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ABSTRACT

The present thesis deals with some torsion and crack problems in the
linear theory of elasticity. In chapter 1, we have given a brief summary of
the linear theory of the elasticity. Chapter 2 deals with three different
problems of Reissner-Sagoci type for composite cylindrical regions. In chapter
3, we have discussed a torsion problem of two bonded nonhomogeneous elastic
layers with a penny-shaped flaw at the interface. 1In chapter 4, we have
solved a problem of Griffith crack at the interface of two dissimilar orthotropic
elastic layers. In chapter 5, we have solved a penny-shaped interface crack
problem between two dissimilar transversely isotropic layers. .The numerical

values of the physical quantities have been obtained and displayed graphically.
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Nomenclature

Cij the elastic moduli for anisotropic material.
A b Lame constants for isotropic elastic material.
Ui the displacement component along i—direction.
7ij _ the stress tensor componénts.
€ij the strain tensor components.
bij the Kronecker delta.
J,(2) the Bessel functions of the first kind and of order v.
Y, (2) the Bessel functions of the second kind and of order v.
I(x) the modified Bessel functions of the first kind and of order ».
K (z) the modified Bessel functions of the second kind and of order v.
Fs the Fourier sine transform defined by the equation
S 5 2 6 = (B} [ 1(@sin(ea)ds
Fe the Fourier cosine transform defined by the equation
FI@) 520 8 = (D} [ f@eoledds,
7, the Hankel transform defined by the equation
KA 5 € = [ EFE) T(er)dt .
A1 the Abel transform of the first kind defined by the equation
A1) 5t = (B [ /it
A2 the Abel transform of the second kind defined by the equation
Q) 5t = (B} [ re/ientas
H(z) the Heaviside function.
I'(z) the Gamma fuction.

Pn(a’ﬂ)(z) the Jacobi polynomials.
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CHAPTER 1

BASIC EQUATIONS OF MATHEMATICAL
THEORY OF ELASTICITY

The mathematical theory of elasticity has a long history. Hooke, Bernoulli;
Navier, Cauchy and Green made a lot of contributions to the developmehts of
the mathematical theory of elasticity. There are many excellent books which
give introduction to the basic theory of elasticity. Sokolnikoff [1], Green and
Zerna [2], Love [3] and Fung [3a] are good reference books for isotropic
elasticity, while Lekhnitskii [4] and Hearman [5] are good reference books for
anisotropic elasticity. In this chapter we will give an outline of the linear
theory of elasticity and some basic formulae which are needed later.

In the study of the distribution of stresses and deformations in an elastic
body, we 1regard an elastic body as a solid continuous medium. The
configuration of a solid body is described‘ by a region of a Euclidean point
space whose geometrical points are identified with the position of the material
particles of the body.

Let a system of coordinates z;, 73, z3 be chosen so that a point P of an
elastic body at a certain instant of time has the coordinates zi(i=1,2,3). Under
some physical actions the configuration of the solid body changes. Suppose at
a later instant of time the point P moves to P* with coordinates yi(i=1,2,3)

with respect to a new system of coordinates ¥, ys, ws. The change of the
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configuration of the elastic body can be thought of a one-to-one mapping

between two configurations. The mapping can be written as
yi=@i($1,$2,$3), (1':17273))

with the unique inverse mapping

$i=§;i(y1,y2,y3), (7'=1’273)’

for every point of the elastic body. The change of configuration is assumed to
be continuous and smooth. In fact, we are assuming that the functions Z; and

71 (=1,2,3) are twice continuously differentiable.
1.1 Strain and Stress

If the distance between particles of a body is changed under an action, the
body is said to be deformed and otherwise the body is said to be undeformed.
To study deformation of an elastic body, let us fix a cartesian coordinate
system O-zizox3. Suppose a point P(¢1,£2,€3) is moved to the position
P¥(¢1*,£9%,£5*) under a physical action. The difference ui(P)=¢:*-€: (i=1,2,3)
is called the displacement of point P along the z; direction. The displacement
vector {uy,ug,u3} varies, in general, from point to poiht of the body and is
twice continuously differentiable.

Now suppose that a neighborhood point of P, say @(71,72,73) is moved to
Q*(n(*,n2*,n3*) with the displacement components ui(Q)=n:i*-ni, (i=1,2,3). Let
the vector joining the points P and @ be ? with the components 7,72 and 73,
and 7*be the vector joining the points P* and @*. From the Fig.1.1.1 we

know that the vector §7=%*—7 has the components

dri= (i€ (=€) =(ni* )¢ ~€1)=u( Q)-ui(P), =1,2,3.



Fig. 1.1.1
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If we assume that the displacement components u; (¢=1,2,3), and their partial

derivatives are so small that their product can be neglected then we have

5Ti=u-’j 7

= (v, jru; o+ o) 7

=(e, +w”) T, (1.1.1)
where

s 7(1& 7 ) (1.1.2)

wij=% uz‘,j'uj,i)’ (1.1.3)
and the comma in the subscript means a partial differentiation, e.g U, —-(753-
The symmetric coefficients e, i are called components of sirain tensor at
the point P, which characterize a pure deformation; while the skew—symmetric
coefficients Wy correspond to a rigid body rotation.
We consider next the transformation of the components of the strain

tensor under a rotation of axes of a Cartesian coordinate system. Let the two

coordinates be connected by the following linear relations
= ﬂﬂ mz ) 4] =1,2,3; ‘ (114)

where f i are the direction cosines of the z% —axis with respect to the z;

—axis. The matrix T=(f ji) is orthogonal and

(?zz- 0:1:% N
3z = ﬂ]’& ) 9z = ﬂZ] ) %) = 1,2,3.
J J

Then the relations of the components of -displacement vector with respect to

the two coordinate systems are given by

wp = By, ij = 1,2,3. (1.1.5)

Substituting equations (1.1.4) and (1.1.5) into equations (1.1.2) we obtain



e; =5u; hus ) = %[a%(ﬁik v + a%(ﬂm )
1 3a:l d (?:z:l i}
= 56, (7;;,;? Eil"k) + Bim (3z—zi ;ﬁlum)]
= 508l wy + By, By ]
= ‘%[ﬂz'kﬁjz Uy + By By vyl
= 3 Paby (wy + )

= ﬂzkﬁﬂ ey > (1.1.6)

this shows that e; i are really components of a second order tensor.

When deformation occurs there is a surface force acting from a portion of
an elastic body upon the other portion of the body. Let us consider a surface
element AS of the body, see Fig.1.1.2, which is located in the interior of the
body. Drawing a unit normal vector ? from a point on AS, we can distinguish
the two sides of AS according to the sense of ?. Suppose that the portion of
the material lying on the positive side of the normal exerts a force AF on the
other portion of the material. Obviously, the force AF is a function of the area
As of the surface element AS and varies when the normal 7 changes. As As -

0, we get

7 = lim AF,
As-0 X

where the subscript v denotes the direction of the unit normal 7 of the
surface element AS. The vector 1V is called "stress vector" or "traction",
which represents a force per unit area acting on the surface with normal ?.
The projection of T along the direction of coordinate axis z; is denoted
by TZ When 7 is a unit vector in the direction vector zj , we write

T'é:a i ,which are called the components of siress temsor. Particularly the



Fig. 1.1.2
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components ¢y, oo and og, are called "normal stresses" and Tsi (#j) are
called "shear stresses". To see that a stress vector in any direction can be
written in terms of stress components, let us consider an infinitesimal
tetrahedron formed by three surfaces parallel to the coordinate planes and one
normal to the unit vector 7 with compoments », (i=1,2,3) (see Fig.1.1.3).
Suppose that the lengths of the sides of the tetrahedron along the zz-—direction
are dzz- , =1,2,3; respectively. .Denote the area of the surface normal to 7 by
ds then the area of the surfaces normal to direction z; is given by dszzuids,
1=1,2,3; respetively.

Let T be the stress vector acting on a surface element with the normal
7 which passes through the point of vertex of the tetrahedron and A be the
height of the vertex from the base of the tetrahedron. By assuming the
continuity of the stress vector 5”, the i—component of the force acting on the
surface of the tetrahedron which is normal to 7 is (T';+e Z-)ds with €0, as
h~0. And the ¢—components of the force acting on the surfaces of the
tetrahedron which is normal to j-direction are (—aﬁ+e jz')ds k =1,2,3; with ¢ i
-0, as h~0. If the body force, per unit mass, is given by {Fl’Fz’F3} at the
vertex, then the i—component of the body force acting on the tetrahedron is
-:;L(Fi+'é )hds with €-0 as h-0, where p is the density of the material. Hence

the equilibrium of forces on the tetrahedron yield

(14;-+ei)ds + (-Jﬁ+eﬁ)ujds + -g—(Fi+'éz.)hds = 0.

Dividing by ds and letting h-0 we get

fz’. =0 (L.1.7)

.. at a point we can calculate the

Hence, knowing the stress components 7%

stress vector in any direction at the point.
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Now let 1 be a portion of an elastic body and S be the boundary of f.

Each point of S is subjected to a traction Twith ? being the unit normal to
S at the point considered. Each mass element of ## is subjected to a body

force ( per unit mass ) F with components F, , #=1,2,3. For equilibrium, both

the resultant force and the resultant moment acting on § must vanish, which

leads to the following equations
_/‘;sz.dV+ j:g TVdS = 0, (1.1.8)
j"l p144 Fi madV + j:g ik T'; zdS = 0, (1.1.9)
where 7 ik is defined as

1 if ijk represents an even permutation of 123.
T { 0 if any two of ijk indices are same.

-1 if ¢jk represents an odd permutation.

Substituting T'; from equation (1.1.7) into equation (1.1.8) and using the

divergence theorem we obtain
‘/;1 (F; + 05 )V = 0. (1.1.10)

The continuity of the integrand in the equation (1.1.10) and arbitrariness of

the region ! lead to the following equilibrium equation

On the other hand, by divergence theorem we have
./:5, T T7 o438 =];, Tiik O V1 TS
=fﬂ (1338 735 %) 1 &V

=‘/;1 i 7550 % + T 735 O Vs (1.1.12)
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where 6 Kl is the Kronecker delta.
Using the equation (1.1.11) and observing that 6kl"lJ=‘7kj , equation

(1.1.12) can be written as

j:q 1D dS = j"! (P13 2 + Vo)AV (1:1.13)
Substituting equation(1.1.13) into equation (1.1.9) we get

j"! TiaThi 4V = 0. (1.1.14)

Again the continuity of the integrand in the equation and the arbitrariness of

the region i lead to Tihj = 0, which gives

a’ij = aﬁ , (2,J = 1,2,3); (1.1.15)

hence the stress temsor is symmetric. Considering the equation (1.1.7) we know
that the state of stress at any point of the body is determined entirely by six
" independent components of the symmetric stress tensor.

Let the surface elements AS and AS’, with unit normals 7 and ?’, pass
through a point P. By virtue of equations (1.1.7) and (1.1.15) we can show
that the component of the stress vector T° (acting on AS) in the direction of
P’ is the same as the component of the stress vector 7% / (acting on AS’) in

the direction of 7. In fact,
't =T v, =0, v,v,= (0, v, vi= T 9. (1.1.16)

It will be used to derive formulae of transformation of the components of
the stress tensor 75 to o i when the latter is referred to a new coordinate
system z7 obtained from the old one by a rotation of axes.

Let the two coordinates be connected by the linear relations defined by
equations (1.1.4). Then the components of stress tensor with respect to the

coordinate system z; are given by
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the= T -7, (1.1.17)

where 7/ = {ﬂkl , ﬁkz , ﬁk3} is the unit vector parallel to z7~direction and
V= {ﬂml , B ma ﬂm3} Vis the unit vector parallel to g, —direction, referring
to the old system. Using equation (1.1.7) we get

”;cm = ¢. v v, = o'z.j ﬂkj ﬂmz , (1.1.18)

indeed, this shows that Tij is really a second order tensor.

1.2 Generalized Hooke’s Law

If an elastic material is maintained at a fixed temperature and under a state
of strain, the generalized Hooke’s law states that the components of the stress
are linearly related to the components of the strain at the given point. The

generalized Hooke’s law can be written in the following form

02] = cZ]kl ekl ’ (i7j7k7l = 1:213) (1°2'1)

where coefficients Cigl  2T€ called elastic constants or moduli of the material.
If coefficients Cijkl VAIY from point to point of the material, then the material
is called non-homogeneous. If, however, the coefficients ¢ ikl are independent of
the position of the point, the material is called elastically homogeneous. Since
ez‘j and "z’j are symmetric there are, .a,t most, 36 independent elastic
coefficients.

Introducing the following notations
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T = i i = % (=1,2,3)
Toz3 = 04 » T3y = 0y Tig = 0Og »
2e93 = ¢4 , 2e31 = €5, 2e; = €,
the equation (1.2.1) becomes
0y = i (4,71,2,- - - ,6). (1.2.2)

or
Oxx = Cjjéxx + Cppbyy + Ciz€az + CyqVyz + Cy57xz + Cig7xy
Oyy = Cyi€xx + Copbyy + Cpg€zz + CoyTyz + Cos¥xz + Cog7xy »

Ozz = Cyi€xx + Cyplyy + C33€zz + C347yz + Ca5Vxz T Cag7xy »

Oyz = Cyqpbxx + Cypbyy + Cy3€zz + Cyylyz + Cy5Txz + Cyg7xy »
Oxz = Cyi€xx T+ Cyolyy + Cyz€zz + CqTyz + CyTxz + Cse7xy

Oxy = Cgi€xx T+ Cgafyy + Cg3az + Cgqlyz + CgsTxz + CogTxy » (1.2.3)

if we let 1=z, zo=y and z3=z and Yxy = 2 €&xy , Txz = 2 €xz , Tyz = 2 €yz..
When an elastic body is under deformation, there is energy stored in the
body. By the assumption that the deformation occur isothermally, we can
assume that there is a strain energy density function W which is a single
valued function of ej, eg,---, €. If a volume element in a state of stress is
subjected to a virtual strain fe;, then the stress components ¢; yield the work
—rife; . Hence as e; gets an increment fe; , W(ei, es---, es) gets an

increment

OW = o1 be; . (1.2.4)
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On the other hand

ow

Comparing (1.2.4) and (1.2.5) we have
ow

=522 (1.2.6)
Since
ew 0w
deidej ~ dejoe;’
we obtain
from equation (1.2.6), hence ¢;; = ¢i in equations (1.2.2). In other words, -

among the 36 coefficients cs;’s only 21 are independent.

If an elastic body is symmetric in a certain direction, the number of
independent coefficients c;; can be further reduced. First of all, let us consider
a material which is elastically symmetric with respect to the z;zy-plane. The
symmetry means that the c;; will remain the same under the transformation

=74, Tr=1y, T3=—T3.
By the transformation of coordinates we get

i Ei=ei ’ (i=1a2’3)6)

~ ~

Ty = =04 €y = —ey , Ty = 05, s = —€5 . (1.2.7)

For i=1, the equation (1.2.2) yields

Ti= c1181 + c12€2 + c1383 + Cc14€4 + cC1565 + C16€6 ,

o= Cy€1 + C12€2 + Ci3€3 + cueq + c1s€5 + Cig€g - (1.2.8)
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Substituting Equations (1.2.7) into the first equation of (1.2.8) and comparing

with the second one we get
¢4 = ¢35 = 0.
Similarly by considering the equations for 7,-.-,7s we obtain

Co4 = C25 = C34 = C35 = Cg4 = 0,

C41 = C42 = C43 = C46 = C51 = C52 = C53 = C56 = O .

Therefore the matrix of the coefficients of equation (1.2.2) for a material with

the elastic symmetry with respect to z;z;—plane can be written as

€yy Cyg Cy3 O 0 ¢4
Cig Cgg Cy3 O 0 ¢y

c c c 0 0 ¢
6 8 8 e, e O
0 0 0 44 C45 0

C45 Css
| Cig Cgg C3q 0° 6 Coel - (1.2.9)

Materials like wood, for exaﬁple, which have three mutually orthogonal
planes of elastic symmetry are called to be orthotropic. In the study of
orthotropic materials it is convenient for us to choose such axes of the
coordinate system so that the coordinate planes coincide with the planes of the
elastic symmetry. In such a case, besides the symmetry with respect to the
Tizo-plane, expressed by matrix (1.2.9), the coefficients c¢;; must also be

invariant under the transformation of coordinates defined by
zl=—'§:1, $2==5:2, $3=?D3.

Using the same method of as we used above, we find that more coefficients in
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equations (1.2.2) vanish and the matrix of the c;; takes the following form

[ ¢, ¢y, ¢ 0 0 0
Ci3 € Cg 0 0 0
Cig Cq3 C33 0 0 O
6 8 8 e, o o
0 0 0 0 ¢ 0
0 0 0 0 8 ¢, (1.2.10)

there are only 9 independent coefficients.

In the case of an isotropic medium, whose elastic properties are
independent of the orientation of the coordinate axes, the coefficients c;; must
keep the same when we introduce a new Cartesian coordinate system O-Z;%»%3

by rotating the O-zyzoz; through a right angle about the z—axis. Hence we get
Ci2 = C13 , C33 = Ca2 , Cgg = Cs5 -

Similarly, by rotating the axes tﬁrough a right angle about the z;—axis we get
€22 = €11, €13 = C23 , C55 = C44 .

Finally, let us consider the new coordinate system by rotating the
O-z1zoz3 through an angle of r/4 about the zj-axis, in this way we get

Tg = — -%— oy + -—%— o2 , € = —er + €2 . (1.2.11)

From matrix (1.2.7) we have

~

7§ = Ca4€5 , Tg = Ca48s ,
and by using equations (1.2.11) we get

—;—(—01 + 03) = caa(—ey + €2) . ' (1.2.12)
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Considering matrix (1.2.10) again and observing that cj=cs9, cip=ci3=cs3 in
this case, we have
oy = cy1e; + Cr2€2 + cCy3€3 ,
g2 = Ci2€1 + cC11€2 + C13€3 ,

then
71-(—0'1 -+ 0’2) = —%—(611 - 612)(62 - 61). (1.2.13)

Equations (1.2.12) and (1.2.13) lead to
C4q = —:12-(611 - 612).

Hence for an isotropic material the elastic coefficients matrix can be reduced

to

[ ¢ ¢ c 0 0 0
ci; cﬁ ciz 0 0 0
Cqq Cyq c(51 0 0 0
$(eycpo) 0 0
0 0 0 0" 4(ey—cy) O

o 0 0 0 0 Heyey) | s (1.2.14)

there are only two independent coefficients ¢;; and ¢, . For isotropic
materials, we traditionally use A (= ¢;,) and g ( = 4#(ci—c2) ) as two
independent coefficients which are called Lame constants. In such a case the

Hooke’s law can be stated as following

where §3; is Kronecker delta and 4 = ey+eztess .
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1.3 Plane Strain

A body is said to be in the state of plane deformation, or plane strain,
parallel the zjzo—plane, if the displacement component u3; vanishes and the
components u; and u; are the functions of the coordinates z; and z;, but not
of z3. That is

ui = ui(2y,22), i=1,2; uz = 0. (1.3.1)
By equation (1.1.2) we find that the components of the strain tensor are

e13 = e = e33 = 0,

1 ..

§= Bt ud  W=12, 1:32)

which do not depend on z;.

Particularly, in the plane orthotropic case, which can be thought of a

plane strain problem for .a three dimensional orthotropic medium, from
equations (1.2.2) and (1.3.2) we get the nonvanising components of the stress

tensor

011 = Cyy€11 + Cp€22 ,

022 = Cyq€11 + Cyp€22

012 = CggT12 » ' (1.3.3)
and

033 = Cyg€11 + Cyz€22 ,

but from the first two equations of (1.3.3) we know that o33 is entirely
determined by ¢y; and ¢92 , and is independent of coordinate z3. Hence it is
clear that the deformations and stresses of an orthotropic plane strain problem

are completely determined by es; and u; (4,7=1,2).



18

We consider next the equilibrium equations. First of all, since sij do mnot
depend on z3 we conclude from equation (1.1.11) that the components F; and
Fy of the body force must be independent of the coordinate z3 and F3=0 .

Hence the equilibrium equations can be written as

Tiii = —pFZ(:m,zg), 4,=1,2 . (1.3.4)

1.4 Polar Cylindrical Coordinates

Polar cylindrical coordinate system is often introduced in theory of
elasticity when the boundary conditions can be simplified by such a frame of
reference. It is appropriate to resolve the components :of stress and strain in
the direction of the coordinates and denote them by corresponding subscripts.

‘When we have a Cartesian coordinate system O-zyz, the components of
displacement vector in the z, y and z directions are denoted by ux, uy and u,
respectively. We use exx, eyy and ez to denote the normal strain components
while exy, ex; and ey, to denote the shear strain components. Similarly we use
0xx, Oyy and gz; to denote the normal stress components while ¢xy, ox, and
0y; to denote the shear stress components. Referring to a polar cylindrical
coordinate system the components of displacement vector along the directions
r, § and z are denoted by ur, uy and u, respevtively. We will use err, €y and
e,z to denote the normal strain components while er, ers and ey to denote
the shear strain components. We also use orr, 0gy and ¢z to denote the
normal stress components while oy, or, and oy to denote the shear stress
components. The relations between the polar cylindrical coordinates r, #, z and

the Cartesian coordinates z, y, z are
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T = r cos 0, y = r sin 0, z =z (1.4.1)
It follows that derivatives with respect to z, y and z in Cartesian equations

can be written in terms of derivatives with respect to r, # and 2 by using

the following relations

i) dar 0 a6 o d cos 0 @
trinl il i AL il [
§ -2 (142)

To relate the components between two systems let us select a local -
- Cartesian frame of reference z;y;2; at the point (7,0,z), with the origin located
at the point (r,4,2), the z—axis in the direction of increasing r, the y,-axis in
the direction of increasing #, and the zaxis parallel to z-axis (Fig. 1.4.1).

