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ABSTRACT  

Dynamic inelastic constitutive equations that take the 

dissipative nature of inelastic deformation processes into consideration 

are developed. This is accomplished by employing the theory of 

irreversible thermodynamics based on internal state variables. The 

thermodynamic state variables consist of two internal state variables 

(the strain hardening parameter and the thermoinelastic strain), the 

total strain, the temperature, and the temperature gradient. An 

explicit representation for the Helmholtz free energy functional is 

proposed, leading to explicit expressions for the stress and entropy 

functionals. The temperature-dependent thermoinlastic material 

properties that appear in the expression for the free energy are 

determined by a novel concatenation of the results of thermodynamics, 

materials science and mechanics experiments, and mathematical analysis. 

These state equations in conjunction with the evolution laws for the 

internal state variables and the modified Fourier law of heat conduction 

give a complete characterization of the thermomechanical material 

behavior. 

The nonlinear material model so developed is non-isothermal, 

non-adiabatic, and applicable over a wide range of temperatures. 

Furthermore, it allows for the coupling of thermoelastic and 

thermoinelastic variables and automatically gives the dissipative part 

of the stress thereby eliminating the need for a separate dissipation 

potential. 

The constitutive equations, in conjuntion with the fundamental 

balance laws of continuum mechanics, are applied to the study of the 



propagation of coupled therinomechanical waves in inelastic solids. Two 

computational algorithms: one based on the numerical method of 

characteristics and the other based on the MacCormack finite difference 

scheme, are developed for quantitative studies of the problem. The 

results of the numerical simulations illustrate the coupled nature of 

the thermal and mechanical fields in consistency with the physical 

process modelled. It is shown that neglecting the stored energy of cold 

work in the analysis of plastically deforming bodies leads to an 

appreciable overestimation of the temperature rise in the body. It is 

also shown that the law of conservation of energy is capable of 

predicting temperature rises without resorting to ab initio quantitative 

guesses concerning the interconversion of mechaiica1 work into heat 

energy. 

(iv) 



To my parents 

EBUNOI,UWA and ABIODUN 

for their love and care 

and 

for initiating the process of my education 

(v) 



ACKNOWLEDGEMENTS 

I wish to express my sincere gratitude and appreciation to my 

supervisor, Dr. M.C. Singh, for his encouragement, support and guidance 

during the course of this work. 

The interest in my personal well-being and academic progress 

displayed by Dr. M. Epstein is very much appreciated. 

The cooperation of the staff of the Department of Academic 

Computing Services and the SuperComputing Services is appreciated. I am 

particularly grateful for the generous allocation •of supercomputing 

funds which enabled me to carry out the large number of numerical 

experiments associated with this work. 

Thanks go to Mrs.' Angela Lacombe for handling the typing of 

the original manuscripts so efficiently. 

Special thanks go to my beloved wife, AdeRonke, for her 

cooperation, encouragement, patience and support throughout the course 

of this work. I also thank my lovely children, Abimbola and Olanike, 

for their tolerance and understanding. 

The financial assistance received from the Department of 

Mechanical Engineering and the financial support received by my 

supervisor from the Natural Sciences and Engineering Research Council of 

Canada (NSERC) are gratefully acknowledged. 

Finally, I gratefully acknowledge the awards of the Robert B. 

Paugh Memorial Bursary in Engineering and the Izaak Walton Killam 

Memorial Scholarship by the Graduate Scholarship Committee. 

(vi) 



TABLE OF CONTENTS  

Page  

APPROVAL PAGE (ii) 

ABSTRACT 

DEDICATION (v) 

ACKNOWLEDGEMENTS (vi) 

TABLE OF CONTENTS (vii) 

LIST OF TABLES (x) 

LIST OF FIGURES (xi) 

NOMENCLATURE (xxii) 

CHAPTER 

1 INTRODUCTION 1 

1.1 Significance of Wave Phenomena 1 

1.2 Developments in Plastic Wave Theories 2 

1.3 Thesis Objectives 15 

1.4 Organization of the Dissertation 17 

2 CONTINUUM THERMODYNAMIC DEVELOPMENT OF INELASTIC 

CONSTITUTIVE EQUATIONS 19 

2.1 Preamble 19 

2.2 Choice of Internal State Variables 24 

2.3 Thermodynamic Formalism 30 

3 CHARACTERIZATION OF THE CONSTITUTIVE RESPONSE 

FUNCTIONALS 37 -

3.1 Explicit Expressions for the Helmholtz 

Free Energy, Stress, and Entropy Functionals 37 

3.2 Determination of the Thermoinelastic 

Material Properties 46 



TABLE OF CONTENTS (cont'd) 

Page  

3.3 Other Constitutive Response Functionals 59 

3.4 A Proposal for Generalization of the Procedure 

for the Explicit Characterization of the 

Free Energy, Stress, and Entropy Functionals 61 

4 PROBLEM FORMULATION 66 

4.1 Lagrangian Kinematic Description of the 

Problem' 66 

4.2 Summary of Fundamental Equations 68 

4.3 Mathematical Analysis of the System of Equations 72 

4.4 Jump Conditions at the Wavefronts 78 

4.5 Formal Statement of the Initial-Boundary-Value-

Problem 89 

5 DEVELOPMENT OF COMPUTATIONAL ALGORITHMS 92 

5.1 Introduction 92 

5.2 Application of the Numerical Method of 

Characteristics 95 

5.2.1 Treatment of Interior Grid.Points 102 

5.2.2 Treatment of Boundary Grid Points 118 

5.2.3 Remarks on the Properties of the Scheme 128 

5.3 Application of the MacCormack Finite 

Difference Scheme 129 

5.3.1 Treatment of Interior Grid Points 129 

5.3.2 Treatment of Boundary Grid Points 137 



TABLE OF CONTENTS (cont'd) 

Page  

6 NUMERICAL SIMULATIONS 140 

6.1 Introduction 140 

6.2 Numerical Examples 142 

6.3 Discussion of Results 203 

7 CONCLUSIONS 210 

7.1 Recommendations for Further Work 213 

REFERENCES 215 

APPENDIX 226 



LIST OF TABLES 

Table Page  

3.1 Thermoinelastic material constants that 

characterize the stored energy of cold work 

phenomenon in copper and aluminum. 56 

6.1 Thermoelastic material constants for 

aluminum and copper. 144 

6.2 Thermoinelastic material constants for 

aluminum and copper. 145 

6.3a Effect of stored energy of cold work on the 

initial wave velocities in an aluminum rod for 

different values of the thermal relaxation time. 206 

6.3b Effect of stored energy of cold work on the 

initial wave velocities in a copper rod for 

different values of the thermal relaxation time. 206 

6.4a Comparison of the initial velocities of the 

shock waves calculated from the jump conditions 

and the wave velocities computed from the 

numerical algorithms for an aluminum rod when 

the stored energy is neglected. 207 

6.4b Comparison of the initial velocities of the 

shock waves calculated from the jump conditions 

and the wave velocities computed from the 

numerical algorithms for a copper rod when the 

stored energy is neglected. 208 

(x) 



LIST OF FIGURES 

Figure Page  

1.1 Illustration of the interdisciplinary nature 

of plastic wave propagation studies. 

3.1 Hypothetical isothermal stress-hardening 

curves for various temperatures. 

3.2 Hypothetical isothermal stress-plastic strain 

curves for various temperatures. 

4.1 Schematic illustration of a semi-infinite rod. 

4.2 A body containing a moving surface of 

discontinuity. 

4.3 Illustratiori of the locations of -the leading (L) 

and lagging (G) wavefronts in a bar. 

4.4 Illustration of the locations of the leading (L) 

and lagging (C) wavefronts in the X-t space. 

5.1 Solution grid in the X-t plane. 

5.2 Characteristic curves passing through a typical 

interior grid point, P. 

5.3 Simplified flow diagram of the procedure for 

computing the solution at interior grid points 

using the numerical method of characteristics. 

5.4 Characteristic curves passing through a typical 

boundary grid point, M. 

5.5 Simplified flow diagram of the procedure for 

computing the solution at boundary grid points 

using the numerical method of characteristics 

with c(O,t) and O(O,t) prescribed. 

4 

51 

52 

66 

79 

84 

85 

101 

103 

117 

119 

124 



LIST OF FIGURES (cont'd) 

Figure Page  

5.6 Simplified flow diagram of the procedure for 

computing the solution at boundary grid points 

using the numerical method of characteristics 

with v(0,t) and 0(O,t) prescribed. 127 

5.7 Illustration of a typical interior grid point 

(P) in the MacCormack scheme. 136 

5.8 Illustration of a typical boundary grid point 

(M) in the MacCormack scheme. 139 

6.], Simplified flow diagram of the main computer 

programs. 141 

6.2a Velocity and stress respone of SIAR to stress 

and temperature step inputs o = 205 MPa, 

00 = 5 K, D = 1.0 E 03, XDF = 0.0158, 

At = 0.387). 146 

6.2b Temperature and heat flux response of SIAR to 

stress and temperature step inputs (Q = 205 MPa, 

00 = 5 K, XDF = 0.0158, At = 0.387, D = 1.0 E 03). 147 

6.2c Strain hardening and plastic strain response of 

SIAR to stress and temperature step inputs 

= 205 MPa, 00 = 5 K, D0 = 1.0 E 03, 

XDF = 0.0158, At = 0.387). 148 

6.3a Velocity and stress response of SIAR to stress 

and temperatur& step inputs (a = 205 MPa, 

= 5 K, XDF = 0.158, At = 0.0387, D0 = 1.0 E 06). 149 

6.3b Temperature and heat flux response of SIAR to 



LIST OF FIGURES (cont'd) 

Figure Page  

stress and temperature step inputs 205 MPa, 

00 = 5 K, D = 1.0 E 06, XDF = 0.158, At = 0.0387). 150 

6.3c Strain hardening and plastic strain response of SIAR 

to stress and temperature step inputs (Q = 205 MPa, 

00 = 5 K, D0 = 1.0 E 06, XDF = 0.158, At = 0.0387). 151 

6.4a Velocity and stress response of SIAP. to stress only 

step input (a0 = 205 MPa, 00 = 0 K, D 0 = 1.0 E 03, 

XDF = 0.0158, At = 0.387). 152 

6.4b Temperature and heat flux response of SIAR to stress 

only step input (a, = 205 MPa, 00 0 K, 

= 1.0 E 03, At = 0.387, XDF = 0.0158. 153 

6.4c Strain hardening and plastic strain response of 

SIAR to stress only step input (a = 205 MPa, 

= 0 K, X. = 0.0158, At = 0.387, D0 = 1.0 E 03). 154 

6.5a Velocity and stress response of SIARto velocity and 

temperature step inputs (v0 = -150 ins-1 , = 10 K, 

D0 = 1.0 E 04, XDr = 0.157, At = 0.387). 

6.5b Temperature and hat flux response of SIAR to 

155 

velocity and temperature step inputs (v, = -150 ms', 

00 = 10 K, D0 = 1.0 E 04, XDF = 0.157, At = 0.387). 156 

6.5c Strain hardening and plastic strain response of SIAR 

to velocity and temperature step inputs 

(v0 = -150 ms 1, 0 = 10 K, = 1.0 E 04, 

XDF = 0.157, At = 0.387). 157 



LIST OF FIGURES (cont!d) 

Figure Page  

6.6a Velocity and stress response of SLAP. to velocity 

only step input (v0 =-150 m51, 0o = 0 K, 

= 1.0 E 03, At = 0.387, XDF = 0.0158). 158 

6.6b Temperature and heat flux response of SIAR to 

velocity only step input (v0 = -150 m5', 0o = 0 K, 

D0 = 1.0 E 03, At = 0.387, XDF = 0.0158). 159 

6.6c Strain hardening and plastic strain response of 

SIAR to velocity only step input (v0 = -150 ms 1, 

= 0 K, D = 1.0 E 03, XDV = 0.0158, At = 0.387). 160 

6.7a Velpcity and, stress response of SIAR to pulsive-

sine stress and temperature inputs (a = 205 MPa, 

00 = 5 K, D = 1.0 E 03, XDF = 0.157, At = 0.387, 

= 2.61 E 10). 161 

6.7b Temperature and heat flux response of SIAP. to 

pulsive-sine stress and temperature inputs 

205 MPa, 0 = 5 K, u = 2.61 E 10, 

= 1.0 E 03, XDE = 0.157, At = 0.387). 162 

6.7c Strain hardening and plastic strain response of-

SIAR to pulsive-sine stress and temperature inputs 

= 205 MPa, 00 = 5 K, i = 2.61 E 10, 

D0 = 1.0 E 03, XDF = 0.157, At = 0.387). 163 

6.8a Velocity and stress response of SIAR to terminated-

ramp stress and temperature inputs (Q = 205 MPa, 

00 = 5 K, w = 2.61 E 10, D0 = 1.0 E 03, 

XDF = 0.157, At = 0.387). 164 



LIST OF FIGURES (cont!d) 

Figure Page  

6.8b Temperature and heat flux response of SIAR to 

terminated-ramp stress and temperature inputs 

(a,. = 205 MPa, 00 = 5 K, w 2.61 E 10, 

= 1.0 E 03, XDF = 0.157, At = 0.387). 165 

6.8c Strain hardening and plastic strain response of 

SIAR to terminated-ramp stress and temperature 

inputs (cr0 = 205 MPa, 00 = 5 K, W = 2.61 E 10, 

D0 = 1.0 E 03, DF = 0.157, At = 0.387). 166 

6.9a Velocity and stress response of SIAR to stress 

and temperature step inputs for a very high 

leading wave velocity (Cr0 = 205 MPa, 00 = 5 K, 

D0 = 1.0 E 04, = 0.147, XDF 

At = 0.00387). 167 

6.9b Temperature and heat flux response of SIAR to 

stress and temperature step inputs for a very high 

leading wave velocity (cr, = 205 MPa, 00 = K, 

D0 = 1.0 E 04, T = 0.147, At = 0.00387, 

)DF = 168 

6.9c Strain hardening and plastic strain response of 

SIAR to stress and temperature step inputs for a 

very high leading wave velocity (Cr0 = 205 MPa, 

00 = 5 K, D = 1.0 E 04, T0 = 0.147, 

At = 0.00387). 169 

6.l0a Velocity and stress response of SICOR to stress 

and temperature step inputs (Cr0 = 205 MPa, 

(xv) 



LIST OF FIGURES (cont'd) 

Figure Page  

00 = 5 K, D0 = 1.0 E 03, XDF = 0.025, At = 0.1942). 170 

6.1Ob Temperature and heat flux response of SICOR to 

stress and temperature step inputs (i, = 205 MPa, 

=5 K, XDF = 0.025, At = 0.1942, D0 = 1.OE 03). 171 

6.lOc Strain hardening and plastic strain response of 

SICOR to stress and temperature step inputs 

= 205 MPa, 00 = 5 K, D = 1.0 E 03, 

XDF = 0.025, At = 0.1942). 172 

6.11a Velocity and stress response of SICOR to stress 

only step input (a = 205 MPa, 00 = 0 K, 

D0 = 1.0 E,03, XDF 0.025, Lit = 0.1942). 173 

6.11b Temperature and heat flux response of SICOR to 

stress only step input (o = 205 MPa, 0 = 0 K, 

= 1.0 E 03, At = 0.1942, X= 0.025). 174 

6.11c Strain hardening and plastic strain response of 

SICOR to stress only step input ( ç 205 MPa, 

6  = 0 K, XDF = 0.025, At = 0.1942, D = 1.0 E 03). 175 

6.12a Velocity and stress response of SICOR to 

temperature only step input (a, = 0 MPa, 00 = 5 K, 

= 1.0 E 03, At = 0.1942, XDF = 0.230). 176 

6.12b Temperature and heat flux response of SICOR to 

temperature only step input (a0 = 0 MPa, 00 = .5 K, 

D0 = 1.0 E 03, XDF = 0.230, At = 0.1942). 177 

6.13a Velocity and stress response of SICOR to velocity 

and temperature step inputs (v0 = -150 



LIST OF FIGURES (cont'd) 

Figure Page  

00 = 10 K, D = 1.0 E 04, XDF = 0.245, 

At = 0.1942). 178 

6.13b Temperature and heat flux response of SICOR to 

velocity and temperature step inputs 

(v0 = -150 ms', 00 10 K, D0 = 1.0 E 04, 

XDF = 0.245, At = 0.1942). 179 

6.13c Strain hardening and plastic strain response of 

SICOR to velocity and temperature step 'inputs 

(v0 = -150 ms', D0 = 1.0 E 04, XDF = 0.245, 

Lit= 0.1942, 00 = 10 K). 180 

6.14a Velocity and stress response of SICOR to velocity 

only step input (v0 = -150 ms- 1, 00 = 0 K, 

= 1.0 E 03, At = 0.1942, XDF = 0.025). 181 

6.14b Temperature and heat flux response of SICOR to 

velocity only step input (v0 = -150 ms- 1 

00 = 0 K, D0 = 1.0 E 03, At 0.1942, 

XDF = 0.025). 182 

6.14c Strain hardening and plastic strain response of 

SICOR to velocity only step input (v0 = -150 ms', 

00 = 0 K, D0 = 1.0 E 03, XDF = 0.025, At = 0.9142). 

6.15a Velocity and stress response of SICOR to pulsive-

sine stress and temperature inputs (Q = 205 14Pa, 

00 = 5 K, D = 1.0 E 03, XDF 

= 2.61 E 10). 

6.15b Temperature and heat flux response of SICOR to 

= 0.241, At = 0.9142, 

183 

184 



LIST OF FIGURES (cont'd) 

Figure Page  

pulsive-sine stress and temperature inputs 

= 205 MPa, 00 = 5 K, w = 2.61 E 10, 

= 1.0 E 03, XDF = 0.241, At = 0.1942). 185 

6.15c Strain hardening and plastic strain response of 

SICOR to pulsive-sine stress and temperature inputs 

= 205 MPa, 00 = 5 K, w = 2.61 E 10, 

= 1.0 E 03, XDF = 0.241, At = 0.1942). 186 

6.16a Velocity and stress response of SICOR to terminated-

ramp stress and temperature inputs (Q = 205 MPa, 

00 = 5 K, 1i = 2.61 E 10, D = 1.0 E 03, XDF = 0.234, 

At = 0.1942). 187 

6.16b Temperature and heat flux response of SICOR to 

terminated-ramp stress and temperature inputs 

= 205 NPa, 00 = 5 K, u = 2.61 E 10, 

D0 = 1.0 E 03, XDF = 0.234, At = 0.1942). 

6.16c Strain hardening and plastic strain response of 

SICOR to terminated-ramp stress and temperature 

inputs (a = 205 NPa, u = 2.61 E 10, 

= 1.0 E 03, XDF = 0.234, At = 0.1942, 00 = 5 K). 

6.17a Velocity and stress response of SICOR to stress 

and temperature step inputs for a very high leading 

wave velocity = 205 MPa, 6 0 = 5 K, 

D0 = 1.0 E 04, T0 = 0.074, XDF = 10.743, 

At = 0.00194). 190 

6.17b Temperature and heat flux response of SICOR to 

188 

189 



LIST OF FIGURES (conttd) 

Figure Page  

stress and temperature step inputs for a very high 

leading wave velocity (Y0 = 205 1Pa, O = K, 

= 1.0 E 04, T0 = 0.074, XDF = 10.743, 

= 0.00194). 191' 

6.17c Strain hardening and plastic strain response of 

SICOR to stress -and temperature step inputs for a 

very high leading wave velocity (Q. = 205 MPa, 

0o = 5 K, D = 1.0 E 04, t0 = 0.074, 

XDF = 10.743, At = 0.00194). 192 

6.18a Influence of stored energy of cold work on the 

velocity response of SIAR to velocity and 

temperature step inputs (v0 = —300 ms  1, 

00 = 10 K, T 0 = 1.47 E 04, D = 1.0 E 05, 

XDF = 0.00158, At = 0.387). 193 

6.18b Influence of stored energy of cold work on the 

stress response of SIAR to velocity and temperature 

step inputs (v0 = —300 ms 1, 00 = 10 K, 

= 1.47 E 05, D0 = 1.0 E 05, XDF = 0.0 0158, 

At = 0.387). 194 

6.18c Influence of stored energy of cold work on. the 

temperature response of SIAR to velocity and 

temperature step inputs (v0 = —300 

00 = 10 K, T = 1.47 E 05, D = 1.0 E 05, 

XDF = 0.00158, At = 0.387). 

6.18d Influence of stored energy of cold work on the 

195 



LIST OF FIGURES (cont'd) 

Figure Page 

strain hardening response of SIAP. to velocity 

and temperature step inputs (v0 = -300 

00 = 10 K, .rc, = 1.47 E 05, D = 1.0 E 05, 

XDF = 0.00158, At = 0.387). 196 

6.18e Influence of stored energy of cold work on the 

plastic strain response of SIAR to velocity 

and temperature step inputs(v0 = -300 

00 = 10 K, r0 = 1.47 E 05, D = 1.0 E 05, 

XDV = 0.00158, L = 0.387). 

6.19a The effect of irecoverable energy storage on the 

velocity response of SIAR to velocity only step 

input in the absence of second-sound and heat-

flow effects (v0 = -200 ms 1, D0 = 1.0 E 04, 

= 0.00154, At = 38.7). 

6.19b The effect of irrecoverable energy storage on the 

stress response of SIAR to velocity only step 

input in the absence of second-sound and heat-

flow effects (v0 = -200 ms- 1, D0 = 1.0 E 04, 

197 

198 

XDF = 0.00154, At = 38.7). 199 

6.19c The effect of irrecoverable energy storage on the 

temperature response of SIAR to velocity only step 

input in the absence of second-sound and heat-flow 

effects (v0 = -200 ms- 1, D0 = 1.0 E 04, 

XDF = 0.00154, At = 38.7). 200 

6.19d The effect of irrecoverable energy storage on the 



LIST OF FIGURES (cont'd) 

Figure Page  

strain hardening response of SIAR to velocity only 

step input in the absence of second-sound and 

heat-flow effects (v0 = -200 ms- 1, D0 = 1.0 E 04, 

XDF = 0.00154, At = 38.7). 

6.19e The effect of irrecoverable energy storage on the 

plastic strain response of SIAR to velocity only 

step input in the absence of second-sound and 

Al 

A2 

heat-flow effects(v0 = -200 ms- 1, D0 = 1.0 E 04, 

XDF 
= 0.00154, At = 38.7). 

Isothermal stress-strain curve at the reference 

temperature. 

Derived isothermal stress-plastic strain curve 

at the reference temperature. 

201 

202 

228 

230 



NOMENCLATURE 

Roman Letters  

Symbol Meaning  

A ijkl Elastic Constant Tensor 

A1 Thermoelastic material function 

A11 Thermoelastic material constant 

A2 Thermoinelastic material property 

A3 Thermoinelastic material property 

B1 Thermoelastic material property 

B11 Reference value of B1 

B12 Thermoelastic material constant defining 

variation of B with temperature 

B2 Thermoinelastic material property 

B3 Therthoinelastic material property 

B4 Thermoinelastic material property 

(Hardening. Modulus) 

B5 Thermoinelastic material property 

(Plastic Modulus) 

B5 Thermoinelastic material property 

B4R Reference value of B4 

B 5 Reference value of B5 

C Right Cauchy-Green Strain tensor 

C av2 Second-order artificial viscosity constant 

C av3 Third-order artificial viscosity constant 

C av4 Fourth-order, artificial viscosity constant 

CD Specific heat capacity at a constant state of 



Symbol Meaning 

deformation 

Thermoelastic deformation measure 

cp Thermoinelastic deformation measure 

C CFL number 

C1 Reference value of CD 

C2 Thermal property defining variation of CD with 

temperature 

C Characteristic curve with the positive slope V3 

C Characteristic curve with the negative slope 

-V3 

C Characteristic curve with the positive slope V5 

C Characteristic curve with the negative slope 

-V5 

Inelastic material constant 

Thermoelastic material function 

Temperature-dependent elastic compliance - 

Thermoelastic/Thermoinelastic material function 

Thermoelastic/Thermoinelastic material function 

D5 Analytical function of the thermodynamic state 

variables 

D6 Thermoelastic/Thermoinelastic material function 

e Internal energy per unit volume 

eIRR Irrecoverable portion of e 

e  Recoverable portion of e 

E Thermoelastic strain 

E Thermoelastic strain tensor 



Symbol Meaning  

f Body force per unit volume 

F Deformation gradient 

F2 Inelastic constitutive function describing the 

evolution of the strain hardening parameter 

g Temperature gradient 

Inelastic constitutive function describing the 

evolution of the plastic strain 

Analytical function 

Analytical function 

Analytical function 

Analytical function 

Analytical function 

Analytical function 

G8 Analytical function 

G9 Analytical function 

H Unit step function 

H1 Analytical function 

H2 Analytical function 

H3 Analytical function 

H4 Analytical function 

I. Constitutive invariant 
3 

j Spatial label of a grid point 

Analytical function 

Analytical function 

J3 Analytical function 

Analytical function 



Symbol Meaning  

• k Coefficient of thermal conductivity 

K Experimentally determined constant of 

proportionality between the stored energy of 

cold work and the flow stress. 

K  Inelastic material property 

i( 1) The ith left eigenvector 

m Inelastic material constant 

M Analytic function 

n Time Label for a grid point; Inelastic material 

constant defining strain rate sensitivity 

P Plastic, thernioinelastic, or flow strain 

q Heat flux 

Second-order artificial viscosity 

q4 Fourth-order artificial viscosity 

Q Numerical function 

R Reference configuration; analytical function 

R  Terminated ramp function 

S Pulsive sine function 

S3 Point of intersection of the characteristic 

curve C and the horizontal 

S4 

S5 

Point of intersecton of the characteristic 

curve C3 and the horizontal 

Point of intersection of the characteristic 

curve C + and the horizontal 

Point of intersection of the characteristic 

curve C5 and the horizontal 



Symbol Meaning  

t time 

T Absolute temperature 

T  Reference absolute temperature 

u displacement 

up Vector denoting a subset of the primary dependent 

U 

variables at point P 

Vector denoting the totality of the primary 

depedent variables 

UA Vector denoting the value of U at point A 

UB Vector denoting the value of U at point B 

Vector denoting the value of U at point C 

U Vector denoting the value of U at an interior 

grid point P 

Vector denoting the value of U at a boundary 

grid point M 

Partial derivative of U with respect to t 

Partial derivative of U with respect to X 

v Particle velocity 

V3 Larger characteristic speed 

V5 Smaller characteristic speed 

VG 

V  

V  

VT 

W. 
1 

W  

Velocity of lagging shock wave 

Velocity of leading shock wave 

Velocity of purely mechanical shock wave 

Velocity of purely thermal shock wave 

Numerical function 

Plastic work 



Symbol  

X 

XDF 

Y 

Yl 

Z 

z  

z  

Z, z  

Greek Letters  

Meaning  

Lagrangian position of a particle 

Nondimensionalization factor for X 

Thermoelastic material property (X + 2p) 

Reference value of Y 

Constant defining the temperature dependence of 

Y 

Strain hardening parameter 

Saturation value of Z 

Internal state variable describing directional 

hardening 

Internal state variable describing isotropic 

hardening 

Reference value of Z 

a Coefficient of thermal expansion; ratio of At 

to Ax 

a1, a  Reference value of a 

a2 Constant defining the temperature dependence of 

a 

Inelastic material constant 

Thermal property: (3A + 2p)a 

aR Reference value of 

Heat generation per unit volume 

r Set, of internal state variables. 

