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ABSTRACT 

In many estimation problems it is inconvenient or impossible to 

make complete measurements on all members of a random sample. The 

problem is to estimate the distribution of the life times under random 

censoring. The one-dimensional random censoring model has been treated 

in great detail in the recent literature beginning with the landmark 

papers of Kaplan and Meier ('1958). 

For bivarite observations, the censoring may be univariate 

(homogeneous) or bivariate (heterogeneous). Various methods for the 

nonparametric estimation of a bivariate survival function in the 

presence of censoring have been proposed by a number of authors. The 

aim of this thesis is to compare the performance of some of the 

proposed estimators. 

In Chapter I, we consider a reduced-sample estimator and a 

self-consistent one, both of which were proposed by Campbell ( 1980). 

An extension of the Kaplan and Meier (1958) estimator to the case of 

bivariate censored data as was proposed by Korwar and Dahiya ( 1982) is 

considered in Chapter II. In Chapter III, the line of reasoning by 

Hanley and Fames ( 1983) is followed to develop a nonparametric maximum 

likelihood estimate of the underlying survival function under 

homogeneous censoring. Path dependent and closed form estimators, due 



to Campbell and Fildes ( 1980) are considered in Chapter IV. These 

estimators are modified in Chapter V to satisfy the monotonicity 

requirements of a survival function as was presented in a paper by 

Burke ( 1988). An approach due to Tsai, Leurgans and Crowley ( 1986) is 

employed in Chapter VI. This involves a decomposition of the bivariate 

survival function in terms of estimable functions. 

A simple scheme for generating the random variables which were 

used in this study as well as a comparison of the performance of the 

estimators discussed in Chapters II, IV, V and VI are given in Chapter 

VII. 
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INTRODUCTION 

In lifetesting, medical follow-up and other fields, the 

observation of the occurrence time of the event of interest (called a 

death) may be prevented for some of the items of the sample by the 

previous occurence of some other event (called a loss). In many 

estimation problems incomplete measurements are thus made on some of 

the members of a random sample. For example, observation of the life 

of a vacuum tube may be ended by the breakage of the tube, or a need 

to use the test facilities for other purposes. In medical follow-up 

studies to determine the distribution of survival times after 

treatment, contact with some individuals may be lost before their 

death, and others may die from causes which we may desire to exclude 

from consideration. In the above examples, incomplete observations 

may also result from a need to complete a study within a certain time. 

An incomplete observation is said to be censored and its numerical 

value can be referred to as a limit of observation. These limits of 

observations are constants or values of other random variables, which 

are assumed independent of the complete observations. 

1 
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In this thesis we shall consider the case of censored bivariate 

data. Two types of censoring arise in bivariate failure time data: 

univariate censoring and bivariate censoring. The former arises 

naturally in two contexts. Firstly, the experimental units may contain 

two similar components (such as ears, eyes, knees, etc.) whose joint 

survival is being studied. Alternatively, the experimental units may 

contain two dissimilar components whose joint survival is being 

studied. In both cases, censoring occurs when the experimental unit is 

removed from observation before both components have been observed to 

fail. Random variables need not be times in the usual sense. 

Variables could be cumulative dose or cumulative cost. In this case 

censoring occurs when an experimental unit ( or component) is removed 

from observation for reasons independent of both responses. 

To model the censoring, consider a sequence of independent 

random censoring vectors ((C., D.)}, i = 1,...,n from the bivariate 

distribution G(s,t) = P(C > s, I) > t). While such an assumption may 

not always be valid, it permits censoring times to differ. Further, 

let {( x?, Y)}, i = l,..,n be independent pairs of random variables 

from a joint distribution function Fd(s,t) = P(X° ≤ s, Y° 5 t) where 

(Xe, Y), i = l,...,n is a random sample of pairs of lifetimes from 

(X°, Y°). The (Xi, Y?), i = l,...,n are subject to random censorship 

from the right. Thus independent censoring vectors (C., D.) exist 

for each bivariate vector Y). The observed quantities are 

(X., " i' eli' 2i' 1,...,n where 
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X. = min(X°, C.), Y. = min(Y°, D.); 
1 1 1 j 

11 ( X. = x?)l Ji (Y. = Y?) 

1i = to (X < X°)f - 0 (Y. < yO )I1 1 L 21 ' 11 L i i 1 ii 

The objective is to estimate the distribution function and its 

corresponding survival function F(s,t) = P(X° > s, Y0 > t) in the 

presence of censoring. A number of authors have proposed estimators 

for the survival function above. We shall introduce the work of some 

of these authors with a view towards comparing the proposed estimators. 

Throughout this thesis, we shall denote the various estimators by their 

designated numbers. For example, estimator (4.1.8) is an indication 

that this estimator is completely specified by equation (4.1.8) of 

Chapter IV, Section 1. 

In Chapter I, we consider two estimators which were proposed 

by Campbell ( 1980) for the estimation problem with randomly censored 

discrete data. The first, which is estimator ( 1.1.1) is a reduced-

sample estimator. The second, which is estimator ( 1.2.2) is a self-

consistent one and is developed from a nonparametric likelihood 

function. In Chapter II, we consider estimator (2.2.3) which was 

proposed by Korwar and Dahiya ( 1982). This is an extension of the 

Kaplan and Meier ( 1958) estimator of a univariate survival function and 

involves an iterative approach to the bivariate estimation problem at 
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hand. As in the case of estimator ( 1.2.2), it is shown that this 

estimator is self-consistent. A distinction is made between what we 

term univariate and bivariate censoring in Chapter III, as was proposed 

by Henley and Fames ( 1983). It is shown how a multivariate empirical 

survival function must be constructed in order to be considered a 

(non-parametric) maximum likelihood estimate of the underlying survival 

function. This construction results in estimator (3.2.6) and applies 

only to the case of univariate censoring. It is a closed form 

solution, similar to the product limit estimate of Kaplan and Meier 

(1958). Other closed-form estimators, due to Campbell and Fdldes 

(1980), for the bivariate model are considered in Chapter IV. 

Estimators (4.1.8) and (4.1.10) which are path dependent are also 

introduced. A hazard function approach is further en3ployed to estimate 

- n F(s,t) and hence F(s,t). Consequently, two path-dependent 

estimators of - n F(s,t) are proposed and these lead to estimators 

(4.2.19) and (4.2.21). It is also shown that this class of estimators 

may not necessarily be monotone nonincreasing in both coordinates. 

In Chapter V, we follow the line of thinking of Burke ( 1988) to 

arrive at estimator (5.1.3) and (5.2.2). This approach involves a 

suitable modification of the Campbell and Fildes ( 1982) estimators 

discussed in Chapter IV, to satisfy the important monotonicity 

requirements of a survival function. Changing the role of X and Y 

in each of these two estimators results in anadditional estimator. 

Chapter VI, contains estimator (6.2.3) which was developed by Tsai, 
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Leurgans and Crowley ( 1986). The approach employed here is to 

decompose the bivariate survival function in terms of estimable 

functions, some of which are kernel and bandwidth dependent. 

A simple scheme for generating the random variables which 

were used in this study is given in Chapter VII as well as a comparison 

of the performance of estimators (4.1.8), (4.2.19), (5.1.3), (5.2.2), 

(6.3.2) and ( 2.2.3). Results from a computer algorithm written for the 

numerical solution of the said estimators is provided in tabular form 

and graphically for different sample sizes and censoring schemes. For 

each sample size, three different censoring schemes are considered: 

(i) 1O censoring, 

(ii) 4O censoring, 

(iii) 5O censoring. 

In the case of 4O censoring and estimators (4.1.8), (4.2.19), (5.1.3), 

(5.2.2) and (6.3.2), simulation results are provided for sample sizes 

of 10, 30, 50, ..., 170, where as in the case of 40% censoring and 

estimator (2.2.3) such results are only provided for sample sizes of 

10, 30, ..., 90. For l0 and 5O censoring, simulation results are 

given for sample sizes of 10, 30, ..., 90 for all the said estimators. 



CHAPTER I 

N ONPARAMETHIC BIVARIATE ESTIMATION WITH RANDOMLY 

CENSORED DISCRETE DATA 

1.0 INTRODUCTION 

In this chapter, we shall develop two estimators of a bivariate 

distribution function using randomly censored discrete data as 

presented in a paper by Campbell ( 1980). 

It is assumed that the censoring occurs independently of the 

lifetimes and that deaths and losses which occur simultaneously can be 

separated. In such cases, it is conventional to assume that deaths 

precede losses. 

In Section 1, a reduced--sample estimator is given. A 

nonparametric approach and the related self-consistency technique of 

Efron ( 1967) is focused on in Section 2 to arrive at a self-consistent 

estimator. Section 2 also-contains a discussion on the relative 

merits of the proposed estimators. 

1.1 THE BIVARIATE REDUCED-SAMPLE ESTIMATOR 

Let the censoring variables {(C., D.)}, i 

the continuous joint survival distribution 

G(s,t) = P(C > s, D > t) 

be from 
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Also let the pairs of observed lifetimes {(x., Y.)}, i = 1,...,n be a 

random sample from a continuous joint survival distribution 

H(s,t) = P(X > s, Y > t). 

Due to the earlier assumption that (C,, 0.) is independent of ( X?, Y?) 

for i = 1, . . . ,n, we have 

H(s,t) = F(s,t) G(s,t), 

which implies 

F(s,t) = H(s,t)/G(s,t). 

In a case where not only are X, Y, eli' 2i available for each 

pair, but also C., D., then an estimate of the survival function is 

given by 

H (s, t) 
F(s,t) - 

G (s, t) 

where n G(s,t) 

and n H(s,t) 

C.≥s and D 
1 

= O then 
ii 

F(s,t) in ( 1.1.1) 

is the number of pairs such that C. ≥ s and 

is the number of pairs for which X° > s, Y? > t with 
1 1 

2:t. This is appropriate because when X. s and 

X? > s. Similarly when Y. = t and = C) then Y? > t. 
3. 1 2i 1 

is the bivariate reduced-sample estimate. 

D. ≥ t 
1 
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1.2 A BIVARIATE SELF-CONSISTENT ESTIMATOR WITH DISCRETE TIMES OF DEATH 
OR LOSSES. 

In this section we shall consider the bivariate estimation 

problem with discrete times of death or losses as was considered by 

Campbell ( 1980). An extension of the self-consistent approach of Efron 

(1967) shall be used. 

Let S1, ..., S1 be the distinct times for losses or deaths for 

the first item of the pair, and let t1, ..., t,. be the corresponding 

distinct times for the second item. 

Let us define 6.. 13 , a1..3, 81..3 13 and A.. as follows: 

6. - 13 k is the number of pairs for which X = S., 

= tJ 1k = 1, t 2k = 1; 

a ij .. is the number of pairs for which X k = Si k,  Y = t.j , 

1k = 0, t 2k = 1; 

8. i is the number of pairs for which 

X  = S V Yk =til tlk = 1, t 2k = 0, 

A. . 13 is the number of pairs for which 

Xk=Si, Yk=ti) tlk °' 2k 0 

The convention that deaths precede losses is adopted to separate deaths 

and losses which occur at any point ( s., t.). It is therefore in order 

to say that in the first coordinate, the pairs 6 ij .. and ij precede 

a. . and A. .; in the second coordinate 6. . and a. . precede 8. 
13 13 13 13 13 

and A... 
13 
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Let F..1J = F(s.1 , t. J 1) = P(X° > S. ) Y° > t.) 
J 

for i = 1, ..., I, j = 1, ..., J. 

