Access to full text denied by publisher.

Please contact your local library to acquire the following paper:

Citation:

A Simple Resolution Procedure Using the Staudinger Reaction for the Preparation of *P*-Stereogenic Phosphine Oxides

Neil G. Andersen, Philip D. Ramsden, Daqing Che, Masood Parvez, and Brian A. Keay pp 7478 – 7486.

Abstract:

The resolution of a variety of (\pm) -P-stereogenic phosphines is achieved by exploiting the Staudinger reaction of a (\pm) -phosphine with enantiopure (1S,2R)-O-(tert-butyldimethylsilyl)isobornyl-10-sulfonyl azide. The resulting mixtures of diastereomeric phosphinimines are generally separable by fractional crystallization or flash chromatography. Subsequent acid-catalyzed hydrolysis provides the corresponding optically pure phosphine oxides in high yields.

Tables:

Table 1. Resolution of P-Stereogenic Phosphines with Sulfonyl Azide 27

$$R^{1} \stackrel{P}{R^{2}} Ph + OTBS \stackrel{THF. 60 \circ C}{12 h} \stackrel{N}{R^{2}} \stackrel{SO_{2}R^{*}}{Ph} + Ph \stackrel{N}{R^{3}} R^{2}$$
 $R^{*} = OTBS$

entry	SM	R1	R ²	products ^a	separation method	yield (%)b
1	7	Me	C ₆ H ₁₁	28a and 28b	crystallization	94
2	8	Me	C ₅ H ₉	29a and 29b	crystallization	90
3	9	Me	CH(CH ₃) ₂	30a and 30b	crystallization ^c	87
4	13	Me	1-Np	31a and 31b	chromatography	94
5	14	Me	2-Me-1-Np	32a and 32b	chromatography	91
6	15	Me	2-MeO-1-Np	33a and 33b	chromatography	95
7	16	Me	2-Np	34a and 34b	crystallization	87
8	17	Me	9-phenanthryl	35a and 35b	chromatography	89
9	18	1-Np	p-PhC ₆ H ₄	36a and 36b	chromatography	89

^a Diastereomer to elute first or crystallize first designated "a". ^b Combined isolated yield of both diastereomers. ^c Not fully separated.

Table 2. Hydrolysis of Isomerically Pure Phosphinimines

28-36 a or b diastereomerically pure 37-45 enantiomerically pure

	expt α ²⁰ D:											
	SM	\mathbb{R}^{1}	\mathbb{R}^2	product	[c] (g/100 mL)*		lit. $\alpha^{20}D$	yield (%) ^{6, c}	SM config			
1	28a	Me	C ₆ H ₁₁	37	+19.2;	[0.93]	$+19.0^{28}$	93 (R)	S			
2	29Ь	Me	C_5H_9	38	+33.3;	[1.62]		93				
3	30a	Me	CH(CH ₃) ₂	39	-22.6;	[1.00]	-21.2^{30}	94 (S)	R			
4	31a	Me	1-Np	40	+19.8;	[2.92]	$+18.6^{31}$	96 (S)	R			
5	32ь	Me	2-Me-1-Np	41	-73.6;	[1.50]		94				
6	33a	Me	2-MeO-1-Np	42	+128.0;	[1.58]	$+128.0^{19}$	91 (S)	R			
7	34a	Me	2-Np	43	-12.0:	10.901	-12.0^{28}	96 (S)	R			
8	35a	Me	9-phenanthryl	44	+71.4;	[1.14]		99				
o.	36b	1.Nn	p.PhCeH4	45	+26.0	ID 621d	+27 0d22	92 (E)	S			

^a Rotation in methanol except as noted. ^b Isolated yields. ^c Phosphorus configuration assigned according to literature correlation. ^d Rotation in CHCl₃.

Schemes:

Scheme 1 O PPh₂ (+/-)-BINAPFu 1 R^* R^*

 a Conditions: (a) 2 equiv of MeI, CHCl $_3$, rt, 24 h. (b) 5 equiv of LiAlH $_4$, Et $_2$ O, reflux, 6 h.

Scheme 3a

12

13 R=1-naphthyl 14 R=2-methyl-1-naphthyl 15 R=2-methoxy-1-naphthyl 16 R=2-naphthyl 17 R=9-phenanthryl

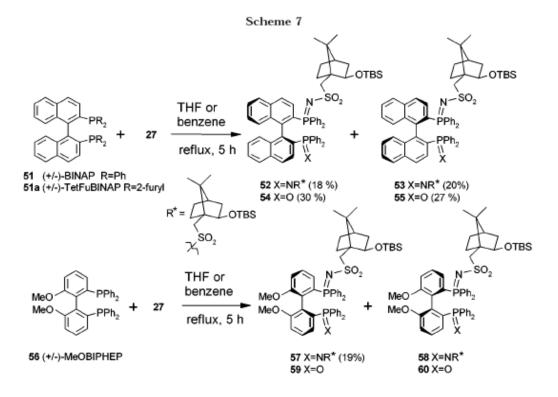
 a Conditions: (a) 1.0 equiv of MeMgBr, Et₂O, $-40~^\circ\text{C}$, 1 h, 85%. (b) 2.2 equiv of HCl (1.0 M solution in Et₂O), 0 $^\circ\text{C}$, 1 h. (c) 1.2 equiv of RMgBr, Et₂O, $-40~^\circ\text{C}$, 3 h, 32–67% (two steps).

Scheme 4

19 20

N₃
O
SO₂N₃
21 22

7+22 THF.
$$\Delta$$
N O₂
P
O₂
P
O₃
O
SO₂N₃


23b

23a

Scheme 5a

 a Conditions: 2.4 equiv NaBH4, H2O, rt, 1 h, 95%. (b) 3.3 equiv TBSCl, Et₃N, DMF, rt, 3 h. (c) 6.0 equiv SOCl₂, C₆H₆, DMF, reflux, 12 h. (d) 3.2 equiv NaN₃, DMA, H₂O, 60 °C, 12 h, 57% (3 steps).

Scheme 6

64

63

Scheme 8

DOI: <u>10.1021/jo015909u</u>