At Time increment 



Symbol Meaning  

AX Spatial increment 

Total strain 

e  Reference value of c 

ri Entropy per unit volume 

TI O Constant defining the reference value of n 

IRR Negative of the partial derivative of IRR with 

respect to 0 

0 Differential temperature 

A First Lame constant 

A. The ith eigenvalue of matrix A 

AR Reference value of A 

A Set of observable thermomechanical variables 

Numerical function 

p Second Lame constant 

IIR Reference value of p 

Poisson's ratio 

It Set of constitutive response functionals 

Mass density 

Stress 

Quasiconservative part of the stress 

Dissipative part of the stress 

T Thermal relaxation time 
0 

Thermal constitutive function 

Constitutive functional 

Constitutive functional 

Free energy per unit volume 

(xxviii) 



Symbol 

pI 

IRR 

W 

Meaning  

Thermoelastic portion of I 

Thermoinelastic portion of iR 

Irrecoverable portion of 

Recoverable portion of i,.' 

Constant defining the reference value of p 

Ratio of energy irrecoverably stored to the 

total plastic work 

Set of thermodynamic constitutive state 

variables 

ABBREVIATIONS  

CFL Courant-Friedrichs-Lewy 

ISV Internal state variable 

SIAR Semi-infinite aluminum rod 

SICOR Semi-infinite copper rod 



I . 

CHAPTER 1  

INTRODUCTION 

1.1 Significance of Wave Phenomena  

The fascinating subject of wave propagation is concerned with 

the study of the mechanism by which a suddenly applied, localized 

disturbance in a medium is transmitted to other parts of the medium. 

Familiar manifestations of the phenomenon of wave motion include the 

transmission of sound in air, the spreading of ripples on a pool of 

water, the transmission of seismic tremors in the earth, or the 

transmission of radio waves [ 1.1]. These examples show that wave 

phenomena could occur in gaseous, liquid, and solid media and free 

space. Although these media are diversified, a feature common to all is 

the transfer of energy so that the physical quantities of interest are 

necessarily associated wih energy propagation [ 1.2]. 

Studies of wave propagation arise in virtually every branch of 

the applied sciences, and it is not surprising that practical 

applications are as diverse as to include ultrasound in medicine, 

ultrasonic flaw detection in opaque materials, nondestructive testing, 

oil reservoir exploration, earthquake monitoring and analysis of ground 

motion arising from seismic activities, and the characterization of the 

dynamic response of materials subjected to impacts, explosions and 

collisions such as we have in the defense and aerospace industries. 

In analyzing the response of solids when loading rates are 

comparable with the transit times of the waves, wave propagation must be 

considered. This requirement is dictated by the high level of 

sophistication at which technology is being utilized nowadays which 
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demands accurate predictions and assessments of the performance of 

engineering structures. In particular, the desire for optimum 

utilization of engineering materials in dynamic situations is of 

paramount importance in a world with continuously diminishing natural 

resources. 

The science of wave motion in elastic solids is very well 

developed because the theory of elasticity is very well understood. 

Several monographs [ 1.1, 1.3] have dealt with this subject. It is well 

known, however, that under severe loads, metals or metallic alloys may 

suffer local permanent deformation thus exhibiting plastic or inelastic 

behavior. Since in many practical situations the loadings are actually 

severe enough to cause this permanent deformation, the study of wave 

propagation in inelastic media is of significance and has attracted a 

lot of research workers as will be seen in the next section. In spite 

of this fact, the subject of inelastic waves cannot be said to be fully 

understood today because of the complex hature of the phenomenon of 

plastic flow. 

1.2 Developments in Plastic Wave Theories  

The stages involved in quantitatively analyzing wave motion 

generally consist of the following: 

(a) development of an appropriate mathematical model to represent the 

physical problem, 

(b) formulation of constitutive equations which are capable of 

adequately describing the dynamic behavior of the medium of 

interest, 

(c) solution of the resulting system of partial differential equations, 
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(d) interpretation of the results obtained in ( c), 

(e) experimental validation of the predicted results. 

The development of an appropriate mathematical model is 

effected through an application of the modern theory of continuum 

mechanics. This involves a kinematic description of the motion and 

deformation behavior of the solid considered as a continuum and a 

systematic application of the fundamental balance laws of mass, momenta, 

energy, and the second law of thermodynamics. The desire to understand 

the details of the complex internal structure of plastically deforming 

solids brings to focus the demand of materials science, while the 

generation of mechanically induced thermal fields makes thermodynamic 

considerations a necessity. The solution of the resulting system of 

partial differential equations is of course enhanced by developments in 

analytical tools and numerical analysis which immediately reminds us of 

the role of computer hardware and software. Finally, experimental 

validations must rely on improvements in instrumentation. In practical 

terms, therefore, progress in inelastic wave studies relies on 

developments in the various branches mentioned above as illustrated in 

Figure 1.1 below. 

The study' of the propagation of longitudinal plastic or 

elastoplastic waves in rods has been the subject of extensive 

experimental and theoretical investigations in the past four decades. 

The subject was initiated during the second world war when, almost 

simultaneously, von Karman { 1.4} in U.S.A., Taylor [ 1.5] in Great 

Britian and Rakhmatulin [ 1.6] in U.S.S.R. carried out their pioneering 

works in this field. In these work6 the partial differential equations 

governing the motion of the wave were derived under the assumption of a 
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'igure 1.1 Illustration of the interdisciplinary nature of plastic wave 
propagation studies. 

constitutive relationship that is independent of the strain rate; an 

assumption that implied that the stress-strain relation was the one 

obtained in a conventional quasisatic tensile test. This approach is 

referred to as the Rate-Independent (RI) theory and was also used by 

White and Griffis f1.71. Experiments performed to verify the RI theory 

of these workers show clearly that the theory was not capable of 

describing certain aspects of wave propagation phenomena and that 

dynamic stress-strain relations were different from their static 

counterpart. Clifton [ 1.8] suggested that from a microphysical point of 

view, rate independence cannot be a possibly exact characterization of 

the behavior of real metals because the accumulation of plastic strain 

through the movement of dislocations cannot occur instantaneously. 
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The second classical plastic wave theory is the Rate-Dependent 

theory (RD) of Malvern [ 1.9] in which the stress is assumed to be a 

function, not only of the instantaneous strain, but also of the 

instantaneous strain rate. While the RD theory was able to remedy some 

of the deficiencies of the RI theory, it was unable to predict all the 

details of inelastic wave propagation. This fact, coupled with the 

relative mathematical simplicity of the RI theory for certain boundary 

value problems fueled a major controversy [ 1.9, 1.10, 1.11] over the 

necessity of including strain-rate effects in constitutive models for 

studying impacts in rods or bars. 

Various applications and developments of the two approaches 

have appeared in well-known monographs [ 1.9, 1.10, 1.11]. We will not 

give a detailed review of works in plastic waves here because excellent 

review articles of earlier works have been published [ 1.12, 1.13, 1.14, 

1.15, 1.16]. Also, recent updates have been provided by Nicholas [ 1.17] 

and by Clifton [ 1.18]. More recently, Clifton [ 1.19] presented a 

comprehensive review of plastic wave experiments, starting with the 

earliest experiments of Bell [ 1.20] on the propagation of incremental 

waves in prestressed bars and the pioneering work of Kolsky [ 1.21] 

concerning the plastic response of metals at high strain rates. 

Like any problem of continuum mechanics, the complete 

formulation of a wave propagation model requires constitutive equations 

which realistically describe the material behavior under the particular 

loading conditions being considered. It is obvious then that analyses 

of inelastic wave propagation phenomena hinge on a thorough knowledge of 

the dynamic constitutive behavior of the materials concerned. 
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Ironically, however, it is these constitutive relations that are being 

sought in such studies. This dilemma makes it difficult to interpret 

experimental data obtained under conditions of high rates of loading 

where wave propagation phenomena must be considered, and explains why 

theoretical studies and experimentation are so closely intertwined. 

With this background, it is easy to see that any analysis of a problem 

is only as good as the constitutive relations employedin the study. 

This shows that constitutive relations have roles that are more 

important than the conventional in the formulation of wave propagation 

problems. It is therefore not surprising that controversies surrounding 

the classical theories are centered on the nature of the constitutive 

laws. 

Expectedly, developments in plastic wave theories have 

depended on developments in the constitutive theories of plasticity. 

The history of plasticity as a science may be traced to 1864 

when Tresca published his results on punching and extrusion experiments 

and formulated his celebrated yield criterion [ 1.22]. These results 

were later employed by Saint-Venant and Levy to lay some of the 

foundations of the classical theory of plasticity. Important 

contributions that were made (after a long period of time following the 

papers of Tresca, Saint-Venant, and Levy) by von Mises, Hencky, Prandtl, 

Reuss, and others were reviewed in the classical treatises by Hill 

[1.23] and Prager [ 1.24). 

The vast majority of constitutive equations in plasticity are 

empirically based. These include the plastic stress-strain relations 

proposed by St. Venant and the general three-dimensional equations 
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relating the increments of total strain to the stress deviations given 

by Levy and later independently by von Mises. So also are the 

Prandtl-Reuss equations which are generalizations of the Levy-Mises 

equations to include both elastic and plastic components of strain. 

Thus, it may be said that classical constitutive equations of plasticity 

are products of conjectures and inductive thoughts, growing as they did 

from attempts to model observed behavior of metals and metallic alloys 

under loading histories severe enough to cause permanent deformation. 

Despite the numerous works and research efforts that have been 

directed to plasticity studies over the decades, it has still not been 

possible to bring together all the mathematical theories under a 

generally acceptable umbrella. Indeed, the question as to what the 

definition of ' plasticity' is can still be considered open even today. 

Only recently, Drucker [ 1.25] reported escalations of a flurry of 

excitement about the meaning of the word ' plastic' at a -workshop 

organized by Professor E.H. Lee at Stanford University in 1981. This 

shows that a lot of work still remains to be done in this important 

field of applied mechanics. 

This apparent backwardness of the subject of plasticity is due 

to the complex nature of the phenomenon of plastic deformation. The key 

ingredients responsible for the complex nature include irreversibilities 

or dissipation, time dependence, path dependence, hardening, and large 

ductility. The incorporation of these important items in the 

development of a general form of plastic constitutive equations is very 

difficult, to say the least. Indeed, Drucker [ 1.26] suggests that a 

generalform for plasticity is no form at all! It should also be noted 

that the features mentioned above serve to distinguish the behavior of 
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an elastic-plastic continuum from that of a nonlinear elastic continuum. 

Nevertheless, important advances have been made in 

generalizing the theory of plasticity. Most of these advances are the 

results of applications of the deductive methods of modern continuum 

mechanics in which the framework for theories of nonlinear material 

behavior is derived in a semi-axiomatic but systematic way from a set of 

fundamental laws of physics. In such applications, the need for the 

theory to be consistent with continuum thermodynamics and the classical 

plasticity theories is evidently brought to the limelight. So also is 

the requirement for consistency with observations from everyday 

experience and the results of experiments. A few examples concerning 

the application of thermodynamics to plasticity are given in Chapter 2. 

The generation of thermal fields during inelastic deformation 

processes is the rule rather than the exception in practical situations. 

Early experimental evidence concerning this phenomenon of 

deformation-induced heating was reported by Farren and Taylor [ 1.27]. 

Subsequently, a lot of work has been directed towards the understanding 

and quantification of not only this phenomenon, but the twin phenomenon 

of heat-induced deformation. A review of experimental and analytical 

investigations concerning heat generation and their effects in plastic 

deformation processes can be found in a recent thesis by Kim [ 1.28]. 

These works have emphasized not only the need to include temperature in 

the development of inelastic constitutive equations but the importance 

of allowing for the' interaction of mechanical and thermal fields. This 

interaction dictates that a realistic constitutive model be able to 

describe the coupled thermomechanical behavior of inelastic solids - a 

requirement that increases the degree of complexity of an already 
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difficult situation. Accordingly, a number of works on developments of 

thermoplasticity and thermoviscoplasicity models abound in the 

literature. 

In addition to thermal effects, the works of materials 

scientists have shown that a full understanding of the mechanism of 

plastic flow must depend on knowledge of activities occuring at the 

microscopic level during deformation. While such microscopic mechanisms 

include twinning, void growth, grain boundary sliding and phase 

transformations, the most important of them all is the generation, 

motion and interaction of dislocations [ 1.29]. The theory of 

dislocations in connection with plastic flow is discussed in the 

excellent monograph by Gilman [ 1.30]. Drucker [ 1.31] 

first to attempt a continuum theory of plasticity on 

Interesting applications of mechanics on the microscale 

was 

the 

one of the 

microscale. 

to developments 

in plasticity include the works of Rice [ 1.32], Aifantis [ 1.29] and the 

references contained therein. 

All the various aspects of plastic deformation described thus 

far have received attention of researchers in this vast area, thereby 

updating and enriching available knowledge on the theory of plasticity 

and its applications. The brief exposition given here further explains 

the complexities and intricacies involved in inelastic constitutive 

modelling. The diverse nature of the branches of knowledge involved as 

evidenced by the description given above and illustrated by Figure 1.1 

is, in the view of the author, a major factor that has been detrimental 

to progress in this field. This is because collaboration of efforts of 

researchers in the different fields and coordination of research 

activities, developments and findings in the several branches have not 
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been feasible. Works in the different areas are scattered in different 

specialized publications and researchers tend to remain within the 

artificial boundaries of their own carved--out domains thus making the 

cross-breeding of information and ideas very difficult. 

Since progress in plastic wave studies depends directly on 

progress in plasticity theories, it is to be expected that the same 

impediment alluded to in the preceding paragraph would hinder advances 

in dynamic plasticity too. This is especially so as ' dynamic effects', 

in itself is a further complication. We will now give a brief 

description of how the study of plastic wave propagation has been 

hampered (or enhanced) by impediments (or developments) in plasticity. 

For a basis of discussion, we recall the basic equations 

governing the propagation of uniaxial waves in inelastic solids by the 

RD theory: 

equation of motion, 

compatibility equation, 

constitutive equation, 

Da av 

De - av 
at ax' 

as 
= f(a,$) +at t  g(a,c), 

where a is the nominal stress, c is the strain, v is the particle 

velocity, X is the position of the material particle, and t is the time. 

Equation ( 1.1) is obtained from an application of the law of balance of 
1. 

linear momentum, equation (1.2) ensures the kinematic compatibility of 

the defintions of the strain and the velocity which are derivatives of 

the displacement field, u. The strain and the velocity are respectively 

defined as: 

Bu 
ax (1.4) 
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(1.5) 

Equation ( 1.3) is a rate-dependent type of constitutive equation in 

which, for a given material, the functions f and g are prescribed. 

We note that in the above system of equations there are three 

unknowns: cr, v and c, and three equations. Mathematically, therefore, 

the system of equations seems to completely represent the mechanical 

behavior of the system during wave propagation. However, on a close 

examination, one finds that out of the four fundamental balance laws of 

continuum mechanics only one, that of balance of linear momentum, has 

been used t0 derive the equation of. motion ( 1.1). In the case of 

solids, the density of the body may be assumed to remain constant for 

small displacement gradients, and so the law of conservation of mass is 

identically satisfied. If the assumption of symmetry of the stress 

tensor is accepted at the outset, then the law of balance of angular 

momentum is identically satisfied even in a general three-dimensional 

state of stress. If thermal effects are neglected, thus restricting 

considerations to isothermal plasticity, the second law of 

thermodynamics is also identically satisifed. The implications of this 

will be discussed later on in the thesis. The law of conservation of 

energy, however, leads, in a uniaxial wave motion, to the equation 

De av 
at DX 

(1.6) 

where e is the internal energy per unit volume. The satisfaction of 

equation ( 1.6) is not obvious; nor is its role in the study of plastic 

waves since the system of equations ( 1.1 - 1.3) appear to be sufficient. 
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It is easy to show that in the case of a conservative system 

(which is associated with a reversible process), for example an elastic 

rod with a constitutive equation of the form 

a f(c), (1.7) 

where f is any function of e (linear or nonlinear), the equation of 

conservation of energy leads to the compatibility equation ( 1.2). This 

is because the internal energy is nothing but the strain energy which is 

the work of deformation. Thus, in the case of a reversible process of 

deformation (which occurs only for an elastic material undergoing a• 

purely mechanical process), the compatibility equation may be taken to 

represent the equation of conservation of energy since they are 

identical. In other words, the equation of conservation of energy may 

be considered to be identically satisfied. Thus, for elastic materials 

the system of equations ( 1.1), ( 1.2) and ( 1.3) is complete - physically 

and mathematically - in isothermal situations and may be solved for the 

three unknowns. 

For the inelastic case that is the subject of consideration in 

this thesis, however, the situation is quite different. It is common 

knowledge in the applied mechanics community that inelastic deformation 

is inevitably accompanied by energy dissipation or irreversibilities. 

Apart from the thermal fields generated due to conversion of mechanical 

work to heat energy, there is also the phenomenon of ' stored energy of 

cold work' in which part of the inelastic work due to externally applied 

mechanical loads is irrecoverably stored within the deforming body. 

Under this condition, the elastic strain energy is clearly not the same 

as the internal energy. Therefore, for nonconservative systems, the law 

of conservation of energy cannot lead to the compatibility equation 
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and as such it is not an identity. Thus, for inelastic deformation 

processes, the law of conservation of energy has a unique role to play 

and must enter the formulation independently. This requirement 

immediately necessitates a knowledge of the explicit form of 

representation for the internal energy density, e. The explicit 

representation of the internal energy functional is, in itself, a 

constitutive equation for the material and is not known a priori. In 

addition, the entropy production and temperature rise that are 

associated with irreversible deformations must be accounted for by the 

second law of thermodynamics. 

These observations clearly show the inadequacy of the above 

formulation, particularly the form ofthe constitutive equation ( 1.3) 

which, unfortunately, is still employed for inelastic wave propagation 

studies. They also explain why the model is unable to explain all the 

pertinent details of dynamic plasticity. 

The temporal and spatial temperature variations in a body 

produce thermal, dilatational deformation and changes in the 

constitutive properties which will either generate or influence wave 

propagation [ 1.15]. Only a few quantitative studies of inelastic wave 

propagation incorporating the presence of temperature fields through 

dissipation have been reported in the literature,. Francis and Lindholm 

[1.33] were one of the first to explore the influence of temperature on 

the propagation of elastoplastic waves. They considered a stationary 

temperature profile and assumed the material to be bilinear with 

temperature-dependent mechanical properties but did not account for 

strain-rate effects. Further work by Francis [ 1.34] improved on this by 

the introduction of a more rational but still conventional viscoplastic 
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constitutive equation. The work of Raniecki [ 1.35] considered the 

effect of dynamical thermal expansion on the propagation of plane 

elastic-plastic stress 

works of Nowacki which 

text [ 1.10]. Studies 

waves. Other early investigations include the 

were extensively referenced and discussed in his 

dealing with thermal effects in inelastic bodies 

using the theory of propagating singular surfaces are also numerous, see 

for example, references [ 1.36] and [ 1.37]. 

Despite all these works, there is as yet no generally 

acceptable procedure for systematically incorporating temperature fields 

or their effects in inelastic wave studies because the theory of 

plasticity itself has not been generalized enough to give direction and 

guidanc. There are several ways through which thermal effects have 

been accounted for. In the majority of cases, ad hoc procedures 

concerning the balance of work and energy are resorted to thereby 

pre-empting the law of conservation of energy. Date [ 1.38], for 

example, accounted for temperature rises during plastic wave propagation 

by assuming that the plastic mechanical work is wholly and adiabatically 

converted into heat energy. Many other workers assume a fixed ratio for 

the portion of the plastic work that i's .converted into heat energy. 

Such are the assumptions in references [ 1.39] and [ 1.40], for example. 

Although these studies recognize the non-isothermal nature of the 

deformation processes involved, the efforts fall short of the complete 

physical representation. While it is true that the process of plastic,, 

deformation is accompanied by a conversion of plastic work into heat 

energy, it is not true that all of the plastic work is converted, it is 

not true that the conversion process is adiabatic in all cases, nor is 

it true that a fixed ratio of the plastic work is converted. This is 
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because there is ample experimental evidence that some of the plastic 

work is stored in the material. Early experiments in this regard were 

reported by Taylor and Quinney [ 1.41] while comprehensive reviews of 

experimental and theoretical developments have been given by Titchener 

and Bever [ 1.42] and Bever et al [ 1.43]. A very recent theoretical 

investigation by Aravas et al [ 1.44] further attests to the importance 

of this stored energy of cold work phenomenon. All these investigations 

indicate that the assumptions discussed above are, in general, not 

founded on the actual behavior of inelastic solids. 

To the author's knowledge, only the work of Bodner and Aboudi 

[1.45] has come close to recognizing the stored energy of cold work in 

the analysis of stress wave propagation in inelastic solids. Their 

investigation made use of a micromechanically based constitutive 

equation that accounts for isotropic work-hardening. However, the 

applications reported were restricted to isothermal cases. It should be 

mentioned in passing that other applications of micromechanically based 

theories have appeared, notably the studies of Clifton and Markenscoff 

[1.46] and Markenscoff and Clifton [ 1.47]. These studies are 

qualitative, however, perhaps not needing a quantification of the stored 

energy. 

In summary, it may safely be said that the study of plastic 

wave propagation has not benefited enough from advances in the 

understanding of the microscopic phenomena of plastic flow. 

1.3 Thesis Objectives  

In our discussions so far, we have, shown that a realistic 

description of plasticity should, in general, include thermal effects 
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even in the presence of only mechanical loads. This together with the 

fact that in many practical applications there also exist the presence 

of thermal loads show the importance of being able to characterize the 

thermomechanical behavior of inelastic solids. Such practical 

situations are encountered in aerospace engineering, internal combustion 

engines, hot gas turbines, nuclear reactors, nuclear blast environments, 

or experimental techniques like pulsed lasers and electron beam 

accelerators. 

The main objectives of this thesis are as follows. First is 

the systematic development of dynamic constitutive relations that are 

suitable for studying the propagation of coupled thermomechanical waves 

in inelastic media when the transient disturbances are due to mechanical 

loads alone, thermal loads alone, or a combination of mechanical and 

thermal loads. Of particular interest is the ability to incorporate the 

essential features of dissipation and its implications and its effects 

such as heat generation, heat flow, thermomechanical coupling, 

hardening, and irrecoverable energy storage. The constitutive equations 

are then used to formulate a new form of the initial-boundary-value-

problem describing wave propagation in inelastic solids in which the 

role of the law of conservation of energy is appropriately brought into 

focus and emphasized. The second major objective is the design and 

implementation of appropriate computational algorithms that may be used 

to numerically simulate the propagation of coupled thermomechanical 

shock and acceleration waves in inelastic solids under a variety of 

loading environments. The approaches through which these broad 

objectives are accomplished are described in what follows. 
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1.4 Organization of the Dissertation  

The thesis is organized into seven chapters. In Chapter 2, a 

continuum thermodynamic development of constitutive equations using the 

theory of internal state variables (ISVs) is given. It includes a brief 

introduction of the application of thermodynamics to inelastic 

constitutive modelling and a review of available models based on the 

approach. This is followed by a discussion of the choice of the 

internal state variables. The formalism of thermodynamics is then 

employed to determine the nature of and the restrictions on the 

constitutive response functionals. 

In Chapter 3, an explicit expression for the Helmholtz free 

energy functional is proposed, leading to explicit expressions for the 

stress and entropy functionals in terms of the thermodynamic state 

variables. In particular, the temperature-dependent thermoinelastic 

material properties involved are determined by a novel concatenation of 

the results of ' the thermodynamic development in Chapter 2, the results 

of materials science and mechanics experiments, and mathematical 

analysis. Typical material properties characterizing the inelastic 

thermomechanical behavior of copper and aluminum over a wide range of 

temperatures are presented. We also propose a generalization of the 

procedure for the characterization of the inelastic thermomechanical 

behavior of inelastic solids. Other constitutive response functionals 

required are also given. 

Chapter 4 provides' a kinematic description of the problem of 

inelastic wave propagation in a half space. The balance laws of 

continuum mechanics and the constitutive equations developed in Chapter 

3 are combined to formulate the corresponding initial boundary value 
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problem. A mathematical analysis to investigate the nature of the 

system of partial differential equations is presented as the 

computational algorithms for solving the system depends on this 

knowledge. 

Chapter 5 presents the development of two computational 

algorithms to numerically solve the equations derived in Chapter 4. The 

first algorithm is based on the numerical method of characteristics 

while the second utilizes the MacCormack finite difference scheme. 

The results of computer implementations of the algorithms are 

presented in Chapter 6. Numerical simulations of the propagation of 

coupled thermomechanical waves in copper and aluminum under a variety of 

loading situations are presented. 

Chapter 7 closes the thesis with concluding remarks about the 

constitutive equations developed in this work and the algorithms 

presented earlier on. Recommendations for future work are also 

presented. 
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CHAPTER 2  

CONTINUUM THERMODYNAMIC DEVELOPMENT OF INELASTIC CONSTITUTIVE EQUATIONS  

2.1 Preamble  

The discussions given in the last chapter illustrate that 

dissipation could have important consequences in inelastic wave 

propagation. It is important, therefore, that any constitutive model 

that seeks to characterize the behavior of inelastic solids include the 

effects and implications of dissipation in its development. In 

phenomenological theories of the dynamical behavior of continua there 

are several ways of accounting for dissipative effects [ 2.1, 2.2]. The 

four commonest ways are: 

(1) introducing a viscous constitutive response functional which 

depends on the rates of the independent constitutive variables, 

(ii) assuming that the entire past history of the independent 

constitutive variables influences the constitutive response 

functionals in a manner cothpatible with the principle of fading 

memory introduced by Coleman [ 2.3], 

(iii) partitioning the material into heterogeneous substructures, for 

example, hard and soft regions via an approach referred to as 

mixture theory, 

(iv) postulating the existence of internal state varibles (or hidden 

variables) which influence the constitutive response functionals 

and whose rates of change are governed by evolution equations in 

which the independent constitutive variables appear. 

At this juncture, it is to be noted that the RD theory 

discussed in Chapter 1 is a special case of the first approach in which 
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the constitutive response functional is merely the stress and the 

independent constitutive variable is the strain. Examples of recent 

applications of approach ( i) to the study of rate-type materials can be 

found in references [ 2.43 and [ 2.5]. 

