
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 895061, 8 pages
http://dx.doi.org/10.1155/2013/895061

Research Article
Optimal Modeling and Filtering of Stochastic Time Series for
Geoscience Applications

J. A. Rod Blais

Department of Geomatics Engineering, Pacific Institute for the Mathematical Sciences, University of Calgary,
Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to J. A. Rod Blais; blais@ucalgary.ca

Received 8 February 2013; Accepted 23 April 2013

Academic Editor: Gradimir Milovanovic

Copyright © 2013 J. A. Rod Blais.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sequences of observations or measurements are often modeled as realizations of stochastic processes with some stationary
properties in the first and second moments. However in practice, the noise biases and variances are likely to be different for
different epochs in time or regions in space, and hence such stationarity assumptions are often questionable. In the case of strict
stationarity with equally spaced data, the Wiener-Hopf equations can readily be solved with fast Fourier transforms (FFTs) with
optimal computational efficiency. Inmore general contexts, covariancematrices can also be diagonalized using theKarhunen-Loève
transforms (KLTs), ormore generally using empirical orthogonal and biorthogonal expansions, which are unfortunatelymuchmore
demanding in terms of computational efforts. In cases with increment stationarity, the mathematical modeling can be modified
and generalized covariances can be used with some computational advantages. The general nonlinear solution methodology is
also briefly overviewed with the practical limitations. These different formulations are discussed with special emphasis on the
spectral properties of covariance matrices and illustrated with some numerical examples. General recommendations are included
for practical geoscience applications.

1. Introduction

Consider a stochastic process or time series {𝑋(𝑡), −∞ < 𝑡 <

∞} which has been observed or measured as {𝑦(𝑠), −∞ <

𝑠 < ∞}, most often in practice at equispaced discrete time
or space intervals Δ𝑠 = 1 for simplicity over some finite
domain. In practice, it is also often convenient to assume
these processes or time series to be centered, that is, with null
mean value or expectation following the appropriate trend
modeling in increment stationary situations. When these
observations (or measurements) are of Gaussian processes,
their second moments or covariances then fully specify
the processes. Otherwise, it can only be assumed that the
covariance functions are sufficient for the followingmodeling
and filtering operations. Specifically, it is assumed that these
covariance functions have positive Fourier transforms or
power spectra for realizability.

In general, the optimal estimate of𝑋(𝑡) fromobservations
𝑦(𝑠) is given by the conditional expectation

𝑋(𝑡) = E [𝑋 (𝑡) | 𝑦 (𝑠)] (1)

in which the conditional expectation of a random variable 𝑈
given an observation V is defined by

E [𝑈 | V] = ∫
∞

−∞

𝑢𝑝 (𝑢 | V) 𝑑𝑢 (2)

using the conditional density 𝑝(𝑢 | V); that is,

𝑝 (𝑢 | V) =
𝑝 (𝑢, V)

𝑝
𝑈
(𝑢)

(3)
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for the joint density 𝑝(𝑢, V) with positive marginal density
𝑝
𝑈
(𝑢); that is,

𝑝
𝑈
(𝑢) = ∫

∞

−∞

𝑝 (𝑢, V) 𝑑V. (4)

These quantities can readily be generalized to several vari-
ables. The previous expression is also called the conditional
mean with corresponding conditional variance

Var [𝑈 | V] = E [(𝑈 | V − E [𝑈 | V])
2

]

≡ E [(𝑈 | V − E [𝑈 | V]) (𝑈 | V − E[𝑈 | V])
∗

]

(5)

which is commonly used in optimization, with the ∗ corre-
sponding to conjugate transpose, or simply transpose in real
cases. For the random variable𝑉 corresponding to the obser-
vations, E[𝑈 | 𝑉] and Var[𝑈 | 𝑉] are then the condition-
al expectation for the mean and variance of 𝑈 given 𝑉.

Such conditional expectation E[𝑋(𝑡) | 𝑌(𝑠)] can easily be
seen as an optimal estimate𝑋(𝑡) as

E [𝑋 (𝑡)] = E [E [𝑋 (𝑡) | 𝑌 (𝑠)]] = E [𝑋 (𝑡)] (6)

and its variance

Var [𝑋 (𝑡)] = Var [E [𝑋 (𝑡) | 𝑌 (𝑠)]]

= Var [𝑋 (𝑡)] − E [Var [𝑋 (𝑡) | 𝑌 (𝑠)]]

≤ Var [𝑋 (𝑡)]

(7)

as expected. For any other estimator𝑍(𝑡), that is, any function
of 𝑌(𝑡), it is straightforward to verify that

MSE [𝑋 (𝑡) − E [𝑋 (𝑡) | 𝑌 (𝑠)]] ≤ MSE [𝑋 (𝑡) − 𝑍 (𝑡)] (8)

for the mean-square errors (MSEs); that is, the conditional
expectation estimator E[𝑋(𝑡) | 𝑌(𝑠)] is optimal in the
mean-square sense. For any unbiased estimator 𝑍(𝑡), the
relationship is in the least-squares sense with variances
replacing the mean-square errors. More discussion of these
relationships can be found, for example, in [1].