Then, in conventional notation, e -+, are well defined. By identifying

e .
Tz’ Tyl
r, 0, z with z;, 1, 2z, we have

O = 0 Opa= 0 Gag = 0. ,oos
™ 1T 07 gy 66 vy

€ € E€rp= € €ag = € see
TT zlzi H I’e zlyl b 99 ylyl’ ?

etc. The matrix of the direction cosines of the axes z;, ¥, 21 relative to z, g,
z is

cosl sind 0

(ﬂz'j) = |-sind cos§ O

0 0 1. (1.4.3)
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Hence, from equation(1.1.18) and the matrix (1.4.3) we get

Oxx = 0rr€0820 + 0gg8in20 — orgsin 20,

Oyy = orrSin?d + oggcos20 + orgsin 20,

Ozz = Uzz,

oxy = (0rr — 0gg)sin 8 cos § + arg(cos?d — sin2f)
Oxz = Orz €08 0 — ogzsin 40,

Jyz = 0Orgz Sin 0 + Jez [{2F] 0 . ) (1.4.4:)

Similarly, from equation (1.1.6) and matrix (1.4.3) we obtain

er = exx C0820 + eyy sin?f 4 exy sin 24,

gy = exx Sin20 + eyy cos?f — exy sin 20,

€2z = €22,

erg = (eyy —0xx) 8in 0 cos 0 + exy(cos?d —sin2f)
erz = exz €08 0 + ey, sin 0,

gz = — €xz 8in 0 + ey cos 0 . (1.4.5)

From the Fig. (1.4.1) the relations of displacement components between polar
cylindrical coordinates and Cartesian coordinates for a displacement vector are

given by
Ux = Ur o8 § — uy sin 0,

Uy = U sin 0 + uy cos 0,
U = Ug. (1.4.6)
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Equations (1.1.2) now become

exx=_g%x‘: e}'}’:_g%!’ €zz = '_g%’

1 d d 1 d d

ey =5 (5 + ) =g Rt ) |
1 d d

yz = o (—azﬂ + -—ayk) . (1.4.7)

Finally, substituting equations (1.4.7) into equations (1.4.5) and using equation
(1.4.6) and equations (1.4.2) we obtain the strain—displacement relations in

polar cylindrical coordinates

dur 1 duy Up du,
e, . =—— egg=— —— + —, €z7== ,

ar r df r dz

1 du du, U

1 0 0
eg=5 (——+ — - —),
Y or 1

=g (— +—) ,
=2 dz ar
Oug . 1 Oug '
1
eez=-—2— (—a-z— + 7 W—) o (1.4.8)

To obtain the equilibrium equations for polar cylindrical coordinates we
first resolve the body force per unit volume at the point (7,6,2) into

components Fr, Fy, F, along the r~, f- and 2-directions, then we have
Fx = Fr cos § — Fy sin 0,
Fy = Fy sin 0 + Fy cos 0,
Fz = Fz. . ) (1.4.9)

The equilibrium equations (1.1.11) for Cartesian coordinates z, y, 2 can be

written as
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aa'xx 60' 30’xz —
Tz + ; + Bz + pFxy =0,
do do 36y, _
gt gyt Ay =0,
do do do
o T eyt g T AF=0. (1.4.10)

Substituting the equations (1.4.9) and (1.4.4) into the equations (1.4.10) and

using the equations (1.4.2) to transform the derivatives, we obtain

o'rr 1 30'1-9 aa'rz o'rr—a'ee
(—+ — + + ) cos 0
ar r 00 dz r

ao‘re 1 30'99 (?crez 2

+ — + + rg) Sin 0
or r 00 0z r

+ pFr cos § — pFy sin § = 0, (1.4.11)

from the first equation of (1.4.10). The equation (1.4.11) must hold for all

values of 4 and letting # = 0 and § = 7/2 respectively we get

(90'1-1- 1 001’6 30’1-2 0'rr—(799
+ — + + + pFr =0,
ar r a4 0z r

(9a'r9 1 30'99 3(792 2
+ — 4 + Org + PFQ =0, (1'4°12)
or r 00 0z r

since the choice of the z—direction is arbitrary the equations (1.4.12) must be

valid for all values of 4. Similarly, from the third equation of (1.4.10) we get

30’1-2 1 ao'ez ao'zz 2
+ — + + 0z + pFz =0 . (1.4.13)
ar r a0 0z r

The generalized Hooke’s law for the most general case in polar cylindrical

coordinate system is stated as follows
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Orr = Cyiérr + Cyp€gg + Cy3€zz + CyyToz + Cy57rz + Cyg7rp
Tgg = Coylrr + Coo€pg + Cgalzz + CyqYgz + CosTrz T Cog7rg
Ozz = Cgi€rr + C39€pp T+ Ca3€zz + C347gz + C357rz + C37rg »
gz = Cyqrr + Cy0€ep T+ Cyszz + CyyVgz + Cy5Trz + Cyqglrg
Orz = Cgi€rr + Cyo€pg + Cy3€zz + C54%ez + Css¥rz + CsgTrg »

Org = Cgierr + Cgolgy T+ Cg3lzz + Cga79z + Co57rz + CogTros (1.4.14)

where cij=¢ji , and 79z = 2 €z , Trz = 2 €z, Trg = 2 é€rg -

An anisotropic medium is said cylindrical if a certain straight line [, the
axis of anisotropy, is associated with the medium such that all directions
intersecting the line [ at right angle are equivalent; correspondingly, all
directions parallel to F[axis which pass through distinct points and all
directions orthogonal to the first two directions are equivalent. For such kind
of medium, it is more convenient to use the cylindrical polar coordinate
system by taking the axis of the anisotropy as the z-axis of the cylindrical
polar coordinates system (r,6,2).

A material is called transversely isotropic if all directions in the planes,
which are orthogonal to the axis of the anisotropy are equivalent, in other
words, the isotropy occurs in rf-plane when the z-axis coincides with the axis
of the anisotropy in cylindrical polar coordinate system.

For a transversely isotropic medium, letting the z-axis coincide with the
axis of the anisotropy, and using the same method as we did for Cartesian

coordinate system we can reduce the equation (1.4.14) to the following form
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Orr = Cylrr + Cipgp + Ci€ez
Ogp = Cipbrr + Cyi€99 T C13€az ,
Tzz = Cizérr + Ci3€p9 + C332z ,
Toz = C447pz »
Orz = Cy47rz »

1
org = —5 (€1C13)Trp » (1.4.15)

by transformation of variables according to the symmetry of the medium.
In the case of isotropy, we have cz3=cy , ci3=ci2 and cas=4(cr—cr2) -
Again there are only two independent coefficients, i.e. Lame constants A=cy

and p=4(c1-c12)-

1.5 Penny-shaped crack problem

In Chapter 5, we will consider a penny-shaped crack problem for transversely
isotropic medium, in that problem the displacement components are functions
of variables r and z only, in fact, we have wu=u/(r2), uy=0 and u=u,(r,2).

Using the strain—displacement relations (1.4.8) we find that erg=e€g=0 and

¢ =0Ur pon Ux o =0tz
IT. 37' ? 00 r? 2z az ?
1 ,0u ou
=g (37 + Fr) - (1.5.1)

Then for a homogeneous, transversely isotropic medium we get the following

stress—displacement relations



26

O = cll_a_ + cl + Cys %1%)
Oty
‘796—012‘5— + 011 -+ C3
ou u i}
0= C lgr + 5 1 + 033‘51;_2’
Ou 6u
ra= Csa | 35 =1 (1.5.2)

from equations (1.4.15). Substituting equations (1.5.2) into equations (1.4.12)

and (1.4.13) we obtain the following equilibrium equations

ik 1 dur
0113%'*'?'5— }'3] + 044;9—2‘+ (e3 + c44) 6uz_ 0
1 P 9?2 Y
4437 1;2] + 337{512@ t (egtes) 32[3% + yFr] =0. (1.5.3)

1.6 Torsion problem

For an axisymmetric torsion problem the displacement components are given
by wu=0, u;=0 and uy=uy(r,2), which depends on r and z only. Hence from

equations (1.4.8) we find that the non—zero strain components are the following

1 3u9
e - T b
o T a0
Jug 1y

€6~ '%" ( 7 - —7') ’

d
S o (L6.1)

0z

They depend only on r and 2z On the other hand, we know that stress

components ¢, = 0gg = 0,, = 0, = 0 and the non-zero stress components
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are given the following
Tz = C4476z »
1
Irg = —5 (e1C19)Trg - (1.6.2)

For a non-homogeneous and isotropic medium, in terms of displacement

components, equations (1.6.2) yield

Jug

gz = fp —,

o 0z
dug Uy

6= b (— - —), (1.6.3)
ar r

where we have used the fact that ¢, = 4 (¢—cyy) for isotropic medium and
assumed that g = p(z) = c44 depends on z only. Since 7gz and ory depend on
r and z only, equation (1 4.13) and the first of equations (1.4.12) vanish and

the second one of equations (1.4.12) becomes

(90’;-9 aoez 2
+ + — g =0, (1.6.4)
or 0z r

in the absence of the body force.

Substituting equations (1.6.3) into equation (1.6.4) we get

02uq 1 duy 0%y 1 Juy Op
+ -—+ + =0. (1.6.5)
dr? r 0z 2 022 g 0z 0z

For a particular case, when p=constant, i.e. homogeneous, isotropic case,

equation (1.6.5) can be reduced to the following

72 1 4 92
. L (1.6.6)
ar? r 0z r2 022




CHAPTER 2

PROBLEMS OF REISSNER-SAGOCI TYPE
FOR COMPOSITE CYLINDRICAL REGIONS

2.1 Introduction

In 1937, E.Reissner [6] formulated several problems relating to torsional
vibrations of an elastic half-space. He posed but didn’t solve the following
mixed boundary value problem

or0) = a r ™, | 0<r<d

0g,(1.0) = 0, r> d (2.1.1)
Later Reissner and Sagoci [7] solved the static version of above problem by
using oblate spherical coordinates. The problem posed by Reissner is called the
Reissner-Sagoci problem (RS-problem in short ) mow.

Sneddon [8] solved the RS—problem by a different method, by reducing it
to a pair of dual integral equations using the Hankel transforms. In static case
these integral equations could be solved by using various methods developed by
Titchmarch [9], Busbridge [10] and Harding and Sneddon [11]. Bycroft [12]
gafre an approximate treatment to the dynamic RS-problem. Ufliand [13] set
up the dual integral equations for the RS-problem for a circular disc on an

elastic layer and reduced them to the solution of a Fredholm integral equation

of the second kind.

28
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Sneddon [14] returned to the RS-problem for a half space and obtained
the solution by using his own elementary solution of dual integral equations.
He also solved the RS-problem of determining the distribution of stress in a
long circular cylinder of homogeneous isotropic material under the condition
that the curved surface was fixed. Sneddon, Srivastava and Mathur [15]
obtained a solution of the problem for a finite cylinder when the curved
SurfaCe was stress free and the length of the cylinder was long compared with
its radius.

Freeman and Keer [16] investigated a torsion problem of an elastic
cylinder, which is attached to an elastic half space. The problerﬁ was reduced
to the solution of dual integral equations and Dini—séries. Rukhovets and
Ufliand [17] presented a solution of RS-problem for an elastic half space with
a circular inclusion. Gladwell [18] solved the RS—problem for an elastic layer of
finite thickness, when the lower face is either stress free or rigidly clamped.
Keer and Freeman [19] later extended their previous analysis to a finite elastic
cylinder which is partially bonded to a semi-infinite elastic cylinder of the
same radius which is embedded in an-elastic half-space.

Luco [20] solved the problem of a rigid rod embedded in an elastic‘layer,
the whole being perfectly bonded to a half-space of different material. Singh
and Dhaliwal [21] investigated the RS-problem for an elastic layer under
torsion by a pair of circular discs on opposite faces. And Dhaliwal, Singh and
Sneddon [22] obtained a solution of the RS—problem for a semi-infinite elastic
cylinder embedded in an elastic half-space. Low [23] investigated a RS-problem
of an elastic half-space with a penny-shaped flaw in the form of an inclusion
or a crack. Chebakov [24] considered a RS-problem for a finite cylinder with a

torque applied to a rigid disc in the middlé of the top face while the curved
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surface and bottom face were fixed. Dhaliwal, Singh and Rokne [25] solved a
torsion problem for a hemisphere embédded in an elastic half-space. Gla(iwell
and Lemczyk [26] solved the static RS—problem for a finite cylinder. .

The RS—problem in which a torque is applied over an annulus has also
been considered by some researchers. In 1966 Boradachev and Boradacheva [27]
investigated this problem by Hankel transforms and reduced it to the solution
of triple integral equations. Arutinunian and Bobloian [28] investigated the
problem in which a torque 1s applied on a circle r<b on the surface of a
half-space which has an inclusion occupying the cylihder r<a (b<a). Shibuya
et al.[29] considered the problem of an elastic layer under torsion by a pair of
identical facing annular discs. Dhaliwal and Singh [30] investigated a problem
of torsion, by an annular die, of an elastic layer bonded to an elastic
half-space, the problem was reduced to’ the solution of a system of four
Fredholm integral equations. Dhaliwal, Singh and Vrbik [31] considered the
problem of a half-space with a cylindrical inclusion which was twisted by an
annular die. Hasegawa [32] obtained an essential solution for a finite cylinder
under torsion by a pair of identical annular stamps to its ends by using
Green’s function method.

The study of the static RS—problem for non-homogeneous material
started in 1960’s. In 1967 Protsenko‘ [33] considered the torsion of a half-space
with a shear modulus p(z) = m 2% , and later he [34] considered the
half-space problem with a torqué applied over an annular area. Kassir [35]
solved the RS-problem for the half—spéce and semi-infinite cylinder by
assuming the shear modulus of the material in the form of u(z) = m 2/ , and
reduced it to the solution of a pair of dual integral equations. Kolybikhim [36]
solved the above problem by assuming the shear modulus in' the form of

p(r,z):uorkza . Chuaprasert and Kassir [37] considered a half-space and a
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semi-infinite cylinder RS-problem by assuming u(z)=p,(1+2/c)®. George [38]
assumed p(r)=poe_ar for a semi-infinite cylinder RS-problem. In 1979,
Dhaliwal and Singh [39] analyzed the RS-problem for an elastic layer with
shear modulus /z(z)=p1(z+b)ﬂ ! which was bonded to an elastic half-space with
shear modulus u(z)=/z2(z+b)ﬂ 2. Selvadurai, Singh and Vrbik [40] considered the
RS-problem for half-space by assuming shear modulus p(2)=Gi+ Gge_ﬂ z
Dhaliwal [41] solved the RS—problem for a more general form of shear modulus
p(2)=potep(2)+e2py(2)+-++, where p, and e<<l are positive real constants
while p;(2) are differentiable functions of z Dhaliwal and Chehil [42] solved
the RS—problem of non-homogeneous layer bonded to another non-homogeneous
elastic layer with the shear modulus as p;=ps(a;+2)%, i=1,2 for the two
materials.

In this chapter we will consider the Reissner—Sagoci type problems for
finite composite elastic cylinder (section 2.2), finite elastic cylinder embedded
in an elastic layer (section 2.3) and semi-infinite composite elastic cylinder
(section 2.4). The materials considered in this chapter are assumed to be
elastic, homogeneous and isotropic.

By the use of integral transforms and the theory of dual integral
equations, the problems are reduced to the solution of a Fredholm integral
equation of the second kind. Numerical solution of the integral equation is
obtained and the numerical values of the torque required to produce the given
rotation are displayed graphically.

As discussed in Chapter 1, the displﬁce“ment field of the medium under
torsion considered in this chapter is given by wu=u=0 and ug=uy(7,2),
depending on r and z only, where (r,0,2) is the cylindrical polar coordinate

system. And the corresponding non-zero stress components of the stress tensor
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are given by equations (1.6.3). Consequently the equation of equilibrium is
given by equation (1.6.5) when there a.ré no body forces. To simplify, let us
denote wur, ug, u; by u, v, w respectively, then we have the following basic

equations for the problems under consideration in this chapter:

w=0, v = 9nz2) , w=20,

re(nd) = 13L ,  og(ng) = 4 (JL-L),

i 1
?%+T%%—va+—gzﬁ)f=0' (2.1.2)

Using the method of separation of variables , it is easy to show that the

following are basic solutions of the last equation in (2.1.2) for «(n2):

(1) Ji(ér)emp(x£2) , (I  Yi(ér)emp(x£2) ,

(IIY)  L(ér)cos(éz) or Iy(ér)sin(€z) ,

(IV) Ki(ér)cos(éz) or Ky(¢r)sin(éz) ,

(VY rz, 7 1/r, 2/r; (2.1.3)

where J, , Y, are Bessel functions of the first and second kind and of order v,
and I, , K, are modified Bessel functions of the first and second kind and of
order v respectively [94].

In the following three sections we will use three different combinations of
the‘ basic solutions stated above such that they will satisfy the boundary

conditions of each of the three problems.
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2.2 Finite composite elastic cylindéer

2.2.1 The statement of the problem

In this section we consider the torsion of a finite elastic cylinder which is
embedded in a finite elastic cylindrical shell with different shear modulus.

We assume that a finite elastic cylinder of radius d, height & and shear
modulus g, is embedded in a finite elastic cylindrical shell of outer radius g,
height b, and shear modulus g, as shown in Fig.2.2.1. It is also assumed that
the inner cylinder is perfectly bonded to the surrounding cylindrical shell and
that a torque is applied to the inner cylinder, through a rigid disc of radius
c<d, which is bonded to its flat surface. It is assumed that the bottom flat -
surface of the composite cylinder is rigidly fixed and the curved outer surface
of the composite cylinder is stress—free. In terms of cylindrical polar
coordinates (r,4,2) , displacement field, the corresponding nOn-Zero stress
components and the equilibrium equation are given by (2.1._2). The basic
solutions of the equilibrium equation are given by (2.1.3).

We further assume that the rigid disc bonded to the inmer cylinder is
turned through a small angle ¢ . We therefore consider the problem of
determining the stress and displacement field in the composite cylinder with

the following boundary and continuity conditions:
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Fig.2.2.1
Torsion of an elastic cylinder bonded to a dissimilar

elastic cylindrical shell.
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wrb) = 0 ,. 0<r<d (221)
wrb) =0, d<r<a(222)
or0) = er, 0 < r<eg(223)
T, (10) = 0, c<r<d (224)
(}ez(r,O)_ =0, d<r< a/(225)
0o(0,2) = 0, 0<2z2<h (226)
d,2) = u(d,2) , 0<z<b (227)
0,0(d,2) = 0,4(d,2) 0<z<b (228)

where v , 0y, , and o,y are the non—zero displacement and stress components
for the inmer cylinder while v , frez , and ‘}re are their counterparts for the

surrounding medium.

2.2.2. Derivation of the dual integral equations

Now we introduce a combination of the basic solutions given in section 2.1 for
®(r,2) and for v(r,2) , by means of these combinations we are able to reduce
the problem of solving the mixed boundary value problem stated in section
2.2.1 to that of solving a pair of dual integral equations.

For the inner cylinder , we assume that
u(r,2)=ayr{(b-2)+ [ 1A(¢)sinh[{(8-2)] ;€-1]

+ 3 £5tBcos( En) (£ (2.2.9)

where ), the Hankel operator, is defined by the equation

HLIE) ;€1 = [ EF(8) Tenae



36

For the surrounding medium we assume that

- @ ®

'u(r,z)=n2=31§,;1C’ncos(§nz)I1(§nr) +n§1£1;1Dncos(§nz)Kl(£nr) , (2.2.10)
where

a,=¢€/b ,

while A , By , C, , Dy and ¢, are arbitrary constants to be determined later
by using the boundary and continuity conditions.

Now from equations (2.1.2) we have
Jre(r,Z)=—/t1%[A(f)sinh[é(b-z)];é-'ﬂ+/t1n§;ancos(£nz)I2(£nr), (2.2.11)
(}re(r,z):pgnglcncos(fnz)Iz(fnr) - pgnngncos(ﬁz)Kg(ﬁnr), (2.2.12)

ol = FALAE) coshlE(b-2)] s6r] ~ B Basin(£nr) I(£ar) — aqur

(2.2.13)

3ez(r,2)=—ﬂzn§10n8in(£ n2)I1(€ar)- ﬂzng Dasin(£a2) Ki(¢ar)- (2.2.14)
The conditions (2.2.1) and (2.2.2) will be satisfied if we take

cos(énd) = 0,
which gives

tn = @n-1)7/20, n=123,... (2.2.15)
The condition (2.2.6) yields

3 [Caly(£n0) ~ DaKaltna)leos(£nd) = 0 , (2.2.16)

and the conditions (2.2.7) and (2.2.8) give
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@y d(b-2)+ FH[{ 1A(¢) sinh[{(b-2)] ;£-d]

= B6Cul(6nd) - Bali(End) + DaKiltadcos(tr) ,  (227)

and

L A()sinhle(5-2)] 16+
= 3 [Baba(énd)+ADa Ko nd)Ca{énd)|cos(nd), (22.19)

where
b= pafp1 .

Since {cos({n2)} are orthogonal over the interval (0,b) and
£cosh(£D)

ﬁbsinh[g(b—z)]cos(fnz)dz g (2.2.19)
j;b(b—z)cos(fnz)dz = zl—g , (2.2.20)
from equations (2.2.16) to (2.2.18) we obtain
Cnlo(éna)=DpKy(¢na) , (2.2.21)
—BoIy(énd)+ Cnly(énd)+DpKi(¢nd)=Gy(n) , (2.2.22)
Baly(¢nd)~3i Calo(nd)+ADaKo(nd)=Galn) , - (2229)
where
gef oo EA)cosh(£0)T(¢d) ¢d
 Gilm= _i_{ j:) £2 + €2 €+ ¢3 } ’
g o A0 (£0) (6D
Gom)= - j; e dt . (2.2.24)

Eliminating Cy from equations (2.2.21) , (2.2.22) and (2.2.23) , we obtain

' _Buli(£ad)+DaQu(n) = Gin) , (2.2.25)
BoIy(¢nd)+pDnQx(n) =Gy(n) , ' (2.2.26)
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hence

Ba = [kGi(n)Qu(n) — Gom)Qu(n)]/A(n) , (2.2.27)
where

AM(n) = —pIi(énd) Qu(n)~Ix(£nd) Qu(n) ,

Q(n) = Kitad)+ F252%1(¢0d) |

Qe(n) = Ky(¢nd)- K’;‘ BN (¢nd) - (2.2.28)

From equation (2.2.14) we find that the condition (2.2.5) is identically

satisfied and that the conditions (2.2.3) and (2.2.4) will be satisfied if A(¢) is

the solution of the following dual integral equations

(¢ 1A(¢)sinh(£b) ;f"’r]'i'nuéléﬁanIl(fnT) =0, r<e¢  (2229)

[ A(E) cosh(£D) ;&-r] = —ayr ¢ < r< d (22.30)

2.2.3 Reduction to integral equation of Fredholm type

To reduce the problem of solving the dual integral equations (2.2.29) and
(2.2.30) to that of solving an integral equation of Fredhiom type of the second
kind , we will make use of an integral representation for A(¢) , which
automatically satisfies equation (2.2.30).

