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ABSTRACT 

The present thesis deals with some torsion and crack problems in the 

linear theory of elasticity. In chapter 1, we have given a brief summary of 

the linear theory of the elasticity. Chapter 2 deals with three different 

problems of Reissner—Sagoci type for composite cylindrical regions. In chapter 

3, we have discussed a torsion problem of two bonded nonhomogeneous elastic 

layers with a penny—shaped flaw at the interface. In chapter 4, we have 

solved a problem of Griffith crack at the interface of two dissimilar orthotropic 

elastic layers. In chapter 5, we have solved a penny—shaped interface crack 

problem between two dissimilar transversely isotropic layers. . The numerical 

values of the physical quantities have been obtained and displayed graphically. 
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Nomenclature 

cjj the elastic moduli for anisotropic material. 

Lame constants for isotropic elastic material. 

Ui the displacement component along i—direction. 

the stress tensor components. 

eij the strain tensor components. 

bij the Kronecker delta. 

4(x) the Bessel functions of the first kind and of order Y. 

Y,(x) the Bessel functions of the second kind and of order ii. 

I(x) the modified Bessel functions of the first kind and of order ii. 

K(x) the modified Bessel functions of the second kind and of order V. 

YS the Fourier sine transform defined by the equation 

00 
5 [ f(z) ; z = ()+ j' f(z)sin(z)dz 

YC the Fourier cosine transform defined by the equation 

2 00 
[ f(z) ; z = (--) f f(z)cos(z)dz, 

the Hankel transform defined by the equation 

[ f(); r] = f f() J(r)d. 
the Abel transform of the first kind defined by the equation 

1[f(t) ; t = ( f 
A2 the Abel transform of the second kind defined by the equation 

A2[ 1(t) ; t r] = ()+ f f(t)/[t2_r2]+dt. 
11(x) the Heaviside function. 

F(x) the Gamma fuction. 

p(afl)() the Jacobi polynomials. 
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CHAPTER 1 

BASIC EQUATIONS OF MATHEMATICAL 

THEORY OF ELASTICITY 

The mathematical theory of elasticity has a long history. Hooke, Bernoulli, 

Navier, Cauchy and Green made a lot of contributions to the developments of 

the mathematical theory of elasticity. There are many excellent books which 

give introduction to the basic theory of elasticity. Sokolnikoff [1], Green and 

Zerna [2], Love [3] and Fung [3a] are good reference books for isotropic 

elasticity, while Lekhnitskii [4] and Hearman [5] are good reference books for 

anisotropic elasticity. In this chapter we will give an outline of the linear 

theory of elasticity and some basic formulae which are needed later. 

In the study of the distribution of stresses and deformations in an elastic 

body, we regard an elastic body as a solid continuous medium. The 

configuration of a solid body is described by a region of a Euclidean point 

space whose geometrical points are identified with the position of the material 

particles of the body. 

Let a system of coordinates x1, Z2, x3 be chosen so that a point P of an 

elastic body at a certain instant of time has the coordinates x1(i=1,2,3). Under 

some physical actions the configuration of the solid body changes. Suppose at 

a later instant of time the point P moves to P with coordinates y1(i=l,2,3) 

with respect to a new system of coordinates yi, !12, /3. The change of the 

1 
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configuration of the elastic body can be thought of a one—to—one mapping 

between two configurations. The mapping can be written as 

(i=1,2,3); 

with the unique inverse mapping 

Xi= j(yl,y2,y3), (i=1,2,3); 

for every point of the elastic body. The change of configuration is assumed to 

be continuous and smooth. In fact, we are assuming that the functions 1i and 

(i=1,2,3) are twice continuously differentiable. 

1.1 Strain and Stress 

If the distance between particles of a body is changed under an action, the 

body is said to be deformed and otherwise the body is said to be undeformed. 

To study deformation of an elastic body, let us fix a cartesian coordinate 

system O—x1x2x3. Suppose a point P(j, 2,3) is moved to the position 

P*( l*,e2*, 3*) under a physical action. The difference 1(P)=1*_1 (i=1,2,3) 

is called the displacement of point P along the xi direction. The displacement 

vector {tL1,U2,tt3} varies, in general, from point to point of the body and is 

twice continuously differentiable. 

Now suppose that a neighborhood point of P, say 1,12,71a) is moved to 

Q 1*, 2*, 3*) with the displacement components (i=1,2,3). Let 

the vector joining the points P and Q be with the components Tl,T2 and r3, 

and t*be the vector joining the points P* and Q*. From the Fig.1.1.1 we 

know that the vector P=P—1 has the components 

i=1,2,3. 
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If we assume that the displacement components u (i=1,2,3), and their partial 

derivatives are so small that their product can be neglected then we have 

t5T1=u Ti 

where 

=--[(uj+u)+(u r-U .-A, j, . 
,2 i,i 

=(eill +w3)  

wj2= -(tjcui 

Ti 

and the comma in the subscript means a partial differentiation, e.g 

The symmetric coefficients eij are called components of strain tensor at 

the point P, which characterize a pure deformation; while the skew—symmetric 

coefficients iJ correspond to a rigid body rotation. 

We consider next the transformation of the components of the strain 

tensor under a rotation of axes of a Cartesian coordinate system. Let the two 

coordinates be connected by the following linear relations 

i,j =1,2,3; (1.1.4) 

where fl are the direction cosines of the —axis with respect to the Xi 

ii Z—axis. The matrix T=(flfl) is orthogonal and 

ôzi Ox 

Then the relations of the components of displacement vector with respect to 

the two coordinate systems are given by 

1i'j = Iij 

i,j = 1,2,3. 

i,j = 1, 2,3. (1.1.5) 

Substituting equations (1.1.4) and (1.1.5) into equations (1.1.2) we obtain 
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•+u'. •) 'r (ôP   a 0  %3 2 ,2 = L'ik Uk) + ox(3jrn u)] 

+ jm ( m 1 

[1ik8jl uki + 1jrn '3il um) 

Uk,l + '3j1 Pik u11J 

jk8 1 (uki + u4k) 

13ik5j1 eki (1.1.6) 

this shows that e ii are really components of a second order tensor. 

When deformation occurs there is a surface force acting from a portion of 

an elastic body upon the other portion of the body. Let us consider a surface 

element AS of the body, see Fig.1.1.2, which is located in the interior of the 

body. Drawing a unit normal vector P from a point on AS, we can distinguish 

the two sides of AS according to the sense of P. Suppose that the portion of 

the material lying on the positive side of the normal exerts a force AF on the 

other portion of the material. Obviously, the force AF is a function of the area 

As of the surface element AS and varies when the normal P changes. As As -, 

0, we get 

T'= iim4 ' - , 
As-40 

where the subscript ii denotes the direction of the unit normal P of the 

surface element AS. The vector is called "stress vector" or "traction", 

which represents a force per unit area acting on the surface with normal P. 

The projection of i'' along the direction of coordinate axis xi is denoted 

by . When P is a unit vector in the direction vector Xi , we write 

,which are called the components of stress tensor. Particularly the 
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components ° il l 22 and 033 are called "normal stresses" and o (i#j) are 

called "shear stresses". To see that a stress vector in any direction can be 

written in terms of stress components, let us consider an infinitesimal 

tetrahedron formed by three surfaces parallel to the coordinate planes and one 

normal to the unit vector P with components zi (i=1,2,3) (see Fig.1.1.3). 

Suppose that the lengths of the sides of the tetrahedron along the x-direction 

are dx i , i=1,2,3; respectively. Denote the area of the surface normal to P by 

ds then the area of the surfaces normal to direction xi is given by ds_-z'ds, 

i=1,2,3; respetively. 

Let ?i'' be the stress vector acting on a surface element with the normal 

which passes through the point of vertex of the tetrahedron and h be the 

height of the vertex from the base of the tetrahedron. By assuming the 

continuity of the stress vector the i-component of the force acting on the 

surface of the tetrahedron which is normal to P is (T+e)ds with eO, as 

h-GO. And the i-components of the force acting on the surfaces of the 

tetrahedron which is normal to j-direction are (-o+Efi)d8 j=1,2,3; with cjj 

-O, as h-'O. If the body force, per unit mass, is given by {F1,F2,F3} at the 

vertex, then the i-component of the body force acting on the tetrahedron is 

f(F+)hds with -4O as h-40, where p is the density of the material. Hence 

the equilibrium of forces on the tetrahedron yield 

(T+c)ds + (_ fi lcfi)u/s + 4-(F+)hds = 0. 

Dividing by ds and letting h-40 we get 

= (1.1.7) 

Hence, knowing the stress components at a point we can calculate the 

stress vector in any direction at the point. 
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Fig. 1.1.3 



9 

Now let ft be a portion of an elastic body and S be the boundary of ft. 

Each point of S is subjected to a traction "with P being the unit normal to 

S at the point considered. Each mass element of ft is subjected to a body 

force ( per unit mass ) J' with components F , i=1,2,3. For equilibrium, both 

the resultant force and the resultant moment acting on ft must vanish, which 

leads to the following equations 

f pF.dV+ f dS= 0, 
ft i S i 

"7ijk F zkd V + .J 7ijk zkdS = 0, 

where 7ijk is defined as 

1 if ijk represents an even permutation of 123. 

7ijk= 0 if any two of ijk indices are same. 
L —1 if ijk represents an odd permu tat ion. 

(1.1.8) 

(1.1.9) 

Substituting T' from equation (1.1.7) into equation (1.1.8) and using the 

divergence theorem we obtain 

f (pF + 0fl3)dV = 0. (1.1.10) 

The continuity of the integrand in the equation (1.1.10) and arbitrariness of 

the region ft lead to the following equilibrium equation 

+ pF = 0. 

On the other hand, by divergence theorem we have 

f5 7ijk xkdS 41; 7ijk q1j zkdS 

=J(7ijk °•lj xk),l dV 

= °1j,l Xk + 7ijk °1j 5k,) " 
ft 

(1.1.12) 
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where b is the Kronecker delta. 

Using the equation ( 1.1.11) and observing that Sk=okj equation 

(1.1.12) can be written as 

1s hijkxkd5 = J + lijkcTk,)dV.  

Substituting equation(1.1.13) into equation ( 1.1.9) we get 

I 7ijkkj dV = 0. (1.1.14) 

Again the continuity of the integrand in the equation and the arbitrariness of 

the region 11 lead to ijk = 0, which gives 

= , (i,j = 1,2,3); (1.1.15) 

hence the stress tensor is symmetric. Considering the equation (1.1.7) we know 

that the state of stress at any point of the body is determined entirely by six 

independent components of the symmetric stress tensor. 

Let the surface elements AS and AS', with unit normals P and P1 , -pass 

through a point P. By virtue of equations (1.1.7) and (1.1.15) we can show 

that the component of the stress vector 7' (acting on AS) in the direction of 

' is the same as the component of the stress vector Ti" (acting on AS') in 

the direction of P. In fact, 

T'• = V. = o v V. = (0-ii u) v  (1.1.16) 

It will be used to derive formulae of transformation of the components of 

the stress tensor to when the latter is referred to a new coordinate 

system x obtained from the old one by a rotation of axes. 

Let the two coordinates be connected by the linear relations defined by 

equations (1.1.4). Then the components of stress tensor with respect to the 

coordinate system x are given by 
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/  
°km = 

where ' = {3k1 , , fi} is the unit vector parallel to x—direction and 

= { mi ' 1m fl} is the unit vector parallel to x4—direction, referring 

to the old system. Using equation (1.1.7) we get 

°km °•ij kj '3mi 

indeed, this shows that ij is really a second order tensor. 

1.2 Generalized Hooke's Law 

(1.1.18) 

If an elastic material is maintained at a fixed temperature and under a state 

of strain, the generalized Hooke's law states that the components of the stress 

are linearly related to the components of the strain at the given point. The 

generalized Hooke's law can be written in the following form 

O•ij = Cj ek, (i,j,k,l = 1,2,3) (1.2.1) 

where coefficients c1 are called elastic constants or moduli of the material. 

If coefficients cijkl vary from point to point of the material, then the material 

is called non—homogeneous. If, however, the coefficients Cjjkl are independent of 

the position of the point, the material is called elastically homogeneous. Since 

eij and ij are symmetric there are, at most, 36 independent elastic 

coefficients. 

Introducing the following notations 
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= eii = e, 

234' 03j =0 5 , 

2e23 = e4 , 2e3 = e5 

the equation (1.2.1) becomes 

or 

o•j = c  

(i=1,2,3) 

12 = 06 

2e 12 = e6 

(i,j=1,2,. ..'6). (1.2.2) 

oxx = c11e + c12eyy + C13Cz + C147yz + C157xz + C167xy 

o•yy = c21e + c22eyy + c23e + C247yz + C257xz + C267xy 

cTzz = c31e + C32Cyy + c33ezz + C347yz + C357xz + C367xy 

O•yz = c41eCC + c42eyy + C43C + C447yz + C457xz + C467xy 

Oxz = c51e + c52eyy + c53ezz + C547yz + C557xz + C567xy 

LTXY = c81e + c62ey1 + C6gCz + C647yz + C657xz + C607xy 

if we let Xi= Z, X2Y and x3=z and 7xy = 2 exy , lxz = 2 exz 

(1.2.3) 

lyz = 2 eyz.. 

When an elastic body is under deformation, there is energy stored in the 

body. By the assumption that the deformation occur isothermally, we can 

assume that there is a strain energy density function W which is a single 

valued function of e1, e2,• •, e6. If a volume element in a state of stress is 

subjected to a virtual strain Set, then the stress components oj yield the work 

—oSe . Hence as ei gets an increment 5e , W(ei, e2,• ., e6) gets an 

increment 

6W = oj Se . (1.2.4) 
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On the other hand 

6W = aw 6ei. 

Comparing ( 1.2.4) and (1.2.5) we have 

Since 

02W  -  02W  
OeOe5 - 0eOe 

we obtain 

0o - Oc 
ej 

from equation (1.2.6), hence cii = 

(1.2.5) 

(1.2.6) 

Cji in equations ( 1.2.2). In other words, 

among the 36 coefficients cij's only 21 are independent. 

If an elastic body is symmetric in a certain direction, the number of 

independent coefficients cij can be further reduced. First of all, let us consider 

a material which is elastically symmetric with respect to the x1x2—plane. The 

symmetry means that the cij will remain the same under the transformation 

z1= 1, X22, X3= --13-

By the transformation of coordinates we get 

=o,Zj=ej , (i=1,2,3,6) 

= 04, e4 = —e4 05 = = —e5 

For i=1, the equation (1.2.2) yields 

= c11 é' 1 + C122 + C133 + c14'ê4 + C15'é5 + C16e6 

(1.2.7) 

o= c11e1 + c12e2 + c13e3 + c14e4 + c15e5 + c16e6 . (1.2.8) 
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Substituting Equations ( 1.2.7) into the first equation of (1.2.8) and comparing 

with the second one we get 

C14 = C15 = 0 

Similarly by considering the equations for 2,• , 6 we obtain 

C24 = C25 = C34 = C35 = C4 = 0 

C4j = C42 = C43 = C46 = C51 = C52 = C53 = C55 = 0 

Therefore the matrix of the coefficients of equation (1.2.2) for a material with 

the elastic symmetry with respect to z1x2—plane can be written as 

C11 C12 C13 0 0 c16 
C12 C22 C23 0 0 c26 
C 3 C 3 C 3 0 0 c 

C44 C45 86 

0 0 0 c5 C55 0 
- C16 C25 C36 C66 (1.2.9) 

Materials like wood, for example, which have three mutually orthogonal 

planes of elastic symmetry are called to be orthotropic. In the study of 

orthotropic materials it is convenient for us to choose such axes of the 

coordinate system so that the coordinate planes coincide with the planes of the 

elastic symmetry. In such a case, besides the symmetry with respect to the 

x1z2—plane, expressed by matrix (1.2.9), the coefficients C1j must also be 

invariant under the transformation of coordinates defined by 

X1-1, X3= 1 3-

Using the same method of as we used above, we find that more coefficients in 
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equations ( 1.2.2) vanish and the matrix of the cjj takes the following form 

c11 c12 c13 0 0 0 
C12 c22 c23 0 0 0 
c3 Ct33 c3 0 0 0 

C6 
0 

o o 0 0 
o o 0 0 6 c6 (1.2.10) 

there are only 9 independent coefficients. 

In the case of an isotropic medium, whose elastic properties are 

independent of the orientation of the coordinate axes, the coefficients cii must 

keep the same when we introduce a new Cartesian coordinate system 0X1X2X3 

by rotating the O-x1x2x3 through a right angle about the x1—axis. Hence we get 

C12 = C13 , C33 = C22 , C66 = C55 

Similarly, by rotating the axes through a right angle about the x3—axis we get 

C22 = C11 , C13 = C23 , C55 = C44 

Finally, let us consider the new coordinate system by rotating the 

O—X1Z2Z3 through an angle of /4 about the x3—axis, in this way we get 

= - T i + T 2 

From matrix (1.2.7) we have 

= c44e6 , F6 = 

and by using equations (1.2.11) we get 

+ 0 2) = c44(—el + e2) 

= —e + e2 . (1.2.11) 

(1.2.12) 
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Considering matrix (1.2.10) again and observing that C11= C22, C12=C13=C23 in 

this case, we have 

LTI = c11e1 + c12e2 + c13e3 

o2 = c12e1 + C11C2 + c13e3 
then 

0 1 + O•2) = - c12)(e2 - ei). 

Equations (1.2.12) and (1.2.13) lead to 

C44 = --( c1i - c12). 