In the linear context, the conditional expectation 𝑋(𝑡) =

E[𝑋(𝑡) | 𝑦(𝑠)] is a linear function of the observations 𝑦(𝑠);
that is,

𝑋 (𝑡) = ∫
∞

−∞

𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 (9)

for some unknown kernel𝐻(𝑡, 𝑠), or with discrete data,

𝑋(𝑡) =

∞

∑
𝑠=−∞

𝐻(𝑡, 𝑠) 𝑦 (𝑠) , (10)

that is, simply an unknown linear combination of the avail-
able data. In practice, only finite data are available so that
the previous limits are finite, and furthermore in causal
cases, only past observations are available for processing.
Furthermore to simplify the presentation in the following, the
inner product notation will be used; that is,

𝑋 (𝑡) = ⟨𝐻 (𝑡, 𝑠) , 𝑦
∗

(𝑠)⟩ (11)

for the continuous and discrete applications whenever appro-
priate. The superscript ∗ stands for conjugate transpose
although only real applications are considered herein.

The objective in the following is to estimate optimally
𝑋(𝑡) from the available data 𝑦(𝑠) usingminimal assumptions.
Using the above discussed property of the conditional expec-
tation estimator E[𝑋(𝑡) | 𝑦(𝑠)], one can write the implied
orthogonality of the residuals to the observations; that is,

E [(𝑋 (𝑡) − 𝑋 (𝑡)) 𝑦
∗

(𝑠)] = E [⟨(𝑋 (𝑡) − 𝑋 (𝑡)) , 𝑦 (𝑠)⟩] = 0;

(12)

that is, using the linear transformation of 𝑦(𝑡) for𝑋(𝑡),

E [⟨(𝑋 (𝑡) − ⟨𝐻 (𝑡, 𝑟) , 𝑦
∗

(𝑟)⟩) , 𝑦 (𝑠)⟩] = 0 (13)

or

E [⟨𝑋 (𝑡) , 𝑦 (𝑠)⟩] = E [⟨⟨𝐻 (𝑡, 𝑟) , 𝑦
∗

(𝑟)⟩ , 𝑦 (𝑠)⟩]

= E [⟨𝐻 (𝑡, 𝑟) , ⟨𝑦 (𝑟) , 𝑦 (𝑠)⟩⟩]

= ⟨𝐻 (𝑡, 𝑟) ,E [⟨𝑦 (𝑟) , 𝑦 (𝑠)⟩]⟩

(14)

which is usually interpreted in terms of cross-covariance
between 𝑋(𝑡) and 𝑦(𝑠) being equal to the autocovariance
of 𝑦(𝑟) modified by the unknown kernel 𝐻(𝑡, 𝑟), assuming
E[𝑦(𝑟)] = 0, or equivalently,

⟨𝐾
𝑦𝑦

(𝑠, 𝑟) ,𝐻 (𝑟, 𝑡)⟩ = 𝐾
𝑦𝑋

(𝑠, 𝑡) (15)

using the cross-covariance𝐾
𝑦𝑋

(𝑠, 𝑡) and (symmetric real pos-
itive definite) covariance𝐾

𝑦𝑦
(𝑠, 𝑟), often written as𝐾

𝑦
(𝑠, 𝑟) in

practice, respectively. These normal equations are the well-
knownWiener-Hopf equations, which are Fredholm integral
equations (of the first kind) in the continuous context. In
cases of stationarity, this unknown kernel 𝐻(𝑟, 𝑡) becomes
𝐻(𝑟− 𝑡)which will be seen to greatly simplify the situation in
practice in terms of computations.

It should be mentioned that the previous interchange of
the order in the linear expectation operation in the inner
products needs to be done with care in the case of continuous
applications with infinite limits. However for discrete appli-
cations with finite limits, the situation is much simpler and
usually carried outwithout second thoughts.More discussion
of those aspects can be found in, for example, the works of
Dougherty [1] and Pugachev [2] with references in functional
analysis.

The general nonlinear solution methodology will also
briefly be overviewed in the Gaussian context with some
of the practical limitations. These different formulations are
discussed with emphasis on the properties of the covariance
matrices and illustrated with some numerical examples and
references. General recommendations are included for prac-
tical geoscience applications.

2. Fourier Transform Approaches

TheWiener-Hopf equations written as

⟨𝐾
𝑦𝑦

(𝑠, 𝑟) ,𝐻 (𝑟, 𝑡)⟩ = 𝐾
𝑦𝑋

(𝑠, 𝑡) (16)
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for unknown 𝐻(𝑟, 𝑡) are trivial for white noise, that is, with
𝐾
𝑦𝑦
(𝑠, 𝑟) ≡ 𝛿(𝑠, 𝑟) ≡ 𝛿(𝑠 − 𝑟), the Dirac delta function,

implying that 𝐻(𝑟, 𝑡) ≡ 𝐻(𝑟 − 𝑡) = 𝐾
𝑦𝑋

(𝑟, 𝑡) ≡ 𝐾
𝑦𝑋

(𝑟 − 𝑡)

in such cases. However, when the white noise has different
intensities in different parts of the domain, this simple
formulation cannot be used and the subsequent sections will
deal with the more general situation.

