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ABSTRACT

Collagen fibers and their component fibrils make up the protenaceous
"backbone” of most tissues and provide the majority of their resistance to tensile
loading. Spatial orientation of collagen fibrils is an importgnt factor in determining
tissue properties. This is particularly true in ligament tissue, sincé ligaments must
be loose enough to allow joints to méve but tight enough to prevent joint surfaces
from separating. A normal (healthy) ligan;xent consists of a nearly parallel
arrangement of collagen fibrils. In contradistinction fibril distributions in ligament
scar are highly disordered. As tl;e ligaments heal, fibril segments are re-aligned,
providing greater axial support. In this thesis a method is presented to
reproducibly quantify the collagen arrangement in normal ligaments and in

ligaments at different stages of healing.

In this method an image made up of a number of line segments oriented at
different angles (such as scanning electron micrographs of collagen fibers) may be
decomposed info several component images by using Fourier domain directional
filtering. Modeling the collagen fibers as being made up of piecewise linear fibril
segments, sector filters spanning different angle bands are used to' extract
component images with fibrils oriented only in the chosen angle bands. A higher
angular selectivity is achieved by removing a certain amount of low fre_quency

components. Artifacts are reduced by multiplying the sector filters with a raised
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cosine window to give smooth attenuation characteristics. The filtered images are
then binarized and quantified in terms of area occupied by fibril segments in the

specified angle bands to obtain angular distributions of collagen.

An error analysis is performed to verify the suitability of this procedure by
appl&ing it on simulated test patterns. Results obtained from test patterns and from
examples of scanning electron micrographs of collagen fibers in normal and healing
rabbit ligaments are presented here. Statistical measures, such as entropy, second
central moment, and cross-correlation are qalculated from these distributions to
quantify the axial aiignment of collagen in healing ligaments. It is shown that
these statistical measures change monotonically with healing time, approaching the
values for the normal ligament. This .is the first quantitative analysis of the

collagen remodeling process.

The above procedure may be applied to injured ligaments which have been
Ucatgd in different ways (e.g., immobilization, exercise, etc.), and the rate of
healing in each case may be determined quantitatively. This information will be
useful to physicians in treating ligament injuries by helping to identify the factors

which optimize collagen remodeling in the healing situation.
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CHAPTER 1

INTRODUCTION

1.1 Organization of collagen fibers in ligaments

Virtually all connective tissues in the human body are made up of ;/ariable
forms of a fiber-filled matrix. A fiber, by definition, is a bundle of fibrils[1].
Fibrils consist of various sizes and shapes of chérm‘cally distinct proteins known as
collagen[2], with auginentation by other fibrous materials such as elastin. There is
a complex interaction between these | ma’terials and the non-fibrous "ground
substance" (water, proteoglycans, other élycoprowms and glycolipids, etc.) in all
tissues, giving each tissue relatively unique mechanical properties. As with any
composite fiber-reinforced  material, the quantity and the quality, as well as the
spatial organizﬁtion of reinforcing fibers in ligaments have considerable influence

on their mechanical behavior[3].

Ligaments are highly organized connective tissues that stabilize joints. They
normally consist of nearly parallel arrangements of slightly wavy or "crimi)ed"
collagen fibers tha.lt are attached to bone on both sides of a joint, and serve to guide
the joint through its normal motions while preventing its surfaces from being
separated. Injuries ’to ligaments are very common, resulting in this normal, highly
ordered structure being replaced by a relatively disordered scar tissue. This scar

tissue has many quantitative and qualitative differences from the normal



ligament[4], but the relative disorganization of its constituent collagen fibers may
be among the most critical. The loose meshvs(ork' of fibrils in the scar tissue may
not be able to resist tensile loads within the same limits of deformation as a normal
ligament. The injured or healing joint, therefore, may be "loose" or unstable as:a

result of a ligament injury.

As an injured ligament heals, it is speculated that, like other tissues such as
skin, this "loose" meshwork of fibrils will gradually become re-aligned by a
_process known as remodeling. Thus, at different stages of healing, it may be
expected that the distribution of collagen fibrils in the ligament would be
increasingly different from the random distribution in éarly scar tissue, gradually

approaching the alignment of a normal ligament.

Although many qualitative and quantitative differences; between normal and
healing ligaments have been previously described in an animal model[5], the all
important quantitative comparison of collagen alignment has not been performed.
In order ‘to describe and quantify these organizational differences, a standardized

and objective method of assessment has to be developed.

1.2 The image processing problem

An image of a given tissue may have varying numbers of fibrils oriented in
different angle bands, covering certain percentages of the total image area.
Modeling the fibrils as being made up of piecewise linear segments oriented at

various angles, we wish to break down the given image into component images,
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each having line segments extracted from various fibrils, oriented within a specified
angle band. This could be achieved by frequency domain directional filtering using

the Fourier transform.

In this thesis, the image processing requirements for quantification of the
surface orientation of collagen fibrils in noﬁnal and healing ligament tissue samples
along different directions are discussed. The relative fibril-covered area within
each angular sector scanned is determined. The collagen distributions so obtained .
are analyzed quantitatively in terms of fibril alignment at different stages of healing

of ligaments by using suitable measures of dispersion and correlation.

In this project, only the surface orientation of collagen fibers seén on freeze-
fractured surfaces is considered. The ﬁt:)ers lying in lower layers, which appear
silhouetted in the image, are considered as background. It is assumed that the
collagen fiber distribution at deeper layers in the ligament is similar to that at the

surface. v

Dependin.g on the amount and the nature of "ground substance", the grey
levels of different fibrils in the image of a tissue sample may be different. Thus,
the procedure should be able to extract fibrils with varying grey levels in the
component images. Further, some of the images may contain blobs of matrix
material which are not directional in the true sense. It is desired that such lumps be
filtered out in the component imagés, as they probably do not provide any

significant resistance to tensile stress.
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It is found in most images that there is considerable overlap between fibrils
oriented at different directions. Such overlap should contribute to each of the
corresponding component images. Finally, some-of the fibrils in the image may
follow smooth curves or twisting bends. The designed procedure should be able to
break such fibrils into piecewise linear segments, 6r should be able to follow

smooth bends within the defined range of angles.

1.3 Applications

A procedure as outlined above should find application in studies on ligament
healing and growth. In newly injured. tissue, for example, the distribution of
collagen fibrils is highly random while in a normal ligament these fibrils are mostly
aligned with its longitudinal axis. The distribution of fibrils in ligaments which
have been allowed to heal for some period of time will bé between these two
extrema, and the extent of deviation from the normal distribution may help

quantify the current stage of healing.

It has been postulated that the rate of healing of injured ligaments depends on
the nature of tréatmcnt[6]. Histopathological hypotheses, such as - "exercise
speeds healing of injured ligaments", or that "immobilization retards the healing
process"[4] may be tested by quantitative comparison of the alignment of collagen

fibrils at different healing intervals for different treatment modalities.



1.4 Thesis outline

In this thesis, an attémpt is made to put forward the basic ideas of directional
data analysis, the design of suitable sector or fan filters, and the scope of
applications. Brevity in discussing the problems and their solutions has been
maintained throughout. Nevertheless, a number of plots and figures are included to

. substantiate the discussions.

In the current chapter, a brief overview of collagen structure in connective
tissues has been presented. The image processing problem has been defined and the
desired features of the methods to be developed have been mentioned. ‘Chapter 2
describes the preparation and handling. of tissues and the acquisition of images.
The concept of directionality of c’)bjects in an image is introduced in Chapter 3.
Different methods of directional ﬁlteriﬁg in both spatial and frequency domains are
described, and a number of practical applications of directional filters are discussed.
Chapter 4 discusses different aspects of the filter design in detail. Emphasis is
placed primarily on the significance of using a pre-filter. The component fibrils in
~ the filtered images are submerged in the background, and for quantification |
purposes these component images need to be binarized. Chapter 5. discusées the
applicability of currently available automatic thresholding schemes for this purpose.

The results of the research work are presented in Chapter 6. Error analysis has
been performed using test patterns to illustrate the accuracy of the filtering metho&.
Different statistical measures and their usefulness in quantitative interpretation of

the images are the topics of Chapter 7. The gradual re-alignment of collagen



fibrils in healing ligaments is demonstrated quantitatively. Various problems
encountered, artifacts arising from the filtering procedures as well as tissue
preparation, and the computational requirements of“ the method are discussed in
Chapter 8. Future research directions with thé technique developed are also |

outlined.



CHAPTER 2

IMAGE DATA ACQUISITION

2.1 Tissue handling

The images of the ligament samples were obtained from the Department of
Surgery at the University of Calgary. The animal model selected was the ruptured
and nonrepaired medial collateral ﬁgament(MCL) in the New Zealand white rabbit.
Under general anesthesia and with sterile technique, the right MCL. was exposed
through longitudinal medial incisions in the skin and fascia. The right MCL was
completely ruptured as described in r¢ferences[5, 7] by passing a 3-O braided steel
wire beneath it, an;i failing the ligament with a strong upward pull on both ends of | -
the suture. No repair of the ligament was performed and the skin wés sutured.

The left MCL was unruptured and served as a normal control.

The injured MCL was allowed to heal for a scheduled period of healing with
the animal being allowed normal unrestricted cage activity. The animal was then
sacrificed by intravenous injection of 375mg of phenobarbitol, and the healing
(right) and normal control (left) MCLs were harvested. The right and left MCLs
were exposed through medial incisions in the skin and fascia. The MCLs were
fixed in situ by dropping a fresh solution of 2.5% gluteraldehyde in 0.1 M
cacodylate buffer with pH 7.4 onto their surfaces. They were then removed at their

insertions, placed in 2.5% gluteraldehydp in 0.1 M cacodylate buffer with pH 7.4
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for three hours and dehydrated in increasing concentrations of eth;'—mol | H,y0
(30%, 50%, 75% and 100%). Each fixed and dehydrated ligament wa{s then frozen
quickly in liquid nitrogen aﬂd fractured longitudinally to expose the internal
collagen fiber arrangement along its length. The fractured tissue was then critically_
point dried, aligned, mounted and sprayed with gold / palladium. In each case, the
longitudinal axis of the tissue was distinguishable at low magm'ﬁcaﬁon, to allow

orientation of high maghnification photographs relative to that axis.

