (DEPTH FIRST SEARCH).
(1) Use the basic search algorithm (Algorithm 2.1), placing newly generated states

at the beginning of the OPEN list.

ALGORITHM 2.4 (ITERATIVE DEEPENING).
(1) Set MAXDEPTH, the Maximum Depth for Depth First Search, to 1.
(2) Call Depth First Search, and record the longest path explored.
(3) If a solution was found, then terminate.
(4) If the longest path is less than MAXDEPTH, then no solution exists. Termi-

nate.
(5) Increment the Maximum Depth.
(6) Go to (2).

Depth First Search needs 0(b1) time. If the search space is infinite, the Depth First

Search may never terminate. To prevent this, a maximum depth is usually specified

for the search. Any states deeper than this maximum depth are treated as if they

had no successors.

2.2.1.3. Iterative Deepening. Iterative Deepening (Algorithm 2.4) solves the mem-

ory problems of the Breadth First Search at some cost to the time required. The al-

gorithm works by using Depth First Search to examine all paths of length 1, then all

paths of length 2, and so on. Since it examines all paths of length n before examining

any longer paths, this algorithm is guaranteed to find the shortest solution. If the

shortest path found is of length 1, Iterative Deepening needs only 0(l) memory to find

the path. The time complexity of Iterative Deepening is b) = 0(2b1) = 0(b').

The time "overhead" of this method is usually minor compared to the memory re-

quirements for Breadth First Search.

2.2.2. Heuristic Search. In a blind search, the number of states examined be-

fore a solution is found is likely to be prohibitively large. Since no knowledge of the

problem domain is used, it is unlikely that any but the simplest of problems can be

2. SEARCH 10

ALGORITHM 2.5 (HEURISTIC SEARCH).

(1) Use the basic search algorithm (Algorithm 2.1)
(2) For each newly generated state j:

(a) Calculate f*(j).
(b) If j is neither in OPEN nor CLOSED, add j to OPEN, sorted into as-

cending order by f* value.
(c) If j is in either OPEN or CLOSED, compare the f* value just calculated

for j with the value previously associated with the state. If the new value
is lower then

(i) Substitute it for the old value.
(ii) Point j back to i instead of its previous predecessor.
(iii) If state j was on the CLOSED list, move it back to OPEN.

solved before running out of resources. Heuristic search uses knowledge about the

domain to choose the most promising state to investigate.'.

Heuristic search, also known as an ordered or best first search always selects the

most promising state to expand. The "promise" of .a state is given by an evaluation

function. The evaluation function f* is defined so that more promising states have

smaller values of f*. For a state space problem, the promise of a state is often defined

as an estimate of its distance from a goal state.

Given the evaluation function, or heuristic function, f*, Algorithm 2.5 tries to

reduce the number of states expanded by blind search. The success of this algorithm

depends on the choice of f*.

2.3. Macro Operators

2.3.1. STRIPS. STRIPS [8] is a general problem solver based on a combination

of means-ends analysis [16] and mathematical theorem proving. STRIPS attempts

to find a sequence of operators, or plan, that will transform a given start state into

a state that satisfies a goal. A later addition to STRIPS allows it to generalize its

'Barr and Feigenbaum [2] describe the history of the terms "heuristic" and "heuristic search".

2. SEARCH 11

FIGURE 2.2. Rubik's Cube

plans and use them again for other problems [7]. Such a generalized plan is called a

MA CROP. If a MACROP can be used as part of a new plan, the time needed to find

the plan may be considerably reduced.

One disadvantage of the learning technique used by STRIPS is that it learns new

MACROPs without considering their utility. As new problems are solved, the set of

MACROPs grows larger and larger until, eventually, the time spent checking each

MACROP is greater than the time saved by creating them.

2.3.2. Solving Subgoals. Heuristic search uses an evaluation function to es-

timate the distance from a given state to the goal state. This technique is much

more efficient than brute-force search, but for some problems, such as Rubik's Cube

(Figure 2.2), it is difficult to find a heuristic evaluation function that increases mono-

tonically towards the goal.

The standard Rubik's Cube [9] consists of 26 subcubes arranged as a 3 x 3 x 3 cube.

The visible faces of these subcubes are called facelets. The goal is to arrange these

subcubes or cubies so that the faclets on each cube face are the same color. This can

be done by rotating the faces of the cube (Figure 2.3). Two similar puzzles are the

2 >< 2 x 2 "Rubik's Pocket Cube" and the 4 x 4 x 4 "Rubik's Revenge." Korf [15]

examined several possible heuristic evaluation functions for the Rubik's Cube family

2. SEARCH 12

FIGURE 2.3. The Effect Of Rotating A Cube Face

2. SEARCH 13

of puzzles by enumerating all of the states of the Rubik's Pocket Cube (2 x 2 x 2),

and found that none of them were useful for solving the 2 x 2 x 2 cube. It seems

unlikely that any useful evaluation function can be computed easily, which suggests

that Rubik's Cube puzzles cannot be solved with heuristic search.

Many problems can be easily expressed as a composition of sub-problems. For

example, Rubik's Cube can be expressed as "Get each cubie to the correct position and

orientation." This suggests setting up a sequence of subgoals and solving them one

at a time. The General Problem Solver (GPS) [16] implements means-ends analysis

along with other problem-solving techniques. It is applicable if there exist a set of

subgoals and an ordering of these goals such that, once a goal is satisfied, it need

never be violated to solve the remaining subgoals [6]. A set of subgoals with this

property is called serializable.

Unfortunately, Rubik's Cube does not satisfy this condition. Once some cubies

have been placed in their goal positions, they must be moved to solve the other

cubies. What is needed here is to find a way to solve a subgoal in such a way that

any previously solved subgoals, although they may move temporarily, are left in the

proper state.

2.3.3. The Macro Problem Solver (MPS). Korf's Macro Problem Solver

(MPS) [15] solves problems such as Rubik's cube and the Eight puzzle in this way by

creating a macro table.

2.3.3.1. The Macro Table. The goal of this system is to build a macro table (Ta-

ble 2.1). Each entry in the table gives a macro to solve a subgoal so that any previously

solved subgoals, although they may be destroyed temporarily, are eventually restored.

Figure 2.4 shows how the macros in Table 2.1 are used to solve the Eight puzzle.

State (a) is the initial state of the puzzle we want to solve. First we find the blank,

2. SEARCH 14

0
0
1 LU

2u
3 UR

4R

5 DR
6D
7 LD
8L

1 2 3

RDLU

DLURRDLU DLUR

LDRURDLU LDRU

LURDLDRURDLU LURDLDRU

URDLDRUL ULDORU

RULDDRUL

DRUL

2 7 8

1 6 3

5 4

a

1 2 8

7 3

5 6 4

d

1 2 3

6 4

8 7 5

g

URDLULDDRU

RULLDDRU

RDLLURDRUL

LDRULURDDLUR

LDRUULDRDLUR

RULDRDLULDRRUL

RDLULDRRUL

4

LURD

ULDR

URDLULDR

RULLDR

5 6

RDLLUURDLDRRUL

ULDRURDLLURD URDL

ULDRRULDLURD RULD

TABLE 2.1. Macro Table For The Eight Puzzle

column 0

row 6

D

column 3

row 4

RDLLURDRUL

column 6

row 8

RULD

2 7 8

1 3

5 6 4

b

1 2 3

8 7

5 6 4

e

1 2 3

8 4

7 6 5

h

column 1

row 8

DRUL

column 4

row 5

LURD

finished

1 2 8

7 3

5 6 4

1 2 3

8 4

5 7 6

f

column 2

row 2

column 5

row 7

ULDRURDLLURD

FIGURE 2.4. Sample solution of the Eight Puzzle by MPS

2. SEARCH 15

4 8 7

2 6 1

3 5

FIGURE 2.5. An Arbitrary State Of The Eight Puzzle, Its State-Vector

Representation Is (6, 4, 8, 7, 1, 5, 0, 3, 2)

which is in the position where the 6 belongs. Column 0 contains the macros for the

blank, and the macro in row 6 is "D." This macro moves the blank to its goal position

in the center. In state (b) tile 1 is in position 8. The macro in row 1 column 8 is

"DRUL." This macro moves tile 1 to its goal position leaving the blank in its goal

position. During the application of the macro, the blank is moved out of its goal

position, but it is always restored to the goal position by the end of the macro. In

state (c) tile 2 is already in position 2, so no macro is applied. Tile 3 is in position 4

in state (d), so the macro from column 3, row 4 ("RDLLURDRUL") is applied. This

continues until each tile is placed in its goal position. Using the macro table involves

no search, and is an efficient solution technique.

