THE UNIVERSITY OF CALGARY

Optimal Tunneling:

A Heuristic For Learning Macro Operators
by

Mark L. James

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
APRIL, 1993

(© Mark L. James 1993

I* National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
. allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your fite Volre référence

Qurfile Nolre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-<ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-83166-9

i+l

Canada

MK

Name

—_
J AMES

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

CéM?\,Jrec SC—(C"CQ

Subject Categories

SUBJECT TERM

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS

Architecture o.ovecenvecrerecesereres 0729
ArtHISOry ccocvercreriniriiesnsesnanens 0377
Cinema 0900
Dance 0378
Fine ArS oveceerercerneseninernisssainns 0357
Information Science .0723
Journalism0391
Library Scienceocerenerienenens 0399
Mass Communications................ 0708
Music 0413
Speech Communicationcccesen. 0459
Theater 0465
EDUCATION

General viuccrecerereeenrienerenesesns 0515
Administration0514
Adult and Confinuing . L0516
Agricdltural0517
Art 0273
Bilingual and Multicultural .0282
Business0688
Community Colleg .0275
Curriculum and Instr .0727
Early Childhood .. .0518
Elementary 0524
Finance

Guidance and Counseling 0519
Health voveceeririieenenenns .0480
Higher0745
History of0520
Home Economics .0278
Industrialocereecreereene .0521

Language and Literature .0279
Mathematicscoorrererervnncennne 0280
Music .0522
Philosophy ofcreereeueenesenes 0998
Physical 0523

Psychologyc.ceeruereremresemennenne 0525
Reading ...

Religious ..
Sciences ...

Secondary0533
Social Sciences0534
Sociology of ..c.eeeererecrereerecanes 0340
Specjal 0529
Teacher Trainingceveeeeeverenns 0530

Technolo0710
Tests cmds K\eqsuremenls .
Vocational

LANGUAGE, LITERATURE AND
LINGUISTICS

Language
%engeral 0679
Ancient0289
Linguistics0290
Moderncccererererserereens 0291
Literature
Generdl ...eeereceereeeeicieenne 0401
Classicdl0294

Compardtive .

Medievdl0297
Moderm ,.0298
Alrican0316
American .. 0591

101 ST .0305

sian
Canadian {Englis
. Canadian (French)
English ..
Germanic ..
Latin Americi
Middle Eastern
Romance
Slavic and Eas!

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture
General ..veceneeeeeecreerenes 0473
AGronomy ..ueicesiesseseressens 0285
Animal Culture and
NUIFHON ovciereveieniennes 0475
Animal Pathologyeeveenee 0476
Food Science an
Technologycccererernnee 0359
Forestry and Wildlife .0478
Plant Culture0479
Plant Pathology0480
Plant Physiology0817
Range Management .0777
Wood Technology «.....ccevene 0746
Biology
ENeral ..cocereencrerererreneennias 0306
Anatomy .. .0287
Biostatistics .0308
OLONY wovereiriescamssaserarsnsssanens 0309
e 0329
COlOGY wererserarernssesssnasanersne
Enio?nggiogy . 0353
Genetics0369
Limnolog ..0793
Microbiolo, ..0410
Molecular ..0307
Neuroscience0317
ceanography . .0416
Physiology ..0433
Radiation.......... ..0821
Veterinary Science... ..0778
Z00l0GY vereeneeeeroncenernerererenes 0472
Biophysics
Generd]
ical
EARTH SCIENCES
Biogeochemistry ..0425
Geochemistry0996

Geodesy .vrerreneeeeeenens 0370
Geology0372
Geophysics . .0373
'v(drology .0388
ineralogy .. .0411
Paleobotany0345
Paleoecology .. .0426
Paleontology0418
Paleozoology0985
Palynologyc... .0427
Physical Geography0368
Physical Oceanography 0415
HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768

Health Sciences

Generdl0566
Audiology . .0300
Chemotherapy .. 0992
Dentistry0567
Educationc.coceun.. ..0350
Hospital Management...........0769
Human Development0758
Immunologycccen.. ..0982
Medicine and Surgery0564
Mental Health0347
Nursing0569
[IN[TE g1 1 0570

Obstefrics and Gynecology .. 0380

Occupational Health an

T-1eror>y 0354
Ophthalmology0381
Pathology0571
Pharmacology0419
P 1armuc¥0572
Physical Therapy0382
Public Health0573
Radiology0574
Recrealioncoecvrvveevennee 0575

PHILOSOPHY, RELIGION AND
THEOLOGY

Philosophyc.eveeeereererecrserenns 0422
Reli%ion
eneralccoreerniererensenes 0318
Biblical Studies ...0321
Clergy0319
History of0320
Philosophy of0322
Theology «eeeeerescrcsmscsnrearenees 0469
SOCIAL SCIENCES
American Studieseveurererenea. ,..0323
Anthropolog(
Archaeologyceererererecraree 0324
Cultural ...0326
Physical
Business Administration
Generaloceerieiereieressennces 0310
Accounting . ..0272
Banking0770
Management . ..0454
Marketing0338
Canadian Studiesieiuiunne 0385
Economics
General ...veceveererereriaresesenns 0501
Agriculturdl0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
he 0511

Geography ...
Gerontology .
History

PHYSICAL SCIENCES

Pure Sciences

Chemistry
Generalcueereevreeeenrerenenns 0485
Agricultural ...0749
Analytical0486
Biochemistry0487
Inorganic0488
Nuclear0738

Organic.. 0490

Pharmace 0491

Physi 0494

Polymer . 0495

Radiation 0754
Mathematics . 0405
Physics

Generdl ..
Acoustics
Astronomy a

Astroﬁhysics0606
Atmospheric Science. .0608
{OMIC cuivivsnsussireres0748
Electronics and Eleciricity 0607
ementary Parlicles an
High Energycrereeccns 0798
Fluid and Plasma ... 0759
Molecular0609
Nuclear0610
Optics0752
Radiation0756
Solid State0611
Statistics .uuvevirrerinsinerinininnne 0463
Applied Sciences
Applied Mechanics0346
Computer Science ...

ol|9|8l4

UMI

SUBJECT CODE

Ancient
Medieval .
Modern ...
Black
Alfrican 0
Asia, Australia and Oceania 0332
Canadianeveeeeeneererens 0334
European

Latin American

Middle Eastern0333
United States0337
History of Sciencecoeeeurreeens 0585
Law 0398
Political Science
General ... veeerrereernrerrsenns 0615
International Law and
Relations 0616
Public Ad 0617
Recreation , 0814
Social Work 0452
Sociology
General .ocueveeecreeneensiesenens 0626
Criminology and Penology ...0627
Demographycceviesssseresnnes 0938
Ethnic and Racial Studies0631
Individual and Family
SHUAIES cuvvirerenceererererrareres 0628
Industrial and Labor
elations ...ccvecrecierinrinnene 0629

Public and Social Welfare0630
Social Structure and
Developmentcccoene
Theory and Methods .. -
Transportalioncocoveueseerecnne 0
Urban and Regional Planning0999
Women's Studiesvrerinennien 0453

Engineerin,
Generalcocveveeveeerceeiennens 0537
Aerospace0
Agricultural
Automofive0540
Biomedical .. .-
Chemica

Heat and Thermodynamics ... 0348
Hydraulic ...c.vveeerereereenrnnnes 0545
Industrial
Marinec....

Sanitary and Municipal
System Science
Geotechnology
Operations Research
Plastics Technology ..
Textile Technologyc.eueereerees

PSYCHOLOGY

eneral .o.vceerersrererereseesensonns
Behavioralccvrverreeercrecerrenanne
Clinical
Developmental ..
Experimental
Industrial
Persondlity .
Physiologica
Psychobiology
Psychomerics ...
Socia

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre

these et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

UMI

SUJET

Catégories par sujets)
HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS Lecture 0535
Archifecturecc.ccccereserenesrenesns 0729 Mathémahiquesc.eseeecscsassines 0280
Beaux-arts0357 Musique ..cenneeenieennes ...0522
léi_bljothéconomie 8388 %{ilenfuﬁho'n §f c|9pjulla'tjon 83;3
inéma ilosophie de I'éducation
Communication verbdle.............. 0459 Physiqu% 0523
Communicationsc.eeceseeseerenes 0708 Programmes d'études et
Danse 0378 enseignementcouivenernens 0727
Histoire de 'artcnnveinereinnens 0377 Psychologie0525
Journalisme0391 Sciencesoun ..0714
Musique ...oooueeminnnerens ..0413 Sciences sociales0534
Sciences de l'information 0723 Socjologie de I'éducation............0340
Théatre 0465 Technologie ..r......creiceusiesnnees. . 0710
énucmllon 515 LANGUE, LITTERATURE ET
ENEralites ..ovecererecveriniiniieeninnans
AdmMinistrationc...ecereevesesesenes 0514 tlﬁﬁ:l elss TIQUE
At o o273 ENEANES .vovereseerrerennens 0679
cgmegzls'c:ommunuu CHUFES 2vrreres 7 Anciennes ... 02

0278 Linguistique .

Economie domestique . . Modernesceerereriaenes
0516 Littérature

Education permanente .

Education préscolaire .. 0518 AT
Education banitoire .. 0680 CENGIlHES v
Enseignementhricole. 0517 Comparée ..
Enseignement bilingue Medf‘avqle -

multiculturel 0282 Moderne ...\
Enseignement industr 0521 Abicaing
Enseignement primaire. 0524

Enseignement professionnel

Enseignement religieux Asiafiaue 0305
Enseignement secondaire -.......0533 Comadimas Thnaiatsay 0353
Enseignement spécial0529 Canadienne {Francaise) ...
Ensgignement supérieur0745 GErmanique
Eyaluahon 8%99 Lafino-américaine ..
INANCES «.vvireeerrres sreneeres Moyen-orientale .
Eormch? ﬁesdenselgnunls reererene 82%8 Rormane 0313
istoire de 'éducation......
Langues et liftératureccene.. 0279 Slove et est-europée ~0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES Geéologie
Agriculture Géophysique
Générdlités ...0473 Hydrologie

Agronomie.0285 inéralogie ..

Alimentation et ; Océanograp! 0415
alimentaire 0359 - Paléobolanique 0345
ulture 0479 Paléoécologie 0426

Elevage et ol .
Exploitation des péturag
Pathologie animale
Pathologie végétale
Ph{siologie végétale
Sylviculture et faune ...