It is known that if we take [26]

| (a2 - £2)% - (2 ~2)¥] t< ¢
bot) = «2) a2 - o)t e < t< d (2.231)
0, t > d,
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we have
d
Fslpo(t) ; t - ¢ = - f r2Jy(én)dr . (2.2.32)
0, 0< r<e
F{ Fsldo(t) ;€] ¢} = -1, ¢ <1< d(2233)
0, r > d,

where F is Fourier sine transform defined by

Ff) ;20 8 = (B [ f(Rsinlea)az

It is easy to show [43] that if we take

A8) = —oontery FlIO+8t) 5 £ ] (2.2:34)

where ¢(f) is a new unknown fuction defined in (0,0) such that ¢(¢)=0 for
t>c¢, then equation (2.2.30) will be satisfied automatically.

Substituting from equation (2.2.34) into equations (2.2.24) and using the
integrals [44]

Pe2gi J d
f od )T e = {nsinh({nt)Ka(énd) , t< d, (2.2.35)
0 £2 + fﬁ
w . d
Esin(€ t)J(¢d)dE = i) K(nd) | ted, (22.36)
0 £2 + é‘g
we obtain
Gi(n)=g11(n)+g12(n)+g13(n) , Gom)=gas(n)+gan(n) , (2.2.37)

where
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gu(n)y= 24En 20} [ g(o)sinh(gn) K (End)it ,

gua(n)= 2% '21')%];(1 do(8)sinh(¢nt) Ki({nd)dt

gu(n)= 2950 2) [ y(t)sink(¢nt) Ko ¢nd)dt
()= 282y [ go(sinh(gat) Kl nd)it (2.2.38)

Operating on equation (2.2.29) by zt 4£{r ; z] and using the following results
[45]:

gt AT{r FEAF(E) 5 &orl 5 ma} = FLF(E) 5 {d] (2.2.39)
ot A7 r Ij(énr) ; ™2 = (—%—)*sz‘nh(ﬁnz) , (2.2.40)
we obtain

.9’5[A(§)sz‘nh(£b);§—»z]+(—‘})*nglfﬁianinh({nz):O, 0<z< ¢ (2.241)

where £i! is the inverse of .4, the Abel operator of the first kind, which is

defined by the equation

S50 5t = (B9 [ folee

and
AN 5 = Alrf() 4

Using expressions (2.2.34), (2.2.27) and (2.2.37) , we get
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S A(E)sinb(gt) s¢-d=aof(D)- 22 [ 40 at [ (142N i gt)sin( o)

+ aofo(a)- 20 L got) dt 7 (1+20 Lsingt)sini £2) e,
and
(2)} 3 3 Businh(£n2)
= a0 4Oz dt+ao f *bo()S(z,1) dt+ aoR(g)
where

S(z,1))= __b_ 2 v £K1(¢nd) Qz(nz—f;(z(fnd) Ql(n)smh({ ) sinh(nz),

R(7) = zgé(%)%n‘):jl@z(nggz??égnz) .

Finally equation (2.2.41) may be written as

(o[ 4 t)-S(z ekt = - £(2) , 0¢agq

where

F@ = bl IMat)-S(abldt + R(a)
M) = L [0+ Lsin(et)sinea)dt .

For a large n,

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46) |

(2.2.47)

(2.2.48)

1K 1(¢nd) Qz(?%;éfz( {nd) Qi(n) sinh( ént)sinh(¢ns) = Ofezsp|~tn(2d-2-1)]),

hence the convergence of the series in equation (2.2.44) is fast .
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To obtain the torque T required to produce the prescribed rotation of

the rigid disc bonded to the inner cylinder , as given by condition (2.2.3) , we

have to calculate the value of sy, at 2=0 . Now from equations (2.2.13) and
(2.2.34) , we get

0o, (1,0)=—p, B[ A(¢)cosh(£D) ;€-r] — aopyr
="aol‘1%{ Fs[4(t) ;t=¢€] ;é-r} - aolﬁ%{ Fs[do(t) ;€] ;é-r}
- @oltyT r<c, (2.2.49)

and we find that

ST St swe] seorar = 0, (2.2.50)
F{ FL(t); +e]; bork= - {,—,%{5-1 Fs4(8) ;€] €1} . (2.2.51)

The required torque is given by
c
T = — 21 1205,(r0)dr . (2.2.52)
0

Using equations (2.2.49) , (2.2.50) and (2.2.51) in (2.2.52) we obtain

Tpect Bi€ ¢ _ |
T = —gr— + 4(20)F o j; th(t)dt . (2.2.53)
It is worth mentioning that the solution for the corresponding
semi-infinite composite cylinder problem cannot be derived from the present
solution, since the S integral in equation (2.2.46) is divergent as b-w . It may

be noted that

[ “bolt)S(s, )t

T n=1



43

Let us consider a particular case, when Z = 0, we have

o(n)—Ky(£nd) Quln) _ Ké{éndg
n oa¢{nd) °

Since én = (2n-1)r/(2b), the ¢, are apart and formally

T0n=
mnl

4 r® K . .
=7—r7‘/; 7{{33—';‘ Isinh(¢)sinh{ £2) de. : (2.2.55)
Sneddon [14] noted that the integral in (2.2.55) diverges as O({-2). In general,

lim _‘}5 gﬁKl(fnd)QZ(X%;I)Q(fnd)Ql(n)sinh(fnt)Sinh(fnz)

the integral in (2.2.54) is also divergent. Hence the solution for the case bm

will be presented separately.

2.2.4 Numerical results and conclusions

Numerical values of ¢(z) for z = (0.0, 0.1 0.2,......1.0)c have been calculated
from the integral equation (2.2.46) by reducing it to algebraic equations. And
then the numerical values of the dimensionless ratio of torque T/T, have been
calculated from equation (2.2.53) , where To=16p,c3/3 is the torque for the
corresponding Reissner-Sagoci problem for the semi-infinite elastic space. The
Simpson’s rule is used to perform the numerical integrations and the Crout’s
factorisation method is used to solve the linear algebraic equations. In the
numerical results the relative errors are controlled under 0.01.

Numerical values of T/T, have been calculated for the following

combination of values of

b/e = 0.2(0.1)0.5,1.0,2.0,10.0 ;  dfe= 1.0(0.2)2.0,3.0(1.0)10.0 ;
afd = 1.1,1.5 ; p = 0520 ;
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and these have been displayed in Figs.2.2.2 to Fig.2.2.5. From the figures, we
observe that for a fixed radius ¢ of the rigid disc the torque T decreases as
the height b of the cylinder increases and the torque increases as the radius d
of the inmer cylinder increases while the ratio a/d of the radius of outer
cylinder to the inner cylinder is kept the same . We also observe that the
ratio T/T, approaches to 1 when dfc and b/c approach to infinity
simultaneously. We notice that the values of T/T, have very negligible effect
with the change in the values of a¢/d from 1.1 to 1.5 or with the change in
the values of y from 0.5 to 2.0.
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Fig.2.2.2
Numerical values of the ratio of the torques T/T, against
d/c for g = 0.5 , afd=1.1 for various values of b/c =
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2.3 TFinite elastic cylinder embedded in an elastic layer

2.3.1 The statement of problem

The problem considered in this section is that of the torsion of a finite elastic
cylinder which is embedded in an elastic layer of different shear modulus. We
are assuming that an elastic cylinder of radius d and shear modulus p; is
embedded in an elastic layer whose shear shear moduis is u2 as shown in
Fig.2.3.1. It is also assumed that the cylinder is perfectly bonded to the
surrounding elastic layer and a torque is applied to the cyiinder, through a
rigid disc of radius c<d, which is bonded to its top flat surface, and the flat
bottom sufface of the finite cylinder and the surrounding layer is fixed. In
terms of cylindrical polar coordinates (r,0,2) , displacement field is given by
v=w=0 and v=9(r,z) , hence we have the basic equations (2.1.2) and the
solutions (2.1.3) for o(r,2).

We also assume that the rigid disc bonded to the cylinder is turned
through a small angle ¢ and that. the height of the cylinder and the
surrounding layer is b. We, therefore, consider the problem of determining the
stress and displacement field in the cylinder and the surrounding layer with

the following boundary and continuity conditions:
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wn0) = er, , 0<r < ¢ (2.3.1)
7g,(10) =0, c<r<d (232)
0o (1,0) = 0, r>d, (23.3)
urd) =0, r < d, (2.3.4)
w(rb) =0, r> d, (2.3.5)
Wd,2) = v(d,2) , 0<2z2<b (23.6)
0.0(d,2) = 7.0(d,2) 0<z<0b (23.7)
wrz) - 0, (}ez(r,z) -0, frre(r,z) -+ 0, 7w, (2.3.7a)

where v , g, , and ¢ are the non-zero displacement and stress components
in the cylinder while v , gy, , and s, are their counterparts in the

surrounding layer.

2.3.2. Derivation of the dual integral equations

Conditions (2.3.7a) at infinity are identically satisfied if in the combination of
the basic solutions assumed for u(r,2) in section 2.2.2, we take, for the present
problem, Cnp=0 for all n. By letting Cy=0 for all n we reach the following
combinations.

For 0 < r < d, we may assume the following representation for v

) =agr{b-2)+ AL A(E)sinb{£(b5)] 6] + B €5tBucos(n) i(Ear)
‘ (2.3.8)
and for r > d we may assume that
o= 3 EDacos(badKilbar) , (2.3.9)

where a;=¢/b ,while A , By , Dy and ¢, are to be determined later.
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From equations (2.1.2) we have
Ure(raz)=_/‘1%[A(f)Sinh[f(b—z)];f"T]+/‘1n§;13n603(fnz)f2(£n7'), (2.3.10)
frre(r,z)=—y2n§ancos(fnz)Kz(ﬁnr) , (2.3.11)

0ou(Ts2)=—m1 [ A(¢) cosh{{(b-2z)] ;¢-r] "ﬂléanSi"(fnz)ﬂ(fn") T U

(2.3.12)

&gz(r,z)=-p2n§lpnsm(gnz)Kl(gnr) . (2.3.13)
The conditions (2.3.4) and (2.3.5) may be satisfied by taking

costat) = 0.,
which gives that

tn = (2n-1)1/20, n=123,.. (2.3.14)
The condition (2.3.6) yields

aod(b-2) FHLEAA(E)sinh[£(b-2)] 56+

= 3¢5 1DaKi(tnd) = Bul{énd)lcos(tnd) (23.15)
and the condition (2.3.7) yields

ALt d= B (BT End DKl Gneos(nd),  (23.16)

where & = pofpy .

Since {cos(én2)}n=1,2,3... are orthogonal over the interval (0,b) and

S sinb{g b= cos(gn?)dz _ feosklEd) (2317)

(62 +¢2)
j;b(b—z)cos(fnz)dz = ?1-3 , (2.3.18)
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equations (2.3.15) and (2.3.16) lead to the following equations

o £A h( £b)Jy od
Buly(End)+ DaKi(End) = 2%‘—‘{]; ¢ (f)czz if; (¢d) it + %T}

= Gyn) , (2.3.19)

o {24 h{(£b)J.
BnIz(énd)+ﬁDnKz(§nd)=—%j; ‘ (f)cz iii 449 dé=Gy(n). (2.3.20)

Solving equations (2.3.19) and (2.3.20) for B, we obtain
Bn = [-Gy(n)Ki(énd) + pGi(n)Kx(énd)]/A(n) , (2.3.21)
where

A(n) = - I(énd)Ki(¢nd) — pli(¢nd)Ko(nd) - (2.3.22)

From equation (2.3.13) we find that the. condition (2.3.3) is identically
satisfied and boundary conditions (2.3.1) and (2.3.2) will be satisfied if A(¢) is

the solution of the following dual integral equations

HUEAQ)sinh(ED) storit B&Baliba) =0, 1< (2323)

H[A(€)cosh(€b) ;é-1] = —a,r c<r<d (2324

2.3.3 Reduction to integral equation of Fredholm type

Equations (2.3.23) and (2.3.24) have the -same appearances as the equations
(2.2.29) and (2.2.30) only with different expression of Bn. So we can use the
same arguments as we did in section 2.2.3 to reduce the problem of solving

the equations (2.3.23) and (2.3.24) to that.of solving an integral equation of
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Fredholm type of the second kind by means of an integral representation for

A(8)-
Let ¢o(t) be the function defined in equation (2.2.31) and

ML) = e T s 8, (23.25)

where ¢(f) is a new unknown fuction defined in (0,0) such that ¢(£)=0 for
t>c. Defining Gy(n) and Gs(n) by the equations (2.2.37) and g11, 912, 913, 921,
go2 by equations (2.2.38) we obtain that

Bn= —~{[g21(n) Ki(énd)~1g11(n) Ka(€nd)]+{g22(n) Ki( €nd)~g12(n) Ko(énd)]
~ hg13(n)Kx(énd)}/A(n) . (2.3.26)
Operating on equation (2.3.23) by z! 6if[r ; 1z] we get equations (2.2.41),
(2.2.42) and

(D) 3 gatBasin(bun) = anf 40T, Qu)sin{Extsint{ns)

+ aofd¢o(t)[nglQ(n)sinh(fnt)sinh(fnz)]dt + agR(2), (2.3.27)
where

Xn) = 71,%(5)‘(/7—1)1{1(&4)1{2(%4) ,

2du, 214§ Ko(€nd)sinh(én
R(o) = 2yt 3 Kl ailln) (23328)

Substituting from equations (2.2.42) and (2.3.27) into equation(2.2.41) we find

that 4(z) must satisfy the following integral equation

o)~ o) M(z,t)dt+ fo"¢(t>N(z,t>,dt = - f(a), 0¢<z<e (2329

where
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f(z) = ¢o(z)—ﬁd¢o(t)M(z,t)dt +_/;d¢o(t)N(:c,t)dt + R(z) , (2.3.30)
Mt = L [ (142 sinet)sin(¢a)dt (2.3.31)
Nzi) = 3 Q(n)sinh(¢nt)sinh(£xz) (2.3.32)

For a large n,

Q) sinh{ £nt)sinh(éng) = O(expl~£n(2d-0-1)]) |
and hence the convergence of the series in equation (2.3.32) is fast .
Following the same procedures as we did in section 2.2.3, we find that

the torque T necessary to produce the prescribed rotation of the rigid disc

bonded to the cylinder is given by

T ect

T = —p— + 4(21)} ﬁgi j; “to(t)dt . (2.3.33)

It is worth mentioning here that the integral equation (2.3.29) can be
derived from (2.2.46) in section 2.2, by letting a, the radius of the outer
elastic cylindrical shell, tend to infinity. However, when d, the radius of the
cylinder, tends to infinity, the expression for displacement v in (2.2.9) is

unacceptable.

2.3.4 Particular cases

Case (a) 4y - o

Letting #2 <+ o in the results of previous section , we get the results for
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the case in which the elastic cylinder is embedded in a rigid layer as a

limiting case . Since

_.1 _1
K(n) ~ T(&ad)RA&ad) as iy o ,

we obtain the expression for the kernel

Nat) = 2= nﬁ;l %%E%Smh(gnt)smh(gnz) ,

and

_ 24,24 S sinh(énz
re) = SOy, SRaH

for ps » o . With these modifications the solution for this case is ziven by

P

equations (2.3.29) and (2.3.30).

Case (b) p2 - 0.
In this case , if we let ps - 0, we get the solution for the case in which

the elastic cylinder is free of stress on its curved surface . And

e BN 1 )
A(n) I2(6nd)K1(§nd) ? as fig 0 ’

hence the kernel Mz,¢) becomes

N(z,t) = 4 3 Kl sinh(ént) sinh(¢nz)
’ —_T-b_n=1 2\¢n n nea

and R(z)=0 , as pg#0 and these results are in agreement with Gladwell and

Lemczyk [26] .
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2.3.5 Numerical results and conclusions

Numerical values of §(z) for z = (0.0, 0.1 0.2,......1.0)c have been calculated
from the integral equation (2.3.29) by reducing it to algebraic equations. And
then the numerical values of the dimensionless ratio of torque T/T, have been
calculated from equation (2.3.33) , where T,=16p,ec3/3 is the torque for the
corresponding Reissner—-Sagoci problem for the semi-infinite space. The
Simpson’s rule is used to perform the numerical integrations and the Crout’s
factorisation method is used to solve the linear algebraic equations. In the
numerical results the relative errors are controlled under 0.01.

Numerical values of T/T, have been calculated for the following values

of bfc , dfc and p=po/pr:
ble = 0.2 (0.1)0.5,1.0,2.0,10.0 ; dfc = 1.0(0.2)2.0,3.0(1.0)10.0 ;
¢ = 0.0,0.5,2.0; and f - o ,

and these have been displayed in Fig.2.3.2 to Fig.2.3.5.

From the figures, we observe that the torque T decreases as the height &
of the cylinder increases and the torque increases as the radius d of the
cylinder increases . We also observe that the ratio T/T, approaches 1 when
dfc and bf/c approach to infinity at the same time. We notice that the change
in the values of T/T, when b (the height of the elastic cylinder and layer)

increases from 2 to 10 goes on decreasing as g increases from 0 to o.
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2.4 Semi-infinite composite elastic cylinder
24.1 The statement of the problem

In this section we consider the torsion problem ‘of a semi-infinite elastic
cylinder which is embedded in a semi-infinite elastic cylindrical shell with
different shear modulus.

We assume that a semi-infinite elastic cylinder of radius d and shear
modulus p; is embedded in a semi-infinite elastic cylindrical shell of outer
radius ¢ and shear moduis gy as shown in Fig.2.4.1. It is assumed that curved
outer surface of the semi-infinite composite elastic cylinder is stress—free. It is
also assumed that the inner cylinder is perfectly bonded to the surrounding
elastic medium and that a torque is applied to the inner cylinder , through a
rigid disc with radius ¢<d , which is bonded to its top flat surface. In terms
of cylindrical polar coordinates (7,6,z) , displacement field is given by u=w=0
and v=v(r,2), hence we have the basic equations (2.1.2) and the solutions
(2.1.3) for o(n,2).

We assume that the rigid disc bonded to the inner cylinder is turned
through an angle ¢ and that the curved outer surface of the semi-infinite
composite elastic cylinder is stress—free.. We therefore consider the problem of
determining the stress and displacement field in the semi-infinite composite

elastic cylinder with the following boundary and continuity conditions:
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or,0) = er, 0<r<ec (241)
0g,(10) = 0, c< r<d(242)
7o, (10) = 0, d<r< a(243)
c}re(a,z) =0, z2>0, (2.4.4)
wd2) = u(d,2) , 220,  (245)
0647 = 0,9(d,7) ' z2 d, (2.4.6)

where v , ¢g, , and ¢,y are the non—zero displacement and stress components
in the inner semi-infinite cylinder while v , ¢y, , and o, are their

counterparts in the surrounding medium.

2.4.2 Derivation of the dual integral equations

First of all, we select a combination of the basic solutions for #(r,2) and ¥(r,2)
from the basic solutions listed in equation (2.1.3). By means of these solutions
we are able to reduce the problem of solving the mixed boundary value
- problem stated in section 2.4.1 to that of solving a pair of dual integral
equations. |

For the inner semi-infinite cylinder , we assume that

Yn2)= %[5'1A(€)e'€z; Erl+ FEB(EI(E); 64, r < 4, (2.4.7)

where &% is Fourier cosine transform defined by

FLf) ;i 8 = (B [ otz

and Fil= F;, where F!is the inverse of Fe.
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For the surrounding medium we assume that
urg)= FEHAOL(Er) + DEK(ENY: &4, d<r<a(248)

where A(¢), B(¢), C(¢) and D(¢) are to be determined later.