(1.2.13) 

Hence for an isotropic material the elastic coefficients matrix can be reduced 

to 

CU. Cl2 C12 0 0 0 
C12 C11 C12 0 0 0 
C2 Cd2 C 1 0 0 0 

+(c 11— c12) 0 0 
0 0 0 0 
0 0 0 0 .(c1—c12) +( c11—c12) (1.2.14) 

there are only two independent coefficients c11 and e12 . For isotropic 

materials, we traditionally use ..\ (= c12) and A ( = +( cii—c12) ) as two 

independent coefficients which are called Lame constants. In such a case the 

Hooke's law can be stated as following 

o• ij = A bij i5 + 2 4a 

where Sjj is Kronecker delta and V = ell+c22+e33 

(1.2.15) 
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1.3 Plane Strain 

A body is said to be in the state of plane deformation, or plane strain, 

parallel the z1z2—plane, if the displacement component U3 vanishes and the 

components ul and ii2 are the functions of the coordinates x1 and x2, but not 

of z3. That is 

Ui = u1(zl,x2), i=1,2; U3 = 0- 1.3.1) 

By equation (1.1.2) we find that the components of the strain tensor are 

e13 = e23 = e33 = 0, 

eij = --(u, + 
31 

= 1, 2 (1.3.2) 

which do not depend on X. 

Particularly, in the plane orthotropic case, which can be thought of a 

plane strain problem for a three dimensional orthotropic medium, from 

equations (1.2.2) and (1.3.2) we get the nonvanising components of the stress 

tensor 

and 

0,11 = 

022 = 

0 12 = 

c11ejj + c12e22 

c21eji + c22e22 

C66712 , 

= c13e11 + c23e22 , 

(1.3.3) 

but from the first two equations of (1.3.3) we know that 033 is entirely 

determined by and 22 , and is independent of coordinate x3. Hence it is 

clear that the deformations and stresses of an orthotropic plane strain problem 

are completely determined by eij and uj (i,j=1,2). 
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We consider next the equilibrium equations. First of all, since o-jj do not 

depend on x3 we conclude from equation (1.1.11) that the components F1 and 

F2 of the body force must be independent of the coordinate x3 and F3=O 

Hence the equilibrium equations can be written as 

o•ij,j = —pFzi,x2), i,j=1,2 . (1.3.4) 

1.4 Polar Cylindrical Coordinates 

Polar cylindrical coordinate system is often introduced in theory of 

elasticity when the boundary conditions can be simplified by such a frame of 

reference. It is appropriate to resolve the components of stress and strain in 

the direction of the coordinates and denote them by corresponding subscripts. 

When we have a Cartesian coordinate system O—xyz, the components of 

displacement vector in the x, y and z directions are denoted by u., tty and UZ 

respectively. We use exx, eyy and ezz to denote the normal strain components 

while exy, exz and ey,, to denote the shear strain components. Similarly we use 

c, o-yy and to denote the normal stress components while o, o-.,, and 

to denote the shear stress components. Referring to a polar cylindrical 

coordinate system the components of displacement vector along the directions 

O and z are denoted by ui., it9 and uz respevtively. We will use err, e09 and 

e to denote the normal strain components while e,0, erz and eez to denote 

the shear strain components. We also use 0rr, and ozz to denote the 

normal stress components while °r0, rz and o-Oz to denote the shear stress 

components. The relations between the polar cylindrical coordinates r, 0, z and 

the Cartesian coordinates x, y, z are 
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z = ' cos 0, y=r sin 0, z=z. (1.4.1) 

It follows that derivatives with respect to x, y and z in Cartesian equations 

can be written in terms of derivatives with respect to r, 0 and z by using 

the following relations 

O _ OrO 000 - 

a Or  000 
TY FY Tr FY n 

Cos 0-. sin 00 
r r 

sin 0— Cos 00 
r i' TO 

(1.4.2) 

To relate the components between two systems let us select a local 

Cartesian frame of reference x1y1z1 at the point (r,0,z), with the origin located 

at the point (r,0,z), the x1—axis in the direction of increasing r, the y1—axis in 

the direction of increasing 0, and the z1—axis parallel to z—axis (Fig. 1.4.1). 

Then, in conventional notation, are well defined. By identifying 

r, 0, z with Xj, Yi, Zi we have 

0rr = °X1X1 

err = 

°r0 tY Xlyl 

erg= 

°oe = 

e00 = 

etc. The matrix of the direction cosines of the axes z1, yj, z1 relative to x, 

z is 

- cosO SinO 0 

(3) = —simO COsO 0 

0 0 1 (1.4.3) 
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Hence, from equation(1.1.18) and the matrix ( 1.4.3) we get 

0xx = £TrrCO82O + T098iTh20 - qr08in 20, 

0yy = OrrSZfl2O + o00cos20 + OrO8 20, 

o•zz = o•zz, 

0xy = (0rr o00)sin. 0 COB 0 + 0r0(C0820 - sin20) 

°xz = 0rz COB 0 - T9zS 0, 

Oyz = 0rz SZTh 0 + 0çz COB 0 

Similarly, from equation (1.1.6) and matrix (1.4.3) we obtain 

err = exx cos20 + eyy sin20 + exy sin 20, 

= exx sjm20 + eyy cos20 - exy BiTh 20, 

ezz = 

ero = (eyy O) BiTh 0 COB 0 + exy(cos2O _sin20) 

erz = Cxz COB 0 + eyz 3jfl 0, 

e0 --e  sin 0+ e  COS 0. 

(1.4.4) 

(1.4.5) 

From the Fig. (1.4.1) the relations of displacement components between polar 

cylindrical coordinates and Cartesian coordinates for a displacement vector are 

given by 

u. = Ur COB 0 - 5jfl. 0, 

Uy = Ur B7L 0 + ug COB 0, 

tLz. (1.4.6) 
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Equations (1.1.2) now become 

exx 

exy 

.eyz = 

- otix eyy 
- Ox ' 

_J(0UV+ O'Ux\ 
2 px k  

1 f ozLy 011 
kOz + 

exz 

08%ezz - - -h -, 

_l ( OtZ OUX\ 
TkOx + Oz' 

(1.4.7) 

Finally, substituting equations ( 1.4.7) into equations (1.4.5) and using equation 

(1.4.6) and equations (1.4.2) we obtain the strain-displacement relations in 

polar cylindrical coordinates 

0Ur 1 duo Ur 
err=— e09=— + - , 

Or r 0 r Oz 

1 Our 0u9 
__ - 

r 00 Or 

Our OUz 
- _____ 

Oz Or 

duo 1 Vu 

Oz r 00 

.uo 

r 

(1.4.8) 

To obtain the equilibrium equations for polar cylindrical coordinates we 

first resolve the body force per unit volume at the point (r,0,z) into 

components Fr, F0, F along the r-, 0- and z--directions, then we have 

P. = Fr cos 0 - F0 3Zfl 0, 

F = Fr sin  + F0 cos 0, 

F=F. (1.4.9) 

The equilibrium equations (1.1.11) for Cartesian coordinates x, y, z can be 

written as 
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thTxx &Txy Oo 
—57X-- + +—-+ pF=0, VZ 

thTxy +   + O YZ + pF = 0 
Ox 6zi 

thTxz °° YZ 00zz F 0 1 4 10 
Tx— ofy - P z — — 

Substituting the equations (1.4.9) and (1.4.4) into the equations ( 1.4.10) and 

using the equations (1.4.2) to transform the derivatives, we obtain 

°rr 1 OtT 9 OtTrz °rrOO 

(— + — +—+ ) cos0 
Or r 00 Oz r 

thTr0 1 Oq 000 2 
(++ + r) sin  

Or r 00 Oz r 

+ pFr cos 0 — pl?o 8Z7i 0 = 0 , (1.4.11) 

from the first equation of (1.4.10). The equation (1.4.11) must hold for all 

values of 0 and letting 0 = 0 and 0 = /2 respectively we get 

OO rr 1 80 r0 OcTrz 
—+— +—+ 
Or r 00 Oz r 

+pFr 0 

O°r0 1 &TØç Oo 2 
++ r0 +pF0 0, 

or r 00 OZ r 
(1.4.12) 

since the choice of the x--direction is arbitrary the equations ( 1.4.12) must be 

valid for all values of 0. Similarly, from the third equation of (1.4.10) we get 

0°rz 1 &7 z OO 2 
+++ rz +pFz0. 

Or r 00 Oz r 
(1.4.13) 

The generalized Hooke's law for the most general case in polar cylindrical 

coordinate system is stated as follows 
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°XT = CjjCrr + c12e00 + Cj3Czz + Cj479z + C157rz + Cj67r0 

000 = c21e + c22e00 + c23e + C2470z + C257rz + C267r 

o•zz = c31e-1. 

LTOZ = c1e, 

0rz = c51err 

°r0 = c6 err 

+ c32e00 + c33eZ + C3479z + C357rz + C367r 

+ c42e00 + c43e + C447z + C457rz + C467rO 

+ c52e00 + c53ezz + C5470z + C557rz + C567r 

+ c62e00 + C63C + C647z + C857rz + C667r0, 

where cj=cji , and 70z = 2 e9 , 7rz = 2 erz , 7re = 2 ere 

(1.4.14) 

An anisotropic medium is said cylindrical if a certain straight line 1, the 

axis of anisotropy, is associated with the medium such that all directions 

intersecting the line I at right angle are equivalent; correspondingly, all 

directions parallel to 1—axis which pass through distinct points and all 

directions orthogonal to the first two directions are equivalent. For such kind 

of medium, it is more convenient to use the cylindrical polar coordinate 

system by taking the axis of the anisotropy as the z—axis of the cylindrical 

polar coordinates system (r,O,z). 

A material is called transversely isotropic if all directions in the planes, 

which are orthogonal to the axis of .the anisotropy are equivalent, in other 

words, the isotropy occurs in rO—plane when the z—axis coincides with the axis 

of the anisotropy in cylindrical polar coordinate system. 

For a transversely isotropic medium, letting the z—axis coincide with the 

axis of the anisotropy, and using the same method as we did for Cartesian 

coordinate system we can reduce the equatIon (1.4.14) to the following form 
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= cjjerr + c12e00 + C13ezz 

°OO = c12e + c11e00 + C13ezz 

ozz = c13 e1r + c13e09 + C33ezz 

O•Oz = C 47 

0rz = C447rz 

= - (cjç.c12)'yr (1.4.15) 

by transformation of variables according to the symmetry of the medium. 

In the case of isotropy, we have c33=c 11 , c13= C12 and C44=..(cll— C12) 

Again there are only two independent coefficients, i.e. Lame constants ,—c12 

and =+( cii—ci2). 

1.5 Penny—shaped crack problem 

In Chapter 5, we will consider a penny—shaped crack problem for transversely 

isotropic medium, in that problem the displacement components are functions 

of variables r and z only, in fact, we have =(rz), t&0=O and u=tt(z). 

Using the strain—displacement relations (1.4.8) we find that er0=e9z=O and 

_0r  COO -

erz-
- 1 tOtLr + Ot 
-- - 

—o.uzezzTz-

(1.5.1) 

Then for a homogeneous, transversely isotropic medium we get the following 

stress—displacement relations 
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rr + C12 + C13 

+ + C 13 

°= c13 + ] + C33 --, 

Z _ c44 [ OUr OUz 
-- + •-- I (1.5.2) 

from equations ( 1.4.15). Substituting equations ( 1.5.2) into equations (1.4.12) 

and (1.4.13) we obtain the following equilibrium equations 

C11102 80  1 OUr Ur ] + c O2Ur 02uz - o 
. •;-. - Oz2 + (c13 + c44) OrOz02  T 

c44[ + 1 OUr   + (c13+ Our + c44) r[- + ] 

1.6 Torsion problem 

(1.5.3) 

For' an axisymmetric torsion problem the displacement components are given 

by =O, t=O and t=(r,z), which depends on r and z only. Hence from 

equations (1.4.8) we find that the non—zero strain components are the following 

1 0u0 

r 00 

0u9 u0 

or —) r 

(1.6.1) 
Oz 

They depend only on r and z. On the other hand, we know that stress 

components 0rr = 0*09= 0zz = 0rz = 0 and the non—zero stress components 
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are given the following 

OOz = Cj7 

YU = .-. (c11—c12) 0 (1.6.2) 

For a non—homogeneous and isotropic medium, in terms of displacement 

components, equations ( 1.6.2) yield 

(1.6.3) 
7, 

where we have used the fact that c44 = . (c11—c12) for isotropic medium and 

assumed that p = p(z) = C44 depends on z only. Since o and °r0 depend on 

r and z only, equation (1 4.13) and the first of equations (1.4.12) vanish and 

the second one of equations (1.4.12) becomes 

OtTr0 0o8z 2 
- + - + - 0're = 0 
Or Oz r 

in the absence of the body force. 

Substituting equations (1.6.3) into equation (1.6.4) we get 

(1.6.4) 

O2 1 0u0 u0 02u9 1 0u0 Op 
 + - ___ - + + - ___ ___ = 0 . (1.6.5) 
Or2 r Oz r2 Oz2 p Oz Oz 

For a particular case, when p=constant, i.e. homogeneous, isotropic case, 

equation (1.6.5) can be reduced to the following 

02U9 1 0u0 v.0 02UO 

 +— —+ = 0. 
Or2 r Oz r2 0z2 

(1.6.6) 



CHAPTER 2 

PROBLEMS OF REISSNER-SAGOCI TYPE 

FOR COMPOSITE CYLINDRICAL REGIONS 

2.1 Introduction 

In 1937, E.Reissner [6] formulated several problems relating to torsional 

vibrations of an elastic half—space. He posed but didn't solve the following 

mixed boundary value problem 

O<r<d, 

ao(r.0) = 0 , r > d. (2.1.1) 

Later Reissner and Sagoci [7] solved the static version of above problem by 

using oblate spherical coordinates. The problem posed by Reissner is called the 

Reissner—Sagoci problem (RS—problem in short ) now. 

Sneddon [8] solved the RS—problem by a different method, by reducing it 

to a pair of dual integral equations using the Hankel transforms. In static case 

these integral equations could be solved by using various methods developed by 

Titchmarch [9], Busbridge [10] and Harding and Sneddon [11]. Bycroft [12] 

gave an approximate treatment to the dynamic RS—problem. Ufliand [13] set 

up the dual integral equations for the RS—problem for a circular disc on an 

elastic layer and reduced them to the solution of a Fredhoim integral equation 

of the second kind. 

28 
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Sneddon [14] returned to the RS-problem for a half space and obtained 

the solution by using his own elementary solution of dual integral equations. 

He also solved the RS-problem of determining the distribution of stress in a 

long circular cylinder of homogeneous isotropic material under the condition 

that the curved surface was fixed. Sneddon, Srivastava and Mathur [15] 

obtained a solution of the problem for a finite cylinder when the curved 

surface was stress free and the length of the cylinder was long compared with 

its radius. 

Freeman and Keer [16] investigated a torsion problem of an elastic 

cylinder, which is attached to an elastic half space. The problem was reduced 

to the solution of dual integral equations and Dini-series. Rukhovets and 

Ufliand [17] presented a solution of RS-problem for an elastic half space with 

a circular inclusion. Gladwell [18] solved the RS-problem for an elastic layer of 

finite thickness, when the lower face is either stress free or rigidly clamped. 

Keer and Freeman [19] later extended their previous analysis to a finite elastic 

cylinder which is partially bonded to a semi-infinite elastic cylinder of the 

same radius which is embedded in an . elastic half-space. 

Luco [20] solved the problem of a. rigid rod embedded in an elastic layer, 

the whole being perfectly bonded to a half-space of different material. Singh 

and Dhaliwal [21] investigated the RS-problem for an elastic layer under 

torsion by a pair of circular discs on opposite faces. And Dhaliwal, Singh and 

Sneddon [22] obtained a solution of the RS-problem for a semi-infinite elastic 

cylinder embedded in an elastic half-space. Low [23] investigated a RS-problem 

of an elastic half-space with a penny-shaped flaw in the form of an inclusion 

or a crack. Chebakov [24] considered a RS-problem for a finite cylinder with a 

torque applied to a rigid disc in the middle of the top face while the curved 
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surface and bottom face were fixed. Dhaliwal, Singh and Rokne [25] solved a 

torsion problem for a hemisphere embedded in an elastic half—space. Gladwell 

and Lemczyk [26] solved the static RS—problem for a finite cylinder. 

The RS—problem in which a torque is applied over an annulus has also 

been considered by some researchers. In 1966 Boradachev and Boradacheva [27] 

investigated this problem by Hankel transforms and reduced it to the solution 

of triple integral equations. Arutinunian and Bobloian [28] investigated the 

problem in which a torque is applied on a circle r<b on the surface of a 

half—space which has an inclusion occupying the cylinder r< a (b< a). Shibuya 

et al.[29] considered the problem of an elastic layer under torsion by a pair of 

identical facing annular discs. Dhaiiwal and Singh [30] investigated a problem 

of torsion, by an annular die, of an elastic layer bonded to an elastic 

half—space, the problem was reduced to the solution of a system of four 

Fredhoim integral equations. Dhaiiwal, Singh. and Vrbik [31] considered the 

problem of a half—space with a cylindrical inclusion which was twisted by an 

annular die. Hasegawa [32] obtained an essential solution for a finite cylinder 

under torsion by a pair of identical annular stamps to its ends by using 

Green's function method. 

The study of the static RS—problem for non—homogeneous material 

started in 1960's. In 1967 Protsenko [33] considered the torsion of a half—space 

with a shear modulus p(z) = in za , and later he [34] considered the 

half—space problem with a torque applied over an annular area. Kassir [35] 

solved the RS—problem for the half—space and semi—infinite cylinder by 

assuming the shear modulus of the material in the form of p(z) = m 2 , and 

reduced it to the solution of a pair of dual integral equations. Kolybikhim [36] 

solved the above problem by assuming the shear modulus in the form of 

Chuaprasert and Kassir [37] considered a half—space and a 
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semi—infinite cylinder RS—problem by assuming (Z)=O(l+Z/C)a. George [38] 

assumed p(r)=p0i' for a semi—infinite cylinder RS—problem. In 1979, 

Dhaliwal and Singh [39] analyzed the RS—problem for an elastic layer with 

shear modulus p(z)=jL1(z+b)fh, which was bonded to an elastic half—space with 

shear modulus (Z)=2(Z+b)2. Selvadurai, Singh and Vrbik [40] considered the 

RS—problem for half—space by assuming shear modulus j(z)= G1+ G2eZ. 