When the covariance kernel 𝐾
𝑦𝑦
(𝑠, 𝑟) can be written as

𝐾
𝑦𝑦
(𝑠 − 𝑟)meaning that the covariance is only dependent on

the spacing between its arguments, then it can be diagonal-
ized using a Fourier transform. The corresponding covari-
ance matrix is Toeplitz; that is, its diagonals are constant in
terms of 𝑠−𝑟 for row index 𝑠 and column index 𝑟with gridded
data. Notice that the discrete Fourier transform (DFT) of a
finite Toeplitz matrix is not necessarily diagonal unless the
matrix is circulant as will be illustrated in Section 6.

Explicitly using a Fourier matrix 𝐹 ≡ [𝑓
𝑟𝑠

| 𝑓
𝑟𝑠

= 𝑒
2𝜋𝑖𝑟𝑠/𝑁

]

of order𝑁, the DFT of a vector V is simplyF[V] ≡ V∧ ≡ 𝐹
∗V,

and hence in the case of stationarity,

𝐹
∗

𝐾
𝑦𝑦

(𝑠 − 𝑟) 𝐹𝐹
∗

𝐻(𝑟) = 𝑁𝐹
∗

𝐾
𝑦𝑋

(𝑟) (17)

or

𝐾
∧

𝑦𝑦
(𝜏)𝐻
∧

(𝜏) = 𝑁𝐾
∧

𝑦𝑋
(𝜏) (18)

for frequencies 𝜏; that is,

𝐻
∧

(𝜏) = 𝑁 ⋅
𝐾
∧

𝑦𝑋
(𝜏)

𝐾∧
𝑦𝑦

(𝜏)
(19)

obviously for𝐾∧
𝑦𝑦
(𝜏) ̸= 0 assuming the symmetry and positive

definiteness of𝐾
𝑦𝑦
, in which 𝐹 ⋅ 𝐹

∗

= 𝐹
∗

⋅ 𝐹 = 𝑁. This means
that the problem reduces to estimating frequency compo-
nents of the 𝑦(𝑠) observations to infer the corresponding
frequency components of the 𝑋(𝑡) process. Furthermore, in
general, the transfer kernel or function 𝐻

∧

(𝜏) is noncausal,
as for each time 𝑡, it uses all of the information from −∞ <

𝑡 < ∞ in the Fourier transform. Hence in practical cases with
only finite or even only past information, complications can
be expected (see, e.g., the discussion in [3]).

3. Empirical Orthogonal Function Expansions

The covariance kernel 𝐾
𝑦𝑦
(𝑠, 𝑟) for the observations is gen-

erally assumed to be symmetric and positive definite for
physical realizability. Its eigenfunctions are the exponential
functions only in the stationary case as 𝐹∗𝐾

𝑦𝑦
(𝑠, 𝑟)𝐹 is then

diagonal and 𝐹
∗

𝐾
𝑦𝑦
(𝑠, 𝑟)𝐹 = diag(𝜆]) or 𝐾

𝑦𝑦
(𝑠, 𝑟)𝐹 =

𝑁
−1

𝐹 diag(𝜆]) for the corresponding eigenvalues 𝜆]. The
discrete Fourier transform application or orthogonal projec-
tion onto the exponential eigenfunctions can be generalized
to other systems of orthogonal functions in the sense of
Galerkin’s orthogonal projectionmethodology for such func-
tional operator systems. This will be illustrated in Section 6
using Haar wavelet transforms.

Hence for a spectrum of orthogonal eigenfunctions 𝑢
𝑘
(𝑟)

and corresponding eigenvalues 𝜆
𝑘
, usually ordered as 𝜆

1
≥

𝜆
2
≥ 𝜆
3
≥ ⋅ ⋅ ⋅ > 0,

𝐾
𝑦𝑦

(𝑠, 𝑟) =

∞

∑
𝑘=1

𝜆
𝑘
𝑢
𝑘
(𝑠) 𝑢
∗

𝑘
(𝑟) (20)

can be used for an expansion of the random functions. The
eigenfunction expansions of random functions or Karhunen-
Loève transformed random variables then have a diagonal
covariance kernel ormatrix. Notice that, in finite dimensions,
the expansion of the covariance matrix is simply the eigen-
value expansion which is a special application of the Singular
Value Decomposition (SVD) (see, e.g., the works of Klema
and Laub [4], Lewis [5], and Parlett [6]). The eigenfunction
expansion of the covariance kernel is often referred to as
Mercer’s theorem in the mathematical literature. The eigen-
functions derived from the data covariance are also called
empirical orthogonal functions (EOFs) and have proven most
effective in signal data processing and inmodeling dynamical
systems such as in oceanography and related fields (see, e.g.,
Kim and Wu [7], North and Cahalan [8]).