0476 Palynologie0427

0817 SCIENCES DE LA SANTE ET DE
0478 L’ENVIRONNEMENT

Biollgi:gndogie dubois v 0746 Economieddcimesﬁque 8;28
e, s ciences de |'environnement
Gen::rcl}tes 8%89 Sciences de la santé
B'mll °'.“'es'§"t'."1'. """ i 0308 GEnéralitésvoerereceneenrennne 0566
B!°I°gfe ‘I’,'s 'ﬁ‘fes e 07 Administration des hipitaux ..0769
B'° 0gie MOeculairec..... Alimentation et nutrition 0570
olaniqueoeveiee .. 0309 Avdiologie
e"ule..... ...0379 Chimiol él’G
Ecologie . 0329 Dentisterie ...
Entomologie ...0353 Développem
Génétique .. 0369 Enseignement .
Limnologie0793 Immounologie
m\icro ?iol.ogie 8‘;}9 Loisirs 9
eurclogie Pk i -
Océonographic...........0418 Midechedviavailel
E};)ési:;)tliggle 8‘81%:]3 Médecine et chirurgie
Science vétérinaire ...0778 ggﬂg{rﬁ;ﬁ;{egynecologle ggg?
. Zﬁo[ogre 0472 Onthophonic ... 0440
lophysique, | Pathologie0571
GEnEralités .u...ouemrreserssvensanee 0786 Pharmacie rrr " 0572
Medlcale 0760 Pmrmacologie ..0419
Physiothérapie .0382
Radiologie0574
Santé mentdle0347
Santé publique0573
Soins infirmters0569
Toxicologie «.curerrrrerarrereriens 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE

Philosophieecereisinsasisssecsnsrens 0422
Religion
ENETAIES cuoverrrerenrrninenas 0318
erge ..oocnene ..0319
Etudes bibliques0321
Histoire des religions 0320
Philosophie de [a religion0322
Théologiecceeerrcererscerrinanns 0469
SCIENCES SOCIALES
Anthropologie
Archéologieuueervrcrinierens 0324
Culturelle .0326
Physique
Droit
Economie
Généralités 0501
Commerce-Alf 505
Economie agricole 503
Economie du frava 510
Finances 508
Histoire 509
Théorie 511
Etud ..0323
Etudes canadiennes0385
Etudes feministesooevercinsecnans 0453
Folklore 0358
Géographieweeresessmsesersesenes 0366
GErontologieereeresescerisesnnes 0351
Gestion des affaires
GENralitds ...eeerecrsernssennes 0310
Administration ..0454
Bangues ,........ .0770
Comptabilité ..0272
Marketingceeereerenererernernes 0338
Histoire
Histoire généralec.ceuveree 0578
SCIENCES PHYSIQUES
Sciences Pures
Chimie
Gengralités ..oecereeenenerescarens 0485
Biochimie......... ... 487
Chimie agricole ..0749
Chimie analytique ..0486
imie minérale0488
. Chimie nuclédire0738
Chimie organiqueocveverene 0490
Chimie pharmaceutique 0491
PhySIGUE vvevereremsmseressisnseiaas 0494
PolymCres0495
Radiation0754
Mathémaliquesoccecvecreucenens 0405
Physique .
Genéralitésovverrvencvennne 0605
ACOUSHQUE ..ucrereevcrcrencrnnnans 0986
Astronomie et
astrophysique 0606

Electronique et électri
Fluides et plasma
Météorologie
Optique ...
Particules |
nucléaire) ..
Physique atomiq
Physique de I'état sol
Physique moléculaire ..
Physique nucléaire ..
Radiation
StatisiqUesovveivisssssssassssnisens 0463

Sciences Appliqués Et

Technologie

Informatiqueeceererecerecernenses

Ingénierie
Généralités
Agricole
Automobile

Moderne........
Histoire des noirs...

Canadienne ..
Etats-Unis
Européenne ..
Moyen-orientale ...
Latino-américaine
Asie, Australie et Océanie....

CODE DE SUJET

icaing ...

Histoire des sciences.......ceveereres 0585
Loisirs 0814
Planification urbaine et

rég
Science politique
Géneérdlités
Adminisiration publiq

HONGle ...oerrererereenrrenennee 0999

Droit et relafions

Sociologie
Généralités
Aide et bien-dtre soci

internationales

Criminologie et

établissements
pénitentigirescc.... 0627

Demographiecceevenennne. 0938
Eluc|esg depl’ individu et

Etudes des relations

de la famille..................... 0628

interethniques et

es relations raciales 0631
Structure et développement
[= V1T | RO 0700
Théorie et méthodes. 03
Travail et relations
industriellescooerererennes 0629

Transports

Travail social

Biomédicdle vrerenen 0541
Chaleur et ther
modynamique0348
Conditionnement
(Emballage)0549
Génie aérospatial . .0538
Génie chimique0542
Génie Civil .ovcerrrerrerererieeres 0543
Génie électronique et
Electrique ...eeerrrerenrrcienas 0544
Génie industrie0546
Génie mécanique . .0548
Génie nucléaire0552
Ingénierie des systtimes .0790
Meécanique navale0547
Métallurgie0743
cience des matériaux . .0794

Technique du pétrole ...
Technique miniére

Techniques sanitaires et

MURICIPAlescuvicerenneanens 0554
Technologie hydraulique 0545
Mécanique appliquée................. 0346
Géotechnologieceeeeeerererene 0428
Matiéres plastiques
{Technologie)eeerereres 0795
Recherche opérationnelle............ 0796
Textiles et tissus {Technologie)0794
PSYCHOLOGIE
GENBIalitEs «...coveererercrncncemercnnn 0621
Personnaliféeeeceerereurenreenene 0625
Psychobiologie 0349
Psychologie cliniquecccvcrvenee 0622
Psychologie du comportement 0384
Psychologie du développement ..0620
Psychologie expérimentdle0623
Psychologie indusirielle .. .0624
Psychologie physiologiqu .0989
PS)’L logie sociale .0451
Psychometrie0632

THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a thesis entitled, “Optimal Tunneling: A Heuristic
For Learning Macro Operators” submitted by Mark L. James in partial fulfillment of

the requirements for the degree of Master of Science.

/22

Supervisor, Bruce MacDonald,

Department of Computer Science

LEE ok -

Robin Cockett,

Department of Computer Science

Jun Gu,

Department of Electrical Engineering

Date Mo, 77 laqs

ii

Abstract

This thesis discusses methods for efficiently solving puzzles by heuristic (best first)
search, concentrating on techniques for learning macro operators. The thesis focuses
on the Optimal Tunneling heuristic for learning macros, which produces shorter, more
useful macros than previous techniques. The Optimal Tunneling heuristic proposes
macros from a state at a minimum to the next state with the same heuristic value.
A water pouring analogy is used to show that the “horizontal tunnels” learned by
the Optimal Tunneling heuristic are more appropriate than “aqueducts”, or “sloping
tunnels”. Macros learned by the Optimal Tunneling heuristic avoid expensive search
against the heuristic function, and give the best modification of the search space to
make the heuristic function more accurate. The thesis discusses the high sensitivity of
best first searcix to arbitrary design choices in selecting states with the same heuristic
value. To minimize the effects of this problem, all testing was performed with a single
problem solver. Comparative tests in the domains of Peg Solitaire, Tile Sliding and
SOKOBAN show that the Optimal Tunneling heuristic results in a clear improvement
over previous techniques for both single trials, and test sequences with cumulative

learning across trials.

iii

Acknowledgements

My deepest gratitude to my supervisor, Bruce MacDonald, who was always available
with advice, feedback, and support.

My thanks to Glen Iba who provided helpful advice and interesting commentary
in the early stages of my thesis.

I was fortuna,té to have many proofreaders: Eric Schenk, Carol Wang, Thomas
Orth, Greg James, Natascha Schuler, Theo Deraadt and my parents, Alan and Mar-

garet James. All provided valuable feedback during the finishing stages of my thesis.

iv

Dedication

This thesis is dedicated to my late grandfather, Ralph James.

Contents

Approval Sheet i1
Abstract : iii
Acknowledgements iv
Dedication ’ v
Contents vi
List of Tables ix
List of Figures X
Chapter 1. Introduction 1
1.1, Macro-operatorsvviiiiiiiiiiiiiiiiit e e 1
1.2, Contributionoovirtiiiii ittt i i i e e 3
Chapter 2. Search 5
2.1. State Space Representation...........oouiiiiiiiiiiiiiiiiiiiiiiiiaann 5
2.2. Search Methodsouuuruii i i i i ettt it 6
2.2.1. Brute Force Methods........coooiiiiiiiiiiiii it 8
2.2.1.1. Breadth First Search oot 8

2.2.1.2. Depth First Search ...ttt 8

2.2.1.3. Iterative Deepeningovuuuuiiiiiiiiiiiiiiiiinnnnn. 9

2.2.2. Heuristic Searchottt ittt 9
2.3. Macro Operators . ..ottt et e e 10
2.3, L, S RIS .. i e e e 10
2.3.2. Solving Subgoals.......c.oiiiiiiiiiiii 11
2.3.3. The Macro Problem Solver (MPS)cooiiiiiiiiiiiiinn... 13
2.3.3.1. The Macro Table......... f e et teee e e e e et 13

2.3.3.2. The Basic Algorithm i, 15

2.3.3.3. Partial Match, Bi-directional Search 17

2.3.3.4. Macro Compositioneviiiiiiiirinerennnennneennn. 18

P S 118 'Y s 5 18

Chapter 3. Minimum to Minimum

3.1. Iba’s Learning Model i e
3.2, MACGLEARN ...ttt ittt ettt e et n e ianaas
3.2.1. Operator Set ...ovviiiniiiii i e
3.2.2. Macro Proposero
3.2.3. Static Filter ..o
3.2.4. Dynamic Filterot
3.2.5. The Minimum To Minimum Heuristiccccooiiinn...
3.3, Results ..ooviiiii i e e

Chapter 4. Optimal Tunneling

4], SOKOBAN « ittt ettt e e e e e

.................................

4.2. Search As “Pouring Water” ittt
4.3. Optimal Tunneling Macros Reduce Search Cost
4.4. Optimal Tunneling Macros Improve Heuristic Function Accuracy........ -
4.5, SUIMIMATY -+t vtttttt ettt et e e tieeeeeesaneeannieeeeesoeeeeeeannnnanns

Chapter 5. Results

5.1. Implementation Statusccviiriiiniiiiii i e
5.2. Problems With Heuristic Search i i,
5.3. Comparative Testsoouuneriiiiiii it i,
5.3.1. Peg Soltaire. .. vvvin it e e e
5.3.1.1. Heuristic Function.......... ... i,

5.3.1.2. Static Filter ... e

5.3.1.3. Experiment 1 ...

5.3.1.4. Experiment 2 ...

5.3.2. Tile SHAING. . oo vt iii i et e et ettt
5.3.2.1. Heuristic Function...........c.cciiiiiii i,

5.3.2.2. Static Filterottt i i e

5.3.2.3. ReSUIES vttt e

5.3.3. SOKOban . ..\ttt e e
B, SUIMIMALY & vt ttttttte ittt teeeeeteeeeeeeeeeeenesieeeeeeeeaeanennnnonnns

Chapter 6. Concluding Remarks

6.1. Optimal Tunnelingcoouiiiiiii i it it eea e
6.2. Future Work ... e

6.2.1. Analysis of Heuristic Functions

..................................

6.2.2. Improving the Performance Elementol
6.2.3. More Flexible Problem Representationt

References

vii

19
19
21
21
23
25
25
25
26
28

29
29
30
32
32
37
41

43
43
44
46
46
47
47
47
51
51
3%
59
56
58
60

61
61
62
62
63
63

66

Appendix A. Implementation Details

A.1. Creating New Operators

...

viii

List of Tables

2.1 Macro Table For The Eight Puzzle i i L. 14
5.1 Sokoban Resultscciuiiiniiiiiiiiiii i, 59

ix

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5

Two States Of The Eight Puzzle oot 6
Rubik’s Cube . ..ooviiiiiiiii i e 11
The Effect Of Rotating A Cube Faceooiiiiiiii il 12
Sample solution of the Eight Puzzleby MPS, 14
An Arbitrary State Of The Eight Puzzle............... ...ttt 15
Iba’s Learning Model.ot 20
The Hi-Q Puzzle: An Example Of Peg Solitaire 21
An Example Of A Macro Operator For Peg Solitaire.................. 22
An Example Operator Sequence For Macro Composition.............. 24
Operators Used In Figure 3.4 ...t 24
Macro Operatoro.eeineeeiiiiiieeiiiiit i, 24
The Effect Of Macros Learned By The Minimum To Minimum Heuristic 25
Peg Solitaire Problems Used For Iba’s Experiments................... 27
The Parts Of SOKOBAN ..ottt 29
The Solution To A SOKOBAN Problemcoooiiiiiiiiiat. 30
The Effects Of “Pouring Water” On Example Search Spaces 33
Macros As Tunnels.ooneriiniiiini et 34
The Optimal Aqueduct Heuristic...........ccooiiiiiiiiiiiiiiiia.. 36
Uphill PIpes « oottt e e e 36
The Solution Path Without Macros ...t 38
The Estimated And Actual Distance To The Goal Without Macros.... 39
The Solution Path With Macroscooeeviiiiiiiiiniiiieeinnnn.. 39
The Estimated And Actual Distance To The Goal With Macros 40
The Effects Of Operator Choice On Heuristic Search 45
Problems Used For The Peg Solitaire Experiments 46
A Peg Solitaire State Whose Evaluation Function Value Is (2,2,15) 47
First Try With Macro Learning For Peg Solitaire..................... 49
Retry With Macro Learning For Peg Solitaire 50

X

5.6 After Dynamic Filtering For Peg Solitaire............ e 52

5.7 Run Time For Peg Solitaire Experiment 2 53
5.8 Cumulative Run Time For Peg Solitaire Experiment 2 53
5.9 The Problems Used For The Tile Sliding Experiment 54
5.10 Run Time For Tile Slidingooviiiiiiiiiiii i 56
5.11 Cumulative Run Time For Tile Slidingccoooiiiiiii.. 57
5.12 Number Of Operators For Tile Slidingcoovviiiiiii ... 58
5.13 Average Branching Factor For Tile Sliding 59
5.14 The Problems Used For The SOKOBAN Experiment 59
6.1 Some Pathological Heuristic Functions........................ 62
6.2 An Unfolded 2D Representation Of The 2 x 2 x 2 Rubik’s Cube....... 64
6.3 The Three Operators For The Unfolded 2 x 2 x 2 Rubik’s Cube....... 65
A.1 The Eight Possible Orientations Of A Macro......................... 68
A.2 The Primitive Operator For Peg Solitaire, 69

CHAPTER 1

Introduction

The “Fifteen” puzzle for the last few weeks has been prominently be-
fore the American public, and may safely be said to have engaged the
attention of nine out of ten persons of both sexes and of all ages and

conditions of the community — W.W. Johnson (1879)

Puzzles have facinated people for hundreds, if not thousands of years. For example,
there is stong evidence that the game of Peg Solitaire was played as early as 1697, and
was probably played long before that [4]. Researchers in Artificial Intelligence and
Machine Learning often use puzzles as example domains for problem soiving systems.
This thesis investigates methods for efficiently solving puzzles such as the “Fifteen”

puzzle, Peg Solitaire, and SOKOBAN.