Dhaliwal [41] solved the RS—problem for a more general form of shear modulus 

/L(z)=/L0+Ep1(Z)+E22(z)+..., where juO and e<<1 are positive real constants 

while p1(z) are differentiable functions of z. Dhaliwal and Chehil [42] solved 

the RS—problem of non—homogeneous layer bonded to another non—homogeneous 

elastic layer with the shear modulus as i1=/L1(a1+z)ai, i=1,2 for the two 

materials. 

In this chapter we will consider the Reissner—Sagoci type problems for 

finite composite elastic cylinder (section 2.2), finite elastic cylinder embedded 

in an elastic layer (section 2.3) and semi—infinite composite elastic cylinder 

(section 2.4). The materials considered in this chapter are assumed to be 

elastic, homogeneous and isotropic. 

By the use of integral transforms and the theory of dual integral 

equations, the problems are reduced to the solution of a Freciholm integral 

equation of the second kind. Numerical solution of the integral equation is 

obtained and the numerical values of the torque required to produce the given 

rotation are displayed graphically. 

As discussed in Chapter 1, the displacement field of the medium under 

torsion considered in this chapter is given by m==O and  

depending on r and z only, where (r,O,z) is the cylindrical polar coordinate 

system. And the corresponding non—zero stress components of the stress tensor 
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are given by equations (1.6.3). Consequently the equation of equilibrium is 

given by equation (1.6.5) when there are no body forces. To simplify, let us 

denote iz., u, u., by u, v, w respectively, then we have the following basic 

equations for the problems under consideration in this chapter: 

= 0 , v = v(r,z) , w = 0 

Vii Ov ii 
oo(r,z) = , T9(7'Z) = /h ( - ) 

1 Vii 
or  Oz 2 0 

(2.1.2) 

Using the method of separation of variables , it is easy to show that the 

following are basic solutions of the last equation in (2.1.2) for ir,z): 

(I) Ji(er)ep(z) , (II) Yi(r)ezp(±z) 

(III) Ii(er)cos(z) or I1(r)sin(z) 

(iv) Ki(r)cos(z) or Ki(r)sin(z) 

(V) rz , r, 1/r, z/r (2.1.3) 

where J, , Y are Bessel functions of the first and second kind and of order ii, 

and I, , K are modified Bessel functions of the first and second kind and of 

order ii respectively [94]. 

In the following three sections we will use three different combinations of 

the , basic solutions stated above such that they will satisfy the boundary 

conditions of each of the three problems. 
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2.2 Finite composite elastic cylinder 

2.2.1 The statement of the problem 

In this section we consider the torsion of a finite elastic cylinder which is 

embedded in a finite elastic cylindrical shell with different shear modulus. 

We assume that a finite elastic cylinder of radius d, height b and shear 

modulus #1 is embedded in a finite elastic cylindrical shell of outer radius a, 

height b, and shear modulus JU2 as shown in Fig.2.2.1. It is also assumed that 

the inner cylinder is perfectly bonded to the surrounding cylindrical shell and 

that a torque is applied to the inner cylinder, through a rigid disc of radius 

c< d, which is bonded to its flat surface. It is assumed that the bottom flat. 

surface of the composite cylinder is rigidly fixed and the curved outer surface 

of the composite cylinder is stress—free. In terms of cylindrical polar 

coordinates (r,O,z) , displacement field, the corresponding non—zero stress 

components and the equilibrium equation are given by (2.1.2). The basic 

solutions of the equilibrium equation are given by (2.1.3). 

We further assume that the rigid disc bonded to the inner cylinder is 

turned through a small angle E . We therefore consider the problem of 

determining the stress and displacement field in the composite cylinder with 

the following boundary and continuity conditions: 
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/ 

z 

Fig.2.2.1 

Torsion of an elastic cylinder bonded to a dissimilar 

elastic cylindrical shell. 



35 

t(r,b) = 0 , 0 ≤ r < d, (2.2. 1) 

= 0 , d < r < a, (2.2.2) 

v(r,0) = cr , 0 < r < c, (2.2.3) 

= 0 , c < i" < d, (2.2.4) 

o(r,0) = 0 , d < r < a, (2.2.5) 

ro(L)2) = 0 , 0 ≤ z ≤ b, (2.2.6) 

t(d,z) = ii(d,z) , 0 ≤ z ≤ b, (2.2.7) 

Tr0(d,Z) = r0(d,Z) 0 ≤ Z ≤ b, (2.2.8) 

where v , a0z , and 0r0 are the non—zero displacement and stress components 

for the inner cylinder while v  and r9 are their counterparts for the 

surrounding medium. 

2.2.2. Derivation of the dual integral equations 

Now we introduce a combination of the basic solutions given in section 2.1 for 

v( r,z) and for i(r,z) , by means of these combinations we are able to reduce 

the problem of solving the mixed boundary value problem stated in section 

2.2.1 to that of solving a pair of dual integral equations. 

For the inner cylinder , we assume that 

v(r,z)= ar( b—z)+ ct[ 'A()sinh[( b—z)] ; 

(2.2.9) 

where the Hankel operator, is defined by the equation 

c[ f() ; r] = ff() J(r)d4. 
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For the surrounding medium we assume that 

where 

a0=e/b 

w 

n 1 
E 1Cncos( nz)Ii( nr) +'Dco8( nz)Ki( nr) (2.2.10) 

while A , B , Gn  , D1 and en are arbitrary constants to be determined later 

by using the boundary and continuity conditions. 

Now from equations (2.1.2) we have 

OD 

,()Pi J[A(C)sinh[C(b—z)]; +/21)JBncos(Cnz)I2(Cnr), (2.2.11) nut 

A 00 

°rO( r,z)=p2 ECcos( ez)I2( Car) 
nut 

CD 

- /2 E Dflcos(Cflz)K2(Cflr), 
nzl 

(2.2.12) 

oo(r,z)=—pic[A(C)cosh[C(b—z)] ;- r] - nz)hi(Cnr) - c10Iir nut 

(2.2.13) 

(2.2.14) oo(r,z)=- 2Cflszn(Cflz)Ii(Cflr) ji2SDsin(Cnz)Ki(Cnr).nut 
nut 

The conditions (2.2.1) and (2.2.2) will be satisfied if we take 

cos(Cb) = 0 

which gives 

= (2n-1)/2b , n = 1,2,3,  

The condition (2.2.6) yields 

OD 

- DnK2(Cna)]cos(Cnz) = 0 
nut 

and the conditions (2.2.7) and (2.2.8) give 

(2.2.15) 

(2.2.16) 
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a0d(b-z)-f. J[ 1A()sinh[(b-z)] ;- d] 

and 

where 

CD 
= - BIj(d) + DKi(d)]cos(ez) 

[A(e)sinh[(b—z)] 

CO 
=E [BJ2( n Cl2(d)} cos(z), 
n=' 

= 

Since {cos(z)} are orthogonal over the interval (0,b) and 

cosh(b) 

(lb - ( 2 + ) 0 

1 f CO8(Gz)dz = 

0 TIn 

from equations (2.2.16) to (2.2.18) we obtain 

where 

(2.2.17) 

(2.2.18) 

(2.2.19) 

(2.2.20) 

, (2.2.21) 

—BI1(ed)-f- CnIi( nd)+DnKi(emd)— Gi(n) , (2.2.22) 

BI2(d)—pT Cl2( d)+iDK2( d)= G2(m) , (2.2.23) 

G1(n)= 2f A() cosh (eb)Ji(d) d + 

I'/0 
xl 

a0d 

w   d . (2.2.24) 
2 + 

Eliminating C1 from equations (2.2.21) , (2.2.22) and (2.2.23) , we obtain 

—BI1(d)+DQ1(n) = GI(n) , (2.2.25) 

BI2(d)+iDQ2(i'i) = G2(n) , (2.2.26) 



hence 

where 

Bn = [Gi(n)Q2(n) - G2(m)Qi(n)]/A(n) 

A(n) = — Ii( nd)Q2(n)—I2( nd)Qi(n) 

Q1(n) = Kj(d)+ K2(naI(d) 
I2fla) 

%tna)12nd) 
a  

Q2(m) = K2(d)  
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(2.2.27) 

(2.2.28) 

From equation (2.2.14) we find that the condition (2.2.5) is identically 

satisfied and that the conditions (2.2.3) and (2.2.4) will be satisfied if A() is 

the solution of the following dual integral equations 

[ 1A()sinh(b) = 0 , r < c, (2.2.29) 

c7[A()cosh(b) ;-+r] = —a0r , c < r < d. (2.2.30) 

2.2.3 Reduction to integral equation of FrediLoim type 

To reduce the problem of solving the dual integral equations (2.2.29) and 

(2.2.30) to that of solving an integral equation of Fredhiom type of the second 

kind , we will make use of an integral representation for A() , which 

automatically satisfies equation (2.2.30). 

It is known that if we take [26] 

= )J t(d2 - 

Ti 

t[(d2 - t2)+ - (C2 _t2)+] 

0, 

t < C, 

c < t < d, (2.2.31) 

t > d, 
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we have 

[Øo(t) ; t -4 4] = - 

d 

r2Ji(4r)dr 

0, 

Xj{ 5[øo(t) ; t-+4] ;4-ir} = —r, 

(2.2.32) 

o ≤ r < c, 

c < r < d, (2.2.3 3) 

0, r>d, 

where 5s is Fourier sine transform defined by 

5 [f(z) ; z 2 CO ff(z)sin(4z)dz, 

It is easy to show [43] that if we take 

A(4) = a  
cosh(4b) 5[(t)+0(t) ; t -4 4], 

where O(t) is a new unknown fuction defined in (0,w) such that 

t> c, then equation (2.2.30) will be satisfied automatically. 

Substituting from equation (2.2.34) into equations (2.2.24) and using the 

integrals [44] 

(2.2.34) 

fa)62Sjn(6 t)J2(4d)d4 

o 

fGo 4sin(4 t)Jj(4d)d4 = sinh(4t)K1(4d) , t < d, (2.2.36) 

0 

we obtain 

Gi(n)=gjj(n)+g12(n)+g13(n) , G2(n)=g21(m)+g22(n) , (2.2.37) 

(t)=0 for 

where 

t < d , (2.2.35) 
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gu(n)= 2ao n 2  b - )+f q(t)sinh( nt)Ki(nd)dt 

912(Th)= 2aOfl(2)+ d 
b 

g13(n)= 2ao d 
be 

g21(n.)— 2ao, 2 (IC q5(t)sinh(t)K2(nd)dt 
- b .) J0 

g22(m)= 2aoefl(2)f' qo(t)sinh(*nt)K2(nd)dt (2.2.38) 

Operating on equation (2.2.29) by z1 Aj1[r ; x] and using the following results 

[45]: 

-'r] ; 7'-3x} = Yi[F() ; - x] , (2.2.39) 

x' A'[r Ii( nr) ; r-44 = (-)+simh(x) , (2.2.40) 

we obtain 

0 ≤ X < C, (2.2.4 1) 

where A' is the inverse of .A1, the Abel operator of the first kind, which is 

defined by the equation 

and 

r 
(i[ 1(t) ; t = (i)+ f f(t)[r2_t2]dt, 

d 
Ai'[f(r) ; t} = Tt Ai[rf(r) ; t] 

Using expressions (2.2.34), (2.2.27) and (2.2.37) , we get 
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OD 

;-+x]=ao•(x)— 4fC() dtf(1+e2)_'sin(t)sin(ex)d 
0 

+ aoq5o(x)-
0 

and 

n=1 

= aof cO(t)S(xt)dt+aof dO o(t)S(xt)dt+aoR(x) 

where 

(2.2.42) 

(2.2.43) 

S(,t))— iKi(d) Q2(n1—K2(d) Q 1( n) simh(t)sinh( (2.2.44) 

co 
R(x) = 2?(_)+ Q2(Th18mn (2.2.45) 

n=i (n) 

Finally equation (2.2.41) may be written as 

A 

O(x)-J C O(t)[M(z,t)—S(x,t)]dt = —Ax) , 0 ≤ z ≤ c, (2.2.46) 
0 

where 

f(z) = ço(x)-1' ci o(t)[M(x,t)—S(x,t)]dt + R(x) 
0 

M(z,t) = -- f (1+e2 )_1sint)siri(z)d 

For a large n, 

K1( end) Q2(n)—K2(Cd) Q(n)3 Cnt)sinh( ex) = O( ezp[— n(2d—x—t)]), 
A(n) 

hence the convergence of the series in equation (2.2.44) is fast 

(2.2.47) 

(2.2.48) 
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To obtain the torque T required to produce the prescribed rotation of 

the rigid disc bonded to the inner cylinder , as given by condition (2.2.3) , we 

have to calculate the value of o-0, at z=0 . Now from equations (2.2.13) and 

(2.2.34) , we get 

0o( r,0)=- 1Jj[A()cosh(b) ;-+r] - ao 1r 

=—a01{ 2[(t) ; t-} ;-+r} - a01c{ 2[qo(t) ; t-'] 

- a0  1r , r < c , (2.2.49) 

and we find that 

5[o(t) ;t-] ; e-+r}dr = 0 (2.2.50) 

c'i{ 5s[(t); t—i]; -+r}= - Y[(t) ;t-] ;-+r} (2.2.51) 

The required torque is given by 

T = - 2f r20(r,O)dr 

Using equations (2.2.49) , (2.2.50) and (2.2.51) in (2.2.52) we obtain 

1E c 
T = 2b + 4(2i)+ .--f tØ(t)dt 

(2.2.52) 

(2.2.53) 

It is worth mentioning that the solution for the corresponding 

semi—infinite composite cylinder problem cannot be derived from the present 

solution, since the S integral in equation (2.2.46) is divergent as b- . It may 

be noted that 

f C o(t)s(xt)dt 

C 4 K1( d) Q2(n'l—K2(Ed) dt. (2.2.54) =J o(t) An) 
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Let us consider a particular case, when 12 = 0, we have 

  - K2 
n) - 2 

Since = (2n-1)-/(2b), the G  are apart and formally 

4 'N' K1(d) Q2(n—K2(d)  
An) 

K2 d sinh(t)sinh(x)de. (2.2.55) 

Sneddon [14] noted that the integral in (2.2.55) diverges as O(2). In general, 

the integral in (2.2.54) is also divergent. Hence the solution for the case b-

will be presented separately. 

2.2.4 Numerical results and conclusions 

Numerical values of q$(x) for z = (0.0, 0.1 0.2, 1.0)c have been calculated 

from the integral equation (2.2.46) by reducing it to algebraic equations. And 

then the numerical values of the dimensionless ratio of torque T/ To have been 

calculated from equation (2.2.53) , where To=16i1Ec3/3 is the torque for the 

corresponding Reissner—Sagoci problem for the semi—infinite elastic space. The 

Simpson's rule is used to perform the numerical integrations and the Crout's 

factorisation method is used to solve the linear algebraic equations. In the 

numerical results the relative errors are controlled under 0.01. 

Numerical values of T/ T0 have been calculated for the following 

combination of values of 

b/c = 0.2(0.1)0.5,1.0,2.0,10.0 ; d/c= 1.0(0.2)2.0,3.0(1.0)10.0 

aid = 1.1,1.5 ; = 0.5,2.0 
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and these have been displayed in Figs.2.2.2 to Fig.2.2.5. From the figures, we 

observe that for a fixed radius c of the rigid disc the torque T decreases as 

the height b of the cylinder increases and the torque increases as the radius d 

of the inner cylinder increases while the ratio aid of the radius of outer 

cylinder to the inner cylinder is kept the same We also observe that the 

ratio T/ T0 approaches to 1 when d/ c and b/c approach to infinity 

simultaneously. We notice that the values of T/ T0 have very negligible effect 

with the change in the values of a/d from 1.1 to 1.5 or with the change in 

the values of A from 0.5 to 2.0. 
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Numerical values of the ratio of the torques T/ T0 against 

d/c for A = 0.5 , a/d=1.1 for various values of b/c = 

0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 10.0. 
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Numerical values of the ratio of the torques T/ To against 

d/c for 0.5 , a/d1.5 for various values of b/c = 0.2, 

0.3, 0.4, 0.5, 1.0, 2.0, 10.0. 
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Numerical values of the ratio of the torques T/ To against 

d/c for i=2.0 , a/d=1.5 for various values of b/c = 0.2, 

0.3, 0.4, 0.5, 1.0, 2.0, 10.0. 
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2.3 Finite elastic cylinder embedded in an elastic layer 

2.3.1 The statement of problem 

The problem considered in this section is that of the torsion of a finite elastic 

cylinder which is embedded in an elastic layer of different shear modulus. We 

are assuming that an elastic cylinder of radius d and shear modulus jti is 

embedded in an elastic layer whose shear shear moduis is i2 as shown in 

Fig.2.3.1. It is also assumed that the cylinder is perfectly bonded to the 

surrounding elastic layer and a torque is applied to the cylinder, through a 

rigid disc of radius c< d, which is bonded to its top flat surface, and the flat 

bottom surface of the finite cylinder and the surrounding layer is fixed. In 

terms of cylindrical polar coordinates (r,O,z) , displacement field is given by 

=w--O and v=v(r,z) , hence we have the basic equations (2.1.2) and the 

solutions (2.1.3) for z(r,z). 

We also assume that the rigid disc bonded to the cylinder is turned 

through a small angle c and that. the height of the cylinder and the 

surrounding layer is b. We, therefore, consider the problem of determining the 

stress and displacement field in the cylinder and the surrounding layer with 

the following boundary and continuity conditions: 
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C 

p 1 

It z 

z=O 

z=b 

Fig.2.3. 1 

Torsion of an elastic cylinder bonded to a dissimilar elastic 

layer 



v( r,O) = 

oo(r,O) = 0 

= 0 

v(r,b) = 0 

r,b) = 0 

.i(d,z) = (d,z) 

ITrO(d,Z) = 

(r,z) -+ 0 , ø(r,z) -* 0 0r0(7',Z) -4 0, 
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o ≤ r < c, (2.3. 1) 

c ≤ r < d, (2.3.2) 

r > d , (2.3.3) 

r < d, (2.3.4) 

r > d, (2.3.5) 

o ≤ z ≤ b, (2.3.6) 

o ≤ z ≤ b, (2.3.7) 

r - w, (2.3.7a) 

where v , , and 0rO are the non—zero displacement and stress components 

in the cylinder while , •qz , and r9 are their counterparts in the 

surrounding layer. 