Approach ( ii) requires a knowledge of the explicit structure 

of memory functionals. This is obtained by a nonlinear multiple 

integral representation. In practice, only the first few of these 

hereditary integrals can be used because of the formidable task involved 

in the evaluation of the corresponding kernels [ 2.6]. The approach has 

been widely applied to viscoelasticity studies. 

The third approach has been applied primarily to multi-phase 

media and has not attracted the attention of workers in inelastic 

constitutive modelling appreciably. 

The fourth approach which involves the use of ISVs is 

currently gaining wide applicability. This is due to the recognition of 

the fact that the mechanism of plastic deformation is governed by 

microscopic processes which can be described on the average by 

macroscopic variables. 

It should be mentioned that all the four approaches have the 

same objective. For example, Coleman and Gurtin [ 2.1] showed that 

thermodynamics based on internal state variables yields results very 

similar to those derived from thermodynamics based on fading memory as 

deyeloped by Coleman and his co-workers - see, for example, reference 

[2.3). Lubliner [ 2.7] showed that materials with ISVs in fact possess 

fading memory if the evolution equations for the ISVs satisfy certain 
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equilibrium stability conditions. He also demonstrated the equivalence 

of the rate-type approach and that of ISVs for viscoelastic materials. 

Current research trends in mechanics, however, have focused on 

the development of constitutive equations on a micromechanical basis 

using ISVs to rationalize some of the phenomenological features of 

inelastic deformation. This is because these models can be easily 

correlated with the microstructural changes which are associated with 

the physical deformation mechanisms. For wave propagation phenomena in 

particular, microstructural . features are becoming increasingly 

recognized as important to the stress-wave process because they are most 

pronounced in the regime of rapid changes and strong gradients. 

Although the theory of internal state variables may be 

employed for constitutive modelling outside the realm of thermodynamics, 

it is generally believed that ISVs are of the greatest value when 

employed under the umbrella of a thermodynamic framework. This is not 

only because purely mechanical efforts in this directiônhave not been 

entirely successful but because, as noted by Ziegler and Wehrli [ 2.8], 

the pursuit of continuum mechanics leads sooner or later into 

thermodynamics. The latter is especially true for dissipative 

processes. Accordingly, in the present work the approach of 

thermodynamics with internal state variables is employed for the 

development of the required relations. 

The history of thermodynamics as a subject is a long and 

controversial one especially as it concerns the study of irreversible 

processes. These controversies include the distinction between absolute 

and empirical temperature; the existence, definition, and measurability 

of entropy; and the mathematical representation and interpretation of 
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the second law of thermodynamics. All these- issues are of concern in 

the characterization of nonequilibrium states. So also is the question 

of uniqueness in such characterizations. An exposition of the theory of 

thermodynamics of irreversible processes is given in the book by Lavenda 

[2.9]. 

The concept of internal variables was introduced into 

thermodynamics by Onsager [ 2.10, 2.11]. Early applications to continuum 

mechanics include the works of Eckart [ 2.12], Biot [ 2.13, 2.14], and 

Ziegler [ 2.15]. However, the article by Coleman and Gurtin [ 2.1] was 

about the first to firmly establish the idea of modelling the behavior 

of a wide class of materials using the theory of thermodynamics with 

internal state variables. This statement is without prejudice to the 

excellent works of Schapery [ 2.16], who earlier applied this theory to 

study therinomechanical, fracture and birefringent phenomena in 

viscoelastic media, and Valanis [ 2.17] who later but independently 

presentd a unified theory of the t1iermomechanical behavior of 

viscoelastic materials. 

The literature on the applications of the theory of 

thermodynamics with internal state variables to inelastic solids is too 

vast to be reviewed here. Only a few representative references will be 

cited. 

Kratochvil and Dillon [ 2.18] utilized the Coleman-Gurtin-type 

thermodynamics for the study of an elastic-plastic substance in which 

quantities related to the dislocation motion and the dislocation 

arrangement in the material were considered as ISVs. They later 

extended this study to include rate sensitivity [ 2.19]. Perzyna and 

Wojno [ 2.20] formulated a thermodynamic theory of a rate sensitive 
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material within the same framework. Also, Perzyna [ 2.21] presented a 

thermodynamic theory of rheological materials in which he used one group 

of ISVs to describe memory effects and another group to describe 

internal structural changes. The works of Rice [ 2.22] and Lubliner 

[2.23] provided theoretical foundations for the idea of utilizing 

nonequilibrium thermodynamics based on ISVs for the development of 

inelastic constitutive models. Lehmann [ 2.24] connected the description 

of non-isothermal elastic-plastic deformations and the description of 

such pehnomena by thermodynamic state equations. 

More recent developments include the works of Ponter et al. 

[2.25], Cernocky and Krempl [ 2.26], Allen [ 2.27], Ghoneim and Matsuoka 

[2.28], Riff et al. [ 2.29], and Lehmann [ 2.30], to mention but a few. 

Most of these and other available works do not account for all 

the dissipative effects of plastic deformation processes discussed in 

Chapter 1. Even in cases where such effects are considered, the 

constitutive equations are not readily applicable to the quantitative 

dynamic analysis of concrete initial-boundary-value-problems. Reasons 

for this include non-availability of material properties for a given 

material, non-validity in some ranges of temperatures, making 

assumptions about energy balance that may be inconsistent with the 

provisions of the first law of thermodynamics, or, most common of all, 

disregarding the stored energy of cold work phenomenon. These 

shortcomings are the main motivations for the desire to develop dynamic 

inelastic constitutive equations that will more realistically describe 

the physical phenomena encountered during deformation. In the next 

section; a discussion of the choice of the ISVs employed is discussed 

before the presentation of the thermodynamic formalism in Section 2.3. 
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2.2 Choice of Internal State Variables  

In using internal state variables we are seeking to replace 

the dependence of response upon deformation history by a dependence upon 

what that history has produced. Thus, these ISVs must be capable of 

characterizing the microstructural state and changes in that state. In 

the case of plastic deformation, these variables must describe the 

arrangement of dislocations in the material. In theory, an infinite 

number of ISVs are required to describe this microscopic phenomena. 

Obviously, this is a requirement that is not feasible for physical and 

analytical reasons if the ISVs are to be useful in practically 

predicting material behavior. On the basis of the good reproducibility 

observed in many types of plastic experiments (despite the fact that it 

is impossible to prepare two specimens of the same material which have 

exactly the same microscopic dislocation arrangement), Kroner [ 2.31] 

concluded that not the whole infinite set of ISVs is necessary in 

constructing a reasonable theory of plasticity. It is doubtless not 

reasonable to ask for a theory of plasticity which is better than the 

experimental reproducibility. Thus, the usual procedure is to settle 

for a finite number of phenomenological macroscopic variables that are 

average properties of the detailed microscopic phenomena. 

Here we employ two ISVs: the strain hardening parameter, Z, 

and the thermoinelastic, flow, or plastic strain, P. 

The strain hardening (or work hardening) parameter (Z) is a 

measure of the overall resistance to plastic deformation. There is 

available experimental evidence that the mechanism of strain hardening 

is largely due to the development of internal stresses [ 2.32]. 

Physically, therefore, Z may be regarded as an internal stress. Some 
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authors, for example Allen [ 2.33), refer to Z as a drag stress. Merzer 

and Bodner [ 2.34] also speculated that a possible physical 

interpretation of Z is the stored energy of cold work per unit volume. 

Although the process of cold working is accompanied by work hardening, 

that is an increase in resistance to further deformation, the stored 

energy of cold work is the change in internal energy arising from 

plastic deformation and as such it is unlikely that this quantity is 

synonymous with the strain hardening parameter. This is because 

phenomena other than hardening may also contribute to the stored energy 

of cold work. On a microphysical basis, Z is associated with 

dislocation arrangement. The units of Z are the same as the units of 

stress. 

The plastic strain (P) is the deformation remaining after the 

material has been unloaded to the stress-free configuration. As such, 

it is usually referred to as the "permanent set". According to 

Kratochvil [2.35], the plastic strain describes a shape change of the 

material element after a loading process by sufficiently fast unloading. 

A microphenomenological definition of plastic strain is given by Bamman 

and Aifantis [ 2.36] as the strain induced by dislocation motion. 

Some authors, for example Lehmann [2.24, 2.37], Anand [ 2.38], 

Hart [ 2.39], and Riff et al. [ 2.29] are of the opinion that the plastic 

strain (being a path-dependent variable) is not suitable for use as an 

ISV for plasticity studies. However, a large number of workers have 

used the plastic strain as an ISV. Notable are the works of Perzyna 

[2.20, 2.21], Kratochvil and Dillon [ 2.18, 2.19), Kratochvil [ 2.35], 

Green and Naghdi [ 2.40], Lubliner [ 2.41], and Kluitenberg [ 2.42]. 

The author is not in agreement with the arguments of those who 
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belong to the school of thought that considers the plastic strain to be 

inadmissible as an ISV. Since those that use the plastic strain as an 

ISV do not usually give reasons to justify its use, the controversial 

issue is elaborated upon in this thesis. 

Lehmann [ 2.24, 2.37] is one of the major proponents of the 

point of view that the plastic strain is in general not suitable as an 

ISV. According to Lehmann, "Dislocations which have completely passed 

the crystal produce plastic strains but no changes of internal state". 

This statement is equivalent to Anand's statement [ 2.38] which says that 

.the surroundings of atoms before and after plastic straining are 

"essentially undistinguishable". The validity of this statement 

depends, of course, on the definition of "internal state". The internal 

state during a process of plastic deformation should not be taken to be 

synonymous with the "state of hardening". In other words, there might 

be plastic phenomena other than hardening which contribute to the 

thermodynamic state of plastic deformation. During an actual motion of 

a dislocation through a crystal, energy must be conserved just as in any 

physical process. Any decrease in the energy of the external agents 

caused by energy dissipation occur-Icing as a result of dislocation 

interactions and resistance to dislocation motion must be balanced by 

the corresponding increase in the internal energy of the medium. Also, 

a small but finite stress is required to cause the motion of 

dislocations through crystals (at least crystals with defects). Thus, 

one cannot expect the totality of the state of a crystal that has just 

experienced the passage of a dislocation to be the same as the state 

before the passage. What is needed, perhaps, is the capability of being 

able to detect that change. 
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There are also claims that: "Most different states of 

hardening can belong to the same plastic strains (at the same stresses 

and the same temperatures)". First, it is to be noted that this 

statement is based on the implied assumption that the state of hardening 

alone uniquely and completely defines the state of the material. It has 

been remarked in the preceding paragraph that there is no justification 

to presume that the state of hardening is all that is required to 

characterize the plastic deformation state of a body. Even if it were 

so, the question of whether enough hardening state variables have been 

employed to describe the state of hardening remains an open one. If 

more hardening variables were introducecU it might be possible to notice 

a change of state that went undetected with the insufficient number of 

state variables. 

For a clearer insight into this discussion, consider the 

following logic. Suppose, for instance, there exists a thermodynamic 

representation of the form 

a = a(c, 0, Z, P), (2.1) 

for the stress functional. For a well—behaved function a, equation 

(2.1) may be expressed as 

Z = Z(e, 0, a, P). (2.2) 

According to the statement quoted in the last paragraph, it is possible 

to find a situation where there is a Z1 given by 

Z1 = Z(e1, 0, a1,1' 1), - (2.3a) 

and there also exists a Z2, different from Z1, such that 

Z2 = Z(e1, 0, a1, P1). (2.3b) 

Obviously, this situation is undesirable because it is intended that the 

state variables should uniquely define all the state functions - the 
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dependent constitutive variables (or the response functions). 

the problem might not be with the plastic strain. It might be 

internal state variables are needed to describe the state of 

However, 

that more 

hardening 

or the state in general. If new hardening state variables X and Y, for 

instance, are . introduced, we have, instead of ( 2.1), 

* 
a = a (, 0, ,X, Y, Z, P). (2.4) 

Thus, if 

a * (c , ' 0k, 11 Y1 31  z1, p1) (2.5a) 

it is totally acceptable to have a situation where 

= 

a1 = a*( O, X2, Y2 Z2 (2.5b) 

since each element of the set of hardening variables: {X2, Y2, Z2} may 

adjust itself in such a way that the set has the same effect in the 

function a as the set {x1, Y1, z1}. In practice, for example, the 

additional hardening variables X and Y may model, among other things, 

cyclic hardening, or, for that matter, other hardening phenomena that 

may yet be beyond the realm of present understanding. Therefore, (2.5a) 

and (2.5b) do not suggest a lack of uniqueness. 

Furthermore, the value of the stress at a given state S is 

not what describes the state of the deformation process. The values of 

the other response functions are also needed as will become evident in 

the next section. For example, corresponding to ( 2..5a) and (2.5b) 

above, it may turn out that the value of the free energy associated with 

the first state of hardening {x1, Y1, Z1}: 

pi = p*(e, 01, X1, Y1, Z1, P1) (2.6a) 
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from , such that 

= (ell 812 X2$ Y2, Z2, P1} (2.6b) 

Also, it is easy to see that there is no apparent lack of uniqueness if 

more state variables that describe plastic phenomena other than 

hardening are included. 

There are also arguments that the plastic strain does not 

uniquely describe the state. As noted above, no single state variable 

is expected to uniquely describe the state; indeed such a situation is 

impossible for a dissipative material - not even for a therinoelastic 

process. Such a "luxury" of simplicity is the sole possession of 

elastic materials undergoing purely mechanical processes, in which case 

the strain, and the strain alone, uniquely characterizes the state. 

What is required by the property of uniqueness is the capability of 

being able to deduce unique values of the response functions from a 

given set of the state variables used for the process description. 

We find it reasonable to include the plastic strain as a state 

variable because we believe it affects the inelastic portion of the 

internal energy. This view is supported by the experimentally [ 2.43] 

and analytically [ 2.44] observed dependence of the stored energy, of cold 

work on the "extent of deformation" - the plastic strain or the total 

strain is usually taken as a measure of the extent of deformation. 

Although P is a path-dependent variable, it should be realized 

that what is being modelled is the deformation process. Thus, what is 

of interest is the thermodynamic state of the deformatibn process and 

not the "internal state" of the material per se. Indeed the complete 

elimination of path dependence requires an infinite set of ISVs - a 

requirement whose impracticality has been discussed earlier on. 
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Lastly, it is known that dislocation motion (which induces 

plastic strain) causes the external shape of a body to change and so is 

associated with shape-memory effects, see, for instance, Kluitenberg 

[2.42]. Thus, the plastic strain may be useful in describing the part 

of the deformation history associated with the change in shape of the 

body. 

2.3 Thermodynamic Formalism 

With the introduction of the two ISVs in the last section, the 

independent constitutive variables may be written in two sets as 

follows: 

(i) A = {c, T, g}. (2.7a) 

(ii) r = {z, P}. (2.7b) 

In ( 1), e is the total strain, T is the absolute temperature and g is 

the temperature gradient, that is, 

g ax (2.8) 

Set (i) is the set of observable thermomechanical variables 

which describe the thermomechanical configuration of the body. Set (ii) 

described the method of preparation of the observed thermomechanical 

configuration. Whereas the set A is sufficient to completely 

characterize the state of a conservative (or reversible) deformation 

process, a combination of the two sets (A and 1') is required for the 

description of the state of a nonconservative (or irreversible) 

deformation process. 

Thus, the set of the independent constitutive variables is the 

union of the two sets A and r which we may denote by 2: 

= A U r = {c, T, g, Z, P}. (2.9) 
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According to the constitutive axiom of causality [ 2.45], therefore, the 

dependent constitutive variables or the response functionals must be the 

set II given by: 

ii = {p, a, r, q}, (2.10) 

where i is the Helmholtz free energy per unit volume, a is the stress, r 

is the entropy per unit volume, and q is the heat flux considered 

positive when directed outward from the body. The Helmholtz free energy 

(which we find more convenient to use than the internal energy or any of 

its other Legendre transforms) is related to the internal energy, e, 

through the equation: 

(2.11) 

With these variables, we consider the process of wave 

propagation in inelastic solids (or indeed any inelastic deformation 

process) as a thermodynamic process (TP) consisting of all the 

independent and the dependent constitutive variables, that is 

TP: {A, r, I[}, (2.12a) 

or 

TP: { 2, JU. (2.12b) 

The constitutive response functionals, II, are now assumed to 

depend on the independent constitutive variables, 0, in the form: 

T, g, Z, P), (2.13a) 

a = a(, T, g, Z, P), (2.13b) 

fl = n(c, T, g, Z, P), (2.13c) 

q = q(c, T, g, Z, P), (2.13d) 

= F(c, T, g, Z, P), (2.13e) 

P = G(c, T, g, Z, P), (2.13f) 

where overdots denote differentiation with respect to time. It is to be 
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noted that the quantities p, 0, , q, F and G are referred to as 

functionals in the sense that they are functions of quantities that are 

themselves functions of other quantities. For example, 

= qi(e(X,t), T(X,t), g(X,t), Z(X,t), P(X,t)). (2.14) 

where X denotes position and t denotes time. Equations (2.13e) and 

(2.13f) describe the change of the internal state variables with time 

and are- referred to as EVOLUTION EQUATIONS for the ISVs. 

Mathematically, the equations are required in complementing the balance 

laws of continuum mechanics and the ' usual' constitutive relations in 

the complete formulation of a well-posed, determinate 

initial-boundary-value-problem. 

The representation (2.13) is assumed to -be unique for the 

deformation process at any point in space and time during the process in 

the sense that the specification of the values of the independent 

constitutive variables uniquely specifies the values of the dependent 

constitutive variables. 

The assumed constitutive relations satisfy the principle of 

equipresence and the principle of material objectivity [ 2.45]. 

It will now be required that the assumed relations be 

admissible - that is they must be consistent with the basic principles 

of continuum mechanics which implies consistency with the principles of 

conservation of mass, balance of linear momentum, balance of moment of 

momentum, conservation of energy, and the second law of thermodynamics. 

For thermomechanical processes, the law of conservation of 

energy, otherwise referred to as the first law of thermodynamics, is 

given by: 
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ai T a E Dg + 1, 
— + —  (2.15) 

where y is the heat generation per unit volume.' There is as yet no 

consensus on the mathematical representation of the Second Law but the 

Clausius-Duhem inequality is accepted as a valid statement in this 

development, namely: 

ax T (2.16) 

The requirement of the axiom of admissibility will now be 

invoked. First, equation (2.15) is combined with the inequality ( 2.16) 

to obtain: 

1' + ni' - - g 5 0. (2.17) 

Now, from equation ( 2.13a), if the response functionals are assumed to 

be sufficiently smooth, then 

A A A A A 

p. + T ap. + as @T ag g ap. + Z • + a'p. P = P. 

Substituting equation (2.18) into ( 2.17) gives. 

A A A A 

{ 1P P + {-- + + }h1- + - 

as T T 

(2.18) 

g 0. (2.19) 

.Since the quantities E, T, and g can be varied independently for any 

thermodynamic process, the inequality ( 2.19) is linear in E,, T, and g. 

Hence it can be satisfied if and only if: 

Cr 
1j) 

as ' 

TI 

(2.20a) 

(2.20b) 
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and 

T 

(2.20c) 

(2.20d) 

The relations (2.20a) - (2.20d) constitute the restrictions imposed on 

the constitutive assumptions by the, first and second laws of 

thermodynamics. We find that the free energy functional is, as usual, a 

potential from which the stress and entropy functionals are to be 

derived. We also find that the free energy functional does not depend 

on the temperature gradient. The inequality (2.20d) is the reduced form 

of the Clausium-Duhem inequality and is the new form of the dissipation 

inequality.. It is not surprising to observe that the entropy production 

aiises from strain hardening, plastic straining, and heat conduction 

which are the three sources of irreversibilities in our model. 

Note that the inequality (2.20d) is not linear in Z and P and 

these quantities cannot be arbitrarily assigned due to the connection 

provided by the evolution equations (2.13e) and ( 2.13f. This implies 

that the rate of strain hardening depends on the rate of plastic 

straining. This thermodynamic deduction is consistent with the observed 

physical behavior of the process of plastic deformation. Therefore, 

q.i/z and i/P do not vanish and so the free energy does depend on both 

Z and P. Again, dependence of I.s on Z and P have firm experimental 

foundations. 

A reformulation of the constitutive relations based on the 

above thermodynamic deductions will be: 



j) = T,Z, 1'), 

q = q(c, T, g, Z, P), 

Z = F(e, T, g, Z, P), 

= G(c, T, g, Z, P), 
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(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2.21e) 

(2.21f) 

(2.21g) 

For convenience, the temperature difference, 0, defined as 

0 = T - TR (2.22) 

is introduced, where T  is the absolute temperature at a reference 

state, R. With this, the relations (2.21) may be expressed in the form 

= p(e, 0, Z, P), (2.23a) 

aj) 
(2.23b) 

Ti = , (2.23c) 

q = q(c, 0, g, Z, P), (2.23d) 

= F(c, 0, g, Z, P), (2.23e) 

P = G(e, 0, g, Z, P), (2.23f) 

+ - q  g 0, (2.23g) 
az ap (O + TR) 

where g - ao (2.23h) 
ax 

- - 
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In the classical theory of irreversible thermodynamics, the 

p ap 
quantities TZ , ar , and (- e  would be looked upon as thermodyna-

mic forces or- affinities while the conjugate set Z, P, and q would be 

the corresponding thermodynamic fluxes. One would then set up linear 

constitutive equations between any one of the forces and all of the 

fluxes and invoke Onsager's symmetry principle to reduce the number of 

constitutive coefficients. This procedure is, however, not applicable 

to plastic deformation because of its highly irreversible nature. 

Thus, the restrictions expressed in (2.23) are the extent to 

which one can go via thermodynamic arguments concerning the nature of 

the constitutive equations. Unfortunately, however, the representation 

given by (2.23) is far from being complete because the constitutive 

response functionals involved are still unknown. Although such 

relations may be used, for example, in qualitative studies of wave 

propagation processes at the wave fronts using the theory of propagating 

singular surfaces [ 2.46], explicit relations for the constitutive 

response functionals involved are required for a detailed quantitative 

analysis of the wave propagation process in the entire domain of 

interest. Therefore, explicit representations of the response 

functionals involved in the relations (2.23) must be sought. , This is 

the subject of consideration in the next chapter. 
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CHAPTER 3 

CHARACTERIZATION OF THE CONSTITUTIVE RESPONSE FUNCTIONALS  

3.1 Explicit Expressions for the Helmholtz  

Free Energy, Stress, and Entropy Functionals  

The 

its Legendre 

functional in 

Helmholtz free energy functional or, equivalently, any of 

transforms, is the most important constitutive response 

thermodynamics-based material modelling. This is because 

it usually serves as a thermodynamic potential from which two other 

response functionals, namely, the stress and the entropy, may be 

derived. The free energy thus has a very important role to play in the 

characterization of material behavior and indeed the formulation of any 

initial-boundary-value-problem of continuum mechanics that involves the 

law of conservation of energy. 

It appears that the important role of the free energy has not 

been accorded due recognition by inelastic deformation studies (static, 

quasistatic, and dynamic) because of the following. Most studies in 

plasticity and viscoplasticity employ empirically conjectured or 

experimentally determined stress-strain relations which fall outside the 

umbrella of a general thermodynamic framework. In such situations, for 

isothermal cases, the law of conservation of energy is usually ignored 

(since the system of equations describing the boundary-value-problem 

appears to .be mathematically complete), or assumed to be identically 

satisfied as in the theory of elasticity. Moreover, in certain cases, 

some ad hoc assumptions concerningthe balance of work and energy are 

employed at the outset or tafterthroughtl energy balance checks are made 

at the end of computations! The inclusion of temperature brings the law 
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of conservation of energy well into focus and furthermore, the 

recognition of the physical phenomenon of the stored inelastic energy 

gives a very distinctive and important role to the law of conservation 

of energy. 

Thus, the application of the law of conservation of energy, 

equation (2.15), requires a knowledge of the free energy, ij, and the 

entropy, n, which is especially significant for the highly irreversible 

process of plastic flow. It is clear, therefore, that if we intend to 

properly analyze an inelastic deformation process, the constitutive 

equations are not synonymous with stress-strain relations. Indeed, the 

results of the thermodynamic analysis in the preceding chapter show 

that, for thermodynamic consistency, the relations for a and In cannot be 

arbitrarily assigned. The best way to guarantee this consistency is to 

find a suitable expression for the free energy which has the role of a 

'parent' potential. 

A lot, of researchers in thermoinelastic constitutive modelling, 

via thermodynamics assume that the free energy functional is of the same 

form as its thermoelastic counterpart. This assumption is, however, 

not consistent with available experimental results which indicate that a 

portion of the plastic mechanical work is irrecoverably stored in the 

material during inelastic deformation. A large number of experiments in 

this connection were reviewed by Titchener and Bever [ 3.1] and Bever et 

al. [ 3.2]. 

Only a few workers have explicitly incorporated an inelastic 

portion in their expression for the free energy function of an inelastic 

material. 

Kratochvil and Dillon [ 3.3] proposed the following form for an 
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elastic-plastic material: 

= + vial + v2a - CT(lnT-1), (3.1) 

where Ce is the elastic strain, T is the absolute temperature, c'(1) is 

an ISV representing the dislocation density, and a is the other ISV 

designating the density of more complicated dislocation arrangements 

known as tangelings. The quantities 11, V 1• , U2 , and C are material 

constants assumed to be positive. The same workers [ 3.4] also proposed 

a similar functional representation for the free energy of an 

elastic-viscoplastic material, namely: 

= .. icr + \) t - kT(14— - 1), 
R 

(3.2) 

where a is the stress, T is the absolute temperature, and a (which is a 

scalar parameter that characterizes the defect arrangement) is the 

number of dislocations. Again, 9 oil \), and k are assumed to be positive 

material constants. It can easily be seen from equations ( 3.1) and 

(3.2) that the expressions are linear in the ISVs and do not include a 

thermal expansion term. Furthermore, numerical values of the material 

constants involved were not given for any material. 

Kim and Oden [ 3.5] proposed. a temperature-independent 

expression in terms of the plastic work: 

= -[ X(tr E) 2 + 2lltr(E2)} - z w - 

I  m 
(zi - Z) exp(-mWp). (3.3) 

In this expression, E is the elastic strain tensor, W is the plastic 

work and it is the single internal state variable introduced to 

characterize isotropic hardening of the material. The quantities A and 

p are the well-known Lame constants of classical elasticity. There is a 

hardness variable, Z, which is conjugate to the internal state variable, 
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W, and related to it through the equation: 

Z - - = Z1 + (Z - Z1) exp(-mW), (3.4) 

where Z 1. , and in are given material constants. Obviously the 

expression ( 3.3) is restricted to isothermal applications, with the 

attendant implications discussed in Chapter 1. 