1.1. Macro-operators

The classical technique for solving a puzzle by computer involves searching for a
sequence of operators. A typical system will use heuristic search, in which a heuristic
function estimates the distance to the goal from a given state [3]. This allows the
system to examine only the most promising states.

Often it is useful to group subsequences of operators into chunks to form composite
operators. These subsequences a're called macro-operators or macros, and can be used
in the same way as primitive operators [12, 15]. Macros can lead to faster solutions

1

1. INTRODUCTION 2
that are obtained by less effort in the search. However, macro generation increases
- the size of the operator set and can therefore result in a more expensive search. These
two effects must be managed by the macro generator and filtering, so that the overall
result is computationally beneficial.

Some systems generate only macros that skip the expensive parts of a search, where
the heuristic function is increasing. Iba’s [13] Minimum to Minimum heuristic is an
example. The Minimum to Minimum heuristic proposes macros from a state at a
minimum to the next state at a minimum. However, it creates macros that are longer
than necessary, which may mean they are less useful in some domains. This thesis
presents the Optimal Tunneling heuristic, which proposes macros from a state at a
‘minimum to the next state with the same heuristic value.

The thesis is organized as follows. Chapter 2 gives an overview of a broad range of
problem-solving techniques that can be grouped under the general heading of search.
These techniques can be used for a wide range of problems, including the solution to
puzzles. Chapter 3 describes Iba’s MACLEARN system [13]. MACLEARN improves on
the basic search techniques presented in Chapter 2 by learning macro-operators to
speed up problem solving. These macros can also be applied to more complex prob-
lems in similar domains, allowing MACLEARN to use information learned in simple
training problems to solve more complex problems.

MACLEARN uses a Minimum to Minimum heuristic to learn macro operators. This
heuristic works well for domains where minima are close together. Chapter 4 gives
the motivation for and describes the Optimal Tunneling heuristic, which generates
shorter macros than Minimum to Minimum, allowing it to work well in domains
where minima are farther apart. A water pouring analogy is examined, showing that

Optimal Tunneling should result in an improvement.

1. INTRODUCTION 3

Chapter 5 describes and interprets comparative tests on the performance of the two
macro learning heuristics. Tests on the Peg Solitaire and Tile Sliding domains show
that Optimal Tunneling works better even on domains where Minimum to Minimum
works well. Tests on the SOKOBAN domain show that when minima are farther apart,
Optimal Tunneling can solve complex problems in much less time than the Minimum
to Minimum heuristic.

Chapter 6 contains concluding remarks and discusses future research. It examines

some limitations of Iba’s learning model and suggests some possible improvements.

1.2. Contribution

Iba’s MACLEARN is a useful problem solving system. It can use macro operators to
solve several complex problems that cannot be solved with heuristic search alone. I
have reimplemented MACLEARN and analyzed its performance for the domains of Peg
Solitaire, Tile Sliding, and SOKOBAN. An analysis of the SOKOBAN domain suggested
that the Minimum to Minimum heuristic would work poorly for SOKOBAN since the
minima are far apart.

This thesis presents the Optimal Tunneling heuristic, an improvement to the Min-
imum to Minimum heuristic. A water pouring analogy suggests that the progress of
a best first search is slowed by “valleys” along the solution path. Macro operators
act like tunnels, ailowing the water to drain from valleys without forming “lakes.”
This analogy is used to explain why the macros proposed by the Optimal Tunnel-
ing heuristic result in more efficient search than those proposed by the Minimum to
Minimum heﬁristic, or any similar heuristic.

The thesis discusses the high sensitivity of best first search to arbitrary design
choices in selecting states with the same heuristic value. To minimize the effects of

this problem all testing was performed with a single problem solver. The Optimal

1. INTRODUCTION 4

Tunneling heuristic was compared to the Minimum to Minimum heuristic using the
learning model described in Section 3.1. Comparative tests in the domains of Peg
Solitaire, Tile Sliding and SOKOBAN show that the Optimal Tunneling heuristic re-
sults in a clear improvement over previous techniques for both single trials, and test
sequences with cumulative learning across trials.

These ideas and results presented in this thesis will allow researchers to solve com-
plex puzzles more efficiently. The water pouring analogy can be extended to domains
other than puzzle solving, and provides an easy method of understanding the effects
of macro operators on best first search. The Optimal Tunneling heuristic may prove
useful in a variety of other problem solving domains such as symbolic integration and

robot task planning.

CHAPTER 2

Search

This chapter discusses a broad range of problem-solving techniques that can be
grouped under the general heading of search. Barr and Feigenbaum [2] describe search
as a name for a large body of core ideas that deal with déduction, inference, plan-
ning, common-sense reasoning, theorem proving, and related processes. Applications
of these ideas are found in programs for natural language understanding, informa-
tion retrieval, automatic programming, robotics, scene analysis, game playing, expert
systems, machine learning, mathematical theorem proving, and puzzle solving.
Section 2.1 discusses problem representations that form the basis of search tech-
niques. Section 2.2 examines common search methods. Section 2.3 discusses several

systems that use macro operators to speed up search.

2.1. State Space Representation

A state space is a convenient way to represent a search problem. The state space
representation of a problem consists of states, which represent the configuration of a
problem at a given time, and operators, which transform the problem from one state
to another. A common example of state space representation is the Eight puzzle [4]
(Figure 2.1). The Eight puzzle consists of eight tiles in a square grid with a space
in place of the ninth tile. A tile may be moved either horizontally or vertically by
sliding it into the empty square. The problem is to find a sequence of operators that

5

2. SEARCH 6

217]8 1(2(3
1163 8 4
S 4 7165

(a) (b)

FIGURE 2.1. Two States Of The Eight Puzzle

will transform a given state, such as that in Figure 2.1(a) into a goal state, such as
that in Figure 2.1(b). The states may be represented as a 3 x 3 array. The operators
can be defined as moving tiles into the blank square, giving four operators:

UP Move the tile below the blank up one square.

DOWN Move the tile above the blank down one square.

LEFT Move the tile to the right of the blank left one square.

RIGHT Move the tile to the left of the blank right one square.

The complete specification of a state space problem consists of O, the description
of the operators, S, a set of one or more initial states, and G, a predicate defining
goal states. A solution to the problem is a sequence of operators that transforms
an initial state into a goal state. Section 2.2 describes several algorithms for solving

state space problems.

2.2. Search Methods

A search algorithm for a state space problem attempts to find a sequence of oper-
ators that will transform an initial state into a goal state. Ezpanding a state is the
basic operation used in the search algorithms presented in this section. A state is
expanded by applying all applicable operators to it to generate a list of new states.

The basic search algorithm is shown in Algorithm 2.1.

2. SEARCH 7

ALGORITHM 2.1 (BASIC SEARCH).

(1) Put the start state in a list of unexpanded states called OPEN. If the start
state is a goal state, a solution has been found.

(2) If OPEN is empty, no solution exists.

(3) Remove the first state, ¢, from OPEN, and place it in a list of expanded states
called CLOSED.

(4) Expand state i. For every successor j of i: If j is neither in OPEN nor
CLOSED, add j to OPEN. The order that states are inserted into OPEN
depends on the search algorithm used. Attach a pointer from j back to its
predecessor 1 (to trace a solution path once a goal is found).

(5) If any of the successors of i is a goal state, a solution has been found, otherwise,

go to (2).

2. SEARCH 8

ALGORITHM 2.2 (BREADTH FIRST SEARCH).

(1) Use the basic search algorithm (Algorithm 2.1), placing newly generated states
at the end of the OPEN list.

2.2.1. Brute Force Methods. The simplest method for solving a search prob-
lem is a brute force search. This technique needs no domain knowledge. For this
reason, it is often called a blind search. The three types of brute force search dis-
cussed in this section are based on Algorithm 2.1, and differ only in the order that

they insert new states into the OPEN list in step (4).

2.2.1.1. Breadth First Search. The Breadth First Search (Algorithm 2.2) expands
those states that are closest to the start state. It examines all possible sequences of
n operators, then all possible sequences of n+ 1 operators, and so on. Since it always
examines shorter paths first, it is guaranteed to find the shortest solution if one exists.
The biggest disadvantage of the Breadth First Search is its space complexity. If there
are b applicable operators from each state in a search space, and the length of the
shortest solution is /, then the Breadth First Search needs O(b') time, and O(b*~1)
memory. Iterative Deepening (Section 2.2.1.3) simulates a Breadth First Search, but

uses only O(!) space, at some cost to the time required.

2.2.1.2. Depth First Search. As the name suggests, Depth First Search (Algo-
rithm 2.3) expands the deepest state first. It expands a single path through the
search space until the last state of that path has no successors, and only then does
it consider a different path. Unlike the Breadth First Search, Depth First Search is
not guaranteed to find the shortest solution. Since only the current path through the
search space is stored, Depth First Search requires O(!) space, where [is the length of
the longest path considered. Like Breadth First Search, Depth First Search must, in

the worst case, examine every state in the search space. If each state has b successors,

9. SEARCH 9

ALGORITHM 2.3 (DEPTH FIRST SEARCH).

(1) Use the basic search algorithm (Algorithm 2.1), placing newly generated states
at the beginning of the OPEN list.

ALGORITHM 2.4 (ITERATIVE DEEPENING).
(1) Set MAXDEPTH, the Maximum Depth for Depth First Search, to 1.
(2) Call Depth First Search, and record the longest path explored.
(3) If a solution was found, then terminate.
(4) If the longest path is less than MAXDEPTH, then no solution exists. Termi-
nate,
(5) Increment the Maximum Depth.
(6) Go to (2).

Depth First Search needs O(%') time. If the search space is infinite, the Depth First
Search may never terminate. To prevent this, a maximum depth is usually specified
for the search. Any states deeper than this maximum depth are treated as if they

had no successors.

2.2.1.3. Iterative Deepening. Iterative Deepening (Algorithm 2.4) solves the mem-
ory problems of the Breadth First Search at some cost to the time required. The al-
gorithm works by using Depth First Search to examine all paths of length 1, then all
paths of length 2, and so on. Since it examines all paths of length n before examining
any longer paths, this algorithm is guaranteed to find the shortest solution. If the
shortest path found is of length [, Iterative Deepening needs only O({) memory to find
the path. The time complexity of Iterative Deepening is O(T}_; b) = O(2b') = O(¥).
The time “overhead” of this method is usually minor compared to the memory re-

quirements for Breadth First Search.

2.2.2. Heuristic Search. In a blind search, the number of states examined be-
fore a solution is found is likely to be prohibitively large. Since no knowledge of the

problem domain is used, it is unlikely that any but the simplest of problems can be

2. SEARCH 10

ALGORITHM 2.5 (HEURISTIC SEARCH).
(1) Use the basic search algorithm (Algorithm 2.1)
(2) For each newly generated state j:

(a) Calculate f*(7).