2.3.2. Derivation of the dual integral equations 

Conditions (2.3.7a) at infinity are identically satisfied if in the combination of 

the basic solutions assumed for (r,z) in section 2.2.2, we take, for the present 

problem, C=0 for all n. By letting C,=0 for all n. we reach the following 

combinations. 

For 0 ≤ r < d, we may assume the following representation for v 

t(r,z) = a0r( b—z)+ 1A( )sinh[( b—z)] ; e-4r] + E 1Bncos( nz)Ii( nr) 

(2.3.8) 

and for r > d we may assume that 

w 

(r,z)= 

where a0=e/b ,while A , B , Dn and are to be determined later. 

(2.3.9) 
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From equations (2.1.2) we have 

00 
r(7 )/j J[A() sinh[( b—z)]; (2.3.10) 

w 

(2.3.11) 

o(r,z)=—pi c2i'j[A() cosh[( b—z)] ; -+r] - /z, E B n8in( z)I1( T) —a0p 1r 

(2.3.12) 

0(r,z)=—p2JDnsin( z) Ki( nr) . (2.3.13) 

The conditions (2.3.4) and (2.3.5) may be satisfied by taking 

cos(  b) = 0 

which gives that 

= (2n-1)/2b , n = 1, 2,3,  (2.3.14) 

The condition ( 2.3.6) yields 

a0d(b—z)+ c7[ 1A()sinh[(b—z)] ;- dj 

Go 
=E 1[DK1(d) - 

and the condition (2.3.7) yields 

00 
J[A()sinh[( b—z)] ;.-+d]= E[BI2( d)+D K2( d)] C08( nZ), 

where i = 42/,41 

Since {CO8(flZ)}fl1,2,3... are orthogonal over the interval (0,b) and 

b cosh(b) f sinh[(b—z)]cos(z)dz =  , (2.3.17) 
0 ( 2+2) 

= + , (2.3.18) 

(2.3.15) 

(2.3.16) 
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equations (2.3.15) and (2.3.16) lead to the following equations 

w A()cosh( b)J1(d) a0d 
= 2  { f    I 
= GI(n) , (2.3.19) 

2 00 2A()cosh( b)J2(d) 
+ 2 d=G2(n). (2.3.20) 

Ii 

Solving equations (2.319) and (2.3.20) for Bn we obtain 

Bn = [—G2(n.)Ki(d) + G1(n)K2(d)]/A(n) , (2.3.21) 

where 

A(n) = - I2(d)K1(d) - iLt1(ed)K2(d) . (2.3.22) 

From equation (2.3.13) we find that the. condition (2.3.3) is identically 

satisfied and boundary conditions (2.3.1) and (2.3.2) will be satisfied if A() is 

the solution of the following dual integral equations 

c[1A()sinh(b) ;&+r]+E 1BnIi(nr) = 0 , r < c, (2.3.23) 

J[A()cosh(b) ;-3r] = —a0r , c ≤ r < d. (2.3.24) 

2.3.3 Reduction to integral equation of Fredliolin type 

Equations (2.3.23) and (2.3.24) have the same appearances as the equations 

(2.2.29) and (2.2.30) only with different expression of B. So we can use the 

same arguments as we did in section 2.2.3 to reduce the problem of solving 

the equations (2.3.23) and (2.3.24) to that . of solving an integral equation of 
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Fredhoim type of the second kind by means of an integral representation for 

Let qo(t) be the function defined in equation (2.2.31) and 

A() —  ao  
— cosh(  b) 5 [(t)+0(t) ; t -, fl  , (2.3.25) 

where 6(t) is a new unknown fuction defined in (O,w) such that t(t)=O for 

t>c. Defining GI(n) and G2(n) by the equations 

922 by equations (2.2.38) we obtain that 

(2.2.37) and flu, gig, 913, 921, 

B= —{[g 1(m)Ki( d)—i911(n)K2( d)]+[g22(n)Ku( 

— gi3()K2(end)}/A() . (2.3.26) 

Operating on equation (2.3.23) by z1 v(j1[r ; z] we get equations (2.2.41), 

(2.2.42) and 

where 

,Ic CD 
1Bsinh(x) = a I Ø(t)( Q(n,)8iflh( nt)sinh(1 nx)Jdt 

7 n1 n=i 

OD 

+ aof 'øo( t)[EQ(fl)8iflh(ent)8iflh(nX)] dt + aoR(x), (2.3.27) 

4 
= ibA(n) ( 1)K1(d)K2(d) 

R(x) = 2 (2)+ K2(Ed)sinh(z)  
n 1 A(n) 61 1 (2.3.28) 

Substituting from equations (2.2.42) and (2.3.27) into equation(2.2.41) we find 

that O(x) must satisfy the following integral equation 

(x)_f(t)M(zt)dt+fCq5(t)N(xt)dt = —Ax), 0 ≤ z ≤ c, (2.3.29) 

where 
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f(z) = go(x)_fo(t)M(x,t)dt +f 'øo(t)N(x,t)dt + R(z) , (2.3.30) 

M(x,t) = -- f , (2.3.31) 

00 
JV(x,t) = JQ(ri)sinh( nt)sinh( nz) . (2.3.32) 

For a large n., 

Q(fl)8iflh( nt)3i7ih(X) = O(exp[—en(2d—x—t)]) 

and hence the convergence of the series in equation (2.3.32) is fast 

Following the same procedures as we did in section 2.2.3, we find that 

the torque T necessary to produce the prescribed rotation of the rigid disc 

bonded to the cylinder is given by 

.icc4 c 

T = 2b + 4(2) -b-f tØ(t)dt . (2.3.33) 

It is worth mentioning here that the integral equation (2.3.29) can be 

derived from (2.2.46) in section 2.2, by letting a, the radius of the outer 

elastic cylindrical shell, tend to infinity. However, when d, the radius of the 

cylinder, tends to infinity, the expression for displacement v in (2.2.9) is 

unacceptable. 

2.3.4 Particular cases 

Case (a) 112 

Letting 112 -, OD  in the results of previous section , we get the results for 
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the case in which the elastic cylinder is embedded in a rigid layer as a 

limiting case . Since 

-1 
n) I1(d)K2(d) 

we obtain the expression for the kernel 

and 

w 

JV(z,t) = W n1 T1 

a5p2 -'w, 

sinh(t)sinh(x) 

R(x) = sinh(ç x  
0 

for P2 - . With these modifications the solution for this case is r.iven by 

equations (2.3.29) and (2.3.30). 

Case (b) 112 -' 0 

In this case , if we let 112 -, 0, we get the solution for the case in which 

the elastic cylinder is free of stress on its curved surface . And 

i-1  1  
n) I2(d)K1(d) 

hence the kernel JV(z,t) becomes 

N(x,t) = -.- ii 

as p2 -+ 0 

Siflh( nt)8i7ih( nX) 

and R(x)=0 , as p2-0 and these results are in agreement with Gladwell and 

Lemczyk [26] . 
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2.3.5 Numerical results and conclusions 

Numerical values of (z) for x = (0.0, 0.1 0.2, 1.0)c have been calculated 

from the integral equation (2.3.29) by reducing it to algebraic equations. And 

then the numerical values of the dimensionless ratio of torque T/ T0 have been 

calculated from equation (2.3.33) , where To=16 1ec3/3 is the torque for the 

corresponding Reissner—Sagoci problem for the semi—infinite space. The 

Simpson's rule is used to perform the numerical integrations and the Crout's 

factorisation method is used to solve the linear algebraic equations. In the 

numerical results the relative errors are controlled under 0.01. 

Numerical values of T/ T0 have been calculated for the following values 

of b/c , d/c and i= I2//1: 

b/c = 0.2 (0.1)0.5,1.0,2.0,10.0 ; d/c = 1.0(0.2)2.0,3.0(1.0)10.0 

= 0.0,0.5,2.0; and A -, u 

and these have been displayed in Fig.2.3.2 to Fig.2.3.5. 

From the figures, we observe that the torque T decreases as the height b 

of the cylinder increases and the torque increases as the radius d of the 

cylinder increases . We also observe that the ratio T/ T0 approaches 1 when 

d/c and b/c approach to infinity at the same time. We notice that the change 

in the values of T/ To when b (the height of the elastic cylinder and layer) 

increases from 2 to 10 goes on decreasing as it increases from 0 to w. 
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2.4 Semi—infinite composite elastic cylinder 

2.4.1 The statement of the problem 

In this section we consider the torsion problem of a semi—infinite elastic 

cylinder which is embedded in a semi—infinite elastic cylindrical shell with 

different shear modulus. 

We assume that a semi—infinite elastic cylinder of radius d and shear 

modulus #1 is embedded in a semi—infinite elastic cylindrical shell of outer 

radius a and shear moduis A2 as shown in Fig.2.4.1. It is assumed that curved 

outer surface of the semi—infinite composite elastic cylinder is stress—free. It is 

also assumed that the inner cylinder is perfectly bonded to the surrounding 

elastic medium and that a torque is applied to the inner cylinder , through a 

rigid disc with radius c<d , which is bonded to its top flat surface. In terms 

of cylindrical polar coordinates (r,O,z) , displacement field is given by u=w=O 

and v=v(r,z), hence we have the basic equations (2.1.2) and the solutions 

(2.1.3) for v(r,z). 

We assume that the rigid disc bonded to the inner cylinder is turned 

through an angle e and that the curved outer surface of the semi—infinite 

composite elastic cylinder is stress—free.. We therefore consider the problem of 

determining the stress and displacement field in the semi—infinite composite 

elastic cylinder with the following boundary and continuity conditions: 



Fig.2.4.1 

A problem of Reissner—Sagoci type for a semi—infinite 

composite elastic cylinder. 
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v( r,O) = 

oo(r,O) = 0 

= 0 

= 0 

id,z) = (d,z) 

0r0(d,Z) = rO(d,2) 

o ≤ r < c, (2.4. 1) 

c < r < d, (2.4.2) 

d < r < a, (2.4.3) 

Z ≥ 0 , (2.4.4) 

Z ≥ 0 , (2.4.5) 

z ≥ d ; (2.4.6) 

where v , , and 0r0 are the non—zero displacement and stress components 

in the inner semi—infinite cylinder while V , o- , and r0 are their 

counterparts in the surrounding medium. 

2.4.2 Derivation of the dual integral equations 

First of all, we select a combination of the basic solutions for v(r,z) and (r,z) 

from the basic solutions listed in equation (2.1.3). By means of these solutions 

we are able to reduce the problem of solving the mixed boundary value 

problem stated in section 2.4.1 to that of solving a pair of dual integral 

equations. 

For the inner semi—infinite cylinder , we assume that 

v(r,z)= J[ 1A() ez; -*r]+ 5c[ 1B(e)Ii(r); -*z], r < d, 

where % is Fourier cosine transform defined by 

5[ f(z) ; z = (2 00 --) f f(z)cos(z)dz, 
and 31.... 5, where 5-1 is the inverse of 5 c• 

(2.4.7) 
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For the surrounding medium we assume that 

(r,z)= Y[ 1{C()Ii(r) + D()Ki(r)}; - z}, d < r < a, (2.4.8) 

where A(), B(), C) and D() are to be determined later. 

Now from equations (2.1.2) we have 

-4r]+i Y[B()I2(r); e-iz] , (2.4.9) 

re(/h2 [G)I2(r) D()K2(r); e-4z], (2.4.10) 

- ji 3'[B()Ii(er) ; -+z] , (2.4.11) 

o(r,z)=p2 [C)Ii(r) + D()Kj(r) ; -iz]. (2.4.12) 

The conditions (2.4.5) and (2.4.6) give 

[1j  

—J[i4()ez ; , (2.4.13) 

-z] 

=c[A()ez ; - d] , (2.4.14) 

where i = 

Taking the inverse Fourier cosine transform of equations (2.4.13) and 

(2.4.14) and making use of the following result 

[ez ;z-] = (2)+ 2+C2)-I > 0, (2.4.15) 

we obtain 

G1() 

B()I2(d)—[G()I2(de)—D(e)K2(de)= 0 2(e) 

(2.4.16) 

(2.4.17) 
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where 

e f 0 W CA(C)Ji(dCGjffl=(T)I ) (2.4.18) 

2 W 2A(C)J2(d) 

)—(T) . 10 2 + C2  d (2.4.19) 

The condition (2.4.4) yields 

C)= K223  D() . (2.4.20) 
1 2 a 

Eliminating CU) from equations (2.4.16) and (2.4.17) we obtain 

= G1() , (2.4.21) 

= G2() , (2.4.22) 

hence 

B() = [iGl()Q2(e) - G2()Q1()}/A() , (2.4.23) 

where 

A() = —iIj(de)Q2()—I2(d)Qi() 

Qi() = K1(d) + 1 2 a 

Q2() = K2(d) K2jI2(d) . (2.4.24) 
1 2 a 

From equation (2.4.12) we find that the condition (2.4.3) is identically 

satisfied and that the conditions (2.4.1) and (2.4.2) will be satisfied if A() is 

the solution of the following dual integral equations 

J4[ tA() ;e_r}+(_)+ f £;1B()Ii(fr)d=cr , 0 ≤ r < c, (2.4.25) 

[A() ;-+r] = 0 c < r < d. (2.4.26) 
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2.4.3 Reduction to integral equation of Fredhoim type 

To reduce the problem of solving the dual integral equations (2.4.25) and 

(2.4.26) to that of solving an integral equation of Fredhiom type of the second 

kind , let us take 

C 

A() = (--)ef çô(t)sin(t)dt , (2.4.27) 

where 0(t) is a new unknown function defined in (0,w) such that 0(t)=O for 

t>c . The representation (2.4.27) satisfies the equation (2.4.26) identically 

By using the following result [43] 

tH(r-t) 
(2.4.28) 

r( r2-t2) 

where H(z) is the Heaviside function, then from equation (2.4.27) we obtain 

J1[ -'A(C) ;E-'r] = cr' Ai[t0(t) ;r] . (2.4.29) 

Substituting from equation (2.4.27) into equations (2.4.18) and (2.4.19) 

and using the integrals (2.2.35) and (2.2.36) we find that 

C 
2c 

= -j --Ki(d)f 0(t)sinh(t)dt , (2.4.30) 

C 

G2() = _-j--K2(d)f 0(t)sinh(t)dt . (2.4.31) 

By using equations (2.4.23) , (2.4.30) and (2.4.31) we obtain 

(l)f1B()Ii(r)de 

2 Ø(t)dt K1(d) Q2(fl-K2(de) (2.4.32) 
10 
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Operating equation (2.4.25) by x1 &,f jr ; x] , and using the results (2.2.39) and 

(2.2.40) we obtain 

where 

g(x)+fCg5(t)S(x,t)dt = f(x) 0 ≤ x ≤ c, (2.4.3 3) 

S(z,t)_f11(' Q2()—K2(d) Q1()  
- sinh(x)sinh(t)d 

f (z) = x1 ,f 1[r' ; r-+x)] = 2(--)x . (2.4.34) 

To calculate the torque T necessary to produce the prescribed rotation of 

the disc rigidly bonded to the inner semi—infinite cylinder , as given by 

condition (2.4.1) , we have to calculate the value of 

equations (2.4.11) and (2.4.27) , we get 

;-r] 

=p1 [-tA() ;-+r] 

2 Id ft C 
= - q(t)(t2-1,2)dt 

The required torque T is given by 

T = - 2f r2e(r,0)dr 

Using equation (2.4.35) we obtain 

T = 4j(2)'ftç6(t)dt 

Oz at z=O . Now from 

r < c . (2.4.35) 

(2.4.36) 

(2.4.37) 

In a particular case , when the outer semi—infinite cylindrical shell is of 

large radius compared to the radius of the inner semi—infinite cylinder , we let 

the radius a tend to infinity . As a -* w , Qi() -, K1(d) and Q2() -4 K2(d), 
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hence 

44 K1(d 2(d) S(x,t)=.(i_1)f )K sinh(t)sinh(x)d , (2.4.38) 

which is in agreement with [22]. 

2.4.5 Numerical results and conclusions 

Numerical values of q(x) for x = (0.0, 0.1 0.2, l.0)c have been calculated 

from the integral equation (2.4.33) by reducing it to algebraic equations. And 

then the numerical values of the dimensionless ratio of torque T/ T0 have been 

calculated from equation (2.4.36) , where To=16ji1cc3/3 is the torque for the 

corresponding Reissner—Sagoci problem for the semi—infinite elastic space. The 

Simpson's rule is used to perform the numerical integrations and the Crout's 

factorisation method is used to solve the linear algebraic equations. In the 

numerical results the relative errors are controlled under 0.01. 

Numerical values of T/ T0 have been calculated for the following 

combination of values of 

aid = 1. 1, 1.5 ; d/c= 1.0(1.0)10.0 ; = 0. 5, 1.0, 2.0 

and these have been displayed in Fig.2.4.2. From the figure we observe that 

for a fixed radius c of the rigid disc the torque T increases as the radius b of 

the inner semi—infinite cylinder increases while the ratio a/ d of the radius of 

outer semi—infinite cylindrical shell to the inner semi—infinite cylinder is kept 

the same . We also observe that the ratio T/ T0 approaches 1 when the radius 

of the inner semi—infinite cylinder approach infinity. 
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Fig.2.4.2 

Numerical values of ratio of the torques T/ T0 against d/c 

for 7i = 0.5, 1.0, 2.0; a/b=1.1,1.5. 



CHAPTER 3 

TORSION OF TWO NONHOMOGENEOUS 

ELASTIC LAYERS WITH 

PENNY-SHAPED FLAW AT THE INTERFACE 

3.1 Introduction 

In this chapter we investigate a torsion problem of two non—homogeneous 

isotropic elastic layers with a penny—shaped flaw at the interface of the layers. 