The free energy expression utilized by Besdo [ 3.6] is of the 

form: 

= . {••[•• - 2C -- B + 3 +   - 3] 2} + 

+ E KU.[B.TJB] + A[O-O ][CB-3] + *( 0). 
- - -- 0 - - 

(3.5) 

This includes thermoelasticity and purely thermal effects. However, the 

inelastic term, namely, E aa KU.[3UB], is temperature-independent and 
c3 

no numerical values of the ' inelastic' material parameters were 

given for any material. 

Benallal and Marquis [ 3.7] had an expression of the form: 

.Aijkl jl + ce..e.. + Q[P + . e], (3.6) 
13 13 Y 

in which the first term represents the elastic strain energy, the second 

term is the energy density related to the kinematic hardening, and the 

last term is the energy density associated with isotropic hardening. 

This expression is restricted to isothermal applications. The 

anisothermal elasto-viscoplastic model of Benallal and Cheikh [ 3.8] is 

given by: 

'P = m(T) + M(T): e + - C(T): ce:Ee + h1(C) + H(T,p), 

where 

(3.7a) 
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and 

2 
h1(a) = Ca a : a 

H(T,p) = [a1(1-exp(-a2T)) + a3 ] ,[p + exp(-yp)], 

(3. 7b) 

(3.7c) 

where the tensor a and the scalar p are the ISVs used to describe 

kinematic and isotropic hardening, respectively. The procedure for 

identifying the inelastic material properties was described and typical 

material constants for INCONEL 718 super-alloy were given. 

A feature common to all the above expressions is the 'neglect 

of the coupling terms between (thermo)elastic and (thermo)inelastic 

deformation variables. The implication of this is the assumption that 

the stress-strain (or stress-strain-temperature) relations are the same 

as for (thermo)elastic materials which is inconsistent with the idea of 

a dissipative part of the stress. We are hence motivated in this study 

to seek to remedy this and the other shortcomings highlighted above. It 

is also of interest to give a firm physical basis for the determination 

of the material properties encountered. 

First, a reference equilibrium state R is defined as: 

R = {E = eR, Z = ZR, P = O}. (3.8) 

The function 4 is now to b& expressed as a Taylor series expansion in 

terms of its thermodynamic arguments: c, 0, Z, and P about this 

reference state of deformation. It is preferred, for physical reasons 

that will become clearer shortly, tht the function 4 be expanded in 

terms of c, Z, and P while keeping 0 as a parameter that may appear as 

coefficients of the expansion terms. Of course, this mode of expansion 

is equivalent to the expansion of * in terms of all its arguments E, 0, 

Z, and P. Thus, ' is taken to be of the form: 
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= (e) + A1(0) + E i(e) 2 + A2 (e)z + A3(e)p + 2 (o)Z 2 

+ 3 (e)P 2 + B 4 MeZ + B 5 (0)cP + B 6(e)zp. (3.9) 

The quantities A (e) , i(0), A2(o), A3(e), B2 (e), B3 (e), B4 (e), 5 (0) 

and B6 (0) are now identified as temperature-dependent material 

properties. Note that this nonlinear, non-isothermal representation of 

the free energy functional reduces to the free energy expression for 

thermoelastic materials in the absence of plastic deformation, allows 

for thermal expansion and purely thermal effects, incorporates the 

effect of strain hardening and permanent deformation, and includes a 

coupling of thermal, elastic and inelastic deformation variables. All 

these attributes are in conformity with the reality of the physical 

phenomena being modelled. 

The additive decomposition of the total strain (c) into its 

thermoelastic (E) and thermoinelastic (P) parts in the form: 

= E + P, (3.10) 

is now introduced. This ' decomposition is generally valid for 

infinitesimal deformations. With this, equation (3.9) takes the new 

form: 

= (e) ± A1(e)E + B1(e)E2 + A2 (o)Z + A3(e)P + B2 (e)Z 2 

+ B3 (e)P 2 + B4(o)EZ + B5 (o)EP + B6 (e)ZP. (3.11) 

This expression for i may now be partitioned into its two constituent 

parts: 

where 

= (e) + A1(o)E + B1(0)E2, 

(3.12a) 

(3.12b) 
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and 

= A2(e)z + A3 (0)P + B2 (0)Z2 + B3 (e)p2 + B4 (o)Ez + B5 (0)EP 

+ B6(0)ZP. (3.12c) 

The quantity is the thermoelastic portion of the free energy 

functional while is the thermoinelastic portion. Now, is either 

known from the classical theory of thermoelasticity, or can be found 

from a knowledge of the specific heat capacity at a constant state of 

deformation (CD) and the thermoelastic stress-strain-temperature 

relation. However, is unknown because the thermoinelastic material 

properties A2 (0), A3 (0), B2(0), B3 (0), B4 (0), B5 (0), and B6 (0) in 

(3.12c) are yet unknown. 

With the decomposition (3.10), the results of Chapter 2 may be 

more conveniently expressed in terms of the thermoelastic strain rather 

than the total strain in the form: 

= (E, 0, Z, P), 

a 

- 

11 -

q = q(E, 0, g, Z, P), 

Z = F(E, 0, g, Z, P), 

P = G(E, 0, g, Z, P), 

q  

(O+TR) 
g 0. 

(3. 13a) 

(3. 13b) 

(3.13c) 

(3. 13d) 

(3. 13e) 

(3. 13f) 

(3.13g) 

With the explicit expression for i given in equation (3.11), 

it is now possible to determine explicit expressions for the stress and 
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entropy functionals. From equations (3.13b) and (3.11), it follows that 

the stress is given by: 

= A1(0) + 2B 1(0)E + B4 (0)Z + B5(0)P. (3.14) 

It can be seen that the stress has two parts: thermoelastic and 

thermoinelastic, or, alternatively, quasiconservative and dissipative. 

Thus, 

0 = 0 C + a D' (3.15a) 

where 

GC = A1(e) + 2B 1(0)E, 

is the quasiconservative stress, and 

CFD = B4 (0)Z + 35 (e)P, 

(3. 15b) 

(3. 15c) 

is the dissipative stress. Thus, from our representation of , it has 

been possible to explicitly determine the dissipative stress without the 

need of postulating a separate dissipation (or plastic) potential 

function, as in the case of Ziegler and Wehrli [ 3.9], for example. The 

portion a ensures that the stress relation for thermoinelastic 

deformation differs from its thermoelastic counterpart. 

Similarly, applying the result (3.13c) to the representation 

(3.11) yields the explicit expression for the entropy functional in the 

form: 

= - ['(o) + A(o)E + B(e)E2 + A(e)Z + A(0)P + B(0)Z 2 

+ B(0)P 2 + B(0)EZ + B(0)EP + 3(0)ZP]. (3.16) 

Again, it is seen that the entropy consists of contributions from 

thermoelastic 01 E  and thermoinelastic (111) deformations, that is, 

E I 
n + ii , (3.17a) 

where 



and 

T1 E = -['( 0) + A(0)E + B(0)E2] 

= -[A(0)Z + A(0)P + B(0)Z 2 + B(0)P 2 + B(0)EZ 

+ B(0)EP + B(0)ZP]. 
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(3. 17b) 

(3.17c) 

It is easy to see that the expression (3.17b) represents the usual 

entropy production in thermoelasticity while ( 3.17c) is considered to be 

the entropy due to irreversibility of plastic deformation. It may now 

be appreciated that the neglect of fl is tantamount to assuming that the 

process of plastic deformation is reversible! 

One of the important attributes of the theory of 

thermodynamics with , internal state variables is the ability to 

characterize nonequilibrium states using thermodynamic state variables 

even if those states are considered to be constrained equilibrium 

states. The beauty of the above expressions for i, a , ii lies in the 

fact that those quantities can be uniquely computed whenever the values 

of E, 0, Z, and P are given at a particular point provided the material 

properties are known. Thus, the explicit relations are constitutive 

state equations in the same sense that is used in the kinetic theory of 

gases, for instance. It should be emphasized that the desire to be able 

to simply express constitutive response functionals in terms of some 

independent constitutive variables as is done for non-dissipative 

materials is the main motivation behind research efforts directed 

towards the application of internal state variables to dissipative 

processes. 
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F" 

3.2 Determination of the Thermoinelastic Material Properties  

The most challenging endeavor in constitutive modelling is the 

determination of the associated material properties especially if they 

are physically motivated. The methodology by which the thermoinelastic 

material properties appearing in the expression for tIP' in the preceding 

section are determined is now presented. 

Materials scientists define the stored (or latent) energy of 

cold work as the portion of the plastic work that is irrecoverably 

stored in the material during deformation thereby raising its internal 

energy. Micromechanically, it is associated with the energy of residual 

stresses in the material due to crystal defects. In addition to the 

formal experimental evidence first provided by Taylor and Quinney 

[3.10], Titchener and Bever [ 3.1] and Bever et al. [ 3.2] carried out 

excellent comprehensive reviews of experiments that have been performed 

to determine the storeä energy of cold work, E. Most of the 

experiments reported for various metals and metallic alloys [ 3.1, 3.2] 

indicated that the stored energy is proportional to the square of the 

flow stress, or, equivalently, that the rate of change of the stored 

energy with respect to the total expended energy is proportional to the 

rate of change of the stress with the strain in the plastic region. 

Since E represents the irrecoverable portion of the internal energy 

(which is designated e1RR  here), the experimental findings may be 

mathematically expressed as 

e1RR  = Kci2, (3.18) 

where K is the experimentally determined constant of proportionality. 

If an allowance is made for a small portion of the elastic energy to be 

irrecoverably stored, then 
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E I 
IRR = + eIRR, (3.19) 

E E I 
where eIRR is a small portion of the elastic strain energy, e , and eIRR 

is the irrecoverable portion of the inelastic stored energy. 

From the relation between ip and e, namely: - 

= e.-( O + TR)n , (3.20) 

it follows that i can be similarly split as: 

where the quantities are defined as follows: 

E 

E 
IRR - 

= recoverable portion of the 

therinoelastic free energy, 

irrecoverable portion of the 

thermoelastic free energy, 

(3.21) 

(3. 22a) 

(3.22b) 

= recoverable portion of the 

thermoinelastic free energy, (3.22c) 

IRR = irrecoverable portion of the 

thermoinelastic free energy. (3.22d) 

It is known that no portion of the thermoinelastic free energy is 

recoverable, therefore, 

= 0, (3.23a) 

and so 

Hence, 

I_ I 

- IRR. (3.23b) 

= + + IRR (3.24) R IRR 

Also, in practice, the amount of elastic energy stored is very small 

compared to either the total elastic energy or the total inelastic 

energy. Thus, 
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E 

and 

E 
WR 

(3.25a) 

E 

IRR < < • (3.25b) 

1'IRR 

If the irrecoverable portion of ' is denoted *IRR then, from 

(3.23b) and (3.24), it follows that 

IRR 'IRR + j. (3.26) 

Thus, in terms of the development here, the experimental findings 

expressed in equation (3.18) becomes 

where 

'IRR + (0 + TR)nIRR = 

- IRR 
IRR 

(3.27) 

(3.28) 

Because is a function of {E, 0, Z, i'J•, *IRR is also a function of 

{E, e, z, P}, and so is IRR Therefore, the expression on the left 

hand side of equation (3.27) is a functional L' say, of { E, 0, Z, P}. 

Similarly, since a = cr(E, 0, Z, P) as can be seen from equation (3.14), 

the right hand side of equation (3.27) is also a functional 1D R' say, of 

E, 0, Z, P}. Equation (3.27) may therefore be expressed as: 

0, Z, P) = R(E, 0, Z, P). (3.29) 

Since all the constitutive resposne functionals are assumed to be smooth 

functions of their thermodynamic arguments, the functions and must 

also be smooth functions of those arguments. Smoothness of the 

functionals L and leads to the ordinary differential equations: 
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A2 _( 0 + TR)A = 2KA1B4, (3.30a) 

A3 .( O + TR)A = 2KA1B5, (3.30b) 

B2 _( O + TR)B2 = KB, (3.30c) 

B3 -(O + TR)B = KB, (3.30d) 

B4 - (0 + TR)B. = 4KB 1B4, (3.30e) 

B5 _( 0 + TR)B = 4KB 1B5, (3.30f) 

B6 -(0 + TR)B = 2KB4B5, (3.30g) 

where a prime denotes differentiation with respect to the differential 

temperature, 0. Equations (3.30) are obtained by differentiating L and 

with respect to their arguments as many times as necessary in 

equation (3.29). 

The solution of equations (3.30) requires a knowledge of the 

appropriate auxiliary conditions. These auxiliary conditions are indeed 

material constants at say the reference temperature T  and they must be 

found from experiments. 

First, the possibility of determining these auxiliary 

conditions (or the material properties themselves) from experiments that 

are specifically designed for that purpose will be considered. 

Recall that the explicit representation for the stress is: 

= A1(0) + 2B 1(0)E + B4 (0)Z + B 50 (3.31) 

It is easy to obtain from (3.31): 

B4(0) = az (3.32) 

(3.33) 

(3.34) 

In the sense that the quantity 2B 1 (0) is the modulus of elasticity 
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(assuming elastic incompressibility), B4 (0) may be regarded as a 

"HARDENING MODULUS", while B5 (e) may be called a "PLASTIC MODULUS". 

Thus, it seems that B4 (0) may be found from experiments 

performed to see how the stress (a) varies with the strain hardening 

parameter (Z) at constant strain (that is, constant E and P). Such 

experiments performed isothermally but at different temperatures would 

give B4 (0) as shown in Figure 3.1. Similarly, B5 (o) may be 

experimentally obtained by varying the stress and the plastic strain at 

constant E and Z for varying temperatures. This kind of experiment 

should provide data that would enable one to plot graphs like those 

shown in Figure 3.2. The hypothetical experiments just described have 

limited (if any) feasibility. It is difficult to physically measure the 

strain hardening parameter; there is currently no available means of 

quantifying the resistance to further plastic deformation. Also, there 

is no experimental procedure by which the plastic strain could be 

directly measured (without unloading) while keeping the elastic strain 

and the strain hardening parameter constant. 

From the expression for the -free energy functional, equation 

(3.11), it is observed that 

= A(0) + 2B 2(0)Z + B4 (0)E + B6 (0)P, 

= A3 (e) + 2B3 ( 6)+ B5 ( 6)+ B6 ( 0) 

a (k) 
az z = 2B2 (e), 

a 
P •5 = 2B3 (e), 

z a = B6 (0). 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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0 63 

e, 

z 

Figure 3.1 Hypothetical isothermal stress-hardening curves 

for various temperatures. 
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Cr 

0 

Figure 3.2 Hypothetical isothermal stress-plastic strain 
curves for various temperatures. 



53. 

The quantities A2 (0) and A3 (6) may be looked upon as the values of p/Z 

and p/BP respectively, at the reference state of deformation where E = 

0, Z = Z  = Z0, and P = 0. However the physical meanings of / Z and 

are not known. One is therefore not in a position to think of 

hypothetical experimental programs by which A2 ( e), A3 (0), B2 ( 0), B3 (0), 

and B6 (0), or even their values at a given temperature, could be 

determined. There is no choice then other than seeking alternate 

procedures by which the auxiliary conditions can be determined. 

Consider equation ( 3.30e) which is recalled here ' for easy 

reference: 

B4 -( 0 + TR)B = 41(B 1B4. 

Let the value of B4 (0) at the reference temperature, TR, be B4R, that 

is, 

B4 (0) 

0=0 

= 

Then the solution of equations (3.40) is given'by 

where 

and 

(3.40a) 

(3.40b) 

B4( 0) = B4R (l + f ) 12R exp(X 20), (3.41) 

in which the thermoelastic material property Bi(0) is defined as 

B1(0) = B11 - B 12 el 

(3.42a) 

(3. 4 2b) 

(3.43) 

B11 and B12 being material constants to be precisely defined later. 

Also, the solution of equation ( 3.30f) for B5 is: 
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B5( 0) = BSR(l + exp(A20), (3.44) 
R 

where 

B5 (0) 

0=0 

= BSR. 

The constants B 4 and B 5 are determined from the 

experimentally determined isothermal stress-strain curves as 

(3.45) 

usual 

(3AR + 2UR)ctR [ 1 - exp(X )( 1 +-) l_Al_A I 2TR -1 
, (3.46) B4R = -[  . T  

where, X and 1R are the values of Lame constants at the reference 

temperature, a  is the coefficient of thermal expansion at the reference 

temperature, and Z0 is the reference value of the strain hardening 

parameter given by Bodner and Partom [ 3.11] and by Bodner et al. [ 3.12]. 

The value of B 5 is determined as 

B5R = YR_ET. ' 

Y R E T 
(3.47) 

where Y is the value of the Young's modulus at the reference 

temperature and ET is the slope of the plastic region of the 

stress-strain curve (otherwise referred to as the tangent modulus) at 

the reference temperature. The detailed determination of B 4 and B 5 is 

given in the Appendix. The other equations cannot be precisely solved 

since the appropriate auxiliary conditions are not available as 

explained above. Thus, the other material properties are determined by 

assuming that the entropy contribution to the free energy function is 

negligibly small. This assumption is quite valid for moderate 

temperature applications [ 3.1, 3.2]. 
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In summary, the solutions of the equations ( 3.30) are 

determined as: 

l_Xl_X2TR 
0 

B4(0) = B4R (l + 
R 

A. 

B5(0) = B5R (l + exp(X 20), 
R 

exp(X20), (3.48a) 

lXl_X2TR 

(3.48b) 

A2 ( 6) = 2KA1(0)B4(0), (3.48c) 

A3 (0) = 2KA1(0)B5(0), (3.48d) 

B2 (0) = KB(0), (3.48e) 

B3 (0) = KB(e), (3.48f) 

B6(0) = 2KB4 (e)B5(o). (3.48g) 

Thus, since K is known, all the thermoinelastic material properties are 

now known and hence the thermoinelastic portion of the free energy 

functional is explicitly known. 

Typical parameters for copper and aluminum are given in Table 

3.1 below. 

As remarked earlier on, most studies disregard on the basis 

that it is small compared to P. This is generally not true, however. 

Chrysochoos [ 3.13] performed experiments to measure the stored energy 

during plastic deformation processes using the traditional 

microcalorimetric techniques and a more modern approach based on 

infra-red thermography. For the three metals considered in his 

experiments, he observed that the fraction of the stored energy could 

reach 50% to 60%. More recently, Aravas et al. [ 3.14] reported 
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Table 3.1 Thermoinelastic material constants that characterize the 
stored energy of cold work phenomenon in copper and 
aluminum 

Material Parameter Copper Aluminum 

K(m2N 1) 6.12 E - 11 2.39 E - 10 

24.75 48.89 

X2(K 1) 4.43 E -03 2.30 E -03 

B 4 -2.88 -1.25 

BSR(Nm 2) 2.18 E 09 1.24 E 09 

A11 (Nm 2) 8.93 E 07 3.14 E 07 

theoretical studies which show that the fraction of stored energy could 

be of the order measured by Chrysochoos or even higher. 

A lot of workers usually assume that only 10% of the plastic 

mechanical work is stored in the material while the remainder is 

converted into heat energy. It was on this basis, or example, that 

Klopp et al. [3.15] carried out the necessary thermomechanical analysis 

required to interpret their high-strain-rate plastic wave experimental 

data. Riff and Simitses [ 3.16] also made the same assumption in a 

recent work concerning thermoviscoplastic analysis. From the works 

reviewed by Bever and his associates, and more evidently the works of 

Chrysochoos [ 3.13] and kravas et al. [ 3.14], it is clear that this 

assumption is, in general, not in harmony with the physical material 

behavior. Factors ranging from 10% to 90% have been suggested in the 

literature [ 3.17, 3.18]. Reference [ 3.18] comments on this state of 

uncertainty. Indeed, based on observations that some workers (for 

example, Date [ 3.19]) assume all the plastic mechanical work to be 
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adiabatically converted into heat energy while others assume plastic 

deformation to be isothermal, it may be concluded that this factor 

practically ranges from 0% to 100%! The situation is, therefore, even 

more serious than apparent. 

This is why the author believes that the ability to quantify 

the thermoinelastic portion of the free energy is significant, 

especially as it has been achieved on a physical basis in this thesis. 

This is because the need to try to guess a priori the relative 

magnitudes of to P is eliminated. Furthermore, in a systematic 

application of the principle of conservation of energy, the question of 

how much of the inelastic mechanical work is converted into heat energy 

takes care of itself. We like to emphasize that the principle of 

conservation of energy is applicable to inelastic deformation processes 

even though they are highly irreversible. From the formulation 

presented, it is easy to see that the fraction of the stored energy is 

indeed a variable that depends on the thermodynamic state of the 

deformation process. If this fraction is denoted by W, then 

U) 

or 

e * +(O+T )11 
IRR - IRR R IRR 
W W 
p p. 

+ T R ) P' 

W 
P 

where W p is the plastic work defined as: 

(P 

p 
W = Ja(E 0, Z, P)dP. 

, 

(3.49a) 

(3.49b) 

(3.49c) 
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From the above, it is clearly seen that 

= o(E, 8, Z, P). (3.49d) 

For a material whose stress-strain-temperature relation in the 

thermoelastic range is of the form 

= A11 + {A(8) + 2i(0)]E -{ 3X(0) + 2ji(8)]a(8)O, (3.50) 

where A11 is the reference stress, a(0) is the coefficient of thermal 

expansion, and whose specific heat capacity at a constant state of 

deformation, CD, is of the form 

CD = C1 + C20, (3.51) 

it can be shown that the thermoelastic free energy functional is given 

by 

= - n O+A E+ 1 (X+2T1)E2 (3X+2i)aE8 
R o o 11 2 

+ p(c2TR - C1)(e + TR)ln(l + - P(CT - C1)O - PC (3.52) 

where and Tj are the reference values of the free energy and the 

entropy respectively. Comparing this relation with the expression for 

(equation (3.12b)), it follows that: 

TI e + p(cT - c1) (e + TR)ln(l + 
0 0 

R 

- p(C2TR - C1 ) 0 - pCO, 

A1 (o) = A11 -[ 3A(0) + 2p(8)]ct(0)O, 

B1 (0) = [A(0) + 2t(0)}. 

(3.53a) 

(3. 53b) 

(3.53c) 

With these, the full nonlinear expression for the free energy functional 

is completely and explicitly defined. So also are the expressions for 

the stress and the entropy functionals. 
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It should be pointed out that the expression for equation 

(3.52), makes no assumptions concerning smallness of the incremental 

temperature ( 0) and as such is valid over a very wide range of 

temperatures. It may be noted in passing that (3.52) reduces to the 

classical free energy expression of linear thermoelasticity if the 

smallness assumption for 0 is invoked, and the specific heat capacity is 

assumed to be temperature-independent. 

3.3 Other Constitutive Response Functionals  

Three other constitutive response functionals remain to be 

characterized in the model, namely: 

q = q(E, 0, g, Z, P), (3.54) 

= F(E, 0, g, Z, P), (3.55) 

P = G(E, 0) g, Z, P). (3.56) 

A systematic way of finding explicit representations for the functionals 

q, F, and G would be to adopt the same procedure that was employed for 

the free energy functional above. This would again call for a barrage 

of experiments to determine the resulting material properties or, worse 

still, it might even be impossible to think of appropriate experiments 

in some cases. Fortunately, however, it is possible to utilize 

available experimentally substantiated relations insofar as such 

relations do not conflict with the constitutive model developed in this 

work. 

The relation ( 3.54) is concerned about the nature of the heat 

flow law. Since it is generally agreed that heat flow is not' influenced 

by the process of plastic deformation(or, for that matter, any kind of 

deformation), it is assumed that the heat conduction is governed by the 
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modified form of the Fourier law of heat conduction. This modified law, 

usually referred to as the Maxwell-Cattaneo relation, is of the form: 

= k 33 X0 
0 at (3.57) 

where k is the coefficient of thermal conductivity and t0 is the 

so-called THERMAL RELAXATION TIME incorporated to allow second-sound 

effects. This heat flow law has been used for thermoelastic wave 

propagation studies by Lord and Shulman [ 3.20], Achenbach [ 3.21], 

Norwood and Warren [ 3.22], Sherief and Dhaliwal [ 3.23], and many others. 

For the evolution functions (F and G) it is assumed that the 

temperature gradient (g) is of no practical significance. Many kinds of 

evolution equations for hardening and plastic strain have been proposed 

in the literature. The usual procedure for their determination is to 

curve-fit empirical relations using experimental results. The 

Bodner-Partom model [ 3.11, 3.12] has been very widely applied to the 

analysis of inelastic deformation processes and is the one adopted in 

this work. The expressions are given by: 

z-zO 

Z m(ZA - Z) UP 
- KAZA(  

A 
(3.58) 

2D + 1 Z 2 
= sgn(a)exp{-(T' 2n ' (3.59) 

where ZA, Z0, KA D0, A' m, and n are known material constants. Note 

that Z and P are functions of { E, 0, Z, P} through their dependence on 

the stress, a, which is a function of the same set of arguments. In 

equation (3.58),ZA is the limiting (saturation) value of Z, and in is 

the hardening rate. The negative of the first term is the "dynamic 
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recovery" while the second term corresponds to thermal or "static" 

recovery of hardening. The inclusion of thermal recovery of hardening 

is important at high temperatures and enables response characteristics 

such as secondary creep to be properly predicted. The parameter n in 

equation (3.59) controls strain rate sensitivity and also influences the 

overall level of the flow stress. 

It should be noted that no yield criterion is involved in the 

development presented in this work. It is assumed that both 

thermoelastic and thermoinelastic deformations are present at any state 

of the thermodynamic process. This eliminates the need to specify 

loading and unloading conditions so that the same equations may be 

directly applied for all loading and unloading histories. Thus, this 

development may be considered to belong to the class of the endochronic 

theories of plasticity. 

3.4 A Proposal for Generalization of the Procedure for the Explicit  

Characterization of the Free Energy, Stress, and Entropy  

Functionals  

It is reasonable to expect that the experimental finding: 

= Kcr2 (3.60) 

is not valid for every metal. However, it will be desirable to be able 

to apply such a systematic procedure as applied above to the explicit 

characterization of the inelastic thermomechanical behavior of metals 

and metallic alloys even under multidimensional stress states. In 

particular, the systematic determination of the inelastic portion of the 

free energy functional is very vital. 

For the most general case, let the thermodynamic state 
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variables be made up of the set 

TSV = {CE T, £' z1, zD CP} (3.61) 

In ( 3.61), C is a measure of the total deformation; for example, it may 

be the right Cauchy-Green strain tensor defined as 

C = FTF, (3.62) 

where F is the deformation gradient, and it is assumed that this total 

deformation measure can be suitably decomposed into thermoelastic ( CE) 

and thermoinelastic parts (Cr). The quantities Z1 and Z represent, 

respectively, the isotropic hardening and the directional (that is 

anisotropic or kinematic) hardening. Thus, the set {C , T, g} 

represents the external variables while the set { z', zD , CP} represent 

the internal state variables. 