(b) If j is neither in OPEN nor CLOSED, add j to OPEN, sorted into as-
cending order by f* value.

(c) Ifj is in either OPEN or CLOSED, compare the f* value just calculated
for j with the value previously associated with the state. If the new value
is lower then

(1) Substitute it for the old value.

(ii) Point j back to i instead of its previous predecessor.
(iii) If state j was on the CLOSED list, move it back to OPEN.

solved before running out of resources. Heuristic search uses knowledge about the
domain to choose the most promising state to investigate.l.

Heuristic search, also known as an ordered or best first search always selects the
most promising state to expand. The “promise” of a state is given by an evaluation
function. The evaluation function f* is defined so that more promising states have
smaller values of f*. For a state space problem, the promise of a state is often defined
as an estimate of its distance from a goal state.

Given the evaluation function, or heuristic function, f*, Algorithm 2.5 tries to
reduce the number of states expanded by blind search. The success of this algorithfn

depends on the choice of f*.

2.3. Macro Operators

2.3.1. STRIPS. STRIPS [8] is a general problem solver based on a combination
of means-ends analysis [16] and mathematical theorem proving. STRIPS attempts
to find a sequence of operators, or plan, that will transform a given start state into

a state that satisfies a goal. A later addition to STRIPS allows it to generalize its

1Barr and Feigenbaum [2] describe the history of the terms “heuristic” and “heuristic search”.

2. SEARCH 11

FIGURE 2.2. Rubik’s Cube

plans and use them again for other problems [7]. Such a generalized plan is called a
MACROP. If a MACROP can be used as part of a new plan, the time needed to find
the plan may be considerably reduced.

One disadvantage of the learning technique used by STRIPS is that it learns new
MACROPs without considering their utility. As new problems are solved, the set of
MACROPs grows larger and larger until, eventually, the time spent checking each

MACROP is greater than the time saved by creating them.

2.3.2. Solving Subgoals. Heuristic search uses an evaluation function to es-
timate the distance from a given state to the goal state. This technique is much
more efficient than brute-force search, but for some problems, such as Rubik’s Cube
(Figure 2.2), it is difficult to find a heuristic evaluation function that increases mono-
tonically towards the goal.

The standard Rubik’s Cube [9] consists of 26 subcubes arranged as a 3 x 3 x 3 cube.
The visible faces of these subcubes are called facelets. The goal is to arrange these
subcubes or cubies so that the faclets on each cube face are the same color. This can
be done by rotating the faces of the cube (Figure 2.3). Two similar puzzles are the
2 x 2 x 2 “Rubik’s Pocket Cube” and the 4 x 4 x 4 “Rubik’s Revenge.” Korf [15]

examined several possible heuristic evaluation functions for the Rubik’s Cube family

2. SEARCH

FIGURE 2.3. The Effect Of Rotating A Cube Face

2. SEARCH 13

of puzzles by enumerating all of the states of the Rubik’s Pocket Cube (2 x 2 x 2),
and found that none §f them were useful for solving the 2 x 2 x 2 cube. It seems
unlikely that any useful evaluation function can be computed easily, which suggests
that Rubik’s Cube puzzles cannot be solved with heuristic search.

Many problems can be easily expressed as a compositioﬁ of sub-problems. For
example, Rubik’s Cube can be expressed as “Get each cubie to the correct position and
orientation.” This suggests setting up a sequence of subgoals and solving them one
at a time. The General Problem Solver (GPS) [16] implements means-ends analysis
along with other problem-solving techniques. It is applicable if there exist a set of
subgoals and an ordering of these goals such that, once a goal is satisfied, it need
never be violated to solve the remaining subgoals [6]. A set of subgoals with this
property is called serializable.

Unfortunately, Rubik’s Cube does not satisfy this condition. Once some cubies
have been placed in their goal positions, they must be moved to solve the other
cubies. What is needed here is to find a way to solve a subgoal in such a way that
any previously solved subgoals, although they may move temporarily, are left in the

proper state. -

2.3.3. The Macro Problem Solver (MPS). Korf’s Macro Problem Solver
(MPS) [15] solves problems such as Rubik’s cube and the Eight puzzle in this way by

creating a macro table.

2.3.3.1. The Macro Table. The goal of this system is to build a macro table (Ta-
ble 2.1). Each entry in the table gives a macro to solve a subgoal so that any previously
solved subgoals, although they may be destroyed temporarily, are eventually restored.
Figure 2.4 shows how the macros in Table 2.1 are used to solve the Eight puzzle.

State (a) is the initial state of the puzzle we want to solve. First we find the blank,

2. SEARCH 14

0 1 2 3 4 5 6
0
1wy
2 U RDLU
3 UR DLURRDLU DLUR
4 R LDRURDLU LDRU RDLLURDRUL
5 DR LURDLDRURDLU LURDLDRU LDRULURDDLUR LURD
6 D URDLDRUL ULDDRU LDRUULDRDLUR ULDR RDLLUURDLDRRUL
7 LD RULDDRUL URDLULDDRU RULDRDLULDRRUL URDLULDR ULDRURDLLURD URDL
8 L DrUL RULLDDRU RDLULDRRUL RULLDR ULDRRULDLURD RULD

TABLE 2.1. Macro Table For The Eight Puzzle

2178 column 0 2178 column 1 1128 column 2
11613 row 6 1 3 row 8 7 3 row 2
5 4 D 5164 DRUL 5|61 4
a b c
1]121]8 column 3 11213 column 4 1123 column §
7 3 row 4 8 7 row 5 8 4 row 7
51614 RDLLUhDRUL 51614 LURD 5|17]|6 ULDRURDLLURD
d e f
11213 column 6 112}3
6 4 row 8 8 4 finished
8|71|5 RULD 71615
g h

FIGURE 2.4. Sample solution of the Eight Puzzle by MPS

2. SEARCH 15

FIGURE 2.5. An Arbitrary State Of The Eight Puzzle, Its State-Vector
Representation Is (6,4,8,7,1,5,0,3,2)

which is in the position where the 6 belongs. Column 0 contains the macros for the
blank, and the macro in row 6 is “D.” This macro moves the blank to its goal position
in the center. In state (b) tile 1 is in position 8. The macro in row 1 column 8 is
“DRUL.” This macro moves tile 1 to its goal position leaving the blank in its goal
position. During the application of the macro, the blank is moved out of its goal
position, but it is always restored to the goal position by the end of the macro. In
state (c) tile 2 is already in position 2, so no macro is applied. Tile 3 is in position 4
in state (d), so the macro from column 3, row 4 (“RDLLURDRUL”) is applied. This
continues until each tile is placed in its goal position. Using the macro table involvés

no search, and is an efficient solution technique.

2.3.3.2. The Basic Algorithm. In order for the technique in Section 2.3.3.1 to
work, the Macro Problem Solver must first build the macro table. The basic algorithm
is to fill in the entries in the table by searching the space of possible macro operators.
Each macro generated is iﬁserted into the table in its correct slot, unless a shorter
macro has already filled that slot.

A search through the space of possible macros can be accomplished by an iterative
deepening search from the goal. MPS represents each possible state of the puzzle as
a vector of state variables. For a given state, each variable corresponds to a piece of

the puzzle, and the value of each variable corresponds to the position of that piece.

2. SEARCH : 16
For example, the state variables for the Eight puzzle correspond to the blank, and the
eight sliding tiles. The value of the variable corresponds to the position of the tile in
the goal state. Figure 2.5 shows an arbitrary state of the Eight puzzle, and its state
vector representation. The blank is in the position corresponding to the 6 tile, so the
Oth element of the vector is 6. The 1 tile is in position 4, so the 1st element of the
vector is 4, and so on. Note that 0 is used to represent the blank. Although different
representations exist, some of which may seem more intuitive, MPS is dependent on
the representation, and in general, it will not work with other representations.
Given that we can find macros with an iterative deepening search from the goal,
we need to be able to decide where the macros fit in the table. If a macro belongs in
column n, row m of the table, then that means the macro moves a tile from position
m to position n, leaving all the pieces from positions 0...(n — 1) unchanged. Now
consider applying the inverse of that macro to the goal state. It will take the tile from
position n and move it to position m while leaving the tiles from positions 0...(n—1)
unchanged. The state vector for the state obtained by applying the inverse of this
macro to the goal state will look like (0,1,...,(n —1),m,...). The first n values of
the state vector will correspond to the goal values. A macro that when applied to
the goal leaves the first n state variables unchanged is said to have an invariance of
n. Since the invariance of the macro gives the longest sequence of variables that are
unchanged by the macro, the invariance of the macro tells us which column the macro
belongs in. If a macro has invariance n, then so does its inverse; since the macro does
not change the values of the first n state variables, neither will its inverse.
In addition, the value of the nth state variable tells us which row the macro’s
inverse belongs in. So for each state found during the search from the goal, we find

the invariance of the macro and look at the value of first state variable that differs

2. SEARCH 17
from the goal. If the invariance of the macro is n, and the value of the first state
VariaBle that differs from the goal is m, then we place the inverse of the macro in
column n, position m in the table. Since the search finds all the length one macros,
then all the length two macros, and so on, we will always find the shortest macros
first. Thus we can simply put a macro in the table if there is no macro already there.
If the longest macro in the completed table is of length n, this technique will find all

the macros with a search to depth n.

2.3.3.3. Partial Match, Bi-directional Search. Co’nsider‘ two macros that, when
applied to the goal state, map the 7th state variable to the same value. If we apply
the first macro followed by the inverse of the second macro to the goal, the effect will
be to move the 7th state variable and then to move it back its goal value. So any
two macros that when applied to the goal generate an identical sequence of 7 state
variables can be composed to generate a new macro of invariance :. By storing the
state vectors of each macro when applied to the goal, it is possible to generate macros
of length 2¢ by composing two macros of length ¢ whose first n state variables are
equal (but not necessarily equal to the goal value).

The above technique is based on the bi-directional search described by Pohl [17].
The major differences are that we use only one search from the goal, and that only
the first n state variables must match. This allows us to find macros of length d
with a search to depth d/2, which is a tremendous computational advantage since it
reduces the cost of the search from b¢ to b%/2 where b is the average branching factor.
However, this technique does not gain us much if each new state must be compared
with each existing state. When this is the case, the bi-directional search takes the

same amount of time as an ordinary search, with comparisons taking most of the

2. SEARCH 18

time. Fortunately, it is possible to hash the states based on the values of the state

variables.

2.3.3.4. Macro Composition. When we compose two macros of invariance ¢, the
resulting macro will be a different macro having invariance 7. If, when applied to
the goal state, the (7 4 1)th state variables are equal, then if we compose one macro
with the inverse of the other, we will get a macro with invariance of at least ¢z + 1.
Korf takes advantage of this by first letting the algorithm above run until memory
is exhausted, and then composing the macros with the highest invariance to fill the
empty slots in the table [14]. This technique has the advantage that it can find high
invariance macros with little computation, however, it is not guaranteed to find the

shortest macros.

2.4. Summary

Heuristic search can solve problems well with an accurate heuristic function. Some
problems such as Rubik’s Cube do not have an accurate heuristic function that is
easily computable. Korf’s MPS (Section 2.3.3) can solve problems such as Rubik’s
Cube without a heuristic function by building a macro table.

MPS can be used to solve any problem that is serially decomposable. Peg Solitaire
is an example of a problem that is not serially decomposable, and so cannot be solved
by MPS. Another disadvantage of MPS is that information from one domain cannot
be transferred to a similar domain. Iba’s MACLEARN [13] addresses these problems,

and is described in Chapter 3.

CHAPTER 3

Minimum to Minimum

Iba [13] describes a heuristic approach to the discovery of useful macro operators.
His system, MACLEARN, learns new macros during problem solving so that they can
be used immediately. By learning macros on simple training problems, the system is
able to solve much more difficult problems. This chapter describes Iba’s MACLEARN
system. Section 3.1 describes his general framework for learning macros. Section 3.2
describes details of the system itself. Section 3.3 discusses the results of Iba’s tests.

Chapter 4 analyses MACLEARN in more detail and introduces an improvement.