2.3.3.2. The Basic Algorithm. In order for the technique in Section 2.3.3.1 to

work, the Macro Problem Solver must first build the macro table. The basic algorithm

is to fill in the entries in the table by searching the space of possible macro operators.

Each macro generated is inserted into the table in its correct slot, unless a shorter

macro has already filled that slot.

A search through the space of possible macros can be accomplished by an iterative

deepening search from the goal. MPS represents each possible state of the puzzle as

a vector of state variables. For a given state, each variable corresponds to a piece of

the puzzle, and the value of each variable corresponds to the position of that piece.

2. SEARCH 16

For example, the state variables for the Eight puzzle correspond to the blank, and the

eight sliding tiles. The value of the variable corresponds to the position of the tile in

the goal state. Figure 2.5 shows an arbitrary state of the Eight puzzle, and its state

vector representation. The blank is in the position corresponding to the 6 tile, so the

0th element of the vector is 6. The 1 tile is in position 4, so the 1st element of the

vector is 4, and so on. Note that 0 is used to represent the blank. Although different

representations exist, some of which may seem more intuitive, MPS is dependent on

the representation, and in general, it will not work with other representations.

Given that we can find macros with an iterative deepening search from the goal,

we need to be able to decide where the macros fit in the table. If a macro belongs in

column n, row m of the table, then that means the macro moves a tile from position

m to position n, leaving all the pieces from positions 0. . . (n - 1) unchanged. Now

consider applying the inverse of that macro to the goal state. It will take the tile from

position n and move it to position rn while leaving the tiles from positions 0. . . (n - 1)

unchanged. The state vector for the state obtained by applying the inverse of this

macro to the goal state will look like (0, 1, . . . , (n - 1), m,...). The first n values of

the state vector will correspond to the goal values. A macro that when applied to

the goal leaves the first n state variables unchanged is said to have an invariance of

n. Since the invariance of the macro gives the longest sequence of variables that are

unchanged by the macro, the invariance of the macro tells us which column the macro

belongs in. If a macro has invariance ii, then so does its inverse; since the macro does

not change the values of the first n state variables, neither will its inverse.

In addition, the value of the nth state variable tells us which row the macro's

inverse belongs in. So for each state found during the search from the goal, we find

the invariance of the macro and look at the value of first state variable that differs

2. SEARCH 17

from the goal. If the invariance of the macro is n, and the value of the first state

variable that differs from the goal is in, then we place the inverse of the macro in

column n, position in in the table. Since the search finds all the length one macros,

then all the length two macros, and so on, we will always find the shortest macros

first. Thus we can simply put a macro in the table if there is no macro already there.

If the longest macro in the completed table is of length n, this technique will find all

the macros with a search to depth n.

2.3.3.3. Partial Match, Bi-directional Search. Consider two macros that, when

applied to the goal state, map the ith state variable to the same value. If we apply

the first macro followed by the inverse of the second macro to the goal, the effect will

be to move the ith state variable and then to move it back its goal value. So any

two macros that when applied to the goal generate an identical sequence of i state

variables can be composed to generate a new macro of invariance i. By storing the

state vectors of each macro when applied to the goal, it is possible to generate macros

of length 2i by composing two macros of length i whose first n state variables are

equal (but not necessarily equal to the goal value).

The above technique is based on the bi-directional search described by Pohl [17].

The major differences are that we use only one search from the goal, and that only

the first n state variables must match. This allows us to find macros of length d

with a search to depth d/2, which is a tremendous computational advantage since it

reduces the cost of the search from b' to bdl2 where b is the average branching factor.

However, this technique does not gain us much if each new state must be compared

with each existing state. When this is the case, the bi-directional search takes the

same amount of time as an ordinary search, with comparisons taking most of the

2. SEARCH 18

time. Fortunately, it is possible to hash the states based on the values of the state

variables.

2.3.3.4. Macro Composition. When we compose two macros of invariance i, the

resulting macro will be a different macro having invariance i. If, when applied to

the goal state, the (i + 1)th state variables are equal, then if we compose one macro

with the inverse of the other, we will get a macro with invariance of at least i + 1.

Korf takes advantage of this by first letting the algorithm above run until memory

is exhausted, and then composing the macros with the highest invariance to fill the

empty slots in the table [14]. This technique has the advantage that it can find high

invariance macros with little computation, however, it is not guaranteed to find the

shortest macros.

2.4. Summary

Heuristic search can solve problems well with an accurate heuristic function. Some

problems such as R.ubik's Cube do not have an accurate heuristic function that is

easily computable. Korf's MPS (Section 2.3.3) can solve problems such as Rubik's

Cube without .a heuristic function by building a macro table.

MPS can be used to solve any problem that is serially decomposable. Peg Solitaire

is an example of a problem that is not serially decomposable, and so cannot be solved

by MPS. Another disadvantage of MPS is that information from one domain cannot

be transferred to a similar domain. Iba's MACLEARN [13] addresses these problems,

and is described in Chapter 3.

CHAPTER 3

Minimum to Minimum

Iba [13] describes a heuristic approach to the discovery of useful macro operators.

His system, MACLEARN, learns new macros during problem solving so that they can

be used immediately. By learning macros on simple training problems, the system is

able to solve much more difficult problems. This chapter describes Iba's MACLEARN

system. Section 3.1 describes his general framework for learning macros. Section 3.2

describes details of the system itself. Section 3.3 discusses the results of Iba's tests.

Chapter 4 analyses MACLEARN in more detail and introduces an improvement.

3.1. Iba's Learning Model

Iba [13] gives a general framework for learning macros in a wide variety of domains.

The learning model is based on the components shown in Figure 3.1. The Performance

Element executes some form of search over the operator set. As it finds new states of

the puzzle, it passes that information on to the Macro Proposer which proposes new

macros at certain stages of the search. The Static Filter decides if a new macro is

likely to be useful, then adds it to the operator set. The Dynamic Filter is invoked

after a training session to remove macros that were not useful.

The model is flexible, allowing for both in-trial learning, and cumulative learning

across similar problems.

19

3. MINIMUM TO MINIMUM 20

//"'•Dynamnic
\ Filter ,y

7
Operator Set

Primitive Operators and Macros

orm

\\!M !7•) 1\ 70!!,r,-/

Macro

Data Flow

FIGURE 3.1. Iba's Learning Model

Static
Filter

3. MINIMUM TO MINIMUM 21

• I S • • S S

• S •o•••

• •.••.I

FIGURE 3.2. The Hi-Q Puzzle: An Example Of Peg Solitaire

3.2. Maclearn

Iba's system based on the framework described above is called MACLEARN. Each

of the system's components are described in detail below.

3.2.1. Operator Set. MACLEARN operators are represented as pairs of rectan-

gular arrays, that match when reflected or when rotated by 00, 900, 180°, or 270°.

The first element of the pair represents the preconditions of the operator; the second

represents the effects. For example, in the Peg Solitaire domain [4] (Figure 3.2), the

only basic operator is

• 5 0 - 0 0 5

Macros are represented in the same way, with the addition of "•" which is a Don't

Care symbol. An example is shown in Figure 3.3.