Application of the thermodynamic formalism to constitutive 

modelling as shown in Chapter 2 leads to the following: 

= ;(Cl, e, z1, zD, cr), (3.62a) 

where 

Cr = , (3.62b) 
ac 

= - (3.62c) 

q= q(CE 0, g, Z1, D Ci'), (3.62d) 

= F(CE 0, g, Z1, D CP) (3.62e) 

= 'D' g, Z', zD cP) (3.62f) 

iL I + .L - - D 1j) cP  1  q g 0, (3.62g) 
(0 + TR) 

g = VO, (3.62h) 
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and 

0 = T - TR. 

Now, the free energy Ii.' is given by 

= (CE, o, z1, zD, Cr). 

(3.62i) 

(3.63) 

Let there be N invariants: I, I, I3•• "N' associated with 

the set of thermodynamic state variables 

= {CE' 0, z1, zD C (3.64) 

Then in a manner similar to the presentation in Section 3.2, a 

polynomial representation of the free energy functional may be written 

as: 

= + f1(0)I 1 + f2(0)I2 + f3 (0)I3 + ... + f N ° 'N (3.65) 

Out of the N invariants, let there byM invariants associated with 

purely thermoelastic deformation variables, so that 

I. = I(CE 0) , j = 1,2,3, ... ,M. 

Then equation (3.65) may be expressed as 

(3.66) 

= + f1(0)I 1 + f2 (0)I2 + ••• + f M M IM 

+ fM+l8'M+l + fM-l-2°M+2 + ••• + f(0)I. (3.67) 

Thus, tlie expression for ijf may again be partitioned into thermoelastic 

(or recoverable) and thermoinelastic (or irrecoverable) portions in the 

form 

(3.68a) 

where 

= G0 + f1 (0)I1 + f2 (0)I2 + ... + M ° 'M' (3.68b) 

jI= fM+1°'M+1 + fM+2°M+2 + + N ° 'N • (3.68c) 

The quantity can always be readily determined from a 

knowledge of the thermoelastic stress-strain--temperature relation 

(linear or nonlinear) and the temperature dependence of the specific 
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heat at constant state.of deformation. Thus, the function and the 

material properties f1(0), f2(6), ' N in equation (3.68b) can be 

determined. The quantity represents the irrecoverable portion of the 

free energy function. The stored energy of cold work, eIRR, which can 

be measured directly is related to through the expression 

eIRR* I _( O +TR) Do _. (3.69) 

Since is a function of the invariants 'M+l' 'M+2' 'N' it follows 

that the right hand side of equation (3.69) is a function of the same 

arguments. Similarly, e1RR  must depend on those arguments. Thus, 

equation (3.69) may be expressed as 

L1+1' 1M+2' ' IN) = (IM+1 , 'M+2' "' (3.70) 

where 

eIRR = (1M+1, 'M+2' 'Ny' (3.71a) 

and 

-(0 + TR) = +i' 'M+2' ' (3. 71b) 

* I 
The form of 41 is explicitly known from the expression for 4) 

equation (3.68c). Several experiments are now to be performed to 

measure the stored energy of cold work and determine the nature of the 

dependence of eIRR on the measurable deformation variables and 

temperature. From this, the dependence of eIRR on the invariants I M+11 

'N' or at least a subset of these invariants, can be 

expressed as a polynomial representation in the same form as the right 

hand side of equation (3.71b), and the material coefficients obtained in 

the polynomial. curve-fitting process. With this, the left hand side of 

* 
(3.70), that is 41 L' is now fully and explicitly known. On invoking the 
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* * 
smoothness properties of the functions and R (as a consequence of 

the assumed smoothness of the constitutive response functionals 

involved), the unknown material properties f M+1 ° ' M+2 ° ' ' 

are readily obtained. Hence, the free energy functional has been fully 

and explicitly ' characterized to incorporate the stored energy of cold 

work phenomenon. This leads to explicit expressions of the stress and 

entropy functionals on the application of the thermodynamic results 

(3.62b) and (3.62c). 

For the heat flow law and the evolution equations for the 

internal state variables, the same treatment given in Section 3.3 is 

adequate. 
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CHAPTER 4  

PROBLEM FORMULATION 

4.1 Lagrangian Kinematic Description of the Problem 

Consider the very long rod or bar whose geometry is shown in 

Figure 4.1 below. 

/ 

/ 

x TO co 

Figure 4.1 Schematic illustration of a semi-infinite rod 

4 

As shown above, X describes the position of a material particle at time 

t. The motion of a typical particle is described by 

x = X(X,t), (4.1) 

where x specifies the present position. Thus, the displacement of the 

particle is given by 

U = u(X,t), (4.2) 

If geometrically linear strains are assumed, then the strain (which 

measures the observed deformation) is given by 

au (4.3) 
ax 

The particle velocity, defined as the time rate of change of the 

displacement is 

(4.4) 

If the displacement function is assumed to be well behaved, 
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then 

2 
•_a 

or 

(4.5a) 

(4.5b) 

Equation (4.5b) is the kinematic compatibility condition. 

The formal derivation of the local forms of the fundamental 

balance laws may be found in any classical text of continuum mechanics 

(for example, the book by Eringen [ 4.1]) and as such is not repeated 

here. 

The law of conservation of mass is identically satisfied if we 

assume infinitesimal deformation so that the density remains essentially 

constant throughout the deformation process. 

The law of balance of linear momentum gives the equation of 

motion as: 

P - f (4.6) 

where f is the body force per unit volume. 

The law of balance of moment of momentum is identically 

satisfied since symmetry of the stress tensor is automatically 

guaranteed with only one component of stress. 

The principle of conservation of energy states that the time 

rate of change of the kinetic plus internal energy is equa1to the sum 

of the rate of work of the external forces plus all other energies that 

enter or leave the body per unit time. It is to be emphasized once 

again that this principle is valid for every process including 
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dissipative ones. The local form for a general thermomechanical process 

was given as equation (2.15), namely: 

LTat at at a ax (4.7a) 

With the developments in Chapter 2, this equation assumes the reduced 

form: 

ax 
(4.7b) 

The Clausius-Duhem inequality, which is the mathematical form 

of the Second Law adopted in this work, may be recalled as: 

T ≥ y + - g, at DX T 

while the reduced form gives the dissipation inequality: 

(4.8a) 

(4. 8b) 

4.2 Summary of Fundamental Equations  

The equations governing the propagation of uniaxial coupled 

thermomechanical waves in inelastic solids will now be assembled. These 

equations consist of the fundamental balance laws just given and the 

constitutive equations developed in Chapter 2 and Chapter 3. 

Thus, the system of fundamental equations required is given by 

the following: 

ac - av 
at - ax 

E: E + P, 

(4.9a) 

(4.9b) 

(4.9c) 
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I) = '1)0 - O + P(C2TR - C1) ( 0 + TR)ln(l + 

- P(C2TR - C1)0 - -pC202 + A1(0)E + B1 (0)E2 + A2 (0)Z + A3 (0)p 

+ 32 (0)z2 + B3 (0)P2 + B4 (0)EZ + B5 (0)EP + B6 (0)ZP, 

cr A1(0) + 2B1(0)E + B4 (0)Z + B5 (0)P, 

= - P(C2T - C1)ln(1 + f) + pC20 + AM 

(4.9d) 

(4.9e) 

(4.9f) 

+ B(0)E2 + A(0)Z + A(0)P + B(0)z 2 + B(0)p2 + B(0)EZ 

+ B(0)EP + B(0)ZP], (4.9g) 

= k Laxe 
0 at 

= m(Z- Z) - KAY Z  

2D n+1 Z 2 
P = sgn(Y)exp[- (-)(..) 

(4.9h) 

(4.9i) 

(4. 9j) 

Note that overdots in equations (4.9) denote partial differentiation 

with respect to time and the material functions A1(0), Bi(0), A2(0), 

A3 (0), B2 (0), B3 (0), B4 (0), B5 (0), and B6 (0) have been explicitly 

defined in Chapter 3. 

The above is a system of ten simultaneous algebraic and 

partial differential equations in the ten unknowns a, v, c, 4i, 0, ii, q, 

Z, E, and P and so it forms a determinate system. Thus, in principle 

the system (4.9) can be solved for the unknowns if the auxiliary 
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conditions are appropriately prescribed. The boundary and initial 

conditions must be prescribed in such a way that the mathematical model 

is well-posed. This will ensure the uniqueness of the resultant wave 

motion. 

Before we proceed further, it is desirable to reduce the 

system to one of partial differential equations alone. 

From equation (4.9f), the thermoelastic strain is readily 

determined as 

where 

Thus, 

E = D1(0) + + D3 (0)Z + D4 (e)p, 

A1(0) 

D1(0) = - 2B 1(e) 

D2(e) = 1  2B 1 (0) 

B4 (e) 

D3(0) = 2B 1(0) 

Bç(0) 

D4 (0) 2B 1(0) 

(4.10) 

(4. ha) 

(4. hib) 

(4.11c) 

(4. lid) 

E = E(, 0, z, P). (4.12) 

Since II.' = t'(E, 0, Z, F), equation (4.10) may be used to 

eliminate E from equation (4.9e) so that 

= j*( Q ZIP). 

Similarly,' the entropy can be expressed as 

(4.13) 

(4.14) 

The total strain, c, may also be eliminated since the application of 
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(4.10) to ( 4.9b) leads to 

= E + P = E(a, 0, Z, P). (4.15) 

Thus, with the above, the dependent variables E, c, n, and 

have been eliminated. There now remains a system of six partial 

differential equations in the six unknowns v, ci, 0, q, Z, and P which 

are as follows: 

D2 (0) -- + D5 (, 0, Z, P) + D(0) az 

+ D v 6 Tt (0) P - - = 0, 

0, Z, P) 30 + J2 (, 0, Z, P) a t 

(4. 16a) 

(4.16b) 

+ i3 ( a, 0, Z, P) LZ + J4(, 0, Z, P) (4.16c) 

aq  .T •- 0 k - = - q , (4.16d) 
ax 

az 
- - F2 (i, Z) , (4.16e) 

ap - 

- G1 (a, Z) . (4.16f) 

1n  the above, 

(0) DTI (4.17a) = (0 + TR)D2 E 

= (0 + TR) { [Di(0) + D(0)c + D(0)Z + D(0)P} + , (4.17b) 

--- = (0 + TR ) [D3(0) + + (4.17c) 



= (0 + TR){D4(0) aE + a 

D5 = D(0) + D(0)cr + D(0)Z + D(0)P 

D6 - 1 + D4 (0) 
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(4. 17d) 

(4. 17e) 

(4.17f) 

In ( 4.17), the quantities an/aE, n/a0, n/Z, n/P, and 3/P 

are expressed in terms of { a, 0, Z, P}. Of course, the functions F2 and 

are given by 

Z - Z0 A 

F2 - m(ZA - Z)ci KAY   
A 

2D 2n 
n+1 

= 7-•- sgn(ci)exp[-(. --1() 1. 

(4.18) 

(4.19) 

Examination of equations (4.16a)-(4.16f) reveals that the 

system is highly nonlinear and that the thermal and mechanical variables 

are fully coupled. The degree of complexity is especially appreciated 

on examination of the functions J1, J2, J3, and J4 which in turn are 

dependent on the nonlinear temperature-dependent material properties 

given in the last chapter. Thus, it is quite evident that no 

closed-form or analytic solution can be found for the above system of 

equations. A numerical approach must be applied. However, the system 

must be analyzed to examine the nature of the partial differential 

equations so that appropriate numerical techniques can be applied. 

4.3 Mathematical .Analysis of the System of Equations  

Equations (4.16) form a system of six simultaneous first-order 
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quasilinear partial differential equations in the six unknowns v, a, 0, 

q, Z, P. 

Let the vector U be defined as 

U = [v a 0 q Z ] T, (4.20) 

where the superscript ttTt denotes transpose. Then the above system may 

be expressed in the vector form 

AU + BU = C , (4.21) 
-ot o..X -o 

Where: 

A= 
-o 

B= 
- 0 

and 

au 

T 
= = Evt at 0 qt Z 1' 

au 

(4. 22a) 

Ux[v a 0 q Z (4.22b) 
- x x x x X, x 

P 000 

0 D D5 0 

0 0 

D3 D6 

0 1 1 1 0 J3 J4 

0 0 0 T 0 0 

0 0 0 0 1 0 

_0 0 0 0 0 

0 -1 0 0 0 0 

-1 0 0 0 0 0 

0 0 0 -1 0 0 
31 

0 0 -k 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 Q 

C 0 = [f 0 y -q -F G 11 
- 

(4.22c) 

(4. 22d) 

(4.22e) 
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Since the matrix A o is non-singular with its determinant given 
— 

by 

det 

where 

= D2J2 - J1D5, 

its inverse, A', may be computed as: 

AU) -  1  
-o - pT0G2 

T 0 G 2 0 

(4. 23a) 

(4. 23b) 

0 0 0 0 

o pT 0J2 -p-r0D5 0 -PT 0G5 pT0G4 

O p'r0D2 0 -PT 0G7 pT 0G6 

O 0 O pG2 0 0 

0 0 

0 0 

0 0 pT 0G2 0 

0 0 0 

On premultiplying equation (4.21) by A7 1, we obtain the equation: 

where 

+ A () . LJ  + B () = 0 

o o o 0 0 
P 

J2G3 0 0 D 5 G 3 0 0 

iG3 0 0 -D2G3 0 0 

A(U) = 

B(U) = [- 1 f 

0 0 0 0 0 

O 0 0 O 0 0 

O 0 0 0 0 0 

pT 0G2 

(4.23c) 

(4.24) 

(4.25a) 

-G3G8 -G3G9 - F2 _G,} T , (4.25b) 
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and the functions G3, G4, G5, G6, G7, G8, and G9 are defined as 

03 = , (4.25c) 
2 

G4 = D5J4 - D6J2, (4.25d) 

= j23 - J3D5, (4.25e) 

G6 = D6J1 - D2J4, (4.25f) 

07 = D2J3 - J1D3, (4.25g) 

= G1G + F 2 G 5 - yD5, (4.25h) 

G9 = G1G6 + F207 + yD2. (4.25i) 

It is easy to see from these definitions that 

G. = G(a, 0, Z, P), I = 2, 3, .., 9. (4.26) 

Equation (4.24) now represents the system of equations in a 

form that standard methods may be applied to its classification. 

The characteristic equation corresponding to the system (4.24) 

is 

det (A - XI) = 0, (4.27) 

in which the X's are the eigenvalues and I is the 6 x 6 identity matrix. 

Now, the matrix A - XI is given by: 

A - XI = 

o 0 0 0 
P 

J203 -X 0 D503 0 0 

JiG3 0 -X -D203 0 0 

0 0 -k/t0 -X 0 0 

0 0 

0 0 

o 0 -A 0 

o 0 0 -X 

Substituting equation (4.28) into equation (4.27) gives: 

X2{X2[X2 - - D G ] - —[J2(X2 - D 0 ) + k— DJG]} = 0. 
T0 2 3 23 T 5 1 3 

(4.28) 

(4.29) 
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Thus, the six eigenvalues A., i = 1, 2, ..., 6, are given by: 

Al = 0 

X2 0, 

in which 

and 

A3 = +{M[1 + I (1-R) ]}½ 

= -{[ 1 + / (1-R) ]}½ 

A5,= +{[ i - I (1-R) ]}½ 

A6 = {M[1 - / (l-R) ]}½ 31 

* 
M = M (, 0, Z, P) = 1 G3(- D + .L 

t0 2 p 

(4. 30a) 

(4.30b) 

(4.30c) 

(4.30d) 

(4.30e) 

(4. 30f) 

(4.31a) 

*  R = R (a, 0, z, P) = kG3 (4.31b) 

PT0M2 

With (4.30) and (4.31), therefore, it is easy to see that the 

eigenvalues, in general, depend on U, that is, 

= A(ci, 0, Z, P). (4.32) 

It can also be seen that there are two coincident eigenvalues: X and 

A2. For the eigenvalues A3, A4, A5, and A6 to be real, the following 

conditions must be simultaneously satisfied: 

(i R(a, 0, Z, P) < 1 , (4.33a) 

(ii). M(a, 0, Z, P) > 0 , (4.33b) 

If these conditions are satisfied then all the six eigenvalues 
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are real and so the system (4.24) is classified as hyperbolic. If any 

of the two conditions is not satisfied then four of the eigenvalues (A3, 

A4, A5, and A6) are complex quantities and the system will be said to be 

ultra-hyperbolic [ 4.2]. Thus, the conditions (4.33a) and ( 4.33b) are 

the HYPERBOLICITY CONDITIONS. It is intuitively conjectured that these 

conditions are satisfied for the thermodynamic process of wave 

propagation-in inelastic solids. 

With this classification, the eigenvalues are the 

characteristic speeds which may not coincide with the velocities of 

propagation of the waves because of the nonlinear nature of the problem. 

Thus 

A1 0 (4.34a) 

= 0 (4.34b) 

A3 = V3, (4.34c) 

A4 = -V3, (4.34d) 

A5 = V5, (4.34e) 

A6 = -V5, (4.34f) 

in which V3 and V5 are the characteristic speeds in the positive X 

direction. Even though these speeds may .not coincide with the shock 

wave speeds, they give indication of the presence of two waves which is 

consistent with the physics of the problem. They also give indication 

of the coupled nature since both V3 and V5 are functions of {, 0, Z, P} 

which consist of both thermal and mechanical deformation variables. 

In the absence of second-sound effects, the thermal relaxation 

time assumes a zero value. It can be shown that, under this situation, 

on neglecting heat conduction, system (4.24) is still hyperbolic but 

with only one positive wave speed given by: 
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PD 2 (0) (4.35) 

This is the velocity of propagation of thermoelastic waves. This 

finding is consistent with experimental results of plastic wave 

experiments which indicate that plastic waves propagate at the elastic 

wave velocity [ 4.3]. A major 

plasticity is its capability 

velocity. It is important, 

attribute of the rate-dependent theory of 

of correctly predicting the plastic wave 

therefore, that the constitutive model 

developed in this work is able to correctly predict this physical 

behavior. 

4.4 Jump Conditions at the Wavefronts  

The system of partial differential equations ( 4.24) govern the 

wave propagation process everywhere in the bar except at the location of 

the points of discontinuity - that is the wavefronts. Conditions valid 

at the wavefronts must be determined separately. 

Achenbach [ 4.4] defines the wavefront as the moving surface 

which separates the disturbed from the undisturbed part of the body. In 

other words, the wavefront is the surface which travels through the 

medium as time t varies continuously, and across which there may exist a 

discontinuity in the primary dependent variables. Computation of 

variables at wavefronts is based on the theory of propagating singular 

surfaces which is well treated in the books by Eringen and Suhubi [ 4.5] 

and Chen [ 4.6]. 

Consider a regular surface S(t) moving in a material body B 

which divides this body into two subregions B+ and B and forms a common 

boundary between them as shown in Figure 4.2 below. The unit normal N 
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S Ct) 

Figure 4.,2 A body containing a moving surface of discontinuity. 

of the surface is directed toward the region B+. Let X,t) be a 

scalar-valued, vector-valued or tensor-valued function such that cf,(X,t) 

is continuous within each of the regions B+ and B, and let X,t) have 

definite limits 4 and as X approaches a point on the surface S(t) 

from paths entirely within the regions B+ and B, respectively. The 

surface S(t) is said to be singular with respect to X,t) if and only 
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if 

[4] E - ;1- 0. (4.36) 

The quantity [] is referred to as the jump in 4 across the singular 

surface S(t). Further, the singular surface S(t) is said to be a wave 

if its speed of propagation is non-vanishing. 

There are jump conditions (usually referred to a& the 

Rankine-Hugoniot conditions) corresponding to each of the ten equations 

given in equations (4.9a) - (4.9j). These equations are obtained in 

what follows. 

For the partial differential equations, a theorem due to 

Kosinski [ 4.7] is applied. Accprding to the theorem, for a partial 

differential equation of the form: 

au 
Tt + Tx F(U) + B(U) = 0 , (4.37) 

the corresponding jump condition across a wavefront X = S(t) is given by 

V [U] = [F] , (4.38) 

where V is the velocity of the moving wavefront. 

In order to directly apply equation (4.38), the compatibility 

equation (4.9a), the momentum equation. (4.9c), the energy equation 

the heat conduction equation (4.9h), and the evolution equations 

for Z and P equations (4.91) and (4.9j) are expressed in the form: 

c ay. 
t x_ , 

h( pv) - - f 0 ax 

(4.39a) 

(4.39b) 

+ ( 0 + TR)n + pv2} (av + q) - (vf + y) = 0 , (4.39c) 



(T 0 q) - ax (kO) + q = 0 

ap 
at G 0 1 . 

Applying Kosinski's theorem to ( 4.39) gives: 

[vi = - V[] 

[a] =.- pV[v] 

[av] + [ q] = - V [ + (0 + T )n + !pv2] 
w R 2 

[q] - 

It 

TV 
Ow 

[Z] = 0 

[P] = 0 

81. 

(4.39d) 

(4.39e) 

(4.39f) 

(4.40a) 

(4.40b) 

(4.40c) 

(4.40d) 

(4.40e) 

(4.40f) 

It is interesting to note that the jumps in the internal state 

variables Z and P vanish, which implies that Z and P are continuous 

across the wavefronts. This is usually the case for internal state 

variables whose evolution laws are of the rate form; similar results 

were obtained by Kosinski [4.7] and Bailey and Chen [ 4.8]. Yet,, from 

physical considerations, it is expected that if a wave causes plastic 

deformation, a change 

experienced immediately 

a flux (or divergence) 

of the plastic state of the body should be 

after the passage of the wave. The inclusion of 

term to account for the spatial variation of an 

ISV will give non-vanishing values of the jumps of the ISVs thereby 

removing this anomaly. In this connection, it is noted that Aifantis 

[4.9, 4.101 has emphasized the importance of -allowing the ISVs to be 

governed by what he referred to as "complete balance laws" in which both 
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the rate and divergence terms are included. The only problem with this 

approach is that these complete balance laws are not generally 

compatible with the Clausius-Duhem inequality and he proposed a 

generalization of the energy equation to include the work done by the 

gradients of thermodynamic variables or internal variables [ 4.10]. In 

the light of the seeming anomaly discussed above, it appears that the 

propositions of Aifantis deserve serious considerations by all 

researchers involved in the application of the theory of internal state 

variables to constitutive modelling. 

For the four algebraic' equations, the associated jump 

conditions are now determined. First, the assumption is made that since 

the evolution equations employed here give zero jumps in. Z and P, the 

jumps in the thermoinelastic material' properties are approximately zero. 

This is also true if the variations of these material properties are 

slowly varying functions of temperature. Thus, it is assumed that: 

[A 2(6)10 , (4.41a) 

[A3 (0)] 0 , (4.41b) 

[B 2(6)10 , (4.41c) 

(B 3 (0)] 0 , (4.41d) 

(B4 ( 6)] 0 , (4.41e) 

[B5 (0)] 0 , (4.41f) 

0 . (4.41g) 

With these, the jump conditions associated with the algebraic relations 

(4.9b), (4.9e), (4.9f), and (4.9g) are given as: 

[c] = [El , (4.42a) 

T + 

n0 [O] + p(C2TR - C1)ln( R + {[ OJ + 0+ + TR} 

TR+O 
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+ P(C2TR - C1)[0]{ln(1 + 0+ - 1 - C2   o+} 
2(C2TR - C1)t01 (C2TR - C1) 

+ [A1(0)E] + [B1(0)E2] , (4.42b) 

[a] = [A1(0)] + 2[B1(0)E} , (4.42c) 

TR + 
[n] = pC2[ 0] - P(C2TR - C1)ln(  [A(0)E] T [B(0)E2] . (4.42d) 

TR +  

In equations (4.42), [A1(0)] and [B 1(0)] are given by: 

[A1(0)] = (3XR + 2 RR °1 (4.43a) 

[B 1(0)] = - B12 [0] , (4.43b) 

in which it has been assumed that the jumps in X(e), i.i(0) and a(6). are 

negligible. These three thermoelastic properties have been defined 

already in Chapter 3. 

It has been said earlier that the presence of two positive 

characteristic speeds suggest the existence of two wavefronts. 

Therefore, any discontinuity that exists will be split -between the two 

wavefronts. 

Let G denote the lagging wavefront and L the leading wavefront 

as shown in Figure (4.3) below. 

The two wavefronts are propagating in the positve X direction with 

velocities V and V  respectively. In Figure (4.3), region I is fully 

disturbed in the sense that both waves have passed through the region, 

region II is partially disturbed because only the leading wave has 

traversed the region, and region III is totally undisturbed since none 
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UNDISTURBED 

lEE 

Figure 4.3 Illustration of the locations of the leading (L) and 
lagging (G) wavefronts in a bar. 

of the waves has reached that region. In the (X, t) plane, therefore, 

the solution domain of interest is as shown in Figure (4.4). 

The regions are identified as I, II, and III which correspond to the 

same regions in Figure (4.3). 

First, the following notations are introduced. 

(i) f denotes the value of a quantity f evaluated at a point 

immediately behind the lagging wavefront, 

(ii) fG+ denotes the value of a quantity f evaluated at a point 

immediately ahead of the lagging wavefront. 

Si L- i mmediately f denotes the value of f  behind L and f L+ 

value immediately ahead of L. 

Also, 

- fG- - 

If 1L fL- - 

G+ 
f 

fL+ 

is the 

(4.44a) 

(4. 44b) 

Since for the investigations of interest in this thesis the body is 

L+ 
assumed to be initially undisturbed, f = 0, and so practically, - 
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x 

Figure 4.4 Illustration of the locations of the leading (L) and 
lagging (G) wavefronts in the.X-t space. 
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fL-
(4.44c) 

Also needed is a formula for evaluating the jumps of sums (or products) 

in terms of the jump of each of the summands (or factors). The 

following relations are useful in simplifying the jump relations (4.40) 

and ( 4.42) above. 

If + g] = [f] + [g] , (4.45a) 

[fg] = C{g] + [f}g , (4.45b) 

[fg] = [f][g} + f[g] + g[f] . (445c) 

The proofs of these relations are easily obtained by invoking the 

definition of the jump in a quantity given earlier, equation (4.36). 