Also let A. . 1J F 1J . i-1,j-1 . + F i,j-1 - F i-1,j - F be the probability of 

death in rectangle ( S i-1 1 1 S.] x ( t j-1 1 t.J ], Q ij . . = F i,j-1.  i - F j is the 

probability of death in (S.,CO) x (t j-11 3 1J , t .3, and R. . = Fi . - F. 
1 J1,j ij 

is the probability of death in (S. 1, S.] x ( t., o). The graph below 

is a pictorial representation of the above. 

t. 
J 

t. 
j-1 

t2 

ti I 

R.. 
13 

13 

F.. 
13 

Q.. 
1J 

I I I 

Si S2 S3 S i-1 S . S 

Figure 1.1.1 
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The nonparametric likelihood function is thus given by: 

I J 6. . A.. a.. •13. 
L = ii 1J F.3 Q1J R13 

i=l j=l 13 13 13 13 

The value of F ij . . which maximizes L for fixed values of 6. ., Ai., 

a.. and /3.. is given by setting d log L equal to zero to get the 
ij 

likelihood equation ( 1.2.1). Hence 

Log L= Z Z)6.. 
i=l .. 1L J 

Keeping in mind that; 

We have, 

log A. .+A.. log F. .+a.. log Q. .+/3.. log R.. 
13 1J 13 13 13 1J 13 

-F i . -  F. 
a 13 ij i-1,j-1 , j-1 -1,j 

=F + F - F11, -. 

i d =F i +F i .-F..-F. ,j+l ,j+l -1,j ij i-1,j+l 

i+l,j =F i+l,j 1+F. , 3 .1 - i+lj-1 F - 3 1F.. 

Q.. 13 = F 1,31 13. . - F.. 

i ,j+l i13 ,j+l 

F.. 
13 i-1,j 13 

1+1,3 13 1+l,J 

6 6 i+l,j+l - 6i,j+l 6i+l . + 13 
A. 

dF Log L=L+ 
ij ij i+l,j+l i,j+l ' i+l F.. ,J 13 

/3. . 3.. a. . a.. 
L  i+l,j / 13 i,j+l 13 

U  
H. . Q i 1+l,J 1J ,j+1 13 
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The nonparametric likelihood function is thus given by: 

A.. a. . 

1• 3j Q 
' 1J R'3 

i=l j=l ij 1J :LJ 

The value of F ij . . which maximizes L for fixed values of 6i j, Ai j, 

a and 8 is given by setting F log L equal to zero to get theij ij ij 

likelihood equation ( 1.2.1). Hence 

Log L = X £ 6.. log d. .+A. . log F. .+a. . log Q. .+/3. . log R.. 
i=l j=11 1J 1J ].J 1J 1J ].J 1J 1J 

Keeping in mind that; 

1.. = F.. i+F - iF - F. 
ij ij -1,j-1 ,j-1 i-1,j 

1.+l,J .+l = i+l,j+l F i +F j - Fi -'F. 1+l,j i,j+l 

i 1 =F i,j +l + F i .-F..-F. ,j+1 -1,j ij i-1,j+l 

ei. . = F. .+ F. .  - F. . - F ij .. 
:L+l,J 1+l,j 1,j-1 i+lj-1 

Q.. = F. . - F ij 
1J i,j-1  

Q i =F..-F. ,j+l ij i,j+l 

R.. = F. .- F.. 
1J 1-1,J 1J 

H. . = F..- F. 
ij ri-1,j 

We have, 

6 6i+l,j+l - 6i,j+l -  i+l . A. 
+ 1J dF LogL+ 



Therefore the likelihood equation is 

F.. 

+ • 1+ + ij + i,+i - 6j,+i -   A i+l,j  
(121) 

.. . 13 1+l,j+l i,j+l i+l ,6 d •  

- l8jj + a1+1 - a ij . - 0. 

13 i,j +l 13 

We shall now consider a self-consistent approach to the problem of 

estimating F. .. 13 To estimate F 13 .. 1 at time ( s. , t. 3 ), we would count all 

N ij .. pairs that are known to be alive at (s.,t.). This figure 

excludes deaths at S. or at t. but not losses. If k < i and 9 > j, the 
3 

probability that a pair which was censored in the first coordinate at 

S  but died in the second coordinate at time t will survive to 

(sil t) is 9ie'k' Therefore the expected number of the a pairs 

to survive to ( a., t) is Similarly if k > 1, k < j, for 

the 8 ke pairs censored in the second coordinate, the expected number 

to survive to k' t) is ki Rkj/Ikv Finally, if k < I . or Z < j, 

for the A kk doubly censored pairs, the expected number to survive to 

(s.,t.) is A F /F 
1 j k max(i,k),max(j,L) k 

We can thus define an estimate F. . 13 of F 13 . . to be self-consistent if 

it satisfies the equation 

I' 

Qi R ki 

= .. + k>i,<j (1.2.2) n F.. N + Z 13 >j,k<i AM 7c-
"ki 

+ 2 
k<i or 

Fmax(ik) ,max(j,)  



- 12 - 

where 

Q. . = F . - F. ., R. . = F. - F 
13 i,j-1 13 13 1-1,3 ij' 

N.. = ke + Z + ke + 
13 k>i,.€>j k≥i,>j k>i,≥:j 

Equation ( 1.2.2)' is called a bivariate self-consistent equation and a 

function satisfying it is called a self-consistent estimate of F... 
ij 

Theorem 1.1 

An estimate F ij satisfying ( 1.2.2) is also a solution of 

(1.2.1) with F1J . . replaced by F 1J lJ 3..  and d . by 1 F. j + F.11,j-1 - 

F. . - F, 
11,J i,j1 

Proof: We have 

.. = F.. +F i -F. . - F. 
1J 13 1, j1 11,j i,j1' 

which implies 

n A. . ij i nIF • F - F. . - F. 
13 1 -1, j-1 11,3 1,3-1 

From ( 1.2.2) we have 

Q. 
n AL. = N ij + z a, + 

13 e>j,k<i 

+ 

k<i or £<j 

' max (i,k) max(i)] 

Fk 

+ 
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+ 2: + 

>j-1,k<i-1 k>i-1,<j-1 Rke 

+ 

k<i-1 or .<j-1 Fk 
ie 

- INi-1,j + 2: 
>j,k<i-1 

1% 

F 

inax(i-1,k) , max(j-1,) ki 

H + 

k>i-1,.<j Rk 

"S. 

F 
''--1 k) ,max(j,e)  

" " ' 

'S. 

k<i-1 or VJ Qke 

- 1N + 2: k, j-1 
'S 

I, j-1 >j-1,k<i k>i,<j-1 

'.5 

Fmax(i,k),max(j1,e) ij 
k<i or e<j-1 

i ( •—Q..( IR i,j-1 —RI 
= 6. . + 2; a -1,j iil 

k≤i-1 J hi k' H. +  I ' 

H. . -H.. 
ii-1 1j 

Alro + 2: 
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We can form three other equations similar to ( 1.2.3) based on 

1i,j+l' i+l,j+l 

Adding equations based on d. . 1J and A . 1+ l,j+l and subtracting those 

based on . and 1 
,J i,j+1 

, we have 

6. . 6 
ij i+l,j+1 - 6 i,j+l - 6i+l, A J 1J 

+ç-

.. 

j+i,j+i i,j+1 F. ,J 1J 

48. . 48.. a i,j a.. 
1+1,J :LJ +1 ij - 

+ - - -r - 0. 
H. . H.. Q. . Q.. :L+1,J 1J 1,J+l 1J 

The resultant equation is ( 1.2.1) with Fkl replaced by Fkl. This 

completes the proof. 

The bivariate self-consistent estimator ( 1.2.2), while more 

difficult to compute than F (estimator ( 1.1.1)), does not require the 

complete censoring information concerning the C's and D.'s. 

Further, it is always a distribution function; in the event of no 

censoring it reduces to the empirical distribution function. The 

estimator jumps only at the points of double deaths or final censored 

values in any dimension. The fact that estimator ( 1.2.2) depends on 

several estimable functions is likely to be a drawback in this case. 

The estimated survival probabilities provided by this estimator may 

often be greater than the real probabilities for most of the sample 

points even when this point is not censored. The reason being that in 

deriving the self-consistent estimator the weight of the censored 

observations is spread on all the points beyond the censored point. 



CHAPTER II 

AN ITERATIVE APPROACH TO THE BIVARIATE ESTIMATION PROBLEM 

2.0 INTRODUCTION 

Kaplan and Meier ( 1958) give a maximum likelihood estimator of 

the distribution function based on a univariate right censored sample. 

In the present chapter, we will investigate the extension of their 

results to the case of bivariate right censored samples as was 

presented in a paper by Ramesh M. Korwar and Ram C. Dahiya ( 1982). 

Following Efron ( 1967), we will also provide "self-consistent" 

estimators for the bivariate distribution function. 

It is appropriate at this stage to give the univariate 

Kaplan-Meier FL (Product Limit) estimator. 

Let be the lifetimes and C the corresponding censoring 

variables or limits of observation, where i = l,2,...,n. 

Also let X. 1 denote the observed lifetimes. Then, 

X. = min(X?, C1), 
1 

fl (X. = 

11 ' 1 1 0 (X. < X°). 
1  1 

The Kaplan Meier FL estimator of F(s) = P(X° > s) is given by 
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(2.0.1) F(s) = 

and where 

k-i . 

[n-i+l) 

10 

X(1) ≤ - (n) 

if S E IX (k-1)'X(k)] 

if S > 

is an arrangement in an ascending order of magnitude of the X. values. 

We will now introduce the idea of a "self-consistent" estimator. 

Let 

and 

Nx(s) = number of X. > s 

Nxo(s) = number of x? > s. 

We would like to define F°(s) = Nxo(s)/n, which is a binomial 

estimate of F(s). Due to censorship, the function Nxo (s) is not 

available to us., Since X ≥ X for every i, we do know that X. > s 

implies x? > s, so Nxo(s) ≥ Ny(S) for every s. For an X. :5s that 

is uncensored, x? = X. :5 s, and x? cannot contribute to Nxo (s). The 

ambiguous situation is X. S S, X. censored (i]. 0), in which case 

will be greater than s with conditional probability F°(s)/F°(X.). 

We do not know F°(s), but given any initial estimate of it, say 

it seelnc natural to estimate the conditional probability 

P(X? > SIX. ≤ s, = 0) by F(s)/F(X.) and define an improved 

estimate of F°(s) by 
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'S 

(2.0.2) 
F0 (s) 

n F(s) = Nx(s) + 2 
X.Ss F(X.) 
1 

1i=0 

I' 

F0 (s) 

Nx(s) + 
X.s F0 (X 
1 ii 

Iterating, we could then use F in place of F above to get another 

improved estimate F, and so forth. The question arises whether the 

sequence F, F, F ... would converge to a function F0 which could 

then not be further improved by application of (2.0.2). Such a 

function would have to satisfy 

(2.0.3) n F°(s) = Ny(s) + 2 F° (s) 'S 

X 1 . 1s F°(X.) 

for all s. Efron ( 1967) called a function satisfying (2.0.3) a "self 

consistent" estimate of F°(s). 

For the bivariate censored data, we shall consider the case of 

one variable being censored in Section 1, where it will be shown that 

there does exist a unique "self consistent" estimator. We will also 

provide an estimator of F when both variables are censored in 

Section 2 of this chapter. 

2.1 THE CASE OF ONLY ONE VARIABLE BEING CENSORED 

Suppose that only one of the random variables X°, Y°, say Y° 

is censored. Then we have 
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F(s,t) = P(X° > s, Y° > t) 

P(X° > s) P(Y° > tX° > s) 

= H(s) G(tjs) 

where G(tJs) = P(Y° > tX° > s), and H(s) = P(X° > s). A "self 

consistent" estimator of F(s,t) can now be obtained as the censoring 

only affects the estimation of G(tls) which is a univariate 

estimation problem. 