It is assumed that the flaw is in the form of an inclusion or a crack, and the 

rigidity of each of the two materials is a function of the variable z in 

cylindrical polar coordinate system in the form p(z) = p exp(az), where i and 

a are real constants. And it is also assumed that a rigid circular shaft is 

bonded to the free surface of the first layer just above the circular flaw, and 

the circular shaft is rotated through a small angle by applying a twisting 

moment of torque T and the rest of the surface z = —h1 is kept stress—free. 

The lower surface z = h2 of the second layer is either stress—free or rigidly 

fixed (see Fig.3.1.1). Four different cases are considered and the results for the 

corresponding problems of a layer and a half—space with a flaw at the 

interface are derived. The problem is reduced to solving a system of 

simultaneous Fredliolm integral equations which have been solved numerically. 

Numerical values of the physical quantities have been displayed graphically. 
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Fig.3.1.]. 

Torsion of two elastic layers by a rigid shaft. 
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Under the assumption of axial symmetry of the problem, we know that 

the displacement components ur and U vanish and u0 depends on r and z 

only. To simplify, let us denote it., u0 and u., by u, v and w respectively. 

Then we have displacement components zi=w=O and v=v(r,z). The 

stress—displacement relations are given by equations (1.6.3) and the equation of 

equilibrium is given by equation (1.6.5). So we have the following basic 

equations under consideration 

v=v(r,z), 

croz(r,z) = ji Ov Ov V.. (z) , crrg(r,z) = p(z) (.; — 

92v 1 ôv v 32v 1 Ov OLt 
ar2+r+az2_ O (3.1.1) 

where p(z) is the shear modulus of the medium and v(r,z), oO, and 0r,, are 

respectively the non—zero displacement and stress components in the polar 

cylindrical coordinates (r, O,z). 

We further assume that the two isotropic, non—homogeneous elastic 

layers, which occupy the regions R1(—hi ≤ z < 0) and R2(0 ≤ z < h2), have 

the moduli of rigidity in the form of 

p(z) = 
f peZ = p1(z) ; in Ri(—hi < z < 0), 

1 p2eaz = /22(Z) ; in R2(0 < z < h2), 
(3.1.2) 

are perfectly bonded except that there is a flaw (inclusion or crack) in the 

region 0 ≤ i" ≤ b, z = 0. It is also assumed that a rigid circular shaft of 

radius a units is bonded to the free surface of the first layer at z = —h1 and 

it is rotated through a small angle co by applying a twisting moment T to 

the shaft and the rest of the surface z = —h1 is kept stress—free. And the 

other surface z = h2 is assumed either stress—free or rigidly fixed. By using 

the Hankel transform on the third equation of (3.1.1) we obtain the following 
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general solution v for layer R1 and for layer R2 respectively 

v(r,z)=f[A()cosh(Siz)+B()sinh(5iz)] e12Ji(r) d 

—h1 < z < 0, (3.1.3) 

d 

o < z < h2, (3.1.4) 

where 

1 

= ( 2 + - ) 
4 

i = 1,2 

and A(e), B(), C) and D() are unknown functions to be determined such 

that the integrals in equation (3.1.3) and (3.1.4) are convergent and the 

boundary conditions are satisfied. 

Substitution of equations (3.1.2) and (3.1.3) into the second equation of 

(3.1. 1) yields 

o-0=11(z)f{[s1A()sinh(o1z)+o1B(e)cosh(51z)} - 21 "I Afflcosh(61z) 

+B()sinhSiz)]}e 12JJi(r)'d , —h1 < z < 0, (3.1.5) 

OZ=IL2(z)j{[S2 C(flsinh( 52Z)+ 52D(e) ch( 82Z)] - [ C() cosh( 52z) 

+)sinh(52z)]}e 2ZJi(r) d , 0 < z < h2, (3.1.6) 

where and denote the stress components in layer R1 and H2 

respectively. 

The common boundary and continuity conditions for the problem 

(excluding the conditions on flaw and the surface z=h2) are the following 
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r,—hi) = for 

o0z(r,—hi) = 0 

v(r,01 = 

= &oz(r,0+) 

o ≤ r < a, (3.1.7) 

a < r < w, (3.1.8) 

b ≤ r < m, (3.1.9) 

b ≤ r < m. (3.1.10) 

3.2 Indusion problem with the surface z = h2 stress—free. 

3.2.1 Statement of the problem 

In this section we will consider the problem stated in section 3.1 when the 

flaw is an inclusion and the surface r--=h2 is stress—free. In addition to the 

common conditions (3.1.7) to (3.1.10) we have 

v(r,0) = (r,0+) = eir 

&0(r,h2) = 0 

0 ≤ r ≤ b, (3.2.1) 

0 ≤ r < m, (3.2.2) 

where we have assumed that as a result of the application of twisting moment 

T on the shaft, the rigid inclusion on the interface will rotate through some 

unknown angle el. 
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3.2.2 Analysis 

In this case the continuity condition (3.1.9) may be replaced by 

v(r,0) = (r,0+), 0 ≤ r < w , (3.2.3) 

by using condition (3.2.1), which then will be satisfied if we take 

C) = (3.2.4) 

Using the boundary condition (3.2.2) along with equation (3.1.6), we get 

D() = E() C) (3.2.5) 

where 

[a2  —52] + +8,] exp(-2 52h2) 

__[a2 [ —52] + +62] ezp(-2 52h2) 

Applying conditions (3.1.7), (3.1.8), (3.1.10) and (3.2.1), the equations (3.1.3) 

to (3.1.6) give the following results: 

f"6Affl . cosh(6jhj) - B() sin.h(Sihi)]Ji(r)de = Er exp(— hi); 

0 ≤ r < a, (3.2.7) 

Go 
f{ [. cosh(81h1) + Si sinh(Sihi)] A() - [. 1. sinh(Sihi) + i.  

(3.2.6) 

51 cosh(S1h1)B(e)]}Ji(r)d = 0, a < r < m, (3.2.8) 

feA)Ji(r)d = er 

f[p A() + 81B()} J1(r)de = 0 

0 ≤ r ≤ b, (3.2.9) 

b < i' < aD, (3.2.10) 
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where 

= P = —82E)— . 2L (3.2.lOa) 

Let us introduce two functions 

P( )= [11 -cosh( 81h1) + Sisinh( 51h1)] A( ) - [-sinh( Sihi)+ 5icosh( 81h1)] B( ), 

Q()=p A() + 51B(e). (3.2.11) 

Observing that [43] 

f sin(  t) Ji(re)de = —r (t2_r2)4  H(t—r), (3.2.12) 

we find that equations (3.2.8) and (3.2.10) will be identically satisfied if we 

take 

P() —f(t)sin(t)dt 

b 
Q() =f b(t)sin(et)dt, (3.2.13) 

where 0 and 'ib are two new unknown functions. 

Using the expressions (3.2.11) we find that 

[A(e)cosh(5lhl)—B()3inh(Slhl)] = [1 + M1()]P() + N1()Q(), 

A() = M2(e)P() + [A + N2(6)] Q(6), (3.2.14) 

where 

1 

- ai( + a2( exp(-251h1) 1, 
a3( e) + a4) exp-2iihi) 

28 exp(-81h1)  
N1() = M2() = ea3() + a4() exp(-281h1) 

N2(e) a5( + a6()exp(-28ihi  
= a) + a4()exp-2blhl) A, (3.2.15) 
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with 

a1() = 81+ p 

a3() = a1()a5(), 

a5() = (51 + a1, 

a2(e) = 81 - p 

a4() = — a2()a6(), 

a6() = Si (3.2.16) 

Now substituting from equations (3.2.14) into equation (3.2.7), using 

equations(3.2.13) and the following integral representations 

2 (tTx 8ifl(X) dx 
Ji(r) = •:j:j0 

(Ji(r)sin(t)d =  t H(r - t)  

0 T/r2 - t2 

we obtain an Able integral equation 

r 

J: x  r2 2 { (x) + f ( t) £ '( x, t) dt + f O(t) Kj(, t) dt} dx 

= Eor2exp( .aihi), 

(3.2.17) 

(3.2.18) 

0 ≤ x ≤ a, (3.2.19) 

which when inverted gives 

a b 4 
q(x) + J' c6(t)Li(x,t)dt + f iP(t)Ki(x,t)dt co exp(— .. aihi)x 

Similarly, equation (3.2.9) gives 

a b 
A1(x) + f ç6(t)L2(x,t)dt + f i(t)K2(z,t)dt = 4 

0 ≤ x ≤ a. (3.2.20) 

0 ≤ x ≤ b, (3.2.21) 
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where 

L1(x, t) = . 1' M( ) sin( ex)sin( t) d, 
7r 0 

K1(x,t) = 2 f N•(e)8in(ex)sit)de i = 1) 2. (3.2.22) 

From equations (3.1.5) and (3.2.11) and observing J(x) = —Jj(x), we obtain 

r9z( r,—hi) = p1exp(— aihi) f q( t) dtf Jo( r)sin( t) d. (3.2.23) 

Now using the fact that the inner integral on the right side of the 

equation (3.2.23) is zero for t < r and (t2 - 2)l for t > r, we obtain 

o0z(r,hi) = piexp(— .c1h1) 4j- fa Ø(t)dt , 0 ≤ r < a. (3.2.24) 

t2-r2 

The moment T required to produce the required rotation co of the rigid shaft 

is given by 

T = —2?r fo r2UOZ(r,—hj) dr 

Substituting from equation (3.2.24) into (3.2.25), we find that 

T = 4iriiexp(— aihi) ft(t)dt. 

(3.2.25) 

(3.2.26) 

In a similar way, the proviso on the vanishing of the moment applied to the 

inclusion leads to 

b f fri1b(t)dt = 0. (3.2.27) 

Integrating by parts and performing the indicated differentiation in the 
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• equation (3.2.24), we obtain 

70z(r,-hi)=- A,  aqS(a) 1 a '( t) dt]e2P(_ .aihi), 

a2-r2 I t 2-r2 
0 ≤ r < a. (3.2.28) 

The stress o0(r,-hi) has a square root singularity at r = a and the constant 

O(a) is the measure of the strength of the singularity at the rim of the rigid 

shaft. In a similar way, we can show that 

croz(r,0) = _/ii[ bø(b) 1 tø'(t)  dt1+ ON, 

b2-r2 4/ t2-r2 

0 ≤ r < b, (3.2.29) 

where fl(r) is bounded, hence o has square root singularity at the edge of the 

inclusion, and 1(b) is the measure of the strength of the singularity. 

For numerical solution it is convenient to write the integral equations in 

dimensionless form. We, therefore, set 

1h1) ( an), 

aLi( ai, ar), 

.. Ki(a7,br), 

/Li 60a3. 

and 

T/ \ 
= 11 ezp'( 1 aihi)?.'(brJ), 

= L2(bij,ar), 
* 
K2(?j,r) = b K2(bij,br) 

(3.2.30) 

(3.2.31) 

Then the equations (3.2.20), (3.2.21), (3.2.26) and (3.2.27) can be written in 
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the following forms 

V17)+f +f ' (r)K(n,r)dr = n, 0 < n < 1, (3.2.3 2) 

)tI'(ii)+f 14(r)L(rj,r)d'r +f 'c!(r)K(mT)dr = /3 exp(aihj), 

0 < 77 < 1, (3.2.33) 

3 exp(aihi)f 1r4(r)dr = , (3.2.34) 

f 'rc!(T)dr = 0 (3.2.35) 

for the determination of 4(77), 'I'(i), /3 and T. It is easy to see 4(1) and (1) 

are the measure of the strength of stress singularities at the rim of the shaft 

and the edge of the inclusion respectively. 

3.2.3 Solution for the homogeneous case and numerical results 

When a1 = a2 = 0 , the problem considered above becomes a torsion problem 

of two homogeneous elastic layers with a penny—shaped inclusion at the 

interface of the layers which have the shear moduli pi and / 2 respectively. In 

this case, E(), M1 and Ni, i = 1,2; have the following forms 

E() = —tanh(h2), 

and 

(3.2.36) 
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2  
M1() = ezp(2hi)—' 

Ni() = M2() = 2exp(h1)  
(1—E)(exp(2hj)—) 

N2() = 1 1+ezp(2hi)  —, 
(1—E) exp(2hi)—(1+E) 1+i 

1+;E . (3.2.37) 

Numerical solution for this particular case has been obtained by solving 

the simultaneous Fredholm integral equations (3.2.32), (3.2.33) and (3.2.35) for 

4(n),IF(77) and /3, in which kernels L(x,t) and K(x,t) i = 1,2 are dependent 

on functions M(e), N1(), i = 1,2 given by equations (3.2.37). To do this, we 

partition the interval [0,1] into 20 equal subintervals and approximate the 

integral equations by a system of linear algebraic equations in 4(ji), I'(?7i) 

( with 77j= 0.0(0.05)1.0 ) and 0 for their determination. Then the values of 

T/ T0 are calculated by numerical integration of (3.2.34). The quadrature 

method has been employed to perform the numerical integrations of the kernels 

involved in the integral equations and the relative error is controlled under 

0.01. The same method is also used in sections 3.3, 3.4 and 3.5. 

The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0, 4,0; hi/a = 0.5, 1.0, 2.0; h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 

and IL2/P1 = 1J, = 0.5, 1.0, 2.0. The numerical values of T/To, 4(1), I'(1) and 

/3 have been displayed against b/a for various values of h2/hi for a 

combination of values of = 0.5, 1.0, 2.0 and hi/a = 0.5, 1.0, 2.0 in 

Fig. 3.2.1—Fig.3.2.36. 
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For Inclusion Problem, Numerical values of 4(1), (1), 
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For Inclusion Problem, Numerical values of (1), 111(1), 

M/Mo and /3 = Ei/EO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = IL2/Ii1 = 1.0, hi/a = 0.5. 
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For Inclusion Problem, Numerical values of (1), '(1), 
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For Inclusion Problem, Numerical values of 4(1), W(1), 
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For Inclusion Problem, Numerical values of 4(1), (1), 

M/Mo and fi = el/co against b/a for h2/hi = 0.25, 0.5, 

1.0, 2.0, 5.0 and = /2/p1 = 2.0, hi/a = 1.0. 
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For Inclusion Problem, Numerical values of 4(1), (1), 

M/M0 and 3 = €1/CO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = IL21AI = 0.5, hi/a = 2.0. 
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For Inclusion Problem, Numerical values of (1), (1), 

M/M0 and fi = el/co against b/a for h2/h1 = 0.25, 0.5, 

1.0) 2.0, 5.0 and i = P2/p1 = 1.0, hi/a = 2.0. 
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For Inclusion Problem, Numerical values of 
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3.2.4 Solution for the case h2 -, a and numerical results 

When h2 -, w , the problem considered becomes the problem of torsion of a 

nonhomogeneous elastic layer bonded to a nonhomogeneous elastic half-space 

with penny-shaped inclusion at the interface. From equations (3.2.6) and 

(3.2.lOa) we find that when h2 - CO 

P = -.- (2a2 -ai) + 02, 

and the solution for this case is given by the results of section 3.2.2. In a 

particular case of a1 = a2 = 0 , equations (3.2.37) give 

27  
M IM = ezp(2h1)- 

2exp(hi)  
= M2(e) = (exp(2hi)-) 

1+exp(2hi)  1 
N2(e) = exp(2h1)-(1-) 1+ 

(3.2.38) 

Numerical solution for this particular case has been obtained by solving 

the simultaneous Fredhoim integral equations (3.2.32), (3.2.33) and (3.2.35) for 

(i), () and /3 , in which kernels L(z,t) and K(z,) (i = 1,2) are 

dependent on functions M1(), N1() (i = 1,2) given by equations (3.2.38). 

Then the values of T/ T0 are calculated by numerical integration of (3.2.34). 

The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0, 4,0; hi/a = 0.2(0.1)0.6, 0.8, 1.0, 2.0, and /pi = = 0.5, 

1.0, 2.0. The numerical values of T/ T0, (1), l(1) and /3 have been displayed 

against b/a for various values of hi/a for = 0.5, 1.0, 20 in 

Fig. 3.2.37—Fig.3.2.48. 
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For Inclusion Problem, Numerical values of (1), (1), 
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For Inclusion Problem, Numerical values of 1(1), '(1), 

M/M0, fi = El/CO against b/a for hi/a, = 0.2, 0.3, 0.4, 

0.5, 0.6, 0.8, 1.0, 2.0 and = /i2/l = 1.0. 
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Figs. 3.2.45-3.2.48 

For Inclusion Problem, Numerical values of I(1), W(l), 

M/M0, fi = c1/6o against b/a for hi/a = 0.2, 0.3, 0.4, 

0.5, 0.6, 0.8, 1.0, 2.0 and j = i2/p1 = 2.0. 

1.0 

1.0 
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3.3 Crack problem with the surface z=h2 stress-free 

3.3.1 Statement of the problem 

In this section we will consider the problem stated in section 3.1 when the 

flaw is in the form of a crack and the surface z=h2 is stress-free. Hence we 

have the basic equations (3.1.1) and the general solutions (3.1.3) to (3.1.6). 

Besides the common conditions (3.1.7) to (3.1.10) there are the following two 

additional conditions: 

cr0z(r,0) = aoz(r,0+) = 0, 

= 0-

0 ≤ r < b, (3.3.1) 

0 < r < Co. (3.3.2) 

Using the condition (3.3.1)., the continuity condition (3.1.10) may be replaced 

by 

00z(r,0) = &o(r,0+), 0 ≤ r < w. (3.3.3) 

3.3.2 Analysis 

Now the conditions (3.3.2) and (3.3.3) will be satisfied by the using (3.1.5) 

and (3.1.6), if we take 

D() = E) C(6), (3.3.4) 

and 

C) = aiA() -2S 1B() (3.3.5) 

[a2-252E()] 

where E() is given by equation (3.2.6). 
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Then the conditions (3.1.7), (3.1.8), (3.1.9) and (3.3.1) lead to the 

following system of dual integral equations 

f[A()cosh(Sihi) — B(e)sin = f' exp(— i hi), 

0 ≤ r < a, (3.3.6) 

fe{[L cosh(Sihi) + Si simh(Sihi)] A() - [ 3inh(Sihi) + 

61 cosh(Sihi)B()]}Ji(r)d = 0, a < r < w, (3.3.7) 

Q3 { I r i   ]A() +  " I B(e)}Ji(r)d = 0 
0 L p(a2-262E) (a2-262E) 

b ≤ r ≤ w, (3.3.8) 

f [— a1-- A() + 51B()} Jj(re)d6 = 0 , 0 < r < b. (3.3.9) 

where A = P2/I1. 