On using the definitions (4.44) and the relations (4.45) in 

the jump relations, the following system of equations are obtained: 

[a] = [ a]L + [ a]G , (. 46a) 

[8] = + I (4.46b) 

[v] = EVI L + [v]G 

[q] = [I]L + 

[E] = [EIL + [EIG 

[i] = EVI L + , 

=L + [ riI , 

[alL = - PVL [v] L 

[aiG = - pV[v] 

EVI L = - VL[E]L 

(4.46c) 

(4.46d) 

(4.46e) 

(4.46f) 

(4.46g) 

(4.46h) 

(4.46i) 

(4.46j) 



[vIG = — VG [E] G 
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(4.46k) 

[a]L[VIL + = VL [Pl L — TRVL [Ti} L - VL [OI L [I1I L — PVL ([vl L) (4.461) 

ICIGIVIG + [ IL[VIG + [v] L [l G + [] = 

- VG[l G - TRVG[n]G - VG[O]G[TI]G - VG[OIL[nlG 

- V GIn] L[O]G - PVG([VlG) - PV GIV] L IV] G 

lelL = - r1v[q] , 

10 G = - T1V[q] 

- - cX([e]L) - R [O] L [d] L + 

['PIG = - Cx([O]GY - 2CX[OIL[O]G - R [e] G [El G 

(4.46m) 

(4.46n) 

(4.46o) 

(4.46p) 

- R[OIL[E]G - R [OI G [El L , (4.46q) 

= - + Yl[E]L , (4.46r) 

[] =- [0] + y G R G l [El G , (4.46s) 

= C[O] L + R[E]L + Y2([E]L)2 (4.46t) 

[n] = c [ 0] + [El + Y [E] [E] - - ! ([ E]')2 
G y G R G 2 L G 22 G 

(4.46u) 
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In equations (4.46), the material constants involved are defined thus: 

(4.47a) 

PC 1 

2T R 
Cx = 

= OX  + 

Y1 = 2B 1 

= 2B 12 

(4.47b) 

(4.47c) 

(4.47d) 

(4.47e) 

(4.47f) 

It is to be noted that the first seven equations in (4.46) are 

obtained by virtue of the fact that a physical discontinuity is split 

between the two wavefronts G and L. 

The system of twenty-one simultaneous equations (4.46) contain 

the twenty-three unknown: 

[a], ' L' la]G$ ' 18'L' [0] 

[v1 ' [v]L'[v]G, ( q] , [q ]G 

' 1'1'1 G' ' 1L' 1G ' 

[E], [ E] LP [E ]G' VL, and 

Thus, in order for the system of algebraic equations to be solvable, two 

of these twenty-three quantities must be given. It is interesting that 

this immediately reminds one of the necessity to prescribe appropriate 

auxiliary conditions for the system. In this case, for example, [ a] and 

[0] could be known. This corresponds to prescribing the boundary 

conditions: 
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o(O,t) = c0f CF (t) , (4.48a) 

e(O,t) = 00f0 (t) , (4.48b) 

which are time-dependent stress and temperature impacts that may be 

specified for the solution of the system of six simultaneous partial 

differential equations (4.24). Therefore, the jump analysis may also be 

used to determine the number of boundary conditions required to fully 

define a system of quasilinear hyperbolic equations. 

4.5 Formal Statement of the Initial-Boundary-Value-Problem 

The initial-boundary-value-problem to be solved may now be 

formally defined as follows: 

Partial Differential Equations: 

av 1 a 1 
(4.49a) at P ax P 

Tt - j2 O Z P)G3 (ci, 8, Z, P) + D5 (, 9, Z, P)G3 (ci, 0, Z, 
ax ax 

- G3(, 9, Z, P)0 8 (a, 0, Z, P) = 0 , 

H + j1 (y, 9, z, P)G3(, 8, Z, P) - D2 (0)G3 (a, 0, Z, ax 

(4. 49b) 

- G3 (cr, 0, z, P)G9 (a, 0, Z, P) = 0 , (4.49c) 

=0( 4.49d) at T0 aX T0 

a F2 (a, Z) = 0 (4.49e) 
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DP 
- G1 (y, Z) = P 

Initial Conditions: 

Boundary Conditions: 

(4.49f) 

v  0) = vi(X) 

a(X, 0) = cc.(X) 

0(X, 0) = 0.(X) 

q(X, 0) = q (X) , X > 0 , (4.50) 

Z(x, 0) = Z.(x) 

P(X, 0) P..(X) 

Case (i): a(0, t) = a 0 (t) 

0(0, t) = 00 (t) 
,t > 0 , (4.51a) 

Case (ii): v(0, t) = v0 (t) 

t > 0 (4.51b) 
0(0, t) = 00 (t) 

Thus, the system of partial differential equations (4.49) is 

,  

to be solved subject to the auxiliary conditions prescribed in equations 

(4.50) and (4.51). The solution will give the values of 

U(X,t) = {v(X,t) a(X,t) 0(X,t) q(X,t) Z(X,t) P(X,t)IT. (4.52) 



91. 

or 

or 

p(E(X,t), O(X,t), Z(X,t), P(X,t)) , (4.55a) 

= e(x,t), Z(X,t), P(X,t)) , (4.55b) 

TI = (E(X,t), O(X,t), Z(X,t), P(X,t)) , (4.56a) 

Ti = fl ((x) o(x,t), Z(X,t), P(X,t)) . (4.56b) 

With these, all the ten dependent variables are now known at any 

location X and any time t. 

The system of partial differential equations that govern the 

motion of the waves in smooth regions and the jump conditions which 

describe the relationships between discontinuities in the dependent 

variables have been fully defined. Both systems are highly nonlinear 

and coupled and can only be solved through numerical, procedures. 
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CHAPTER 5 

DEVELOPMENT OF COMPUTATIONAL ALGORITHMS 

5.1 Introduction  

The availability of modern advanced computers has made 

possible the solution of scientific and engineering problems of great 

complexity. This has, in turn, spurred a great deal of research in 

numerical analysis to effectively utilize the capabilities of 

present-day computers. In fact, developments are now reaching the stage 

where computing machines are being specifically designed for solving 

some particular problems. 

Hyperbolic equations represent the most challenging class of 

partial differential equations (PDEs) to solve using standard numerical 

procedures. Whereas there are available many general-purpose 

computational algorithms for solving elliptic and parabolic PDEs the 

same cannot be said of hyperbolic equations. Yet such equations 

describe a variety of important physical phenomena such as neutron 

transport, wave mechanics, gas dynamics and vibrations. One of the 

important factors that makes the numerical solution of hyperbolic PDEs 

particularly difficult is the existence or development of strong 

discontinuities or shocks especially for nonlinear problems. It is 

known that in the case of nonlinear problems, shocks may develop even 

when the initial data are smooth. 

The literature on the numerical solution of nonlinear 

hyperbolic PDEs is quite extensive. Standard procedures can be found in 

the texts by Ames [ 5.1], Mitchell and Griffiths [5.2], Leon and Lapidus 

[5.3], and Anderson et al. [5.4]. Most applications of available 
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numerical procedures have been in the area of fluid dynamics - 

especially gas dynamics. This is because equations which govern all 

unsteady flow and steady supersonic flow are hyperbolic in nature. The 

development of algorithms for numerically simulating these flows forms a 

very important branch of computational fluid dynamics (CFD) which is now 

a discipline in its own right. Applications in the area of solid 

mechanics, howeve, are comparatively very few since it is only in wave 

propagation and vibration problems that such equations arise. 

The numerical methods that are ued to analyze hyperbolic PDEs 

may be broadly classified into finite difference and finite element 

methods. Finite difference methods are discrete techniques in which the 

domain of interest is represented by a set of points or nodes and 

information between these points is commonly obtained using Taylor 

series expansions [ 5.3]. The finite element method employs piecewise 

continuous polynomials to interpolate between nodal points. Each of 

these techniques may lead to the phenomena of numerical dissipation and 

dispersion which create a lot of difficulties in formulating a numerical 

scheme. These problems have been well addressed (especially in the case 

of finite differences) for the so-called systems of hyperbolic 

conservation laws but a lot of work remains to be done for 

nonconservative systems such as the problem being considered in the 

present work. 

There are considerable difficulties inolved in the treatment 

of hyperbolic systems of PDEs by the finite element method especially in 

the presence of jump discontinuities. These difficulties require the 

development of new finite element techniques which differ from the 

standard ones to achieve satisfactory convergence properties. Efforts 
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in this direction are still very much in the developmental stage. 

The application of the finite difference method may proceed 

via two main approaches. First, the system of PDEs may be directly 

discretized to obtain the appropriate difference equations which are 

then solved to obtain the values of the primary unknowns at the nodes. 

In the other approach, popularly referred to as the numerical method of 

characteristics, the system of equations is first transformed to a 

system of ordinary differential equations satisfied along the 

characteristic directions and finite differencing is subsequently 

applied. Furthermore, two different techniques are available when 

employing the inethod of characteristics. The first technique solves for 

the unknowns at grid points formed by the intersection of opposite 

families of characteristics. Whereas the grid of characteristics is 

useful in determining some physical features of the solution [ 5.5], 

extensive two-dimension1 interpolation is required to obtain 

information along constant time lines, a giren spatial position, or 

along a particle path [ 5.6]. Thus, this leads to programming 

difficulties. The second technique, usually referred to as the 

"constant-time technique" or "method of fixed time intervals" utilizes a 

computational mesh formed by lines of constant time and distance. 

However, the equations are still integrated along the characteristic 

directions and interpolation is employed to calculate the quantities of 

interest at the feet of the characteristic curves which do not coincide 

with a grid point. Although this latter technique introduces some 

additional errors due to interpolation, it has the advantage of being 

more orderly and manageable for efficient programming and high speed 

computations. 
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In this work, two separate computational algorithms are 

presented. The first is based on the application of the constant-time 

technique of the numerical method of characteristics while the other is 

based on the MacCormack finite difference scheme originally developed by 

MacCormack [ 5.7]. The latter has been widely applied to fluid dynamics 

problems but only a very few applications to problems in solid mechanics 

have been reported. 

5.2 Application of the Numerical Method of Characteristics  

The numerical method of characteristics is regarded as the 

natural technique for solving systems of hyperbolic equations and since 

the vast majority of wave propagation problems are hyperbolic in nature, 

the technique has been the most popular 'one applied to the numerical 

simulation of wave motions. 

In this section, the numerical method of characteristics is 

applied for the development of a computational algorithm for solving the 

system of equations given in the preceding chapter. First, the 

differential equations satisfied along the characteristic directions are 

derived. These equatiois are then numerically integrated along the 

characteristic curves using the constant-time technique. Apart from the 

advantages given in the last section, this technique is considered more 

suitable in this work because of the highly nonlinear nature of the 

system of equations which gives rise to curvilinear characteristics. 

It is to be recalled that the system of partial differential 

equations under consideration is given by: 

3v 1 aa 1 
0 , (5.la) 



-J2G3+D 5 3 G aX — G 3 8 G = 0, 

a  av 
+ J1 G3 

- DG 2 3 ax - G3G9 = 0 

k ae+io 
at T 0 ax T0 

az + F = 0 
at 2 

ap 
0at 1  
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(5. 1b) 

(5.lc) 

(5. 1d) 

(5.le) 

(5. If) 

where all the functions have been defined previously in Chapter 4. In 

the vector form, the equations are represented by: 

Yt + + B(U) = 0 , (5.2) 

where the vector U, the matrix A, and the vector B have also been defined 

in the preceding chapter. 

From the eigenvalues of matrix A determined in the last 

chapter, it follows that the characteristic manifolds in the {x, t, u} 

hyperspace is given by the following: 

Corresponding to dXdt 1 
0 

dX2 
Corresponding to X 2: dt - - 0 

dX 

Corresponding to A3. E2 = V3 (U) 

dx 
Corresponding to A4. dt = V4 (U) 

(5.3a) 

(5. 3b) 

(5.3c) 

(5.3d) 
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dX 
Corresponding to A5. = V5 (U) 

dX 
Corresponding to A6 . = V6 (U) 

(5.3e) 

(5.3f) 

where X, i = 1, 2, . .., 6, are the characteristic curves. 

Note that, as determined before, 

0, Z, P) = - V3(, 0, Z, P) , (5.4a) 

V6 (a, 0, Z, P) = - V5 (ci, 0, Z, P) . (5.4b) 

Thus, two of the characteristic curves are straight lines (vertical in 

the X-t space) and the remaining four are curvilinear because the 

characteristic speeds V3 and V5 are nonlinear functions of the yet 

unknown solution vector, U. - 

For the equation (5.2), the left' eigenvectors are found from 

the relation: 

A (U) = A(U) £(1)(U), (5. 5)' 

1± 
where 9. (1) i (U) denotes the left eigenvector which is also dependent 

on U. From equation (5.5), the following are found to be suitabTh left 

eigenvectors: 

0 0 0 1 0] 

0 0 0 0 1] 

, 

, 

(5.6a) 

(5. 6b) 



98. 

3 (u) = 

4 (u) 

£ 5 (U) = 

1 

1 
pV3 

pV J2G3 

pV3J1G3 

T0 PV 2 3 - J2G3 

 ) 

0 

1 

1 
pV3 

pv2 - J G 

pV3J1G3 

T0 pV - J2G3 

Tk J1G3 

0 

0 

1 
pV5 

pV - J2G3 

pV5J1G3 

t0 pV5 2 - J2G3 

pk J1G3 

0 

0 

T 

T 

, 

(5.6c) 

(5.6d) 

(5.6e) 
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1 

1 

PV  

£ 6 (U) = 

by: 

PV - J2G3 

pVJ 1G 

T0 PV  2 - J2G3 
 ) 

0 

0 

(5.6f) 

The equations satisfied along the characteristics are given 

dU 

+ k 1)(U)B(U) = 0 , i = 1, 2, ..., 6 . (5.7) 

Thus, the explicit form of equation ( 5.7) is as follows: 

(iv) 

dZ dX 
(i) + F2 = 0 , along dt = 0 

(ii) LP - G = 0 , along dt dX = 0 
dt I 

dv 1 da PV - J2G3 dO PV - J2G3d - f 

dt PV 3 dt +  pV3J G dt J1G3 dt p 
13 

(5.8a) 

(5. 8b) 

pV - JG 1 pV-J2G3 
+ G G pV3 3 8 -( pV3J1G3 3)G3G9 -  )q = 0 , (5.8c) 

along dX = Vdt 3 

2 2 
+ - 3 - J2 G3 T0 PV3 - J2G3) dq 

dt PV  dt pV3J1G3 dt pk J1G3 dt p 
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(v) 

(vi) 

P  - J20 3 1 PV - J2G3 

G  + (  PV3J1G3 ) 03G9 - ( 0 )q = 0 
Pk 1 13 

dX 
along Tt = -V3 

- J203 dO O - J2G 

dTt v 1 d 3ddo-  PV dt +  PVJ1G3 dt pk J1G3 dt 

(5.8d) 

PV - JG 1 PV-J2G3 

+ 4-G3G8 - ( pv5j133)G309 - ( J103 ) q = 0 , (5.8e) 

along dX E = V5 

PV 2 - Jo' : T 2 
dv + - ( 5 2 3)de 0 V5 - J - f 

dt PV  dt PV5J1G3 dt pk J1G3 dt p 

PV2 -JG 1   

- rG3G8 +  v5J133)309 - P1 i'3 ) q 0 , (5.8f) 

along dX = - V5 

These six equations are now to be numerically integrated along' each of 

the six directions specified. 

The solution grid in the X-t space is as shown in Figure 5.1. 

Starting with initial values of U at A0, A1, A2, A3, A4, ..., values of 

U at the next time step, that is, values of ' U at points B0, B1, B2, B3, 

..., and so on can be computed. 

For example, starting from known values of U at A0, A1 and A2, 

we calculate the solution at point B1; similarly we use the values of U 

at A1, A2, A3 to calculate the value of U at B2, and continue this, say 
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Figure 5.1 Solution grid in the X-t plane. 
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until B5. Then we move on to the next time step and proceed in a 

similar fashion. The detailed description of this can be found in 

reference [ 5.5]. 

The grid points are classified as: 

(i) Interior Grid Points, 

(ii) Boundary Grid Points. 

This is because the treatment given to a particular grid point depends 

on its type. Points (like B1, B2, C1, D3, E 2 ) which lie inside the 

domain of the solution are known as interior grid points. Points (like 

B0, CO3 D0, E 0 ) which lie on the boundary of the solution domain are 

boundary grid points. 

In what follows, the finite difference schemes which 

correspond to each type of grid point are derived. 

A second-order accurate scheme is used in order for the 

results to have a reasonable level of accuracy. This means that 

second-order approximations are used for the integrations and also 

quadratic interpolations are employed wherever interpolations are 

required. - 

5.2.1. Treatment of Interior Grid Points  

A typical interior grid point, P, is shown in Figure 5.2. In 

Figure 5.2, S3, S5, S6, and S4 are the feet of the characteristic curves 

C, C, C5, and C3, respectively. It is to be noted that the other 

characteristics are coincident and lie on the vertical line through 

point P. It should also be noted that C1, C2, C, C, C5, and C are 

respectively associated with the eigenvalues XV X2, X3' A5' A6, and A4. 
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Figure 5.2 Characteristic curves passing through a typical 
interior grid point, P. 
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The solution at point P is to be computed with the knowledge 

of the solutions at the points A, C, and B. In the procedure' to be 

followed, the ordinary differential equations satisfied along the six 

characteristic curves will be numerically integrated along those curves. 

This will give six simultaneous equations for the unknowns at point P. 

It is appropriate at .this juncture to define the finite 

difference approximations of integrals. A first-order or linear 

approximation is defined by the relation: 

x 

K 0  

1 

f(x)dx = f(x0)(x 1 - x0) (5.9) 

The second-order approximation is expressed by the trapezoidal rule 

formula as: 

x 

x0 

f(x)dx = [f(x0) + f(x1)](x1 - x0) (5.10) 

The X coordinates of the feet of the characteristic curves 

designated X 3, X 5, X 6, and X 4 are determined by a second-order 

integration of the characteristic curves. The results obtained are: 

= X, - -(V333 + V3 )t 

= - •(V5 + V5 )At 
S5 2 

.xs6 = + •(V5s6 •+ V5  )t 

xs4 = Xp + (v3s4 + V3 )t 

(5. ha) 

(5.hlb) 

(5. hlc) 

(5.hId) 
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where V iSj . aenotes the value of V 1 . at point S., and V. denotes the 

value of V at point P. Note that X 3, X 5, X56, and X54 depend on the 

3. Syet unknown values of the solution at point P. Furthermore, they also 

depend on the yet unknown quantities u3 S5' S6' and 

The next step, therefore, is to estimate the values of 

s5' s6' and U 4 using quadratic interpolation with a knowledge of the 

values of U A' B' XA, X, XB and the estimates of X 3, X 5, X 6, 

and X given in equations (5.11). Thus, the following results are 

obtained: 

S3 = (V353 + V3 ) 

+ + U 
- 2Uc) (V353 + 

S5 = + - (Vsss + V5 ) 

- 2Uc)(V5ss + v5)2 

S6 = - 4a(TJA - B'5S6 + V5 ) 

+a 2(uA + - 2Uc) (V556 + V5 )2 

s4 =  UC - - )(V 3S4 + v3 ) 

(5.12a) 

(5. 12b) 

(5. 12c) 
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+ t(UA + - 2 c 73s4 + 

where 

(5.12d) 

(5.12e) 

Note, again, that the right hand sides of equations (5.12) depend on 

s3' S5 s6' s4' and Up which are all yet unknown. 

We now find second-order approximations to the integrals of 

the ordinary differential equations along the characteristic curves, 

that is, equations (5.8a - 5.8f). Because of the complex nature of 

equations (5.8a - 5.8f), their numerical integration involves lengthy 

algebraic manipulations and so the details are omitted here., The result 

is that six simultaneous algebraic equations which are nonlinear in the 

primary unknowrs Up = [v a, O q Z P]T are obtained. The 

equations also contain the unknowns U s3' S5' s6' and The 

nonlinear nature of the equations together with the presence of 

intermediate unknowns immediately suggest that an iterative procedure 

must be employed thereby giving the finite difference scheme an implicit 

character. 

The iterative equations to be solved are therefore as follows: 

P - •(F2c + Fg)t 

(k+1) = PC + ..(Gic + 1p G)t 

(5.13a) 

(5.13b) 

(1 (k) (k) (k+1) 2 (k) S3 + Q )v - ' S3 + Q (k) ) (k+1) + (3 (k) + Q(k))e(k+1) 
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4 (k) + Q )q - ' (k) (k+1) 1 (k) + Q (k) ) (k) (2 (k) 
= S3 V S3 " S3 + 2P S3 

+ + Q (k) )0 (k) 4 (k) 
3P S3 ' S3 + Q)q + C(Q4P S3 5f)+ (Qf)(k) 

00 1 7 (k) + Q (k) 6 (k) 
+ (Q8q) + (Q8q)+ S3 7P - S3 - Q}tt (5.13c) 

(1Q+ + ( 2 Q + Q (k) (k+1) 3 (k)- S4 + Q(k))0(k+1)3P P 

4 (k)( k) (k+1) 1 (k) (k) (k) 2 (k) (k) (k) 
- + 4P P - S4 + Q1 )v (k) + ' S4 + Q2 S4 

3 (k) + Q (k) \e (k) - 4 (k) 
- 3P " S4 S4 + 4P S4 + {(Q5f) 1 + (Q5f 

(k) 7 (k) 
+ (Q8q) + (Qq)(k) + + -p S4 6P  S4 - (5.13d) 

+ - + + ( 3 w + w)e1 
S5 3P P 

- 4 (w (k) (k) (k+1) ( 1w(k) + - (2w(k) + + 4P P S5 1P S5 2P 

+ (3W1 + w)o' - + + {(Wf) + (Wf) 
S5 3P S5 S5 4P S5 5 S5 5 

+ (W8q) + (W8q) 1 + + w(k) - 6w(k) - W}Et , (5.13e) 
p S5 7P S5 

lw(k) + w(k) (k+1) 2w(k) w(k) - (k+1) Ow(k) (k) (k+1) 
S6 1P )v + ( S6 + 2P + 3P P ) 
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4 (k) (k) (k-Fl) 1 (k) (k) + ( 2W (k) 
- ( + W4 , ) q, = ( + W1P S6 S6 2P  )v + W)o6 

- (3w 1 + (k) - (4W' + w)q 1 + { (W5f) + (W5f)' 
S6 3P S6 S6 4P S6 

+ (W8 q)+ (W8q)1 + W S6  + - 7w(k) - 

6P S6 (5.13f) 

Also, the intermediate unknowns are to be found from the 

following iterative equations: 

=U + PA - PBV3s3 + V) + PA + PB 2Uc) .S3 

(V + 
3S3 3P 

= Pc + - UB)(V535 + + PA + PB - - S5 Zc 

(V 5S5 
+ v(k)) 2 

5S5 5P 

U = u - - PA - PB (V + V) + C9. 2 S6 C 4 (U + U  - _  

(V + 

= U 
- '(uA - uB)(v + v) + PA + PB - .. S4 

(V + v(k)) 2 
3S4 3P 

(5.14a) 

(5. 14b) 

(5.14c) 

(5. 14d) 
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(k = 0, 1, 2, . . .) 

In these equations, 

i (k) = (USj ) 
, 

i _ Sj 

(k) = 
Q1 - Q(U) 

V (U) 
iSj i ... Sj 

- v 
iP 

(5.15a) 

(5. 15b) 

(5. 15c) 

(5. 15d) 

(5.15e) 

(5.15f) 

Furthermore, the numerical functions Q. and W. are defined as: 
1 1 

Q1 (U) = pV3J1G3, (5.16a) 

= J1G3 

Q3 (J) = p  - '23 

(5.16b) 

(5.16c) 

(5. 16d) 



Q5 (U) = V3J1G3 

= GGJ  (5.16f) 

Q7 ( U) = (pV - J2G3)G3G9 , (5.16g) 

= - J2G3)V3 

W1(U) = pV5J1G3 

W2 (U) = JG3 

W3 (U) = p  - J2G3 

W4 (U) = V5 (pV - J203) 

W5 (U) = V5J1G3 

W6 (U) =  GG8J1 

w7 (U). =  (pV i2 G3 

w8 (U) 
= (pV - J2G3)V5 

(5.16j) 

(5. 16k) 

(5.16n) 

(5.16o) 

(5. 16p) 



Equations (5.13a) - (5.13f) constitute a system of algebraic 

(k+1) (k+1) (k+1) (k+1) (k+1) 
equations to be solved for v , cl E, , , q, , z and 

(k+1) at each iteration level. It is to be noted that the system , of 

(k+1) (k+1) six simultaneous algebraic equations are now linear in v , 

(k+1) (k+1) (k+1) (k+1) 
q , z , and P, at each iteration step. 

However, starting values of all the unknown quantities (both 

intermediate and primary) are required to begin the iterative process. 

In other words, values must be assigned to the quantities U ° 

and in order to start the iterative process. In 

order for the iteration to have good convergence properties, these 

quantities cannot be arbitrarily assigned. A first-order-accurate 

procedure will be used to estimate the values of U s3' s5' s6' s4' and 

tJ and these values will serve as the starting values for the above 

iterative procedure. 

The major steps above are now repeated but this time 

first-order integrations and linear interpolations are employed to 

obtain: 

= z - F2 t 

(0) = + GlCt 

1 ( 0) (0) 2( 0) 4 (0) ( 0) - 

.s3 Vp - - S3 q - 

A 3 + A 3 t 

1 (0) (0) + - M e (0) (0) (0) - 

S4 Vp P S4 P - S4 q - 

(5.17a) 

(5.17b) 

(5.17c) 
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3A S4+ 4As4Lt 

1 ( 0) ( 0) 2 ( 0) (0) + 3 (0)(0) 4W ° W 5 Vp - W5 P Ws.5 P - S5 

5A S5+ 6As5tt 

+ 2W 0 a 0 - 3W ° 0 ° - 4   S6 P S6 P S6 p W(0) q(0)6 = 

7A S6+ 8As6L1t 

(5.17d) 

(5.17e) 

(5.17f) 

The quantities 1A63, 2A S3' 3A 4A 6A and 8A S6are 
S4' S4' S5' S5' S6' 

numerical functions defined-as follows: 

'A - 1 ( 0) ( 0) 2 (0) 0' (0) 3 (0) ( 0) 
S3 - S3 V 3 S3 S3 + S3 S3 - S3 

2As3 7Q ) + (Q5f)) + (Q8q)(3 0) - 6 ( 0) 
S3 

3A - 1 ( 0) (0) 2 (0) CF (0) 3 (0)(0) 4 (0) ( 0) 
S4 - S4 V 4 + S4 S4 - S4 S4 S4 

(0) 7 (0) 
= (Q5f) + S4 - S4 + (Q8q) 

5A - 1 ( 0) ( 0) 2 (0) (0) 3 (0) (0) 4 ( 0) ( 0) 
S5 W 5 V 5 - W5 S5 + W5 S5 - W5 S5 

= 7W ° + (W f) (0) + (W8q) 0 - 6 ( 0) 
S5 S5 5 S5 S5 

(5.18a) 

(5.18b) 

'(5.18c) 

(5.18d) 

(5. 18e) 

(5.18f) 



113. 