2.2 Image acquisition and digitization

Specimens were viewed under a Hitachi S-450 scanning electron microscope.
This model of microscope_ allows the spécimen to be moved in both x and y axes.
Initially, the mounted tissue was iriewcd through the monitor at a very low
magnification (say, 300x or 400x) and by adjusting the directional alignment
vernier in the microscope the longitudinal axis of the ligament was aligned with the
vertical éxis “of the photograph. Once proper alignment was achieved, the
magnification was increased to the desired level (typically 7K), and by adjusting x
and y axes verniers in the microscope the co-ordinates of the tissue sample to be
photographed were suitably chosen. In order to randomly photograph each
ligament, pairs of x and y co-ordinates were obtained using a random number
generator. A number of photographs_(typically 10) were taken accordingly from
the same tissue sample but at different locations. (It should be noted that the total

area imaged is an extremely small portion of the given ligament sample, far less
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than 1%. Also, an individual micrograph represents only a.small fraction of the
periodic "crimping" of the collagen fibers). Similarly, several photographs of each
of the healing and normal control MCLs were taken under the same magnification.
Some of the ligament samples were also photographed at different magnifications

to test the sensitivity of the designed procedure to varying magnifications.

Each of the photographs was digitized into a 256 x 256 matrix by using a
Fairchild CCD-3000 camera. with a Nikkor 55mm macro lens under the same .
conditions of aperture and illumination, and a Colorado Video Inc. CVI 274 frame
grabber attached to the VAX 11/750 research conllputer in the Department of
Electrical Engineering. The camera uses advanced CCD (charge-coupled device)

technology, and provides wide dynamic range and zero geometric distortion.



CHAPTER 3

DIRECTIONAL CHARACTERIZATION OF IMAGES

3.1 Introduction

J

It is often useful té) measure and analyze the directionality of an image. Such
measurements or analyses are usually interpreted in terms of a dominant direction
of orientation and the degree of directionality. Different grey level statistics such
as spatial moments and co-occurrence matrices may be used to represent the
directional nature of an image. Using suitable image processing techniques, image
features along certain directions may- also be enhanced or suppressed. Such
processing may be performed either in the space domain by using convolution
masks, or in the frequency domain by using sector filters. In general, spatial

operations are local, while frequency domain operations are global in nature.

In this chapter, different methods of analyzing the directionality of image

features are discussed. Some applications of directional analysis are reviewed.

3.2 Spatial moments

Spatial moments of an image have been used to determine its principal
axis[8]. In analyzing fiber images, this method may be helpful in finding out the

dominant angle of fiber alignment.

10
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It can be proved that the moment of inertia of an image f (x,y) is the
~minimum when the moment is taken about the centroid (%.7) of the image. The

moment of inertia of the image about the line (y — ) cos8 = (x — X)sind passing

ﬂnough (*.¥) and having a slope tan6 is given by

.
mg=2 3 [(x = X)siné - (v —7)0089] &) (3.1)
x y

In order to make m independent of the choice of co-ordinates, let us select the
centroid of the image as the origin. Then, ¥ = 0 and ¥ = 0, and the equation (3.1)

becomes

mg=Y 2 (x sin — y.cose)zf x,y)

7 (32)
= m 9 8in%6 — 2m 11 5in cos + m g, cos?0
where my;; is the (i,j Y order moment of the image and may be given as
m; =3 ¥ x'yl f (x,y). (3.3)
x y

By definition, the moment of inertia about the principal axis is the minimum.

Differentiating equation (3.2) with respect to 8 and equating to zero. gives

Mo $in20 — 2m; c0s26 — mg,8in20 = 0 (3.4)

or
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2m11

tan20 = ——————
(mao — mgy)

(3.5)

By solving this equation we can find fhe slope 61' the direction of the principal
axis.

If the input image consists ,of directional components along an angle ¢ only,
tﬁen ¢ = 6. If there are a number of directional components at different angles,
then © represents their weighted average direction. Evidently, this method cannot
detect the existence of components in various angle bands, and is t_hus inapplicable
for the analysis of healing tissues. Also, this method cannot quantify the fibril-

covered areas in the various angle bands.

3.3 Grey level co-occurrence matrices

In studies related to textural anaiysis of an image, some statistical measures
derived from the grey level co-occurrence matrix have been used to determine the
directionality of the textural primitives[8,9]. If & = (Ax,Ay) is the spatial
displacement, L is the total number of grey levels in the image énd Pgisan L x/L
matrix whose (i,j)”* element represents the number of times that a pixel having
grey level i occurs in position & relative to another pixel having grey level j, then
P is called the grey level co-occurrence matrix of the image for the displacement
8. Pg may be normalized with respect to the total number of point pairs in f (x,y)
for the displacement 8. The size of P depends-on the ‘nu_mber of grey levels L

present in the image, and does not depend on its size.
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The matrices P 5 for various values of & provide useful information about the
spatial distribution of grey levels in the image. For example, if the diagonal
concentration in Pg is high for § = (1,0) then the image possesses directional
components along the horizontal axis. Similarly, a high concentration of elements
along the main diagonal for 8 = (0,1) or (1,1) would indicate the presence of

parallel streaks at 90° or 45° in the input image.

An estimate of the directional contrast in an imagé is given by

| 1
| _ .
1+ 3 5 G = jR2Ps.0) -G8

i=1 j=1

The higher the value of D, the greater:is the number of directional components
present in the image. For example, if an image conmsists of rectangular line
segments only, then D=1. It may be mentioned here that D represents the
directionality along the angle dgtermined by the chosen value of 8. Different values
of & have to be used to represent the direcﬁonaﬁty of components along different
angle:s. This method suffers from a number of problems. Since & can have only a
few discrete values, analysis of images will be restricted to a few selected
directions only. Further, the connectivity of line segments is not checked for larger
values of 8. This method gives only approximate and relative measures of

directionality.
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3.4 Directional convolution masks

Convolution masks may be used in the spatial domain to enhance or suppress
directional components in the processed image[8,10,11]. This procedure has been
used for enhancement of remotely sensed images[12,13]. A 3 x 3 convolution

mask may expressed as

“where the parameters a to d and f to i are the weights to be applied to the
neighboring pixels of the central pixel corresponding to the weight e. After

convolution, the (i,j ) (central) pixel value in the image is replaced by
. . 3 3 * £
F@)=232 X MEDfE+k=2,j+1-2) (3.7)
k=1 I=1
If all the weights are equal, this convolution process is the same as mean filtering.

Directional convolution masks may be constructed by proper choice of the

weighting coefficients. If M is defined to be

1 1 1
M,=10 0 0
B S QS s |

then it suppresses the components along the vertical direction. Similarly,
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0 -1
Mh= O -'1
0 -1

removes the directional components along the horizontal direction. In order to

filter out the components along 45° and 1359, the following masks may be used

0 11 1 1 0
My= [-1 01{ or |1 0 -1
-1-10 0

It is obvious that this method filtering may be performed along a few selected
directions only. Use of larger masks allows us to increase the directional
selectivity to some extent. However, as-the size of the mask grows, the amount of
computation increases and the accuracy of the method decreases because of the
finite number of data points available in the discrete image space. Also, contrary
to our need, this kind of convolution mask is a notch (rejection) filter. Hence, this
method is not. suitable for the purpose of quantification of collagen alignment in

ligaments.

3.5 Frequency domain directional filtering

The two-dimensional Fourier transform (FT) of an image containing a straight
line is a sinc function confined to a direction orthogonal to the direction of the
line[14]. If an image is composed of different lines at different directions, its FT

will have components at the corresponding orthogonal directions. If we extract the
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components lying within the angle band (8; + 90°) to (8, + 90°) in the transform
‘domain and then take thé Iinvérse FT, we could expect to extract from the original
image, components lying within the angle band 6, to 6, only. Thus, to decompose
a fiber image, we could take its FT and apply filters that form sectors in the
frequency domain spanning the desired angle bands, and apply the inverse FT to

the results[15].

The properties of the Fourier transform[14,16,17] that are of relevance here
are linearity and rotation. Linearity implies that the FT of an image made up by
adding component images is simply the sum of the FTIs of the individual

componénts. Mathematically, it may be represented as

FT [g1(x.y) + g2(x,y)1 =FT [g1(x,y)]1 + FT [g2(x ,y)]. (3.8)

The rotational property states that when an image is rotated by a certain angle y in
the spatial domain, the FT gets rotated by an equal amount in the frequency
domain. Let G (R ,0) be the Fourier transform of the image g (r,9), where the two

functions are represented in polar co-ordinates. Then the rotational property may be

written as
FT [g(rd+W)]1=GR,0+W). (3.9)

An ideal directional filter consists of a sector filter in the frequency domain
spanning an angle band 6; to 6, with the dc point in the folded spectrum as the

vertex. The ideal filter may be expressed as
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H(r,e) =1 for 6159562
(3.10)
=0 elsewhere. -

The angular bandwidth [6,,6,] may be chosen according to the requirements.
Figure 3.1 shows an example of an ideal sector filter. Such ideal filters, however,
result in artifacts in the component images[15]. The next chapter describes

modifications and preprocessing required to obtain acceptable results.

It may be argued that a quantitative estimate of fibril-covered area along

- different angle bands in the iﬁput image could be obtained from the frequency
spectrum by considering the angular distribution of spectral energy itself; that is, \
. that the fraction of the total spectral energy lying within different sectors 'could
give a relative distribution of fibril-covered areas along different angle bands. But
this is not true, because the energy of such components will be dependent upon not
only the area of the corresponding line segments, but also upbn the amplitudes or
grey levels of the constituent fibrils. Further, while most of the energy in the
frequency spectrum is usually concentrated in the low frequency zone, the
definition of angle in the Cartesian co-ordinate system (on which the discrete FT is
computed) is particularly poor in the low frequency zone. Also, due to the finite
width of the line segments, the spectral energy is not fully concentrated at the
corresponding Fourier domainlangle. As the line segments grow in width, leakage
of spectral energy into other angular sectors increases. Hence, an analysis of the

angular distribution of energy in the Fourier domain does not necessarily reflect the
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Fig. 3.1 : Example of an ideal 2-D sector filter for the angle band 30° — 45° (in
Fourier space). The shaded region represents the passband with unity gain and the
white region is the stopband with zero gain.
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' true distribution of areas of different directional components having different grey
levels and varying fiber widths. The next chapter describes methods to overcome

these difficulties.