Since X0 is uncensored, an estimate of H(s) can be given by 

H(s) = n/n 

where 

= # of X.'s each of which is greater than s. 

Similarly, an estimate of G(t.ls) is given by the Kaplan-Meier PL 

estimator (2.0.1) as 

where 

G(t/s) 

1k-i  i 12i 
il [nn 

s J 

TO 

Y(s) ≤ .... Y(s) 
(1) 

if t E I 
(s) (s)1 
(k-i)' (k)j 

, if t > Y(s) 

is an arrangement in an ascending order of magnitude of those ordinates 

of the pairs (X1, Y.) for which X. > s. Thus for each s ≥ 0, we look 

at the pairs ( X., Y1) for which X > $ and form G(tjs), the 
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univariate Kaplan-Meier PL estimator, using the ordinates of these 

pairs. Therefore an estimator of F(s,t) is given by 

(2.1.2) 
n 

F(s,t) = _! G(tls). 
n 

Theorem 2.1 

The estimator (2.1.2) is unique and "self-consistent" and 

satisfies the equation 

(2.1.3) 

where, 

Proof: 

n F(s,t) = n + z(1-c ) F(s,t) 
s,t X 1 .>s 2i F(s,Y.) 

Y. <t 
1 

xi s,t = # of pairs (X1, Y.) such that X > s, Y. > t. 

I' 

Since G(t/s) is the univariate Kaplan-Meier PL estimator which 

was formed using the ordinates of the pairs ( X., Y1) for which X. > s, 

then it has to satisfy (2.0.3) with n replaced by n and Nx(s) 

replaced by 

Thus, 

fl 
G(ts) = n + 12i (t' 

Js) 
s,t 

X.>s 1 G(YIs) 

Y.≤t 
1 

Which is equivalent to 

n 
n 1 G(tls) , 

xi . -a G(ts) = n + 1 xi 

n S,t X.>s - G(Y.1 ts) 1 2in 

Y.≤t xi 
1 
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But - G(tls) = F(s,t), thus we have 

I' 

F(s,t) (2.1.4) n F(s,t) = n + 

s,t X 1 . 1>s F(s,Y.) 

Y.St 
1 

Equation ( 2.1.4) is essentially ( 2.0.3). Thus it follows that 

F(s,t) = n G(tls)/n satisfies (2.1.3). To show uniqueness, let if 

possible F(s,t) be another "self-consistent" estimator satisfying 

(2.1.3). Define a function G*(tjs) by 

= F(s,t). 

Since F(s,t) satisfies ( 2.1.3) it follows that G*(tfs) must satisfy 

(2.1.4). But (2.1.4) has the unique solution G(t/s). Thus 

G*(t/s) = G(tls) and F(s,t) = - n G(ts). 

We will now discuss the large-sample properties of the estimator 

(2.1.2). 

Theorem 2.1.2 

The estimator given by ( 2.1.2) is pointwise consistent. 

Proof: 

The theorem follows by noting that; ( 1) the estimator is a 

product of two one-dimensional Kaplan-Meier (P-L) estimators and ( 2) 

the one dimensional (P-L) estimator is pointwise consistent. 
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For stating theorem (2.1.3) we need more notation. 

Let Y. = min(Y?, D.). 
1 1 1 

where D1,.. ., D are the censoring variables. We assume that 

are i.i.d and distributed independent of ( X?, Y'?) i = l...,n. Let 

G0 (t) = P(D ?: t), t ≥ 0 

and 

H0(s,t) = P(X ≥ s, Y ≥ t). 

Theorem 2.1.3 

If G0 and F(s,t) are continuous and if F is such that log F 

is absolutely continuous with partial derivatives that exist almost 

everywhere, and if, for 0 < S, T < , H0 (S,T) > 0, then 

Sup IF(s,t) - F(s,t)J = 0 log log n1 
O≤sS 1i J 
0≤tT 

Proof: 

This is corollary 5.2 of Campbell and Fi1des ( 1982) as applied to 

the situation at hand. 

2.2 THE CASE OF BOTH VARIABLES BEING CENSORED 

Using Efron's ( 1987) concept of "self-consistency", we approach 

the proble  Yi m of estimating F(s,t), when both variables are subject to 

right-censoring, as follows. The contribution of nst pairs ( Xi, Y) 

to F(s,t), is clear whether or not for these pairs X, or both 

are censored. What is not clear is the contribution of the following: 
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1) (X. > S • Y• S t, = 2j = 0), 
1 1 

2) (X. > S Y• t = 01 92i = 0), 
1 1 li 

3) (X. :5s Y. > li = o 2i = 1), 
-1 .1 

4) (X. 1 S Y 1 . > li = 0, t 2i = 0), 

5) (X. :5 S Yj :5 li = 2i = 0). 

In these ambiguous cases, we proceed as follows. 

We estimate the conditional probability that x? > a and Y? > t 

given K1 > a, li = 1, C 2i = 0 by 

(2.2.1) P(X? > s, Y. > tIX. > S Yj :51 li = ' 2i = 0) 
1 1  

= F(s,t)/F(s,Y.). 

Of course, we do not know F(s,t). If F1(s,t) is an initial estimator 

of F(s,t), it seems natural to estimate the conditional probability in 
I' 

(2.2.1) by F1(s,t)/F1(s,Y.). Similarly we estimate 

P(X?>s, Y?>tjX.>s, Yt, 1i = 2i 0) by F1(X.,t)/F1(X., Y.), 

P(X?>s, Y°>tJX.<s, Y•>t = 0, 2i = 1) by 
1 1 1 11 

P(X?>s, Y?>tIX 1 1 . 1 Ss, Y. >1]. t, . = 0) by F1(s,Y )/F (x . ,Y . ) 

and 

P(X?>s, Y>tlX.≤s, Y1≤t, = 0, 2i = 0) by F1(s,t)/F1(X.,Y.). 
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Thus we can define an improved estimator F2 (s,t) of F by 

(2.2.2) n F2(s,t) = n s,t + Z (1-c 2i ) F1(s,t)/F1(s,Y.) 
ii  

X.>s 
1 

Y.≤t 
1 

+ Z 12j) F1(X.,t)/F1(X.,Y.) 
X.>s 

Y.≤t 

+ 2i F1(s,t)/F1(X..,t) 
X.s 
1 

Y.>t 

+ (l-.) (12i) F1(s,Y. )IF 1(X.,Y.) 
X.≤s 
1 

Y.>t 
1 

+ z (l-.) (l2.) F1(s,t)/F1(X.,Y.). 

1 

1 

For iterating we could then use F2 in place of F1 above and obtain 

yet another improved estimator F3, and thus obtain a sequence of 

This sequence will converge to a function estimators F1, F2, F3, 

F which satisfies 

(2.2.3) n F(s,t) = n + ! 1i ( 1_2j) F(s,t)/F(s,Y.) s,t 1 x. >s 
1 

1 
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+ Z ( 1-ti.) 12i) F(X.,t)/F(X.,Y.) 
X.>s 
1 

Y <t 
1 

+ z 1-± 2i F(s,t)/F(X.,t) 
X.≤s 
1 

Y.>t 
1 

+ Z 1 li 12i F(s,Y.)/F(X.,Y.) 

1 

Y.>t 
1 

+ Z ( 1-i 12i F(s,t)/F(X.,Y.). 
X≤s ii 
± 

Y.≤t 
1 

Following Efron ( 1967) we will call a function F satisfying (2.2.3) a 

"self-consistent" estimator of F. 

The possible drawbacks of estimator (2.2.3) are similar to those 

of estimator ( 1.2.2) in the sense that it also depends on several 

estimable fuctions. Here again, there is the possibility for a 

consistent over estimation of survival probabilities as indicated by 

the simulation results of Chapter VII. The obvious explanation for 

this is the fact that at most sample points, the weight of the censored 

'observations is spread on all the points beyond the censored point. As 

is typical of convergent related problems it was realized that the 

computer algorithm written for the numerical solution of estimator 

(2.2.3) took several iterations to arrive at the estimated survival 

probabilities. In particular, for a sample size of 30 it took 22 

iterations whereas in the case of a sample size of 150, it took about 

twenty five minutes of cpu time. 



CHAPTER III 

NONPARAMETHIC MAXIMUM LIKELIHOOD ESTIMATE OF A 

SURVIVAL FUNCTION IN THE PRESENCE OF CENSORING 

3.0 INTRODUCTION 

In this chapter, we will, consider the nonparametric estimation 

of a bivariate distribution in the presence of censoring as was 

presented in a paper by Hanley and Parnes ( 1983). 

New definitions such as homogeneous and heterogeneous censoring 

which are synonymous to univariate and bivariate censoring 

respectively are introduced. In Section 1, it is shown how a 

bivariate empirical survival function must be constructed in order to 

be considered a ( nonparainetric) maximuin likelihood estimate of the 

underlying survival function. In Section 2, it is shown that a 

closed-form solution, similar to the product-limit estimate of Kaplan 

and Meier, is possible with homogeneous censoring. 

3.1 FORMULATION 

Let T = (T1,T2) represent a bivariate random variable denoting 

the durations before two events occur. This notation is equivalent to 

(X°, Y°) which was used in the previous chapters. Let t1, t2, ••• tn 

represent n independent realizations of T. We can form the 

empirical ' survival function' F(t) as an estimate of the underlying 

tsurvival' function F(t) = F(t 1,t2) = P(T1 > t1; T2 > t2). Let 

- 25 - 
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th 
denote the limit of observation for the j (j = 1,2) of the two 

events to occur in subject i (i = l,...,n). Thus, the observable data 

for subject i are contained in the two vectors t and Z, where, 

for j = 1,2, t. ij = min(t , ij.,,  L.1 .J) and Z :ij . . = 1 if t ij . = t ij . . and 0 

otherwise. As in the previous chapters, each t. ij for which Z 1J . = 0 

is called a censored observation. One can represent the data on 

subject i by noting that t. belongs to a region or subset R. of 

the space of T = 1R2. The region N. will be an elemental rectangle, 

a horizontal or vertical strip, or an open quadrant, depending on 

whether Z. = (1,1), (0,1), ( 1,0) or ( 0,0). See Figure 3.1.1. 

We will consider choosing, from among all admissible survival 

functions F(t), one denoted by F(t), which maximizes the likelihood 

of the observed data. Thus for any specified probability distribution 

p(t) = d F(t) on T, 

if J p(t) if P.. 
:i. 

1 1 

H. 
i 

Integrals and differentials are being used for both discrete and 

continuous-type random variables. 

I.. 

In order to maximize X, F or equivalently P(t) must be 

constructed as follows. 

(i) the entire probability mass must be distributed within U.N.; 

mass placed outside the data-defined regions R. will not 

contribute to any of the terms of , and will not help to 

maximize it. 
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R3 R2 
A 

T2 

a 
R8 

/ 

Figure 3.1.1 

7 
/ 

,11 

7 

/ 
V 

7 

.11 

R6 

T1 

Data-defined regions corresponding to complete 

(Regions 7 and 8), half-censored (Regions 1, 2, 5 and 

6) and doubly-censored (Regions 3 and 4) 

observations. Regions 4, 5 and 6 arose from 

heterogeneous censoring. 

(ii) each H. must receive some probability mass, otherwiseZ will 

vanish; 

(iii) if either component of t. is censored, its contribution 

P. = I P(t) to f is not affected by how P(•) is distributed 

R. 
1 
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within R.; thus, P. should be arranged so that it is maximally 

shared by other regions, R., that are contained in, or intersect with, 

R.. In this way, the contributions P. of these other regions will be 

increased without changing P. 