(0) (0) 
7A = S6 S6 v6 + 2 W(0) Cr ((00)) - 3W°O° 4 (0) ( 0)- 

56 - S6 S6 

As6 = (W5f) ° + 6W 0 - + (W8q) 
S6 S6 S6 

, (5.18g) 

(5. 18h) 

Again, it can be seen that equations (5.17) contain the 

intermediate unknowns and U which are to be 

found from the relations: 

form: 

= c(l - av + ctUAV3C 

- ctV5) + aUAV5C S5 -C 

= - aV5c) + cUBV5C 

= - cXV3) + -B 3C 

(5.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

Equations (5.17c) - (5.17f) may be put in the more compact 

(0) (0) - (0) 
! p 

where the vector is defined as 

, 

(5.20) 

(5.21a) 
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the vector h(0) is defined as 

h ° = 

A + 2A•t 
S3 S3 

3A4 + 4Js4t 

5As5 + 6AssLt 

7A 6 + 8A 6 t 

and the matrix a'° is defined as 

a ° = 

1 (0) 2 (0) 3 (0) 4 ( 0) 
S3 - S3 S3 S3 

1 (0) 2 (0) 3 (0) 4 ( 0) 
9S4 S4 - S4 - S4 

1 (0) 2W°W (0) 4 ( 0) 
S5 S5 — S5 

1 (0) 3W ° (0) 
_s6 S6 - S6 

It is also more convenient to put the simultaneous equations 

(5.21b) 

(5.13c) - (5.13f) in the compact form: 

where 

(k+1) - 

(k) (k+1) - b' 
- - - 

(5.21c) 

(5.22) 

(k+1) 

P (5.23) 

0(k+1) 
P 

q (k+1) 

It is easy to see from equations (5.13) that the four components of 
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vector b are given by: 

b 1 = (lQ ) + Q1 (k) )v (k) -( (k) 2 S3 2P S3 (k) + 
I S3 

+ (3Q1 + _(4Q + Q4 (k) ) 3 (k) + (k) 
S3 3P S3 S3 

+ (Q5f)k) + + (Qq) (k) + +p S3 7P 

6 (k) 
- S3 - Q}Et (5.24a) 

(k) 1 (k) (k) (k)( k) (3 (k) + 
b2 = S4 + Qp )v 4 + 2P S4 ' S4 3P S4 

4 (k) (k) (k) 
- + Q, )q + + (QS4 5 S4 5 f) + Q3q) 1 + (Q8 q) 

+ 6 Q + Q (k) 7 (k) (k)}t 
6P - S4 - (5.24b) 

b 1 = (1W + W)v (2w(k) + + ( 3W + 
3 S5 1P S5 S5 2P S5 S5 3P S5 

-w + w'5q1 + + (W5f) 1 + (W3q) + (W8q) 1 
S5 4P S5 5 S5 

+ + - - wit 
7P S5 

(5.24c) 

b 1 = (1W + W)v +C2W + - (3W + 0 (k) 
4 S6 1P S6 S6 2P S6 S6 3P S6 

- (4W 1 + W)q 16 + {(W5f) 1 + (W5 f)  + (W8 q)+ (W8 q) 
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+ 6 W + - W - 
6P S6 

The sixteen elements of matrix R 1 may also be identified as: 

(k) R (k) = _(2Q ) + (k) 
S3 1P "  12 Q ) 

= 3Q) + Q 3 _( 
13 S3 14 '¼p ) 

(k) R Q (k) = 4) + (k) 

R (k) lQ ) + (k) R (k) - 2 (k) (k) 
21 Q1 ' 22 S4 + 

R(k) = 3 '(k) (k) ) 
23 -( S4 + Q 3P 

= _(4Q ) + 
24 Q4 1 

R(k) = lw(k) + R = -( 2w + w) 
31 S5 1P ' 32 S5 2P 

= 3w + R(k) = -(4W + W) 
33 S5 3P ' 34 S5 4P 

=W + R(k) = 2w(k) + 
41 S6 1P ' 42 S6 

(5.24d) 

R(k) = -(3w + R = -(4W ± Wg) . (5.25) 
43 3P ' 44 

Thus, the procedure for solving for the primary unknowns Up 

consists of the following main items: 

(i) Start iteration and set iteration counter to k = 0, 

(ii) Calculate the starting values of the intermediate unknowns 

(0) (0) (0) (0) 
S3 S6 , and U 4 using the relations given in 

equations (5.19a)-(5.19d), 
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( START ) 
ITERATION COUNT, N=O 

COMPUTE U 0 U° u° AND 
S3 ' '.. S5' -.'S6 'S4 

COMPUTE AND P(0) 

SOLVE (0) (0) = h0 FOR U(0) 
- 

4 
COMPUTE AND 

4 
COMPUTE Rt0 AND 

SOLVE Rt0 b0 FOR uW 
- '.,#P 

4 
N = N + I 

COMPUTE U(N) U(N) U(N) AND U(N) 
"S3' ,.. 55' ''S6 

COMPUTE AND p(N+I) 

COMPUTE R(N) AND 

9 
SOLVE RU (N41) = b FOR 

- ..' P ow P 

Figure 5.3 Simplified flow diagram of the procedure for 
computing the solution at interior grid points 
using the numerical method of characteristics. 
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(iii) Compute Z 0 and P 0 using equations (5.17a) and (5.17b) 

respectively, 

(iv) Solve equation (5.20) for 

(v) Calculate the values of the intermediate unknowns 

U (k+1) (k+1) (k+1) 
S5 ' ' .S4 

(vi) Compute Z(, k+1) and P (k+1) 

respectively, 

(vii) Solve equation (5.22) for 

from equations (5.13a) and (5.13b) 

(viii) Check convergence: stop iteration if convergence has been 

achieved or increment iteration counter (by one) and return to 

step (v). 

Convergence is deemed to be achieved when 

I 
max   < TOL (5.26) 

where TOL is a small number that defines the error tolerance. 

A description of the skeletal procedure for solving for the 

unknowns at the interior grid points is given in the flow chart shown in 

Figure 5.3. 

5.2.2 Treatment of Boundary Grid Points  

Figure 5.4 shows a typical grid point, M, and the 

characteristic curves passing through it. 

It will be recalled from Chapter 4 that two boundary 

conditions are required for the problem under consideration. In this 

thesis, two kinds of boundary conditions are considered. These are: 
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t 

Lt 

'V 

M 

A S6 S4 C 

Lx x 

KNOWN: INTERMEDIATE UNKOWN: 

x56,Us6 

XC, tC, UC XS4, US4 

XB, tB, ¶ B PRIMARY UNKNOWN: 

t56 UM 

t54 T 

XM,tM U:[V o' 8 q z p] U(xt) 

Figure 5.4 Characteristic curves passing through a typical 
boundary grid point, N. 
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(i) stress and temperature time-dependent input, that is, a (0,t) and 

O(0,t) are prescribed for t > 0 

(ii) velocity and temperature time-dependent input, that is, v(0,t) and 

O(0,t) are prescribed for t > 0. 

Other physically reasonable combinations of boundary conditions (for 

example a(0,t) and q(O,t) prescribed) may be considered following the 

same line of development presented below. 

The pocedure for computing the unknown solution at point M, 

that is is essentially the same as the procedure employed for the 

interior grid points. 

In the case of the boundary grid points, there are only four 

characteristic equations (and not six) involved since there are only 

four characteristic curves through the point M that lie within the 

solution domain as shown in Figure 5.4. The positive characteristics C 

and C through point M lie outside the solution domain and hence the 

equations along those curves cannot be nutherically integrated. 

However, the four simultaneous equations that will be obtained 

from the numerical integrations along the characteristic curves AM, AM, 

S 6 M and S 4 M are sufficient to find the unknowns at point N. This is 

because two quantities have been prescribed along the boundary so that 

there are only four unknowns at point H. 

We proceed as in the case of interior grid points to derive a 

second-order-accurate scheme for the iterative computations of the 

unknown solution at point N. The results are summarized below for the 

two types of boundary conditions. 
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Case (i): (O,t) and O(O,t) prescribed. 

Starting values for the iterative process: 

= - ctV5A) + -C 5A 

where 

s4 =  - av3A) + -C 3A 

= 
M ZAF2AAt 

(0) = 

M + GlAt 

= A94Q54{7A56 + 8As6tt + Ws6 - WS6M} 

- A94w56{3A54 + 4 A S4 At + 3 QS4 6 
- S4 CF M 

q(0) = A91Q54{7A56 + 8As6/t + 3Ws68M - 2WS6aM} 

- A91Ws6{3As4 + A S4 At+, 3 QS4 0 m  - s4M 

A9 = 1ws64Qs4 - 1Q 4W} 

Iterative equations: 

= - -(UA - uB){a(v + v)-2} + + - s6 -C 4 

(5.27a) 

(5. 27b) 

(5.28a) 

(. 28b) 

(5.28c) 

(5.28d) 

(5.29) 
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la(V 5S6 + v))_2} 2 

= - - B3s4 + v)-2} + 8?A + UB - _S4 

where 

{a(V + V)-2} 2 
3S4 3M 

(k=O, 1, 2, ...) 

M = ZA - + 

(k+1) = + + 
M 

a 

a (k) a (Id-i) - a (k) 
£ 

f V M 

The two components of the vector a(k) are: 

a (k) 3 (k) (k) )0 2 (k) + Q)aM + 1 (k) 
= s4 + 3M M -( S4 S4 + Qim S4 )v 

(5.30a) 

(5.30b) 

(5.31a) 

(5. 31b) 

(k) (k) 4 (k) (k) (k) 
+ (2Q' + - +S4 2M S4 S4  Q °s4 S4 + 4M S4 

(5.32) 

(5.33) 

+ (Q5 f) + + (Qq)(k) 
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+ 6Q (k) + Q (k) 7 (k) 
6M - S4 - Q}t (5. 34a) 

a (k) 3 (k) (k) 1 (k) (k) (k) 
= ( + W3 °  2 S6 2M W M -( + + ( W + W1 )v56 

+ ( 2W(k) + W)cr - (3W1 + 4 ( (k) + w (k) (k) 
S6 2M S6 3M S6 4M S6 

+f (W5  + (W5f) + (W8q) + (W8q) 

+ 6 W + - - 

6M S6 

while the elements of the 2x2 matrix a(k) are: 

a(k) 1(k)( k) a (k) 4 (k) / =11  + 1M ' 912 4M = - S4 + (k) 

a (k) lw(k) + W , (k) a (k) = - (4W 1 + w) 
g21 = S6 iN g22 

(5.34b) 

(5.35) 

A simplified flow diagram for computing the unknown solution 

for this case is shown in Figure 5.5. 

Case (ii): v(O,t) and e(o,t) prescribed: 

Starting values for the iterative process: 

Values of 40), and 40) are computed from the 

same equations given for case (i). However, the values of and 40) 

are given by: 
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START 
+ 

ITERATION COUNT, N=O 

COMPUTE U(0) AND 
'S4 

COMPUTE AND 

COMPUTE AND q) 

COMPUTE AND p(I) 

COMPUTE (0) AND 
9 w 

SOLVE a(0) FOR a' 
LM 

N: N4I 

COMPUTE U(F4) AND (N) 
S6 —S4 

COMPUTE AND p(1) 
M 

COMPUTE AND 
ev 

SOLVE 0(9r4) (rN1) z FOR 
- 

Figure 5.5 Simplified flow diagram of the procedure for 
computing the solution at boundary grid points 
using the numerical method of characteristics 

with a(O,t) and O(O,t) prescribed. 
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(0) 4 
A Qs4{711s6 + 8A6M: + 3 
rj wsM_ Ws6vM} 

where 

AT4WS6{ 3AS4 + 4As4At + 3S4°M - 'Qs4vM} 

(0) 2 
= AT Qs4{ 7As6 + 8As6/xt + 3WS6OM - Ws6vM} 

- AT2WS6{ 3AS4 + 4As4Lxt + 3QS4OM - 'Qs4vM} 

AT ={ ws6Qs4 - 2Q 4W} 1 

(5.36a) 

(5.36b) 

(5.37) 

Iterative equations: 

Values of u (k+1) u (k-El) and (k+l) are computed from the 
-S6 ' -' S4 ' M 

(k+1) 
same equations given for case (i). However the values of a and 

(k+1) 
are determined from the equation: 

where 

b(k) b(k+1) = b(k) 

b (k+1) - 

The two components of vector b(k) are given by: 

(5.38) 

(5.39) 
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b (k) - 3 (k) + Q ))o 1 (k) )v 
- S4 S4 + QIM M 

(k) + Q (k)) cy (k) ( 3 (k) 
+ ( 'Q + +S4 IM S4  2 S4 2M S4 - ' S4 3M s4 

4 (k) 
- + Q ))q ) + { (95f) ) + (Qf) (k) + (Q8q)) + (Q8 ) 

S4 4M 

+ S4 + 6H - S4 - Q7Mt (5.40a) 

b cjc + 3M - (1w1 + + (1w1 + W)v6 S6 IM 

+ ( 2w 1 +'w)a 1 - ) + w)e - (4w + w(k) (k) 
S6 2M S6 S6 s6 S6 4M S6 

± {(W5f)s6 + (WSf)M + (W8q) 6 + (W8q) 

+ 6 W + W 
- W7M} t 

while the elements of the 2x2 matrix b(k) are: 

b(k) 2(k)( k) b (k) 4 (k)( k) 
= S4 + 2M ' g12 = - S4 + 4M 

(5.40b) 

b (k) 2w(k) + b (k) 4 (k) + W (k) 
= S6 2M ' g22 S6 4M (5.41) 

The simplified flow diagram corresponding to case (ii) is given in 

Figure 5.6. 
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END ) 

( START 
+ 

ITERATION COUNT, N=O 

COMPUTE AND U(0) 
S6 S4 

COMPUTE AND p(0) 
M 

COMPUTE AND q) 

COMPUTE AND 

COMPUTE b AND b ° W 

SOLVE b b(l) b FOR 

COMPUTE U(N) AND U(N) 
s4 

COMPUTE AND 
M 

COMPUTE b( AND W 

SOLVE b'' = ON ) FOR b(N+1) 
- M LM 

0'  

Figure 5.6 Simplified flow diagram of the procedure for 
computing the solution at boundary grid points 
using the numerical method of characteristics 

with v(O,t) and O(O,t) prescribed. 
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5.2.3 Remarks on the Properties of the Scheme  

Finite difference approximations of partial differential 

equations are usually required to satisfy conditions of consistency, 

stability, and convergence. Consistency has to do with assurance that, 

as the finite difference mesh is refined, the truncation errors approach 

zero. This condition ensures that the scheme does in fact approximate 

the given problem rather than some other problem. Computational 

stability calls for the boundedness of all perturbations in a computed 

solution. Convergence requires 

equations to approach the true 

equation as the mesh is refined. 

the solution of the finite difference 

solution of the partial differential 

Stability and consistency of a scheme 

usually guarantee its convergence. 

No rigorous analyses of the above properties are available for 

nonlinear problems. For schemes based on the method of characteristics 

however, it has been shown [ 5.8] that stability is assured when the 

domain of dependence of any point as given by the finite difference 

equation is not less than the exact domain of dependence of the 

differential equation. Mathematically, the requirement is expressed as 

max (i) (5.42) 

The condition (5.42) is commonly referred to as the CFL condition and 

the CFL number, Cv, is defined as 

C = max () (5.43) 

Note that maxlX(1)(Up)I denotes the numerically greatest eigenvalue of 

the matrix A(U) computed at point P. 
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5.3 Application of the MacCormack Finite Difference Scheme  

5.3.1 Treatment of Interior Grid Points  

The MacCormack finite difference scheme was originally 

developed by 

compressible 

axisymmetric 

subsequently 

MacCormack [5.7] for the solution of the time-dependent 

Navier-stokes equations and applied to calculate the 

flow field produced by hypervelocity impact. It was 

applied in a modified form for the solution of the 

interaction of a shock wave with a laminar boundary layer by the same 

author [ 5.9]. 

The vector form of the time-dependent Navier-stokes equations, 

in two dimensions, neglecting body forces and heat sources may be 

written as 

where 

r 

F= < 

U f 
P 

Pu 

pv 

e 

pu 

2 
Pu + t 

x 

puv + T' 
xy 

(e+a)u+t v+k 1 
yx ax 

(5.44) 

(5.45a) 

(5.45b) 
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r 
pv 

pUV + T 
yx 

2 
pv + a  
1 

(e+)v+T u+k 

-I 

Ox p - + - 

ax Dy ax 

T = T = 
- au av 

11 
xy yx Dy ax 

(.—+—) 

- CT p  ax a• 

(5.45c) 

(5.45d) 

(5.45e) 

(5.45f) 

where p is the density, u and v the x and y components of velocity, A 

and 1.1 are the viscosity coefficients, e is the total energy per unit 

* 
volume, c is the specific internal energy, k is the coefficient of heat 

conductivity, and T is the temperature. The pressure p is related to 

and p.by the equation of state: 

* e 12 2 
€ =- -  (u + v) 

* 

(5.46) 

The two-step second-order accurate method devised by 

MacCormack to solve equation (5.44) is as follows: 

At n - ,n t n - Gn ) , (5.47a), 
- . i,j - i+1,j _i,j i,j+1 _.i,j 

n+l = + it n+1 F 1 ) t n+1 n+1 
I.  j-i, - i,j' - (5.47b) 
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G(tJ'.' .) 
1,J 

where 

(5.47c) 

(5.47d) 

The subscripts in equations (5.47) refer to a spatial mesh of 

points (x1, y.) with spacing Ax and Ay, and the superscripts refer to 

times t = nLit where At is the time increment that the solution is 

advanced during each cycle of equations (5.47). Equation (5.47a) is 

referred to as the predictor step and equation (5.47b) is known as the 

corrector step. Whereas the predictor step uses forward differences to 

approximate the spatial derivatives, the corrector step employs backward 

differences. 

Applications of the MacCormack scheme to problems in fluid 

dynamics are numerous while there has only been a few solid mechanics 

applications. The first concrete application in solids was by Hanagud 

and Abhyankar [ 5.10] who studied the finite deformation coupled 

torsional and longitudinal wave propagation problems in cylindrical rods 

made of neo-Hookean materials. 

Despite its popularity in the solution of nonlinear systems of 

hyperbolic partial differential equations, the scheme has been 

predominantly applied to systems of the form: 

± A(U) 
—  ax- (5.48) 

in which the so-called source terms are conspicuously absent. Lorimer 
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[5.11] and Haddow et al. [ 5.12] have presented a modified form of the 

MacCormack scheme suitable for the numerical solution of equations of 

the form: 

+ A(1J) a T1 + B(U) = 0 (5.49) 

which is the type of problem being considered in this thesis. In those 

references the modifications were applied to the solution of elasto-

dynamic problems for hyperelastic and viscoelastic solids. 

The modifications given in references [ 5.11] and [ 5.12] are as 

follows. First, for the conservative form of systems of hyperbolic 

partial differential equations which are expressible as: 

BU +   + B(U) = 0' , 

rt ax 

the nodification is given as: 

= - - Q(U)} - tB(U') 

n+1 = + +1 - tt[Q(TJI1+l) - 9(')I - tB(Ut+1)} 

(5.50) 

(5.51a) 

(5.51b) 

In the above, equation (5.51a) is the predictor step while equation 

(5.51b) is the corrector step. This version of the MacCormack scheme is 

usually referred to as the forward backward (FB) scheme because the 

predictor step uses forward spatial differencing while the corrector 

step utilizes backward spatial differencing. For nonconservative 

systems of equations, that is, equations of the form (5.49), the 
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modified scheme is given by: 

=U . - TX-[A()] [ +l - - tB(U') (5.52a) 

= + - - U'] - itB(U' 1)} . (5.52b) 

Equation (5.52a) is the predictor step and equation (5.52b) is the 

corrector step. Note that in equations (5.51) and (5.52), 

tJ(jAX , nAt) (5.53) 

The system of equations under study in the present work may be 

put into the semi-conservative form: 

where 

aF * —  --+ -  --+ B = 0, 
at 3x - 

pv 

C 

* 2 
U = P+(O+TR)n+ 1 pv 

T0 q 

z 

P 

(5.54) 

(5.55a) 
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and 

* 
B= 

-V 

< -( v±q) 

-kO 

0 

r 

0 

0 

-(vf + r) 

q 

F2 

-G1 

(5.55b) 

(5.55c) 

In equation (5.54), the dependent variables are the components of U. 

Although this equation is of a. divergence form, it is not possible to 

* 
express the vector function F as an explicit function of U . The same 

is also true of the vector function B*. Thus, equation (5.54) is not 

strongly conservative and for the purposes of the discussion here is 

referred to as semi-conservative. 

It is possible in principle to seek the application of the 

conservative version of the scheme to (5.54). In such a procedure, the 

primary dependent variables of physical interest, that is, U (defined 

earlier) will have to be computed at each grid point from a knowledge of 

* 
U . However, because of the highly nonlinear forms of the expressions 

for tj.' and T1 , iterative processes must be applied. Since it is well 

known that good convergence . properties of iterative procedures usually 
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depend on reasonable choices of initial values, which in this complex 

case is difficult to estimate, the procedure is infeasible. Therefore, 

in this study, the nonconservative version, equations (5.52) is directly 

applied. 

A typical interior grid point is as shown in Figure 5.7. 

A common practice in the numerical solution of hyperbolic 

partial differential equations is the addition of artificial viscosity. 

This practice, referred to as shock capturing, is aimed at the 

attenuation of the high frequency components of the numerical solution 

as the computation progresses. It was first applied by von Neumann and 

Richtmyer [ 5.13] for the numerical solution of hydrodynamic problems. 

Another type of an easy-to-use third-order artificial viscosity was 

proposed by Lapidus [ 5.15] in the form: 

U. = U . + cC • A' [ 1A' 
-j av3 j+1 

A' U" 1 
-j+1 

where the finite difference operator Av is defined as: 

A' TJ' = - Un 
-J -J -J_ 1 

(5.56a) 

(5.56b) 

and C av3 is an adjustable constant. In equations (5.56) U J are the 
- 

quantities calculated from the usual MacCormack scheme and are the 
*n+1  

new values obtained after the addition of artificial viscosity. Hanagud 

and Abhyankar [ 5.10] also recommended the addition of artificial 

viscosity terms of the forms: 

n+1 - 2 n+l + 
22 = Cav2(Uj+i ..j (5.57a) 
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for second order viscosity or 

n+1 4n+l + - 4n+l + U h1±) 
= Cav4(Uj+2 - .. j+i. -j .j-1 .. j- (5.57b) 

for a fourth order viscosity. The parameters C av2 av4 and C are also 

adjustable artificial viscosity constants. 

The major attributes of artificial viscosity terms are the 

preservation of the high order of accuracy of the solution and removal 

of nonlinear instabilities which may appear in shock regions and near 

boundaries. The results of numerical experimentaions on the present 

problem show that the addition of artificial viscosity terms are 

unnecessary. This is not surprising because the physical process under 

study is dissipative in itself so that physical damping is already 

present. 

It may be seen from the above that the MacCormack scheme (with 

or without artificial viscosity) is an explicit scheme and is very much 

simpler to apply than the method of characteristics presented in the 

last section. - 

5.3.2 Treatment of Boundary Grid Points  

'The procedure for determining the extraneous boundary 

conditions is described in what follows. 

Gottlieb and Turkel [ 5.15] considered various types of 

boundary procedures for the MacCormack finite difference scheme. Their 

study recommended the reversal of the difference operator at a boundary 

so that either forward forward (FF) or backward backward (BB) 

differences are employed at boundary grid points. On a left boundary 

(corresponding to X = 0), it was recommended that FF differences be 
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utilized. Again, implementation of this recommendation was effected in 

references [ 5.11] and [ 5.12]. Thus, for a typical boundary point M 

shown in Figure 5.8, the modified schemes are given below. 

For the conservative scheme: 

= Un - [9() - 9()] - tB(U) 

t n+1 
= + UO  - {9( ) - 9(')] - tB(U)} 

For the nonconservative scheme: 

= - [()][ - T;t] - tB(U) 

(5.58a) 

(5. 58b) 

(5.59a) 

At n+1 
= VUO  + - )][ +1 - +1] - tB(U 1)} . (5.59b) 

Of course, equations (5.59) are applied to the problem under study for 

reasons that have been discussed earlier. 

Just as for most numerical schemes, no rigorous stability 

criteria of the present scheme have been established for nonlinear 

problems. However, it is known from linear stability analysis that the 

MacCormack finite difference scheme is stable if: 

C 1 . (5.60) 

In this computations, it was found that this is also a necessary 

condition for numerical stability. 
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CHAPTER 6  

NUMERICAL SIMULATIONS  

6.1 Introduction 

The numerical simulations of the propagation of coupled 

thermomechanical waves in inelastic solids are presented in this 

chapter. Responses of initially quiescent semi-infinite aluminum and 

copper rods are considered under various kinds of time-dependent inputs. 

Two computer programs corresponding to each of the 

computational algorithms presented in the last chapter are employed. 

The computer programs are coded in the FORTRAN 77 language and were 

implemented on the CDC Cyber 205 supercomputer for faster computations. 

The programs were written in a modular form for good computational 

efficiency and flexibility. Each of the programs has two major 

subroutines: one subroutine for computing solutions at boundary grid 

points and the other for interior grid points. 

For the computer program based on the numerical method of 

characteristics, the subroutine for the boundary grid points is coded in 

line with the simplified flow diagram given in Figure 5.5 or Figure 5.6, 

depending on whether { a(0,t), 0(0,t)} is prescribed or {v(0,t), O(O,t)} 

is prescribed. The subroutine for the interior grid points is coded in 

line with the simplified flow diagram given in Figure 5.3. 

For the computer program based on the MacCormack finite 

difference scheme, the interior point routine is coded in accordance 

with equations (5.52) while the boundary point routine is coded in 

accordance with equations (5.59). 

The two main programs are essentially identical. The skeletal 
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flow diagram for the main programs is as shown in Figure 6.1. The 

boundary point routines are referred to as BGPS1 for { a(O,t), e(O,t)} 

prescribed and BGPS2 for {v(O,t), e(o,t)} prescribed while the interior 

point routines are referred to as lOPS. Although the main programs 

control the computations, most of the computations are carried out in 

the subroutines IGPS and BGPS1 or BGPS2. 

6.2 Numerical Examples  

Three kinds of time-dependent inputs applied to the ends of 

the rods are considered. 

(i) Step input  

The unit step function H(t) is defined as 

r 
- 1 1, t > 0. 

It describes a suddenly applied and maintained impact such as the 

following: 

Stress impact: a(O,t) = cr0H(t) , (6.2a) 

Velocity impact: v(0,t) = v0H(t) , (6.2b) 

Temperature impact: O(O lt) = 00H(t) . (6.2c) 

This type of input corresponds to physical shock waves as the 

discontinuity in the boundary conditions propagate through the medium. 