The mathematical situation is summarized by the well-
known Karhunen-Loève theorem: Let 𝑋(𝑡) be a zero-mean
random function on 𝑇 with a weight function 𝑤(𝑡) ≥ 0 such
that its covariance kernel satisfies

∫
𝑇

∫
𝑇

󵄨󵄨󵄨󵄨𝐾𝑋 (𝑠, 𝑟)
󵄨󵄨󵄨󵄨
2

𝑤 (𝑟) 𝑑𝑠𝑑𝑟 < ∞; (21)

then
(i) for the integral equation

∫
𝑇

𝐾
𝑋
(𝑠, 𝑟) 𝑢 (𝑟) 𝑤 (𝑟) 𝑑𝑟 = 𝜆𝑢 (𝑠) , (22)

there exist eigenvalues 𝜆
1
≥ 𝜆
2
≥ 𝜆
3
≥ ⋅ ⋅ ⋅ > 0 with

corresponding eigenfunctions 𝑢
1
(𝑠), 𝑢
2
(𝑠), 𝑢
3
(𝑠), . . .

such that

∫
𝑇

𝐾
𝑋
(𝑠, 𝑟) 𝑢

𝑘
(𝑟) 𝑤 (𝑟) 𝑑𝑟 = 𝜆

𝑘
𝑢
𝑘
(𝑠) (23)

for all 𝑘 such that {𝑢
𝑘
(𝑡)} is a deterministic orthonor-

mal system on 𝑇 relative to the weight function 𝑤(𝑡)

meaning that

∫
𝑇

𝑢
𝑘
(𝑡) 𝑢
∗

ℎ
(𝑡) 𝑤 (𝑡) 𝑑𝑡 = 𝛿

𝑘ℎ
; (24)

(ii) the corresponding generalized Fourier coefficients of
𝑋(𝑡) relative to these eigenfunctions

𝜉
𝑘
= ∫
𝑇

𝑋(𝑡) 𝑢
∗

𝑘
(𝑡) 𝑤 (𝑡) 𝑑𝑡 (25)

are uncorrelated and Var[𝜉
𝑘
] = 𝜆
𝑘
;

(iii) 𝑋(𝑡) can then be represented as an eigenfunction
expansion as

𝑋 (𝑡) =

∞

∑
𝑘=1

𝜉
𝑘
𝑢
𝑘
(𝑡) (26)

in the mean-square sense.
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This last orthogonal expansion of the random function 𝑋(𝑡)

is known in the literature as a generalized Fourier expansion,
a Karhunen-Loève expansion, or a canonical expansion. Also,
the Fourier and Karhunen-Loève expansions are usually
introduced in the functional analysis context of square-
integrable functions such as𝐿2(R)while the canonical expan-
sion context is simply a decomposition of the covariance
matrix or kernel (see, e.g., the works of Dougherty [1] for
more discussion).

In practice when only the observational sequence {𝑦(𝑠)}

is known, the SVD can be used to obtain the eigenvectors
of the corresponding covariance function without explicitly
evaluating the covariance matrix. As different data matrices
are generally rectangular in shape, different strategies are
advisable for the SVD computations (see, e.g., the works of
Björck [9] and Blais [10]). Furthermore, especially inmultiple
dimensions, the SVD and Principal Component Analysis
(PCA) terminologies are not always consistent in the applied
science and engineering literature largely because of related
data array conventions and objectives.

4. Empirical Biorthogonal Expansions

Rather than solving the eigenvalue equation for the orthonor-
mal eigenfunctions {𝑢

𝑘
(𝑡)} with corresponding eigenvalues

{𝜆
𝑘
}, let us assume that an arbitrary sequence {𝑎

𝑘
(𝑡)} of

square-integrable functions are available. Then a biorthog-
onal sequence {V

𝑘
(𝑡)} can be generated to satisfy the condi-

tions:

(i) 𝑥
𝑘
(𝑡) = ⟨𝐾

𝑋
(𝑡, 𝑠), V

𝑘
(𝑠)⟩/⟨⟨𝐾

𝑋
(𝑡, 𝑠), V

𝑘
(𝑡)⟩, V

𝑘
(𝑠)⟩,

(ii) ⟨𝑥
𝑘
(𝑡), V
ℎ
(𝑡)⟩ = 𝛿

𝑘ℎ

recursively in a well-known manner using the following
projections:

(i) set V
1
(𝑡) = 𝑎

1
(𝑡) with 𝑥

1
(𝑡) = ⟨𝐾

𝑋
(𝑡, 𝑠), V

1
(𝑠)⟩/

⟨⟨𝐾
𝑋
(𝑡, 𝑠), V

1
(𝑡)⟩, V

1
(𝑠)⟩,

(ii) define V
2
(𝑡) = 𝑐

21
V
1
(𝑡)+𝑎
2
(𝑡)with 𝑐

21
determined from

⟨𝑥
1
(𝑡), V
2
(𝑡)⟩ = 0; that is,

⟨𝑥
1
(𝑡) , 𝑐
21
V
1
(𝑡) + 𝑎

2
(𝑡)⟩ = 𝑐

21
⟨𝑥
1
(𝑡) , V
1
(𝑡)⟩+⟨𝑥

1
(𝑡) , 𝑎
2
(𝑡)⟩

= 𝑐
21

+ ⟨𝑥
1
(𝑡) , 𝑎
2
(𝑡)⟩ = 0

(27)

implying

𝑐
21

= − ⟨𝑥
1
(𝑡) , 𝑎
2
(𝑡)⟩ and hence

V
2
(𝑡) = − ⟨𝑥

1
(𝑡) , 𝑎
2
(𝑡)⟩ V
1
(𝑡) + 𝑎

2
(𝑡)