Now from equations (2.1.2) we have

00T, 2)=—p1 FBLA(E)et%; borlbpy FHB(EIA(¢); €] (2.4.9)
Tro(r2)=2 FIC(E)I(¢r) = D(E)KA(¢r) 5 ¢4, (2.4.10)
0o (T 2)=—p1 F[A(€) e’z 5 Eor] — py KE[B(E)L(ér) 5 &4 , (2.4.11)
ro(md) =t FIC(OL(Er) + D(EK(ér) ; &+, (2.4.12)

The conditions (2.4.5) and (2.4.6) give

Fel[§ K CLE)I(de)+ D(§) Ki(d€)-B(§) I(dE)}; €7

= HeA(E)et ; Eod] (2.4.13)
S B(E) L d)-{ C(&) B d€)-D(§) Kl d6)}; £+
= A[A()es ; ¢d] (2.4.14)

where g = pafp; -
Taking the inverse Fourier cosine transform of equations (2.4.13) and

(2.4.14) and making use of the following result

Hete 2] = (2) {er+)t, >0, (2415)
we obtain
CLE) T de)+D(£) K d€)-B(€) T d€)=G(¢) , (2.4.16)

B(¢) I(d€)-p{ (&) In( d€)-D(€) Ko d€)=Gx(¢) , (2.4.17)
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where
o (A(()J1(d()
2,54
&=t ¢ [ rara S (2.418)
o (2A(() J2(d()
Gz(£)=(%)* fo o2 7 oo d . (2.4.19)

The condition (2.4.4) yields

&)= K2 -D(8) - (2.4.20)
Eliminating C(¢) from equations (2.4.16) and (2.4.17) we obtain

~B(§)I(dé)+D(E) () = Gi(¢) , : (2.4.21)

B(&)L(dé)+uD(€) @A) = Go(§) , (2.4.22)
hence

B(¢) = [#Gi(£)@u(§) — GA&)Q(I/A(E) (2.4.23)
where

A(¢) = —pI(d¢) Qy(¢)-In(dE) Qu(¢) ,
Que) = Kide) + 2dr(at)
Qu(¢) = Kodt) - 2“Mm (2.4.24)

From equation (2.4.12) we find that the condition (2.4.3) is identically
satisfied and that the conditions (2.4.1) and (2.4.2) will be satisfied if A(¢) is

the solution of the following dual integral equations

HEA(E) e+ _/;mf'iB(g)Il(gr)d£=er, 0<r< e (2425

H[A(£) ;6 = 0. ¢ < r< d (24.26)
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2.4.3 Reduction to integral equation of Fredholm type

To reduce the problem of solving the dual integral equations (2.4.25) and
(2.4.26) to that of solving an integral equation of Fredhiom type of the second
kind , let us take |

A©) = Zyef Hsiien, (24.27)

where ¢(t) is a new unknown function defined in (0,0) such that ¢(£)=0 for
t>c . The representation (2.4.27) satisfies the equation (2.4.26) identically .
By using the following result [43]
tH(r-t)
n(ro-g)f

where H(z) is the Heaviside function, then from equation (2.4.27) we obtain

H[¢-tsin(8t) 6= (2.4.28)

HA[E1A(L) 3€o1] = ert A[Hh(D) 7] » (2.4.29)

Substituting from equation (2.4.27) into equations (2.4.18) and (2.4.19)
and using the integrals (2.2.35) and (2.2.36) we find that

Gi(8) = SE¢K(df) [ ¢()sini(€D)dt , (2.4.30)

Gu(8) = 2¢r(at) [ HDsinh(te)ce (24.31)

By using equations (2.4.23) , (2.4.30) and (2.4.31) we obtain

() emo) (et

‘=e(%)% i) e f QMM%,@MQA(&)ML(&)@ (2.4.32)
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Operating equation (2.4.25) by z! o£[r ;2] , and using the results (2.2.39) and
(2.2.40) we obtain

o)+ [ WOS(E = f() 0¢ 3¢ (2433)
where

Stat)=2y [, LELEIQLEIALI N D singaysinn( ¢ty

(@) = ot g rog)) = 22 (2.4.34)

To calculate the torque T necessary to produce the prescribed rotation of
the disc rigidly bonded to the inner - semi-infinite cylinder , as given by
condition (2.4.1) , we have to calculate the value of ¢4, at 2=0 . Now from

equations (2.4.11) and (2.4.27) , we get

705 (1,0) =11 FHA(£) 3£-1]
=L HIEAE) o]

24 d ¢ -4

=p€e(— t)(t>r?) *dt , r<e. 2.4.35
me " deem) (2439

The required torque T is given by
T=- 21rfcr2¢rez(r,0)dr . (2.4.36)

0

Using equation (2.4.35) we obtain

T = dpie(2m)? [ tg(t)dt . (2.4.37)
o :

In a particular case , when the outer semi-infinite cylindrical shell is of
large radius compared to the radius of the inner semi-infinite cylinder , we let

the radius o tend to infinity . As a -+ o , Qi(¢) = Ki(d¢) and Qu(¢) - Kadf),
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hence

S(z,t)=;42-(ﬁ—1)];m Kl(dngg(df) sinh(££)sinh{£2)d¢ (2.4.38)

which is in agreement with [22].

2.4.5 Numerical results and conclusions

Numerical values of 4(z) for ¢ = (0.0, 0.1 0.2,.....1.0)c have been calculated
from the integral equation (2.4.33) by reducing it to algebraic equations. And
then the numerical values of the dimensionless ratio of torque T/T, have been
calculated from equation (2.4.36) , where T,=16p4,c3/3 is the torque for the
corresponding Reissner-Sagoci problem for the semi-infinite elastic space. The
Simpson’s rule is used to perform the numerical integrations and the Crout’s
factorisation method is used to solve the linear algebraic equations. In- the
numerical results the relative errors are controlled under 0.01.

Numerical values of T/T, have been calculated for the following

combination of values of
o/d = 1.1, 1.5 ; dfe= 1.0(1.0)10.0 ; % = 0.5, 1.0, 2.0 ;

and these have been displayed in Fig.2.4.2. From the figure we observe that
for a fixed radius ¢ of the rigid disc the torque T increases as the radius b of
the inner semi-infinite cylinder increases while the ratio a/d of the radius of
outer semi—infinite cylindrical shell to the inner semi-infinite cylinder is kept
the same . We also observe that the ratio T/T, approaches 1 when the radius

of the inner semi-infinite cylinder approach infinity.
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CHAPTER 3

TORSION OF TWO NONHOMOGENEQOUS
ELASTIC LAYERS WITH
PENNY-SHAPED FLAW AT THE INTERFACE

3.1 Imtroduction

In this chapter we investigate a torsion problem of two non-homogeneous
isotropic elastic layers with a penny—shaped flaw at the interface of the layers.
It is assumed that the flaw is in the form of an inclusion or a crack, and the
rigidity of each of the two materials is a function of the variable z in
cylindrical polar coordinate system in the form p(2) = p exp(az), where p and
« are real constants. And it is also assumed that a rigid circular shaft is
bonded to the free surface of the first layer just above the circular flaw, and
the circular shaft is rotated through a small angle by applying a twisting
moment of torque T and the rest of the surface z = —h; is kept stress—free.
The lower surface z = hy of the second layer is either stress—free or rigidly
fixed (see Fig.3.1.1). Four different cases are considered and the results for the
corresponding problems of a layer and a half-space with a flaw at the
interface are derived. The problem is ‘reduced to solving a system of
simultaneous Fredholm integral equations which have been solved numerically.

Numerical values of the physical quantities have been displayed graphically.
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Fig.3.1.1

Torsion of two elastic layers by a rigid shaft.

72



‘ 73

Under the assumption of axial symmetry of the problem, we know that

the displacement components ur and u, vanish and wu; depends on = and =z
only. To simplify, let us demote ur, uwg and %, by %, v and w respectively.
Then we have displacement components wu=w=0 and v=9{rz). The
stress—displacement relations are given by equations (1.6.3) and the equation of
equilibrium is given by equation (1.6.5). So we have the following basic

equations under consideration

u=w=0, v=11,2),

oul(rd) = ) B, on(rd) = ) (E-D,

v , 10v v 0% , 1 0vop _
w+?a;—;g+w+ﬁaz-a§—0. (3.1.1)

where 4(z) is the shear modulus of the medium and wr,2), 09z and oy, are
respectively the non—zero displacement and stress components in the polar
cylindrical coordinates (r,4,z).

We further assume that the two. isotropic, non-homogeneous elastic
layers, which occupy the regions Ry(—h; < 2 < 0) and Ry(0 < 2 < hg), have
the moduli of rigidity in the form of

pe®? = py(2) ; in Ry(-hy < 2z <0),
p(2) = (3.1.2)

e®” = po(2) 5 in Ry0 < 2z < ha),

are perfectly bonded except that there is a flaw (inclusion or crack) in the
region 0 < 7 < b z = 0. It is also assumed that a rigid circular shaft of
radius ¢ units is bonded to the free surfac;e of the first layer at z = —h; and
it is rotated through a small angle ¢, by applying a twisting moment T to
the shaft and the rest of the surface z = —-h; is kept stress—free. And the
other surface 2z = hy is assumed either stress—free or rigidly fixed. By using

the Hankel transform on the third equation of (3.1.1) we obtain the following
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general solution v for layer R; and ¥ for layer R, respectively :

W)= ¢LA()cosh(8:2)+B(¢)sinh(8,)E I (re) & ,

th < z<0, (3.13)
)= L0 osh( 5+ D(E)sinb( 5.1 5 (rt)

0 < z< hgy (3.14)

where

o 1
)

b= (&2 + — )2 i=12;
4

and A(¢), B(¢), C(¢) and D(¢) are unknown functions to be determined such
that the integrals in equation (3.1.3) and (3.1.4) are convergent and the

boundary conditions are satisfied.

Substitution of equations (3.1.2) and (3.1.3) into the second equation of
(3.1.1) yields

swr=i(2) | E(01A(E)sinh(8:2)+5:B(¢)cosh(8:2)] ~ SHA(E)eosh(2)
+B(¢)sink(6:2)[}e TAPI(re) deE —hy < z < 0, (3.1.5)
Ga=ial2) | {16208 sin(Baa+ 62D(¢)cosh( 2] — SH{OE)cosh(622)

+D(¢)sink(8:2)] € T2 (rt) dE 0 <2< hy (3.1.6)

where ¢y, and Gy denote the stress components in layer R; and Rp

respectively.

The common boundary and continuity conditions for the problem

(excluding the conditions on flaw and the surface z=hy) are the following
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wr—h1) = €r, 0<r<ua (317
ogz(r—hy) = 0, e<r<a (318)
Ar,07) = #roT), b<r<wm (3.19)
ogir,07) = Gge(r,0T) b<r<ow (3.1.10)

3.2 Inclusion problem with the surface z = ho stress—free.

3.2.1 Statement of the problem

In this section we will consider the problem stated in section 3.1 when the
flaw is an inclusion and the surface 2=h; is stress—free. In addition to the

common conditions (3.1.7) to (3.1.10) we have

wr0 ) = %(r,0+) = €r; 0
&ez('f,h&) = 0 ’ O

I

r<b,  (3.21)

tA

r<wm (322)

where we have assumed that as a result of the application of twisting moment
T on the shaft, the rigid inclusion on the interface will rotate through some

unknown angle ;.
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3.2.2 Analysis

In this case the continuity condition (3.1.9) may be replaced by
or,07) = ¥ro™), 0 r<o, (3.2.3)

by using condition (3.2.1), which then will be satisfied if we take

o8) = A(8). (3.2.4)
Using the boundary condition (3.2.2) along with equation (3.1.6), we get

¢ = E(§) K¢) (3.2.5)
where

5] [3 +6] i
% -8 + 3 +8] en-28h)

Applying conditions (3.1.7), (3.1.8), (3.1.10) and (3.2.1), the equations (3.1.3)

E¢) = (3.2.6)

to (3.1.6) give the following results:
®
j; E[A(E). cosh(b1hy) — B(&) sinh(8:h1)]Ji(ré)dé = eor exp(— %l hy);
0<r<a (327

j;mf{[%l cosh{8ihy) + 6 sinh{8:ihy)] A(€) - [%l sinh(61hy) +

8y cosh(61h) B(€)]}Ji(r€)d€ = 0, | ¢ <7< w (328)

) CeAR)I(re)dt = er | 0¢<r<h (329)

S8 AQ) + 6B Hred =0 b<r<a (3210
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where
- — &2 ay
L= pofu , p = ;/,(—2— ~69F)~ -5 (3.2.10a)
Let us introduce two functions
P(§)=[%tcosh(8ihy) + Bisinh(8ihi)|A(€) — [Shsinh(8ihs)+b1cosh( 1) BE),
A&)=p A(£) + 6,B(8). (3.2.11)

Observing that [43]

[t sinter) H(reie = (m-m)d HEr), (3:2.12)

we find that equations (3.2.8) and (3.2.10) will be identically satisfied if we
take

a
P(§) = [ g(t)sin(&t)dt,

b
A =S Wtysin(ct)dt, (3:213)

where ¢ and 7 are two new unknown functions.

Using the expressions (3.2.11) we find that

§[A(€) cosh(81hr) ~B(&)sinh(b1hy)] = [1 + My(E)P(§) + N(§QA(E),
¢ A(E) = My(P(E) + [A + NoA£)]Q(S), (3.2.14)

where

1

P —
1+ &
a0y 4+ as ezp(—26:hy _
Mi(e) = S8 eanny 1

‘ 26 =0sh
N(§) = My(¢) = 503(5) iezfgf)leal:g))(—aﬁlhl) ’

— 205(&) + ag(&)exzp(-26:h
No(§) = §EE—8—+—HE—8&%E:%§L—3 - A (3.2.15)
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with
a(§) = i+ p ay(§) = 61~ p ,
a3(§) = a(§)as(¢), a4(§) = —ax(&)as(§),
as(€) = b1 + § o a(f) = b1 -3 o (3.2.16)

Now substituting from equations (3.2.14) into equation (3.2.7), using

equations(3.2.13) and the following integral represemtations

Hin) = & ‘/;Tz‘/f—%_ﬁ—ﬁj@ ’ (3.2.17)
T4 —

S Hresinigyag = LHI=0 (3:218)

0 T/ r2 - ¢

we obtain an Able integral equation

r T a b :
f"JT_—zz'{¢(2) + fo $(¢)Li(z,t)dt + fo .¢(t)K1(z,t)dt}dz

= ¢or2ezp(— %alhl), 0<z<a - (3219
which when inverted gives

b .
¢(Z) + j;a¢(t)L1($,t)dt + j; ¢(t)K1(x,t)dt = ;ir €o ea:p(— %— a1h1)z y
0<z<a (3220

Similarly, equation (3.2.9) gives

T AYo) + j;a¢(t)L2(z,t)dt + fo b¢(t)K2(-a:,t)dt = ;ir €&z

0<z<h (3.221)
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where
Ly(zt) = < Mx(E)SW(Sw)sw(&)ds,

Kl(x,t) =2 f Ni(&)sin(E)sin(Et)de, i = 1,2, (3.2.22)
From equations (3.1. 5) and (3.2.11) and observing Ji(z) = —Ji(z), we obtain

1 d a m .
gge(T—h1) = pezp(- gouh) EFJ; ¢(t)dtj; Jo(ér)sin( £t)dE. (3.2.23)
Now using the fact that the inner integral on the right side of the

-1
equation (3.2.23) is zero for ¢ < r and (¢2 — 72)2 for ¢ > 7, we obtain

ogz(ri—h1) = piezp(- ga1h1 37—" f —ﬂ—t-)—d— 0<r<a (3224

1/ t2-r2

The moment T required to produce the required rotation €, of the rigid shaft
is given by

a
T =21 [ rlog(r-hy)dr. (3.2.25)
0
Substituting from equation (3.2.24) into (3.2.25), we find that
1 ¢ |
T = 4mperp(— gashy) [ t9(f)dt (3.2.26)
) \

In a similar way, the proviso on the vanishing of the moment applied to the

inclusion leads to

j; bt¢(t)dt = 0. ' (3.2.27)

Integrating by parts and performing the indicated differentiation in the
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. equation (3.2.24), we obtain

a /
a‘ez(r,—hl)=— p,l[ _MEL - f M dt] ezp(_ %alhl))
T/ at—r2 Tt

Si=

0<r<a (3.2.28)

The stress ogz(r,—hi) has a square root singularity at r = a and the constant
#(a) is the measure of the strength of the singularity at the rim of the rigid

shaft. In a similar way, we can show that
§(b) by
oge(1,0) = -Ml[ W) -1 f AL dt]+ (),

0<r<b (3229

where 0(r) is bounded, hence oy, has square root singularity at the edge of the
inclusion, and 9(b) is the measure of the strength of the singularity.
For numerical solution it is convenient to write the integral equations in

dimensionless form. We, therefore, set

W)= ghe: ean(; a)glan),  ¥(n) = g expls auhi)(bn),

Li(nr) = oly(an,ar), La(nr) = % Lo(by,an),

Ki(m) = ’IZ;'KI(aW:bT)’ Ky(n,7) = b Ka(bn,br)

Ty =%« eodd. | (3.2.30)
and

B = g—o | (3.2.31)

Then the equations (3.2.20), (8.2.21), (3.2.26) and (3.2.27) can be written in
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the following forms
o(n)+ f $()Li(nr)dr + f (DKi(mrdr =n, 0 <p<1, (3232

M)+ [ (AL dr +f UAKa(nr)dr = B espGain,
0<n<1, (3233)

3 eaploat) f () = -, (3.2.34)
j; rU(n)dr = 0 (3.2.35)

for the determination of ¢(7), ¥(7), B and T. It is easy to see ¢(1) and ¥(1)
are the measure of the strength of stress singularities at the rim of the shaft

and the edge of the inclusion respectively.

3.2.3 Solution for the homogeneous case and numerical results

When oy = o = 0 , the problem considered above becomes a torsion problem
of two homogeneous elastic layers with a penny-shaped inclusion at the
interface of the layers which have the shear moduli gy and g, respectively. In
this case, E({), M; and Nj, ¢ = 1,2; have the following forms

E(§) = —tanh(¢ha), | (3.2.36)

and



82

M(¢) = esz =7
N(¢) = My(¢) = Eezp(fhl) ,
‘ 49 = m) eantoemn
Ny(€) = 1+ezp(2€hy) 1 ’
(1-uE) ezp(2h)~(1+HE)  1+u
g = LHEE (3.2.37)
1—uFE

Numerical solution for this particular case has been obtained by solving
the simultaneous Fredholm integral equations (3.2.32), (3.2.33) and (3.2.35) for
&(n), ¥(n) and B, in which kernels L¥(z,t) and K¥(z,) i = 1,2 are dependent
on functions Mj(¢), Ni(¢), 7 = 1,2 given by equations (3.2.37). To do this, we
partition the interval [0,1] into 20 equal subintervals and approximate the
integral equations by a system of linear algebraic equations in ¢(7:), ¥(7i)
( with 73= 0.0(0.05)1.0 ) and [ for their determination. Then the values of
T/T, are calculated by numerical integration of (3.2.34). The quadrature
method has been employed to perform the numerical ‘integrations of the kernels
involved in the integral equations and the relative error is controlled under
0.01. The same method is also used in sections 3.3, 3.4 and 3.5.

The numerical values for this problem have been calculated for b/a = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hy/a = 0.5, 1.0, 2.0; ho/h; = 0.25, 0.5, 1.0, 2.0, 5.0
and pofpy = L = 0.5, 1.0, 2.0. The numerical values of T/ Ty, ¢(1), ¥(1) and
f have been displayed against b/a for various values of hy/hy for a
combination of values of z = 0.5, 1.0,- 2.0 and hy/e = 0.5, 1.0, 2.0 in
Fig.3.2.1—Fig.3.2.36.
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For Inclusion Problem, Numerical values of ¢(1), ¥(1),
M/M, and f = e/eo against b/a for hy/h; = 0.25, 0.5,
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3.2.4 Solution for the case hy; - » and numerical results

When hs -+ o , the problem considered becomes the problem of torsion of a
nonhomogeneous elastic layer bonded to a nonhomogeneous elastic half-space
with penny-shaped inclusion at the interface. From equations (3.2.6) and

(3.2.10a) we find that when hy - o

E = -1, p = _%— (ﬁa2 —al) + p527
and the solution for this case is given by the results of section 3.2.2. In a

particular case of @; = a; = 0 , equations (8.2.37) give

2
ME) = apthemrs

N - M — 2exp(&hy) ’
(© 49 (1+5) (ezp(2£h1)-7)
Ny(£) = 1+-exp(2£h) 1 ’
(1+7) eop(26h)(1-8)  1+5
= (3.2.38)
147

Numerical solution for this particular case has been obtained by solving
the simultaneous Fredholm integral equations (3.2.32), (3.2.33) and (3.2.35) for
&(n), ¥(n) and B , in which kernels L¥(z,f) and K¥(z,) (i = 1,2) are
dependent on functions M;i(¢), Ni(¢) (¢ = 1,2) given by equations (3.2.38).
Then the values of T/T, are calculated by numerical integration of (3.2.34).

The numerical values for this problem have been calculated for b/a = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hy/a = 0.2(0.1)0.6, 0.8, 1.0, 2.0, and ps/py = & = 0.5,
1.0, 2.0. The numerical values of T/To, ¢(1), ¥(1) and S have been displayed
against b/a for wvarious values of hyfe for p = 0.5, 1.0, 2.0 in

Fig.3.2.37—Fig.3.2.48.
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For Inclusion Problem, Numerical values of &(1), ¥(1),
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3.3 Crack problem with the surface z=h, stress—free
3.3.1 Statement of the problem

In this section we will consider the problem stated in section 3.1 when the
flaw is in the form of a crack and the surface z=h; is stress—free. Hence we
have the basic equations (3.1.1) and the general solutions (3.1.3) to (3.1.6).
Besides the common conditions (3.1.7) to (3.1.10) there are the following two

additional conditions:

rodr07) = Fga(r0F) = 0, 0
392(7‘,h2) = 0. 0

IN

r<b (331)

IA

r<o (332)
Using the condition (3.3.1), the continuity condition (3.1.10) may be replaced

by
g r07) = Gga(r,07), 0<r<ao (333)

3.3.2 Analysis

Now the conditions (3.3.2) and (3.3.3) will be satisfied by the using (3.1.5)
and (3.1.6), if we take

D(¢) = E(¢) Ad), | (3.3.4)

and

= wA(g) -28.B() 3.3.5
) | az-262E(¢)] (33

where E(¢) is given by equation (3.2.6).
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Then the conditions (3.1.7), (3.1.8), (3.1.9) and (3.3.1) lead to the

following system of dual integral equations

f;mf[A(f)COSh(51h1) — B(¢)sinh(6:h1)]J((r€)dE = eor exp(— %l hy) ,

0<r<a,
j;mé'{[% COSh(ﬁlhl) + 51 sznh(61h1)] A(f) - [%—1- Sinh(51h1) +

61 cosh{6:1h) B(E)]}J1(ré)dé = 0, e <r<o

v — 43} 261 —
J e - st [ + 2 et = o,
b<r< o,
[78- % AGe) + 6B(8)] J(ré)ie = o, 0<r<b

where p = pa/ .