3.6 Applications of directional analysis

In directional filtering, the objects (or signals) that are aligned at a particular
direction are allowed to pass through the ﬁltef while the objects lying at all other
orientations are suppressed. The concept of directional filtering is not very new in
the literature. This principle was used more than two decades ago in extracting
desireci signals from hi'gh veiocity noise in geophysicﬂ data processing[18]. Some

of the applications of directional data analysis are briefly discussed here.

Optical Fourier analysis has been applied to evaluate the difference between
normal and pathologically changed bone tissues[19]. The radial distribution of
light energy in the diffractogram contains information about the sizes and the
distances between the collagen fibers within the bone tissue, while the angular
distribution gives the relative position of these osteological structures. These
diffraction patterns differ markedly for various pathological changes in the bone
tissues.‘ Different distance measures evaluated from the spectra have been gsed to

distinguish between normal and osteopetrotic bone tissues.

The principle of directional filtering has been used in the filtering of
geophysical data[18,20] and in designing fan filters[21,22]. Similar methods have

been used in wide band velocity filtering, which makes it possible to process a
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seismic record-section in such a way that all seismic events with dips in a given
range ‘are preserved with no alteration over a wide ffequency band; while the
events with dips outside the specified range are severely attenuated[18]. However,
all these methods employ the implementation of the filter transfer function in the
space domain. If we wish to extract components ?.long different angle bands, the
input data will have to be processed separately for individual cases. The Fourier

transform being a global process may be used very efficiently.

Optical diffractograms have also been used to filter out high velocity noise in
seismic data[23-25] and for directional filtering of acromagnetic maps[26]. When
coherent light is passed through a transmissive recording of data section, the
recérded signals act as an optical grating tor produce a Fraunhofer diffraction
pattern which is the two-dimensional FT of the section itself. With suitable lenses
the diffraction pattern canr be converted into an image of the original section. By
obstructing portions of the pattern correspoﬁding to particular frequencies or dips in
the section, one can remove such frequencies or dips from the reconstructed
image[23]. The optical processing is instantaneous and can be monitored easily.
However, it needs sophisticated instrumentation and suffers due to the poor

dynamic raﬁge of the photographic registration of the data section.

Directional filters find applications in image coding[27]. The low frequency
components corresponding to the uniform regions in the image may be coded in
the transform domain. The high frequency components may be decomposed into

many directional components, each of them presumed to contain edges belonging
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to a limited interval of directions. Edge information due to a line segment in an
image resulting from such filtering is located at the zero crossings in the spectt:um,
taken in the direction orthogonal to that in the space domain. Image decoding is
performed by synthesizing the directional edges from the coded: zero crossing
information and then superposing it on the image obtained from the low frequency

components. Efficiency of this coding scheme depends on the directional nature of

the encoded image.

Directional filtering has also been used for selecting features to describe
textures[28]. Its application to the representation of textures is justified by the fact
that directional edge information plays an important role in texture discrimination.
Various features evaluated from the directional edgeness of the image can be used

to classify different textures.



CHAPTER 4

FILTER DESIGN

4.1 Data windowing

Initial attempts towards directional decompositioﬁ of collagen fiber images
using ideal sector filters[15] indicated the feasibility of the “approach as introduced
_ in the previous chapter. Howc;,,ver, the results suffered from a number of artifacts
(e.g., ringing artifacts, smearing at botﬁ ends of the fibril segments and interference
from adjacent angle bands) due to the use of ideal filters as shown in Figure 3.1,
and the absence of data windowing, among other reasons. Improved filtering and

data windowing procedures[29] led to better results.

The size of the images analyied is typically 256 x 256 pixels. Forr improved
frequency resolution, the image is placed at the center of a 512 x 512 array witﬁ
the rest of the points set to the mean grey level of the image, instead of padding
with zeros. The image pixelé are then multiplied with a'modified Blackman-Harris
window([30, 31] to reduce spectral leakage in computing the FT of the image. The
modification to the Blackman-Harris window, as shown in Figure 4.1, prevents the
actual image data points from getting multiplied by the window coefficients.” If the
image data points are directly windowed, the points lying near the periphery of the
image will be multiplied by very small coefficients and fibril segments near .the

image boundaries will be suppressed in the filtered component images. It may be

22
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mentioned here that the fibril segments appear amidst a reasonably uniform
background, and hence the data points in the filtered images cannot be multiplied
by the reciprocal of the window coefficients to take account of éffects of
.windowing on the input data. Any attempt to do this would enhance the darker
background at the periphery appreciably and may even suppress the fibril segments

existfng in the filtered image.

The usage of such a window is justified by experimentally verifying its
performance. A set of data points representing a cosine function and shifted by a
dc value was polluted by adding a zero mean random Gaussian noise. The SNR of
the data sequence was 17 dB and the length of the seqﬁe;lce was chosen to be 256.
The data sequence was placed in the center of a 512 point FT array. Figure 4.2 7
shows the data sequence. The power spectral density function (PSDF) for this data

sequence was evaluated by using 512 point FT fpr three cases.

(1) - In the first case, no modification to the input data was performed (equivalent
to the use of a rectangular window) and the array was padded with zeros.
The resulting PSDF ‘is given in Figure 4.3.

(2) In the second case, the input data were padded with the mean value of the
data sequence and then the data points were multiplied by the coefficients of
the Blackman-Harris window[30]. The PSDF of the windowed data sequence

is given in Figure 4.4.

(3) Lastly, the input data sequence was padded with the mean value of the

sequence and only the padded points were multiplied by the modified
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Fig. 4.1 : Modified Blackman-Harris window for 512 sample points. The flat region of
256 points at the center prevents the actual image data from being windowed. The data
points are multiplied both rowwise and columnwise by the square root of this function.
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Fig. 4.2 : Example of a sinusoidal data sequence of 256 sample points with added zero
mean random Gaussian noise. The SNR is 17 dB. The sequence is given a dc shift.
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Fig. 4.3 : PSDF of the noisy data sequence using rectangular window. The signal is
barely visible in the spectrum.
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Fig. 4.4 : PSDF of the data sequence using Blackman-Harris window. Notice the high
side lobe suppression in the spectrum. '
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Blackmaﬁ-Harﬁ§ window shown in Figure 4.1. The msulﬁng PSDF is given

in Figure 4.5.

It is apparent from Figures 4.3 to 4.5 that the Blackman-Harris window gives
the best results as the frequency component present is highly distinguishable from
the spurious noise peaks. The PSDF obtained by using th; rectangular window is
very noisy and the signal is almost buried in the noise. Use of the modified
Blackman-Harris window suppresses the spectral noise appreciably and one can
easily. distinguish the signal in the spectrum from the noise peaks. Although the
result obtained by using the modified window has somewhat inferior side lobe
suppression characteristic compared to Fhat obtained by using the conventional

Blackman-Harris window, it retains higher spectral resolution.

The ‘effects of using ‘such a window on an image were studied using a real
fiber image consisting of different fibril segments with varying lengths, widths,
grey levels and orientations. The fiber image is given in Figure 4.6. The FT of this
image using a rectangular window is given in Figure 4.7. Figure 4.8 shows the FT
of the image using the modified Blackman-Harris window. As seen in Figures 4.7
and 4.8, spectra/l leakage is reduced by using the latter window. Hence, it may be
inferred that the use 6f the modified Blackman-Harris window helps in reducing

spectral leakage to some extent, and at the same time retains some of the

advantages of not windowing the input data.
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Fig. 4.5 : PSDF of the data sequence using modified Blackman-Harris window. The
presence of the frequency component in the signal is highly perceptible.

Fig. 4.6 : A representative image showing collagen alignment in a normal ligament.
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Fig. 4.7 : Fourier spectrum of the image in fig. 4.6 using a rectangular window.

Fig. 4.8 : Fourier spectrum of the image in fig. 4.6 using the modified Blackman-
Harris window.
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4.2 Prefiltering of the spectrum

Let us assume that an image f (x,y) consists of a rectangular line segment of
length Y, width X (given X <Y) and grey level G only. The image may be.

mathematically expressed as

F@x,y)=G rect(x/X)rect(ylY) 4.1)
where |
rect(k/K)=1 forlk|<K/2
=0 elsewhere.

The power spectral density function (PSDF) of the image is given by

| ¢ : ?
2 _ ~2v2v2 1 Sin(uX )sin (mvY)
|F(u,v)|*=GX°Y*| (X YY) I 7 4.2)

The PSDF may be expressed in polar coordinates with the change of variables
u =pcosd and v = psind as
|2

| sin (mpX cos®)sin (mpY sind
F(p,0)|2 = G2x2y?2 szn(?tp cos8)sin (mpY sinO) .
F (O] ' | (mpX cosO)(mpY sind) {

(4.3)

From equation (4.3) we may derive two useful functions, namely, the cumulative
radial distribution of energy W(R) and the angular distribution of energy ¢,(6).

Using the conjugate symmetry of the FT for real input data, they may be given as
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. Rn
YR)=2] { |F(p,0)|%d0dp (4.4)
0
and
6.®) =2 [ |F(p,0)|%dp for 6 &[0,n] BT

where r is the cutoff frequency up to which the low frequency components have

been removed from the spectrum.