Stated in set-theoretic terms, this implies that the total 

probability mass should be distributed 

A , •.., A M of the IL 1 . By a maximal 

nonempty finite intersection of the R. 

over the maximal intersections 

intersection A we mean 

such that for each i, A fl R. = 4' 

or A. Some of the maximal intersections will each contain just one 

point, which is either an observed (uncensored) t or possibly an 

intersection of two ' half-censored' observations. The single points in 

these sets form unambiguous support points for p(). In the case 

where a maximal intersection A consists of more than a single point, 

I' 

there is no unique choice of specific support points from A, and we 

can without any loss of generality refer to A itself or choose a 

point a. from A to represent it. For simplicity we will write P(a.) 

rather than P(A). 

The above guidelines are readily illustrated by the example in 

Figure 3.1.1. From the n = 8 regions R. shown, we can contruct a 

support consisting of m = 5 sets A1, ..., .t. The observations which 

generated and R  must form two of the support points which we 

arbitrarily label a.1 and a.2, and that the probability mass p(a.1) 

will contribute to both P7 and P3 and thus to Y. a3 = R  (1 IL 6, 

will contribute to F4, P, P3 and F6, while a,4 = R  fl R1, will 
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contribute to F5, P3 and P1. For the fifth component of the support 

for p(), one can take either the entire region H2 or any arbitrary 

point a,5 E R2; P(a5) will contribute to both P3 and P2. 

Once a support set A = {a, ..., a} has been chosen for ;(.), 

the likelihood X can be written as 

(3.1.2) .aiT 1 Z P(a.)j. i1 k i ER k 
L  

In the example of figure 3.1.1 (with the m = 5 support points 

&I ...• f &5 

we have 

receiving probability masses of p(a l) 

a P4 P5 ( P + P3 + P4 + F5) P3(P3 + F4) P3?1?2. 

= p5), 

To determine the magnitudes of P(a.i),...,P(a.m), it is helpful to 

distinguish two censoring patterns which we will call ' homogeneous' and 

'heterogeneous'. 

3.2 ESTIMATING F(t) FROM HOMOGENEOUSLY CENSORED DATA. 

We call the censoring ' homogeneous' if every two data-defined 

regions R. and R are either disjoint or nested one within the 

other. This pattern occurs for example when one follows a subject for 

equal lengths of time towards each endpoint, i.e. if L 1 L12. 

Incomplete observations can thus be represented by regions which are 

either ( i) horizontal strips lying entirely to the right of the 

diagonal T1 = T2 , ( ii) vertical strips lying entirely above this 

diagonal, or ( iii) squares which are open to the right and have their 

lower left corner on the diagonal (Regions 1, 2 and 3, respectively in 

Figure 3.1.1). 
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To simplify the presentation, we will introduce additional 

support points, which will receive zero mass in the ML estimation, but 

which allow us to speak of a grid of K2 support points a 11 to 

akk. The figure below is a presentation of the augmentation and 

relabeling of original support points a1, a2, a3 and a4 (solid 

circles) as a rectangular grid (open and solid circles). The Grid is 

formed from ( i) intersections of vertical and horizontal lines -through 

original points and ( ii) intersections of vertical and horizontal lines 

through points where diagonal line crosses the lines through these 

original points. The augmented set of points is then relabeled a11 to 

a66 with the first subscript referring to P1 and the second to T2. 

With an augmented and relabeled A, and abbreviating 

rs'i can be written as a sum over a rectangular grid 

T2 

P(a ) 
rs 

Figure 3.2.1 

to 
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(3.2.1) P. = P=ZZP 
1 1 rs 

.3 rs 
R. 
1 

where the summation index r(or s) runs from the left most ( lowest to 

highest) a rs in R 1 .. 

Letting X(a) and Y(a) refer to the first and second 

coordinate values of a, the probabilities can be written as: 

(3.2.2) 

4'kk = PT1 > X(akk); T2 > Y(akk) IT1 ≥ X(akk); T2 ≥ 

rs / 2: 2: P 
r>k s>k r≥k s≥k rs 

P{T1 = 

2: 
s>k r≥k sk rs 

'akk) } 

> Y(a)JT ≥ X(a); T2 ≥: Y(akk)} 

= P fT > X(akk); T2 = Y(akk) IT, ?t.k rl 

= 2: P rk / 2: 2: F', 
r>k r≥k sk 

in all the above 1 ≤ k K-i. 

(3.2.3) 

T2 ≥ Y(akk)} 

TJ7 = P 1T k rj 2 > Y(a)tT1 = X(a); T2 Y(a)} 

= 2: R / 2: P 
ks ks 

1 k < e 4 K-i, 

(3.2.4) Z P / 2: P , 1<kK-1. kk r re 
r> r≥k 
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Each P. 1 can be written as a product of and 'F terms. 

Thus, we have 

= fN ' kk k. 
kk k. [1 - kk - k. - .k} 

(3.2.5) 

S m1 {i - jn kel I m1 e ( n kell 
i 

l>k k Jlk> k 

where, as is depicted in Figure 3.2.2 the exponents refer to the 

following counts of sample members: 

those where the two events occured at X(a) and Y(ak ); 

those proceeding through 

place; 

akk without either event taking 

those where the tr events occurs at X(akk) but the other 

occurs after Y(akk); 

the converse of 

> k), those where, the X' event already having taken place 

at X(akk), the tY' component proceeds 

< k), the converse. 

Let = Nkk + nk. + k + nkk 

and R ke Mkg +kV then 

through 

the ML estimates of the kk' k. and are simply the proportions 

Nkk/R, nk/R1K and 1.k/Rk , respectively. Similarly, ` "k-e = mk/Rk,Z. 
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The estimates of P rs are obtained from (3.2.2), (3.2.3) and 

(3.2.4), 

(3.2.6) P 
rs 

lk=l 

fr-i ... ] , [.,s 
-i ,.. 

4) Hi- , ki kk r. ' r1 L v' rsjI 

fs-i I •'•' [kr-1. 
1 r .-'V 4)  ' I(1 Ikk .s ks1 Lk1 rsjs+ ., 

sr 

s > r 

r > S. 

The ML estimate of F(t1 ,t2) can be obtained by summing the P rs in the 

open rectangle (t 1 ,00 ) x (t 2 ,00 ). 

Y(akk) 

IA. 

\ - 
\'y  

K. -. 

Nkk 

"kk 
.17 

- Rk 

-. k  

X(akk) 

Rk I n k -. mk'k) 

Figure 3.2.2 

If T1 and T2 are continuous-type variables, then n + n+ 

nk ≤ 1; thus at least two of the corresponding 4) terms will be 

estimated as zero. If n = 1, then the mk( = k+i, ...) will each 
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be unity until the other event takes place somewhere beyond Y(ak) 

after which they will equal zero. If the observation time runs out 

before this second event occurs, the 'P parameters beyond the last Y 

observation on this subject cannot be uniquely estimated. This 

nonuniqueness is similar to the problem that occurs in the univariate 

Kaplan-Meier ( 1958) survival curve when the largest observation is 

censored. In the multivariate case it occurs each time a pair of 

values, recorded on a continuous scale is thalfcensored, and means 

that one cannot supply a unique estimate for F(t 1,t2) when the region 

(T1 > t; T2 > t 2 ) contains such observations. This shortcoming can 

be lessened by discretizing or grouping the data into intervals, as is 

commonly done in univariate life-tables, so that there are fewer 4' 

and 'P parameters to be estimated, and from larger, more stable 

denominators. In fact, in many studies subjects are followed up on a 

fixed schedule so that t actually takes discrete values. 



CHAPTER IV 

PATH DEPENDENT ESTIMATORS FOR THE BIVARIATE 

SURVIVAL FUNCTION 

4.0 INTRODUCTION 

The bivariate estimation problem with discrete times of death or 

losses was considered in Chapter I, using an extension of the self-

consistent approach of Efron. A self-consistent approach for the 

continuous case was treated in Chapter II. In the previous Chapter, 

we treated the maximum likelihood approaches to the bivariate 

estimation problem. In contrast to the iterative estimators of the 

earlier chapters, we will consider several closed-form estimators for 

the bivariate model and prove strong uniform consistency to the true 

bivariate distribution of the lifetimes as was presented in a paper by 

Campbell and Fildes ( 1980). 

Two path-dependent estimators are introduced in Section 1. Each 

is the product of two one-dimensional Kaplan-Meier product limit 

estimators. A hazard function approach is employed in Section 2 to 

estimate - n F(s,t) and hence F(s,t). Two path-dependent -estimators 

of - n F(s,t) are proposed and these lead to estimators of the 

bivariate distribution function. 

4.1 TWO PATH-DEPENDENT PRODUCT-LIMIT ESTIMATORS 

We will adhere to the notation established in the main 

introduction of this thesis unless otherwise stated. The functions; 

F(s,t), G(s,t) and H(s,t) carry with them the same interpretations as 

before. 

- 35 - 
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F(s,t) = P(X° > s, Y0 > t), 

G(s,t) = P(C > s, D > t), 

H(s,t) = P(X > s, Y >,t). 

Since 'xe, yOl and {c., n.} 1 are mutually independent, 
ii if. 1 1 

we have 

(4.1.1) H(s,t) = F(s,t) G(s,t). 

Based on the elementary observation 

(4.1.2) F(s,t) = F(s,0) F1(tls), 

where F1(tfs) = P(Y° > tX° > s). 

The survival function F(s,t) is thus estimated by separately 

estimating each of the two terms on the right of (4.1.2). This leads 

to an estimator F1(s,t) based on the path from ( 0,0) to ( s,t) which 

is linear from (0,0) to ( s,0) and linear from (s,0) to (s,t). 

Let us now define the following notations which we shall be 

using: 

(4.1.3) 
n 

N(s,t) = N(s,t) = Z '{x>s, Y.>t}' 
i=l 1 

(4.1.4) cz.(s,t) = I 

(4. 1.5) 

{Xss, Y1>t, :li=l} 

48(st) = ' X.>s, Y..≤t, 

(i = 
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To estimate F(s,O), we will calculate the Kaplan-Méier product limit 

estimator of F(s,O) using the one-dimensional censored sample 

n 

1 i' liI =1• 
This produces the estimator 

I n 
ff   

N(X.,O) 

F1 (s,O) = 

where r = max {X.}. 
in li≤n 

N(X,O)+lI if s ≤ in 

io,  otherwise 

(The one-dimensional convention that the last observation is converted 

to a death ( if it is censored) is adhered to here.) To estimate 

the second term of (4.1.2), project all points for which 

> s horizontally to the line X s, and ignoring the (X1 , 

values calculate the Kaplan-Meier product-limit estimator based on the 

data {Y for which > s (see Figure 4.1.2). The 

estimate obtained by this method is P(Y° > tjX > s) but 

P(Y° > tJX > s) P(Y° > tX° > s, C > s) 

P(Y° > t, X° > s, C>s)  

P(X° > s, C > s) 

P(Y° > t, X° > s) P(C > s)  

P(X° > s) P(C > s) 



- 38 - 

P(Y° > t, X° > s)  

P(X° > s) 

(4.1.6) = p(Yo > tIX° > s), 

since C is independent of the pair (X°, Y°). Thus the following 

estimator of F1(ts) is obtained: 

I n N(s,Y J .) 
n. I [N(s 
j=l ,Yj)+hj if t :S r 2n (s) 

= (4.1.7) F in(tjs) 

10, otherwise, 

where r (s) = max : X > s1. 
2n i I 

Consequently, the estimator for F(s,t) is given by 

(4.1.8) F1 (st) = 

. I n N(X a 1(s,O) ,0) 1  fl f N(s,Y..) 