The choice of representation is important, and the beauty of this one is that it

allows macros to be treated in exactly the same way as it treats primitive operators.

3. MINIMUM TO MINIMUM 22

I • 0

0 I I - 0 0 0

0 • I

FIGURE 3.3. An Example Of A Macro Operator For Peg Solitaire

3. MINIMUM TO MINIMUM 23

ALGORITHM 3.1 (COMPOSE MACRO).

(1) Find the smallest rectangle that includes all of the locations used by any
operator in the sequence being composed.

(2) Create an array with the dimensions of this window, and fill it with Don't
Care symbols. For each operator in the sequence being composed do (in the
order that they occur in the sequence)
(a) Change the position of the operator so that it is relative to the rectangle

being used rather than the whole board.
(b) Copy the after array of the operator into the rectangle being used. Don't

Care symbols are not copied.
(3) Copy the current rectangle to a new after array.
(4) For each operator in the sequence being composed (in the reverse order that

they occur in the sequence)
(a) Change the position of the operator so that it is relative to the rectangle

being used rather than the whole board.
(b) Copy the before array of the operator into the rectangle being used.

Again, Don't Care symbols are not copied.
(5) Copy the current rectangle to a new before array.

In order for a macro to be useful, it must be generalized so that it can be used in

different parts of the search. In MACLEARN, the macros are generalized implicitly

by the representation, which allows them to be used anywhere on the puzzle, and

at any orientation. There is no explicit generalization step; the generalization comes

free with the representation.

3.2.2. Macro Proposer. The Macro Proposer watches the search develop and,

based on heuristic rules I will describe shortly, decides when to learn new macros.

Once that decision is made, a macro is composed from the chosen operator sequence.

The before and after patterns of the operator are created as in Algorithm 3.1. Fig-

ure 3.4 shows several steps in the solution to a Peg Solitaire problem. The primitive

operators used in this sequence are shown in Figure 3.5. The macro operator in

Figure 3.6 is learned by composing these primitive operators.

3. MINIMUM TO MINIMUM 24

-*

FIGURE 3.4. An Example Operator Sequence For Macro Composition

• 5 0 - 0 0 5

FIGURE 3.5. Operators Used In Figure 3.4

o 0

• I I - 0 0 0

S I

FIGURE 3.6. Macro Operator

• 0

• -4 0

0 I

3. MINIMUM TO MINIMUM 25

Va
lu
e
of
 t
he

 h
eu

ri
st

ic
 e
va

lu
at

io
n
fu
nc
ti
on

Solution Path

FIGURE 3.7. The Effect Of Macros Learned By The Minimum To Min

imum Heuristic

3.2.3. Static Filter. The Static Filter uses three tests. It removes new macros

that are duplicates of existing operators. The filter also removes macros that are

longer than a given threshold. Long macros will usually have complex preconditions

and thus will not often be applicable. Chapter 4 examines this motivation in more

detail. Lastly, a domain dependent test may be applied.

A macro that passes these tests is immediately added to the operator list, allowing

in-trial learning as well as cumulative learning across trials. Macros learned early in

the search can be beneficial for the remaining solution as well as for later problems.

3.2.4. Dynamic Filter. MACLEARN also uses a Dynamic Filter to remove macros

that are seldom or never used. This is invoked to remove unused macros after a train-

ing session. It proves to be effective in the Peg Solitaire domain, but it may not

always be helpful, since it can remove potentially useful macros.

3.2.5. The Minimum To Minimum Heuristic. MACLEARN uses a Minimum

to Minimum heuristic to find new macros. (Figure 3.7). When the value of a heuristic

function at a given state is less than the value at its children, a new macro is proposed

3. MINIMUM TO MINIMUM 26

between the previous and current minima along the solution path.' The motivation

behind this heuristic is to eliminate the segments of the search where the heuristic

function is increasing. When a solution must follow such a segment, the neighboring

region of lower heuristic value is exhaustively searched. By remembering macros that

traversed the "hills," the system tries to avoid these more expensive segments. The

macros make the heuristic function monotonically decrease along the solution path.

3.3. Results

To test his system, Iba ran three experiments in the Peg Solitaire domain. The

first examined the value of learning macros. The second tested the effects of cumu-

lative learning over several problems. The third tested the static filtering heuristics

described in Section 3.2.3.

For the first test, each of the problems in Figure 3.8 were attempted without macros,

then again with macro learning. The trial with macro learning was repeated to allow

the use of macros that were learned near the end of problem solving. Then the

Dynamic Filter was used to remove unused macros, and the trial was performed

again. This experiment showed that macro learning improved the speed of problem

solving for the smaller puzzles and allowed some of the larger puzzles to be solved

where they could not be solved within resource limits by heuristic search alone.

Even with in-trial macro learning, not all of the Peg Solitaire problems were solved.

The second experiment tested the effects of cumulative learning across the problems

in Figure 3.8. At the end of the first pass through all of these problems, the Dynamic

Filter was invoked to remove unused macros. Then each problem was attempted

again, and the Dynamic Filter was invoked after each one. This allows macros to

'Iba [13] describes the heuristic function as increasing towards the goal rather than decreasing,

and thus the macro learning heuristic is seen as "Peak to Peak."

3. MINIMUM TO MINIMUM 27

• • • • o.o.o

• • • • 0•• •o

• • •o • • •

• • • • • • •

Medium Edge Partial Hi-Q

• • • • • • S S •

• • S S S S S S S

••... •OSSS • S SIS

•OSSS S S S S S 5 SOSS

• S S S S S S S S • S S S• S

• S S S S S S S S

• S S S S S S S S

Hi-Q-1 Hi-Q-2 Hi-Q

FIGURE 3.8. Peg Solitaire Problems Used For Iba's Experiments

3. MINIMUM TO MINIMUM 28

be generated in one problem and used in solving another one, but keeps control of

the number of macros. This experiment showed that cumulative learning allowed

MACLEARN to solve problems that it could not solve with in-trial learning alone.

The final experiment tested the static filtering mechanism (3.2.3). Again, the

problems in Figure 3.8 were used as a training sequence. To test each component of

the Static Filter, this training sequence was attempted with all of the components

disabled, then with each individual component enabled, then with all components

enabled. The results showed that the static filtering mechanism is useful, and that

each of the components resulted in an improvement in problem solving speed.

3.3.1. Discussion. Iba makes several implicit assumptions about the problem

domain that have an effect on the search. MACLEARN assumes that the heuristic

evaluation function is non-monotonic. If the evaluation function is monotonic, no

macros will be generated. In practice this is not really important, since best first

search already works well in a domain with a monotonic evaluation function. The

representation of macros as rectangular arrays may have an important effect on the

search, which is not discussed by Iba. MACLEARN works well for puzzles that can

easily be defined on rectangular grids, but there are many important problems that

do not involve rectangular arrays.

Despite its limitations, the MACLEARN system can result in significantly better

performance than heuristic search alone. The ability to learn macro operators on

simple training problems allows MACLEARN to solve several difficult problems.

CHAPTER 4

Optimal Tunneling

In a domain such as Peg Solitaire, the Minimum to Minimum heuristic finds many

useful macros because the distances between minima are small. However, in other

domains the minima are much further apart, and the Minimum to Minimum heuristic

proposes much longer, less useful macros. This chapter describes a new heuristic for

learning macros: Optimal Tunneling. The intuition behind Optimal Tunneling is

described in Section 4.1. This intuition is examined in Sections 4.2 to 4.4. Chapter 5

shows the results of several tests comparing the Minimum to Minimum heuristic with

Optimal Tunneling.

4.1. Sokoban

SOKOBAN [11] is an interesting family of puzzles in which minima are far apart.