The above system of dual integral equations may be rewritten in the 

following form (Note: here and what follows such functions as 0, 0, K1, L1, M1 

,etc. will be introduced, but it should be clear that they are 

(presumably) different in different cases): 

f{[1+M1()]P1()+N1() Qi()}Jj(r) d = CO exp( aihi), 

0 ≤ r < a, (3.3.10) 

fP1()Ji(re)d = 0, a < r < co , (3.3.11) 

f"•fM••)PI(•)+[A,+N2(•)]Ql(•)}Jl(r•)d• = 0, 0 ≤ r < b, (3.3.12) 

fQi(e)Ji(r)de = 0, b < < , (3.3.13) 
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where 

P1( )= [ cosli( Sih )+ 518inh( S/i.)] A( ) - [cii --.sinhz.( S jh)+ Sicosh( 81h1)] B( ), 

(3.3.14) 

and 

QIM = I  ]A() +  211 B(e), 
L i(a2-262E) (a2-262E) 

M1() = 6 ai()+a2() exp(-281h1)  
a3(e)+a4) exp-2b1h1) 1, 

5i (a 2-2S2E) exp (-51h1)  
N1() = -M2() = a3()+a4() exp(-bjhi) 

- j2a3(6)+a4I6) 
a2-282E)1-exp(-251h1)1 A1, 

N2()  exp(-26,h1) 

and a, i = 1,2,3,4; are the same as given by equations (3.2.16). 

Now if we take 

PIM   = f a Ø(t)sin(t)dt, 
0 

Qi() = f(t) [s'n(•t)  co8(t)]dt, 
o  

(3.3.15) 

(3.3.16) 

the integral equations (3.3.11) and (3.3.13) will be identically satisfied, whereas 

if we insert the above expressions for P1(e) and Q(e) into equation (3.3.10), 

we obtain the following integral equation: 

(x) + f Ø(t)Li(x,t)dt + f t)K1(x,t)dt = EOX exp(- aihi), 
0 0 

0 ≤ x ≤ a, (3.3.19) 
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where 

Li(x)t) = . f Mi( ) sin( t)sin( x) d, 

Ki(x,t) = 2 OD  fNi(e)[8it) cos(et)] sin(6x)d6. (3.3.20) 

Now to satisfy equation (3.3.12), let us first rewrite equation (3.3.18) in the 

form 

WIM =  + b'(t)]sin()dt - (b)sin(b), (3.3.21) 

and then substitute for P1(e) and Q(e) from equations (3.3.17) and (3.3.21) 

into equation (3.3.12) and use equations (3.2.17) and (3.2.18) to obtain the 

integral equation 

where 

fr  G() di  = 

r2 _ 2 

0 ≤ r < b, (3.3.22) 

G(n) = )u[?7 ' 1(j)] 4, f 5(t)dtJ'n M2()sin(t)sin()d 

+ f(t)dtfWn N2()[  cos(t)]sin()de.Ir (3.3.23) 

Clearly equation (3.3.22) will be satisfied if G() = 0. So if we let G(i) = 

0 and integrate (3.3.23) with respect to q from 0 to z for 0 < x < b and 

then divide by x, we obtain: 

a b 
)i1(x)+f b(t)L2(z,t)dt+f Ø(t)K2(x,t)dt = 0, 0 ≤ x ≤ b, (3.3.24) 
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where 

L2(x,t) = )l.  

K2(x,t) = )[  

cos( x)]sin( t) d, 

cos( x)} [8iflt cos( at)] d. (3.3.25) 

The boundary value of shear stress o9(r,—h1) is still given by equation 

(3.2.28). The value of the shear stress o0(r,0), r > b at the interface of the 

two materials is given by 

z(r,O) = - 'a, A()]Ji(er)d. (3.3.26) 

And substituting for A() and B() from equation (3.3.14), (3.3.15) and 

using equations (3.3.17), (3.3.18), (3.3.21) and (3.2.18), we obtain 

o9z(r,0) = bi/i(b)  + R(r), r > b, (3.3.27) 

V r2 - b2 

where 

R( r) = itif [M2( ) P1(e) + N2( ) Qi( )] Ji(er) d 

+ Auif w J1(&)df [ç + b'(t)]sinW)dt, (3.3.28) 
0 0 

is bounded, while o0(r,—h1) and T, the torque required to rotate the rigid 

shaft through a small angle c, have the same expressions as given by 

equations (3.2.28) and (3.2.26). Hence q5(a) and 1(b) are the measure of the 

strength of the stress singularity at the rim of the shaft and at the edge of 

the crack respectively. 

By using the same transformations as given in (3.2.30) to get 

dimensionless form, the equations (3.3.19), (3.3.24) and (3.2.26) can be 

rewritten in the following forms 
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+f'(T)L(mT)dr +f 1 (T)K7,T)dr = , ü < i, (3.3.29) 

Ai)+f 1 (r)L(mr)dr+f 1 (r)K(mr)dr= 0 , 0 < < 1, (3.3.30) 

1 T 
3 exp(aihi)f r4(r)dr = , (3.3.31) 

0 

for the determination of 4(77), T(i7) and T. Again, it is easy to see that 4(1) 

and I'(1) are the measure of the strength of stress singularity at the rim of 

the shaft and the edge of the crack respectively. 

3.3.3 Solution for the homogeneous case and numerical results 

As in section 3.2.3, when a = a2 = 0 , the problem considered above 

becomes a torsion problem of two homogeneous elastic layers with a 

penny-shaped crack at the interface of the layers which have the shear moduli 

/ij and P2 respectively. In this case we have 

and 

E() = -tanh(h2), 

2(1+7iE)  

= (1-e xp ( 2h1)1+ 

—2iAexp(2chi)  
Ni() = - M2() = (1-E)exp(2hi)-(1+E 

7iE( 1-.ezp(2h1))  

N2() = (1—e(2hi)-(1+E) 1+ 

(3.3.32) 

(3.3.33) 

Numerical solution for this particular case has been obtained by solving 
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the simultaneous Fredhoim integral equations (3.3.29) and (3.3.30) for (i) and 

(i), in which kernels 14(x,t) and K(rc,t) (i = 1,2) are dependent on 

functions M1(), N(e) (i = 1,2) given by (3.3.33). Then the values of T/ T0 

are calculated by performing the numerical integration in (3.3.31). 

The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0, 4,0; hi/a = 0.5, 1.0, 2.0; h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 

and i2/pi = A = 0.5, 1.0, 2.0. The numerical values of T/ T0, 4(1) and (1) 

have been displayed against b/a for various values of h2/hi for a combination 

of values of = 0.5, 1.0, 2.0 and hi/a = 0.5, 1.0, 2.0 in Fig. 3.3.1—Fig.3.3.27. 
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Figs. 3.3.1-3.3.3 

For Crack Problem, Numerical values of (1), '(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

A = 1U2/ILl = 0.5, hi/a = 0.5. 

1.0 
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Figs. 3.3.4-3.3.6 

For Crack Problem, Numerical values of 4(1), ( 1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= 122/Pi = 1.0, hi/a = 0.5. 
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Figs. 3.3.7-3.3.9 

For Crack Problem, Numerical values of 4(1), iJJ(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= /L12//.ii = 2.0, hi/a = 0.5. 

1.0 
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Figs. 3.3.10-3.3.12 

For Crack Problem, Numerical values of 4(1), I'(1) and 

M/M0 against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= p2/1 = 0.5, hi/a = 1.0. 



107 
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0.0 3.0 1.0 

Figs. 3.3.13-3.3.15 

For Crack Problem, Numerical values of 4(1), t(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

=. /22/pi = 1.0, hi/a = 1.0. 
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Figs. 3.3.16-3.3.18 

For Crack Problem, Numerical values of 4(1), 'P(l) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= P2//si = 2.0, hi/a = 1.0. 
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For Crack Problem, Numerical values of 4(1), 1l(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= p/p = 0.5, hi/a = 2.0. 
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Figs. 3.3.22-3.3.24 

For Crack Problem, Numerical values of ( 1), W(1) and 

AI/M0 against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= IL21AI =  1.0, hi/a = 2.0. 
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Figs. 3.3.25-3.3.27 

For Crack Problem, Numerical values of 4(1), I'(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= /L2/,LI1 = 2.0, hi/a = 2.0. 

i.0 
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3.3.4 Solution for the case h2 -, a, and the numerical results 

As in section 3.2.4, when h2 -+ w , the problem considered in section 3.3.2 

becomes the problem of torsion of a nonhomogeneous elastic layer bonded to a 

nonhomogeneous elastic half—space with penny—shaped crack at the interface. 

From equation (3.2.6) we find that E -+ —1 when h2 -' w . The solution for 

this case is given by the results of section 3.3.2. by taking E = —1. 

Particularly, if a = a2 = 0 we have 

where 

= —2(/i - 

Ni() = M2() = 2exp(hi)S(), 

N2ffl = [exp(2hi)-1]S() - A, 

S() = [(p - 1) + (/2 + 1)exp(2hi)] 1 

(3.3.34) 

Numerical solution for this particular case has been obtained by solving 

the simultaneous Fredholm integral equations (3.3.29) and (3.3.30) for 4) and 

W(ij), in which kernels L(x,t) and K(x,) (i = 1,2) are dependent on 

functions M(e), N1(), (i = 1,2) given by equations (3.3.34) Then the values 

of T/ T0 are calculated by numerical integration of ( 3.3.31). 

• The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0, 4,0; hi/a = 0.2(0.1)0.6, 0.8, 1.0, 2.0, and A21A, = = 0.5, 

1.0, 2.0. The numerical values of T/ T0, 4(1) and W(1) have been displayed 

against b/a for various values of hi/a for = 0.5, 1.0, 2.0 in 

Fig. 3.3.28.—Fig.3.3.36. 
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Figs. 3.3.28-3.3.30 

For Crack Problem, Numerical values of (1), '(1) and 

M/Mo against b/a for hi/a = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 

1.0, 2.0 and = /.12//il = 0.5. 
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mu2/mull . 0 

Figs. 3.3.31-3.3.33 

For Crack Problem, Numerical values of (1), W(1) and 

M/Mo against b/a for hi/a = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 

1.0, 2.0 and A = Ji2//21 = 1.0. 
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Fig.3.3.34-3.3.36 

For Crack Problem, Numerical values of El), '11(1) and 

M/Mo against b/a for hi/a = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 

1.0, 2.0 and 7i = IL2/J1 = 2.0. 
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3.4 Inclusion problem with the surface z = h2 rigidly fixed. 

3.4.1 Analysis 

In this section we will consider the problem stated in section 3.1, when the 

flaw is an inclusion and the surface z--h2 is rigidly fixed. Hence, in addition 

to the common conditions (3.1.7) to (3.1.10) we have the following conditions 

t(r,0) = (r.0) = ir 

1(r, h2) = 0 

0 ≤ r ≤ b, (3.4.1) 

o ≤ r < w, (3.4.2) 

where we have also assumed that as a result of the application of torque T on 

the shaft the rigid inclusion will rotate through some unknown small angle e. 

The combination of the conditions (3.1.9) and (3.4.1) yield 

v(r,0) = (r.0) 0 ≤ r ≤ w. (3.4.3) 

The conditions (3.4.2) and (3.4.3) will be satisfied by the general solutions 

(3.1.3) and (3.1.4) if we choose 

D() = 

where 

(3.4.4) 

= - coth(52h2). (3.4.5) 

If we replace E in the equation (3.2.6) by E1 (consequently all functions 

involving E will be changed) then most of the discussion in section 3.2 is valid 

in this case. We indicate the difference in the following. 

In this problem the boundary and continuity conditions (3.1.7), (3.1.8), 

(3.4.1) will lead to equations (3.2.7), (3.2.8) and (3.2.9) while the condition 

(3.1.10) gives 
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fe{[ a -82E1)- }A()+8iB()}Ji(r)de=O, b < r < aD . (3.4.6) 

As we have done in section 3.2, the equations (3.2.7), (3.2.8), (3.2.9) and 

(3.4.6) can be reduced to solution of the system of integral equations (3.2.20) 

and (3.2.21) for the unknown functions g5(t) and &(t); while expressions 

(3.2.15), (3.2.16) and (3.2.22) are valid if we replace E in equation (3.2.l0a) 

by E1, which is given by equation (3.4.5). The transformations (3.2.30) and 

(3.2.31) lead us to the equations (3.2.32), (3.2.33), (3.2.34) and (3.2.35) for the 

determination of 4(7/), W(i7), fi and T for this problem. 

3.4.2 Solution for the homogeneous case and numerical results 

When a1 = a2 = 0 , the problem we considered becomes a torsion problem of 

two homogeneous elastic layers with a penny-shaped inclusion at the interface 

of the layers which have the shear moduli p and 

surface z = h2 fixed. In this case we have 

and 

L2 respectively with the 

= -coth(h2), (3.4.7) 

2i  
M1() = exp(2 hi)-i' 

M2(e) = 2exp(h i)  
=  (1-E1)(exp(2hj)-i) 

1+exp(2hi)  1 

112(e) = (1-E1) exp(2Chi)-(1+Ei) 1+ 

1+Ei 

71 = 1-71E1 
(3.4.8) 
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Numerical solution for this particular case has been obtained by solving 

simultaneous Fredholm integral equations (3.2.32), (3.2.33) and (3.2.35) for 

4), 'I'(i) and fi , in which kernels L(x,t) and K(z,t) (i = 1,2) are 

dependent on functions M1(), N1() (i = 1,2) given by equations (3.4.8). 

Then the values of T/ T0 are calculated by the numerical integration of 

(2.3.34). 

The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0,, 4,0; hj/a = 0.5, 1.0, 2.0; h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 

and I2/I1 = A = 0.5, 1.0, 2.0. The numerical values of TI To, 4(1), W(1) and 

/9 have been displayed against b/a for various values of h2/h1 for a 

combination of values of = 0.5, 1.0, 2.0 and hi/a = 0.5, 1.0, 2.0 in 

Fig,3.4.1—Fig.3.4.36. 
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Figs. 3.4.1-3.4.4 

For Inclusion Problem, Numerical values, of 4(1), W(1), 

M/M0 and fl = 1/co against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = Ji2/p1 = 0.5, hi/a = 0.5. 
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Figs. 3.4.5-3.4.8 

For Inclusion Problem, Numerical values of 4(1), W(l), 

M/Mo and /3 = E'/CO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and ji = P2/pi = 1.07 hi/a = 0.5. 
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Figs. 3.4.9-3.4.12 

For Inclusion Problem, Numerical values of (1), '11(1), 

M/Mo and fi = El/CO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and = /i2/U1 = 2.0, hi/a = 0.5. 
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Figs. 3.4.13-3.4.16 

For Inclusion Problem, Numerical values of 

M/Mo and /9 = c1/co against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = p2/pt = 0.5, hi/a = LU. 
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Figs. 3.4.17-3.4.20 

For Inclusion Problem, Numerical values of 4(1), '( 1), 

M/Mo and fi = /Eø against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and 7i = /L2/1 = 1.0, hi/a = 1.0. 
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Figs. 3.4.21-3.4.24 

For Inclusion Problem, Numerical values of 41(1), 'P(1), 

M/Mo and fi = Ei/CO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and T = t2/Ji = 2.0, hi/a = 1.0. 
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Figs. 3.4.25-3.4.28 

For Inclusion Problem, Numerical values of 4(1), Ir(1), 

M/Mo and 3 = el/co against b/a for h2/hi = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = 1'2/pi = 0.5, hl/a, = 2.0. 
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For Inclusion Problem, Numerical values of 4(1), '(1), 

M/Mo and /3 = el/co against b/a for h2/hi = 0.25, 0.5, 

1.0, 2.0, 5.0 and A =A21A,= 1.0, hi/a = 2.0. 
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Figs. 3.4.33-3.4.36 

For Inclusion Problem, Numerical values of (1), 111(1), 

M/Mo and 3 = Ei/EO against b/a for h2/h1 = 0.25, 0.5, 

1.0, 2.0, 5.0 and A = A21AI = 2.0, hi/a = 2.0. 
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3.5 Crack Problem with the surface z=h2 rigidly fixed 

3.5.1 Analysis 

In this section we will consider the problem stated in section 3.1 when the 

flaw is a crack and the surface z--h2 is rigidly fixed. Hence we have the basic 

equations (3.1.1) and general solutions (3.1.3) to (3.1.6). Besides the common 

conditions (3.1.7) to (3.1.10) there are two additional conditions given by 

ooz(r,01 = a0(r,0+) = 0, 0 ≤ r < b, (3.5.1) 

i(r,h2) = 0. 0 ≤ r < w. (3.5.2) 

Using the condition (3.5.1), the continuity condition (3.1.10) may be replaced 

by 

oèz(r,0) = &oz(r,0+), 0 ≤ r < w. (3.5.3) 

In this case the conditions (3.5.2) and (3.5.3) will be satisfied by the general 

solutions (3.1.5) and (3.1.6), if we take 

D() = E1() C(), 

and 

(3.5.4) 

G) = aiA(t) -2S1B() (3.5.5) 

[ a2-282E1( ] 

where E1() is given by equation (3.4.5). 