I± 1t1,o)+lj jl1 s,+h} 

io, otherwise. 

if N(s,t)>0 

By changing the role of s and t it is possible to develop 

our estimator F2 (s,t) based on the relation 

(4.1.9) F(s,t) = F(0,t) F2 (sft) = F(O,t) P(X° > sjY° > t). 
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Using the linear path from ( 0,0) to ( 0,t) and ( 0,t) to ( s,t). 

The corresponding estimator is 

(4.1.10) F2 (s,t) = 

I n N(0,Y ) 1fl(0t) n f N(X , t) 

iH [N(O,Y )+ I [N(xi,t)l} 

io, otherwise. 

if N(s,t)>0 

The question arises as to whether F1 (s,t) and F2 (s,t) are 

necessarily distribution functions. We shall illustrate with the 

example of Figure 4.1.1 that the above estimators do not satisfy the 

monotonicity requirements of a distribution function. 

Figure 4.1.1 consists of four points. 9 and d denote loss 

and death respectively. Therefore, (d,.€) at (x3,y3) denotes a 

point which is a death in the first corindate and censored in the 

second. At any point in the rectangle [ 0, x4] x [ 0, y4] the 

estimator F14 can be calculated. 
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Figure 4.1.2 
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The convention in the one-dimensional Kaplan-Meier estimator that the 

final loss is converted to a death is adhered to. 

Suppose we wish to compute F1 (s,t) where s E (x2)x3) and 

t E y3, Then from 4.1.8 we have 

A f N(x1 ,O) 11 I N(x2,O) 112 f N(s,y3) 123 
F14(s,t) = 1N(x,,O)+lj [N(x2o)+1j IN(5,y3)+hl 
sE(x2 ,x3 ) 

tE(y3 ,y2 ) 

- 13) ° 121 1 111 ° 
t4J 13i L2i 

2 
- 

Similarly F1(s,t) where S e (x,,x2) and t e (y1,y4) is 

given by 

F14 (s,t) 

sE(x1 ,x2 ) 

te(y1,y4) 

- [N(xi O) 1• 11 [N(s 'Y3) 23 N(s,y2) 22 

- N(x1,O)+l N(s,y3)+l1 [  N(s,y2)-i-1 

- 131 121 (-221 
11 

1 1  

1 
- 

A 

The entire estimator F14 can be calculated for various points (s,t) 

E [O,x4] x fO,y4 J. The results of these calculations are displayed in 

Figure 4.1.3) below. 
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x4 

From the above calculations one can conclude that F14 does not 

satisfy the monotonicity requirement of a distribution function. 

The estimator F24 which is based on the alternate path 

(4.1.10) can also be calculated for any point (s,t) E [0,x4] x [O,y4]. 

Figure (4.1.4) below is a presentation of the estimator F24 for 

the example of Figure 4.1.1. 
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Figure 4.1.4 
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4.2 ESTIMATORS BASED ON THE BIVARIATE HAZARD FUNCTION 

The multivariate hazard approach of Marshall is employed to 

develop bivariate survival function estimators based on the hazard 

function. Define the hazard function R(s,t) as 

(4.2.1) R(s,t) = - log F(s,t). 

Assume that H is absolutely continuous with partial derivatives that 

exist almost everywhere. 

Let, 

(4.2.2) i(z) = (i1(z), i2(z)), 

where 

(4.2.3) 11 ( z) = R(z) and 72 ( z) = 

'v(z) thus denotes the gradient of R(z) for the point z = (z13 z2) 

R(s,t) can be constructed as the path integral of i(z) from ( 0,0) to 

(s,t). By path independence one can write 

(4.2.4) 

(s,t) 

R(s,t) = f i(z) dz. 

(0,0) 

If the path linear from (0,0) to (s,O) and linear from ( s,0) to ( s,t) 

is considered, then 



- 44 - 

(4.2.5) R(s,t) = is i(u,O) du + J i2(s,v) dv 

By (4.2.1) and (4.2.2) and from (4.2.5) we have 

(4.2.6) 

R(s,t) = - log F(s,t) 

S t 

= - J F(u,Q) d F(u,O) - J F( 1 d F(s,v), s,v) v 

0 0 

where d F(u,t) denotes Lebesgue—Stieltjes integration over u for 

t fixed. 

Using (4.1.1) we have, 

(4.2.7) - log F(s,t) = - 

G(u,0) CF(u,O)  

J H(u,0) Cu 

0 

Introduce the following functions: 

(4.2.8) 

(4.2.9) 

S 

K(s,t) = J G(u,t) CP(X 

0 

t 

L(s,t) = J G(s,v) CP(X° 

0 

du - 

Pt 

I G(s,v) OF(s,v)  
J H(s,v) ày 

0 

S u, Y° > t) 
Cu 

> s, 
Ov 

Yo S v) 

du; 

dv. 

dv. 
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But, 

P(X° 5 U, Y0 > t) = P(Y° > t) - P(X° > u, Y0 > t) 

which implies 

(4.2.10) aP(x° 5 U, Y° > t) - CP(x° > u, Y0 > t)  
Cu Cu 

Similarly we have, 

(4.2.11) aP(x° > s, YO ≤ v) CP(X° > a, Y° > v)  
Cv Cv 

Applying (4.2.8), (4.2.9), (4.2.10) and (4.2.11) to (4.2.7) we have 

s t 

(4.2.12) - log F(s,t) = i H(u90) d U K(u,0) + J H(s,t) d v L(s,v). 

0 0 

We can thus estimate H, K and L first. An estimator of H(u,v) is 

the empirical survival function: 

(4.2.13) H(s,t) = Z '{X1>s,Y.>t} - N(s,t) 
1 n 

It can also be shown that, 

K(s,t) = E[a.(s,t)]. 

We know that 
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E[a.(s,t)] = P(C > X°, D > t, X° 5 s, Y° > t) 

(because Y. > t = D. > t, Y? > t) 
1 1 1 

(X. :5s, = 1 X :5s, C. > X°) 
1 ii 1 1 

00 

=1 
vt uO 

5 

P(C>u, D>tjX°=u, 

u 0  

S 

JP(C>X°, D>t, X°<—s, Y°>tIX°=u, Y° v) d F(u,v) 

Yo =V) 

P(C>u, D>t) d F(u,v) 

u 0  

d F(u,v) 

(because (C,D) and (X° ,Y°) are mutually independent) 

Co s 

= J J G(u,t) d F(u,v) 

v=t uO 

s 00 

= G(u,t) d F(u,v) 

u0 v t  

G(u,t) du F(u,t) 

u0  

S 

JG(u,t) d P(X° > 

u0 

Yo > t) 
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S 

JG(u,t) d [P(Y° > t) - P(X° ≤ 

u0 

S 

= J G(u,t) d u P(X° ≤ u, Y° > t) 

u0 

= K(s,t) 

K(s,t) = E[cc(s,t)]. 

Similarly we have, 

(4.2.15) L(s,t) E(/3.(s,t)). 

Yo > t)] 

Hence the natural estimators of K(s,t) and L(s,t) are 

(4.2.16) 

(4.2.17) 

n 
K(s,t)_L I cx.(s,t) and 

i=l 

L(s,t).*I /3.(s,t). 

Consequently the estimate of R(s,t) = - log F(s,t) is given by 
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(4.2.18) 1  S U n t 1 1 
R1 (s,t) = i H(u,0) d K (U 0) + J d V L fl (s,v) 

0 0 

n a  .(s,O) + n 8.(s,t) 
! 

H ( X.,0) ii . H ( s,Y.) 
i=1 fl 1 3=1 0 3 

if N(s,t)..> 0 and R1(s,t) = + 00 otherwise. 

Hence 

(4.2.19) F10 (s,t) exp[_ R1 (st)}. 

Similarly, an estimate of R(s,t) is given.by 

(4.2.20) 
R (s,t) = /3 (Olt) 1 a.(s,t) 

2n n H(0,Y I ) + Hn  i (X , t)' 

if N(s,t) > 0 and R20 (s,t) = + 00 otherwise. 

This result in another estimator of F(s,t), which is given by 

(4.2.21) F2 (s,t) = exp[_ R2 (s,t)}. 

4.3 RELATIONSHIP OF THE PRODUCT—LIMIT AND THE HAZARD FUNCTION 
ESTIMATORS 

Lemma 4.3.1 

(4.3.1) SUP IH (s,t) - H(s,t)J = 4Jio log nj a. s. 
0:5s <00 
0≤t<00 
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(4.3.2) sup IK(st) - K(s,t)I o {J1O log n] a.s. 
OSs<° 
O≤t<oo 

(4.3.3) 

Proof: 

sup IL ( s,t) - L(s,t)J = o[J10 log n} a.s. 
0:5s<- 
Ot<co 

From the multi-dimensional law of the iterated logarithm for 

empirical distributions of Kiefer, we have 

PFj11m sup n12 IH(s,t) - H(st)I/{21 log log n 1/2 
n-°° Os< 
I Ot<0° 

Hence, result (4.3.1) follows immediately: 

sup IH(s,t)* - H(s,t)I = 
Os<oo 

{J1og log n] a.s. 

To prove (4.3.2) it is enough to observe that 

(4.3.4) 

K(s,t) = P(X° ≤ s, X0 ≤ C, Y > t) 

P(X° s, X° - CO)-P(X° ≤s, X° - CO, Y≤t). 

Therefore K(s,t) can be considered as the difference of two 

empirical distributions: 
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n i n 
H: (s, = 

n . {XSs, x?-C:501 - '{X°<s, X°-c.50, Y.≤ty 
1=1 .L 1 j=]. j j 

This means that applying again Kiefer's result ( once in two -, once in 

three-dimensions) (4.3.2) is obtained. A similar argument proves 

(4.3.3). 

4.4 CONSISTENCY 

The estimator F 
in 

was constructed as a product of two one-

dimensional Kaplan-Meier estimators. It therefore follows that F1 

is pointwise consistent. 

The pointwise consistency remains true in the case of not 

necessarily continuous functions F and G, as one can develop, using 

the same projecting argument the corresponding bivariate estimator as 

the product of two one-dimensional Kaplan-Meier estimators. The 

continuity conditions on F and G are not required for this point-

wise consistency in that the Kaplan-Meier estimate is consistent. 

The estimators developed in this section are fairly simple to 

compute in the sense that they depend on relatively few estimable 

functions. However, they are path dependent and may fail to be 

survival functions. The technique employed in their development can 

be generalized from two dimensions to higher dimensions. The obvious 

difference is that the number of possible paths (and hence the 

estimators) increases from 2 to 2k1 for the k-dimensional analog. 



CHAPTER V 

ESTIMATION OF A BIVARIATE DISTRIBUTION UNDER 

RANDOM CENSORSHIP VIA A SUBDISTRIBUTION 

5.0 INTRODUCTION 

In the previous chapter, we considered two estimators by 

Campbell and Fildes ( 1982). Both estimators were shown to be 

uniformly consistent at a rate of convergence equal to that of the 

empirical distribution function. However, it was pointed out that 

both estimators need not be survival functions. That is, they do not 

satisfy the monotonicity requirements of a distribution function. In 

Section 1, we suitably modify the Campbell and Fildes ( 1982) 

estimators to satisfy the important monotonicity requirements and to 

achieve their desirable rate of consistency as was presented in a 

paper by Burke ( 1988). In Section 2, a hazard gradient approach 

identical to that of Chapter IV is further employed to arrive at 

additional estimators. Section 3 contains a discussion of the 

multidimensional case. 

5.1 THE SUBDISTRIBUTION FUNCTION AND THE ESTIMATION PROBLEM 

We will adhere to the notation established in the previous 

chapters unless otherwise stated. Fd(x,y) denotes the distribution 

function of (X° ,Y°). 

i.e. F'(x,y) = P(X° X, Y° ≤ y). 