It is loosely related to the Eight puzzle (Figure 2.1), but is more complex, with a

domain consisting of several objects (Figures 4.1 and 4.2): a penguin, some balls and

the same number of goal squares, and some walls that form a maze.

Ball Goal Penguin Wall

FIGURE 4.1. The Parts Of SOKOBAN

29

4. OPTIMAL TUNNELING

(a) (b)

(c) (d)

FIGURE 4.2. The Solution To A SOKOBAN Problem

30

The object of the game is to move the penguin - up, down, left, and right - to

push all of the balls onto the goal squares. The penguin can be moved by itself or

push exactly one ball into an empty space or goal.

4.1.1. Heuristic Functions For Sokoban. A heuristic function for SOKOBAN

might be based on the one Iba used for the tile sliding domain [13]. The function

would return a vector with the following components:

(1) The number of balls not in goal locations.

4. OPTIMAL TUNNELING 31

(2) The average Manhattan' distance of each ball from each of the empty goal

squares.

(3) The Manhattan distance of the penguin from the closest ball not in the goal.

The elements of this vector would be compared in this order and suggest a set of

subtasks to be solved.

Figure 4.2 shows an initial state and three stages of solution. In stage (b), the

problem solver has reached an impasse. It has only two moves available to it, and

both result in an increase in the heuristic function. This stage is a minimum. To

move the ball closer to the goal, the penguin must first be moved away from the ball,

around the wall, and back towards the ball to stage (c). From stage (c), the heuristic

function gradually decreases as the ball is pushed into the goal. The penguin is then

moved until it is adjacent to the nearest ball not in the goal, stage (d). Stage (d) is

also a minimum, since the only available moves are to push the ball away from the

goal, or to move up or right, both of which are away from the ball. At stage (d), the

Minimum to Minimum heuristic would propose a macro from stage (b) to stage (d).

This macro is composed of 32 primitive steps, and is far too specific to be useful.

A much more useful macro would be the one from (b) to (c) since it could be used

many times during the solution to this screen. Notice that the heuristic function

returns the same vector for each of these states.

So our intuition suggests macros from a minimum in the heuristic function to the

next state where the heuristic value is the same as this minimum (but not necessarily

at a new minimum). We now examine this intuition.

• 'The Manhattan distance between two points is the number of grid steps needed to go from one

to the other. Formally, MD(zi, y, x2, 112) = JX1 - z2I + JY1 - 1121.

4. OPTIMAL TUNNELING 32

4.2. Search As "Pouring Water"

Consider a two dimensional search space. The heuristic function defines a three

dimensional surface over this space. If one were to "pour water" at the start state on

the surface, it would run downhill until it reached the goal, and the path of the wave

front represents the progress of the best—first search (water takes the path of least

resistance). Figure 4.3(a), shows an example of the heuristic function value along a

solution path. However, if there is a valley along this path, the water must fill the

valley to form a lake before continuing on down the next slope, as in Figure 4.3(b).

In a best first search, this "lake" represents the work needed for the problem solver

to search each state in the valley until it finds a way out. The search must look at

all the states that the heuristic function estimates are better, ie. the neighbors in the

"valley," before the search can continue over the valley ridge.

4.3. Optimal Tunneling Macros Reduce Search Cost

Adding a macro to the operator set allows the heuristic search to avoid examining

all the states in the valley. If a macro can be applied from a state in a valley it can al-

low the system to jump to a state outside the valley in a single step. A macro acts like

a tunnel or pipe that allows the water to drain. Figure 4.4(a) shows the same search

space as Figure 4.3(b) with macros added using the Minimum to Minimum heuris-

tic. These "tunnels" allow the water to drain preventing any "lakes" from forming.

However, they are longer than they need to be. Figure 4.4(b) does the same job with

the Optimal Tunneling heuristic using shorter tunnels. Having simpler preconditions,

the shorter macro is more likely to be used in similar situations. Iba's static filtering

mechanism (Section 3.2.3) deals with the problem of long macros by preventing them

from ever entering the operator pool. The Optimal Tunneling method tries to avoid

Start Node

Start Node

4. OPTIMAL TUNNELING 33

Goal Node

Lake

Goal Node

(a) Monotonic Search

Lake

(b) Search with Valleys

FIGURE 4.3. The Effects Of "Pouring Water" On Example Search Spaces

4. OPTIMAL TUNNELING 34

Start Node

Start Node

/
Macro Operators

(a) Minimum to Minimum

Macro Operators

(b) Optimal Tunneling

FIGURE 4.4. Macros As Tunnels

Goal Node

Goal Node

4. OPTIMAL TUNNELING 35

proposing long macros in the first place. Although the shorter macros mean more

steps in the solution, the added steps cost little in the search, since they occur in

a segment where the heuristic function decreases. The Optimal Tunneling heuristic

proposes macros from a valley floor (a minimum in the heuristic function) to the next

state outside the valley at the same height.

From the water pouring analogy it is easy to see why macros should be proposed

starting from a minimum. If the heuristic search without macros ever enters a valley,

it will eventually reach the valley floor unless it finds the goal somewhere on its way

down. If a macro were proposed starting from part way up the valley side, there is no

guarantee that the state on the valley side will be found immediately. More likely, the

search will reach the valley floor and then have to search every state in the valley until

it finds the starting point for the macro. This suggests that the "Optimal Aqueduct"

heuristic (Figure 4.5) will not work well. The search may get lucky and hit the start

of the aqueduct, but it is more likely to search the entire valley. Referring back to

the water pouring analogy and real tunnels for water, most well designed city storm

sewers have their entrances at local minima. Any minimum that does not have a

storm sewer entrance will flood when it rains.

The water pouring analogy also suggests that a horizontal tunnel is the shortest

tunnel that will allow water to drain from the valley. Any shorter macro would give

an uphill slope to the tunnel as in Figure 4.6.

The problem with this macro is that the heuristic search has no reason to select

it over any other operator. When expanding the state at the floor of the valley, the

primitive operators will result in states with slightly higher heuristic values than the

valley floor. The macro, on the other hand, gives a state with a much higher heuristic

value. As a result, the best first search will choose to expand the states inside the

4. OPTIMAL TUNNELING 36

Start Node

Optimal Aqueducts

Goal Node

FIGURE 4.5. The Optimal Aqueduct Heuristic

Start Node

Uphill Pipes

Goal Node

FIGURE 4.6. Uphill Pipes

4. OPTIMAL TUNNELING 37

valley first. The state generated by the macro would only be expanded after all lower

states in the valley had been exhaustively searched. The water would fill up the valley

until the level in the valley had reached the height of the top of the pipe.

The shortest macro that forces the search to continue outside the valley is the one

generated by the Optimal Tunneling heuristic. When the state at the valley floor is

expanded, the state generated by the macro will have a lower heuristic value than the

states generated by the primitive operators in the valley. The heuristic search will

select this new state first since it has the lowest heuristic value.

4.4. Optimal Tunneling Macros Improve Heuristic Function Accuracy

DEFINITION 4.1. 1(n) is the minimum cost from state n to a goal.

DEFINITION 4.2. f*(n) - the heuristic function - is an estimate of f(n).

It is expected that the more nearly f* approximates f, the better the algorithm

will do [3]. Unfortunately, for most problems, f is not identical to f. How can the

difference be reduced?

Macros do not change the function f*, but do change f. New macros change the

search space by reducing the cost of moving from one state to another. Since we are

looking for any solution to a puzzle, not necessarily the shortest one, we can assume

that the cost of a macro operator is 1, the same as the cost of a primitive operator.

If it is possible to move from state a to state b using a macro operator M, then

f(a) ≤ f(b) + 1 since if the minimum cost of moving from b to the goal is 1(b), the

minimum cost of moving from a to the goal cannot be greater than the cost of moving

to b, and then moving to the goal. So if f* (a) < f(a), learning a macro from a could

reduce the difference between the two.