3.1. Iba’s Learning Model

Iba [13] gives a general framework for learning macros in a wide variety of domains.
The learning model is based on the components shown in Figure 3.1. The Performance
Element executes some form of search over the operator set. As it finds new states of
the puzzle, it passes that information on to the Macro Proposer which proposes new
macros at certain stages of the search. The Static Filter decides if a new macro is
likely to be useful, then adds it to the operator set. The Dynamic Filter is invoked
after a training session to remove macros that were not useful.

The Iﬁodel is flexible, allowing for both in-trial learning, and cumulative learning

across similar problems.

19

3. MINIMUM TO MINIMUM 20

Dynamic
Filter

Operator Set

Primitive Operators and Macros

Macro
Proposer

———— Data Flow

FIGURE 3.1. Iba’s Learning Model

3. MINIMUM TO MINIMUM 21

FIGURE 3.2. The Hi-Q Puzzle: An Example Of Peg Solitaire

3.2. Maclearn

" Iba’s system based on the framework described above is called MACLEARN. Each

of the system’s components are described in detail below.

3.2.1. Operator Set. MACLEARN operators are represented as pairs of rectan-
gular arrays, that match when reflected or when rotated by 0°, 90°, 180°, or 270°.
The first element of the pair represents the preconditions of the operator; the second
represents the effects. For example, in the Peg Solitaire domain [4] (Figure 3.2), the

only basic operator is
e ¢ O 7 0 O o

Macros are represented in the same way, with the addition of “.” which is a Don’t
Care symbol. An example is shown in Figure 3.3.
The choice of representation is important, and the beauty of this one is that it

allows macros to be treated in exactly the same way as it treats primitive operators.

3. MINIMUM TO MINIMUM

FIGURE 3.3. An Example Of A Macro Operator For Peg Solitaire

22

3. MINIMUM TO MINIMUM 23

ALGORITHM 3.1 (COMPOSE MACRO).

(1) Find the smallest rectangle that includes all of the locations used by any
operator in the sequence being composed.

(2) Create an array with the dimensions of this window, and fill it with Don’t
Care symbols. For each operator in the sequence being composed do (in the
order that they occur in the sequence)

(a) Change the position of the operator so that it is relative to the rectangle
being used rather than the whole board.

(b) Copy the after array of the operator into the rectangle being used. Don’t
Care symbols are not copied.

(3) Copy the current rectangle to a new after array.

(4) For each operator in the sequence being composed (in the reverse order that
they occur in the sequence) .

(a) Change the position of the operator so that it is relative to the rectangle
being used rather than the whole board.
(b) Copy the before array of the operator into the rectangle being used.
Again, Don’t Care symbols are not copied.
(5) Copy the current rectangle to a new before array.

In order for a macro to be useful, it must be generalized so that it can be used in
different parts of the search. In MACLEARN, the macros are generalized implicitly
by the representation, which allows them to be used anywhere on the puzzle, and
at any orientation. There is no explicit generalization step; the generalizatio;l comes

free with the representation.

3.2.2. Macro Proposer. The Macro Proposer watches the search develop and,
based on heuristic rules I will describe shortly, decides when to learn new macros.
Once that decision is made, a macro is composed from the chosen operator sequence.
The before and after patterns of the operator are created as in Algorithm 3.1. Fig-
ure 3.4 shows several steps in the solution to a Peg Solitaire problem. The primitive
operators used in this sequence are shown in Figure 3.5. The macro operator in

Figure 3.6 is learned by composing these primitive operators.

3. MINIMUM TO MINIMUM

e o o o e o o o e o o ¢ o o o o
e o o O e o o o e o o o e o o O
— — —

e o o o e o o O e 0 0 o e 0 0 ©
e ¢ o o e ® o O e o o O e o o o

FIGURE 3.4. An Example Operator Sequence For Macro Composition

(o} ® ® e}
® — O ¢ ¢ 0O — 0 O e ® — O
® 0] (o} ®

FIGURE 3.5. Operators Used In Figure 3.4

FIGURE 3.6. Macro Operator

24

3. MINIMUM TO MINIMUM 25

—— Typical Solution Path
———- Solution with Macros

Value of the heuristic evaluation function

Solution Path
FIGURE 3.7. The Effect Of Macros Learned By The Minimum To Min-

‘imum Heuristic

3.2.3. Static Filter. The Static Filter uses three tests. It removes new macros
that are duplicates of existing operators. The filter also removes macros that are
longer than a given threshold. Long macros will usually have complex preconditions
and thus will not often be applicable. Chapter 4 examines this motivation in more
detail. Lastly, a domain dependent test may be applied.

A macro that passes these tests is immediately added to the operator list, allowing
in-trial learning as well as cumulative learning across trials. Macros learned early in

the search can be beneficial for the remaining solution as well as for later problems.

3.2.4. Dynamic Filter. MACLEARN also uses a Dynamic Filter to remove macros
that are seldom or never used. This is invoked to remove unused macros after a train-
ing session. It proves to be effective in the Peg Solitaire domain, but it may not

always be helpful, since it can remove potentially useful macros.

3.2.5. The Minimum To Minimum Heuristic. MACLEARN uses a Minimum
to Minimum heuristic to find new macros. (Figure 3.7). When the value of a heuristic

function at a given state is less than the value at its children, a new macro is proposed

3. MINIMUM TO MINIMUM 26

between the previous and current minima along the solution path.! The motivation
behind this heuristic is to eliminate the segments of the search where the heuristic
function is increasing. When a solution must follow such a segment, the neighboring
region of lower heuristic value is exhaustively searched. By remembering macros that
tra,versed the “hills,” the system tries to avoid these more expensive segments. The

macros make the heuristic function monotonically decrease along the solution path.

3.3. Results

To test his system, Iba ran three experiments in the Peg Solitaire domain. The
first examined the value of learning macros. The second tested the effects of cumu-
lative learning over several problems. The third tested the static filtering heuristics
described in Section 3.2.3.

For the first test, each of the problems in Figure 3.8 were attempted without macros,
then again with macro learning. The trial with macro learning was repeated to allow
the use of macros that were learned near the end of problem solving. Then the
Dynamic Filter was used to remove unused macros, and the trial was performed
again. This experiment showed that macro learning improved the speed of problem
solving for the smaller puzzles and allowed some of the larger puzzles to be solved
where they could not be solved within resource limits by heuristic search alone.

Even with in-trial macro learning, not all of the Peg Solitaire problems were solved.
The second experiment tested the effects of cumulative learning across the problems
in Figure 3.8. At the end of the first pass through all of these problems, the Dynamic
Filter was invoked to remove unused macros. Then each problem was attempted
again, and the Dynamic Filter was invoked after each one. This allows macros to

Tba [13] describes the heuristic function as increasing towards the goal rather than decreasing,

and thus the macro learning heuristic is seen as “Peak to Peak.”

3. MINIMUM TO MINIMUM

e o o o c & O e O
e o o o o e e e O
e o ¢ O e o o
e o o o e o o

Medium Edge Partial Hi-Q

o o o e o o ¢ o o
o o o e o o ¢ o o
e e 006606 o060 0606 e o0 0 00
e 006 66 o0 0606 0e o060 e e
e o 60606 060606006 o0 0 00
e o o e o o ¢ o o
o o o e o o e o o
Hi-Q-1 Hi-Q-2 Hi-Q

FIGURE 3.8. Peg Solitaire Problems Used For Iba’s Experiments

3. MINIMUM TO MINIMUM 28

be generated in one problem and used in solving another one, but keeps control of
the number of macros. This experiment showed that cumulative learning allowed
MACLEARN to solve problems that it could not solve with in-trial learning alone.
The final experiment tested the static filtering mechanism (3.2.3). Again, the
problems in Figure 3.8 were used as a training sequence. To test each component of
the Static Filter, this training sequence was attempted with all of the components
disabled, then with each individual component enabled, then with all components
enabled. The results showed that the static filtering mechanism is useful, and that

each of the components resulted in an improvement in problem solving speed.

3.3.1. Discussion. Iba makes several implicit assumptions about the problem
domain that have an effect on the search. MACLEARN assumes that the heuristic
evaluation function is non-monotonic. If the evaluation function is monotonic, no
macros will be generated. In practice this is not really important, since best first
search already works well in a domain with a monotonic evaluation function. The
representation of macros as rectangular arrays may have an important effect on the
search, which is not discussed by Iba. MACLEARN works well for puzzles that can
easily be defined on rectangular grids, but there are many important problems that
do not involve rectangular arrays.

Despite its limitations, the MACLEARN system can result in significantly better
performance than heuristic search alone. The ability to learn macro operators on

- simple training problems allows MACLEARN to solve several difficult problems.

CHAPTER 4

Optimal Tunneling

In a domain such as Peg Solitaire, the Minimum to Minimum heuristic finds many
useful macros because the distances between minima are small. However, in other
domains the minima are mﬁch further apart, and the Minimum to Minimum heuristic
proposes much longer, less useful macros. This chapter describes a new heuristic for
learning macros: Optimal Tunneling. The intuition behind Optimal Tunneling is
described in Section 4.1. This intuition is examined in Sections 4.2 to 4.4. Chapter 5
shows the results of several tests comparing the Minimum to Minimum heuristic with

Optimal Tunneling.

4.1. Sokoban

SOKOBAN [11] is an interesting family of puzzles in which minima are far apart.
It is loosely related to the Eight puzzle (Figure 2.1), but is more complex, with a
domain consisting of several objects (Figures 4.1 and 4.2): a penguin, some balls and

the same number of goal squares, and some walls that form a maze.

Ball | Goal | Penguin Wall

OF &

FIGURE 4.1. The Parts Of SOKOBAN

29

4. OPTIMAL TUNNELING 30

FIGURE 4.2. The Solution To A SOKOBAN Problem

The object of the game is to move the penguin — up, down, left, and right — to
push all of the balls onto the goal squares. The penguin can be moved by itself or

push exactly one ball into an empty space or goal.

4.1.1. Heuristic Functions For Sokoban. A heuristic function for SOKOBAN
might be based on the one Iba used for the tile sliding domain [13]. The function

would return a vector with the following components:

(1) The number of balls not in goal locations.

4. OPTIMAL TUNNELING 31

(2) The average Manhattan' distance of each ball from each of the empty goal
squares.

(3) The Manhattan distance of the penguin from the closest ball not in the goal.

The elements of this vector would be compared in this order and suggest a set of
subtasks to be solved.

Figure 4.2 shows an initial state and three stages of solution. In stage (b), the
problem solver has reached an impasse. It has only two moves available to it, and
both result in an increase in the heuristic function. This stage is a minimum. To
move the ball closer to the goal, the penguin must first be moved away from the ball,
around the wall, and back towards the ball to stage (c). From stage (c), the heuristic
function gradually decreases as the ball is pushed into the goal. The penguin is then
moved until it is adjacent to the nearest ball not in the goal, stage (d). Stage (d) is
also a minimum, since the only available moves are to push the ball away from the
goal, or to move up or right, both of which are away from the ball. At stage (d), the
Minimum to Minimum heuristic would propose a macro from stage (b) to stage (d).
This macro is composed of 32 primitive steps, and is far too specific to be useful.

A much more useful macro would be the one from (b) to (c) since it could be used
many times during the solution to this screen. Notice that the heuristic function
returns the same vector for each of these states.

So our intuition suggests macros from a minimum in the heuristic function to the
next state where the heuristic value is the same as this minimum (but not necessarily

at a new minimum). We now examine this intuition.

1The Manhattan distance between two points is the number of grid steps needed to go from one

to the other. Formally, M D(z1,y1,22,¥2) = |21 — z2] + [y1 — ¥2l-

4. OPTIMAL TUNNELING 32

4.2. Search As “Pouring Water”

Consider a two dimensional search space. The heuristic function defines a three
dimensional surface over this space. If one were to “pour water” at the start state on
the surface, it would run downhill until it reached the goal, and the path of the wave
front represents the progress of the best—first search (water takes the path of least
resistance). Figure 4.3(a), shows an example of the heuristic function value along a
solution path. However, if there is a valley along this path, the water must fill the
valley to form a lake before continuing on down the next slope, as in Figure 4.3(b).
In a best first search, this “lake” represents the work needed for the problem solver
to search each state in the valley until it finds a way out. The search must look at
all the states that the heuristic function estimates are better, ie. the neighbors in the

“valley,” before the search can continue over the valley ridge.