51 - 
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Let G(x,y) = P(C > x, D > y) denote the survival function of 

the censoring variables. Then, the vectors from the random sample 

•(X. )Y.) ( i = l,...,n) which are uncensored in both coordinates have 

subdistribution function 

id (X,Y) P(Xi :5 i X, Y y, li = 2i 1) 

= f G(u,v) d 

- - 

which implies 

d d( x,y) 
  - G(x,y), 
d Fd(x,y) 

d Fd(x,y) -  G(x y) 1  d Fd(x,y) 
,  

and 

1  
d F G(u,v) (u,v). 

The subdistribution function F can be estimated by 

n 

;d - 1= n 1 Z li 2i i 1 I(X S X, Y. :5 y), 
i=l 
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where 1(A) denotes the indicator function of the event A. 

We then estimate the survival function G of the censoring 

vectors by either the Campbell-Földes estimators, G ln or G as defined 

by (5.1.2) and (5.2.1) below and arrive at two estimators of Fd. 

F in (x,y) = in (u, d F(u,v) 

(5.1.1) 
n 

= '' 1 in 2 {G. fl h j (X .,Y )}_l I(X I :5i X, y s 3). 
i=1 

Even though F in is simple to compute, in the case of heavy censoring, 

it will have fewer support points than estimator (6.3.2). 

F n is clearly monotone nondecreasing in both variables because it can 

be expressed as the integral of a positive function with respect to a 

monotone nondecreasing one. In particular, over the rectangle 

R = (x1,x2] x (y1,y2], where (x1,y1) ≤ (x2,y2) 

(R) y  j jn' d 
in 

y1 x1 

which is nonnegative and hence Fin has the monotonicity requirements 

of a distributidn function. 
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Let 

a.(s,t) = I(X. ≤ s, Y. 1 > 1i = 0), 

/3.(s,t) = I(X. > s, Y J.  :5 . = 0), 

max{X}, 

T 2n 1 (s) = max{Y. 1: X. > s} over i = 

where i,j = 

The first Campbell-Fi1des estimator is 

(5.1.2) 

where 

G1 (x,y) = G(x,0) G'(ylx) 

I f N(X.,0) 1a(x,O) 
17 ji=i 1N(X1,0)+ij (x ≤ T in 

0, otherwise 

is the univariate Kaplan and Meier ( 1958) estimator, and 
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G'(yx) 

.1 _  - N(x,Y.) ff 
i=1 lx ,Y) +1J (y ≤ r 2n (x)) 

0, otherwise. 

n 
Here N(s,t) = Z I(X. > s, Y. > t) 

i=1 

Substituting the above into (5.1.1) we arrive at an estimator for F 

In 
(5.1.3) F (x, Y) = n'Z 1. 2. I(X.≤x, Y.y). (G in i in 1 i (X0) G (Y.JX)} 

5.2 THE HAZARD GRADIENT APPROACH 

The second Campbell-Földes ( 1982) estimator is given by 

(5.2.1) 

where, 

= exp{- R(x,y)}, 

R(x,y) = 

I n a (x,0) n /3 (x,y) 

I N(x.,O) + i=i N(x,y.) 
j  

(N(x,y) > 0) 

otherwise. 

Substituting the above into (5.1.1) we arrive at another estimator for 
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(5.2.2) 
n 

F(x,y) = n 1 Z 12 .(exp[-R(X.,Y.)j} 1 I(X.:≤x, Y.Sy). 
i=1 

5.3 CONVERSION TO SURVIVAL FUNCTION AND rHE MULTIDIMENSIONAL CASE 

Estimators for the survival function F(s,t), can be defined as 

(5.3.1) 

ft. 

F. in ( s,t) = P(X° > s, Y° > t) 

i in '  = - (s OD) - jn t) + F (o, F (s,t), (j = 1,2). 
jn  

These estimators inherit the corresponding properties of F in . 

While onemay define an estimator F in of F as 

00 

in F(s,t) = 10 
ci Fd(u,v) 

and obtain similar consistency results, its behaviour for large (s,t) 

is not as satisfactory as (5.3.1). In particular, if our largest 

observations were of the form (X°,D), (C,Y°) or (C,D), F(s,t) = 0 
jn 

at these points, which neglects the fact that (X°,Y°) is larger. 

The estimator F. of (5.3.1) would not be zero at these points. 

The multidimensional case is straightforward since the 

distribution function of the survival times of interest, (X?l,...,X°k) 

for i = 1,...,n, can be-written as 
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where 

Fd(x) = {G(u)} 1 d (u) 

x = (x1, ... )Xk) E 

(x E 

D = {u = (u1) . . , u) u. S x.J, 

G(u) = G(ul,...,uk) is the survival function of the censoring 

variables (Cil,...,Cik), for I = l,..,n, and 

d(U) = Pr{min(X?., C1 ) U, X. 5 C1 .; j = l,...k}. 

As mentioned earlier, the weakness of the estimators developed in 

this chapter is that in the case of heavy censoring, they have fewer 

support points than their other competitors. However, F jn . 
1 

is simple 

to compute since G Jn . need only be computed at the uncensored points 

(X 1,Y.). The advantage they possess over the other estimators 

encountered in this study is embodied in the fact that their computer 

alogorithms require the least cpu time. 



CHAPTER VI 

A DECOMPOSITION OF THE BIVARIATE SURVIVAL FUNCTION 

IN TERMS OF ESTIMABLE FUNCTIONS 

6.0 INTRODUCTION 

In this chapter, we present a new class of estimators of the 

bivariate survival function as was presented in a paper by Tsai, 

Leurgans and Crowley ( 1986). This new class of estimators is kernel 

and bandwidth dependent but not path dependent. Section 1 contains a 

decomposition of the bivariate survival function in terms of estimable 

functions. Based on this decomposition, a new class of estimators is 

presented in Section 2. 

Throughout this chapter, X ii Y denotes min(X,Y) and [A] 

denotes the indicator of the event A. With this added notation, an 

equivalent expression for the Kaplan-Meier ( 1958) FL estimator (2.0.1) 

is given by 

(6.0.1) 
if 

X.≤s 
1 

[1 - 

6.1 DECOMPOSITION OF BIVARIATE SURVIVAL FUNCTIONS 

Throughout the rest of this chapter, we give formulas for s ≥ t. 

Definitions for s < t are obtained by reversing the coordinates. We 

will use two assumptions, (Al) and (A2) which are well known to us by 

now to derive the decomposition. 

- 58 - 
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(Al) The vectors (X°,Y°) and (C,D) are mutually independent. 

(A2) the functions F° and G are absolutely continuous with respect 

to Lebesque measure on R2. 

G above denotes the bivariate survival function of the pair of 

censoring variables (C,D). The true pair of survival times is denoted 

by (X°,Y°) and its bivariate survival function is 

F°(t 1,t2) = P(X° > t1, Y° > t2). 

The decomposition will be expressed in terms of the following 

functions and sets: 

(6.1.1) 

F(t 1,t2) = P(X > t1, Y > t) 

FO (t = F° (t2 ,t2) 

F2 (tilt 2) = P(X > t]• Y > = 1) 

F12 (t1,t2) = P(X > t1 Y > t2, = = 1) 

F°(t11t2) = P(X° > t1 Y° = t2) 

R(s,t) = {(t1,t2 )It 1 > s ≥ t2 ≥ t}, 

t(s,t) = {(t1,t2)ts ≥ t1 ≥ t2 > t}. 

Thus, F, F2 and F12 are the observable bivariate (sub) 

survival functions, F°(J) is the conditional survival function and 

FO is the probability that neither event has occured. 
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Lemma 6.1.1 

Assume conditions (Al) and ( A2) hold and let s > t > 0 be such 

that F(s,$) > 0. Then 

F°(s,t) = F(s) + J J F(t 2)/F(t2,t2) D F2(t 1,t2) 

R(s t) 

(6.1.2) 

1(s t) 

F(t2) F°(SIt2) 

F(t2 ,t2) F°(t11t2) 
D F12 (tilt 2) 

where 0/0 = 0, the integrals are Riemann-Stieltjes integrals, well 

defined since both F2 and F12 have bounded variation, and D is 

the differential operator. 

We will use Figure 6.1.1 below to throw more light on Lemma 6.1.1 

above. 

t2 

(t,t) 

R(s,t) 

Figure 6.1.1 
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The probability F° assigned to the rectangle R(s,t) can be split 

according to whether the first coordinate is censored before s and is 

written as the sum of P{(X° ,Y°) E R(s,t), = O, X s s} and 

Y°) 

Thus, 

P{(X°,Y°) E R(s,t), = 0, X s} is absolutely continuous with 

respect to the identifiable subdistribution F12 on the triangle 

1(s,t) and is displayed as an integral against that measure in Lemma 

6.1.1. Similarly, P((X°,Y°) E R(s,t); X > s]' is written as an 

integral over R(s,t) with respect to the identifiable subdistribution 

F2. The factor F(t2)/F(t2,t2) is the reciprocal of the probability 

that C A D is greater than t2; the factor F°(SJt1)/F°(t1 1t2) in 

the former integral is the conditional probability that X0 is in the 

rectangle given that the second coordinate is t2, which forces 

€ R(s,t); X > s}. 

(X°,Y°) to be in i(s,t) U R(s,t). 

Proof: 

We prove this lemma by rewriting each of the double integrals as 

integrals with respect to D F°(t1,t2) 

J J FO (t2 is 
F(t2,t2) D F2(t 1,t2) = F(t2)t2) D F2(t 1,t2) 

R(s t) t2t,t1s 
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(6.1.3) 
ts F2(t9) 

t2=t 

F(t,t) U  F2(s,t2). 

But the definitions and ( Al) imply that F(t2 ,t2) = F(t2) G(t2 ,t2) 

and DtF2(s,t2) = G(s,t2) D  F°(s,t2). 

Therefore ( 6.1.3) above reduces to: 

— i
s

FO (t  F(t2,t2) D  F2(s,t2) 

t2=t t2=t 

(6.1.4) 

C 

G(s,t,) 

  Dt F°(s,t2) 
G(t2,t2) 2 

J00 G(s,t) = is 
G(t2,t2) D F°(t 1,t2) 

t2=t t s 

- J J G(s,t2) 
- G(t2,t2) D F° (t 1,t2) 

R(s t) 

Similarly, D F12 (t1 ,t2) = D  G(t1,t2) D  F° (t 1) t2) and 

F°(t 1 (t 2) = P(X° > t]iY° = t2) 

= P(X° > t1, Y° = t2 )/P(Y° = t2) 

D t2 1 F°(t , t2 ) 
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40 FO (t F°(sft2) 
Therefore, J J F(,) F°(t11t2) D F12 (t 1,t2) 

(6.1.5) 

1(s, t) 

S . S 

t s 
t2=t 

1 

D  F°(s,t2) 
2  
G(t2,t2) 

D  F°(s,t ) 
2 

IG(s,t 2 ) - G(t2 t2 )] 

G(t2,t2).- G(s,t2) 

- G(t2 ,t2 ) D F°(s,t2) 

t2=t 

G(s,t) 1 
= - j S - G(t2,t2)J D  F°(s,t2) 

t2=t 

G(s,t2) 

= J J [1 G(t2,t2)] 

R(s t) 

D F°(t 1,t2). 

Therefore the sum of (6.1.4) and (6.1.5) gives 
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J JD F°(t 1) t2) = F°(s,t) - 

R(s t) 

= F° (s,t) - 

Q.E.D. 

Lemma ( 6.1.2) below is Beran's ( 1981) extension of Peterson's ( 1977) 

decomposition to allow simultaneous discontinuities in death and 

censoring times. 