4. OPTIMAL TUNNELING 38

D Starting position
RGoal

Solution Path

FIGURE 4.7. The Solution Path Without Macros

The most useful macro to learn from a is one that makes f(a) = f*(a). Such a

macro should move from a to some b such that 1(b) = f*(a) - 1. In other words, the

macro should move us from state a to a state in which the minimum distance to the

goal is f*(a) - 1. In practice, finding the state b may be computationally difficult.

However, we can find b' such that f*(b) = f*(a) - 1. Here we find a state b' where

the value of the heuristic function is one less than the value of the heuristic function

at state a. The Optimal Tunneling heuristic finds macros where f*(bl) f*(a). The

macros that it learns change the distance from state a to the goal so that it is one

more than the value of the heuristic function at state a.

An example of a macro that changes the search space is given in Figures 4.7 to

4.10. Figure 4.7 shows a solution to a simple path-finding problem with no macro

operators. The Manhattan distance from each state along the solution path to the

goal is shown in the figure. The number of steps needed to reach the goal from the

start state is nine, but the heuristic estimates that it is seven. Figure 4.8 shows

the estimated and actual distances to the goal at each step along the solution path.

4. OPTIMAL TUNNELING 39

10

a

6

4

2

0
2 4 6 8 0 10

FIGURE 4.8. The Estimated, f*(n), And Actual, f(ri), Distance To

The Goal Without Macros

D Starting position

•Goal
E: Solution Path

Macro Operator

FIGURE 4.9. The Solution Path With Macros

4. OPTIMAL TUNNELING 40

10
-

f(n)

6

4

2

2 4 6 8 10

FIGURE 4.10. The Estimated, f* (n), And Actual, f(n), Distance To

The Goal With Macros

4. OPTIMAL TUNNELING 41

Learning a macro changes the search space by allowing a move across the two states

with a heuristic value of five in one step (Figure 4.9). The heuristic function has not

changed, but the addition of the macro operator changes the number of steps needed

to reach the goal to eight. This macro has changed the search space to make the

heuristic function more accurate.

4.5. Summary

The Minimum to Minimum heuristic works well for domains in which minima are

close together. SOKOBAN is an example of a domain where minima are far apart.

Minimum to Minimum does not learn useful macros in this domain. An example

suggests learning a macro from a minimum to the next state with the same heuristic

value. The Optimal Tunneling heuristic learns macros in this way.

A water pouring analogy suggests that "valleys" along the solution path will slow

the progress of a best first search. Macro operators act like "tunnels," allowing

water to drain from a valley without filling it to form a "lake." The Minimum to

Minimum heuristic proposes macros that allow the water to drain from one valley

floor to another valley floor, but the macros are longer than they need to be. The

water pouring analogy suggests that a macro should start at a minimum, and end

at a state with the same heuristic value. The Optimal Tunneling heuristic proposes

these macros, which allow the water to drain,, but with as short a tunnel as possible.

The performance of a best first search depends on the accuracy of the heuristic

function. Macro operators change the search space, and can potentially make the

heuristic function more accurate. The Optimal Tunneling heuristic finds macros that

do this.

Since the Optimal Tunneling heuristic finds macros that tend to make the heuristic

function more accurate, these macros should improve the efficiency of the search.

4. OPTIMAL TUNNELING 42

Optimal Tunneling also finds the shortest macro that avoids searching "valleys." This

suggests that in general, Optimal Tunneling will perform better than the Minimum

to Minimum Heuristic. The results in Chapter 5 confirm the superiority of Optimal

Tunneling.

CHAPTER 5

Results

5.1. Implementation Status

I have implemented a problem solver based on Iba's work. It is written is Chez

Scheme, and supports both the Minimum to Minimum and the Optimal Tunneling

heuristic. Source code for the system is available from jamesmcpsc.uca1gary.ca,

or bruceQcpsc . ucalgary , . Ca. During the course of my research, I also implemented

a problem solver based on Korf's MPS [15] (Section 2.3.3).

The structure of the problem solver is similar to the model described by Iba (Sec-

tion 3.1). The core of the system is a heuristic search. Each operator is stored as a

list of "before" and "after" pairs for each possible orientation of the operator. The

"before" and "after" patterns are stored as a list containing a list of symbols for each

line of the pattern. The operator pool is stored as a simple list of operators.

Several data structures are used to improve the performance of the system. Each

newly generated state must be checked to see if it was generated previously. This is

done by storing each state in a hash table [10], which can be quickly checked to see if

a new state is a duplicate. Another potentially slow operation is the maintenance of

the sorted list of open states. These states are kept in a heap [10], providing O(log m)

time for an insertion, and O(log n) time for the removal of the minimal element.

The pattern-matching algorithm is not as efficient as it could be. Since it tries

43

5. RESULTS 44

to match a pattern at each possible position without using any of the information

from previous positions, it requires O(m x n) comparisons for an operator with m

symbols, and a state description with n symbols. Amir et at [1] present a more efficient

algorithm. The Rabin-Karp string matching algorithm [5] can also be generalized to

2-dimensional pattern matching giving O(n + in) comparisons.

5.2. Problems With Heuristic Search

When the heuristic function is one to one, the heuristic search is completely defined.

However, if two states can have the same heuristic value, then the heuristic search

must choose which to expand first. Such choices early in the search can have drastic

effects on the outcome. The choice of which state to select among those with the

same heuristic value is usually defined implicitly by the problem solving system, and

is affected by several design choices:

(1) What order are operators applied to a state being expanded?

(2) If operators can be matched when rotated or reflected, in what order are the

rotations or reflections applied?

(3) When new states are added to the list of unexplored states,

before or after states with the same heuristic value?

(4) Does the data structure used to store the unexplored states maintain the order

of states with the same heuristic value?

Figure 5.1 shows the effects of various choices on a simple path finding domain. Part

(a) shows the effects of examining the state generated by the "Right" operator before

considering others. Part (b) shows the effects of preferring the "Up" operator. For

part (c), when two states have the same heuristic value, one is chosen at random.

Although all three examine a similar number of states, the solutions found are signif-

are they added

/ > /. ••• *../

I

D Starting position
U Goal

Solution Path

5. RESULTS

1i Starting position
IGoal

Solution Path

(a) Prefer Right (b) Prefer Up

45

< /

El Starting position
U Goal

'Solution Path

(c) Random

FIGURE 5.1. The Effects Of Operator Choice On Heuristic Search

icantly different. The order in which states are expanded can change both the total

number of states expanded during a search, and the solution path.

These effects are compounded by macro learning. Since these choices will cause

the search to take different paths through the search space, different macros will be

learned, which increases the difference between the two searches. Also, the addition

of macros adds new choices when heuristic values are the same:

(1) Are macro operators expanded before or after primitive operators?

(2) Are new macros expanded before or after old ones?

These choices can be made arbitrarily in that there is no clear reason to prefer any

one of them, but their effects can significantly alter the results of a given trial. Since

Iba does not specify what choices he makes for his system, it is difficult to reproduce

his results exactly. My system makes choices as described in Appendix A.

5. RESULTS 46

• • • • O•0•0

• • • S 0S• •o

• . •o

• ••.

Medium Edge Partial Hi-Q

• S • • S S • S S

• S S S • • S S •

• . S S S 50555 . S S S •

SOSSS S • S 5• S •o.•

• . S S 5 5•••• . S • S •

• I. . S • S • •

• . . S S S • . .

Hi-Q-1 Hi-Q-2 Hi-Q

FIGURE 5.2. Problems Used For The Peg Solitaire Experiments

5.3. Comparative Tests

The Optimal Tunneling heuristic and the Minimum to Minimum heuristic are com-

pared using the problem solver described above. For each comparative test, the only

change made is the choice of macro proposing heuristic. The tests were performed

on a SparcStation 10 Model 30 with 32Mb of physical memory, and 252Mb of virtual

memory.