(28)

with

𝑥
2
(𝑡) =

⟨𝐾
𝑋
(𝑡, 𝑠) , V

2
(𝑠)⟩

⟨⟨𝐾
𝑋
(𝑡, 𝑠) , V

2
(𝑡)⟩ , V

2
(𝑠)⟩

, (29)

(iii) assuming V
1
(𝑡), V
2
(𝑡), . . . , V

𝑘−1
(𝑡) and 𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . ,

𝑥
𝑘−1

(𝑡) known, define V
𝑘
(𝑡) = 𝑐

𝑘1
V
1
(𝑡)+𝑐
𝑘2
V
2
(𝑡)+ ⋅ ⋅ ⋅+

𝑐
𝑘,𝑘−1

V
𝑘−1

(𝑡) + 𝑎
𝑘
(𝑡) with 𝑐

𝑘1
, 𝑐
𝑘2
, . . . , 𝑐

𝑘,𝑘−1
determined

from

⟨𝑥
1
(𝑡) , V
𝑘
(𝑡)⟩ = ⟨𝑥

2
(𝑡) , V
𝑘
(𝑡)⟩ = ⋅ ⋅ ⋅

= ⟨𝑥
𝑘−1

(𝑡) , V
𝑘
(𝑡)⟩ = 0

(30)

with

𝑥
𝑘
(𝑡) =

⟨𝐾
𝑋
(𝑡, 𝑠) , V

𝑘
(𝑠)⟩

⟨⟨𝐾
𝑋
(𝑡, 𝑠) , V

𝑘
(𝑡)⟩ , V

𝑘
(𝑠)⟩

(31)

(see, e.g., [1] for more details and applications).

Notice that when the given sequence {𝑎
𝑘
(𝑡)} of square-

integrable functions are orthogonal, then the generated
biorthogonal sequence {V

𝑘
(𝑡)} is simply the original orthog-

onal sequence {𝑎
𝑘
(𝑡)}. Furthermore, if the given sequence

{𝑎
𝑘
(𝑡)} happened to be the eigenfunction sequence {𝑢

𝑘
(𝑡)}

from 𝐾
𝑋
(𝑡, 𝑠), then the generated biorthogonal sequence

{V
𝑘
(𝑡)} would simply be the eigensequence {𝑢

𝑘
(𝑡)} with

normalizing coefficients being the corresponding eigenvalues
𝜆
𝑘
and the situation reducing to the previous orthogonal case

with unit weight function 𝑤(𝑡) ≡ 1.
For a random function 𝑋(𝑡) over some domain 𝑇 with

zero-mean value and covariance kernel𝐾
𝑋
(𝑡, 𝑠), let {V

𝑘
(𝑡), 𝑡 ∈

𝑇} denote a sequence of square-integrable functions such that
{𝑥
𝑘
(𝑡)} and {V

𝑘
(𝑡)} are biorthogonal function sequences on𝑇.

Then the following conditions are equivalent:

(i) 𝑋(𝑡) is equal in themean-square sense to its canonical
expansion in terms of 𝜉

𝑘
and 𝑥

𝑘
(𝑡); that is,

𝑋 (𝑡) =

∞

∑
𝑘=1

⟨𝑋 (𝑡) , V
𝑘
(𝑡)⟩ 𝑥
𝑘
(𝑡) =

∞

∑
𝑘=1

𝜉
𝑘
𝑥
𝑘
(𝑡) ; (32)

(ii) 𝐾
𝑋
(𝑡, 𝑠) has a canonical expansion in terms of 𝜅

𝑘
,

𝑥
𝑘
(𝑡), and 𝑥

𝑘
(𝑠)

𝐾
𝑋
(𝑡, 𝑠) =

∞

∑
𝑘=1

𝜅
𝑘
𝑥
𝑘
(𝑡) 𝑥
∗

𝑘
(𝑠) ; (33)

(iii) Var[𝑋(𝑡)] has a canonical expansion in terms of 𝜉
𝑘

and 𝑥
𝑘
(𝑡)

Var [𝑋 (𝑡)] =

∞

∑
𝑘=1

𝜉
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘 (𝑡)
󵄨󵄨󵄨󵄨
2

. (34)

More discussion and applications of these results can be
found in, for example, [1].

Again in some applicationswhere an arbitrary orthogonal
function sequence is available such as from previous mea-
surements or observations, the biorthogonal basis function
approach is generally advantageous over other approaches
that do not make use of the prior information.
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5. Nonstationary and
Nonlinear Stochastic Analysis

Although most nonstationary stochastic processes are not
amenable to linear analysis, there are exceptional cases where
a simple variable transformation renders linear analysis
possible. For instance, multiplicative noise contamination
becomes additive “noise” under a logarithm transformation,
and hence linear analysis can be done in the logarithmic
space.