From eqﬁations (4.3) and (4.5) it is evident that the function ¢, (6) l;as two
local maxima cormresponding to 6 = 0 and n/2, one of them being the principal
maximum and the other one being the segonda.ry. The relative weights of these two
peaks depend on the ratio Y/X. The higher the value of Y /X, ihe greater is the
amplitude difference between _the peaks and the greater is the amount of energy
concentrated in a particular direction. Equation (4.5) was evaluated numerically
and the function ¢,-4(6) is plotted in Figure 4.9 for different values of the ratio
Y/X. From these plots, it may be inferred that the directionality of an individual
line segment at a given angle depends only upon its length-to-width ratio. Also, it
is-important to note that even for higher values of Y/X, we have some spectral
energy at all 0. This is even more true in the case of the discrete FT which suffers
appreciably from spectral leakage. Hence, any attempt to extract a line segment
directed at an angle 3 by constructing a sector filter (90° + )£ 8B will lead to loss
of some spectral information and may eventually bring in some artifacts in the

filtered image.
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Now, consider the casé of an image consisting of two non-overlapping
rectangular line segments of identical dimensions with width X, length Y and grey-
levels G and G, respectively, one of them being aligned along the vertical axis of
the image and the other one being rotated by an angle 6, from that ax1s Using the
linearity and rotational properties, the FT of this @ge may be expressed as a

superposition of two individual distributions

Fy(p.8) = G1F1(p,0) + G,F 1(p,0-6,) 4.6)
' where

sin (npX cosO)sin (xpY sind)

Fi(p,0) = (rpcosB)(mpsing)

4.7

In other words, F(p,0) is the FT of a rectangular line segment. of unit grey level

in polar coordinates.

From equations (4.5) and (4.6) it is evident that the corresponding angular
energy distribution function ¢, (6) has two principal maxima for 6 = 0 and 6 = 6,.
A minimum lies between them at 6 = 8,,. For example, if the line segments have
idenﬁcal grey levels (ie., G;=G,) then 6=6;/2. An index of angular
separability of the two distributions (due to two line segments in the composite

image) has been defined in reference[32] as

S = ¢r (O)+¢r (ek)"'2¢r(em)
¢, (0) + ¢, (6r) '

(4.8)

If the value of § is high, it is likely that the two line segments could be separated
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in the filtered images with reduced artifacts. The value of this index depends on the
relative grey levels and the dimensions of the individual line segments. Evaluation
of this index involves complex mathematics and may be found in referencet32].
However, some trends of the expected behavior of the angular separability are as

follows :

(1) for a given value of 6, the narrower the line segments (i.e., the higher Y/X),

the better is the separability, and

(2) distributions of quasi-square segments are difficult to separate, whatever may

be the angle between them.

So far nothing has been mentioned :about the implication. of the parameter r in
equation (4.5) and it has been assumed to be equal to zero. What happens when we
obliterate a éircular region at the center of the spectrum? The angular energy
distribution function ¢, (8) was calculated with different values of r for a simulated
test. pattern having line segments with varying lengths, widths, grey levels and
orientations (given in Figure 4.10), and is plotted in Figure 4.11. From these plots
it may be observed that the angular separability increases with higher values of r. .
But, a certain amount of spectral energy has to be retained for a meaningful
reconstruction of the filtered component images, and for the artifacts due to high
frequency noise to be at a relatively low level. The cumulative radial energy
distribution function WY(R) is given in Figure 4.12 for the fibril image in Figure 4.6.
It shows that most of the spectral energy is confined within a small radial disc, and

hence care must be taken while selecting a suitable cutoff. The optimum value of
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Fig. 4.9 : Angular energy distribution (theoretical) for rectangular line segments with
varying length-to-width ratios (A). As this ratio decreases, there is an increased
spreading of spectral components.
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Fig. 4.10 : Example of a simulated test pattern with rectangular line segments of
varying grey levels, oriented at different directions.
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Fig. 4.11 : Plot to show the increase in angular selectivity with the removal of low
frequency components for the image in fig. 4.10. The energy within different angle
bands of width 15° is given in the form of a bar-graph. Hcrc, r is the radius of the
low frequency zone removed from the spectrum.
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Fig. 4.12 : Cumulative radial energy distribution W(R) for the image in fig. 4.6.
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r also depends on the angular distance (6,) between the two distributions and on

the length-to-width ratios of the line segments.

The rembval of low frequency components from the spectrum of thé image
results in greater angular sclecﬁvity and avoids three problems: (a) overlapping of
low frequency components at all angle bands (as shown in Figure 4.9),
(b) interference from the components lying in the adjoining angle bands due to
very coarse deﬁnition of angle in the rectangular F:oordinate system for the lolw‘
frequency zo;xe, and (c) contributions to the low frequency zone due to the
presence of undesired quasi-circular lumps of matrix materials in a collagen fiber

image. However, the choice of this cutoff frequency for a real fiber image is

complicated due to the following facts :

(1) The fiber image may contain a number of line segments (fibrils) having

different dimensions and grey levels.

(2) Different component images may have varying amounts of fibril-covered

areas.

(3) We may have considerable overlap between fibrils oriented at different angle

bands.

Low frequéncy components in the spectrum constitute the background
information and the high frequency components correspond to the edges in the
image. Removal of too much of low frequency components may result in the

suppression of thick fibril bundles and the recovery of only edges in the filtered
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images.

In view of the above considerations, a sixth order Butéerworth highpass filter -
is used to remove low frequency components from the spectrum. Also, a fourth
order Butterworth lowpass filter is used to reduce ﬁigh frequency noise. The lower
and upper cutoff frequencies f; and f of the filter depend on the nature of the
image being analyzed. Thus, the image, before being passed through the sector
filter, is prefiltered with a bandpass filter, a radial section of which is given in
Figure 4.13. It has been mentioned earlier that the removal of low frequency
components tends to suppress the background information in the filtered images. In
order to circumvent this problem, the lower frequency components passed by the
ﬁlte1; shown in Figure 4.13 are weigh@ more than the higher frequency

components by a linear function. The net filter function is thus given by

1- Bfr)

H(f,)=
¢ (1 + FLIf P L + (F, I g PP DY2

(4.9)
where -

B = slope of the weighting function,

fr= normalized radial frequency,

m = order of Butterworth HPF = 6, and

n = order of Butterworth LPF = 4.

Optimum values of f;, fy and B were obtained experimentally by analyzing

a number of images.
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Fig. 413 : A radial section of the bandpass filter used, which comprises a 4th order
Butterworth LPF with fy = 0.5 and a 6th order Butterworth HPF with f; = 0.02. The
frequency scale is normalized with respect to the maximum radial frequency.
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4.3 Design of the sector filter

For directional filtering, the componeﬁts lying outside the desired angle band
) <6 < 6, are to be rejected. Use of an ideal sector filter leads to ringing and
smearing artifacts[lS]. In order to overcomé this problem, the sector filter is
multiplied by a raised cosine window[30]. The width of the cosine window is
normalized with respect to the specified angle band and the function is independent
of radial distance of the points. The window function may be mathématically

expressed as

-6
B

W (8) = cos(——=—m); O €[0,6,]

(4.10)

=0 otherwise
where -

8 = angle subtended by the FT sample considered,
8o = (8, + 6,)/2 = center of the desired angle band, and

B =6, ~ 6, = chosen angular bandwidth.

For o = 1.0, the window coefficients are very low for the components lying
near the two limits of the specified angle bénd, and the line segments
corresponding to these angles may not appear in the filtered image at all. To

alleviate this problem, a raised cosine window with o = 0.5 is used.

For the purpose of directional decomposition of collagen fiber images, the
angular bandwidth B is chosen to be 15°. The composité image is decomposed

into twelve component images spanning the angle range 0° ~ 180°. Following the
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sector filtering, the inverse FT of the spectrum is computed and the filtered images
are suitably thresholded and binarized (as discussed in the next chapter) to
represent fibril-covered areas only. A count of the number of pixels belonging to
the fiber class quantitatively represents the fibril-covered area in the chosen angle
band. Such measures obtained for all angle bands spanniﬁg 0 to 180 degrees for a

given image would describe the distribution of collagen fibrils completely.



CHAPTER 5§

AUTOMATIC THRESHOLDING SCHEMES

5.1 Introduction

After filtering a composite image into different directional components, the
fibril segments appear amidst a darker background in the corresponding filtered
images. Since it is desired to evaluate the total area occupied by the fibril segments

| at a given direction, the filtered images have to be binarized by using suitable
thresholds. The number of pixels belonging to the object class gives a measure of

the desired fibril-covered area.

In the ideal case of a bright object superimposed on a dark background, the
grey level histogram presents two peaks that are easily ,disﬁnguishable. The choice
of threshold for object detection is straight forward, being a point in the valley of
the histogram., However,‘ for most real images the thresholding process is not as
simple, as the histogram provides oilly first order statistical information,
disregarding the semantic content of the image. Further, the histograms are almost

never bimodal.

In quantifying the fibril-covered areas in various component images, it is
desirable to have a standard criterion to determine the suitable threshold values.
Use of an automatic thresholding scheme for this type of pixel classification will

make the procedure free from personal biases. This would enable a non-technical

40
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person to use the procedure and to interpret the results.

Four major types of algorithms are available in the current literature for
automatic threshold selection. In the first type, the input image is initially
enhanced by manipulating each pixel using a certain neighborhood. The Laplacian
or some other gradient operation is performed on the image to extract ~edgc
information[11, 14,33-38]. The pixels are modified in a way that leads to a .well-

shaped histogram, when selection of the threshold is no longer a difficult job.

In the second type, a parametric model is developed for the histogram of the
given image[8]. The histogram is app'roximated to be the superposition of a few
Gaussian distributions ‘in a least-square sense, and then a statistical decision
theoretic method is used for classiﬁcatioﬁ. But these methods are tedious, and like

all numerical algorithms, tend to be unstable. Hence these methods were not tried.

The third type of threshélding procedures use relaxation algorithms[8, 3?].
These are iterative procedures, and make use of pixel neighborhood properties in
the input image. The pixel value is modified iteratively according to some a priori
knowledge of the belongingness of a pixel to its associated neighborhood. The rate
of convergence of such procedures is high. These algorithms sharpen the valley in
the resulting histogram. However, in some cases, these methods could be

unsuccessful.