5.3.1. Peg Solitaire. Iba tested the MACLEARN system on the Peg Solitaire

domain. Since the minima are close together, this is a domain for which the Minimum

to Minimum heuristic performs well. Even in a domain where Minimum to Minimum

performs well, the Optimal Tunneling heuristic shows a significant improvement.

5. RESULTS 47

000

000

• S 0 • • Number of peg groups: 2

0 • 0 • • Number of hole groups: 2

• • 0 S S Number of pegs: 15

FIGURE 5.3. A Peg Solitaire State Whose Evaluation Function Value Is (2,2,15)

5.3.1.1. Heuristic Function. The Heuristic Function used for Peg Solitaire was

identical to the function used by Iba. It is a vector with three components:

(1) The number of groups of pegs

(2) The number of groups of holes

(3) The number of pegs

Groups are defined as horizontally or vertically adjacent sets. Figure 5.3 shows an

example state, and its evaluation.

5.3.1.2. Static Filter. For the tests in the Peg Solitaire domain, the static filter

included all of the elements in Section 3.2.3. The threshold for the length test was

seven.

The domain-specific test for Peg Solitaire was a connectedness test. This test rejects

macros in which the pegs are not connected in the "after" side.

5.3.1.3. Experiment 1. The first experiment compares Minimum to Minimum with

Optimal Tunneling for three different parts of a learning trial. Each of the problems

in Figure 5.2 was attempted three times. As in Iba's Experiment 1 (Section 3.3),

5. RESULTS 48

the problems were attempted twice with macro learning and then again after dy-

namic filtering. Each problem was attempted separately from the others; there was

no cumulative learning across different problems. The only difference between this

experiment and Iba's experiment is that we do not attempt to solve the problems

without macro learning since we want to compare the two macro-learning heuristics.

Figure 5.4 shows the results of the first trial with macro learning. Neither sys-

tem solved the Hi-Q puzzle within the 10000 second time limit without cumulative

learning. For the Hi-Q-1 problem, Optimal Tunneling was only slightly faster than

Minimum to Minimum, but Optimal Tunneling was significantly better for all the

other cases.

For the second try with macro learning (Figure 5.5), the results were more varied.

For the Partial Hi-Q and the Hi-Q-2 problems, the solutions for Optimal Tunneling

were found without backtracking, and much more quickly than those for Minimum to

Minimum. The Medium Edge problem was actually solved monotonically (without

backtracking) by Minimum to Minimum, but since it had a higher branching factor, it

took slightly longer than Optimal Tunneling which needed to backtrack. In the final

phase of the experiment, the dynamic filter reduced the branching factor enough that

Minimum to Minimum could solve it faster. The only case where Optimal Tunneling

was worse than Minimum to Minimum was Hi-Q-1. Neither heuristic solved this

problem as quickly as the other problems, and Optimal Tunneling took nearly twice

as long as Minimum to Minimum.

After Dynamic Filtering (Figure 5.6), Medium Edge was the only problem that

was solved more quickly by Minimum to Minimum. This was the simplest of the

problems, and both systems solved it in less than one second. Optimal Tunneling

performs more effectively on the more complex problems. Partial Hi-Q and Hi-Q-2

16 -

14 -

12 -

8—

jjj 6-

4-

2-

Medium Edge Partial Hi-Q

400 -

350 -

300—

250In

p200-

150-

100-

50-

0

5. RESULTS

Optimal Tunneling

0 Minimum to Minimum

Optimal Tunneling

0 Minimum to Minimum

I-li-Q-1 I-li-Q-2

FIGURE 5.4. First Try With Macro Learning For Peg Solitaire

49

5. RESULTS 50

3—

2.5 -

Medium Edge

10000-

1000-

100-

10 -

Hi-Q-1

D Optimal Tunneling

0 Minimum to Minimum

Partial Hi-Q

IM Optimal Tunneling
o minimum to Minimum

Hi-Q-2

FIGURE 5.5. Retry With Macro Learning For Peg Solitaire

5. RESULTS 51

were both solved monotonically and took about 1/5th as much time as Minimum to

Minimum. Hi-Q-1 seemed to give both systems some trouble, but again, Optimal

Tunneling was nearly 5 times faster than Minimum to Minimum.

Although a few problems took more time with Optimal Tunneling, it generally

performs much better than Minimum to Minimum for problems in the Peg Solitaire

domain without cumulative learning.

5.3.1.4. Experiment 2. The second experiment with Peg Solitaire compares the

two macro-learning heuristics for cumulative learning across similar problems. For

this test, all of the problems in Figure 5.2 except the full Hi-Q were used as a training

sequence. Hi-Q was not solved by Minimum to Minimum even with cumulative

learning, so it was left out of this test'. At the end of the first pass through all of

these problems, the Dynamic Filter was invoked to remove unused macros. Then

each problem was attempted again, and the dynamic filter was invoked after each

one. Figure 5.7 shows the run time for both macro learning techniques. Another

useful measure of performance is the cumulative run time, since it takes into account

the work needed to learn macros during the initial training sequence. Figure 5.8

shows that Optimal Tunneling results a clear improvement in cumulative run time

over Minimum to Minimum.

For the Peg Solitaire domain, both with and without cumulative learning, Optimal

Tunneling performs significantly better than Minimum to Minimum.

5.3.2. Tile Sliding. Another domain used to compare the Optimal Tunneling

heuristic to the Minimum to Minimum heuristic is Tile Sliding. Tile Sliding is a name

given to the family of puzzles that includes the Eight puzzle and the Fifteen puzzle.

'With cumulative learning Hi-Q was solved by Optimal Tunneling, but it is not worthwhile to

use it in the training sequence since Minimum to Minimum failed to solve it.

5. RESULTS 52

9-

8-

7—

. 4 -

3 —

2 —

I —

0

IM Optimal Tunneling

0 Minimum to Minimum

Partial Hi-Q

300-

250-

50-

0

Medium Edge

Optimal Tunneling

0 Minimum to Minimum

Hi-Q-2

Hi-Q-1

FIGURE 5.6. After Dynamic Filtering For Peg Solitaire

5. RESULTS 53

R
u
n
 T
i
m
e
 (
C
P
U
 s
ec
on
ds
)

Cu
mu
la
ti

ve
 R
u
n
 T
i
m
e
 (
C
P
U
 s
ec
on
ds
)

Medium Partial
Edge Hi-Q

7000

6000

5000

4000

3000

2000

1000

0 --

Medium
Edge

Hi-Q-1

First Pass

Optimal Tunneling

0 Minimum to Minimum

Hi-Q-2 Medium Partial
Edge Hi-Q

Second Pass

cv.cvv.

Hi-Q-1 Hi-Q-2

FIGURE 5.7. Run Time For Peg Solitaire Experiment 2

U Optimal Tunneling

-- Minimum to Minimum

Partial Hi-Q-1 Hi-Q-2 Medium Partial Hi-Q-1 Hi-Q-2
Hi-Q Edge Hi-Q

First Pass Second Pass

FIGURE 5.8. Cumulative Run Time For Peg Solitaire Experiment 2

5. RESULTS 54

425

1•3

Simple

5 7 14 10

4 13 12 3

9.26

815 11 1

Fifteen

576

813

2•4

Eight

8 7 15 2

16 4 13 6

19 9 18

17 12 11 5

1 14 10 3

Nineteen

726

5 10

319

4 8 11

Eleven

21 8 23 20 10

16 12 22 4 11

17 13 3 9 19

18 15 5 7 14

24 1 2 6

Twenty-four

FIGURE 5.9. The Problems Used For The Tile Sliding Experiment

5. RESULTS 55

Figure 5.9 shows the problems used for the experiment in the Tile Sliding domain.