4.3. Optimal Tunneling Macros Reduce Search Cost

Adding a macro to the operator set allows the heuristic search to a,voi-d examining
all the states in the valley. If a macro can be applied from a state in a valley it can al-
low the system to jump to a state outside the valley in a single step. A macro acts like
a tunnel or pipe that allows the water to drain. Figure 4.4(a) shows the same search
space as Figure 4.3(b) with macros added using the Minimum to Minimum heuris-
tic. These “tunnels” allow the water to drain preventing any “lakes” from forming.
However, they are longer than they need to be. Figure 4.4(b) does the same job with
the Optimal Tunneling heuristic using shorter tunnels. Having simpler preconditions,
the shorter macro is more likely to be used in similar situations. Iba’s static filtering
mechanism (Section 3.2.3) deals with the problem of long macros by preventing them

from ever entering the operator pool. The Optimal Tunneling method tries to avoid

4. OPTIMAL TUNNELING 33

Start Node

Goal Node

(a) Monotonic Search

Start Node

Lake

Lake

Goal Node
(b) Search with Valleys

FIGURE 4.3. The Effects Of “Pouring Water” On Example Search Spaces

4. OPTIMAL TUNNELING 34

Start Node

/

Macro Operators

Goal Node

(a) Minimum to Minimum

Start Node

Macro Operators / \

Goal Node
(b) Optimal Tunneling

FIGURE 4.4. Macros As Tunnels

4. OPTIMAL TUNNELING 35
proposing long macros in the first place. Although the shorter macros mean more
steps in the solution, the added steps cost little in the search, since they occur in
a segment where the heuristic function decreases. The Optimal Tunneling heuristic
proposes macros from a valley floor (a minimum in the heuristic function) to the next
state outside the valley at the same height.

From the water pouring analogy it is easy to see why macros should be proposed
starting from a minimum. If the heuristic search without macros ever enters a valley,
it will eventually reach the valley ﬂooru unless it finds the goal somewhere on its way
down. If a macro were proposed starting from part way up the valley side, there is no
guarantee that the state on the valley side will be found immediateiy. More likely, the
search will reach the valley floor and then have to search every state in the valley until
it finds the starting point for the macro. This suggests that the “Optimal Aqueduct”
. heuristic (Figure 4.5) will not work well. The search may get lucky and hit the start
of the aqueduct, but it is more likely to search the entire valley. Referring back to
the water pouring analogy and real tunnels for water, most well designed city storm
sewers have their entrances at local minima. Any minimum that does not have a
storm sewer entrance will flood when it rains.

The water pouring analogy also suggests that a horizontal tunnel is the shortest
tunnel that will allow water to drain from the valley. Any shorter macro would give
an uphill slope to the tunnel as in Figure 4.6.

The problem with this macro is that the heuristic search has no reason to select
it over any other operator. When expanding the state at the floor of the valley, the
primitive operators will result in states with slightly higher heuristic values than the
valley floor. The macro, on the other hand, gives a state with a much higher heuristic

value. As a result, the best first search will choose to expand the states inside the

4. OPTIMAL TUNNELING 36

Start Node

Optimal Aqueducts

Goal Node

FIGURE 4.5. The Optimal Aqueduct Heuristic

Start Node

Uphill Pipes

Goal Node

FIGURE 4.6. Uphill Pipes

4. OPTIMAL TUNNELING 37
valley first. The state generated by the macro would only be expanded after all. lower
states in the ‘Valley had been exhaustively searched. The water would fill up the valley
until the level in the valley had reached the height of the top of the pipe.

The shortest macro that forces the search to continue outside the valley is the one
generated by the Optimal Tunneling heuristic. When the state at the valley floor is
expanded, the state generated by the macro will have a lower heuristic value than the
states generated by the primitive operators in the valley. The heuristic search will

select this new state first since it has the lowest heuristic value.

4.4. Optimal Tunneling Macros Improve Heuristic Function Accuracy

DEFINITION 4.1. f(n) is the minimum cost from state n to a goal.
DEFINITION 4.2. f*(n) — the heuristic function — is an estimate of f(n).

It is expected that the more nearly f* approximates f, the better the algorithm
will do [3]. Unfortunately, for most problems, f* is not identical to f. How can the
difference be reduced?

Macros do not change the function f*, but do change f. New macros change the
search space by reducing the cost of moving from one state to another. Since we are
looking for any solution to a puzzle, not necessarily the shortest one, we can assume
that the cost of a macro operator is 1, the same as the cost of a primitive operator.
If it is possible to move from state a to state b using a macro operator M, then
f(a) < f(b) + 1 since if the minimum cost of moving from b to the goal is f(b), the
minimum cost of moving from a to the goal cannot be greater than the cost of moving
to b, and then moving to the goal. So if f*(a) < f(a), learning a macro from a could

reduce the difference between the two.

4. OPTIMAL TUNNELING 38

O Starting position
B Goal
Solution Path

FIGURE 4.7. The Solution Path Without Macros

The most useful macro to learn from a is one that makes f(a) = f*(a). Such a
macro should move from a to some b such that f(b) = f*(a) — 1. In other words, the
macro should move us from state a to a state in which the minimum distance to the
goal is f*(a) — 1. In practice, finding the state b may be computationally difficult.
However, we can find &' such that f*(') = f*(a) — 1. Here we find a state b’ where
the value of the heuristic function is one less than the value of the heuristic function
at state a. The Optimal Tunneling heuristic finds macros where f*(b') = f*(a). The
macros that it learns change the distance from state a to the goal so that it is one
more than the value of the heuristic function at state a.

An example of a macro that changes the search space is given in Figures 4.7 to
4.10. Figure 4.7 shows a solution to a simple path-finding problem with no macro
operators. The Manhattan distance from each state along the solution path to the
goal is shown in the figure. The number of steps needed to reach the goal from the
start state is nine, bu’t the heuristic estimates that it is seven. Figure 4.8 shows

the estimated and actual distances to the goal at each step along the solution path.

4. OPTIMAL TUNNELING

10 T
8r \\\\ f;ﬁg; e -
6k
4t
2k
.0 '
0 2 4 6 8 10

FIGURE 4.8. The Estimated, f*(n), And Actual, f(n), Distance To
The Goal Without Macros

>

O Starting position
B Goal

Solution Path
Macro Operator

FIGURE 4.9. The Solution Path With Macros

39

4. OPTIMAL TUNNELING

f* (n) ——
£(n) —

FIGURE 4.10. The Estimated, f*(n), And Actual, f(n), Distance To
- The Goal With Macros

4. OPTIMAL TUNNELING 41
Learning a macro changes the search space by allowing a move across the two states
with a heuristic value of five in one step (Figure 4.9). The heuristic function has not
changed, but the addition of the macro operator changes the number of steps needed
to reach the goal to eight. This macro has changed the search space to make the

heuristic function more accurate.

4.5. Summary

The Minimum to Minimum heuristic works well for domains in which minima are
close together. SOKOBAN is an example of a domain where minima are far apart.
Minimum to Minimum does not learn useful macros in this domain. An example
suggests learning a macro from a minimum to the next state with the same heuristic
value. The Optimal Tunneling heuristic learns macros in this way.

A water pouring analogy suggests that “valleys” along the solution path will slow
the progress of a best first search. Macro operators act like “tunnels,” allowing

?” The Minimum to

water to drain from a valley without filling it to form a “lake.
Minimum heuristic proposes macros that allow the water to drain from one valley
floor to another valley floor, but the macros are longer than they need to be. The
water pouring analogy suggests that a macro should start at a minimum, and end
at a state with the same heuristic value. The Optimal Tunneling heuristic proposes
these macros, which allow the water to drain, but with as short a tunnel as possible.

The performance of a best first search depends on the accuracy of the heuristic
function. Macro operators change the search space, and can potentially make the
heuristic function more accurate. The Optimal Tunneling heuristic finds macros that
do this.

Since the Optimal Tunneling heuristic finds macros that tend to make the heuristic

function more accurate, these macros should improve the efficiency of the search.

4. OPTIMAL TUNNELING 42
Optimal Tunneling also finds the shortest macro that avoids searching “valleys.” This
suggests that in general, Optimal Tunneling will perform better than the Minimum
to Minimum Heuristic. The results in Chapter 5 confirm the superiority of Optimal

Tunneling.

CHAPTER 5

Results

5.1. Implementation Status

I have implemented a problem solver based on Iba’s work. It is written is Chez
Scheme, and sﬁpports both the Minimum to Minimum and the Optimal Tunneling
heuristic. Source code for the system is available from jamesm@cpsc.ucalgary.ca,
or bruce@cpsc.ucalgary.ca. During the course of my research, I also implemented
a probiem solver based on Korf’s MPS [15] (Section 2.3.3).

The structure of the problem solver is similar to the model described by Iba (Sec-
tion 3.1). The core of the system is a heuristic search. Each operator is stored as a
list of “before” and “after” pairs for each possible orientation of the operator. The
“before” and “after” patterns are stored as a list containing a list of symbols for each
line of the pattern. The operator pool is stored as a simple list of operators.

Several data structures are used to improve the performance of the system. Each
newly generated state must be checked to see if it was generated previously. This is
done by storing each state in a hash table [10], which can be quickly checked to see if
a new state is a duplicate. Another potentially slow operation is the maintenance of
the sorted list of open states. These states are kept in a heap [10], providing O(logn)
time for an insertion, and O(logn) time for the removal of the minimal element.

The pattern-matching algorithm is not as efficient as it could be. Since it tries

43

5. RESULTS | 44
to match a pattern at each possible position without using any of the information
from previous positions, it requires O(m X n) comparisons for an operator with m
symbols, and a state description with n symbols. Amir et al [1] present a more efficient
algorithm. The Rabin-Karp string matching algorithm [5] can also be generalized to

2-dimensional pattern matching giving O(n + m) comparisons.

5.2. Problems With Heuristic Search

When the heuristic function is one to one, the heuristic search is completely defined.
However, if two states can have the same heuristic value, then the heuristic search
must choose which to expand first. Such choices early in the search can have drastic
effects on the outcome. The choice of which state to select among those with the
same heuristic value is usually defined implicitly by the problem solving system, and

is affected by several design choices:

(1) What order are operators applied to a state being expanded?

(2) If operators can be matched when rotated or reflected, in what order are the
rotations or reflections applied?

(3) When new states are added to the list of unexplored states, are they added
before or after states with the same heuristic value?

(4) Does the data structure used to store the unexplored states maintain the order

of states with the same heuristic value?

Figure 5.1 shows the effects of various choices on a simple path finding domain. Part
(a) shows the effects of examining the state generated by the “Right” operator before
considering others. Part (b) shows the effects of preferring the “Up” operator. For
part (c), when two states have the same heuristic value, one is chosen at random.

Although all three examine a similar number of states, the solutions found are signif-

5. RESULTS 45

[0 Starting position O Starting position O Starting position

B Goal W Goal B Goal

Solution Path Solution Path ‘Solution Path
(a) Prefer Right (b) Prefer Up (c) Random

FIGURE 5.1. The Effects Of Operator Choice On Heuristic Search

icantly different. The order in which states are expanded can change both the total
number of states expanded during a search, and the solution path.

These effects are compound;ad by macro learning. Since these choices will cause
the search to take different paths through the search space, different macros will be
learned, which increases the difference between the two searches. Also, the addition

of macros adds new choices when heuristic values are the same:

(1) Are macro operators expanded before or after primitive operators?

(2) Are new macros expanded before or after old ones?

These choices can be made arbitrarily in that there is no clear reason to prefer any
one of them, but their effects can significantly alter the results of a given trial. Since
Iba does not specify what choices he makes for his system, it is difficult to reproduce

his results exactly. My system makes choices as described in Appendix A.