Algorithms of the fourth type deal with the histogram of the given image
only, and do not need any a priori knowledge about the image. Such a method

remains the same for different kinds of images, and thus is probably the most
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suitable scheme for unsupervised and automatic thresholding. An optimal threshold
is obtained by optimizing a few parameters under certain constraints[40-44]. -

Segmentation based on thresholding may suffer from three types of errors[45].
If the input imége is thresholded at some lower value than the actual one (not
known precisely), the binarized image may contain fictitious segments which were
not pfesent in the original image. On the other hand, use of a higher threshold
may remove some -of the segments which were actually present in the original
- image. Finally, the thresholded segments get distorted for a particular threshold,
when fictitious segments appear and some true segments disappear in the binarized
imagé. This is the most difficult prgblem in thresholding and it may not be always

possible to prevent this kind of error.

For the purpose of thresholding the component fibril images, a number of
currently available thresholding algorithms belonging to different classes were
tried[8,35-38,41,43,44].  Unfortunately, none of them yielded completely
sa'ltisfactory results. A few of these algorithms are briefly discussed in the

following sections.

5.2 Entropy considerations

Pun[42] put forward a new method of image segmentation u:sing the entropy
of the grey level histogram. Further modifications to this automatic thresholding
algorithm have been proposed[43]. The modified thresholding scheme tries to

maximize the information between the object and the background distributions of
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grey levels in the given image.

Let k be the proposed grey level, L be the total number of grey levels in the
input image, p; be the probability of occurrence of the i gfey level, P, be the
cumulative probability of occurrence up to the k™ grey level, H(j) be the total
entropy for the grey level distribution in the j* class (j =0 or 1), and H, be the

entropy of the entire histogram. We may then write the following equations

k
Py =3 pi, (5.1)
i=1
L
H, =- 7% p; log p;, (5.2)
i=1
and
k p; Di
HQ)=-3Y — log —
i§1 Py Py
1 k
== 2 p; logp; — P, log P, (5.3)
k i=1
H,
= log Pk + -P—-
k
where
k ,
Hy =- 3 p; log p;. (5.4)

i=1

Similarly,



L Di pi
H(l)=- %, log

1 .L

~1-p S, pilogp; = (1 —Pp)log(l — Py) (5.5)
R i=k+1 .

Hn —Hk

=log(l - P) + —l-t—]-):—

If the function (k) is defined to be the sum of the entropies of the two classes

H (0) and H (1), then from equations (5.3) and (5.5) we may write

Hy H,-H
P, 1-P,

Y(k) =logPr(1 = Pp) + (5.6)

The discrete value of £ which maxinﬁze§ y(k) is the desired threshold value. The
binarized image will have the maximum entropy or the maximum amount of

information for a given image.

5.3 Moment-preserving thresholding

A new approach to automatic thresholding using the moment-preserving
principle has been suggested by Tsai[44]. The threshold values are compﬁted
deterministicgﬂly in such a way that the moments of an input image a1:e preserved -
in the output (binarized) image. This approach may be regarded as a moment-
pfeserving image transformation which recovers an ideal bilevel image from a

blurred one.
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Let p; be the probability of occurreﬁce of the i grey level, L be the total
number of grey levels in the image, and m; be the j * order moment of the image.
The different order grey level moments may be defined as

L .
mi=£iﬂpr (5.7)
The input image can be considered as a blurred version of an ideal bilevel image
consisting of only two grey levels z, and zy, where z < z;. This fhethod selects a
threshold value such that if the imag*e is binarized to the grey levels z( and z,
tI-wn the first three moments of the image are preserved in the resulting bilevel
image. Hence, if P and P, correspond to the probabilities of the resulting classes

in the binarized image, we may write the following four equations

Py+Py=1,
Pyzg +Pyz{ =my,
Pyz¢ + Pz =m,, ‘ (5.8)
Poz$ +Plz;3 =ms.

These nonlinear equations may be solved for the four unknowns P, P, zg

and z; by using the methods described in reference[44]. Once Py has been

evaluated, the equation
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. pi =P, (5.9)
~

may be solved for the discrete value of k, which is the desired threshold.

5.4 Probabilistic Relaxation Method

This algorithm[8] makes fuzzy or probabilistic classification decisions at every
point in the image in parallel at each iteration, and then adjusts these decisions
during successive iterations based on the decisions made in the preceding iteration

at neighboring points.

Considering the binarization of an image, there are two output classes C and

C. The thresholding is assumed to be independent of direction. For each point A;
| there are only two probabilities p;o and p;; = 1 ~ p;o of being classified in C or
m C;. Cox;seqpenﬂy, there exist four .kinds of class compatibilities
€o0» Co1» €10 and €15, where ¢;; denotes the probability of a pixel belonging to
class C; being classified in C;. The compatibility functions ¢;; can have values in
the range (-1,1), neéative‘values denoting incompatibility.

The procedure starts with an initial probability estimate p; ) as the
normalized grey level of the pixel within the range [0,1]. For symmetrical cases
500 =c¢y; and cyg=cq. For the binarization of the fibril component images
ci; = 0.8 was found to be optimal. Then C“Ol =1-cy;>0. After each iteration
p;j is incremented or decremented according to the user-defined compatibilities.

The increments at the r* iteration are defined as
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a8 =¥ [coo Pio + oy Pi1l (5.10)
and

a0’ =3 [e19 Pio + c11 Pi1l (5.11)

where the summation is carried out over the defined neighborhood and ¢;; is the
iterative increment for the corresponding pixel i towards the class j. To ensure
that after modification the value of p;; does not become negative or greater than
unity, it is normaliz.ed as

oy o P 0+ a”)
Y >p{a + g

(5.12)

where the summation is carried out over the neighborhood of the pixel A;, J being

class zero or one.

As the iterations progress, the resulting grey level histogram attains the shape
of two isolated peaks separated by a flat valley. After the r* iteration the image
may be binarized by classifying the i pixel to class C o if p;1 < 0.5, or to class

C otherwise.

5.5 Inter-class Variance Maximization method

This is a nonparametric and unsupervised method of automatic threshold
selection for image segmentation. An optimal threshold is selected by the
discriminant criterion so as to maximize the separability of the resultant classes in

grey level[41]. This algorithm makes use of only the zeroth and first order grey



level statistics.

Let

Then,

and

where

L = total number of grey levels,

p; = probability of occurrence of ;grey level i,
k = intended grey level threshold,

®; (k) = probability of occurrence of class C; for the threshold ,

H; = mean grey level in class C;, and

L

Ur = Y i p; = mean grey level in input histogram.

i=1.

k L - '
ook) =2 pi 5 ok)= 3 p;=1- k)
i=1 i=k+1

k

Ho = o) Ei i p; = Wk)/ ayk)
k
Hk) =2 i p;.

i=1
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(5.13)

(5.14)7

(5.15) .

W(k) denotes the first order moment of the histogram up to the k¥ grey level.

Similarly,

_ by - k)
= 1= (k)

From the above relationships it is seen that

(5.16)
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0o(k) Ko + @1 (k) Uy = Hr. (.17

~ After thresholding, the resulting image has only two grey levels. The
probabiiitiés of occurrences of Cy and C; are given by wg(k) and (k). The
variance of the data points in the binarized image is denoted by cg(k), which may'

be evaluated from the following expression

OF(k) = g(k) (Ho — Br)? + @1(k) (g = ). (5.18)

Substituting the values of W; and w(k), o%(k) is given as

[y ogk) — wek)P?
2k) = .
0?( ) = WL = gl

(5.19)

Now, oZ(k) is a measure of global contrast achieved by thresholding the
image at grey level k. Hence, this quantity may be called inter-class variance. The
total variance for a given histogram is a constant and is given by the sum of intra-
class and inter-class variances. The main objective of this algorithm is to minimize
the intra-class variances which will automatically ensure the maximization of
inter-class variance. In other words, the aim is to minimize the probability of a
point belonging to a class being assigned to the other class. Now, the optimal

threshold is given by T where

o4(T) = max[cZ(k)]. (5.20)
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It should be mentioned here that in equation (5.19) k=1 and k =L correspond
to two trivial solutions and should be néglected. Since p; is non-negative and

bounded, a maximum always exists within the interval (1,L).

5.6 Performance of different thresholding schemes

The first two automatic thresholding schemes discussed are suitable for
1mages with h1stograms having distinctive peaks and a valley in between. The
filtered ﬁbnl component images usually do not have any flat valley region in the

h1stogram, and hence these two algorithms failed in most cases.

Unlike the first two algorithms, the probabilistic relaxation method is
neighborhood-dependent, and edgeness criteria may be included while thresholding.
Since each point in the input image has to be dealt with individually, the
computation time is naturally more than that for the inter-class variance
maximization method. However, the speed may be increased appreciably by using
parallel processors[8]. The method is reported to be more powerful than non-
iterative methods as it refines itself after each iteraﬁon based on local context. 'I:his
algorithm has been found to converge fast enough for all practical cases (typically

six to seven iterations).

The initial assumption of p;; as the probability of the i *h pixel being classified
to class j may lead to erroneous results when most of the grey levels in the given
image lic on one side of the grey scale midpoint; the binarized image becomes

either over-thresholded or under-thresholded. This method should only be applied
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to images that have substantial grey-level population on both sides of the grey level
midpoint. A long trail of low counts in the histogram of the input image could

render this method inapplicable.

The histograms of the filtered fibril images usually have a long trail because
of the nature of the background in the component images. Hence the relaxation
method‘ does not give a good result when the fibril-covered area in the component
image is low. Let G be the grey level at which the n;)nnalized histogram attains a
value 1/L (L is the number of grey levels in the input image) for the ﬁrét time
‘starting from the lower end. To overcome the _probiem mentioned above, we may
clip all pixels having grey levels lower than G to G. This gives good results for
filtered images with component fibrils-occupying smaller areas. However, it fails to

analyze component images for the normal tissues along the dominant directions.

The inter-class variance maximization method (referred to as Otéu’s method
hereafter), in general, yields better results than any of the other three methods. This
method gives good results for filtered images with a significant amount of fibril-
covered area. For other cases, the obtained threshold was always found to be lower‘
than the most suitable threshold obtained manually by trial and error. This method
is rthe most appropriate for binarization of the component fibril images. However,
to guard against errors due to the above limitations, the threshold value given by
the method was used only as an initial estimate, and the actual threshold was found

iteratively.