If we replace E in the equation (3.4.5) by E1 (consequently all functions 

involving E will be changed) then most of the discussion in section 3.3 is valid 

in this case. We indicate the difference in the following. 
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In this problem the boundary and continuity conditions (3.1.7), ( 3.1.8), 

(3 5.1) will lead to equations (3.3.6), (3.3.7) and (3.3.9) while the condition 

(3.1.9) gives 

-  ai lA() +  25  B(e)}Ji(r)d = 0, 
L (a2-2S2Ei)i (a2-2a2Ei) 

0≤r≤b, (3.5.6) 

As we have done in section 3.3, the equations (3.3.7), (3.3.7), (3.3.9) and 

(3.5.6) can be reduced to the solution of the system of integral equations 

(3.3.19) and (3.3.24) for unknown functions q5(t) and &(t); while expressions 

(3.3.16), (3.2.16) and (3.3.25) are valid if we replace E in equation (3.2.lOa) 

by E1, which is given by equation (3.4.5), only to keep in mind that in every 

function involving E in section 3.3, E should be replaced by E1 for this 

problem. 

The transformations (3.2.30) will lead us to the equations (3.3.29), 

(3.3.30) and (3.3.31) for the determination of 4), '(i) and T for this 

problem. 

3.5.2 Solution for the homogeneous case and numerical results 

When a = a2 = 0 , the problem we considered becomes a torsion problem of 

two homogeneous elastic layers with a penny—shaped crack at the interface of 

the layers which have the shear moduli p' and A2 respectively with the surface 

z = h2 fixed. In this case we have 

E1(e) = —coth(h2), (3.5.7) 
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and 

M1() =  2(1+E1)  

( 1--AEI) exp (2 h1)-(1+E1)' 

N1() = -M2() =  -2E1 exp(h1)  

(1-7E1) exp(2hi)-(1-i--iEi) 

N2() =  7iEi(1-exp(2h1))  

(1-iiEi)exp(2hi)-(1+Ei) 1+ 
(3.5.8) 

Numerical solution for this particular case has been obtained by solving 

simultaneous Fredhoim integral equations (3.3.29) and (3.3.30) for 4(i) and 

41(77), in which kernels L(x,t) and .K(x,t) (i = 1,2) are dependent on 

functions M1(), N1() (i = 1,2) given by equations (3.5.8). Then the values 

of T/ To are calculated by the numerical integration of (3.2.34). 

The numerical values for this problem have been calculated for b/a = 0.0 

(0.1) 1.0, 2.0, 3,0, 4,0; h1/a = 0.5, 1.0, 2.0; h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 

and 2/p1 = T = 0.5, 1.0, 2.0. The numerical values of T/To, (1) and T(l) 

have been displayed against b/a for various values of h2/hi for a combination 

of values of T = 0.5, 1.0, 2.0 and hi/a = 0.5, 1.0, 2.0 in Fig. 3.5.1—Fig.3.5.27. 
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Figs. 3.5.1-3.5.3 

For Crack Problem, Numerical values of 4(1), 111(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

IL = A21 AI = 0.5, hi/a = 0.5. 
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Figs. 3.5.4-3.5.6 

For Crack Problem, Numerical values of 4(1), IF(l) and 

M/M0 against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= p2//Li = 1.0, hi/a = 0.5. 
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Figs. 3.5.7-3.5.9 

For Crack Problem, Numerical values of 4(1), '(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= /2/L1 = 2.0, hi/a = 0.5. 
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Figs. 3.5.10-3.5.12 

For Crack Problem, Numerical values of 4(1), ilr(1) and 

M/Mo against b/a for h2/hi = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= p2//il = 0.5, hi/a = 1.0. 
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For Crack Problem, Numerical values of 4(1), T(I) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

A = p2/iii = 1.0, hi/a = 1.0. 
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For Crack Problem, Numerical values of 41(1), (l) and 

M/M0 against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

= I2/Pi = 2.0, hi/a = 1.0. 
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For Crack Problem, Numerical values of 4(1), l'(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

A = JL2//.il = 0.5, hi/a = 2.0. 
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Figs. 3.5.22-3.5.24 

For Crack Problem, Numerical values of (1), 'P(1) and 

M/M0 against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 

1.0, hi/a = 2.0. 
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For Crack Problem, Numerical values of 4(1), '(1) and 

M/Mo against b/a for h2/h1 = 0.25, 0.5, 1.0, 2.0, 5.0 and 
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3.6 Some comment on the solutions 

For two layers case,we make the following observations from the graphs 

for the inclusion problem: the strength of the singularity at the rim of the 

rigid shaft and the moment required to rotate the shaft increase as b/a 

increases and decrease as h2/h1 increases but near 1.0 < b/a < 2.0 they 

approach 1; the strength of the singularity at the edge of the inclusion 

increases as h2/h1 decreases and reaches a maximum near b/a = 1; the ratio 

el/co = /3 decreases as b/a or h2/h1 increases. 

For the crack problem we notice the following: the strength of the 

singularity at the rim of the shaft and moment required to rotate the shaft 

decrease as b/a or h2/h1 increases; the strength of the singularity at the edge 

of the crack behaves in the same manner as in the inclusion problem. 

For layer and half—space case, we make the following observations from 

the graphs for the inclusion problem: the strength of the singularity at the rim 

of the rigid shaft and the moment required to rotate the shaft increase as b/a 

increases and decrease as hi/a increases ; the singularity at the edge of the 

inclusion increases as hi/a decreases and reaches a maximum near b/a = 1; 

the ratio /Eø = /3 decreases as b/a or hi/a increases. 

For the crack problem we notice the following: the singularity at the rim 

of the shaft and the moment required to rotate the shaft decrease as b/a 

increases and increase as hi/a increases but near b/a = 1 they increase as hi/a 

increases to 1; the singularity at the edge of the crack behaves in the same 

manner as in the inclusion problem. 



CHAPTER 4 

GRIFFITH CRACK AT THE INTERFACE 

OF TWO ORTHOTROPIC ELASTIC LAYERS 

4.1 Introduction 

The study of Griffith crack problems in the mathematical theory of elasticity 

originated in the classical work of Griffith [46]. A crack occupying the line 

segment 

zI=o, —c≤ x≤ C, 

in the x—plane is called a Griffith crack. 

In 1946, Sneddon and Elliot [47] considered the problem of determining 

the distribution of stress in the neighborhood of a Griffith crack which is 

subjected to an internal pressure varying along the length of the crack. They 

reduced the problem to a half—plane mixed boundary value problem and solved 

it by using Fourier transform methods. Green and Zerna [2] reduced the 

Griffith crack problem to the filbert problem. Willmore [48] solved the 

problem of two collinear Griffith cracks in an isotropic material by means of 

elliptic functions when a uniform pressure acts normally on the crack surface. 

Tranter [49] considered the problem of a normally varying pressure on collinear 

Griffith cracks. 

Koiter [50], and England and Green [51] considered the problem of 

determining the stress field caused by an infinite row of collinear Griffith 

cracks of equal length when each crack is subject to the same constant 
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pressure. Sneddon and Srivastav [52] considered the same problem by assuming 

a varying pressure on each crack. 

Lowengrub [53] solved the Griffith crack problem in a strip with 

stress—free edges, when the crack is parallel to the edges of the strip. Sneddon 

and Srivastav [52] investigated the problem of Griffith crack in a strip in 

which crack is perpendicular to the edges of the strip. Lowengrub [54] 

considered the distribution of stress in the neighborhood of external crack in 

an elastic plane. 

The problem of radial cracks originating at the boundary of an internal 

circular hole in an infinite elastic plane was solved by Bowie [55]. The 

problem of determining the distribution of stress in the vicinity of a star crack 

formed by the intersection of a number of Griffith cracks was solved by 

Westman [56]. 

Williams [57] considered the situation in which a Griffith crack is present 

at the interface of two isotropic semi—infinite planes of dissimilar materials, he 

found that the analytic solution of stresses has a peculiar behavior near the 

tip of the interface crack where the stresses undergo a rapid reversal of sign. 

The oscillatory character takes the form rsim (or cos) of the argument 

Elog(r/a) where r is the radial distance from the crack border, a is the crack 

size and e is a bimaterial constant depending upon the elastic properties of the 

adjoining materials. This behavior was also studied by Sih and Rice [58] , they 

formulated the the problem of stress state near the crack—tip and derived a 

formula for the stress intensity factor for the problem considered by Williams. 

Erdogan and Gupta [59, 60], analyzed the plane and antiplane problems of 

stress distribution of multi—layered composites with a flaw by reducing them to 

a system of singular integral equations. They developed a direct approach to 

find the approximate solutions of singular integral equations of the first 
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(second) kind by using Chebyshev (Jacobi) polynomials. Lowengrub and 

Sneddon [61] solved the problem of a Griffith crack at the interface of two 

bonded dissimilar elastic half—planes by Fourier transforms and reduced the 

problem to a set a dual integral equations, they used Muskhelishvili's method 

to solve the system of singular integral equations. Dhaliwal [62] , Mohapatra 

and Parhi [63] , Satpathi and Parhi [64] and Parihar and Lalitha [65] 

considered the Griffith crack problem in an orthotropic medium. Recently 

Dhaliwal, Saxena and Rokne [66] considered the crack at the interface of an 

orthotropic elastic layer bonded to a dissimilar orthotropic elastic half—space. 

In this chapter we will consider the problem of determining the state of 

stress near a Griffith crack located at the interface of two dissimilar 

orthotropic elastic layers. By means of Fourier transforms the problem is 

reduced to a system of singular integral equations. These equations are further 

reduced to a system of simultaneous algebraic equations by using Jacobi 

polynomials approximation. Numerical methods are employed to determine the 

stress intensity factors, which have been displayed graphically. 

4.2. Basic equations and their solution 

As discussed in chapter 1, under the assumptions of plane strain in an 

orthotropic medium when the cartesian coordinate axes are chosen to coincide 

with the principle axes, we know that the displacements u, UY depend on x 

and y only, while u vanishes. To simplify, let us denote u, iz and u by u, 

v and w respectively, then we have 

U = u(x,y) , v = v(x,y) , w = 0 , (4.2.1) 

and the stress—displacement relations are given by 
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au ôv 
o•xx= cil + 

ôu ôv 
Oyy=  CIWX + C22 

rOV Ott1 
o•xy= C66 L + (4.2.2) 

where cu 's are the elastic moduli of the orthotropic medium. The equations of 

equilibrium , in the absence of body forces, may be expressed as follows 

02U 02 U 02 V 

  + C669y 2 + (cia + C66)Oxay   = 0 , (4.2.3a) 

82V 82 V 02 U 

C66OX2 + C2Z + (C12 + c65) OX0 Y  = 0 . (4.2.3b) 

When the displacement u is anti—symmetric and v is symmetric with 

respect to y—axis (this is the case when the crack is subjected to symmetric 

normal pressure and anti—symmetric shear with respect to y—axis considered in 

this chapter), by applying the Fourier sine transform with respect to z to 

equation (4.2.3a) and the Fourier cosine transform with respect to x to 

equation (4.2.3b) respectively we obtain 

(c66 a2 a 
- cu 2) - (c + c66) = 0, 

a 02 
+ c66) + (C22 02 - c66 2) ij. = 0, (C 12 

FY 
(4.2.4) 

where Tis is Fourier sine transform of tt and is the Fourier cosine transform 

of V. 
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u(x,y)= s[(Aae+Bje ky Yy in R. (4.2.5) 

v(x,y)= c[(Ajaje —Bae-43.y +Cj7e6. y —De - ) ; -, x] 

in R, (4.2.6) 

where s , 2 c are the Fourier sine and cosine transforms respectively, while 

uj and Vj (j=1,2) are the displacements for the layer R; A, B, Cj and D 

(j=1,2) are unknown functions of , and 

C66j 13j C11j flu' C66j Sj - Ciij 61 

Cl2j + C66j ' 7i  Cij + C66j 

(fl, S) = { ij 

13 - 4.c 11 .c22 .c 6 

2. C22j C66j 

j=  CijC33j - 2cl3j•C44j - C 3 (4.2.7) 

Substituting from equations (4.2.5) and (4.2.6) into (4.2.2) , we obtain 

o(x,y)= +b Cie 8 in R, 

o(x,y)= in R, 

(4.2.8) 

where oj and o,j are stress components for the region R (j=1,2) and 

aj = C2ij + aj fli C22j , bj = C2 1j +7j5j C22j 

d = C66j (S - yj) , ej = C66j (fl - aj) j = 1,2 . (4.2.9) 

4.3. Statinent of the problem and derivation of the singular integral equations 

We assume that two dissimilar orthotropic elastic layers, which occupy the 

regions Rj (0 ≤ y ≤ h2) and R2 (—hi ≤ y ≤ 0) respectively, are perfectly 
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bonded except that there is a crack in the interval —a < x < a, y=O (see 

Fig 4.3.1). It is also assumed that the boundaries y = —h1 and y = h2 are 

stress—free, and the surfaces of the crack are subjected to symmetrical normal 

pressure and anti—symmetrical shear with respect to y--axis. Hence the problem 

of determining the stress and displacement field is subjected to the following 

boundary and continuity conditions: 

yyl(x,0)=oyy2(z,0)=pl(x), pi(—x)=pi(x); I xJ < a, (4.3.1) 

o-xyj(x,O)=o2(x,O)=p2(z), p2(—x)=—p2(x); I xI < a, (4.3.2) 

ui(x,O) = u2(x,0) , vi(x,O) = v2(x,0) , lxi > a, (4.3.3) 

oi(x,O )=oyy2(x,O), qxy1(x,O+)=o!xy2(x,Oi , I xJ > a, (4.3.4) 

and 

o-7 i(z,h2) = 0 

,2(z,—hi) = 0 

oxy1(x,h2) = 0 

o2(x,—h1) = 0 

- < x < CO , (4.3.5) 

< x < CO . (4.3.6) 

With the help of conditions (4.3.1) and (4.3.2), the conditions (4.3.4) may be 

replaced by 

yyi(z,0)=yy2(x,O, xy1(x,0 )=xy2(X,0 ), ---CO < x < Co. (4.3.4a) 

The conditions (4.3.4a) yield 

ai(Ai + B1) + b1(Ci + D1) = a2(A2 + B2) + b2(C2 + D2) , (4.3.7) 

- B1) + di(Ci - Di) = e2(A2 - B2) + d2(C2 - D2) . (4.3.8) 

While the boundary conditions (4.3.5) and (4.3.6) give 

aiAie1'2 + aiBie1'2 + bjCie 1kh 2 + biDie 1kh 2 = 0 (4.3.9) 

eiA ie 1h12 - eiBie_3lh2 + dlCie6lh2 - dlDle_6lh2 = 0 , (4.3.10) 

a2A2e2'1 + a2B2e2"1 + b2C2e2hh1 + b2D2e821 = 0 (4.3.11) 

e2A2e 2"1 - e2B2e21 + d2C2e_62h1 - d2D2eö2Vl1 = 0 . (4.3.12) 
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Y 

I y=h2 

  Y=O 

Fig.4.3.1 

Griffith crack at the interface of two dissimilar 

orthotropic elastic layers. 
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Solving equations (4.3.7) to (4.3.12). we get 

and 

where 

and 

CIM = 

D1() = 

= 

D2() = 

= 

111A1e + 112B1e 13j6i 

h2 + 111B1e 31+61) ,h2 

l21A2e h1 + l22B2e 2'2 ,h1 

l22A2e1322 E,h1 + l2iB2e 22 h1 

131A1+l32B1, B2=14 1A1 +142 B1, 

li=—[aidi---(-1)ieibi]/(2bidi) 

131 = (all b22 - a22 b11)/ 

141 = (a21 b11 - all b21)/ 

= a21 b22 - a22 b21 

all a1 + 

= a1 + 

a21 = a2 + 

a12 

a22 

(4.3.13) 

(4.3.14) 

l2 [a2d2(4)e2b2]/(2b2d2) , j=1,2 

132 = (a12 b22 - a22 

142 = (a21 b12 - a12 

h -(13 +6 
biliie11 2 + b1112e 

b1112e + buliie 1 1 '2 Eh2 

b2l2ie(2+62hh1 + b2l22e13262"1 

Eh 

b2122e 1 h1 + b2121e bit a2 +  

= e1 + diliie'3161 12 - d11 (13 j+8i) h2 

= - e1 + dili2e 13161 - d1111e (-0 1 +8 1 )  E,h2 

b21 = e2 + d2121e 13262hh1 - d2l22e 262 hh1 

b22 = - e2 + d2l22e(132f62hh1 - d2121e 

(4.3.15) 

(4.3.16) 
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Conditions (4.3.1) , (4.3.2) and (4.3.3) yield the following equations: 

2c[(aiAi+aiBi+biCi+diDi) ; ' - 0 < x,< a; (4.3.17) 

5s[i(eiAreiBi+diCi—diDi) ; , 0 < x < a; (4.3.18) 

(ul(z,0)—tL2(x,0), 0 < x < a; 
Y[(Ai+Bi+ C1+D1—A2—B2--C2—D2) ;€- x}=1 

0, x>a; 

(4.3.19) 

2c[(aiAi—aiBi+'fiCriiDr-a2A2+a2B72C2+72D2) ;e-*x] 

0 < x < a; 

(4.3.20) 
x > a; 

Differentiating (4.3.19) and (4.3.20) with respect to x and setting 

(A1+Bi+ Ci+Di—A—B2--C2—D2)=q i(), 

(aiAi—aiB i+7iCi-7iDi—a2A2+a2B2--i2C2+i2D2)=Ø2() 

we obtain the following equations from equations (4.3.17) to ( 4.3.20) 

c[(11Ø1 + Al2q52) ; - x] = p1(x) 

5s[(A2lh + 222) ; 6 -+ x] = p2(x) 

3's[ 2() ; -, x] 

{[Ui(X0 )— i2(x,0)}, 

or 
{l_Vl(X0 )+V2(X,0 -)], 

0, 

where Ajk are functions of and are given . by 

(4.3.21) 

(4.3.22) 

0 < x < a, (4.3.23) 

0 < x < a, (4.3.24) 