The product integral of a function g is defined by 

[(g)](t) = 
r 

lim II -(g(u1 
max (_uk_1)O i=l ) - 

L≤k≤r 

where 0u 0 <1 u < ... <u = t. 

For continuous functions g, [ i(g)](t) = exp(-g(t)). If g is an 

empirical cumulative hazard, [i(g)](t) is the corresponding product-

limit or Kaplan-Meier estimator. 

Lemma 6.1.2 

If F0 (t) = P(X° > t), F(t) = P(X° zl C > t) 

and F(t) P(C > X° > t), where X° and C are independent random 

variables, then 
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- D F 11 (x) 
F(x-) 

0 

(t). 

The function F is the survival function of T = X° A Y°. Define 

the corresponding censoring time C3 = C A D, the observed time 

T3 = T /1 C3, and the indicator = [T -FO < C3]. The survival function 

can be decomposed in terms of F3 (t)P(T3 > t) and 

F3 (t) = P(T3 > t, = 1). Since T3 = X A Y and x > Y] + 

{X < YJ , (T3, 3) is a function of ( X, Y, , and F3 and 

F3 can be estimated empirically. 

We now state the decomposition. 

Theorem 6.1.1. 

If th conditions (Al) and (A2) are met, then 

+ 
[fu 

D F () II 
3L  ( 

F°(s,t) f F3(z-) u (s) 

1.10 .11 

+ 

+J J JIcuDF 1 i  3  It 

R(s,t)I[ 1 0 JJ 
(t2_)}/ [F(t2_, t 

F3(z) 2-) 

r J[f U 11 
(6.1.6) + D  (z) J j 11+J F3(z-) 

i(s t)1[ t0  

F2(t1,t2) 
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1 
1 

+ + 

r U D F (zlt2_) z i (zlt 2  11 D F -) 

1 F(z-It2-) ( I_j F(z-It2--) 

0 ii to 

where F(tt2) = P(X > t, t = ifY = = 1) and 

F(tft2) = P(X > tfY = = 1). 

Proof: 

From the assumption (Al), D is independent of X0, we observe 

F°(tJt2) = P(X° > tJY° = t2) 

= P(X° > tjY° = t2, D > t2) 

= P(X° > tlY° - 2 = 1). 

The theorem follows from applying Lemma 6.1.2 to F3 and to 

P(X° > tJY = 1) and substituting the resulting 

representations in Lemma 6.1.1. 

Under the continuity assumptions of (A2), (6.1.6) reduces to 

(6.1.2). We prefer (6.1.6) becuase (A2) is not required for Lemma 

(6.1.1) or Theorem (6.1.1) and because (6.1.6) can be applied to 

empirical subsurvival functions to obtain estimators. 

6.2 ESTIMATORS OF F° 

Suppose the iid random vectors {( X., '' j' i1,...,n) 

have the same distribution as the random vector CX, Y, tit t2 In 

this section we develop an estimator of F°. 
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Natural unbiased estimators of the ( sub) survival functions in 

(6.1.6) are defined below in terms of X, 

and 3i = fX. > y ' 2i + [X. < Y.J 

y , 

-! Fe(t1,t2 - 12; [ X. i > t , Y > t 3, 
n. 1 1 2 

T X. A Y. 
li 2i 3i 1 1 

F 2(t 1,t 2) = . 2; [ Xi > ti, yi > li = 2i = 
i 

F(t1,t2) = 1 
[X. 2; > t1, Y.3. > 

1 2i = 1] i. 1 

F(t 1) = 1 Z fT > t 3 i. 3i 1 
:i. 

F(t 1) fT > t], 3j= ] n. 31 

ii 

substituting F and F into Lemma 6.1.2, we have the Kaplan-Meier 3 3M 

estimator, for 

(6.2.1) 

r + 

I f U (t 1)]} 

F(t) = lu D F _i'  '  11(t). 
F(t1-) [ 

o W  t 

The functions F(t11t2) and F(t1 Jt2) are the conditional 

probabilities given Y. = t2 . = 1. Since the assumptions of 
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absolute continuity implies that there is ( a.s.) at most one Y. that 

is equal to t2 with = 1, F(t)t) and F(t1 Jt2) can not be 

estimated stably without smoothing. To estimate a conditional 

survival function given t2, we apply the nonnegative weight W n. (t2) 

to ( X., Y.). The weight W(t2) depends on the data through the 

distance between t and Y and through the second components 

j = 11 2i ,...,n}. With the assumption that Z W n. (t2) t2i = 

the following estimators are discrete subsurvival functions: 

I.' 

F(t11t2) Z W n. (t2 ) {X. > 2i = 1] 
1 1 

F (t 1 t2) = Z W n. (t2 ) [X. > t]• li = 2i = 1]. 
1 1 

Substituting the estimators F(t11t2) and F(t1 Jt2) into the 

equation yields the following natural estimator for F°(t1 Jt2 ): 

D t p 2 F ( t(t )'l 
II F°(t11t2) HJ F(tlt2)  

110 

If F(t1 Jt2) > 0, and if the jumps points of F(1t2) are 

then 
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F (t t ) - F (t It2) 
F°(t1 1t2) = - p ii 2 p ii 

t Ii i ii .≤t I F(t Jt2 ) 
i  

I-. 

Substituting F, F, F2, Fe and F°(t 1 1t2) into ( 6.1.2), we 

obtain the following estimator of F°: 

(6.2.2) F°(s,t) F(s) + J J F(t)/Fe(t,t.) D F(tt 1) 2) 

R(s t) 

• J J F() Fo(slt)/(Fe(ç,t_) F°(tlt)D F 2 (t1,t2 ). 

1(s t) 

Choice of an estimator within this class requires the 

specification of the weight functions W(t2 ). Here we focus on 

Kernel weights. These weights are constructed by selecting a 

nonnegative function k() of bounded variation on the real line and a 

sequence of bandwidths Ch(n), n it l} converging to zero. the 

probability weights are then 

(6.2.3) W n,i 1 2 (t ) = k((Y. 2 - t )/h(n)) 2 i/(! k((Y.-t2)/h(n)) 2 .). 

That is, we give positive weight only to those observations with an 

observed failure in the second component near t2. 
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In our study, we chose k(y) = y on the segment fyi ≤ l and 0 

otherwise. h(n) = fl 1'5 , where n is the sample size, was chosen as 

the bandwidth. This choice of k and h yielded a particularly 

simple expression for ( 6.2.2). 

It was realized that at most sample points, the contribution made 

by .d(s,t) to the probability being estimated was very small if not 

zero. The fact that the estimator proposed in this chapter is fairly 

complicated is a factor worth considering. Further, although it is 

kernel and bandwidth dependent, this arbitrariness might not matter as 

much as the path dependence of the estimators mentioned in Chapter IV. 

Although it was believed at first that a heavy price in loss of 

efficiency would have to be paid for this arbitrariness, the results of 

this study indicate otherwise. 



CHAPTER VII 

NUMERICAL RESULTS 

7.0 INTRODUCTION 

In this Chapter, we give a simple scheme for generating random 

numbers from a specific bivariate survival distribution in the 

presence of censoring. Various procedures for generating independent 

random numbers from specific univariate distributions are well known 

to us, but few results are available for non-normal multivariate 

distributions. Random samples of various sizes were simulated from a 

given bivariate distribution. There were three different samples 

corresponding to each sample size: 

(i) l0 censoring, 

40 censoring, 

50≤ censoring. 

Computer algorithms were written only for the numerical solutions of 

estimators (4.1.8), (4.2.19), (5.1.3), (5.2.2), (6.3.2) and ( 2.2.3). 

The performance of these estimators were compared using the average 

square error and contour plots. 
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7.1 PROCEDURE 

Cherian ( 1941) constructed a bivariate gamma distribution as 

follows. Let X1, X2, X3 be independent and have gamma distributions 

with index parameters F1. P2 and P3 respectively. Then X° = X + 

and Y° = X2 + X3 have a bivariate gamma distribution. The joint 

p.d.f. of X° and Y° is given by 

- ° y°  ..min(x°,y°) -1 P -1 P -1 
z dz. 2 

z (x°-z) 1 (y°--z) e (7.1.1) h(x°,y°) - e 3 

Jr r(P.) 
i=1 

For P1 = P2 = P3 = 1, ( 7.1.1) reduces to 

(7.1.2) 
fe-y D(1-e -x0 ), x° <y0 

h(x°,y° ) = le-xo (l - e Y°), x0 > Y° 

Using (7.1.2) it can be shown that 

F(s,t) = P(X° > s, Y° > t) 

(7.1.3) 
J(t -t -s -t -t 1 -2t 

-s+e -e ) e + 2(e - - e ), 

i - S -t - 2(e s S 1 -2s 
(s-t+e -e ) e + - e ), s ≥ t. 

s < t 
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(7.1.2) represents the p.d.f. of the true survival times (x°,y°). The 

censoring variable (C,D) were generated from ( 7.1.1) using ( i) ( 2, 3, 

0.5), ( ii) ( 2, 3, 1) and ( iii) ( 2.5, 3.5, 2) as values for the 

vector (F1, F2, P3). These gave rise to 50, 40 and lO% censoring 

respectively. In the case of 4O censoring, for each type of estimate 

and sample size, 25 different samples were taken and the survival 

estimates formed at the sample points. The sample sizes chosen were 

{10, 30, 50, ..., 170}. The same was done in the case of 50 and 10 

censoring except that the chosen sample sizes were { lo, 30, ..., 90}. 

It is worthwhile to note that the variables X°, Y°, C, D were 

generated by calling the GGAMR package of IMSL ( International 

Mathematical and Statistical Library). 

As a measure of goodness of performance of an estimator, many 

authors use the mean integrated square error, abbreviated as M.I.S.E. 

If f is the true survival function and £ is the estimator, the 

M.I.S.E. is computed by 

JJ If (X,Y) - f(x,y)} w(x,y) 

The function w is referred to as weight function and is often taken 

to be identically 1. The integrated square error however, is some what 

difficult to obtain numerically so we decided to form the average 

square error, 
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,,,  n 1 

n Z If (x. )y1 1 ) - f(x , y.) 
i I.=l 

) 2 

at the sample points ( observations). 

For each sample size, the average value of the average square 

error was computed and are found in Tables 7.2.1, 7.2.4 and 7.2.7. 

In the case of estimator ( 2.2.3) and 40?≤ censoring, the average 

square errors were only computed up to a maximum sample size of 90. 

This was a consequence of time sharing vis-a-vis the long computation 

time required. 

The median value of the average square errors are also given in 

Tables 7.2.2, 7.2.5 and 7.2.8. The motivation behind this is based on 

the simple realization that the median is affected less than the mean 

by an occasional large error. As a measure of dispersion, the standard 

deviation of the average square errors were also formed as given in 

Tables 7.2.3, 7.2.6 and 7.2.9. 

For each censoring scheme and the estimators for which computer 

algorithms were written, further analysis was carried out by generating 

the contour plots of the function 

C(s,t) = F(s,t) - F(s,t), 

for a sample size of 150. F(s,t) and F(s,t) are the real and 

estimated survival functions respectively. Such contour plots are 

shown in Figures 7.2.1 through 7.2.18. 
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7.2 OBSERVATIONS AND CONCLUSIONS 

From Tables 7.2.3, 7.2.6 and 7.2.9, with increasing sample 

size the dispersion of the average square errors tends to zero. 

As expected, it tends to zero quite rapidly with reduced censoring. 

This does not seem to be the case for estimator ( 2.2.3). An 

explanation for this could be found in the fact that in deriving the 

self-consistent estimator, the weight of the censored observations was 

spread on all points beyond the censored point. The simulation results 

thus indicate that estimator ( 2.2.3) gives average square errors that 

are quite erratic. 