CHAPTER 6

RESULTS

6.1 Application to test patterns

The filtering p;ocedure was initially applied to the simulated test pattern
shown iﬁ Figure 6.1. The test pattern has line segments (fibrils) with various
lengths, widths and grey levels at four different angles, namely at 0°, 45°, 90° and
135°. These parameters were chosen to represent characteristics of individual and
grouped fibrils, and to study the performance of the ﬁlteriﬁg methods under varying
conditions. The FT of this test pattern is 'given in Figure 6.2. The FT shows the
presence of freciuency components along directions orthogonal to the ab-ove
mentioned directions as expected. The cutoff frequencies f; and fy for the initial
bandpass filter were chosen to be 0.006 and 0.500, where the frequency scale has
been norn'lalized with respect to the maximum radial frequency in the spectrum.
The value of B, the slope of the linear weighting function “in equation (4.9), was
chosen to be 0.7. Figure 6.3 shows a component image obtained using the filtering
procedure described previously with the angle band 125° — 140° in the Fourier
plane. Clearly, only those lines oriented at 45° (in the image plane) have been
passed. The corresponding binarized image, using the threshold value given by
Otsu’s method of automatic threshold selection, is shown in Figure 6.4.

Figures 6.5 and 6.6 show similar components (binarized) extracted from the
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Fig. 6.1 : A synthesized composite image with fibrils (lines) oriented at four
directions : 0, 45, 90, and 135 degrees. The line segments have different grey levels.

Fig. 6.2 : Fourier spectrum of the image in fig. 6.1. The presence of directional
components is evident from the spectrum.
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Fig. 6.3 : Result of application of the directional filter spanning the angle band

125° — 140° (in Fourier space) to the image in fig. 6.1. The filtered images have been
scaled to the display range of 0-255 (integers).

Fig. 6.4 : Thresholded and binarized component image obtained from the image in
fig. 6.3.



Fig. 6.5 : Thresholded and binarized component image for the angle band 80° — 95°
(in image space) obtained from the image in fig. 6.1.

Fig. 6.6 : Thresholded and binarized component image for the angle band 125° — 140°
(in image space) obtained from the image in fig. 6.1.
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composite image for the angle bands 80° — 95° and 125° —140° (in the image

plane) respectively.

A close look at these ‘component images will reveal that a region of overlap
of lines oriented at different directions coﬁtributes to each direction. The 135°
comp‘onent image in Figure 6.6 has the maximum error as the grey level of this
component is very low compared to those of the others. The quantitative
distx‘i‘éution of fibril-covered area along different airections in 'the analyzed test
- pattern is given in Table 1. The. true fibril-covered areas, which include
overlapping, are alsér given in the table. Table 1 shows that, except for the 135°

component, the errors are reasonably small.

It may be argued here that: the input image may be thresholded and binarized
before being 'analyzed to overcome the grey level dependency of the Aa;bove
procedures. However, the binarization process may remove some weak fibrils from
the input image. Further, the FT‘ of the binarized image may introduce a

significant amount of aliasing and other artifacts.

The accuracy of the method was further substantiated by applying it to the
simulated test pattern given in 'Figure 4.10. In this pattern the line segments do not .
run from one end to the ofher end of the image, thus allowing the effect of
smearing artifacts at both ends of the spgmenté to be visible in the component
images. Thé filtered component images were found to have negligible effects due
to smearing artifacts. The quantitative distribution of fibril-covered area along

different directions in this analyzed test pattern is given in Table 2. The component



Table 1 :
fig. 6.1.
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Distribution of fibril-covered area in the synthesized composite image in

True Area | Computed Area
Angle Band (pixels) (pixels) Percentage Error
359 - 50° 12528 11984 -4.34
80° - 95° 29952 29046 -3.03
125° - 140° 9486 6774 -28.59
170° - 180° 10240 10549 3.02

Table 2 : Distribution of fibril-covered area in another test pattern given in fig. 4.10.

Angle Band Tg&és:a Com(lla)l_:)t(e:lisiﬂre a Percentage Error

0° - 15° 331 370 11.8

15° - 30° 2601 2674 2.8

45° — 60° 2301 2258 -1.9

75° - 90° 798 880 10.3
105° - 120° 1872 1646 -12.1
1359 - 150° 812 820 1.0
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corresponding to 'the aﬁgle band 105° - 1200 has a large error due to the rfac"t that :
thé actual line segment is aligned exactly at 120°. The weighting function for the
sector filter W(120°) in equation (4.10) being equal to zero, ~ the defined sectér
excludes a substéntiail ﬁortion of the energy in the spéctrum of the. corresponding

components. This leads to a poor filtered image.

6.2 Application to ligament tissue samples

Since the collageh fiber images usually have poor contrast, the images were
first histogram equalized to improve their global contrast. After- some
experimentation, optimum values of f; = 0.02 and fy = 0.5 were determined for
the initial bandpass ﬁl_ter; which were used on ail the fiber imaggs analyzed.
Figure 6.7 shows the oﬁtput of the directional filter after binarization for one of the
dominant angle bands (75° —90°) in the image space for the normal ligament
image shown earlier in Figure 4.6. For the purpose of illustration, one more
binarized component image for the angle band 30° — 45° is given in- Figure 6.8.
Figure 6.8 shows that the procedure has been able to detect small and weak stray
fibrils also. Pfoceedin_g in the same way, directional components at all angle bands
were obtained. (The automatic thresholding method had limited success - more
details are presented in the Chapter 8). The resulés are given in Figure 6.9 as a
rose diagram[46]. This diagram, displaying relative fibril-covered areas in the
various angle bands used, shows that most of the fibrils in the normal tissue lie

close to the long-axié of the ligament (90°).



59

Fig. 6.7 : Binarized component obtained from the image given in fig. 4.6 for the angle
band 75° — 90° (in image space).

Fig. 6.8 : Thresholded and binarized component image for the angle band 30? — 45°
(in image space) for the image in fig. 4.6.
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Figure 6.10 shows an image of an injured ligament after one week of healing
and Figure 6.11 sl{ows' its FT. It is readily seen that the'collagcn fibers hére do not
have any domi-nant ori;en'tation. Figure 6.12 shows the filtered output (binarized)

| for the angle band 75° — 90°. Again, to qualitatively illustrate the efficacy of the
algorithm, one more binarized component image for the angle band 30° — 45° is
given in Figure 6.13. The quantitative results obtained for all the angle bands are
represented in Figure 6.14 as a rose diagram. It is seen that the distribution of

collagen fibrils in the healing tissue, at this interval of healing, is highly random.

Distributions as above were obtained for all images available in the normal
(20 images) and one week healing (18 images) ligament groups. The rose diagrams
of tﬁe' average 'angular distribution of collagen fibrils for these two' classes of
ligament samples are given in Figure 6. 15. _The average distributions for the two
classes demonstrate properties similar to those of the respective images presented

in Figure 6.9 and 6.14.

Proceeding in the same way, images of ligament samples corresponding to
different stages of healing (namely, three weeks, six weeks and twelve weeks) were
analyzed and the average distributions .of collagen fibrils for these classes were
obtained. The rose diagrams for these average distributions are given in
Figure 6.16. These diagrams indicate quantitatively the process of collagen re-
alignment with healing. Further quantification of these distributions is discussed in

the next chapter.
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Fig. 6.10 : A representative image showing collagen alignment in a one-week healing

ligament.
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Fig. 6.11 : Fourier spectrum of the imaée in fig. 6.10. The energy in the spectrum is
distributed in all directions, indicating that the fibrils in the tissue sample are scattered
at random.

Fig. 6.12 : Binarized component image for the angle band 75° — 90° (in image space)
for the image in fig. 6.10.
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Fig. 6.13 : Thresholded and binarized component image obtained from the image in
fig. 6.10 for the angle band 30” — 45° (in image space).
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Fig. 6.14 : Rose diagram representing the relative angular distribution of fibril-covered
area for the image in fig. 6.10. The axis of the ligament is at 90°.
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Fig. 6.16 : Rose diagrams representing the collagen remodeling process in ligaments at
different stages of healing : (a) 3 weeks of healing, (b) 6 weeks of healing, and (c) 12
weeks of healing. )
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6.3 Reproducibility of the results

The distribution éf collagen fibrils = varies \;videly between ligaments at
different healing stag.es'. However, images taken from the same ligament sample
should have sirnil‘a’rdis'tdbutions. The distribution ‘function for an indiyidual ﬁBer
image should show high correlation with the average distribution for the class.‘
The correlation coefficient (R) between two distributions x1(i) and x,(i) may be
defined as theé normalized dot product of the distribution vectors, and may be

expressed as

12
Y, x1()x(0)
i=l-
ﬂ [Zx%(i) Zx%(i)] 5 |

i=1 i=1 ’

where x, (i) represents the fibril-covered area for the k' image along i” angle

band.

To study the effect of the number of images taken from a single ligament
sample on the average distribution obtained, and to study the variability of
distributions for images of the same tissue, the following two experiments were

t

performed.

First, nine randomly selected fiber images taken from the same ligament were
used to form a representative group, and the average fibril distribution was
obtained. The value of R was obtained for each of the images in the group with

respect to the average distribution for the group. These are given in the column la



63

Table 3 : Correlation of collagen distributions ‘of individual images with the class
average distribution. Entries in columns la and 2a are correlations with the class
averages obtained from nine images each, while those in columns 1b and 2b are with
the class averages obtained from eighteen images each. The small differences between
the values of R in columns @ and b suggest that a group of nine images is adequate to
represent the collagen alignment in ligaments.

Image Normal ligament Scar tissue
correlation | correlation || correlation | correlation
number ’

(1a) (1b) (2a) (2b)
1 0.953 0.945 0.922 0.933
2 0.932 - - 0915 0.930 0.938
3 0.861 0.880 0.960 0.957
4 0.869 0.852 0.934 0.917
5 0.839 0.859 0.943 0.949
6 0.956 0.969 0.895 0.880
7 0.983 0.978 0.935 0.936
8 0.971 0.962 0.972 0.971
9 0.981 0.982 0.973 0.972
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of Table 3 for a normal ligament. Similar results for a scar tissue after one week of
healing are given in column 2a of Table 3. It is seen that the individual

distributions are highly correlated with the average distribution of the class.