Each puzzle was chosen at random, but was fixed so that identical problems were

attempted using each heuristic. The tests were similar to the second experiment for

Peg Solitaire. All of the problems were used as a training sequence. At the end of

the first pass through all of these problems, the dynamic filter was invoked to remove

unused macros. Then each problem was attempted again, and the dynamic filter was

invoked after each one.

5.3.2.1. Heuristic Function. The heuristic function for the tests in the tile sliding

domain was identical to the one used by Iba. The function returns a vector with the

following components:

(1) The number of consecutive tiles in their goal locations multiplied by negative

one. Counting starts from the first tile and proceeds until the first mismatch

is encountered. This number is then multiplied by negative one so that the

value gets smaller as it approaches the goal.

(2) The Manhattan' distance of next tile to be placed from its goal square.

(3) The Manhattan distance of the blank from the next tile to be placed.

The elements of this vector would be compared in this order and suggest a set of

subtasks to be solved.

5.3.2.2. Static Filter. For the tests in the Tile Sliding domain, the static filter

included only the redundancy and length tests from Section 3.2.3. No domain-

dependent test was used. The threshold for the length test was thirty.

'The Manhattan distance between two points is the number of grid steps needed to go from one

to the other. Formally, MD(xi,yi,x2,y2) = lxi -x21+lyi-y21.

5. RESULTS 56

R
u
n
 T
i
m
e
 (
C
P
U
 s
ec

on
ds

)

0 01 4)

0

0

0.

r2

1'
First Pais

0. 40

Second Pass

FIGURE 5.10. Run Time For Tile Sliding

5.3.2.3. Results. Figure 5.10 shows the run times for the Tile Sliding domain on

a logarithmic scale. The only test for which Minimum to Minimum is significantly

better is the first attempt at the Eight puzzle. For all subsequent problems, Optimal

Tunneling performs much better, up to eighty times faster for the first attempt at the

Twenty-four puzzle. Figure 5.11 shows the cumulative run time for the Tile Sliding

experiment on a logarithmic scale. Optimal Tunneling shows a clear improvement.

The water pouring analogy in Section 4.2 assumes that the shorter macros proposed

by Optimal Tunneling should be applicable more often than Minimum to Minimum

macros because they have fewer preconditions. The results in Figure 5.12 support

this assumption. This figure shows the number of operators in the operator pool

throughout the Tile Sliding experiment. By the end of the first pass through the

problems, the Optimal Tunneling heuristic had learned seven macros, and the Mini-

mum to Minimum heuristic had learned twenty-eight. At this stage in the problem,

the dynamic filter was invoked, removing four operators from the Minimum to Mini-

mum pool. However, the dynamic filter did not remove any macros from the Optimal

5. RESULTS 57

Cu
mu

la
ti

ve
 R
u
n
 T
i
m
e
 (
C
P
U
 s
ec
on
ds

10000

1000

100

10

1

0.1

am

UOptimal Tunneling

—0--. Minimum to Minimum

dJ

D bO
.L1

FIr3t Pass Second Pass

a

z

FIGURE 5.11. Cumulative Run Time For Tile Sliding

5. RESULTS 58

30

25

0.
0

15

5

0

Optimal Tunneling

Minimum to Minimum

a:

z

First Pass Second Pass

FIGURE 5.12. Number Of Operators For Tile Sliding

Tunneling operator pool. Every macro learned in the first pass was used in later prob-

lems. Optimal Tunneling learned fewer but more useful macros. The effect of the

Optimal Tunneling macros on the average branching factor is shown in Figure 5.13.

The branching factor for Minimum to Minimum is much higher, suggesting that it

will have longer run times.

5.3.3. Sokoban. The final domain for testing is the SOKOBAN domain. The

problems used in this domain are shown in Figure 5.14. To improve the solution

times for these problems (so that the tests could be run in a reasonable time), the

problem solver did not consider any states where a ball had been pushed into a corner,

since a problem is unsolvable from that point. The heuristic function used for the

SOKOBAN domain is given in Section 4.1.1. The limit for the static filter length test

was thirty.

Table 5.1 shows the results for the SOKOBAN domain. Optimal Tunneling solved

the first screen in less than half the time taken by Minimum to Minimum. Neither

5. RESULTS 59

80-

70 -

60—

p50—

.5
c 40 -

20-

1o0 =4719

First Pass

a:

z

Second Pass

a:
0

z

FIGURE 5.13. Average Branching Factor For Tile Sliding

Screen 1 Screen 2

FIGURE 5.14. The Problems Used For The SOKOBAN Experiment

TABLE 5.1. Sokoban Results

Problem Optimal Tunneling Minimum to Minimum

Screen 1 2.7 CPU hours 6.7 CPU hours

Screen 2 Unsolved after 24 hours Unsolved after 24 hours

5. RESULTS 60

heuristic solves the problem as quickly as a human can' but Table 5.1 still shows the

clear superiority of Optimal Tunneling.

5.4. Summary

When each problem was attempted for the first time without cumulative learning

across trials, the Optimal Tunneling heuristic resulted in significantly better perfor-

mance for three of four problems in the Peg Solitaire domain, and performed equally

well for the other. For the second trial, with macros learned from the first, Optimal

Tunneling resulted in poorer performance on only one problem, but showed superior

performance on the others. After dynamic filtering, Minimum to Minimum performed

better on only the simplest problem, and Optimal Tunneling was significantly better

for the rest.

In the Peg Solitaire domain with cumulative learning across trials , Optimal Tun-

neling showed a clear improvement in all cases.

With cumulative learning across trials in the Tile Sliding domain, Optimal Tunnel-

ing learned fewer and more useful macros, resulting in significantly better performance

for all but one problem.

In the SOKOBAN domain too, a problem solving trial using the Optimal Tunnel-

ing heuristic took less than half as long as a trial using the Minimum to Minimum

heuristic.

These results show that the Optimal Tunneling heuristic results in better perfor-

mance in many domains, including domains such as Peg Solitaire where the Minimum

to Minimum heuristic performs well.

3About 2 to 3 minutes for someone seeing the problem for the first time.

CHAPTER 6

Concluding Remarks

The results in Chapter 5 replicate Iba's results, confirming that the MACLEARN learn-

ing model is effective for solving complex puzzles that cannot be solved in reasonable

time with heuristic search alone. The water pouring analogy in Chapter 4 suggests

that the Minimum to Minimum heuristic will not work as well as the Optimal Tun-

neling heuristic. The results of Chapter 5 show that the Optimal Tunneling heuristic

out-performs the Minimum to Minimum heuristic, even on problems for which Mini-

mum to Minimum does well.

6.1. Optimal Tunneling

Optimal Tunneling produces shorter, more useful macros than the similar Minimum

to Minimum heuristic presented by Iba [13]. Optimal Tunneling is an improvement

since its macros:

(1) best reduce search cost

(2) give the most accurate modification to the search space to make the heuristic

function correct

(3) result in better performance on comparative tests in the Peg Solitaire, Tile

Sliding, and SOKOBAN domains

The water pouring analogy illustrates the effect of macros on the cost of search in

problem solving. Optimal Tunneling creates macros that cross exactly the expensive

61

6. CONCLUDING REMARKS 62

I /
Solution Path

(a)

He
ur

is
ti

c
Va
lu
e

He
ur

is
ti

c
Va

lu
e

Solution Path

(b)

Solution Path Solution Path

(c) (d)

FIGURE 6.1. Some Pathological Heuristic Functions

segment of the heuristic function along the current solution path.

6.2. Future Work

6.2.1. Analysis of Heuristic Functions. The MACLEARN learning model makes

some assumptions about the heuristic function it uses. Iba points out that if the eval-

uation function decreases monotonically, the Minimum to Minimum Heuristic will

never be invoked, and no macros will be learned. The same is true of the Optimal

Tunneling Heuristic. Some other pathological heuristic functions are shown in Fig-

ure 6.1. Figures 6.1(c) and (d) show situations in which the Minimum to Minimum

Heuristic will learn macros, but the Optimal Tunneling Heuristic will not. Future

work would include a better analysis of how the two systems behave with these

pathological heuristic functions, and in what domains they would be common.