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

The above system of dual integral equations may be rewritten in the

following form (Note: here and what follows such functions as ¢, 9, Ki, Li, M;

,Nij,---.etc. will be introduced, but it should be clear that they are

(presumably) different in different cases):

S A+ MOIPLO+N(OQUON(r)dE = eo exp( St

S er@ eyt = o, s<r<o
S ML D+ WAV = 0, 0T < b

) " QuE)T(r)dt = o, b<r<a

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)
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where

Py(&)= [ cosh(61h1)+618mh(61h1)] Af) - [a13inh(61h1)+61cosh(51h1)] B(¢),

(3.3.14)
=f1-—4 |4 20 pg, 3.3.
Q0 = €[t - = ale) + ¢ =B B (33.15)
and
261k
(o) = ¢ e
§i(y—26,F ~61h
M) = ) = Sar20 D) exp (D)
(0326 5 B)[1-ezp(-28,h
M6) = € BromEt ot b - M
A= B (3.3.16)
147
and a5, 7 = 1,2,3,4; are the same as given by equations (3.2.16).
Now if we take
= fo a¢(t)sz'n(§t)dt, (3.3.17)

= j;%(t) [ﬂz{tﬁl - cos(ﬁt)]ldt, (3.3.18)

the integral equations (3.3.11) and (3.3.13) will be identically satisfied, whereas
if we insert the above expressions for Py(¢) and @i(¢) into equation (3.3.10),

we obtain the following integral equation:

#(z) + f #(£)Ly(z,t)dt + f W) K1($7t)dt = €o$ ezp(~ galhl),

0<z<a (33.19)
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where
Dist) = 2 [ M(Qsin(et)sin(ea)de,
Kz = 2 fole(g)[“' (D) _ cos(et)] sin(éa)dt. (3.3.20)

Now to satisfy equation (3.3.12), let us first rewrite equation (3.3.18) in the

form
b
€)= [ B + v (Osin(et)dt — wo)sin(ce), (3.3.21)

and then substitute for Py(¢) and Qi(¢) from equations (3.3.17) and (3.3.21)
into equation (3.3.12) and use equations (3.2.17) and (3.2.18) to obtain the

integral equation

-
I Glnldn  _ ¢ 0¢<r<b (3322
0

1/ r2? _7’2

where
o) = Mln ol +2 [ 4(af " & M @sinlysin(en)a

b ® .
+ 2 [Cwoaf n ¢ (R - cos(ghlsin(emaz.  (3329)

Clearly equation (3.3.22) will be satisfied if G(n) = 0. So if we let G(7) =
0 and integrate (3.3.23) with respect to 7 from 0 to z for 0 < ¢ < b and

then divide by z, we obtain:

a b
Ar(z)+ fo #() Loz, ) di+ fo H(H) Ko(z,8)dt = 0, 0<z<h (3324)
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where

Lg(x,t)

21" ML) — cou(galin( ety
Ko(z,t) = %/;mNz(g)[smz 2 cos(fz)][Si? t_ cos(ét) dé€. (3.3.25)

The boundary value of shear stress og,(r,—h;) is still given by equation
(3.2.28). The value of the shear stress og,(7,0), r > b at the interface of the

two materials is given by

oolr0) = nf EOB(E) = Fou A(QNI(En)de. (3.3.26)

And substituting for A(¢) and B(¢) from equation (3.3.14), (3.3.15) and
using equations (3.3.17), (3.3.18), (3.3.21) and (3.2.18), we obtain

0ga(1,0) = —/\ml——b—ﬁgL + R(r), r > b, (3.3.27)

r r2 - b2

where

R() = mf EMAOP(E) + N QUONer)de
® b
+ o Hende [ I + g (@)sin(enas (3.3.26)

is bounded, while og,(r,—hi) and T, the torque required to rotate the rigid
shaft through a small angle ¢, have the same expressions as givgn by
equations (3.2.28) and (8.2.26). Hence ¢(a) and ¥{b) are the measure of the
strength of the stress singularity at the rim of the shaft and at the edge of
the crack respectively.

By wusing the same transformations as given in (3.2.30) to get
dimensionless form, the equations (3.3.19), (3.3.24) and (3.2.26) can be

rewritten in the following forms



101

1 * 1 ’ *
¢(n)+j; ¢(7)L1(m7)dr +fo UK (nrdr =9, 0<p<1, (33.29)
Ar¥(n)+ _/; 1¢(T)L*2‘(r/,r)dr+ j; I‘P(T)Kz(ﬁ,f)dm 0, 0<gp<1, (3330
3 emp(alhl)j;l'rd)(r)d'r = —1?0— ) (3.3.31)

for the determination of ¢(7), ¥(n) and T. Again, it is easy to see that (1)
and ¥(1) are the measure of the strength of stress singularity at the rim of

the shaft and the edge of the crack respectively.

3.3.3 Solution for the homogeneous case and numerical results

As in section 3.2.3, when ¢y = ay = 0 , the problem considered above
becomes a torsion problem of two homogeneous elastic layers with a
penny—shaped crack at the interface of the layers which have the shear moduli

py and pp respectively. In this case we have

K(E) = ~tanh(éhy), (3.3.32)
and
M(8) = 2(14-uE) ’
(1-pE)e zp(26h)~{1+LE)
O = = ) = B
Ny(£) = LE(L-eap(2)) b (3.3.33)

(1—EE)eap(2eh)(145E) 147

Numerical solution for this particular case has been obtained by solving
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the simultaneous Fredholm integral equations (3.3.29) and (3.3.30) for ¢(%) and
¥(7n), in which kernels L*(z,t) and K¥(zt) (i = 1,2) are dependent on
functions M;i(¢), Ni(€) (¢ = 1,2) given by (3.3.33). Then the values of T/ T
are calculated by performing the numerical integration in (3.3.31).

- The numerical values for this problem have been calculated for 5/¢ = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hy/a = 0.5, 1.0, 2.0; hy/hy = 0.25, 0.5, 1.0, 2.0, 5.0
and pofpy = p = 0.5, 1.0, 2.0. The numerical values of T/T,, $(1) and (1)
have been displayed against b/a for various values of hy/hy for a combination

of values of & = 0.5, 1.0, 2.0 and hi/a = 0.5, 1.0, 2.0 in Fig.3.3.1—Fig.3.3.27.
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For Crack Problem, Numerical values of ¢(1), ¥(1) and
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3.34 Solution for the case hy - m and the numerical results

As in section 3.2.4, when h; - o , the problem considered in section 3.3.2
becomes the problem of torsion of a nonhomogeneous elastic layer bonded to a
nonhomogeneous elastic half-space with penny-shaped crack at the interface.
From equation (3.2.6) we find that FE -+ -1 when hy » ® . The solution for
this case is given by the results of section 3.3.2. by taking E = -1.

Particularly, if ¢y = a2 = 0 we have

My(§) = 28 - 1)S(¢),

Ni(§) = My(§) = 2exp({he)S(¢),

Ny(¢) = [ezp(28hy)-1]S5(£) - A, ' (3.3.34)
where

S(¢) = [(B - 1) + (B + 1)ezp(2{h)] .

Numerical solution for this particular case has been obtained by solving
the simultaneous Fredholm integral equations (83.3.29) and (3.3.30) for ¢(n) and
¥(7n), in which kernels L*(z,t) and K¥(z,t) (i = 1,2) are dependent on
functions M;(€), Ni(¢), (¢ = 1,2) given by equations (3.3.34) Then the values
of T/T, are calculated by numerical integration of (3.3.31).

The numerical values for this problem have been calculated for b/a = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hy/a = 0.2(0.1)0.6, 0.8, 1.0, 2.0, and ps/py = & = 0.5,
1.0, 2.0. The numerical values of T/T,, ¢(1) and ¥(1) have been displayed
against b/a for various values of hyfe for p = 0.5, 1.0, 2.0 in

Fig.3.3.28.—Fig.3.3.36.
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3.4 Inclusion problem with the surface z = h; rigidly fixed.

3.4.1 Analysis

In this section we will consider the problem stated in section 3.1, when the
flaw is an inclusion and the surface 2=h, is rigidly fixed. Hence, in addition

to the common conditions (3.1.7) to (3.1.10) we have the following conditions

wr,07) = Yr.0*) = er, 0
?)(T,hz) =0, 0

IA

r<b (34.1)

[P

r<ao (342)

where we have also assumed that as a result of the application of torque T on
the shaft the rigid inclusion will rotate through some unknown small angle e;.

The combination of the conditions (3.1.9) and (3.4.1) yield
v(r,0°) = ¥r.0%) , 0<r<m (3.43)

The conditions (3.4.2) and (3.4.3) will be satisfied by the general solutions
(3.1.3) and (3.1.4) if we choose

D(¢) = E(§)8), (3.4.4)

where

E1(§) = - COth(ﬁzhz). (3.4.5)

If we replace E in the equation (3.2.6) by E; (consequently all functions
involving E will be changed) then most of the discussion in section 3.2 is valid
in this case. We indicate the difference in the following.

In this problem the boundary and continuity conditions (3.1.7), (3.1.8),
(3.4.1) will lead to equations (3.2.7), (3.2.8) and (3.2.9) while the condition
(3.1.10) gives
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fo mﬁ{fﬁ(%z —63E1)- SHA(E+6B(E)}(re)dé=0, b < r < o (3.46)

As we have done in section 3.2, the equations (3.2.7), (3.2.8), (3.2.9) and
(3.4.6) can be reduced to solution of the system of integral equations (3.2.20)
and (3.2.21) for the unknown functions ¢(t) and '¢;(t); while expressions
(3.2.15), (3.2.16) and (3.2.22) are valid if we replace F in equation (3.2.10q)
by E;, which is given by equation (3.4.5). The transformations (3.2.30) and
(3.2.31) lead us to the equations (3.2.32), (3.2.33), (3.2.34) and (8.2.35) for the
determination of ¢(7), ¥(n), # and T for this problem.

3.42 Solution for the homogeneous case and numerical results

When a; = @y = 0 , the problem we considered becomes a torsion problem of
two homogeneous elastic layers with a penny-shaped inclusion at the interface
of the layers which have the shear moduli p; and ps respectively with the

surface z = hy fixed. In this case we have

E\(£) = —coth({ha), (3.4.7)
and
' 2
MO = it
M) = M) = — 2em(Eh)
@ 4 (1-pE1)(ezp(2€h1)~11)
Ny(£) = 14+-ezp(2&hy) 1
' (1-pEy) eap(26h)-(1+pEy)  1+p
T = Ltphy (3.4.8)

1-%E,
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Numerical solution for this particular case has been obtained by solving
simultaneous Fredholm integral equations (3.2.32), (3.2.33) and (3.2.35) for
¢(n), ¥(n) and G , in which kernels L¥(z,¢) and K¥(z,f) (3 = 1,2) are
dependent on functions Mj(¢), Ni(¢) (¢ = 1,2) given by equations (3.4.8).
Then the values of T/T, are calculated by the numerical integration of
(2.3.34).

The numerical values for this problem have been calculated for b/e¢ = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hyfa = 0.5, 1.0, 2.0; hg/h; = 0.25, 0.5, 1.0, 2.0, 5.0
and pofp; = p = 0.5, 1.0, 2.0. The numeric.al values of T/ Ty, ¢(1), ¥(1) and
B have been displayed against b/a for various values of hy/hy for a
combination of values of g = 0.5, 1.0, 2.0 and hy/a = 0.5, 1.0, 2.0 in
Fig.3.4.1—Fig.3.4.36.
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3.5 Crack Problem with the surface z=h, rigidly fixed
3.5.1 Analysis

In this section we will consider the problem stated in section 3.1 when the
flaw is a crack and the surface z=h2 is rigidly fixed. Hence we have the basic
equations (3.1.1) and general solutions (3.1.3) to (3.1.6). Besides the common
conditions (3.1.7) to (3.1.10) there are two additional conditions given by

Uez(T,Oj = &QZ(T,O_*—) = 0, 0
f)(r,hz) = 0. 0

IA

r<b (351)
r<w (352

IA

Using the condition (3.5.1), the continuity condition (3.1.10) may be replaced
by

g r,07) = Gga(r0™), 0<r<am (353)

In this case the conditions (3.5.2) and (3.5.3) will be satisfied by the general
solutions (3.1.5) and (3.1.6), if we take

D(§) = E(¢) C(¢), (3.5.4)

and

_ @14(§) -26:B(¢) 3.5.5
A B ar26,E,(¢)] (359

where Ey(¢) is given by equation (3.4.5).
If we replace E in the equation (3.4.5) by E; (consequently all functions
involving E will be changed) then most of the discussion in section 3.3 is valid

in this case. We indicate the difference in the following.
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In this problem the boundary and continuity conditions (3.1.7), (3.1.8),

(3 5.1) will lead to equations (3.3.6), (3.3.7) and (3.3.9) while the condition
(3.1.9) gives

[t - ate + =2 me)ai = o,

0<r<h (3586)

As we have done in section 3.3, the equations (3.3.7), (3.3.7), (3.3.9) and
(3.5.6) can be reduced to the solution of the system of integral equations
(3.3.19) and (3.3.24) for unknown functions ¢(t) and 9(t); while expressions
(3.3.16), (3.2.16) and (3.3.25) are valid if we replace F in equation (3.2.10q)
by Ej, which is given by equation (3.4.5), only to keep in mind that in every
function involving E in section 3.3, E should be replaced by E; for this
problem.

The transformations (3.2.30) will lead us to the equations (3.3.29),
(3.3.30) and (3.3.31) for the determination of ¢(n), ¥(n) and T for this

problem.

3.5.2 Solution for the homogeneous case and numerical results

When a; = a3 = 0 , the problem we considered becomes a torsion problem of
two homogeneous elastic layers with a penny-shaped crack at the interface of

the layers which have the shear moduli g; and p, respectively with the surface

2z = hy fixed. In this case we have

B((&) = —coth(¢hs), (3.5.7)
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and
me) = ——21tuB) ,
( 1-pEy)exp(2&h)~(1+pE)
N(§) = M. = —2uE; ezp(&hy) ,
(8 = =) = (38, con(oha) (04280
Nz(é') = Z"—El(l_emp(2§hl)) — E . (3.5.8)

(1~pE1)ezp(26h1)-(1+pEr)  l+p

Numerical solution for this particular case has been obtained by solving
simultaneous Fredholm integral equations (3.3.29) and (3.3.30) for ¢(7) and
¥(7n), in which kernels L%(z,t) and K¥(z,t) (¢ = 1,2) are dependent on
functions M;(¢), Ni(¢) (¢ = 1,2) given by equations (3.5.8). Then the values
of T/T, are calculated by the numerical integration of (3.2.34).

The numerical values for this problem have been calculated for 4/a = 0.0
(0.1) 1.0, 2.0, 3,0, 4,0; hy/a = 0.5, 1.0, 2.0; ho/hy = 0.25, 0.5, 1.0, 2.0, 5.0
and pofp = p = 0.5, 1.0, 2.0. The numerical values of T/T,, ¢(1) and ¥(1)
have been displayed against b/a¢ for various values of hy/h; for a combination

of values of p = 0.5, 1.0, 2.0 and hy/e = 0.5, 1.0, 2.0 in Fig.3.5.1—Fig.3.5.27.
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Figs.3.5.22-3.5.24
For Crack Problem, Numerical values of ¢(1), ¥(1) and
M/M, against b/a for hy/h; = 0.25, 0.5, 1.0, 2.0, 5.0 and
1= paf/p = 1.0, hyfa = 2.0.
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Figs.3.5.25-3.5.27
For Crack Problem, Numerical values of ¢(1), ¥(1) and
M/M, against b/a for hy/h; = 0.25, 0.5, 1.0, 2.0, 5.0 and
L= pofpr = 2.0, hy/a = 2.0.
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3.6 Some comment on the solutions

For two layers case,we make the following observations from the graphs

for the inclusion problem: the strength of the singularity at the rim of the
rigid shaft and the moment required to rotate the shaft increase as b/a
increases and decrease as hg/h; increases but near 1.0 < b/a < 2.0 they
approach 1; the strength of the singularity at the edge of the inclusion
increases as hp/h; decreases and reaches a maximum near b/a = 1; the ratio
€1/ €0 = [ decreases as bfa or hg/hy increases.

For the crack problem we notice the following: the strength of the
singularity at the rim of the shaft and moment required to rotate the shaft
decrease as bf/a or hy/hy increases; the strength of the singularity at the edge
of the crack behaves in the same manner as in the inclusion problem.

For layer and half-space case, we make the following observations from

the graphs for the inclusion problem: the strength of the singularity at the rim
of the rigid shaft and the moment required to rotate the shaft increase as b/a
increases and decrease as hj/a increases ; the singularity at the edge of the
inclusion increases as hi/a decreases and reaches a maximum near b/a = I,
the ratio €;/ep = [ decreases as b/a or hi/a increases.

For the crack problem we notice the following: the singularity at the rim
of the shaft and the moment required to rotate the shaft decrease as b/a
increases and increase as h;/a increases but near b/a = 1 they increase as hi/a
increases to 1; the singularity at the edgé of the crack behaves in the same

manner as in the inclusion problem.



CHAPTER 4

GRIFFITH CRACK AT THE INTERFACE
OF TWO ORTHOTROPIC ELASTIC LAYERS

4.1 Introduction

The study of Griffith crack problems in the mathematical theory of elasticity
originated in the classical work of Griffith [46]. A crack occupying the line
segment

y=20, -c<z<e¢
in the zy—plane is called a Griffith crack.

In 1946, Sneddon and Elliot [47] considered the problem of determining
the distribution of stress in the neighborhood of a Griffith crack which is
subjected to an internal pressure varying along the length of the crack. They
reduced the problem to a half-plane mixed boundary value problem and solved
it by using Fourier transform methods. Green and Zerna [2] reduced the
Griffith crack problem to the Hilbert problem. Willmore [48] solved the
problem of two collinear Griffith cracks in an isotropic material by means of
elliptic functions when a uniform pressure acts normally on the crack surface.
Tranter [49] considered the problem of a normally varying pressure on collinear
Griffith cracks. |

Koiter [50], and England and Green [51] considered the problem of
determining the :stress field caused by an infinite row of collinear Griffith

cracks of equal length when each crack is subject to the same constant
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pressure. Sneddon and Srivastav [52] considered the same problem by assuming
a varying pressure on each crack.

Lowéngrub [63] solved the Griffith crack problem in a strip with
stress—free edges, when the crack is parallel to the edges of the strip. Sneddon
and Srivastav [52] investigated the problem of Griffith crack in a strip in
which crack is perpendicular to the edges of the strip. Lowengrub [54]
considered the distribution of stress in the neighborhood of external crack in
an elastic plane. |

The problem of radial cracks originating at the boundary of an internal
circular hole in an infinite elastic plane was solved by Bowie [55]. The
problem of determining the distribution of stress in the vicinity of a star crack
formed by the intersection of a number of Griffith cracks was solved by
Westman [56].

Williams [57] considered the situation in which a Griffith crack is present
at the interface of two isotropic semi—infinite planes of dissimilar materials, he
found that the analytic solution of stresses has a peculiar behavior near the
tip of the interface crack where the stresses undergo a rapid reversal of sign.
The oscillatory character takes the form rHsin (or cos) of the argument
elog(r/a) where r is the radial distance from the crack border, a is the crack
size and ¢ is a bimaterial constant depending upon the elastic properties of the
adjoining materials. This behavior was also studied by Sih and Rice [58] , they
formulated the the problem of stress state near the crack-tip and derived a
formula for the stress intensity factor for fhe problem considered by Williams.
Erdogan and Gupta [59, 60], analyzed the plane and antiplane problems of
stress distribution of multi-layered composites with a flaw by reducing them to
a system of singular integral equations. They developed a direct approach to

find the approximate solutions of singular integral equations of the first
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(second) kind by using Chebyshev (Jacobi) polynomials. Lowengrub and
Sneddon [61] solved the problem of a Griffith crack at the interface of two
bonded dissimilar elastic half-planes by Fourier transforms and reduced the
problem to a set a dual integral equations, they used Muskhelishvili’s method
to solve the system of singular integral equations. Dhaliwal [62] , Mohapatra
and Parhi [63] , Satpathi and Parhi [64] and Parihar and Lalitha [65]
considered the Griffith crack problem in an orthotropic medium. Recently
Dhaliwal, Saxena and Rokne [66] considered the crack at the interface of an
orthotropic elastic layer bonded to a dissimilar orthotropic elastic half-space.

In this chapter we will consider the problem of determining the state of
stress near a Griffith crack located at the interface of two dissimilar
orthotropic elastic layers. By means of Fourier transforms the problem is
reduced to a system of singular integral equations. These equations are further
reduced to a system of simultaneous algebraic equations by using Jacobi
polynomials approximation. Numerical methods are employed to determine the

stress intensity factors, which have been displayed graphically.

4.2. Basic equations and their solution

As discussed in chapter 1, under the assumptions of plane strain in an
orthotropic medium when the cartesian coorciinate axes are chosen to coincide
with the principle axes, we know that the displacements ux, uy depend on z
and y only, while u, vanishes. To simplify, let us denote ux, uy and u, by «,

v and w respectively, then we have

v = ¥wzy) , v = zy) , w=20, (4.2.1)

and the stress—displacement relations are given by
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Oxx= Cllg% + 012“3';;) )
Oyy= Clzg% + 022'%) ) .