Next, the group size was inpreased to 18 and ?:orrelation coefficients as above
were calculated again. The results are given in column 1b and 2b of Table ‘3 for
the normal and scar groups (for the same images referred to in columns 1a and 2a).
The change in the values of R is negligible between column 1a and 1b, and 2a and
2b. ‘Thué, a set of nine randomly‘ obtained images may be considered adequate fo£

meaningful representation of the collagen alignment in ligaments.

To study the varjations in collagen alignmenf from one ligament sample
(animal) to another of the same categor;II, two more normél ligaments taken from
fwo different ‘rabbits ‘were analyzéd. The average fibril distributions for- the two
ligament are given in Figlire 6.17. Comparing these with Figure 6.9, it is seen that

the three ligaments possess similar, though not identical, fibril distributions.

6.4 Effects of magnification

The tissﬁe samples refcrreci to so far were taken at a magnification of 7K.
This value was gxperimenta]ly chosen tb give an optimal compromis‘e between the
resolution of collagen fibrils and the area of the tissue being sampled. The
sensitivity of the directional filtering method with respect to fibril thickness was

tested by the following procedure.
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Fig. 6.17 : Rose diagrams showing the collagen alignment in normal ligaments in two
other animal samples : (a) a young adult rabbit of age 8 months, and (b) an older

rabbit of age 15 months.
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A tissue sample imagg was first obtained at a magnification of 4K. This
image was digitized to 506 x 474 pixels, effectively magnjfying the image by a
factor of about two as compared with the standard size of 256 x 256 used
routinely. The digiti_zed image was divided into four subimages of size 253 x 237
each. The irlagniﬁed image was decimated by a factor of two in both horizontal
and vertical directioﬁs (the resulting image coveré the same area as the four
subimages combined). Letting the standard digitization size of 256 x 256 represent
the same magnification ”gs that of the original micrograph, the decimated image has
a magnification of 4K while the subimages have a (relative) magnification of 8K.
' The average distribution for the subimages was obtained, and is plottedr with the
distribution for the def:imated image in Figure 6.18. It is seen that the two are
nearly the same. The correlation (R) betv;'éen these two distributions was found to
Be 0.99, signifying tﬁa’t the filtering method works at different magniﬁcations (in

the range studied) of the collagen fibrils as well.

It is evident from these experiments that the filtering method described works -
well for images of different medial collateral ligaments. The results obtained

should help in meaningful quantification of the alignment of collagen fibrils in

ligaments.
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Fig. 6.18 : Plot of fibril distributions in a particular tissue sample \for different
magnifications. A close match between these two distributions indicates the
applicability of the filtering procedure at varying magnifications.



CHAPTER 7

QUANTITATIVE ANALYSIS OF COLLAGEN ALIGNMENT

7.1 Quantification of collagen alignment distributions

Tﬁe directional ﬁltering of collagen fiber ;Inages in rabbit ligaments gives a
quantitative distribution of fibril-covered areas in different angle bands‘. It has been
demonstrated that such distributions of fibrils vary significantly with different
stages of healing of injured ligaments, and that the fibrils gradually re-align
themselves along the longitudinal axis as the ligaments heal. These distributions
have been represented by using rose diagrams. Different statistics derived from the
rose diagrams may be used to efficiently quantify the alignment of collagen fibrils

at different stages of healing.

Statistical measures that are commonly used for the analysis of data points in
rectangular coordinate system may lead to improper results if applied to circular
distribution of data[47]. Different methods of analyzing directional data could be
found in references[46-49]. In the present application, thé fibrils are not directed
vectors, and there is no need to differentiate between vectors at angles 0 and
0+ 180°. Thus, the fibril orientations have beer; restricted to a semicircular space
(total angular bandwidth of 180°). According to Batscheiet[49], such a distribution
of angular data need not be considered as a circular one, and the distribution could

be assumed to be linear. Then, the usual methods of statistical analysis of data
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points in Cartesian coordinate system are applicable. Such statistical measures, as
discussed in the following sections provide a meaningful insight of the alignment

~of collagen fibrils at different stages of healing.

7.2 Entropy of collagen distributions

The concept of entropy in information theory[50] could be very effectively
applied to the rose diagrams to determine the randomness of the disiributions. If
x; is the relative fibril-covered area along the i angle band, the entropy(# ) of the

distribution méy be defined as

12
H =-3% x logyx;. (7.1)

i=1

In normal ligaments, most of the fibrils lie within one or two major'angle
- bands, whereas in scar tissues the fibrils are scattered randomly m all possible
directions. The entropy of a distribution is the maximum when all the events within
| the distribution are equally likely. Hence, the distributions corresponding to scar
tissues should have higher entropies. As a ligament heals, more and more fibrils
align themselves with the longitudinal axis, and the cgrresponding distributions

should have smaller entropies.

The entropies for all the fiber images analyzed were calculated, and are
plotted as isolated points with respect to healing interval in Figure 7.1. For the

purpose of illustration, the corresponding measures for fiber images belonging to
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normal ligaments are plotted at ¢t =0 (before sustaining the injury). The average
distribution for a set of fiber images belonging to a particular healing interval was
obtained by adding and.normalizing the absolute values of the fibril-covered areas
in a particular angle band in all the images. The entropies for the average
distﬁbutions 6f fibril-covered areas at different healing stages are also plotted in the

same figure as small circles joined by straight lines to indicate the trend.

The measure, as expected, decreases monotonically with heéling time.
" However, there is no significant improvement during the period of third to sixth
week of healing. It may be noticed in Figure 7.1 that at earlier stages of healing,
the entropy of the average distribution of a set of fiber images happens to iae
greater than that for individual images. Tiiis may be attributed to the fact that the
iildividual distributions within the set of images analyzed may }iave a stronger
conceniration c;f fibrils in some of the angle bands, but when averaged over the
entire set of images, the individual variations get smoothed out, leading to a more
uniform (or random) distribution. It should be noted that tile measure of éntrop};
does not reflect directly the degree of non-alignment with the principal axis ;)f the
collagen fibrils. However, it gives a true picture of the randomness (or uniformity)

of the distribution.
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7.3 Angular moments for quantification of dispersion

Angular moments of the rose diagram data may be used to determine the
angular dispersion of the fibrils in the image. The angular moment M, of order k

is defined as

2
My =3, 6fx (1.2)

i=1
where 0; represents the _ceﬁter of the i** angle band in degrees. Since we are
interested in determining the dispersion of fibrils from their principal axis, the
moments may be taken with respect to the centroidal angle 8 for the distribution.
Evidently, 8 = M 1- Since the second order moment is always the @nimum wheﬁ
taken about the centroid, we choose k=2 for the statistical analysis of the rose

diagrams. Hence,. the second central moment M, may be defined as

T
My=73, (8; -0) x;. (7.3)

i=1

The second angular moments for all fiber images were calculated and are
plotted as isolated points with respect to healing interval in Figure 7.2. The
moments fér the average distribution of fibril-covered areas at different healing
stages are also plotted in the same figure as small circles and joined. This measure

also, as expected, decreases monotonically with healing time.

Unlike entropy, the use of M, as a measure of angular dispersion has one

pitfall. The fibrils may be well aligned in a normal ligament, but a few stray fibrils
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Fig. 7.1 : Entropy of the collagen distribution in ligaments at different stages of
healing.
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Fig. 7.2 : Quanuﬁcatlon of collagen remodeling process in healing hgaments using the
second central moment.
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at a larger ‘angular dista_nce may result in a very high value for M,. Theoretically,
the moment is maximum when the fibrils are lying equally in the first and in the
twelfth sectors only{ This probably means that while the fibrils are highly aligned,
the image was rotated by 90° during digitization. The entropy measures are free
from such problems Nevertheless, M, serves to be a very powerful tool in
. quant1fy1ng collagen alignment. As seen from Figure 7.2, M, < 800 corresponds to
normal ligament, wh11e M 9 > 2000 1nd1¢ates scar tissue. Intermed1ate values of M,

d1rect1y relate to the extent of healing.

7.4 Cross-correlation between class distributions

It was mentioned that fibrils in scar tissues tend to re-align themselves with
healing. Hence, the collagen distribution in ligaments after a longer healing interval

should have a greater correlation with the average distribution in normal ligaments.

The values of cross-correlation R as defined in equation (6.1) were calculated
for fiber images belonging to different healing stages with respect to the average
distribution in normal ligament, and are plotted as isolated points with respect to
healing interval in Figure 7.3. The cross-correlation. coefficients for the average
distributions at different healing stages are also plotted in the same figure as small

circles and joined. . This measure, as expected, increases with the healing time.

It may be noticed from Figure 7.3 that the individual variations in cross-
correlation coefficients within the one week healing tissue samples are small,

indicating that the distributions at this stage of healing are scattered uniformly
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Fig. 7.3 : Cross-correlation between distributions at different stages of healing and the
average normal distribution. :
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Fig. 7.4 : Plot showing an increase in total fibril-covered area in ligaments with
healing. The small circles represent the mean, and the vertical lines indicate the

standard deviation of fibril-covered area for all the images in the particular healing
class. ,
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along all possible directions, and that the collagen re-alignment process has not yet
started. Since the healing process' may be attributed to the ;ﬁbroblastic infiltration
from neighboring tissues[1, 6], the constituent 'collagen fibrils, at the initial stages
of healing, m;ay be oriented along different directions at different places in the
ligamen_t. A large variation in the values of R (but relatively smaller values of
angular dispersions) for the healing intervals of three and six weeks as seen in
Figures 7.2 and 7;3 supports this theory of healing. At the later stages of healing,
smaller variations in the values of R in the images suggests that the fibrils tend to

form a parallel arrangement.