6. CONCLUDING REMARKS 63

6.2.2. Improving the Performance Element. The MACLEARN learning model,

even with the Optimal Tunneling heuristic, can solve only the first screen of SOKO-

BAN. For a domain like Tile Sliding, it is possible to solve difficult problems like the

Twenty-four puzzle by learning macros with simple training examples. Although it

may be possible to find smaller SOKOBAN problems with which to learn the macros

needed to solve more difficult ones, finding out which macros will be needed will not

be easy. If the system needs a human guide to find a set of useful macros, then it is

not likely to be useful since the human would need to do almost all of the work.

The choice of heuristic search for the performance element causes the most difficulty.

Since the search is not explicitly goal-directed, the system often must exhaustively

search the nodes in a valley before it can consider new nodes. An example of this

problem can be seen in the SOKOBAN domain when a ball has been pushed into a

place where it cannot reach the goal. A goal-directed search would discover that the

ball could not be moved to the goal, and would backtrack to a state where the ball

was free to move to the goal. The heuristic search however, finds that it can continue

to improve the heuristic by pushing other balls closer to the goal. It will move all the

other balls to as many different positions as it can find before it is forced to consider

a state with a higher heuristic value.

One possible solution to these problems is to use a goal-directed search such as

that used by GPS [16]. This sort of search would also allow for new types of macro

proposers. One possibility is to propose macros when a subgoal has been satisfied.

6.2.3. More Flexible Problem Representation. The MACLEARN system

is limited by its choice of problem representation. Although it works well for 2-

dimensional search spaces, it is not easily applicable to other domains. For example,

it is possible to encode the 2 x 2 x 2 Rubik's cube in the MACLEARN representation

6. CONCLUDING REMARKS 64

Y

Y

RRBBOOWW

RRBBOOWW

G

G

FIGURE 6.2. An Unfolded 2D Representation Of The 2 x 2 x 2 Rubik's Cube

as shown in Figure 6.2, but the operators (Figure 6.3) and macros learned in this

domain will not generalize to the 3 x 3 x 3 cube. Also, the symmetry of the domain

is lost in the 2D representation.

Other domains that may be suitable to macro learning include symbolic integration

and symbolic algebra, but these domains require a more general problem representa-

tion.

6. CONCLUDING REMARKS 65

a

c d e f

g h i j

k

a

c

e f g h i j k

a

b

c d e f

g h i j

k

1

--4

—4

g

k h d a

ii e

j

ca

d

g h i j k lef

g

c

lhda

k i e b

f

J

FIGURE 6.3. The Three Operators For The Unfolded 2 x 2 x 2 Rubik's Cube

References

[1] Amihood Amir, Gary Benson, and Martin Farach. Alphabet independant two di-

mensional matching. In Proceedings of the Twenty-Fourth Annual ACM Sympo-

sium on the Theory of Computing, pages 59-68. The Association For Computing

Machinery, May 1992.

[2] Avron Barr and Edward A. Fiegenbum, editors. The Handbook of Artificial

Intelligence, volume 1. Addison-Wesley, 1989.

[3] Avron Barr and Edward A. Fiegenbaum, editors. The Handbook of Artificial

Intelligence, chapter C3b. A*_ an optimal search for an optimal solution, pages

64-66. Volume 1 of Barr and Fiegenbaum [2], 1989.

[4] John D. Beasley. The Ins and Outs of Peg Solitaire. Recreations in Mathematics.

Oxford University Press, 1985.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, 1990.

[6] G.W. Ernst. Sufficient conditions for the success of GPS. Journal of the ACM,

16, 1969.

[7] R. E. Fikes, P. Hart, and N. J. Nilsson. Learning and executing generalized robot

plans. Artificial Intelligence, 3:251-288, 1972.

66

REFERENCES 67

[8] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[9] A.H. Jr. Frey and D. Singmaster. The Handbook of Cubik Math. Enslow, Hillside,

NJ, 1982.

[10] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.

Addison-Wesley, second edition, 1991.

[11] Edward Hordern. Sliding Piece Puzzles. Recreations in Mathematics. Oxford Uni-

versity Press, 1986.

[12] G. A. Iba. Leaning by discovering macros in problem solving. In Proceedings Of

the Nineth International Joint Conference on Artifical Intelligence, pages 640-

642, 1985.

[13] G. A. Iba. A heuristic approach to the discovery of macro-operators. Machine

Learning, 3(4):285-318, 1989.

[14] R. E. Korf. A program that learns to solve Rubik's Cube. In National Conference

on Artificial Intelligence, pages 164-167, August 1982.

[15] R. E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,

26(1):35-77, 1985.

[16] A. Newell and H. A. Simon. Human Problem Solving. Prentice Hall, Englewood

Cliffs, NJ, 1972.

[17] I. Pohl. Machine Intelligence, chapter Bi-directional search, pages 127-140.

American Elsevier, New York, 1971.

APPENDIX A

Implementation Details

There are several implementation details that can have significant effects on the out-

come of a given problem solving trial (Section 5.2). The details of the choices my

system makes are given here.

A.I. Creating New Operators

When a new macro is created, or a primitive operator is declared, its reflections

and rotations are precomputed based on two operations, reflection about the x axis,

and transposition. These operations are chosen because they can be computed ef-

ficiently when operators are stored as lists of lists. If we define F() and TO to be

• 0 0 •oo

000 000 0 0

0 • • •oo 0•

(a) rn (b) F(rn) (c) T(m) (d) F(T(m))

0 • 001 0

0 000 0 000

001 0' '0'

(e) T(F(m)) (f) T(F(T(m))) (g) F(T(F(m))) (h) T(F(T(F(rn))))

FIGURE A.1. The Eight Possible Orientations Of A Macro

68

A. IMPLEMENTATION DETAILS 69

. S 0 -f o o •

FIGURE A.2. The Primitive Operator For Peg Solitaire

functions that flip and transpose their respective arguments, then there are eight

possible orientations of a macro m, as shown in Figure A.1. These orientations are:

m,F(m), T(m), F(T(m)), T(F(m)), T(F(T(m))), F(T(F(m))), T(F(T(F(m)))).

My system generates these orientations in the order shown above, and duplicates

are removed from the list. The new operator is then added to the beginning of the

operator list.

Algorithm A.1 describes the method used to expand each state.

ALGORITHM A.1 (EXPAND STATE).
(1) For each operator in the operator list:

(a) For each pattern in the list of orientations of this operator:
(i) Beginning at the top left corner of the puzzle, attempt to apply the

pattern in each possible position. The "before" array of the pattern
is tried at each possible location proceeding from left to right, and
then moving to the left of the next line.

(ii) Each time a pattern can be applied, look up the resulting state in
a. hash table of generated states. If it is there, ignore this state,
otherwise, compute the heuristic function for the new state, and tag
the state with a unique "timestamp."

(iii) Insert the new state into the hash table of generated states, and
insert it into the list of unexpanded states, in front of all states with
higher heuristic values. If two states have the same heuristic value,
the one with the smallest timest am p is placed first.

Problems such as SOKOBAN are seldom symmetrical, and the orientation of primi-

tive operators is important. The system will eventually generate all possible orienta-

tions, but their order depends on which is declared first. My system uses the general

rule that movement proceeds from left to right. For example, the primitive operator

for Peg Solitaire is declared as in Figure A.2.

A. IMPLEMENTATION DETAILS 70

Minor changes to these implementation details can have a pronounced effect on the

outcome of a given problem trial. To ensure that future researchers can duplicate the

results in Chapter 5, the implementation choices are explained in detail here.