Txy= Cg [g% + g% , (4.2.2)

where ¢;’s are the elastic moduli of the orthotropic medium. The equations of

equilibrium , in the absence of body forces, may be expressed as follows

2 2 2

Cng;,% + Csegﬁ + (c12 + cos) %x_gg—/ =0, “ (4.2.3a)
2 2 2

Cee% + "’22%@% + (e12 + coo) 'gggg =0 . (4.2.3b)

When the displacement % is anti-symmetric and v is symmetric with
respect to y-axis (this is the case when the crack is subjected to symmetric
normal pressure and anti-symmetric shear with respect to y—axis considered in
this chapter), by applying the Fourier sine transform with respect to z to
equation (4.2.3a) and the Fourier cosine transform with respect to z to

equation (4.2.3b) respectively we obtain
(oo Oos ~ 1y £2) Ts — £ (cua + c56) O T = 0
68 F2 11 Us 12 66) Jy Y = U
£ ( 0 1 2 oy £2) 1 =
Ci2 + Ces) Ty s + (c20 e css £2) T = 0, (4.2.4)

where % is Fourier sine transform of » and 7. is the Fourier cosine transform
of . |
Let ¢;;, (k=1,2) be the ela.stic-moduli. for the layer Ry (k=1,2), where R,
is the layer one (0 < y < hg) and R, is the layer two (-hy < y < 0). Solving
equations (4.2.4) for %5 and 7, then taking the inverse Fourier transforms we

obtain the the following solution:
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8. 5.
4 ()= T4+ B4 014 Dy 1Y 6o, in By (4.2.5)

B8y —B;8y 8;8y —8;8y
'”j(z:y)= Fl(4ja5e " —Bjaje +Cirie 17 =Djse )i &= 4,

in R;, (4.2.6)

where & , F. are the Fourier sine and cosine transforms respectively, while
u; and v (j=1,2) are the displacements for the layer Rj; A4;, Bj, Cj and Dj
(#1,2) are unknown functions of ¢ , and
-1 -
cesj B —cuj B cgej 0j — Cij 5j1
2 = C12j + Cgej ? T = Ci2j + Cesj

)

t

b

5 nj * 77? - 4+ cq1j- Co0§+ Chg;
(ﬂj’ j) - 2-Ca2j * Co6j

et e fans cpags — 2
M= C1j°C33j — 2°C13j* Ca4j — Cizj - (4.2.7)

Substituting from equations (4.2.5) and (4.2.6) into (4.2.2) , we obtain

B —B;8 —b;8 .
UY}’j(z;y)= Flé(aj4je €y+aij y+b_]q +bJDJ y) -z, in R;j,

S B8 8;€ —5;¢ .
oxyi(T:y)= Fslé(ej4je! Y—eiBie 1 +d;Cie i ~diDje 3 )iénal, in Ry,

(4.2.8)

where oyy; and oxyj are stress components for the region R; (/=1,2) and

a; = cagj + a5 By c225 , by = coyj +7505 caj

di = ceej (6 — 7)) » & = cesj (Bj—0j) , J=12. (4.2.9)

4.3. Statment of the problem and derivation of the singular integral equations

We assume that two dissimilar orthotropic elastic layers, which occupy the

regions Ry (0 < y < hy) and Ry (-hy < y < 0) respectively, are perfectly
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bonded except that there is a crack in the interval —a < z < a, y=0 (see
Fig 4.3.1). It is also assumed that the boundaries y = —h; and y = hy are
stress—free, and the surfaces of the crack are subjected to symmetrical normal
pressure and anti-symmetrical shear with respect to y—axis. Hence the problem
of determining the stress and displacement field is subjected to the following

boundary and continuity conditions:

oyyi(2,01)=0yya(2,0)=pi(2),  pi(-7)=p4(z); lz] < a, (4.3.1)

r(80) = 80)=pl®),  p(D=-pla; ol <o  (432)

wu(z,0%) = uz,0) , w(z,0*) = uw(z,0) , lz| > a,  (4.3.3)

oyy1(2,0)=0yy2(2,07), 0oxyi(2,0*)=0xy2(z,0), |z| > a, (4.3.4)
and

oyyi(zhe) = 0,  oxyi(zhe) = 0, - < z < o (4.3.5)

oyya(Z,=h) = 0, oxya(z—h1) = 0, - < T < o (4.3.6)

With the help of conditions (4.3.1) and (4.3.2), the conditions (4.3.4) may be

replaced by
0yy1($,0‘)=0yy2($,0'), 0xy1($,0+)=0'xy2(z,0-), - < T < . (4:.3.4.8;)
The conditions (4.3.4a) yield

afAy + By) + bi(Cy + Dy) = a4y + By) + bo(Cy + Do) ,  (4.3.7)
61(A1 - B1) -+ d1(01 - Dl) = 62(A2 - Bz) + dz(Cg - Dg) . (4.3.8)

While the boundary conditions (4.3.5) and (4.3.6) give

a1A1é61€h2 + aLIBle_ﬁIEh2 + b101681Eh2'+ lelenﬁlﬁh2 =0, (4.3.9)
edi P2 _ B P g0l gp et g (4.3.10)
0,2.426—625'111 + ‘aszeﬂ"’&hl + b202€—82€h1 + 62D2e82€h1 =0, (4.3.11)
egAze—B"’f'h1 - e2B2e62&'h1 + d2026_82§h1 - ngzeﬁzs'h1 =0. (4.3.12)



Y
A
— y=h2
o —5 y=0
y=—h1
Fig.4.3.1

Griffith crack at the interface of two dissimilar

orthotropic elastic layers.
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Solving equations (4.3.7) to (4.3.12). we get

and

where

and

5,0 ¢h - §.)Eh
Ci(¢) = l11x‘11€(‘31 & + l12Bie (Prrop hy ,
) +
Dy(¢) = 1121‘116(61+ 1 &hy + 1111916(1(31 o1 &y )
§ +
Cy(¢) = 121A26( B2t 8y + lgnge((32 0 &y ,
: - §,) €h %,) th
Dy(€) = lppdze (B0 &y + 121326(62 2) &by , (4.3.13)
Axf) = lag Ay + Ia Bi, By = lag A1 + lp By, (4.3.14)

hj=—{a1di~(—1)iesb)]/(2b1dy) , Lj=—{aado—(~1) esbs]/(2bads) , 7=1,2 .

By = (ay baz — ap2 bu)/A , Dz = (a2 b2 — ap2 by2)/A

lag = (@o1 b1y — agg bar)/A , o = (621 b2 — ap2 b21)/A

A = ap baa — azs by : (4.3.15)

(B;8,) &h -(B,+8,) €h,

a1 = a1 + bylye 2 4+ bylise )
-(8,+5,) th (B,+5,) th

a2 = a1 + biljoe Py Ehy + bilyse Br0p Ehy )
($,+5,) th -(B,+5,) th, -

a1 = ay + balye P00 &y + bolyoe P20 80y )

(B2+82) ghl

(8,-6,) €h
a2 = az + balyge e 2 ¥

+ baly

(B8 &h, _

b

6(61+61) g€h,

by = e + dilye dili

)

-([31+81) gEh, ( -{31+61) gh,

big = — ey + dilpse — dilyse )
§.) €h -(B,+5,) Eh
by = €2 + 421216( P80y _ dalage B.f 2 &y )
§,)€h, -5.) th
b2 = — ez + dzlzze(ﬁ2+ P80 421216(62 P8 (4.3.16)



Conditions (4.3.1) , (4.3.2) and (4.3.3) yield the following equations:
5’c[£(a1A1+alB1+blC1+d1D1) ) f-bz]=p1($) y - 0 <2< a;

55[{(81.41—-61314-d101—d1D1) ; f—m:]=p2(:1:) , 0 <z< g
ul(z,O")—uz(a:,O‘), 0 <

Fs|(A+ B+ Ci+ Di—Ay—By-Co-Dy) ;5*’9«‘]={ .

F(a1A—2:B+71Cr—11D1—asA s+ a2Br—72Cot 72 D0) ;€-1)

{vl(z,O")—vg(z,O'), 0<z<ag

0, T > g
Differentiating (4.3.19) and (4.3.20) with respect to z and setting

¢(Art+ B+ Cr+Di—A3-Br-Cy—D2)=9y(§) ,
¢(a141-e:B+71C1~71D1—asda+asBr—12Co+12D2)=44(€) ,

we obtain the following equations from equations (4.3.17) to (4.3.20)

Fduds + b)) 5 £~ d = p(a) 0<z<a
Fs[(Aa1f1 + Aaapa) ; € = 2] = pa(z) 0<z<a
9 .
[u1(z,0*)—u2(z,07)], 0 <z< g,
Feloe) s ¢ a ={7 T
0, z > aq,
d
[~v1(z,0*)+vy(z,0°)], 0<z< aq,
Flale) s €+ a [T
0, T > a,

where Ajx are functions of { and are given by
* *
Ay = (enr12 — e211)/A , Az = (@721 — aur22)/A
* *
Aot = (bu712 — bay)/A 5 Aaz = (buaya1 — buy2a)/A

*
A = 712 Y21 = T Y22,
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(4.3.17)

(4.3.18)
z < g
z > q

(4.3.19)

(4.3.20)

(4.3.21)
(4.3.22)

(4.3.23)

(4.3.24)

(4.3.25)

(4.3.26)

(4.3.27)
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and 7jk’s are given by the following equations

B,- §)¢h (B,+6,) Eh
Vol 2 yylpe 11 ¢ 2—aal3 1+ asla—7als 1+ 12ls:

ALY

(
Tu=ar-71lye

-([31+81) &h2+7111

(Bl+61) ¢h

T19=—01—71ly2€ —agl32+aglaa—72lso+72lsa

- 8,)¢h
By 88 2l rlar-lsi—loy

(- B,*8)) &h

To1=1~ly1€ 2] 5e

-([31+81) ¢h

2 e *ly-lyg-lso-lsa ,

(B,45,) Eh
e 2 o) 80y

720=1-lj€

(- By*8y) £hy

Is1=—lp1l31€ laoly )

'- § h 8 h
Iso=—la1l30¢ (B0 Ehy _ 122142€(BZ+ 2 &y )
- 6 h -8,) €h
lo1=—laal31e By 8hy _ latlsy 6(62 2ty )
-(B,+6,) th 5.)€h
152=—l221328 62+ 2 ¢ 1 121142 C(B2 2)€ 1 . (4.3.28)

It is easy to verify that when {= o , 1jx(¢) tends to constant, say Ajx(w),and

-(B,*8)) £h

Aix(€) — Ajilw) = O (e 2 . (4.3.29)

Now suppose that the dislocations at y=0 are f; and fo, i.e

3%[“1(2?,0+)_U2(2,0')] = {fo1(2), ::: j Zf (4.3.30)
f2 z), z| < )
3%[—111(2:,0*)+v2($,0‘)] = { 0( ) :z: o Z. (4.3.31)
and
f-2)=fi(z) ,  fo-2)=-fu2), |z2| < a  (43.32)

By taking s=z/a , equations (4.3.23) to (4.3.26) can be written in the

following form
Fd(ubs + Xiafa) 5 € - o = p(s) , 0<s<1, (4333)

Fsl(Aaft + Aasfa ); € =+ 8] = pols) , 0 <s<1, (4334)
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8 o~ .
,0%)— 07| 0 1;
Fdr; € 9 ={7’5[u1(8 a0 SES 4aa)
0 ) S > 1,
a ~ ~
- ;0+ )0- ) 0 ’
Fel2 ; €~ 4 ={7’§[ (0} ls ) o<t (4.3.36)
0, ‘ s > 1;
where
pi(8)= a pi(as) , AR(O)=2u(¢/a) , $i(¢)=4i(¢/a) ,
uj(8)=u;(as) , v(s)=v(as) ,  Gk=1,2 . (4.3.37)

Now equations (4.3.30) and (4.3.31) can be written in the following form

F y < 1
%{al(s,o+)—a2(s,o-)]={1; j(s) :5: o (4.3.38)
_F , 1;
-5%[51(3,0*')—?)2(3,0‘)]:{ gf(s) ::: i ) (4.3.39)
where
Fi=8)=Fus), fal-s)=—Fas), |s| <1,
fi(9)=afs(as) , =12 . (4.3.40)

The equations (4.3.35) and (4.3.36) are satisfied automatically and we have
- ‘ 3 1.
$1(8)= (2/7) f; f i(s)eos(¢s)ds (4.3.41)

$a(8)= (/) [ Fols)sin(ts)ds . (4.3.42)

Using integration by parts, from equation (4.3.41) we get

3i&)=~ @/t ef L F i) sin(ts)as,

then using the result [44] that

Fde-tsinler) ; ¢ = § (2/n)tog|-SEL,
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we see that

Fbi(£) ; ts] = _%ﬁ)lfl(T)[ 3_}_ — + si'r]d'r‘

Since f4(s) is an even function, we have

~ 1 £
F#e) ; b = - 1 fngl dt. -1 < s < 1,(4.343)
Similarly, from equation (4.3.42) we get ‘
y 1ot fa(t
FL8) 5 & = 7 [ 1%{;) dt. -1 < s < 1. (4.3.44)

For the continuity of the displacements on y=0 , |z|>a ; fi and f, must

satisfy the following conditions

[ij(w)dw =0, or f_ifj(s)ds =0, j=12. (43.45)

(Note, for =2 , condition (4.3.45) holds obviously since fa(z) is an odd
function) Substituting for §;, #, from equations (4.3.41) and (4.3.42) into
equations (4.3.33) and (4.3.34), we obtain

All(m)fi(s) + i%ﬁglf_i%dt -+ ‘[_If1(t)K11(8,t)dt

+ [ FaKulsfdt = p(s) , sl <1 (4346)

~aa(w) £os) - A2,1r(m)f_If;1£tl dt + f_ifx(t)Km(S,t)dt

+ _ﬁifz(t)K22(S,t)dt = paos) , |s| <1 (4.3.47)

where
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Ki(st) = =/ (1) = du()lcos(¢t)cos(és)de |

Kia(s,1) ———f [X12(6) = Apa(w)]sin(€t)cos(és)dE
Ka(s)t) = —f [V21(€) = Aau(w)]cos(Et)sin(¢s)dt
Kyst) = —— f (R22(€) ~ Aanlw)lsin(¢t)sin(és) 6 . (4.3.48)

Equations (4.3.46) and (4.3.47) can be rewritten in the following forms:

W+ e M dt 9O Muls ) d=g1(s)

Is| <1  (4.3.49)
0o A et () () 9alt) (s, ) di=ils)

| 5| <1; (4.3.50)

where
A= A(w)/Aia(e) , A2 = Aag(w)/Aeiw) , A = VA A2,
SD=VTf ) + WTafols) , $lo)=yTif o(s) = W T2 fols) ,
0®) = VT B ule) + WL pa(s)/ o)

92(s) = Vs 21(s)/Anlo) = W/ Ti pols)/Aailo) ,

Milsd) = (e Bl + i Kusd

+q (K21(5 t) KIZ(S t))}

A21(o) Aa(m)

Misd) = 5 [ Kalst) + 52 Ku(sd)

+ i (e o Kpladhl
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M21(37t) = % {XZI%X)VT—E K22(s’t) + XI;Q%_A—I Kll(sit)

- (Klz(s,t) + K21(3 t))}

A12(w) A21(w)

Mio(s,t) = —%‘ {Eﬁj—z Ka(s)t) + ]1—2&%—)-1 Ku(s,t)

oy o)t (4351)

The analytic solution of equations (4.3.49) and (4.3.50) has been
extensively studied (see, for exemple, [67] and [68]) by using regularization
method, iw'hich, in this case, however becomes cumbersome. Here we try to use
an approximation method described by Erdogan [69] to find the stress intensity
factors.

Since the kernels Mjx (j,k=1,2) are bounded, we know, aside from a
multiplication constant, the singular behavior of the functions ¥; and ¢, at the
points § = % 1 is determined by the dominant part of the singular integral
equations. The equations (4.3.49) and (4.3.50) will be solved under the
assumption that ¢; and ¢, satisfy a Holder condition on every closed part of
the interval (-1 , 1) not containing the ends.

The solution of the equations (4..3.49) and (4.3.50) may be assumed in
the form of Jacobi polynomials Pn(ﬂ“’Tk)(s) [60] by -

> (o171
= % Cin Wi(s) Po\7%7k)(s) | k=12 ;  (4.3.52)
ns=
where
Wi(s) = (1-)(1 + 8)*, 0 = - % +ow o me= - % - i,
1 1+ A
v = (—1)k+1,,, , U= 5o In| 1 i,‘ ], E=12; (4.3.53)

and Cyn are unknown coefficents.
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Observing that Pg‘fk"rk)(s)=1 and the orthogonality relations of Jacobi
polynomials

0 $ m,

n=m,

oor) — 27 T (miot T (mtrt) (4.3.54)
m m! (2mto+7+1) T(m+ o +7+1)

we conclude that by choosing Ciko=0, k=1,2,the condition (4.3.45) will be
satisfied automatically.

Using the following relation [70]

LS tmy Rl7emdy L ()amigs) P70

{— 15/:2' 7}Pn(-?n(’--rk) (s) ,

where Gj(s) is the principal part of Wk(s)Pn(”k’Tk)(s) at infinity, and

|s]<1;

b _ (4.3.55)
- B [(+1) M (4 1)+ G200, sl>1

substituting from equation (4.3.52) into equations (4.3.49) and (4.3.50) we
obtain

g l(1—-,\)

®
Cin 21 P (.I“,—Tl)(s)'*‘ngl[olnLlln('s,t)'*'C2nL12n(5;t)]=gl(3) )
ls| < 1; (4.3.56)
2
2 yes (a2}

m
7Py (—”’_T"’ (s) n§1[01nL21n(8,t)+Canzzn(S,t)]=—92(3)',

|s| < 1; (4.3.57)
where

Liun(s) = [ iMkm(s,t)Wm(t)Pn(”'“’T'“)(t)dt, km=1,2; n=1,2,3...

(4.3.58)
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Multiplying equations (4.3.56) and (4.3.57) by W{l(s)Pg—al’_Tl)(s) and
W;l(s)Pg—”’—”)(s) respectively, integrating from -1 to 1 , and using the
orthogonality relations (4.3.54) we obtain the following algebraic equations for

the determination of Cigy

12 (—r1— ,
M"')—Cl(.]q) 0 7171) + E(Lllnjcln + L12nJC2n) a (4.3.59)
(1) (-ro-7a) 2 * *

57— Caivp b _n§1(L2ijm + LaonjCom)=0y , (4.3.60)

where

* 1 — L —
Lkmnj = _f_lLkmn(s) W]-(-I(S)Pg 7o Tk)(s) ds ’
=t -1 ) 0k —Tk) —19 4
gk; —f_lgk(s)Wk (s)P) (s)ds, k,m=1,2; n,7=1,2,3,... (4.3.61)

After solving linear equations (4.3.59) and (4.3.60) for the unknowns Cin
, k=12 , n,=1,2,3...N; we can calculate the stress intensity factors for the

crack. The stress intensity factors K; and K, may be calculated as follows:

D) _yktL i

12(nK1+(1) 221mK2
=lim (z—a)ak(z+a)7k[}%0yy1(m 0“)+(—1)k+1 r@—joxyl £,0%)]. (4.3.62)
-at

By making the substitution s=z/a , writing Oyy((7,0*) and Oxyy(2,0*) in terms

of §; and ¢,, and using the equations (4.3.52)and (4.3.53) we obtain
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oD _\k+1 V1
12‘”K1+(1) Z21mK2

=lim (s—l)—o'k(s+1)—71‘—(—2—_,1mk+1 f

1

s=1+ -1 "
[10]

=) 5 CuP{e™), (4.3.63)

where we have used the fact that Gy (s), the principal part of
Wi(5)P{70 k) (s), is bounded.

4.4. Other cases

In section 4.3, we have considered the crack problem when the two boundaries
of the layers y = —h; and y = hy are stress—free. We will study below some

other possible boundary conditions.
441 One face fixed and the other stress—free.

In this case, we are assuming that the boundary conditions (4.3.6) in section

4.3 are replaced by
Cuy(z-h) =0, vy(z—hy) =0, (4.4.1)

while other conditions are kept the same. Hence the equations (4.3.11) and

(4.3.12) should be replaced by

B,Eh _8,6h 8,6h,

h
Aze—ﬁzﬁ 1+Bz€ 1+Cz€ 1+D26 =0, (4.4.2)
h h —6,th §.€h
x‘12t126_62g 1—Bga2e62£ 1+Cz728 2E 1—D2726 28' 1 = 0. (4.4.3)
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Solving equations (4.3.9), (4.3.10), (4.4.2) and (4.43) we get the same
~expressions (4.3.13) for Ci and D; (i=1,2) with following different values for
the coefficients i (5,k=1,2)

hi=—{a1d+e1dy)/(201d)) ,  lp=—(a1dr—e1d1)/(21dy) ,

b=~(12+02)/(272) ,  bo=—(717-22)/(272) . (4.4.4)

Hence the solution for this case is given by the results of section 4.3 when [

(4,k=1,2) in equations (4.3.15) are replaced by their values in equations (4.4.4).

4.4.2 Both faces fixed

In this case, we are assuming that the boundary conditions (4.3.6) and (4.3.5)
in section 4.3 are replaced respectively by conditions (4.4.1) and the following

two conditions
w(zhe) =0 ,  wzhy) =0, (4.4.5)

while other conditions are kept the same. So besides the replacement of
equations (4.3.11) and (4.3.12) by equations (4.4.2) and (4.4.3), we should
replace equations (4.3.9) and (4.3.10) by the following two equations

h h 8.th —5,€h

AP P2 g Py g ey p T g , (4.4.6)
h h §.th —bH,Eh

1‘11(118‘31E 2—31016—315' 2+C171€ 1& 2—D171 IE 2 = 0. (4.4.7)

Solving equations (4.4.2), (4.4.3), (4.4.6) and (4.4.7) we find that Cj and D;

(#=1,2) are given by equations (4.3.13) as before but with the following values
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for the coefficients fi (45,k=1,2) :

h=~(1rta))/(27) ,  lhe=—(1re1)/(271) ,
bi=—{(12+0a2)/(2712) , la=—12-02)/(272) . (4.4.8)

Again the solution for this case is given by the results of section 4.3 when lix
(7,k=1,2,) in equations (4.3.15) are replaced by their values in equations
(4.4.8).

443 One face rigidly restrained and the other fixed

In this case, we are assuming that the boundary conditions (4.3.5) and (4.3.6)

of section 4.3 are replaced by the following boundary conditions

’U1($,h2) =0 ' 0'xy1($,h2) =0 3 (4.4.9)
Ug(z,—hl) =90, ’02(27,—h1) =0, (4.4.10)

while other conditions are kept the same. So the equations (4.3.9) , (4.3.11)
and (4.3.12) in section 4.3 will be replaced by (4.4.7), (4.4.2) and (4.4.3).
Solving equations (4.3.7), (4.3.8), (4.4.7), (4.3.10), (4.4.2) and (4.4.3) we can
express By, Dy, Az, By, Cp and D, in terms of A; and C) by

BI=A1€261€h2 ’ D1=C1€251Eh2 ’

( -[32+62) ¢h (Bytdy) ghy

Lt lhaBae ,

(B,-5,) €h '
Lyl Bye "2 2 § L

Cz=121A28

- §,) £h
D2=122A2€ (62+ 2)&
Ao=l31A1+132C1 ,  Bo=l 1A+ ” (4.4.11)

where ly; and Iy are given by (4.4.4) but i (7=3,4; k=1,2.) are given by
(4.3.15) while the expression for ajx and b (5k=1,2) are given by the
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following:
ay=ag(lee 1) a=bi(l+e M) |
021=02+_bzlz1€( B2 &y y  G2=agt 521226(62+82) by ;
b11=e1(1—ezﬁ1€h2) , b12=d1(1—€281€h2) )
byrmeatdolpye P20 pro o dolype 02PN (4.4.12)

Consequently the expression for 7k (j,k=1,2) for this case are given by
711=al"'013261€h2—02131+02l41"72151+72l61 ;
712=71—716261€h2—02132+02142—72152+72l62 )

T21=1+ 626 1§h2—la ~=larlsi-ls1
s s TN S (4.4.13)
where fy (/=5,6; k=1,2) are the same as given in (4.3.28) .The solution for

this case is given by the results of section 4.3 after we have made above

raplacements.