Three different measures (viz., entropy, second central moment, and cross-
qo;elaﬁon) have been used in- this research work to quantify the collagen re-
alignment process, and each of them has its own merits and demerits. Studies
related to the comparison of performances of these measures have not been taken
up, as we are more interested in studying the collagen remodeling process for

different treatment modalities as indicated by any one of these measures.

7.5 Significance of fibril-covered area

The fibril-covered area in a tissue image may correlate with the mechanical
strength that may be provided by the iigament being analyzed. For example,
between two ligaments at the same healing stage, one having more fibrils per unit
area will have greater total strength. The fibril-covered areas in the different angle

bands were added and then divided by the area of the image (256 x 256) to obtain
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the total normalized fibril-covered area for an individual image. The mean and
standard deviation of the norma]izeci fibril-covered area for each set of images
representing a certain healing stage were calculated. The mean values are plotted as
small circles and the standard ‘deviations are plotted as vertical lines about their
mean valﬁes in Figure 7.4. An increase in the average fibril-covered area suggests
an increased concentration of collagen in healing ligaments, and lower values of

standard deviation justify this interpretation.



CHAPTER 8

DISCUSSION

8.1 Artifacts due to filtering

The performance of Fouriér domain directional filters was studied in detail,
regarding selectivity, influence of certain image features and artifacts. Good results
were obtained for angle bands of 10° or more. Use of smaller angle bands led to .
increasipg inaccuracies in the filtered components. Because of the finite width of
line segments (that make up the fibrils), the components in the frequency domain
do not lie completely within the corresponding sectors. As the thickness of the
fibrils increase;, there is an increased spreading of the Fourier components into
adjoining angle bands, leading to reduced angular gclectivity. This results in poor
“contrast in the filtered cdmponents, as ’well as interference due to line segments
~ lying in the neighboriﬁg sectors. Remové.l of an experimentally determined low
frequency zone helped in overcoming this problem to some extent. However, if a
large amount of low frequency components in the spectrum is removed, the
necessary background information is suppressed, producing only the edges of the
line segments. Sirice' it is intended to recover fibril-covered are'a‘ frorri the
" composite image, special care has to be taken in selecting the lower cutoff
frequency for the Butterworth bandpass filter given in equation (4.9). .Some

improvement in the results was obtained by deemphasizing the high frequency

82
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components.

- ‘Depending on the width ‘of the fibril bundles, the filtered components may |
silffe; from sme;aring artifacts at both'ends;c‘)f the segments. This is more true for
the second test pattern (Figure 4.10), whiqh has sharp edges at the ends of the line
segments, because the filter sector does not include information abon.t the édges
which ar;e in a direction orthogonal to the length of the lines. Howener, this effect
is not pronounced for line ‘se'gments having higher length-to-width ratios, as is
' aippa_fent from the 'errorl analysis in. Table 2. " In real fiber images, thick- fibril
. bundles usually do not end abruptly, and this effect is not ‘a serious problem. A
reiated artifact observed is fhat a small discontinuity between two fibril segments
lying within the same angle band, in some cases, appeared to be continuqué in the

filtered image.

The use of different values pf fL in equation (4.9) for analyzing fiber images
corresponding to various healing stages yielded different results. The angular
separability being lower for the images of scar tissues, a higher value:of fL
produced a better result. This suggests that f; is a parameter which could be
optimized for each case. However this‘ was not done m the present study to

maintain consistency and avoid bias.

8.2 Problems with thresholding

A number of automatic thresholding schemes[8, 34, 40,41,43, 44] were tried

for binarization of the filtered images, but all ‘met with only limited success. The
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three major difficulties are :

(1) Thg component in_1ages do not always have good contrast, particularly when
the ﬁbrils are thick.
(2) i—Iistogram‘s of thé filtered component images are almost aiways unimodal. In.
* most cases, the histogram of thé filtered image has a long trail éofreéponding
to the background. Such a 1ong trail of grey levels of small number of
occurrences makes probabilistic relaxationlmethods[S] inapplicable.
(3) Fibril-covered areas in different directions differ significantly. VA very 1c’>w
,poﬁulation of pixels corresponding to the ﬁbril-covered areas .make's

histogram-based automatic thresholding schemes[41, 43, 44] fail.

It Wés found that Otsu’s: method for automatic threshold selection[41] was
xﬁos‘t‘ suitable for the preéent application. The method woriced very well for the
te.st ‘pattern. It worked well for regl fiber images as well, when there was a
significant population of fibril pixeis .iﬁ-the‘ ﬁltered image. However, it failed when
* the filtered ifrlages had very few fibril pixeis, giving lower thresholds. An -
interactive manuai précedure was used to determine the actual thresholds for fhe
image components, st;u'ting with the automatically determined value given by
Otsu’s method AS an initiqlrerstimate of the threshold. In all cases, the actual

o thresholds used were higher than those given by Otsu’s method.

Use of manual thresholds may introduce a certain amount of subjectivity, and

thus the results may be affected by personal biases. Although this problefn cannot
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be tackled completely, every endeavor was made to keep the personal inclinations

as minimal as possible.

8.3 Computational .requirements

The processing of an image involves one forward FT and twelve i inverse FTs
The computation of the 2-D FT of an 1mage of size 512 x 5 12 takes considerable
time, and hence this method is computauonally expensive. Also, two complex '
© arrays of size 5 12 X 512 are required to run the program, one for stonng the
forward FT values and the other for storing the inverse FTs. Hence, the algorithm

requires a substantial central memory to avoid the problem of page-swapping.

The program was run on a VAX 11/750 “coml‘)uter employing UNIX operating
system with only .2Mb of core memory to find out its computational requirements.
The execution of the p.rogram‘ was hampered by a large nufnber of page.faults. It
took about 5 hou1;s of Ci’U time (abotit 12 hours of real time) for the completion
of the program. However, when the program was ron on a Su;l 3/180 computer
employing the same operating system but having 16Mb of central memory, it took

about 90 minutes of CPU time (about 2 hours of real time). Significant
improvement was achieved by running the program on the C.D.C. Cyber - 205
Supercomputer. This system maloes use of vector programming features
(FORTRAN 200), and tries to vectorize the programs automatically. Further
reduction in computiﬁg time was achieved by manually vectorizing some parts of

the program.. The program took only 8 minutes of CPU time and about 30 minutes
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of “real time to run on t.he Cyber - 205. All the results prese.nted'here were obtained
.by'running the program on the Supercomputer.

'i‘he computational complexity of a one dimensional N-point fast Fourier
transform (FFT) is proportional tc; N logzN , and that of a 2-D FFT fdr an image of
size N xN is proportlonal to N 210g2N In order to have higher spectral
resolutlon, the FFT array size was mcreased from 256 X 256 to 512 x 512. Th1s :
increases the memory requirements by a factor of four, and the resulting increase

in computation is given by

51221og, 512
© 256%10g,256

~ Since the spectrum is dividedinte tvvelve eqﬁal sectors, the filtered spectra are
.almost 90% sparse. Tﬁﬁs, sparse matrix techniques may be used to reduce the
memory requirements. Suitable pruning algorithms[51,52] may be also used to
elimidate computations involving the zeros. However, the sector filters have
varymg orientations, and in order to be able to use the modified FFT algorithms,
‘'the addresses for nonzero elements have to be determined each time the FT is
evaluated for d1fferent rows and columns. This will increase the software overhead
significantly. Also, to take advantage of the vector processing facilities on the

Supercomputer, it.is necessary that the data be contiguous in memory. Hence these

methods may not be useful in the present situation.
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8.4 Artifacts due to tissue preparation

‘While there is' a certain degree of three-dimensionality -to the micrographs
analyzed, the contribution of. fibril components at varying depths to the results is
affected by a number of factors. Such factors that ha_ve been étandardized include
the intensity of the ele;:tron beam in the microscope, depth of focus, photographic
methods, and image digitiiation parameters. However, the final tﬁresholding-
scheme applied to theh filtlered component images, being adaptive in nature, will
affect the various component images differently depending upon their contents.

This aspect cannot be controlled without introducing some bias.

The process of qﬁantiﬁcation of surface orientations of collagen fibrils may
also be adversely affec-:ted‘ by artifacts due to improper fixation and handling of
tissues (i.é., fiber &isruption, surface ﬁiegulaﬁﬁes, etc.). The aims of fixation are
rapid preservation of structure with nﬁnimum alteration from the living state, and
prot_c;ctiofx during embedding, sectioning and subsequent treatments[53]. But,
depending on. the nature of the ﬁxativc, there may be some loss of "ground
substance" and shrinkage of fibrous components during fixation. Alsq, the depth of
peﬁetration of different fixatives into the tissue samples may be different. 'These

factors may affect the qﬁantiﬁcation procedure.

Collagen fibrils vary widely in diameter from 16nm to several hundred
nanometers in different connective tissues. Proper magnification should be chosen

while acquiring the images to retain the required resolution.
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8.5 Scope for future research

- The definition of angle in the rectangular cootdinate system for low frequency
components is inaccurate, leading to artifacts in the filtered images. Two other

procedures that may lead to better results are :

(1) The Fourier space ‘samples in the low frequency zone within the filter sector
may be obtained: by extrapolation using the samples available in the higher
frequency zone where angular selectivity is better. Related procedures are |
commonly used in image reconstruction from projections (computed
tomography) by the Fourier method[8,54-62]. Many elaborate algorithms
have been proposed for this purpose. This procedure, however, would

increase the cOmputation time appreciably.

('2)7 The FT may be evaluated directly on discretized polar coordinate points[59].
. A sector of 1nterest may be sampled in Fourier domain w1th any desired
resolution, both in angle and radial distance (subject to practical computational
times). However, standard FFT algorithms (Acannot be used for such

computations.

The quantitative analysis procedure reported may be repeated under different
treatment modalities as well, to study the rate of healing under various conditions.
The information so gained should help clinicians design an optimum scheme for -

treatment of injured ligaments.
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As the' tissue imaging procedure is destructive, it cannot be used for
diagnostic purposes to determine the nature of injury sustained or the progress of
healing in human ligaments. However, if appropriate in vivo imaging systems (e.g.,
using optical fibers) were ever devised to photograph tissues, the inethod could be

extended for clinical diagnosis applications.
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