5. RESULTS 46

e o o o o e O e O
® o o o o o e e O
® e o O e o o
e o o o o o o

Medium Edge Partial Hi-Q

o o o o o o e o o
e o o e o o o o o
e 660606 o006 06606 o900 00
e O e 066 o000 6 o060 e 0
e e 060606 o 0000 o0 0 o0
e o o e o o o o o
o o o o o o e o o
Hi-Q-1 Hi-Q-2 Hi-Q

FIGURE 5.2. Problems Used For The Peg Solitaire Experiments

5.3. Comparative Tests

The Optimal Tunneling heuristic and the Minimum to Minimum heuristic are com-
pared using the problem solver described above. For each comparative test, the only
change made is the choice of macro proposing heuristic. The tests were performed
on a SparcStation 10 Model 30 with 32Mb of physical memory, and 252Mb of virtual

memory.

5.3.1. Peg Solitaire. Iba tested the MACLEARN system on the Peg Solitaire
domain. Since the minima are close together, this is a domain for which the Minimum
to Minimum heuristic performs well. Even in a domain where Minimum to Minimum

performs well, the Optimal Tunneling heuristic shows a significant improvement.

5. RESULTS 47

e o o o o Numberof peg groups: 2
o e o e e Number of hole groups: 2

e ¢ 0o o o Number of pegs: 15

FIGURE 5.3. A Peg Solitaire State Whose Evaluation Function Value Is (2,2,15)

5.3.1.1. Heuristic Function. The Heuristic Function used for Peg Solitaire was

identical to the function used by Iba. It is a vector with three components:

(1) The number of groups of pegs
(2) The number of groups of holes
(3) The number of pegs

Groups are defined as horizontally or vertically adjacent sets. Figure 5.3 shows an

example state, and its evaluation.

5.3.1.2. Static Filter. For the tests in the Peg Solitaire domain, the static filter
included all of the elements in Section 3.2.3. The threshold for the length test was
seven.

The domain-specific test for Peg Solitaire was a connectedness test. This test rejects

macros in which the pegs are not connected in the “after” side.

5.3.1.3. Fzperiment 1. The first experiment compares Minimum to Minimum with
‘Optimal Tunneling for three different parts of a learning trial. Each of the problems

in Figure 5.2 was attempted three times. As in Iba’s Experiment 1 (Section 3.3),

5. RESULTS 48
the problems were attempted twice with macro learning and then again after dy-
namic filtering. Each problem was attempted separately from the others; there was
no cumulative learning across different problems. The only difference between this
experiment and Iba’s experiment is that we do not attempt to solve the problems
without macro learning since we want to compare the two macro-learning heuristics.

Figure 5.4 shows the results of the first trial with macro learning. Neither sys-
tem solved the Hi-Q puzzle within the 10000 second time limit without cumulative
learning. For the Hi-Q-1 problem, Optimal Tunneling was only slightly faster than
Minimum to Minimum, but Optimal Tunneling was significantly better for all the
other cases.

For the second try with macro learning (Figure 5.5), the results were more varied.
For the Partial Hi-Q and the Hi-Q-2 problems, the solutions for Optimal Tunneling
were found without backtracking, and much more quickly than those for Minimum to
Minimum. The Medium Edge problem was actually solved monotonically (without
backtracking) by Minimum to Minimum, but since it had a higher branching factor, it
took slightly longer than Optimal Tunneling which needed to backtrack. In the final
phase of the experiment, the dynamic filter reduced the branching factor enough that
Minimum to Minimum could solve it faster. The only case where Optimal Tunneling
was worse than Minimum to Minimum was Hi-Q-1. Neither heuristic solved this
problem as quickly as the other problems, and Optimal Tunneling took nearly twice
as long as Minimum to Minimum.

After Dynamic Filtering (Figure 5.6), Medium Edge was the only problem that
was solved more quickly by Minimum to Minimum. This was the simplest of the
problems, and both systems solved it in less than one second. Optimal Tunneling

performs more effectively on the more complex problems. Partial Hi-Q and Hi-Q-2

Run Time (CPU seconds)

Run Time (CPU seconds)

5. RESULTS

16 +

14 4+

& Optimal Tunneling

O Minimum to Minimum

12 +

10 +-

49

Medium Edge
400

| timal Tunnelin
350 L Op g

0 Minimum to Minimum

300 -

250 -

200 +

Partial Hi-Q

Hi-Q-1

FIGURE 5.4. First Try With Macro Learning For Peg Solitaire

Hi-Q-2

Run Time (CPU seconds)

Run Time (CPU seconds)

25 4

N
[
1

=

8]
i
T

-
)]
1

05 4

1000 -

100 -

10 4

5. RESULTS

B Optimal Tunneling

[J Minimum to Minimum

50

Medium Edge

Partial Hi-Q

& Optimal Tunneling

O Minimum to Minimum

Hi-Q-1

FIGURE 5.5. Retry With Macro Learning For Peg Solitaire

Hi-Q-2

1

5. RESULTS 51

were both solved monotonically and took about 1/5th as much time as Minimum to
Minimum. Hi-Q-1 seemed to give both systems some trouble, but again, Optimal
Tunneling was nearly 5 times faster than Minimum to Minimum.

Although a few problems took more time with Optimal Tunneling, it generally
performs much better than Minimum to Minimum for problems in the Peg Solitaire

domain without cumulative learning,.

5.3.1.4. Exzperiment 2. The second experiment with Peg Solitaire compares the
two macro-learning heuristics for cumulative learning across similar problems. For
this test, all of the problems in Figure 5.2 except the full Hi-Q were used as a training
sequence. Hi-Q was not solved by Minimum to Minimum even with cumulative
learning, so it was left out of this test!. At the end of the first pass through all of
these problems, the Dynamic Filter was invoked to remove unused macros. Then
each problem was attempted again, and the dynamic filter was invoked after each
one. Figure 5.7 shows the run time for both macro learning techniques. Another
useful measure of performance is the cumulative run time, since it takes into account
the work needed to learn macros during the initial training sequence. Figure 5.8
shows that Optimal Tunneling results a clear improvement in cumulative run time
over Minimum to Minimum.

For the Peg Solitaire domain, both with and without cumulative learning, Optimal

Tunneling performs significantly better than Minimum to Minimum.

5.3.2. Tile Sliding. Another domain used to compare the Optimal Tunneling
heuristic to the Minimum to Minimum heuristic is Tile Sliding. Tile Sliding is a name
given to the family of puzzles that includes the Eight puzzle and the Fifteen puzzle.

1With cumulative learning Hi-Q was solved by Optimal Tunneling, but it is not worthwhile to

use it in the training sequence since Minimum to Minimum failed to solve it.

Run Time (CPU seconds)

Run Time (CPU seconds)

5. RESULTS

& Optimal Tunneling

O Minimum to Minimum

|

Hi-Q-2

Medium Edge Partial Hi-Q
300 ~
B Optimal Tunneling
250 + O Minimum to Minimum
200 4
150 +-
100 4

52

Hi-Q-1

FIGURE 5.6. After Dynamic Filtering For Peg Solitaire

Run Time (CPU seconds)

Cumulative Run Time (CPU seconds)

5. RESULTS 53

10000 ~
& Optimal Tunneling
O Minimum to Minimum
1000 +
100 +
10
1 4 t
Medium Partial Hi-Q-1 Hi-Q-2 Medium Partial Hi-Q-1 Hi-Q-2
Edge Hi-Q Edge Hi-Q
First Pass Second Pass
FIGURE 5.7. Run Time For Peg Solitaire Experiment 2
7000 T

~——#— Optimal Tunneling

———— Minimum to Minimum

=]
1

1 1 1 3 !
T T T T T 14 1

Medium Partial Hi-Q-1 Hi-Q-2 Medium Partial Hi-Q-1 Hi-Q-2
Edge Hi-Q Edge Hi-Q
First Pass Second Pass

FIGURE 5.8. Cumulative Run Time For Peg Solitaire Experiment 2

5. RESULTS

7T 2 6
5 7 6
4 2 5 5 10
8 1 3
1 -3 31 9
2 - 4
4 8 11
Simple Eight Eleven
8 7 16 2 21 8 23 20 10
5 7 14 10
16 4 13 6 16 12 22 4 11
4 13 12 3
19 9 - 18 17 13 3 9 19
9 - 2 6
17 12 11 5 18 15 5 7 14
8 15 11 1
‘ 1 14 10 3 - 241 2 6
Fifteen Nineteen Twenty-four

FIGURE 5.9. The Problems Used For The Tile Sliding Experiment

5. RESULTS 55
Figure 5.9 shows the problems used for the experiment in the Tile Sliding domain.
Each puzzle was chosen at random, but was fixed so that identical problems were
attempted using each heuristic. The tests were similar to the second experiment for
Peg Solitaire. All of the problems were used as a training sequence. At the end of
the first pass through all of these problems, the dynamic filter was invoked to remove
unused macros. Then each problem was attempted again, and the dynamic filter was

invoked after each one.

5.3.2.1. Heuristic Function. The heuristic function for the tests in the tile sliding
domain was identical to the one used by Iba. The function returns a vector with the

following components:

(1) The number of consecutive tiles in their goal locations multiplied by negative
one. Countiné starts from the first tile and proceeds until the first mismatch
is encountered. This number is then multiplied by negative one so that the
value gets smaller as it approaches the goal.

(2) The Manhattan? distance of next tile to be placed from its goal square.

(3) The Manhattan distance of the blank from the next tile to be placed.

The elements of this vector would be compared in this order and suggest a set of

subtasks to be solved.

5.3.2.2. Static Filter. For the tests in the Tile Sliding domain, the static filter
included only the redundancy and length tests from Section 3.2.3. No domain-

dependent test was used. The threshold for the length test was thirty.

2The Manhatian distance between two points is the number of grid steps needed to go from one

to the other. Formally, M D(z1,y1,z2,¥2) = |21 — z2| + jy1 — ¥2].

5. RESULTS 56

10000 -
Optimal Tunneling
1000
3 0 Minimum to Minimum
<
H
§ 100
=]
e
3 10
°
E
[]
[1 4
]
-
0.1
0.01 4

= =z g £ g 5 o = g g g 5
e 2 & & i £ ®B o2 EF & 1 ¢
@ & & £ o @ i & g 2
Z g 2]
& &

First Pass Second Pass

FIGURE 5.10. Run Time For Tile Sliding

5.3.2.3. Results. Figure 5.10 shows the run times for the Tile Sliding domain on
a logarithmic scale. The only test for which Minimum to Minimum is significantly
better is the first attempt at the Eight puzzle. For all subsequent problems, Optimal
Tunneling performs much better, up to eighty times faster for the first attempt at the
Twenty-four puzzle. Figure 5.11 shows the cumulative run time for the Tile Sliding
experiment on a logarithmic scale. Optimal Tunneling shows a clear improvement.

The water pouring analogy in Section 4.2 assumes that the shorter macros proposed
by Optimal Tunneling should be applicable more often than Minimum to Minimum
macros because they have fewer preconditions. The results in Figure 5.12 support
this assumption. This figure shows the number of operators in the operator pool
throughout the Tile Sliding experiment. By the end of the first pass through the
problems, the Optimal Tunneling heuristic had learned seven macros, and the Mini-
mum to Minimum heuristic had learned twenty-eight. At this stage in the problem,
the dynamic filter was invoked, removing four operators from the Minimum to Mini-

mum pool. However, the dynamic filter did not remove any macros from the Optimal

57

5. RESULTS

10000 T

(spuodas 14D) W], uny aApe[mun)

gm T

o

MM -
g £ = - = 3

- oy fjuam],

Uasj3uiN

ooy

uaA3[g

g

ajduig

anog fyusm],

UIDIBUIN

woayty

uasalg

waig

apdung

Second Pass

First Pass

FIGURE 5.11. Cumulative Run Time For Tile Sliding

5. RESULTS 58

«—4—— Optimal Tunneling

=—=—0~—— Minimum to Minimum

Number of Operators
-
W

@ = [e o E - € & 5
i % § § § 2 2 3% 8§ 5§ i &

g i 3 £ 3 g 5] kT & 5
& & & g oy & & i £ 2
[[
4 g b4 ;
= =

First Pass Second Pass

FIGURE 5.12. Number Of Operators For Tile Sliding

Tunneling operator pool. Every macro learned in the first pass was used in later prob-
lems. Optimal Tunneling learned fewer but more useful macros. The effect of the
Optimal Tunneling macros on the average branching factor is shown in Figure 5.13.
The branching factor for Minimum to Minimum is much higher, suggesting that it

will have longer run times.