Some stochastic processes become stationary under dif-
ferentiation in continuous contexts or differencing in discrete
contexts. For example, a (covariance stationary) process with
an unknown linear trend as first moment becomes stationary
under double differentiation or differencing as commonly
done in Global Positioning System (GPS) data processing.
Such processes are called increment stationary and their
second moments remain stationary under linear operations
of differentiation or differencing. Obviously only finitely
many such operations are considered corresponding to the
(finite) degree of the polynomial trend.

Assuming a stochastic process 𝑋(𝑡) to have stationary
increments of some order 𝑘 ≥ 0, then ∇

𝑘+1

𝑋(𝑡) ≡ 𝑋
(𝑘+1)

(𝑡)

is stationary with some generalized covariance 𝐺(𝑃,𝑄) ≡

𝐺(𝑃 −𝑄). That means that the generalized Fourier transform
F[𝐺(𝑃, 𝑄)] > 0 for realizability, but using the well-known
Khintchine-Wiener theorem, the spectrum of 𝑋

(𝑘+1)

(𝑡) is
also given by the generalized Fourier transform of the
autocorrelations of 𝑋(𝑘+1)(𝑡), that is, |F[𝑋

(𝑘+1)

(𝑡)]|
2

. Using
themathematical relationF[𝑋

(𝑘+1)

(𝑡)] = (𝑖𝜔)
𝑘+1

F[𝑋(𝑡)] for
frequencies 𝜔, then

F [𝐺 (𝑃, 𝑄)] =
󵄨󵄨󵄨󵄨󵄨
F[𝑋
(𝑘+1)

(𝑡)]
󵄨󵄨󵄨󵄨󵄨

2

≡ F [𝑋
(𝑘+1)

(𝑡)] ⋅F[𝑋
(𝑘+1)

(𝑡)]
∗

= 𝜔
2𝑘+2

|F [𝑋 (𝑡)]|
2

> 0

(35)

which implies the existence and positive definiteness (for
realizability) of a generalized covariance 𝐺(𝑃,𝑄) ≡ 𝐺(𝑃 − 𝑄)

for𝑋(𝑡) whenever one exists for𝑋(𝑘+1)(𝑡).
Assuming that 𝑋(𝑡) is increment stationary, then its

expected value can bemodeled using an algebraic polynomial
𝑀
𝑋
(𝑡) = 𝑎

0
+𝑎
1
𝑡+𝑎
2
𝑡
2

+ ⋅ ⋅ ⋅ +𝑎
𝑘
𝑡
𝑘 with unknown coefficients

𝑎
0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑘
, and the previousWiener-Hopf equations for

unknown𝐻(𝑟, 𝑡)

⟨𝐾
𝑦𝑦

(𝑠, 𝑟) ,𝐻 (𝑟, 𝑡)⟩ = 𝐾
𝑦𝑋

(𝑠, 𝑡) (36)

have to be generalized to the so-called extended normal
equations,

⟨𝐾
𝑦𝑦

(𝑠, 𝑟) ,𝐻 (𝑟, 𝑡)⟩ + 𝛼𝑀
𝑋
(𝑡) = 𝐾

𝑦𝑋
(𝑠, 𝑡) ,

⟨𝑀
𝑋
(𝑟) ,𝐻 (𝑟, 𝑠)⟩ = 𝑀

𝑋
(𝑠) ,

(37)

for some Lagrange multiplier 𝛼 for constrained optimization.
Explicitly, using the terminology and conventions of

regionalized variables in geostatistics, the linear prediction

for 𝑓(𝑥
0
) = ∑

𝑁

𝑖=1
𝜆
𝑖
𝑓(𝑥
𝑖
), with an algebraic polynomial trend

or drift model 𝑎
0
+ 𝑎
1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑘
𝑥
𝑘 for the function 𝑓(𝑥),

and denoting 𝐶
𝑖𝑗
= E[𝑓(𝑥

𝑖
) 𝑓
∗

(𝑥
𝑗
)], the normal equations

become

[
[
[
[
[
[
[
[
[
[

[

𝐶
11

⋅ ⋅ ⋅ 𝐶
1𝑁

1 ⋅ ⋅ ⋅ 𝑥
𝑘

1

... ⋅ ⋅ ⋅
...

... ⋅ ⋅ ⋅
...

𝐶
𝑁1

⋅ ⋅ ⋅ 𝐶
𝑁𝑁

1 ⋅ ⋅ ⋅ 𝑥
𝑘

𝑁

1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0
... ⋅ ⋅ ⋅

...
... ⋅ ⋅ ⋅

...
𝑥
𝑘

1
⋅ ⋅ ⋅ 𝑥

𝑘

𝑁
0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

𝜆
1

...
𝜆
𝑁

𝛼𝑎
0

...
𝛼𝑎
𝑘

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝐶
10

...
𝐶
𝑁0

1
...
𝑥
𝑘

0

]
]
]
]
]
]
]
]
]

]

. (38)

This is the same extended form of normal equations encoun-
tered with empirical Radial Basis Functions (RBFs) instead
of (generalized) covariance functions. Notice that when the
mean is known and constant, the process can be centered
with the Lagrangemultiplier 𝛼 set to zero, and these extended
normal equations reduce to the standardWiener-Hopf equa-
tions.