The study also showed that estimator (4.1.8) performed as well as 

estimator (4.2.19). This was a confirmation of what was expected from 

theory. The seine observations were also made about estimators (5.1.3) 

and (5.2.2). The contour plots attached attest to the above. In 

short, it does not seem to matter whether one used the hazard gradient 

approach or the Kaplan-Meier product limit estimators. 

Estimators (5.1.3) and (5.2.2) have fewer support points than 

the other estimators. Their support points are the observed uncensored 

points (X.,Y.). Thus the survival function G need only be computed 

at such support points, and hence their estimates were fairly simple to 

compute. Their computations required the least computation time. As 

expected, their average square errors reduced with reduced censoring. 

Estimators (4.1.8) and (4.2.19) gave the least average square 

errors. Such performance may be due to the fact that they do not 
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depend on other estimable functions but rely heavily on the data. The 

study also indicated that the average square errors of estimators 

(4.1.8) and (4.2.19) on one hand are comparable to those of estimator 

(6.3.2) as shown in Tables 7.2.1, 7.2.4 and 7.2.7. Further, the 

remarkable similarity in the contour plots of these estimators is 

compatible with the above observation. 

The fact that estimators (4.1.8) and (4.2.19) are path dependent 

and may fail to be survival functions leaves us with no alternative but 

to accept estimator (6.3.2) as the one with the best mean integrated 

square error (M.I.S.E.) property. 

This thesis is limited in scope in the sense that only one 

distribution was considered in the generation of the random variables. 

The comparisons made among the various estimators were based upon 

computations made at the sample points. The observations made are 

therefore only valid within the framework of the study done. 

The experimental data as well as the computer programs used in 

this study are available in the files of the Mathematics Department of 

the University of Calgary. 
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TABLE 7.2.1 

THE TABLE BELOW GIVES THE AVERAGE OF THE AVERAGE SQUARE 
ERRORS FOR THE VARIOUS ESTIMATORS UNDER VARRYING SAMPLE 

SIZES WITH 107. CENSORING. 

ii 4.1.8 4.2.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0179 0.0205 0.0380 0.0393 0.0177 0.0483 

30 0.0054 0.0059 0.0087 0.0084 0.0053 0.0690 

50 0.0035 0.0035 0.0069 0.9069 0.0033 0.0577 

70 0.0021 0.0023 0.0036 0.0040 0.0022 0.0525 

90 0.0016 0.0017 0.0020 0.0021 0.0016 0.0752 

ri IS THE SAMPLE SIZE 

TABLE 7.2.2 

THE TABLE BELOW GIVES THE MEDIAN OF THE AVERAGE SQUARE 
ERRORS FOR THE VARIOUS ESTIMATORS UNDER VABRYING SAMPLE 

SI/i WITH 107. CENSORING. 

n 4.1.8 42.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0126 0.0171 0.0285 0.0307 0.0125 0.0294 

30 0.0039 0.0050 0.0068 0.0066 0.0043 0.0440 

50 0.0026 0.0027 0.0053 0.0054 0.0029 0.0475 

70 0.0013 0.0014 0.0026 0.0031 0.0015 0.0382 

• 90 0.0013 0.0014 0.0017 0.0020 0.0014 0.0608 

IS THE SAMPLE SIZE 
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TABLE 7.2.3 

THE TABLE BELOW GIVES THE STANDARD DEVIATION OF THE 
AVERAGE SQUARE ERRORS FOR THE VARIOUS ESTIMATORS UNDER 

VABRYING SAMPLE SIZE WITH 10 CENSORING. 

n 4.1.8 4.2.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0001 0.0002 0.0010 0.0010 0.0001 0.0015 

o 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 

50 0.0000 o.oaao 0.0000 0.0000 0.0000 0.0009 

70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 

90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0024 

n IS THE SAMPLE SIZE 

TABLE 7.2.4 

THE TABLE BELOW GIVES THE AVERAGE OF THE AVERAGE SQUARE 
ERRORS FOR THE VARIOUS ESTIMATORS WITH VA1RRYING SAMPLE 

SI/- UNDER 40'!. CENSORING. 

n 4.1.8 4.2.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0239 0.0269 0.0541 0.0513 0.0241 0.0581 

30 0.0078 0.0086 0.0156 0.0151 0.0086 0.0619 

50 0.0044 0.0044 0.0112 0.0113 0.0045 0.0718 

70 0.0028 0.0030 0.0086 0.0086 0.0028 0.0639 

90 0.0019 0.0020 0.0054 0.0060 0.0020 0.0773 

110 0.0014 0.0015 0.0027 0.0030 0.0014 

130 0.0018 0.0019 0.0037 0.0041 0.0019 

150 0.0014 0.0014 0.0032 0.0036 0.0017 

170 0.0013 0.0013 0.0030 0.0032 0.0013 

n• IS THE SAMPLE SIZE 
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TABLE 7.2.5 

THE TABLE BELOW GIVES THE MEDIAN OF THE AVERAGE SQUARE 
ERRORS FOR THE VARIOUS ESTIMATORS UNDER VABRYING SAMPLE 

SIZES WITH 40% CENSORING. 

n 4.1.8 4.2.19 5.1.3 5.2.2 6.2.3 2.2.3 

10 0.0209 0.0220 0.0400 0.0419 0.0202 0.0349 

30 0.0059 0.0073 0.0119 0.0106 0.0068 0.0509 

50 0.0038 0.0035 0.0076 0.0081 0.0039 0.0540 

70 0.0021 0.0019 0.0071 0.0062 0.0022 0.0436 

90 0.0016 0.0019 0.0042 0.0044 0.0018 0.0629 

110 0.0013 0.0014 0.0023 0.0023 0.0010 

130 0.0013 0.0013 0.0025 0.0023 0.0015 

150 0.0011 0.0011 0.0033 0.0029 0.0013 

170 0.0009 0.0008 0.0023 0.0024 0.0008 

IS THE SAMPLE SIZE 
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TABLE 7.2.6 

THE TABLE BELOW GIVES THE STANDARD DEVIATION OF THE 
AVERAGE SQUARE ERRORS FOR THE VARIOUS ESTIMATORS UNDER' 

VARRYING SAMPLE SIzuz WITH 40% CENSORING 

n 4.1.8 4.2.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0002 0.0002 0.0019 0.0018 0.0002 0.0028 

30 0.0000 0.0000 0.0001 0.0001 0.0000 0.0017 

50 0.000 0.0000 0.0001 0.0001 0.0000 0.0024 

70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 

90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026 

110 0.0000 0.0000 0.0000 0.0000 0.0000 

130 0.0000 0.0000 0.0000 0.0000 0.0000 

150 0.0000 0.0000 0.0000 0.0000 0.0000 

170 0.0000 0.0000 0.0000 0.0000 0.0000 

fl IS THE SAMPLE SIZE 
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TABLE 7.2.7 

- THE TABLE BELOW GIVES THE AVERAGE OF THE AVERAGE SQUARE 
• ERRORS FOR THE VARIOUS ESTIMATORS UNDER VARRYING SAMPLE 

SIZES WITH 50% CENSORING 

4.1.8 4.2.19 5.1.3 5.2.2 6.3.2 2;2.3 

10 0.0292 0.0322 

-30 0.0092 0.0099 

50 0.0044 0.0043 

70 0.0038 0.0040 

90 0.0022 0.0024 

n IS THE SAMPLE SIZE 

0.0963 

0.0272 

0.0138 

0.0089 

0.0075 

0.1050 

0.0261 

0.0134 

0.0093 

0.0093 

0.0299 

0.0098 

0.0051 

0.0044 

0. 002.5 

0.0610 

0.0585 

0.0716 

0.0683 

0.0714 

TABLE 7.2.8 

THE TABLE I3E1OW GIVES THE MEDIAN OF THE AVERAGE SQUARE 
ERRORS FOR THE VARIOUS ESTIMATORS UNDER 'tARRYING SAMPLE 

SIt ± WITH 50% CENSORING 

n 4.1.2 4.2.19 5.1.3 5.2.2 6.3.2 2.2.3 

10 0.0223 0.0236 0. 0582 0.0557 0.0225 0.0410 

30 0.0065 0.0072 0.0227 0.0231 0.0075 0.0423 

50 0.0041 0.0035 0.0117 0.0121 0.0050 0.0526 

70 0.0029 0.0027 0.0068 0.0078 0.0036 0.0378 

90 0.0019 0.0020 0.0054 0.0063 0.0023 0.0606 

n IS THE SAMPLE SIZE 
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TABLE 7.2.9 

THE TABLE BELOW GIVES THE STANDARD DEVIATION OF T  
AVERAGE SQUARE ERRORS FOR THE VARIOUS ESTIMATORS UNDER 

VARRYING SAMPLE SI/J  WITH 50% CENSORING 

n 4.1.8 4.2.19 5. 1.3 5.2.2 6.3.2 2.2.3 

10 0.0005 0.0005 0.0112 0.0127 0.0007 0.0031 

30 0.0001 0.0001 0.0006 0.0005 0.0001 0.0018 

50 0.0000 0.0000 0.0001 0.0001 0.0000 0.0031 

70 0.0000 0.0000 0.0001 0.0000 0.0000 0.0034 

90 0.0000 0.0000 0.0000 0.0001 0.0000 0.0019 

fl IS THE SAMPLE SIZE 



- 83 - 

Figure 7.2.1 Difference Map For Estimator (4.1.8) 

Sample Size of 150, 10% censoring 
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Difference Map for Estimator (4.2.j9) 

Sample Size Of 150, 10% censoring 
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Figure 7.2.3 Difference Map For Estimator .C5.1.3) 

Sample Size Of 150, 10% censoring 
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Figure 7.2.4 Difference Map For Estimator (5.2.2) 

Sample Size Of 150, 10% censoring 
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Figure 7.2.5 Difference Map for Estimator '(6;3.2) 

Sample Size Of 150, 10% censoring 
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Figure 7.2.6 Difference Map For Estimator ( 2.2.3) 

Sample Size Of 150, 10% canoring 
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Figure 7.2.7 Difference Map For Estimator (4.1.8) 

Sample Size Of 150, 40% censoring 
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Figure 7.2.8 Difference Map for Estimator (4.2.19) 

Sample Size Of 150,40% censoring 
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Figure 7.2.9 Difference Map ForEstiinatOr (5.1.3) 

Sample Size Of 150, 40% censoring 
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Figure 7.2.10 Difference Map For Estimator (5.2.2) 

Sample Size Of 150, 40% cenoring 
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Figure 7.2.11 Difference Map For Estimator (6.i.2) 

Sample Size Of 150, 40% censoring 
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Figure 7.2.12 Difference Map For Estimator (2.2.3) 

Sample Size of 150, 40% censoring 
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Figure 7.2.13 Difference Map For Estimator (4.1.8) 

Sample Size Of 150, 50% censoring 
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Figure 7.2.14 Difference Map For Estimator (4.2.19) 

Sample Size Of 150, 50% censoring 
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Figure 7.2.15 Difference Map For Estiinato (5.1.3) 

Sample Size Of 150, 50% censoring 
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Figure 7.2.16' 
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Figure 7.2.17 Difference Map For Estimator (6.3.2) 

Sample Size Of 150, 50% censoring 
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Figure 7.2.18 Difference Map For Estimator (2.2.3) 

Sample Size Of 150, 50% censoring 
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Figure 7.2.19 A Plot of the Data Given in Table 7.2.1 
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Figure 7.2.20 A Plot of the Data Given in Table 7.2.4 
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Figure 7.2.21 A Plot of the Data Given in Table 7.2.7 
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