5.3.3. Sokoban. The final domain for testing is the SOKOBAN domain. The
problems used in this domain are shown in Figure 5.14. To improve the solution
times for these problems (so that the tests could be run in a reasonable time), the
problem solver did not consider any states where a ball had been pushed into a corner,
since a problem is unsolvable from that point. The heuristic function used for the
SOKOBAN domain is given in Section 4.1.1. The limit for the static filter length test
was thirty.

Table 5.1 shows the results for the SOKOBAN domain. Optimal Tunneling solved

the first screen in less than half the time taken by Minimum to Minimum. Neither

5. RESULTS 59

80 T B Optimal Tunneling ~—

70 4 .| O Minimum to Minimum| — r

Average Branching Factor

o 2 5 g g 5 o - g P g 5
S TR g &8 = % o % g &
& ® @ £ ¥ & & ® & E 2 »
2 @ A 3]
z 2
= =

Firat Pass Second Pass

FIGURE 5.13. Average Branching Factor For Tile Sliding

Screen _1 Screen 2

FIGURE 5.14. The Problems Used For The SOKOBAN Experiment

TABLE 5.1. Sokoban Results

Problem Optimal Tunneling Minimum to Minimum

Screen 1 2.7 CPU hours 6.7 CPU hours

Screen 2 || Unsolved after 24 hours | Unsolved after 24 hours

5. RESULTS 60

heuristic solves the problem as quickly as a human can® but Table 5.1 still shows the

clear superiority of Optimal Tunneling.

5.4. Summary

When each problem was attempted for the first time without cumulative learning
across trials, the Optimal Tunneling heuristic resulted in significantly better perfor-
mance for three of four problems in the Peg Solitaire domain, and performed equally
well for the other. For the second trial, with macros learned from the first, Optimal
Tunneling resulted in poorer performance on only one problem, but showed superior
performance on the others. After dynamic filtering, Minimum to Minimum performed
better on only the simplest problem, and Optimal Tunneling was significantly better
for the rest.

In the Peg Solitaire domain with cumulative learning across trials , Optimal Tun-
neling showed a clear improvement in all cases.

With cumulative learning across trials in the Tile Sliding domain, Optimal Tunnel-
ing learned fewer and more useful macros, res;.llting in significantly better performance
for all but one problem.

In the SOKOBAN domain too, a problem solving trial using the Optimal Tunnel-
ing heuristic took less than half as long as a trial using the Minimum to Minimum
heuristic.

These results show that the Optimal Tunneling heuristic results in better perfor-
mance in many domains, including domains such as Peg Solitaire where the Minimum

to Minimum heuristic performs well.

3About 2 to 3 minutes for someone seeing the problem for the first time.

CHAPTER 6

Concluding Remarks

The results in Chapter 5 replicate Iba’s results, confirming that the MACLEARN learn-
ing model is effective for solving complex puzzles that cannot be solved in reasonable
time with heuristic search alone. The water pouring analogy in Chapter 4 suggests
that the Minimum to Minimum heuristic will not work as well as the Optimal Tun-
neling heuristic. The results of Chapter 5 show that the Optimal Tunneling heuristic
out-performs the Minimum to Minimum heuristic, even on problems for which Mini-

mum to Minimum does well.

6.1. Optimal Tunneling

Optimal Tunneling produces shorter, more useful macros than the similar Minimum
to Minimum heuristic presented by Iba [13]. Optimal Tunneling is an improvement

since its macros:

(1) best reduce search cost

(2) give the most accurate modification to the search space to make the heuristic
function correct

(3) result in better performance on comparative tests in the Peg Solitaire, Tile

Sliding, and SOKOBAN domains

The water pouring analogy illustrates the effect of macros on the cost of search in
problem solving. Optimal Tunneling creates macros that cross exactly the expensive

61

6. CONCLUDING REMARKS 62

Heuristic Value
Heuristic Value

Solution Path Solution Path
(a) (b)

Heuristic Value
Heuristic Value

Solution Path Solution Path
© @

FIGURE 6.1. Some Pathological Heuristic Functions

segment of the heuristic function along the current solution path.

6.2. Future Work

6.2.1. Analysis of Heuristic Functions. The MACLEARN learning model makes
some assumptions about the heuristic function it uses. Iba points out that if the eval-
uation function decreases monotonically, the Minimum to Minimum Heuristic will
never be invoked, and no macros will be learned. The same is true of the Optimal
Tunneling Heuristic. Some other pathological heuristic functions are shown in Fig-
ure 6.1. Figures 6.1(c) and (d) show situations in which the Minimum to Minimum
Heuristic will learn macros, but the Optimal Tunneling Heuristic will not. Future
work would include a better analysis of how the two systems behave with these

pathological heuristic functions, and in what domains they would be common.

6. CONCLUDING REMARKS 63

6.2.2. Improving the Performance Element. The MACLEARN learning model,
even with the Optimal Tunneling heuristic, can solve only the first screen of SOKO-
BAN. For a domain like Tile Sliding, it is possible to solve difficult problems like the
Twenty-four puzzle by learning macros with simple training examples. Although it
may be possible to find smaller SOKOBAN problems with which to learn the macros
needed to solve more difficult ones, finding out which macros will be needed will not
be easy. If the system needs a human guide to find a set of useful macros, then it is
not likely to be useful since the human would need to do almost all of the work.

The choice of heuristic search for the performance element causes the most difficulty.
Since the search is not explicitly goal-directed, the system often must exhaustively
search the nodes in a valley before it can consider new nodes. An example of this
problem can be seen in the SOKOBAN domain when a ball has been pushed into a
place where it cannot reach the goal. A goal-directed search would discover that the
ball could not be moved to the goal, and would backtrack to a state where the ball
was free to move to the goal. The heuristic search however, finds that it can continue
to improve the heuristic by pushing other balls cIoserAto the goal. It will move all the
other balls to as many different positions as it can find before it is forced to consider
a state with a higher heuristic value.

One possible solution to these problems is to use a goal-directed search such as
that used by GPS [16]. This sort of search would also allow for new types of macro

proposers. One possibility is to propose macros when a subgoal has been satisfied.

6.2.3. More Flexible Problem Representation. The MACLEARN system
is limited by its choice of problem representation. Although it works well for 2-
dimensional search spaces, it is not easily applicable to other domains. For example,

it is possible to encode the 2 x 2 x 2 Rubik’s cube in the MACLEARN representation

6. CONCLUDING REMARKS 64

R R B B
R R B B

W W
W W

Q O O = =
@R N O O =K =

FIGURE 6.2. An Unfolded 2D Representation Of The 2 x 2 x 2 Rubik’s Cube

as shown in Figure 6.2, but the operators (Figure 6.3) and macros learned in this
domain will not generalize to the 3 x 3 x 3 cube. Also, the symmetry of the domain
is lost in the 2D representation.

Other domains that may be suitable to macro learning include symbolic integration
and symbolic algebra, but these domains require a more general problem representa-

tion.

6. CONCLUDING REMARKS

a b c
c d e f k h da
—_—

g h i j 1 1 eb
k 1 j f

a b c a

c d — d b

ef ghij k]l ghijkl1lef

a g

b c

c d e f] hda

—

g h i j k i e b
k f

1 J

FIGURE 6.3. The Three Operators For The Unfolded 2 x 2 x 2 Rubik’s Cube

65

References

[1] Amihood Amir, Gary Benson, and Martin Farach. Alphabet independant two di-
mensional matching. In Proceedings of the Twenty-Fourth Annual ACM Sympo-
stum on the Theory of Computing, pages 59-68. The Association For Computing
Machinery, May 1992.

[2] Avron Barr and Edward A. Fiegenbaum, editors. The Handbook of Artificial
Intelligence, volume 1. Addison-Wesley, 1989.

[3] Avron Barr and Edward A. Fiegenbaum, editors. The Handbook of Artificial
Intelligence, chapter C3b. A*— an optimal search for an optimal solution, pages
64-66. Volume 1 of Barr and Fiegenbaum [2], 1989.

[4] John D. Beasley. The Ins and Outs of Peg Solitaire. Recreations in Mathematics.
Oxford University Press, 1985.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[6] G.W. Ernst. Sufficient conditions for the success of GPS. Journal of the ACM,
16, 1969.

[7] R. E. Fikes, P. Hart, and N. J. Nilsson. Learning and executing generalized robot

plans. Artificial Intelligence, 3:251-288, 1972.
66

REFERENCES 67

[8] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189—268, 1971.

[9] A.H. Jr. Frey and D. Singmaster. The Handbook of Cubik Math. Enslow, Hillside,
NJ, 1982.

[10] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley, second edition, 1991.

[11] Edward Hordern. Sliding Piece Puzzles. Recreations in Mathematics. Oxford Uni-
versity Press, 1986. “

[12] G. A. Iba. Leaning by discovering macros in problem solving. In Proceedings Of
the Nineth International Joint Confev;ence on Artifical Intelligence, pages 640-
642, 1085.

[13] G. A. Iba. A heuristic approach to the discovery of macro-operators. Machine

| Learning, 3(4):285-318, 1989.

[14] R. E. Korf. A program that learns to solve Rubik’s Cube. In National Conference
on Artificial Intelligence, pages 164-167, August 1982.

[15] R. E. Korf. Macro—operators: A weak method for learning. Artificial Intelligence,
26(1):35-77, 1985. |

[16] A. Newell and H. A. Simon. Human Problem Solving. Prentice Hall, Englewood
Cliffs, NJ, 1972.

[17) 1. Pohl. Machine Intelligence, chapter Bi-directional search, pages 127-140.

American Elsevier, New York, 1971.

APPENDIX A

Implementation Details

There are several implementation details that can have significant effects on the out-
come of a given problem solving trial (Section 5.2). The details of the choices my

system makes are given here.

A.1l. Creating New Operators

When a new macro is created, or a primitive operator is declared, its reflections
and rotations are precomputed based on two operations, reflection about the x axis,
and transposition. These operations are chosen because they can be computed ef-

ficiently when operators are stored as lists of lists. If we define F() and T'() to be

(a) m (b) F(m) (¢) T(m) (d) F(T(m))

(e) T(F(m)) () T(F(T(m)) () F(T(F(m))) () T(F(T(F(m))))
FIGURE A.l. The Eight Possible Orientations Of A Macro

68

A. IMPLEMENTATION DETAILS | 69

FIGURE A.2. The Primitive Operator For Peg Solitaire

functions that flip and transpose their respective arguments, then there are eight
possible orientations of a macro m, as shown in Figure A.1l. These orientations are:
m, F(m), T(m), F(T(m)), T(F(m)), T(F(T(m))), FT(F(m))), T(F(T(F(m)).
My system generates these orientations in the order shown above, and duplicates
are removed from the list. The new operator is then added to the beginning of the
operator list.

Algorithm A.1 describes the method used to expand each state.

ALGORITHM A.l (EXPAND STATE).
(1) For each operator in the operator list:
(a) For each pattern in the list of orientations of this operator:

(i) Beginning at the top left corner of the puzzle, attempt to apply the
pattern in each possible position. The “before” array of the pattern
is tried at each possible location proceeding from left to right, and
then moving to the left of the next line.

(ii) Each time a pattern can be applied, look up the resulting state in
a hash table of generated states. If it is there, ignore this state,
otherwise, compute the heuristic function for the new state, and tag
the state with a unique “timestamp.”

(iii) Insert the new state into the hash table of generated states, and
insert it into the list of unexpanded states, in front of all states with
higher heuristic values. If two states have the same heuristic value,
the one with the smallest timestamp is placed first.

Problems such as SOKOBAN are seldom symmetrical, and the orientation of primi-
tive operators is important. The system will eventually generate all possible orienta-
tions, but their order depends on which is declared first. My system uses the general

rule that movement proceeds from left to right. For example, the primitive operator

for Peg Solitaire is declared as in Figure A.2.

A. IMPLEMENTATION DETAILS 70
Minor changes to these implementation details can have a pronounced effect on the
outcome of a given problem trial. To ensure that future researchers can duplicate the

results in Chapter 5, the implementation choices are explained in detail here.