Such an extended covariance matrix is easily invertible
under minimal conditions as

(
𝐶 𝐵

𝐵
𝑇

0
)

−1

= (
𝐶
−1

+ 𝐶
−1

𝐵𝐻𝐵
𝑇

𝐶
−1

−𝐶
−1

𝐵𝐻

− 𝐻𝐵
𝑇

𝐶
−1

𝐻
) with

𝐻 = −(𝐵
𝑇

𝐶
−1

𝐵)
−1

,

(39)

where 𝐻 is sometimes called Schur’s Complement of 𝐶 in
the extended matrix (see, e.g., the work of Kailath et al. [3]
for more details). Hence under minimal conditions, these
extended normal equations can be solved explicitly for the
linear coefficients 𝜆] and the trend polynomial coefficients.
The inverse of a covariance matrix is usually called an
information matrix. Also, generalized covariance functions
in the sense of generalized functions are often advantageous
for estimation in practical applications (see, e.g., the work of
Blais [11] for more discussion with simulations).

Recalling that given observations {𝑦(𝑠)}, the optimal
general estimate (not necessarily linear)

𝑋(𝑡) = E [𝑋 (𝑡) | 𝑦 (𝑠)] (40)

with the property that

Var [𝑋 (𝑡) − E [𝑋 (𝑡) | 𝑦 (𝑠)]] ≤ E [
󵄨󵄨󵄨󵄨𝑋 (𝑡) − Ψ (𝑦 (𝑠))

󵄨󵄨󵄨󵄨
2

]

(41)

for any linear or nonlinear estimator Ψ(𝑦(𝑠)) can sometimes
be evaluated directly using numerical simulations. In fact,
using the previous conventions,

E [𝑋 (𝑡)] ≡ 𝜇
𝑋
(𝑡) ≡ ∫

∞

−∞

𝑥𝑝
𝑋
(𝑡) 𝑑𝑥, (42)



6 Mathematical Problems in Engineering

and with the help of Bayes’ theorem,

𝑋 (𝑡) = ∫
∞

−∞

𝑥𝑝
𝑋|𝑦

(𝑡, 𝑠) 𝑑𝑥

= ∫
∞

−∞

𝑥{
𝑝
𝑦|𝑋

(𝑡, 𝑠) 𝑝
𝑋
(𝑡)

󵄩󵄩󵄩󵄩󵄩
𝑝
𝑦|𝑋

(𝑡, 𝑠) 𝑝
𝑋
(𝑡)

󵄩󵄩󵄩󵄩󵄩

}𝑑𝑥

(43)

which can be evaluated directly using Monte Carlo simula-
tions in simple cases.

For example with Gaussian variables 𝑍] such that E[𝑍] |

𝑢] = 𝜎
2

] ∑𝛼]𝜂𝑢𝜂 and variance 𝜎
2

] , one can write explicitly for
the conditional probability density function

𝑝 (𝑍] | 𝑢) =
1

√2𝜋𝜎2]

exp
{

{

{

−
(𝑍] − 𝜎

2

] ∑𝛼]𝜂𝑢𝜂)
2

2𝜎2]

}

}

}

, (44)

and these can be multiplied in cases of several independent
Gaussian variables. In general, such explicit formulation is
obviously unknown. Using Bayes’ Theorem as above and
substituting the results into the integral for𝑋(𝑡), the required
conditional expectation can be evaluated in simple applica-
tions.More discussion and application examples can be found
in the works of Pugachev [2], Dougherty [1], and Zhang [12].

6. Computational Examples and Discussion

In many practical applications, solving the preceding normal
equations and/or their extended form in the most efficient
manner is one primary objective. As mentioned above, in
stationary cases with equispaced data, the use of FFTs is
the common strategy as the diagonalizing of the covariance
matrix is well known to be most efficient. However, this
is not always possible in many situations. Computational
alternatives are briefly discussed in the following paragraphs.

As different software packages use different conventions
for discrete Fourier, wavelet Haar, and other transforms, the
following is very explicit in the conventions used. First, the
Fourier matrix 𝐹 of order 𝑁 has elements 𝑓

𝑟𝑠
= 𝑒
2𝜋𝑖𝑟𝑠/𝑁, and

the simple applicationwith𝑁 = 8 for the covariance function
Cov[𝑑] = 1/(1 + 𝑑

2

) gives (without any normalization)

𝐹
∗

(1
1

2

1

5

1

10

1

17

1

10

1

5

1

2
)

= (2.659 1.507 0.659 0.375 0.259 0.375 0.659 1.507) ,

(45)

or using the corresponding circulant Toeplitz matrix (with
proper normalization),

𝐹
∗

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1
1

2

1

5

1

10

1

17

1

10

1

5

1

2

1

2
1

1

2

1

5

1

10

1

17

1

10

1

5

1

5

1

2
1

1

2

1

5

1

10

1

17

1

10

1

10

1

5

1

2
1

1

2

1

5

1
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1

17

1
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1
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1
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1

2
1

1

2

1
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1
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1

5

1

2
1

1

2

1

5

1

5

1
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1
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1
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1

5

1

2
1

1

2

1

2

1

5

1

10

1

17

1

10

1

5

1

2
1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝐹

= 8 ⋅ diag (2.659 1.507 ⋅ ⋅ ⋅ 0.659 1.507)

(46)

as expected. Notice that formulating the preceding covari-
ance matrix differently for the given covariance function
Cov[𝑑] = 1/(1 + 𝑑

2

) would not imply the above diagonal
matrix. Also, the scaling of this diagonal matrix would not
be needed with normalized Fourier transforms.