(ii) Pulsive sine input  

The pulsive sine function is defined as 

•11 
sin wt , t - 

(1) 

S(t) = (6.3) 

where w is a constant. Thus, pulsive-sine inputs in stress, velocity, 
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and temperature are of the form: 

ci(0,t) = a0S(t) , (6.4a) 

v(0,t) = v0S(t) , (6.4b) 

O(0,t) = G0S(t) . (6.4c) 

The pulsive-sine. input propagates as an acceleration wave since it gives 

discontinuous derivatives of the dependent variables. 

(iii) Terminated ramp input  

The terminated ramp function is defined as 

t c ' 
RT(t) = 

1 t > to 
(6.5) 

where to is a given time, chosen as r/w in this work. Therefore, 

terminated iamp inputs for stress, velocity and, temperature are of the 

form: 

(0, t) = oRT(t) , (6.6a) 

v(O,t) = voRT(t) , (6.6b) 

O(O,t) = eORT(t) . (6.6c) 

Again, the terminated-ramp input propagates as an acceleration wave 

since it gives discontinuous derivatives of the dependent variables. 

The material properties used in the numerical simulations are 

given in Tables 6.1 and 6.2. The inelastic material constants KA, M, 

ZA, Z0, n, and a  pertain to the evolution equations for the 

Bodner-Pa.rtom model { 6.1}. 

The numerical results are given in Figures 6.2a - 6.19e. For 

convenient graphical illustrations, the following dimensionalization 

scheme for the time and position have been employed. The nondimensional 

time, i, is defined as 
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Table 6.1 Thermoelastic material constants for aluminum and copper. 

Material Constant Aluminum Copper 

Y1 (Nm) 1.02 E 11 2.02 E 11 

4.81 E 06 3.62 E 07 

C1(J kg- 11C 1) 900.42 382.67 

C2 (J kg- 1K 2) 0.46 0.10 

0.33 0.34 

R mK) 4.72 E 06 6.94 E 06 

k(Wm 1I( 1) 238.0 398.53 

a1(I( 1) 2.32 E -05 1.68 E -05 

7.0 E -09 7.53 E -09 

p(kg m 3) 2.70 E 03 8.94 E 03 

-. Yi)  PC, 
= - 

while the nondimensional distance, X, is defined as 

Y PC 

(6.7a) 

(6.7b) 

where XDF is a constant that varies from one plot to the other. For 

simplicity the 'bar' on X and t is omitted in the plots so that, 

henceforth, X and t refer to nondimensional position and nondimensional 

time respectively. For simplicity the semi-infinite aluminum rod is 

referred to as SIAR while the semi-infinite copper rod is called SICOR. 
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Table 6.2 Thermoinelastic material constants for aluminum and copper. 

Material Constant Aluminum Copper 

K (m2N 1) 2.39 E - 10 6.12 E - 11 

0.0 0.0 

A1 48.89 24.75 

x2 (i() 2.30 E -03 4.43 E -03 

B 4 -1.25 -2.88 

B 5 (Nm 2) 1.24 E 09 2.18 E 09 

m (m2N 1) 6.0 E -07 4.0 E -07 

z  (Nm 2) 1.50 E 08 2.37 E 08 

Z0 (Nm) 2.50 E 07 3.10 E 07 

n 5.0 9.2 

1.0 1•.0 

Au (Nm 2) 3.14 E 07 8.93 E 07 

The results presented in Figures 6.2a-6.19e cover the 

responses of semi-infinite aluminum and copper rods for all the three 

time-dependent inputs given above. The input and computation parameters 

are given in the titles of the figures. It should be noted that the 

values of the time step ( t) and thermal relaxation time (t0 ) given in 

the figures are nondimensional quantities which are related to - their 

corresponding dimensional values through equation (6.7a). 
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stress and temperature step inputs ( cia = 205 MPa, 00 = 5 K, 
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stress and temperature inputs (a = 205 MPa, 00 = 5 K, 
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o = 5 K, w = 2.61 E 10, D0 = 1.0 E 03, XDF = 0i57, 
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Figure 6.lOb Temperature and heat flux response of SlCORto stress and 

temperature step inputs (a 205 MPa, 00 = 5 K, 

XDF = 0.025, At = 0.1942, B = 1.0 E,03). 
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Figure 6.lOc Strain hardening and plastic strain response of SICOR to 

stress and temperature step inputs (a = 205 MPa, 00 = 5 K, 
D0 = 1.0 E 03, = 0.025, At = 0.192). 



173. 

6 

Cl) 

—2 -

0 

250 

I9.42 

1,  

38.84 58.26 77.68 97.10 1% 

Method of Characteristics - - - - MacCormock Scheme 

200-

150-
0 

b 100-

19.42 1, 

50-

'S 

38.84'S 58.26'S 

'S 'S 

0.0 0.5 1.0 

x 

1.5 2.0 2.5 
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Figure 6.11b Temperature and heat flux response ofSlCoRto stress only 
step input (c = 205 MPa, 00 = 0 K, D0 = 1.0 E 03, 
At = 0.1942, = 0.025). 
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Figure 6.12b .Temperature and heat flux response of SICOR to temperature 
only step input ( r0 = 0 MPa, = 5 K, D0 = 1.0 E 03, 
XDF = 0.230, t = O.1942). 
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Figure 6.13b Temperature and heat flux response of SICORto velocity and 

temperature step inputs (v = -150 ms -1, 00 = 10 K, 
D0 = 1.0 E 04, = O.24, t = 0.1942). 
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Figure 6.14b Temperature and heat flux response of SICOR to velocity only 

step input (v = -150 ms', O 0 = OK, D = 1.0 E 03, 
At = 0.1942, = 0.025). 
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Figure 6.14c Strain hardening and plastic strain resonse of SICOR to 

velocity only step input (v0 .-150 ms , = 0 K, 

D0 = 1.0 E 03, XDF = 0.025, At = 0.1942). 
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Figure 6.15b Temperature and heat flux response of SICOR to pulsive-sine 
stress and temperature inputs (a = 205 MPa, 00 = 5 K, 

w=2.61 E 10, D0 = 1.0 E 03, XDF = 0.241, At = 0.1942). 
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Figure 6.15c Strain hardening and plastic strain response of SICOR to 
pulsive-sine stress and temperature inputs ( cEO = 205 MPa, 
00 = 5 K, w = 2.61 E 10, D0 = 1.0 E 03, = 0.241, 
At = 0.1942). 
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Figure 6.16a Velocity and stress response of SICOR to terminated-ramp 
stress and temperature inputs = 205 MPa, 0o = 5 K, 
w = 2.61 E 10, D0 = 1.0 E 03, XDF = 0.234, At = 0.1942). 
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Figure 6.16b Temperature and heat flux response of SICORto terminated-ramp 
stress and temperature inputs ( c.. = 205 MPa, 00 = - K, 
w = 2.61 E 10, D0 = 1.0 E 03, XDE = 0.234, At = 0.1942). 
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Figure 6.18a Influence of stored energy of cold work on the velocity 
response of SIAR to velocity and temperature step inputs 
(v0 = —300 ms', 00 = 10 K, = 1.47 E 05, D0 = 1.0 E 05, 
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Figure 6.18d Influence of stored energy of cold work on the strain 
hardening response of SIAR to velocity and temperature 
step inputs (v0 = —300 ms -1, 0 = 10 K, T = 1.47 E 05, 

= 1.0 E 05, XDF = 0.00158, 2t = 0.387). 
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Figure 6.18e Influence of stored energy of cold work on the plastic 
strain response of SIAR to velocity and temperature step 

inputs (v1, = —300 ms', O = 10 K, = 1.47 E 05, 
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Figure 6.19b The effect of irrecoverable energy storage on the stress 
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absence of second-sound and heat-flow effects 
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Figure 6.19c The effect of irrecoverable energy storage on the 
temperature response of SIAR to velocity only step input 
in the absence of second-sound and heat-flow effects 

(v0 = -200 m5 1, D0 = 1.0 E 04, XDF = 0.00154, At = 38.7). 
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Figure 6.19d The effect of irrecoverable energy storage on the strain 
hardening response of SIAR to velocity only step input 

in the absence of second-sound and heat-flow effects 

(v0 = -200 ms -1, D0 = 1.0 E 04, XDF = 0.00154, At = 38.7). 
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Figure 6.19e The effect of irrecoverable energy storage on the 
plastic strain response of SIAR to velocity only step 
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6.3 Discussion of Results  

All results involving the propagation of shock waves, for 

example Figure 6.2a, show the excellent shock resolution profiles of the 

numerical method of characteristics whereas there are evidences of shock 

smearing in the MacCormack finite difference scheme due to the 

phenomenon of numerical dispersion. Application of available shock 

capturing schemes such as the ones discussed in Chapter 5 did not 

improve the shock resolution capabilities of the MacCormack scheme. The 

author believes that this is due to the fact that the problems studied 

in this work are inherently dissipative thus not being able to benefit 

from additional dissipation introduced as artificial viscosity via 

conventional shock-capturing schemes. The observed numerical 

dispersions were most pronounced for velocity and stress responses but 

the responses of the temperature, heat flux, strain hardening, and 

plastic strain are better as can be sen in Figures 6.2b, 6.2c, 6.5a, 

and 6.5c, for example. 

For the cases involving acceleration waves - that is responses 

to pulsive sine and terminated ramp inputs, there are excellent 

agreements between the characteristic and MacCormack algorithms for all 

variables. This can be easily seen from Figures 6.7a-c and 6.8a-c for 

aluminum, and Figures 6.15a-c and 6.16a-c for copper. Therefore, the 

MacCormack scheme is recommended for applications involving continuous 

inputs since algorithms based on this scheme are far easier to' design 

and considerably cheaper to implement. 

The initial heat flux responses are usually very high but die 

down and attain steady-state values after longer time periods as can be 

seen in Fiures 6.2b and 6.lob. It can also be seen that for suddenly 
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imposed velocity or stress impacts, the heat flux magnitudes are 

greatest at the impacted ends for all times. These two observations 

show that in short-time response studies, non-adiabatic analyses are 

required especially at or near points of applications of impacts. The 

heat flux responses to mechanical-only inputs are very localized as can 

be seen in Figures 6.4b, 6.6b, 6.11b, and 6.14b. 

As expected, for identical input conditions, the heat flux 

response levels of copper are generally higher than those of aluminum 

because copper has a higher coefficient of thermal conductivity - 

compare, for example, Figure 6.2b and Figure 6.lob, or Figure 6.7b and 

Figure 6.15b. 

It is interesting to note that the terminated ramp input gives 

linear responses of velocity and stress but nonlinear responses in 

temperature, heat flux, and even strain hardening. Figures 6.8a-c and 

Figures 6.16a-c illustrate this observation. 

For very small values of the thermal relaxation time, the 

jumps in temperature and heat flux are more pronounced. Whereas, no 

jumps in 0 or q can be noticed in Figures 6.2b and 6.lob for a T0 of 3.8 

-12 -13 
E 10 s, appreciable jumps in 0 and q for = 3.8 •E 10 s can be 

observed for identical impact conditions in Figures 6.9b and 6.17b. It 

is also significant that the jumps in the thermal deformation variables 

are most pronounced at times that are shorter than or of the same order 

as the thermal relaxation time. 

Evidence of the ability of the constitutive model developed in 

this work to simulate thermomechanical coupling effects is given by the 

results displayed in Figures 6.4b, 6.6b, 6.11b, 6.12a, and 6.14b. These 

results illustrate that stress impacts or velocity impacts would 
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generate thermal fields and that a temperature impact would give rise to 

velocity and stress fields. In particular, there is evidence of 

temperature rise due to conversion of inelastic mechanical work to heat 

energy which are most pronounced near the impacted ends where the 

plastic strains, of course, attain their maximum values; This also 

shows that the law of conservation of energy is capable of predicting 

temperature rises in inelastic deformation processes. 

Figures 6.18a-e and 6.19a-e illustrate the influence of the 

stored energy of cold work on the various responses. First, it may be 

observed that neglecting the irrecoverably stored energy slightly 

overestimates the responses of the mechanical deformation variables: v, 

, Z, P. The overestimation becomes more pronounced as time increases 

as can be seen in Figures 6.18a and 6.19a, for example. Thus, it is 

believed that appreciable overestimation of these variables would be 

observed for very large times. Figures 6.18c and 6.19cc1ear].y show 

that neglecting the stored energy of cold work leads to appreciable 

overestimation of the temperature rise in the material. This is 

consistent with physical expectations since neglecting the stored energy 

is equivalent to assuming that all the plastic mechanical work is 

converted into heat energy. It was also found that neglecting the 

stored energy of cold work overestimates the wave speeds as illustrated 

in Tables 6.3a and 6.3b. 

Although for nonlinear problems, the shock waves do not 

necessarily propagate along the characteristic curves, it was found in 

this work that the shock waves appear to propagate along the 

characteristic directions. This is because the velocities of the shock 

waves (VG and VL) computed from the Rankine-Hugoniot conditions, 
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Table 6.3a Effect of stored energy of cold work on the initial wave 
velocities in an aluminum rod for different values of the 
thermal relaxation time. 

Thermal 

relaxation 

time, T0 (s) 

Lagging wave velocity, 
V5 (ms ) 

Leading wave yelocity, 
V3 (ms ) 

Stored 
energy 

'included 

Stored 
energy 

neglected 

Stored 
energy 
included 

Stored 
energy 

neglected 

3.8 E 13 6147.87 
6139:44 11627.10 16086.90 

3.8 E - 12 3369.39 4902.60 6153.66 6370.49 

2.0 E - 11 1468.71 2179.97 6153.57 6244.91 

1.0 E - 10 656.827 976.37 6153.55 6235.55 

Table 6.3b Effect of stored energy of cold work on the initial wave 
velocities in a copper rod for different values of the 
thermal relaxation time. 

Thermal 

relaxation 

time, T0 (s) 

Lagging wave 1velocity, 
V5 (ms ) 

Leading wave yelocity, 
' V3 (ms ) 

Stored 
energy 
included 

Stored 
energy 

neglected 

Stored 
energy 
included 

Stored 
energy 

neglected 

3.8 E - 13 4756.13 4752.28 14296.40 17523.10 

3.8 E - 12 4520.33 4640.33 4756.75 5674.99 

2.0 E - 11 1983.85 2381.27 4758.21 4820.39 

1.0 E - 10 881.278 1067.92 4756.19 4806.91 



Table 6.4a Comparison of the initial velocities of the shock waves calculated from the jump 
conditions and the wave velocities computed from the numerical algorithms for an 
aluminum rod when the stored energy is neglected. 

Thermal 
relaxation 
time, T0 (s) 

Lagging wave velocity 

-1 
(ins ) 

Leading wave velocity 

-1 
(ins ) 

Uncoupled wave velocities 

-1 
(ms ) 

VG V5 V  V3 

Purely 
mechanical, 

V 

Purely 
thermal, 

 VT 

3.8 E -1,3 6140.28 6139.44 16021.80 16086.90 6153.29 16050.60 

3.8 E -12 4876.95 4902.60 6343.20 6370.49 6153.29 5075.66 

2.0 E - 11 2168.71 2179.97 6236.40 6244.91 6153.29 2212.43 

1.0 E - 10 975.11 976.37 6235.63 6235.55 6153.29 989.43 



Table 6.4b Comparison of the initial velocities of the shock waves calculated from the jump 
conditions and the wave velocities computed from the numerical algorithms for a copper 
rod when the stored energy is neglected. 

Thermal 
relaxation 
time, T0 (s) 

Lagging wave velocity 

-1 
(ms ) 

Leading wave velocity 

-1 
(ms ) 

Uncoupled wave velocities 

-1 
(ms ) 

VG V5 V  V3 

Purely 
mechanical, 

V 

Purely 
thermal, 

 VT 

3.8 E -13 4752.42 4752.28 17449.80 17523.10 4756.13 17508.90 

3.8 E - 12 4640.16 4640.33 5662.26 5674.99 4756.13 5536.81 

2.0 E - 11 2369.90 2381.27 4815.81 4820.39 4756.13 2413.44 

1.0 E - 10 1062.88 1067.92 4803.63 4806.91 4756.13 1079.32 
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equations ( 4.46), and the values of the characteristic speeds (V5 and 

V 3 ) are almost identical as illustrated in Tables 6.4a and 6.4b. All 

wave velocities are computed at the origin of the solution domain. The 

tables also show that the two wave velocities differ from the wave 

velocities corresponding to the purely mechanical (VM) or purely thermal 

(VT) theories. 

Some wiggles are noticed in the strain hardening responses. 

These are slightly noticeable in Figures 6.2c and 6.l0c for example, but 

are more seriously pronounced in Figures 6.7c and 6.8c. These are 

believed to be due to numerical problems associated with the stiffness 

of the evolution equations. - 

It was found by numerical experimentations that for both 

algorithms, lhe CFL criterion was necessary but insufficient for 

stability. The time step was found to be sensitive to the values of the 

thermal relaxation time, t0 , and the parameter D0 (s 1) which essentially 

determines the magnitude of the plastic strain rate. It was observed 

that a time step smaller than T was required for the numerical 

stability of each of the computational algorithms. This requirement 

considerably limited the computations reported to relatively short time 

response studies since a very thnall time step demands a very large 

number of computations in order to proceed far in time. 
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CHAPTER 7  

CONCLUSIONS 

Novel thermodynamically-consistent constitutive equations for 

the study of the propagation of inelastic waves are developed in this 

thesis. Essential features of dissipative effects such as heat 

generation, heat flow, thermomechanical coupling, and irrecoverable 

inelastic energy storage are incorporated in the model. Also included 

in the development are rate dependence and isotropic hardening.' The 

approach consists of a. systematic application of the theory of continuum 

thermodynamics with internal state variables, the results of materials 

science and mechanics experiments, and mathematical analysis. It is 

clearly illustrated by examples 

motivated, quantification of the 

energy functional is fesible. A 

that an explicit, yet physically 

irrecoverable portion of the free 

general framework under which 

procedure may be globally employed for the characterization of 

thermomechanical behavior of inelastic solids is given. 

The nonlinear material model presented allows for the coupling 

of thermoelastic and thermoinelastic variables and automatically gives 

the dissipative part of the stress thereby eliminating the need for a 

separate dissipation potential. The modal is also applicable over a 

wide range of temperatures since no assumption is made concerning the 

the 

the 

relative magnitudes of the incremental and reference temperatures. 

The" folldwing main conclusions may be drawn from the 

development of the constitutive equations and the design and 

implementation of the computational algorithms. 

(i) The law of conservation of energy can adequately deal with the 
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issue of balance of work and energy even in the presence of 

dissipative effects. Thus, there is no need for ad hoc 

assumptions that serve to re-empt the application of this 

fundamental principle of continuum mechanics. 

(ii) It is unnecessary to resort to ab initio quantitative guesses 

concerning the interconversion of mechanical work into heat 

energy. This issue automatically takes care of itself in a 

systematic application of the law of conservation of energy 

together with physically-motivated constitutive laws that 

account for the stored energy of cold work. 

(iii) In a plastically deforming material, the ratio of the energy 

irrecoverably stored to the energy converted into heat is not 

a constant but a variable that depends on the thermodynamic 

state of the deformation process. 

(iv) Neglecting the stored energy of cold work in inelastic 

analysis slightly overestimates the stress and velocity 

responses but leads to an appreciable overestimation of the 

temperature rise in the body. 

(v) Incorporation of the stored energy of cold work phenomenon 

decreases the wave speeds thus confirming the dissipative 

nature of the process of irrecoverable energy storage. 

(vi) There exist two coupled nonlinear thermomechanical waves 

propagating with distinct velocities in the positive X 

direction; the wave velocities are different from the purely 

mechanical or purely thermal wave velocities. 

(vii) The thermoinelastic waves propagate at the thermoelastic wave 

speeds in the absence of seond sound effects. This is 
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consistent with earlier experimental findings discussed in the 

text. 

(viii) The algorithm based on the numerical method of characteristics 

is more complicated and involves much larger computation times 

than the algorithm based on the MacCormack finite difference 

scheme. However, the numerical method of characteristics 

gives sharper resolutions of the shock profiles. 

(ix) The algorithm based on the MacCormack finite difference scheme 

is recommended for numerical simulations of acceleration waves 

or other time-dependent inputs, that are continuous with 

respect to the primary dependent variables. This 

recommendation is based on the observation that the MacCormack 

scheme gives very accurate results with negligible numerical 

dispersion for smooth inputs while it is easier to design and 

cheaper to implement. 

(x) For both computational algorithms, the CFL stability criterion 

is necessary but insufficient for stability. The time step 

required for stability is sensitive to the - smallest 

characteristic time of the physical process. For the problems 

considered in this thesis, in particular, the time step was 

found to be sensitive to the thermal relaxation time and the 

magnitude of the plastic strain rate. 

(ii) Heat flux responses attain steady-state values after 

sufficiently large times but are significant for short time 

response studies of fast dynamical systems. 

As far as the author knows, no elaborate quantitative analysis 

of inelastic wave propagation that encompasses non-isothermal, 
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non-adiabatic, and coupled effects, and that involves so many dependent 

variables as was done in this work has been reported in the literature. 

It is hoped that the results and conclusions given above will provide 

further insight into the methodology of inelastic constitutive modelling 

in general and the theory of inelastic wave propagation in particular. 

It is also expected that the work will be exploited for improving the 

design of plastic wave experiments and the proper interpretation of 

experimental data especially in the presence of high strain rates. 

7.1 Recommendations for Further Work  

Furlher work is needed in the experimental determination of 

the stored energy of cold work for a wider variety of loading conditions 

and for more metals and metallic alloys. This will allow the 

application of the procedure developed in this work to multidimensional 

stress states and to the characterization of other materials. 

Inclusion of more internal state variables such as directional 

or kinematic hardening will be desirable for situations involving finite 

geometries so that loading and unloading phenomena caused by wave 

reflections may be accurately modelled. 

As discussed in Chapter 4, conventional forms of evolution 

equations for internal state variables lead to vanishing jumps of the 

internal state variables. In the light of the fact that this is not 

generally consistent with the physical behavior of inelastic deformation 

processes, it is recommended that serious considerations be given the 

development of evolution equations that include divergence terms. 

Development of shock-capturing schemes that are more suitable 

for nonconservative systems of equations would certainly improve the 
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shock resolution capabilities of the MacCormack finite difference 

scheme. 

It will be interesting to search for numerical algorithms that 

demand less stringent stability requirements so that computations can 

proceed faster and further in time. 

In summary, the author believes that any exploitation of 

advances in the various branches of knowledge illustrated in Figure 1.1 

will significantly contribute to progress in the study of wave 

propagation in inelastic solids. 
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APPENDIX 

DETERMINATION OF THE MATERIAL PARAMETERS B 4 and B 5 

The detailed determination of the values of the quantites B 4 

and B5R which are used as the auxiliary conditions for the solution of 

equations (3.30e) and (3.30f) is presented in this appendix. 

Recall that the explicit representation for the stress is 

given by 

a = A11 -[ 3X(0) + 2ji(0)Jc(0)O + [A(0) + 2p(0)]E + B4 (0)Z + B5 (0)P. (Al) 

Consider a piece of material to be in the reference state R defined in 

equation (3.8) as 

R = ft = ER, Z = Z  = ZO, P 1R' o}. (A2) 

Let the state R0 be associated with a reference undeformed 

configuration in which the differential temperature ( 0) assumes a zero 

value, that is, 

R0 = ft = 0, Z = Z0, P = 0, 0 = o}. (A3) 

This stress-free configuration implies that at state R0, the value, of 

the stress is zero, that is, 

a = 0. 

Substituting (A3) and (A4) into (Al) gives 

A11 + B4R ZO = 0. 

(A4) 

(A5) 

Now, consider the same piece of material to be in another 

stress-free undeformed configuration in which the uniform differential 

temperature is 0 = 1 K. This equilibrium configuration, R1, is defined 

as 
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R1 = {E = 0, Z = ZO , P = 0, e = 1 K}. (A6) 

In (A6), it should be noted that the value of the strain hardening 

parameter corresponding to state R remains essentially the same as the 

value for state R0. This is because the strain hardening parameter is 

insensitive to very small changes in temperature. 

The expression for B4(o) may be recalled as 

1 - A1 - A2TR 

B4 (e) = B4R(l + exp(x2e). (A7) 

From equation (A7), the value of B4(0) at this latter reference 

configuration (R1) is 

l_X1A2TR 

or 

where 

B4 ( e) 
1 

R1 = B41 = B4R(l + exp(x2) , (A8) 

B41 = B4RS 

1 - A1 - A2TR 

(A9a) 

S = (1 + exp (A9b) 

R 

It should be noted that S is known because XV  x2 and T  are known. 

Since state R1 is also stress-free, that is, 

= 0, (AIO) 

and there is no appreciable variation of the thermoelastic material 

properties A(0), i(0), and a(0) for small increments of temperature, 

satisfaction of the expression for stress at state R1 requires that: 
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A11 -(3 XR + + B41Z0 = 0, (Alla) 

or, on using equatidn (A9a) in equation (Alla), 

A11 -(3 XR + 2 PR) R + SB4RZO = 0. (Alib) 

Solving equations (A5) and (Alib) simultaneously gives the two 

unknowns as 

1 - A1 - A2TR -1 

Au =(3X + 2 PR) c[1 - exp(A2)(1 + 

(3 AR + 2 

B4R = -[ I [1 - exp(A)(1 + 
R 

(Al2) 

1 _Al_A2TR 1 

I . (A13) 

Text, consider the approximate isothermal stress-strain curve 

of a plastically deformed material to be as shown in Figure Al below at 

the reference temperature 0 = 0. 

0• e = o 
(T= TR) 

10 

Figure Al Isothermal stress-strain curve at the 
reference temperature. 
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From equation (Al), it is easy to see that 

so that 

ap 

aa 
-= B5 (0), 

0=0 

T = T  

= B 5 

(Al4) 

(A15) 

Thus, from equation (A15), it can be seen that B 5 is the rate of change 

of the stress with the plastic strain at the reference temperature. It 

follows that B 5 is the slope of the isothermal stress-plastic strain 

curve. 

Invoking the additive decomposition assumption of the total 

strain into elastic and plastic parts and assuming, that the 

elastic deformation obeys Hookets law, the stress-plastic strain curve 

can be constructed from the stress-total strain curve given in Figure Al 

as follows. The stress-strain relation in the plastic region of Figure 

'Al is given by 

a = a + ET C - ETCY, (A16) 

where ci is the yield stress and C is the corresponding strain. The 

two assumptions above imply that 

(A17) 

Cr YRE, (Al8a) 

and Cr = YRCY. (Al8b) 

Substituting equations (Al7), (Al8a), and (Al8b) into (A16) gives 

a=a YRET  )P. (Al9) 
Y YR_ET 

Equation (Al9) reveals that, approximately, the stress-plastic strain 

curve is as shown in Figure A2. 
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e= o 
(I=IR) 

B 5 

P 

Figure A2 Derived isothermal stress-plastic strain 
curve at the reference temperature. 

Thus, it can be seen that the value of the constant B 5 is approximately 

determined as 

B5R 

Y R E T 
(A20) 