444 One face rigidly restrained and fhe other stress—free

In this case, the boundary conditions (4.3.5) are replaced by (4.4.9) and all
the other boundary conditions remain the same as in section 4.3. So in
equations (4.3.7) to (4.3.12) we only have to replace equation (4.3.9) by
(4.4.7). Now we find that for this case i (/=2,3,4; k=1,2) are all given by
(4.3.15) and @i, bjx (j,k=1,2) are given by (4.4.12) and the solution for this
case is given by the results of section 4.3 after we have made above

modifications.
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44.5 Both faces rigidly restrained

In this case, we are assuming that the boundary conditions (4.3.5) and (4.3.6)

are respectively replaced by conditions (4.4.9) and
V(2,=h1)=0 ,  0yyo(z—h1)=0 , (4.4.14)

while all other conditions remain the same as in section 4.3. The equations
(4.3.9) and (4.3.11) will be replaced by equations (4.4.7) and (4.4.3) while all
other equations remain the same. Solving equations (4.3.7), (4.3.8), (4.4.8),
(4.3.10), (4.4.3) and (4.3.12) we find that

6.Eh
Bl=Ale2BI€h2 , D1=C162 1& 9 :
- h -28,¢h
Bz=A2€ 262& 1 y D2=C2€ 2 2& 1 y
As=l31A1+132C Co=ls1A1+142C (4.4.15)

where i (/=3,4; k=1,2.) are given by (4.3.15) but the expression for ejx and
bjx (j,k=1,2) are given by the following

a11=&1(1+8261gh2) , a12=b1(1+6281€'h2) )
021=(12(1+6_262€h1) , 022=b2(1+€-282€h1) ,
bu=e(l—em %) | bp=di(l-e 12)
b21=eg(1—e-m2€h1) , b22=d2(1—e-282€h

. (4.4.16)
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Consequently for this case 7% (5,k=1,2) are given by

h - h -26,£h
711=01(1—€2BI€ 2)—(12131(1-—8 262& 1)—72[41(1—6 2 2&' !

) 5
1))

2 £h -28,£h -28,¢h
T=ri(lme’ 1 D) aglyp(1e 2 ) glgp(lme 2

-28,€h,

28.Eh -9B.¢th
721=1+€ Pt 2I3(1+e Pt D-lyy(1+e )

§.£h -28,¢h -28,.¢h ’
a=lde L y(1e 2 gy(1e 2Py (4.4.17)

Then the solution for this case is given by the results of section 4.3.

4.5. Numerical results and discussion

To evaluate the stress intensity factors, we truncate the infinite system of
simultaneous algebraic equations (4.3.59) and (4.3.60) at n = 10 and the
Crout’s factorisation method is wused to solve these equations. And the
Gaussiah quadrature formula is used to perform the numerical integrations
involved in the solution. The relative error is controlled wunder 0.01.
Numerical results for the stress intensity factors K; and K, are obtained for
the case when the crack is subjected to a constant pressure py(z) = po and

po(z) = 0, the thickness of the layers is the same (i.e, by = hy = h) and the

surfaces y = —h and y = h are stress—free. For the two orthotropic elastic
materials considered here , the elastic moduli are the following:
(10Y'dynes/cm?)[5]

C11 C12 Ca2 Cs6
Beechwood 0.170 0.150 1.580 0.103 (layer 1)

e—Uranium 21.47 4.05  19.86 7.43 (layer 2 )
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Numerical values of the stress intensity factors have been calculated for
following four particular cases:
Case 1. Let the length of the crack a = 1.0 and let hy/a = hyfa = h/a =
0.2(0\.2)1.0,2.0(2.0)10.0; the numerical values of the stress inteﬁsity factor K
against h/a are displayed in Fig.4.5.1 and Fig.4.5.2, and the numerical values
of the stress intensity factor K, against h/a are displayed in Fig.4.5.3 and
Fig.4.5.4.

Case 2. Let Ay = hy + o , and the length of the crack ¢ = 1.0(1.0)10.0 ; the
numerical values of the stress intensity factor K; against @ are displayed in
Fig.4.5.5, and the numerical values of the stress intensity factor K, against a

are displayed in Fig.4.5.6.

Case 3. Let hi=he=20.0 and the length of the crack o« = 1.0(1.0)10.0 ; the
numerical values of the stress intensity factor Kj against & are displayed in
- Fig.4.5.7, and the numerical valued of the stress intensity factor K, against a

are displayed in Fig.4.5.8.

Case 4. Let hy=hy=10.0 and the length of the crack ¢ = 1.0(1.0)10.0 ; the
numerical values of the stress intensity factor K; against e are displayed in
Fig.4.5.9, and the numerical values of stress intensity factor K, against a are

displayed in Fig.4.5.10.
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Fig.4.5.1
Numerical values of the stress intensity factor K; against
hfa (0.2 to 1.0) for a fixed crack length a and equal
layer thickness (hi=h,=h).
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Fig.4.5.2
Numerical values of the stress intensity factor K; against
h/a (1.0 to 10.0) for a fixed crack length o and equal
layer thickness (hi=hs=h).
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Rkla
Fig.4.5.3
Numerical values of the stress intensity factor K against
hla (0.2 to 1.0) for a fixed crack length ¢ and equal
layer thickness (hy=ho=h).
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Figds4

Numerical values of the stress intensity factor K, against
h/a (1.0 to 10.0) for a fixed crack length @ and equal

layer thickness (hj=hs=h).
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Fig.4.5.5

Numerical values of the stress intensity factor K; against
the crack length a (1.0 to 10.0) for the layer thickness
h1=h2 -+ .
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Fig.4.5.6

Numerical values of the stress intensity factor K, against
the crack length a (1.0 to 10.0) for the layer thickness
h1=h2 -1 w.
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Fig.4.5.7
Numerical values of the stress intensity factor K, against
the crack length @ (1.0 to 10.0) for the layer thickness

h1=h2=20.
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Fig.4.5.8
Numerical values of the stress intensity factor K, against
the crack length a (1.0 to 10.0) for the layer thickness

hi=ho=20.
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Fig.4.5.9

Numerical values of the stress intensity factor K against
_the crack length a (1.0 to 10.0) for the layer thickness
h=h=10.
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Fig.4.5.10

Numerical values of the stress intensity factor K, against
the crack length a (1.0 to 10.0) for the layer thickness
hi=hy=10.
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We make the following observations from the graphs : when the length
of the crack o is fixed at ¢ = 1.0 , the stress intensity factor K, increases
and K; decreases as the thickness of the layers increases from 0.2 to 1.0
while the stress intensity factor K, decreases and K; increases as the thickness
of the layers increases from 1.0 to 10.0 ; and if the thickness of the layers is
fixed (at 10.0, 20.0 or - w) the stress intensity factor K; decreases and K,

increases as the length of the crack increases.



CHAPTER 5

PENNY-SHAPED INTERFACE CRACK
BETWEEN TWO DISSIMILAR TRANSVERSELY
ISOTROPIC LAYERS

5.1 Introduction

The study of internal penny-shaped cracks is of practical importance in stress
analysis, since it represents an idealization of the shape of internal flaws that
are inherent in many engineering materials. The formulation of this class of .
boundary value problems can be expressed most conveniently in terms of the
cylindrical polar coordinates (v, 4, 2z). A crack lying in the rf-plane and
occupying the region

r<e, z = 0
is called a penny-shaped crack. _

In 1946 Sack [71] considered a penny-shaped crack in a three dimensional
elastic space, he treated it as a limiting case of an ellipsoidal crack. It was
Sneddon [72] who successfully introduced the application of Hankel transforms
to solve a penny-shaped crack problem for an elastic solid when the surface of
crack was under constant pressure. Green [73] solved the same problem by
potential function methods. Collins [74] considered the case in which the
surface of the crack was subjected to a variable pressure. Using Hankel
transforms Muki [75] solved the problem of a penny-shaped crack under shear,

and Sneddon [43] solved the problem of penny-shaped crack under torsion.
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Some researchers have considered the dynamical problems concerning
penny—shaped cracks. Craggs [76] and Atkinson [77] considered the expanding
penny-shaped crack problem; the response of a penny-shaped crack to a
loading in the form of a plane harmonic dilatational wave propagating along
the axis of the crack was discussed by Mal [78]; the response to an incident
plane harmonic shear wave polarized in a plane normal to the plane of the
crack and propagating along the axis of the crack was considered by Mal [79].

Olesiak and Sneddon [80] discussed the distribution of thermal stresses in
the vicinity of a penny-shaped crack by assuming that the thermal conditions
on the upper surface of the crack were identical with those on the lower
surface of the crack.

The distribution of stress in the vicinity of a penny-shaped crack in an
elastic plate of finite thickness but infinite radius was discussed by Lowengrub
[81], where the crack was taken to lie in the central plane of the plate with
its surfaces parallel to those of the plate. Later Sneddon and Tait [82] and
Sneddon and Welch [83] investigated the distribution of stress in a long
circular cylinder 0 { 7€ ¢, — w < z < o , containing a penny-shaped crack
lying in the plane z = 0 and the cylinder being under tension.

Many engineering structures are made by bonding together two or more
materials with different elastic properties. The dissimilar material system is
required to act as a single unit such that the loads are transmitted from one
material to the next through the interfaces. The interface in bonded dissimilar
materials often contains some flaws, such' as cracks or hard inclusions, that
may be induced during the process of joining the materials. These flaws,
generally, form the nucleus of fracture initiation and propagation in the
medium. The presence of flaws or cracks at the interface could cause high

elevation of local stresses and lead to failure if the crack reaches a critical
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size.

Mossakovkii and Rybka [84] introduced a way of formulating the axially
symmetric penny-shaped crack problem, when the crack is located at the
interface of two dissimilar isotropic materials. Willis [85] considered the
problem of obtaining the stress intensity factor for a penny-shaped crack
between two dissimilar materials. Erdogan [86] solved the interface
penny—shaped crack problem by reducing it to a singular integral equation.
Erdogan and Arin [87] considered a penny—shaped crack between an elastic
layer and a half-space.

Elliott [88, 89] considered a penny-shaped crack in a transversely
isotropic elastic solid. Kassir and Sih [90] investigated an elliptical crack
problem in a transversely isotropic elastic solid, and Parhi and Atsumi [91]
discussed the distribution of stress in a transversely isotropic elastic cylinder
containing a penny-shaped crack. Recently, Saxena and Dhaliwal [92]
considered a penny-shaped crack problem at the interface of two transversely
isotropic half-spaces.

In this chapter we consider the penny-shaped interface crack between two
dissimilar transversely isotropic elastic layers. By means of Hankel transforms
and Fourier transforms the problem is reduced to the solution of a system of
singular integral equations. These equations are further reduced to a system of
simultaneous algebraic equations by using Jacobi polynomials approximation.
Numerical methods are employed to determine the stress intensity factors,

which have been displayed graphically.
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5.2. Basic equations and their solution

As discussed in chapter "1, under the assumptions of axially-symmetric
deformations in cylindrical polar coordinates (r,6,z), when the z-axis is the axis
of anisotropy of transversely isotropic medium, the displacement components

are defined by

w= u(nz) |, u,= u,(nz) , u= 0, (5.2.1)
along the r~, %, and #- directions respectively. The stress—displacement

relations are given by

O = 011-3-% +C12---k +cy4 g}u& ,

0z
Tge=C1o ‘a“ tey o r TC13 75 o

0w | U 0ug
0= C3 [ + 7 1 + €3 75

Orz= Cqq | %%‘ + %%—] : (5.2.2)

where ¢y;'s are the elastic moduli of the transversely isotropic medium. In the

absence of body forces, the equations of equilibrium may be written as follows

52
Cu[ 5 + g;"ﬁ 1:5] + 044'3;? + (e + 044)3—5; 0, (52.3a)
ik 19 a? a0
‘744[7% + = ;9';.% ]+033'5'g? + (013'*‘044)3;['5,-h + _7‘11,_,:] = 0. (5.2.3b)
Multiplying equations (5.2.3a) and (5.2.3b) by rJi(ér) and rJo(ér)
respectively, then integrating with respect to ~ from 0 - o , we get the

following equations
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~ 32 ~ . a o~

2
—€4482 Uy +cas’§72 iz + (013"‘044)5'35 i = 0, (5.2.4)

where %, and %, are the Hankel transforms of u; and u, of order 1 and 0
respectively.

Let ¢;;’s be the elastic moduli for the transversely isotropic medium in
the region R, (k=1,2) where Ry is 0 < z < hy and Ry is —hy < 2z < 0. Solving

~

equations (5.2.4) for % and %, then taking the inverse Hankel transforms we
obtain the following solution :

~8;
ul‘_](r)z) %[6 {AJ +BJ _ﬁ +Q]ejg +D.]e J& }) f" T] )

-1 Lit? B¢z 5:€z 8.8z
uzj(r,z)=é%[§ {Ajaje 37 —Bjaje I +C'J7JeJ —DJ'yJe J }g.»r], (5.2.5)
where u; and u,;; denote the displacements for the region R; (7=1,2),

caaj By —c1yj 5 caaj 8 — c11j 6f
Q. = . =
] C13j + C44j ’ 7; C13j T+ C44j ’

(8:,6,) = { N % | 13 - 4-cuyjecasiecly } L
Yl — ’

2: ¢33 * C44j
M= Cuij*Casj — 2+ Cuzj Cagj — cf3j , =12 . (5.2.6)
and A;, Bj, C; and D; (j = 1,2) are unknown functions of ¢ to be determined

by the boundary and continuity conditions.

Substituting from equation (5.2.5) into (5.2.2), we have

= Hl{(ew; + csj o5 B)(4; ej + Bj e _ﬂﬁ)

+(013J+7.1510331)(013" “+ DJ )}; -1, (5.2.7a)
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B: _B:¢
0 = Casi A{(B; — )45 €3 =By € )
5. 8.
+ (8 1)(Cre Dy} s g el (5.2.7b)

where 0355 and orz; denote stresses for the region R; (7=1,2).

5.3. Statment of the problem and boundary conditions

We assume that two dissimilar transversely isotropic elastic layers, which
occupy the regions R, (0 < z < hy) and Ry (—hy < z < 0) respectively, are
perfectly bonded except that there is a crack in the region 0 < r < @, 2=0. In
the first case we also assume that the surfaces z = —-hl and z = hy are
stress—free.(see Fig.5.3.1) It is assumed that the surfaces of crack are subjected
to prescribed normal and shear stresses pi(r) and po(r) respectively. Hence the
problem of determining the stress and displacément field is subjected to the

following boundary and continuity conditions:

0uj(1:0)=pA(7), 0,5(r0)=pa(r), F=1,2 0<r<a (531)
U (1,01)=2,(1,07), u,(r,0%)=1,,(,07), T a, (5.3.2)
0aal(101)=055(1,07);  015y(10%)=0,5(r,07), r2 e, (5.3.3)
0,,1(The) = 0, 0.,4(h2) = 0, r>0, (5.3.4)
0 o(rih) =0, Opgo(T—P1) = 0, r> 0. (5.3.5)

With the help of conditions (5.3.1), the conditions (5.3.3) may be replaced by

the following:

o'zzi(r’0+)=a'zzz(rao_)’ arzl(r7o+)=0rzz(r’0-)’ TZ 0. (5'3°6)
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2
y |
Z=hz
Z=
-a i a
Z=—h1
Fig.5.3.1

Penny-shaped interface crack between two dissimilar

transversely isotropic layers.
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5.4. Analysis

If we denote

6 = cuj + o B caj , b = cagj (B — 0g)

di = ez + &5 75 o3, € = caqj (§ - 7)), J=12; (5.4.1)
then applying conditions (5.3.6), the equations (5.2.7) give

0,1(A1‘+ Bl) + dl(C’l + D1) = ag(Az + Bg) -+ dg(Cg + Dz) , (5.4.2&)
bl(Al - B1) + 61(01 - .Dl) = bz(Az - Bz) + 62(02 - Dg) ; (5.4.2b)

and the conditions (5.3.4) and (5.3.5) yield

h h
alAleﬂle‘ 2 4 a.lBle_‘3 18y + d;Cie 018y + diDie SOty 0, (5.4.3a)
' h
bid 12 — 0B P2 4 o0’ — D ™2 2 g (5.4.3b)

h .
a Age_ﬁzg 4 angeBﬁ 1+ dyCoe 2 g 2Dae P g , (5.4.3¢)
—5,€h §,.th )
bzAze_ﬁzﬁhl - szzeﬁzghl + 62026 2€ 1 62D28 2& ! = 0. (5.4.3d)

Solving the equations (5.4.2) and (5.4.3) we obtain

C = _luAle(ﬂl' ﬁl)ﬁhz _ ll2Ble'(ﬁ1+ 51) g€h, ,
Dy = -l12A1e * 0P8Ry _ i 16(- Prr 008y ,
Cy = —1214428(- Byt O 8Ry _ 12232€(B2+ %2 &y )
D, = —lzzAze-(Bf S8y _ 121328(62- % & ’

Ay = Iy Ay + li2 By , By = ly A1 + U2 By, - (5.4.4)
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where

Ly = [a1er{(-1)01d1)/(2d1er), by = [azea~(~1)Ibady]/(2d2€2); 7=1,2 .
Isg = (aubar-aagby)/A , o = (asbar-anbp)/A ,

lag = (azbir-anba)/A ,  la = (a21biz-agebar)/A

(B~ 8, €h, Py By ehy

ey = ag — dilyse ~ dily

-(By+ 8, €hy

?

(- 61+ 81) &h2

a2 = a1 — dilyze — dilye )

(- By* 82)&h1 e-(62+ 52)§h1
2

a1 = @y — dalyre — doly

?

(By+ 8y Ehy

(8,- 8,) Eh
a2 = ay — dalyze — dolyie 2 T TY
(B~ 8)¢h (B,+ 8§,)¢h
by = b —edyge 1 VT 4 eglpe PV
-(By+ 8)€h (- B+ 8)¢&h,

2 + ellye ,

(- B+ 8€hy

bia = — b1 — eqlpre

-(B,+ §,)¢th
ealpge 2 2L

6(62-'82)Eh1

bat = by — ealie

(By* 8,) €h

bog = — by — ealpze L+ enlyy

A = ay bag — agz by . (5.4.5)

The conditions (5.3.1) and (5.3.2) lead to the following integral equations:
(@14 + a1By + diCy + diDy) ; € - 1] = py(7); r<a (54.6)
H(b1A1 - By + eCy — eDy) ; € = 1] = po7); r < a (5.4.7)
¢ (A+Br+Ci+Di-Ay-By—Cyr-Da) ; £ - 1] =0 ; r > a, (5.4.8)
H#[¢ (2141 — aBy + 71101 — 11Dy

—a3As + a3B; — 72C2 + 72D2) ; f - 7'] = 0 ; r > a. (5.4.9)
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If we introduce two new unknown functions ¢,(¢ ) and ¢5(¢) by the relations

A+ Bi+ Ci+ Dy — Ay — By — Co — Do = §((¢) ,
2141-0;B1+71Cr—-71D1—a242+22B3~72Ca+12D9=¢2(¢) , (5.4.10)

then the equations (5.4.6) to (5.4.9) may be rewritten in the form

(A1 1+ A2 42) 5 €0 1 = pr) r<a, (5411)
H(A21 $1 + A2z ¢2) 5 £~ 1] = por) r<a, (5.4.12)
e 4(€) ;€2 =0 , r>a, (5413)
¢ §a(8) s E-Tl =0, r>a, (5.4.14)

where' Ajx are functions of ¢ and they are given by
* *
M = (eny — epn)/A , A = (a2121 — anya2)/A
* _ *
Aot = (buyee — ba2y)/A , Aaz = (bi2121 = buv2e)/A
%

A = Yi2 721 — 711 722 - (5.4.15)

and 7;jx’s are defined as follows

711—01—711116 "0 )gh2+ tl2e Brr op €h2—02131+02141—72151+’72161,
712=—01—711126‘(61+ ° E'hz-*-'hlue(_ P 8¢ &h2—02132+azl42—72152 + 72062,
721—1—1116 g 12€ Brr B9 Lyl ety ;

722=1~l12€-(ﬁ1+ ° ﬁhz—lue(- Ot & gh"’--la2—142-152—162 )

lsi=—lz1131€ Pt 088 laalsy (0" & E'hI. )

152=—1211326(- P! 82)&h1—122142(ﬁz+ %20y ,

lor=—lyala e “(By* 8,50 Eh, il (By- 8 Ehy ,

log=—tpalsge °2" P Py, P P8 (5.4.16)
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It can be seen that as { -+ w , Ajx tends to constant, say Ajk(w),and

Mi(8) = Mi(o) = 0 (¢ PO

To solve the integral equations (5.4.11) to (5.4.14), let us recall the

2. (5.4.17)

following results [45]

ArIB{F(€) 5 1} 5 o] = FF() 5 4], (5.4.18)
Ao Der FA{ETF(E) 5 1} 5 o] = FAFE) 5 o], (5.4.19)
AA{FE) 5 1} 5 9] =y HFLFE) ; 0] - FIAE) 5 of},  (5.4.20)
AAD B{ETF(E) 5 1} 4] = -y TIFRE ;Y (5.4.21)

where D; denotes d/dr and .6y, .6, are Abel’s operators ; Fs and F. are

Fourier’s operators defined by

1
AR ; y ] = (2/n} oy—ym—;— Hr)dr ,

. _ }ro 1
AR 5y ] = Q) [P Fr
FIRr) 5 y 1 = @/a)} [OR(1) sin(ry ) dr ,
FIFD) 5 y ] = @/} SR(r) cos(ry ) dr . (5.4.22)