Again considering the synthetic covariance function

Cov [𝑑] = 1

𝛼2 + 𝑑2
(47)

for some real scalar 𝛼, the plot of Cov[𝑑] for 𝑑 = 0, 1, . . . , 512

(using 𝛼 = 1 for simplicity) with corresponding power
spectrum or Fourier transform of this covariance function is
simply

𝑆 (𝜔) =
1

𝛼
𝑒
−𝛼|𝜔| (48)

for frequencies𝜔which is shown in Figure 1(a). Adding some
noise amplification within −1 ≤ 𝑠 ≤ 1 in space or time, the
covariance function becomes

Cov [𝑠, 𝑑] = 1

𝛼2 + 𝑑2
+ 𝐻 (|𝑠|) 𝛿 (𝑑) (49)

for the Heavyside (or step) function

𝐻(|𝑠|) = {
1 for |𝑠| ≤ 1,

0 otherwise
(50)

and scalar 𝛼; its spectrum becomes

𝑆 (𝜎, 𝜔) =
1

𝛼
𝑒
−𝛼|𝜔|

+ 𝜎
−1 sin𝜎 (51)

which is nondiagonal as shown in Figure 1(b) with ripples
away from the diagonal.
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Figure 1: (a) Exponential spectrum. (b) Exponential + Sinc spectrum. (c) Haar spectrogram of [1/(1 + 𝑑
2

)]. (d) Haar spectogram of
[1/(1 + 𝑑

2

) +Nonstationary Noise]. (e) Singular spectrum of extended covariancematrix. (f) Power spectrum of extended covariancematrix.

Considering this covariance function Cov[𝑑] for mul-
tiresolution analysis with the Haar wavelet basis, using the
discrete orthogonal basis (1/√2 1/√2) and (1/√2 −1/√2)

with order 512, the corresponding spectrogram is shown in
Figure 1(c) which is sparse but not diagonal as the power

spectrum. Modifying the level of noise with this covariance
function as follows

Cov [𝑠, 𝑑] = 1

𝛼2 + 𝑑2
+ {

0.5 for 𝑠 = 1, 2, . . . , 256,

0.2 for 𝑠 = 257, 258, . . . , 512

(52)
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does not imply much variation in the corresponding spec-
trogram (see Figure 1(d)). Similar results were obtained by
Keller [13] with Haar wavelets and Zhang [12] using a slightly
different orthogonal basis. Although the orthogonal Haar
wavelet and similar transforms would seemmost appropriate
for such covariance matrices, they only succeed in making
the covariance matrix sparse but not diagonal. The EOF
approach does diagonalize any symmetric positive definite
covariance matrix by the very nature of the eigenvector
decomposition. Such eigenvector and eigenvalue decomposi-
tions are computationally demanding, but it is worth noting
that the biorthogonal basis construction is computationally
advantageous whenever some arbitrary basis is available, as
mentioned above.

Next, assuming an unknown mean for the simulated
stochastic process, the covariance matrix Cov[𝑑] can easily
be modified such that the last column and row are 1’s with
0 as the last diagonal element; the corresponding singular
spectral matrix is shown in Figure 1(e). Using this modified
covariancematrixCov[𝑑], itsDFT spectralmatrix is shown in
Figure 1(f) which shows anomalous effects due to the border
modifications of Cov[𝑑]. In other words, the DFT and FFT
approaches are not appropriate with extended covariance
matrices even with equispaced data. This is obviously an
important result for applications of extended covariance and
RBF normal matrices in geostatistics (see, e.g., the works of
Chilès and Delfiner [14]).

7. Concluding Remarks

Stochastic time series are very common in geoscience, and
better analytical tools and procedures for their modeling and
filtering warrant more research and development. Multires-
olution analysis and synthesis of sequences of observations
and measurements are needed for all kinds of applications in
geoscience and other fields.

DFTs and FFTs are normally used in stationary processes
with equispaced data. However in practice, nonstationarities
are often unavoidable, and even in increment stationary cases
with equispaced data, DFTs and FFTs are not appropriate.
Galerkin’s projection methods especially with EOFs are more
general and unfortunatelymore computationally demanding.
However in some applications, only the leading spectral
modes are necessary for analysis and inference thus reducing
the necessary computational efforts.

For simple prediction applications in stationary cases, the
normal equations can be solved using Cholesky’s Square-
Root algorithm which has well-known numerical properties;
while in increment stationary cases, as well as various
RBF formulations, some Cholesky and Givens reduction
procedure can be used (see, e.g., the work of Blais [10]).
For more in-depth numerical analysis, the SVD and KLT
are most recommendable in general and visualization tools
are very helpful in the structural analysis of covariance and
information matrices.
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