‘Applying the operators J6r , g 1 , S3Dr and 2D to the equations
(5.4.11), (5.4.12), (5.4.13) and (5.4.14) respectively, we obtain

Fl(Au b1+ A2 da) 5 9] =Fuly) , 0<y < (5423)
Fel(Aar 61 + A2z 82) 5 v ] = fay) 0<y ¢ a (5424)
CF4(l) syl=0, y >a ; (5425)

Flp(€) ;9]1=0 , ' y >a ; (54.26)
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where
f(y)=Arpr) 5 9] , fly)=9y Alplr); 9]+ ¢,
c = 30[(A21 ¢1 + Ao ¢2) ; 0] . (5.4.27)

By taking y=az, equations (5.4.23) to ( 5.4.26) can be written in the following

form
»55[(X11 $1 2 82) ;2] = Fulz) 0<z<1, (54.28)
Fd(Ra1 §1 + A2z §2) ; 2] =f o), 0<z<1, (5.4.29)
Fe[fr; 2] =0, g > 1, (5.4.30)
Fop2;2]=0 , z > 1, (5.4.31)
where
Ix(©=hl¢/a) . #i(8)=4i(¢/a) ,
fi(@)=afi(az) ,  jk=12. (5.4.32)
If we introduce two new unknown functions #;(f) and () such that
Fbi(a) ; 4 = { Zj(t)’ o< z : i (5.4.33)
Slpda) i 4 = | :T(t)’ b e z : 1 (5.4.34)

the equations (5.4.30) and (5.4.31) are identically satisfied. Let ¢e(¢) and #o(%)
be the even extension of ¢;(f) and odd extension of #(f) on (-1 , 1)

respectively, then as we did in section 4.3, -we have

T = - [ Sl g (5.4.35)

Flp) s 4 = < [ Yolt) 1, (5.4.36)
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Now if we denote Fy(z) the odd extension of fiy(z) and Fy(z) the even
extension of f 5(z) on (-1, 1), the equations (5.4.28) and (5.4.29) become

Aa(o)to(s) - 2l 8l gy o g yi(a g

+ [ H(OKa(zddt = F(s) , o] <1, (5487

Nai(o)ie(s) + 222l I gy g Rty
+f igbo(t)ng(z,t)dt = Fyfa) , Iz <1, (5.4.38)

where the kernels Kjx are given by

Ku(ot) = —["Wu(6) = du(e)eos(Et)sin(éz) de
Kls) = [ [hule) - duwlein(et)sin(éa) & ,
Kai(st) = [ "0a(¢) - hai(o)sin(¢fcos(ta) d¢
Kaa(st) = [ "Waa(6) = dan(w)]cos(¢t)cos(éa) de . (5.4.30)

Equations (5.4.37) and (5.4.38) may be rewritten as follows:
A(l(z)+1 f i(-ldt+ f ¢ My(z,8) di+ f GO Mu(zt)di=gi(x),  (5.4.40)
Moz} — 1 f Qﬁlm f ¢ () May(z, 1) di+ f Co(t) Mooz, D) di=go(x),  (5.4.41)

where
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Ay = Aaf{w)/Aaa(w) , Ao = Apa(w)/An(w) , A = VA X2,

¢(2)=y Tibe(z) + i v Aabo(3) , (o()=y Aive(2) = & ¥ Tapo(2) ,
9i(z) = Xz Fy(z)[d22(w) + & X1 Fy(2)/A1s(w) ,
92(z) = v X2 Fo(z)[Aas(w) — i /X1 Fy(2)/d1s(w) ,

1
Mi(zt) = {mg%—g Kiy(z,t) + E@%’ﬂ Ky(=t)
+ (K11!1$mzt! _ Kz;!;ﬂm!t!)} ,
M12($,t) = a5 {}Tﬁ%—/‘; Klz(x,t) + m%—/\—l Kzl(z,t)

+q (K11(z t) + Kzz(fv,t))} ,

A11(m) Ago(w)

Myy(z,t) = 5 {Xﬁ_/\; Kiy(z,t) + .)-2—2-6%—)-1 Ky(z,t)

_i(K11$t+ 222275)}

11 22(
1
Ma(z,t) = 5 {m@%—g Kp(zt) + 156’_3771 Ka((z,0)
Kiy(z,1) K22($ ) }
+ i (Kplad) _ Kulod) (5.4.42)

The analytic solution of equations (5.4.40) and (5.4.41) has been

extensively studied (see, for exemple, [67] and [68]) by using regularization

method, which, in this case, however becomes cumbersome. Here we try to use

an approximation method described by Erdogan [69] to find the stress intensity

factors.

Since the kernels Mjx’s are bounded, aside from a multiplication constant,

the singular behavior of the functions (; (j=1,2) at the points z = = 1 is
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determined by the dominant part of the singular integral equations. The
equations (5.4.40) and (5.4.41) will be solved under the assumption that (;
(j=1,2) satisfy a Holder condition on every closed part of the interval (-1 , 1)

not containing the ends.

The solution of the equations (5.4.40) and (5.4.41) may be assumed in
the form of Jacobi polynomials Pn(”k’Tk)(z) [69] by

m
(= 3 O Wi(2) Pl 70T (g) | (5.4.43)
where
Wk(z)=(1_z)6k(1 + z)"k 3 a'k=i(l]k Tk=—'iwk ,
1 1 A :
U= (_l)kﬂw ) v = o ln[ i _-*_-_ 1 ] ’ k=1, 2; (5444)

and Cxn are unknown coefficents.

Substituting from equation (5.4.43) into «'equations (5.4.40) and (5.4.41)

we obtain

® RV ®
pX Cln'(l—;*—)—Pn(_im’ Tl)(z)_'_f 1[ g(C’mMu(z,t) Wl(t)Pn(al’Tl)(t)
n=1 ? -I'n=1
+ ConMia(2,8) Wa( ) Pl T2 ()] dt = g4(2), lo] <1, (5.445)
o any o o
3 O3 P (02772 (g) — [ 3 (CnMus(a,t) Wi(1) P77 1)
n=1{ -i'n=1
+ConMaa(a) W) P\T2T()dt = — go(z), 2| < 1, (5.4.46)
where we have used the following result by Karpenko [70]:
) PR S 1 (e PR

- (1} p, (T (g o] < 1. (5.447)
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Multiplying equations (5.4.45) and (5.4.46) by W;l(z)Pg_al’_Tl)(z) and
Wg‘(x)PJ(_”’_Tz)(z) respectively, and using the orthogonality relations of Jacobi
polynomials
0 nt m,

0&”’7) n=m,

f iW(t)Pn(”’T)(t) PO (1) gt = {

or) _ 27t ppi et T (mtr+1)
07 =
m! (2m+o+7+1)T(m+ o +7+1)

(5.4.48)

we get the following infinite system of simultaneous algebraic equations for the

determination of Cig.

. — @ * *
-—(1—)2)%01;“ 0m( 71, TI) + g(Lllnm Cm + L12nm Czn)=G1m ’ (5.4.49)

n=1

g — o % *
"(1—A2)*C2m 0111( 4t Tl) - ngl(L‘nnm Cln + L22nm CZn)=G2m ’ (5-4-50)
where

Lignn = [ Tagnl@) W(2) P70 (0) do
Iin = [ M@ WP\ 2)(2) dz
Gin = [ 0P () o,

ki=1,2; n,m = 1,2,34,...... | (5.4.51)

After we find the coefficients Cyn by solving the system of linear
algebraic equations (5.4.49) and (5.4.50), by taking n, m =1, 2,.....N; we can
determine the stress intensity factors. To do so, we make use of the following

integrals [44]:



puy
(6g7'8) < Co =kt OYIEyTIY
soAI8 (gg'y'g) uworjenba Swisn £q yomgm
(8579 2 < ‘P (39)s09(3e)r f ol S (x ey o=
{ls ¢+ OV, 3esYs + =

EROT e o
b ¢ ()l (=l ¢ (FPd(apine
OARY OM DU ,Tef ¢ ,Del USYM DUE T<5  D<. USYA JEU} OS * D/u=f 10T
(18%) <4 t (3)p((a)eelae +it (3)B((@)r—(3)ee i +
bt (3)9((a)eyliae +1t GI((ENer=(3)r) g =
a3t GIA()Er + (RB()eY Tap =(0%)™0
(0578) @ < W I me +Hit ()B((@ () +
[t (Fp((@Nrlae +1t (GIH(E=(IOle =
b3t (I + (GIIGIY Jup=( 040

: SMOT[O]

Se % pue '§ Jo SWIIO} Ul USIMIM O UBD D < L O] () = Z UO SIFSAIIS oY,

(s7°) [t B 1) - BA = 4T = p(34Yr(B3)00, [
(ve7°9) ¢ =) (8= )= 3p(34)0r (83)s09,, [
(e5'7°9) A W) = 3P (3 Pr (a3, f
(ag7e) ) - D = (R (Esys, f

16T
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A a(o)ga(e) ; =21202) Ge) ;5 o
“hualo) L 8to e us) ; ol)

oo/t L0s [wa(atf I(s)sin(te)dg, > 0, (5.460)
which by using equation (5.4.53) gives

H[Aa(w)do(€) 7]

—Auzfo)ig L Oy S pa(8)t/(-t) r> a (5.4.61)
Similarly by means of equations (5.4.52) and (5.4.54) we get

HA2x(w)g2(§) 5 11 =0, r> a, (5.4.62)

HiA21(w)g1(€) ;7]

Aaloloy bl 81 £ /() a, r>a  (5.463)
Now

F[(A11(€)-A1s(w))41(¢) ;5 7]
= Ly2/n)} f () (o)l Ia(st)de i(t)cos(£)dt
= L/} [ i0ds]] Eu(ey-hn(a)lo(st)dt

o(1) , as r - o', (5.4.64)

and when 7 - a', H[(Au(é)-A1(w))di(€);7] has no singularity. Similarly we

have
FA[(A12(£)-A12(@))2(¢) 5 71 = O1) , as 7@t
FHl(A21(§)-A21())$1(¢) 5 71 = O(1) , as v a*;
Hil(A22({)-A2e(w))ga(§) 5 1 = O(1) , as 7o a’. (5.4.65)
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So as r =+ a,

am(r,o*)a%r/z)*m/x12<m>=§_zy{»§;fohs¢z<t)t/(sQ—tﬁ)*dt+0(1), (5.4.66)

R 3 T 2_\}
rezi(1,0%)a2(1/2) m/Azl(m)_Zylrz+3§ fo 1591/ (=822 dt+ O(1). (5.4.67)
But

B L Rt = 0 [ Te-co (-t as

=L %lkél(—l)’““ckn[g;fo’t[i—:’;] Yep gty (s469)
and

B (st ae = 1L e+ Gl () at

13 3 3 o f [ Yrp (T (i) . (5.4.69)

If we define the stress intensity factors Kj and K3 by

ph + (R g, = tim (x/2) VH{(rayt= 0% (r+a)%+wk]
’ﬁ[%%zl(r’o-*-)+(—1)k+1if§;)0rz1(7',0+)] , kB=1,2; (5:4.70)

then using the substitution s=r/a , equations (5.4.66) to (5.4.69) and following
the method of Goldstein and Vainshelbarm [93] by taking

we get

T@—;K + (~)ktl }-@-71( (1)L a00(1- AZ)]*T%——;—P ij_:g:

g ("k”k)a) k=1,2. (5.4.71)
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5.5. Other cases

In the previous two sections we have considered the case when the surfaces
2=-h; and z=h, are stress—free. In this section we will consider other kinds of
boundary conditions at the faces z=— h; and z=h, while the conditions at the

interface z=0 are kept the same.

5.5.1 One face fixed and the other stress—free

In this case, we assume that all the conditions (5.3.1) to (5.3.4) remain the

same and the conditions (5.3.5) are replaced by-
U(r=h1) = 0, u,(r,=h) =0, r>0. (5.5.1)
In this case condition (5.5.1) yield the following algebraic equations

Pt St Sath 6,6h

A ' 4+ By L+ G It Doge =0, (5.5.2)

Pt =0, (5.5.3)

h 5.£h 8,¢h
A2a2e-62& I_Byage 28hy o8hy

L Cyre 2 '-Dayae
which replace the algebraic equations (5.4.3a) and (5.4.3b) respectively.
Comparing the two sets of equations, we find that if we take

a=1, dy=1 , bs=ay, e=72, . (5.5.4)

in the results of section 5.4, we get the solution for this case.
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5.5.2 Both faces fixed

In this case all the conditions (5.3.1) to (5.3.3) remain the same but the
conditions (5.3.4) are replaced by the following:
Uy, (rhe) =0,  wuy(nhy) =0, r>0; (5.5.5)

and (5.3.5) are replaced by (5.5.1).
In this case , equations (5.4.3) will be replaced by equations (5.5.2),
(5.5.3) and the following equations

h h §.¢h —§.&th
A1661€ 2 + B1e—ﬁli 2+ C’le 1& 2+ D26 1& 2 = 0 y (5.5.6)
h h —5.th ~8.¢h
Alaleﬁlg 2—B1a1e_ﬂ‘£' 24+ Ciy1e i 2-Di7.e ity 0. (5.5.7)

Comparing the two- sets of equations, we find that if we take
a;=di=1, bi=0;1, € =17, (=1,2) , (5.5.8)

in the results of section 5.4 , we get the solution for this case.

5.5.3 One face rigidly restrained and the other fixed

In this case, we assume that the boundary conditions (5.3.5) are replaced by
(5.5.1) and conditions (5.3.4) are replaced by |

’wu(z,hz) =0 ’ Urzl(z,hz) =0 ’ (5.5.9)

and all the other conditions remain the same.So the equations (5.4.3) should
be replaced by (5.5.7), (5.4.3b), (5.5.2) and (5.5.3). Solving equations (5.4.2),
(6.5.7), (5.4.3b), (5.5.2) and (5.5.3) we can express By, Di, As, Bs, C; and D
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in terms of A; and C; by the following equations :

h 5. €h
Bi=A16261E 2 ’ D1=C162 IE‘ 2 ’

(B,+8,) £h (By+d,) Eh,

1
—lzsze y

(B,5,) th
L}, Bye By8y) € t

Co=—l31Aqe
D2=—122A2e-( [32+62) ¢h

Ag=U31A1+ 1320y,  Bo=lyA+1s2Cy (5.5.10)
where lp; and ly; are given by

bi=(12+02)/272 ,  lLa=(77-022)/272 , (5.5.11)

and fx (/=3,4; k=1,2.) are still given by (5.4.5) while the expression for ajx
and bjx (j,k=1,2) are given by the following:

a11=a1(1+e26‘€‘h2) , a12=d1(1+6281£‘h2) ,

021=d2—dzlz1€( $a%09) 8y ) 022=02+d21228(‘32+82)€h1 )

bu=bi(l—e T 172 | bp=b(1-e 17 |

brr=brealpre’ D2P M pe bt eglyye P2 (5.5.12)

Consequently the expressions for 7k (5,k=1,2) for this case are given by

2B.£th
T=araqe i 2—aylyr+asls—rolsi+72le1
26 £h
T=7r-11€ 1 2—aslyataslia—ralsat7alss
9B.th
721=1+¢ 1S 2 ly=~lar-ls =l

26,€h .
Yoa=1+e€ 8 2—132—142—152—l32 , ’ (5.5.13)

where fx (j=5,6; k=1,2) are the same as given in (5.4.16). The solution for
_ this case is given by the results of section 5.4 after we have made above

raplacements.
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5.5.4 One face rigidly restrained and the other stress—free

In this case, the boundary conditions (5.3.4) are replaced by (5.5.9) and all
the other boundary conditions remain the same as in section 5.4 . So in
equations (5.4.2) and (5.4.3) we only have to replace equation (5.4.3a) by
(5.5.7). Now we find that for this case fi (/=2,3,4; k=1,2) are all given by
(5.4.5), ajx and bjx (j,k=1,2) are given by (5.5.12) and the solution for this
case is given by the results of section 5.4 after we have made above

modifications.

5.5.5 Both faces rigidly restrained

In this case, we are assuming that the boundary conditions (5.3.4) and (5.3.5)

are replaced by conditions (5.5.9) and
Uyo(2~h1)=0 ,  0,4(2~h1)=0 . (5.5.14)

The equations (5.4.3a) and (5.4.3c) will be replaced by equations (5.5.7) and
(5.5.3) while all other equations remain the same. Solving equations (5.4.2),

(5.5.7), (5.4.3b), (5.5.3) and (5.4.3d) we can write

h 5.Eh
Bl=A182B1€ 2 ) D1=Clez 15 )

- h -26,£h
B2=A2€ 2‘32& 1 : D2=Cge 2 2€ 1 ,

As=131A41+132C4 , Co=l41A1+142C , ‘ (5.5.15)
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where fi (7=3,4; k=1,2.) are given by (5.4.5) but the expression for gjx and
bjx (5,#=1,2) should be replaced by the following

a11=a1(1+8261€h2) , 012=d1(1+€251€h2) ;

aa=ay(lre T2 | gpemdo(le 2

bu=by(l-em 2 | bpme(1-e 1)

byi=ba(le T2 | bggmeg(le T2 (5.5.16)

Consequently for this case we should replace 7jx (j,k=1,2) by

-28,h

Tu=ay( 1—6261&2)*(1 2l31( 1-¢ P2 D)~12la1(1-e .
712=71(1—628lghz)—azlsz(l—f?%z&h1)472142(1-6-282Eh1) ,
721=1+e261€h2—131(1+e-zﬁze'hl)—l‘n(1+e-282&hl) ,

=l (e I ) g1 e T2 (5.5.17)

Then the solution for this case is given by the results of section 5.4.

5.6. Numerical results and discussion

To evaluate the stress intensity factors, we truncate the infinite system of
simultaneous algebraic equations (5.4.49) and (5.4.50) at n = 10 and the
Crout’s factorisation method is used to solve these equations. And Gaussian
quadrature formula is used to perform thé numerical integrations involved in
fhe solution. The relative error is controlled under 0.01. Numerical results for
the. stress intensity factors Kj; and K, are obtained for the case when the crack

is subjected to a constant pressure pi(r)=po and py(r)=0, the thickness of the
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layers is kept the same (i.e, hy = hy=h) and the surfaces 2 = -h and 2 = &
are stress—free. For the two transversely isotropic materials considered here ,
the numerical values of the elastic moduli are taken as follows

(10''dynes/cm?)[5] :

C1y C12 C13 C33 C44
Cadmium  11.00 4.04 3.83 469  1.56 (layer 1 )
Beryl 26.94 9.61 6.61 23.63 6.53 (layer 2 )

Numerical values of the stress intensity fact;ors have been calculated for

following three particular cases:

Case 1. The length of crack ¢ = 1.0 and hfa = hfa = hfa =
0.2(0.2),1.0,2.0(2.0)10.0; the numerical values of the stress intensity factor K,
against h/a are displayed in Fig.5.6.1 and Fig.5.6.2, and the numerical values
of the stress intensity factor K, against h/a are displayed in Fig.5.6.3 and
Fig.5.6.4.

Case 2. h; = hy » o , and the length of the crack ¢ = 1.0(1.0)10.0 ;
the numerical values of the stress intensity factor K against o are displayed
in Fig.5.6.5, and the numerical values of the stress intensity factor K, against

¢ are displayed in Fig.5.6.6.

Case 3. h;=hy=20.0 and the length of the crack ¢ = 1.0(1.0)10.0 ; the
numerical values of the stress intensity factor K; against a are displayed in
Fig.5.6.7, and the numerical values of thestress intensity factor K, against a

are displayed in Fig.5.6.8.
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Fig.5.6.1

Numerical values of the stress intensity factor K against
hla (0.2 to 1.0) for a fixed crack length @ and equal

layer thickness (hi=hs=h).
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Fig.5.6.2

Numerical values of the stress intensity factor K; against

hfa (1.0 to 10.0) for a fixed crack length & and equal
layer thickness (hj=hy=h).
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Fig.5.6.3

Numerical values of the stress intensity factor K, against
hfa (0.2 to 1.0) for a fixed crack length e and equal
layer thickness (hy=ho=h).
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Fig.5.6.4
Numerical values of the stress intensity factor K, against
hfa (1.0 to 10.0) for a fixed crack length ¢ and equal
layer thickness (hi=hy=h).
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Fig.5.6.5
Numerical values of the stress intensity factor K against

the crack length o (1.0 to 10.0) for the layer thickmess
h1=h2 -+ .
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Fig.5.6.6
Numerical values of the stress intensity factor K, against

the crack length ¢ (1.0 to 10.0) for the layer thickness
h1=h2 -+ .
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Fig.5.6.7

Numerical values of the stress intensity factor K, against
the crack length a (1.0 to 10.0) for the layer thickness

hi=hy=20.
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3.4
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Fig.5.6.8
Numerical values of the stress intensity factor K, against
the crack length o (1.0 to 10.0) for the layer thickness
hy=ho=20.
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We make the following observations from the graphs : when the length
of the crack ¢ is fixed at a=1.0 , the stress intensity factor K, increases as
the thickness of the layers increases; while the stress intensity factor K
decreases as the thickness of the layers increases from 0.1 to 1.0, but increases
when the thickness of the layers increases from 1.0 to 10.0. If the thickness of
the layers is fixed at 20.0 or - o the stress intensity factors K; and K,

decrease as the length of the crack increases.
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Recommendation for future work

As a continuation of the present work, the following problems may be
considered in the future :

As an extension of the work of chapter 2 one could consider the
Reissner-Sagoci problem of a finite elastic cylinder embedded in an infinite

elastic layer and the whole is perfectly bonded to an elastic half-space.

The problem considered in chapter 3 may be extended to two dissimilar
transversely isotropic layers with a penny-shaped flaw located at the interface,
when a rigid shaft bonded to the elastic layer is rotated through a small

angle.

The problem of chapter 4 may be extended to study the determination of
stress intensity factors at the tips of a column of Griffith cracks, which are
parallel to the z-axis and are equally spaced along the y-axis, located at the

interfaces of the orthotropic multilayer composite materials.

Similarly, a problem related to chapter 5 is a problem of determination
of stress intensity factors at the edges of of a column of penny-shaped cracks,
which are parallel to the xy-plane and ai:e equally spaced along the z-axis,
located at the interfaces of the transversely isotropic multilayer composite

material.
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