0 < x < a, 

(4.3.25) 
x > a, 

0 < x < a, 
(4.3.26) 

z > a, 

* * 
A11 = (a11712 — ai2ii)/L , Al2 = (a12721 — aii22)/A 

* * 

A21 = (bi1 i2 — b12711)/ , A22 = (b122i — b1122)/ 

* 
= 712 721 — 711 722 (4.3.27) 
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and 7jk'S are given by the following equations 

iu= ai—iliie ( 
III h21 h2_a2l3i+a2l4i_l2lsi+l2lsi 

712=—ar--llll2e +) h2+ liliie ( - 13i+6 ) h2 —a2132+a2142-72152+',y2162 

721=1—llle' a1) 'h2 -112e ( I31+a 1) h2 —131-141-151-161 

) Eh2 ( - 13) ,h2 
722=1-112e —llle l3l47l57462 

151=- 12113116 - Eh1 - 2'2 ,h1 122141e 

ls2=_l2lla2e 22 h1 - lie 

161=-122131e 

16 2=-122132e 

- 

121141 e 

h1 
- 121142 e 

It is easy to verify that when -+ w , Ajk() tends to constant, say 

jk() - jk(W) = 0 (e11'2) 

Now suppose that the dislocations at y=O are f, and / 2, i.e 

0 fi(x), lxi < a; 
{ o, 1 x > a; 

and 

f2(x), lxi < a; 
= { U, ixl>a; 

fi(—z)=fi(z) , f2(—x)=— f 2(X) 

(4.3.28) 

.k(w),and 

(4.3.29) 

(4.3.30) 

(4.3.31) 

I xl < a. (4.3.32) 

By taking s=x/a , equations (4.3.23) to (4.3.26) can be written in the 

following form 

5 [(Xiii + Ai22) ; -, s] = (s) , 0 < s < 1, (4.3.33) 

5 [(X2ii + 222 ) -' 8] = (s) 0 < s < 1, (4.3.34) 



151 

9 s[2 ; -+ 8] 

where 

{[U1(80+)_U2(S 0 )] 

0, 

or 
{L_1.)l(80)+v2(80)1 

0, 

o < s < 1; 
(4.3.35) 

S > 1; 

o < s < 1; 
(4.3.36) 

S > 1; 

a pj(as) , ik(e)=ik(/a) , 

j(s)=tj(as) , vj(s)=vj(as) , j,k=1,2 . (4.3.37) 

Now equations (4.3.30) and (4.3.31) can be written in the following form 

fi(s), I sj < 1; 

0, 1 S > 1; 

—12(8), I SI < 1; 

0, IsI > 1; 
where 

(4.3.38) 

(4.3.39) 

fi(—s)=!i(s) , f2(—s)=— f 2(8) , 

fj(s)=afj(as) , j=1,2 . (4.3.40) 

The equations (4.3.35) and (4.3.36) are satisfied automatically and we have 

(e)= (2/f ' f j(s)cos(s) ds, (4.3.41) 

2()= (2/)f 'f2(s)sin(s) ds . (4.3.42) 

Using integration by parts, from equation (4.3.41) we get 

- (2/ 1J" TS f(s) sivXs)ds, 

then using the result [44] that 

c2s['sin(r).; - s] = -- (2/T)log + T 
S — T 
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we see that 

Ys[i(); -8I = - 1 f11u[  

Since f 1(8) is an even function, we have 

-48] = - : 11f1(t) dt. 
1 t—s 

Similarly, from equation (4.3.42) we get 

5c[2(); -3s] - 1 1f2(t) ATJ..1 t—s 

T 
+ 

8 

1  

—1 < s < 1, (4.3.43) 

—1 < S < 1. (4.3.44) 

For the continuity of the displacements on y=O , I xI >a ; f  and f2 must 

satisfy the following conditions 

a 1 

= 0 , or f f(s)ds = 0 , j = 1,2 . (4.3.45) 

(Note, for j=2 , condition (4.3.45) holds obviously since f2(z) is an odd 

function) Substituting for 4 •2 from equations (4.3.41) and (4.3.42) into 

equations (4.3.33) and (4.3.34), we obtain 

Ai1()f(s) + Al2(w) e'f2()  dl + f 'fi(t)Kii(s,t)dt 
J1 t- s 

+ f 'f2(t)K12(s,t)dt = ti(S) , 1st < 1; (4.3.46) 

22(W)f 2(8) 21'(°) 1fi(t)  dl + f'fi(t)K21(s,t)dt 
T J..j t  

+ f 'f2(t)K22(s,t)dt = 2( 8) , 1st < 1; (4.3.47) 

where 
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Kii(s,t) = 

K12(s,t) = 

K2i(s,t) = 

K22(s,t) = 

- Aii(a)]cos(t)cos(s)dt 

lJ'W[() - )ti2(w)]sin(4t)cos(s)d 
- A2i(m)]cos(t)sin(s)d 
- A22(w)]sin('t)sin(s) d (4.3.48) 

Equations (4.3.46) and (4.3.47) can be rewritten in the following forms: 

1 ' p1(t) 
A - dt+J' bi(t)Mii(s,t)dt+f b2(t)M12(s,t) dt_—gi(s) 

I sl < 1; (4.3.49) 

1 ' Ø2(t b2(t)M22(s,t)dt=92(s) ) 
Aá2(s)_ - dt+fi(t)M21(s,t)dt+f  

I sl <1; (4.3.50) 

where 

Al = Aii(co)/Al2(co) , A2 = A22()/A2i(w) , A = 1 Al A2 

i(s)=(Tfi(s) + Wi!2(s) , Ø2(s)=jTfi(s) - W A2f2(s) 

= V T2 1(S)/Al2(OD) + W Al P2(8)1 )1 21(W) 

92( 8) = fli 1(s)/Al2(w) - ifTj p2(8)1)121(w) 

1 1AJOD)v V'A2M 11(s,t) =  A2 K22(s,t) + A(w)V Al K11(s,t) 

+ j (K2l(St) Ki 2(s,t)  
A21(CD) A 12(03) )J 

%/A2 12 JAJI )v  A2 K22(s,t) + Al2(w) Kii(s,t) M 12(s,t) = 

+ i (K2l(St) + Ki2(s,t)l 
A21(w) Al2(w) ) 
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Ai  .1v121(8,t) = 1 2 JAJ OD )%I A2 K22(s,t) + A(w)V A1 Kii(s,t) 

(Kl2(S t) K2 ( s, t). 
Al2(w) + A21(w) 'J 

M22(s,t) = 1 1 /A1 VA2  
tA2i()v' A2 K22(s,t) + A()%I A K11(s,t) 

+ Kl2(St) K2i(s,t)1 
)I12(w). A21(w) )j. (4.3.51) 

The analytic solution of equations (4.3.49) and (4.3.50) has been 

extensively studied (see, for exemple, [67] and [68]) by using regularization 

method, which, in this case, however becomes cumbersome. Here we try to use 

an approximation method described by Erdogan [69] to find the stress intensity 

factors. 

Since the kernels Mjk (j,k=1,2) are bounded, we know, aside from a 

multiplication constant, the singular behavior of the functions 01 and 02 at the 

points s = 1 is determined by the dominant part of the singular integral 

equations. The equations (4.3.49) and (4.3.50) will be solved under the 

assumption that 01 and 02 satisfy a Holder condition on every closed part of 

the interval (-1 , 1) not containing the ends. 

The solution of the equations (4.3.49) and (4.3.50) may be assumed in 

the form of Jacobi polynomials (0rC,T1o)(8) [60] by. 

where 

OD 

Ok = E Ckn Wk(s) p(krk)(8) 
n1 

Wk(s) = (1_8)ak(1 + 8)k . 1 
k = - + W 

Uk = (_,)k+1 - In 1 + A  
-- 1—A'' 

and Ck are unknown coefficents. 

k=1,2 ; (4.3.52) 

k = 1,2 ; (4.3.53) 
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Observing that P(0 n1)(s)= l and the orthogonality relations of Jacobi 

polynomials 

(''w(t)p( 0 T)(t) Pm&T)(t) dt 0 = { (0,T) .1.1 
n=m, 

- 2+T+l r(m-i---1)r(m+r+1)  
in - 

m! (2m+o+r+1)r(m+o+r+1) 
(4.3.54) 

we conclude that by choosing Cko=O, A1,2,the condition (4.3.45) will be 

satisfied automatically. 

Using the following relation [70] 

j''Wk(t) p(,Tk,rk)ft\  dt  + (-1)'Wk(8) p(krk)(5) 
t—s 

(1_i2Yp(;tTk_Tk) (s) 151<1 
2i 

={ (1A2)  ( l)k(s+l)Tkp(kTk)(x)+ 2i Gw(s)] 131>1 

where Gk(s) is the principal part of Wk(s)Pfl(0T1)(s) at infinity, and 

substituting from equation (4.3.52) into equations (4.3.49) and (4.3.50) we 

obtain 

where 

in ( 
Gin ' P (- i—I'  in [cinLii (s,t)+c2nLi2n(s,t)]—gi(s) 

n i 2i n-I 

(4.3.55) 

1st < 1; (4.3.56) 

in in (  
E C2n (- 2—T2)(8)_ [CinL2in(s,t)+C2nL22n(s,t)]g2(s) 

n=i 2i n-i n=1 

1st < 1; (4.3.57) 

Lkmn(8) = f'Mkm(8,t)Wm(t)Pn(0mTm)(t)dt, k,m=1,2; n=1,2,3... 

(4.3.58) 
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Multiplying equations (4.3.56) and (4.3.57) by W1(s)P(_01—T1)(s) and 

w1(s)pç-2)— T2)(s) respectively, integrating from —1 to 1 , and using the 

orthogonality relations (4.3.54) we obtain the following algebraic equations for 

the determination of Ckm 

(1_A2)+ o( 0 1, r1) * * 
2i Cl(j 1) -- + inj  + 12nj  

n1 

where 

* * (1_A 2) w c2( . ) 0(- 2,— T2) - Yj (E2iC + L22C2)=q2 
2i fl1 

L mnj = f 'Lkmn(B) ds 

qkj =f (s)W 1(s _T(s)ds, k,m=1,2; n,j=1,2,3,...19k j 

(4.3.59 

(4.3.60) 

(4.3.61) 

After solving linear equations (4.3.59) and (4.3.60) for the unknowns Ckn 

k=1,2 , n,j=1,2,3 ... N; we can calculate the stress intensity factors for the 

crack. The stress intensity factors K1 and K2 may be calculated as follows: 

 K ( 1\k+1  .4/T K 
A 12(W) 1 I i(w) 2 

= Urn (x—a) ° (z+a) T" 
x- a + 

YY 1(x,0 +)+(_l)1c+hi 
21 

i(x)0)]. (4.3.62) 

By making the substitution s=x/a , writing a 1(x,O) and o1(x,0) in terms 

of 01 and 02, and using the equations (4.3.52)and (4.3.53) we obtain 
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V92 K, + (_l) C+hiAw)K2 

(4)_k(S+l)_Tk (_1k+1 
5-41+ XZ f 

j(l)k+lE CknP 1cT1 (1) 

1 

ii CknP 01(T1 (t)  W k(t)  dt 

(4.3.63) 

where we have used the fact that Gk(s), the principal part of 

W k(S)P 1T1 (S), is bounded. 

4.4. Other cases 

In section 4.3, we have considered the crack problem when the two boundaries 

of the layers y = —h1 and y = h2 are stress—free. We will study below some 

other possible boundary conditions. 

4.4.1 One face fixed and the other stress—free. 

In this case, we are assuming that the boundary conditions (4.3.6) in section 

4.3 are replaced by 

u2(x,—hi) = 0 , v2(x,—hi) = 0 , (4.4.1) 

while other conditions are kept the same. Hence the equations (4.3.11) and 

(4.3.12) should be replaced by 

= 0 (4.4.2) 

A2a2e = 0 . (4.4.3) 
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Solving equations (4.3.9), (4.3.10), (4.4.2) and (4.4.3) we get the same 

expressions (4.3.13) for C1 and D1 (i=1,2) with following different values for 

the coefficients ljk (j,k=1,2) 

lii=—(aidi+eibi)/(2b1d1) , 112=—(aidi—eibi)/(2b1d1) 

121= -(72+a2)/(2 72) l227T112)/(272) (4.4.4) 

Hence the solution for this case is given by the results of section 4.3 when ljk 

(j,k=1,2) in equations (4.3.15) are replaced by their values in equations (4.4.4). 

4.4.2 Both faces fixed 

In this case, we are assuming that the boundary conditions (4.3.6) and (4.3.5) 

in section 4.3 are replaced respectively by conditions (4.4.1) and the following 

two conditions 

= 0 , vi(x,h2) = 0 , (4.4.5) 

while other conditions are kept the same. So besides the replacement of 

equations (4.3.11) and (4.3.12) by equations (4.4.2) and (4.4.3), we should 

replace equations (4.3.9) and (4.3.10) by the following two equations 

Ale 12+Ble 1h12+ Cie12+Die 612 = 0 

Aiaie1 h12—B1a1e = 0 

(4.4.6) 

(4.4.7) 

Solving equations (4.4.2), (4.4.3), (4.4.6) and (4.4.7) we find that Cj and D 

(j=1,2) are given by equations (4.3.13) as before but with the following values 
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for the coefficients ljk (j,k=1,2) 

lii=-{71+ai)/(271) , 112=-(71- al)/(271) 

121= -(72+a2)/(2 72) , 122=-{72-'a2)/(272) (4.4.8) 

Again the solution for this case is given by the results of section 4.3 when ljk 

(j,k=1,2,) in equations (4.3.15) are replaced by their values in equations 

(4.4.8). 

4.4.3 One face rigidly restrained and the other fixed 

In this case, we are assuming that the boundary conditions (4.3.5) and (4.3.6) 

of section 4.3 are replaced by the following boundary conditions 

vi(x,h2) = 0 , o1(x,h2) = 0 ; (4.4.9) 

u2(x,—hi) = 0 , v2(x,—hi) = 0 , (4.4.10) 

while other conditions are kept the same. So the equations (4.3.9) , (4.3.11) 

and (4.3.12) in section 4.3 will be replaced by (4.4.7), (4.4.2) and (4.4.3). 

Solving equations (4.3.7), (4.3.8), (4.4.7), (4.3.10), (4.4.2) and (4.4.3) we can 

express B1, D1, A2, B2, C2 and D2 in terms of A1 and C1 by 

Bl=Ale21h12 , Di=Cie26 1"2 

kh (f32+52) ,h1 
C2=l21A2e +l22B2e 

D2=l22A2e h1+l2lB2e( ,h1 

A2=131A1+132C1 , B2-141A1+142C1 , (4.4.11) 

where 121 and 122 are given by (4.4.4) but ljk (j=3)4; k=1,2.) are given by 

(4.3.15) while the expression for ajk and bjk (j,k=1,2) are given by the 
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following: 

aii=aj(l+e 12 ), 

a2i=a2+b2l2ie 2+62) ,h1 

bii=el(1_e 1E2) 

b21=e2+d2l2ie h1 

a12=bi(1+e 26 ) 

a22= a2+ b2122e 

b12=di(1—e 26 l h2) 

b22=—e2-d2l22e h1 

Consequently the expression for 7jk (j,k=1,2) for this case are 

7ll=al_ale 213 12_a213l+a214l_7215l+7216l 

26 E,h 
712=  1 2—a2132+a2142-72152+ 72162 

721= 1+e 
2131Eh21111 

61 

722 1+ 

where ljk (j.—=5,6; k=1,2) are the same as given in 

(4.4.12) 

given by 

(4.4.13) 

(4.3.28) .The solution for 

this case is given by the results of section 4.3 after we have made above 

raplacements. 

4.4.4 One face rigidly restrained and the other stress—free 

In this case, the boundary conditions (4.3.5) are replaced by (4.4.9) and all 

the other boundary conditions remain the same as in section 4.3. So in 

equations (4.3.7) to (4.3.12) we only have to replace equation (4.3.9) by 

(4.4.7). Now we find that for this case ljk (j=2,3,4; k=1,2) are all given by 

(4.3.15) and ak,bk (j,k=1,2) are given by (4.4.12) and the solution for this 

case is given by the results of section 4.3 after we have made above 

modifications. 
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4.4.5 Both laces rigidly restrained 

In this case, we are assuming that the boundary conditions (4.3.5) and (4.3.6) 

are respectively replaced by conditions (4.4.9) and 

v2(x,—hi)=0 , o 2(x,—hi)=0 (4.4.14) 

while all other conditions remain the same as in section 4.3. The equations 

(4.3.9) and (4.3.11) will be replaced by equations (4.4.7) and (4.4.3) while all 

other equations remain the same. Solving equations (4.3.7), (4.3.8), (4.4.8), 

(4.3.10), (4.4.3) and (4.3.12) we find that 

Bj=Aie212 

B2=A2e 

D1= Ce28 1h2 

D2=C2e2621 

A2=131A1+132C1 , C2=141A1+142C1 (4.4.15) 

where ljk (j=3,4; k=1,2.) are given by (4.3.15) but the expression for ajk and 

bjk (j,k=1,2) are given by the following 

aii=ai(1+e 1"2) 

a21=a2( 1+e 21) 

b11= ei(1_e 20 1h12) 

b2l=e2(1_e 2hh 1) 

a12 bi(1+ e281h12) 

a22=b2(1+ e2S2hh1) 

b12=di(1_e2ö1EI12) 

b22=d2(1—e-282e,h1) (4.4.16) 
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Consequently for this case 7jk (j,k=1,2) are given by 

- 

711= ai( 1_e21h12)_a2la i( 1—e -2f32 h 1 )-7214 i( 1—e 22hl) 

712=71(1—e 2' 12=7i(1—e28 lh2)1( 1—e -2ö2 h 1 )-72142( l_e262El1) 

721=1+e 
231h2 1 i(1+ e 2t2h1l)_14 1(1+ e_282hh1) 

722=1+e 26 22=1+e26 lh21(1 e_262l1)_l42(1+ e_2 2hh 1) 

Then the solution for this case is given by the results of section 4.3. 

4.5. Numerical results and discussion 

(4.4.17) 

To evaluate the stress intensity factors, we truncate the infinite system of 

simultaneous algebraic equations (4.3.59) and (4.3.60) at n = 10 and the 

Crout's factorisation method is used to solve these equations. And the 

Gaussian quadrature formula is used to perform the numerical integrations 

involved in the solution. The relative error is controlled under 0.01. 

Numerical results for the stress intensity factors K1 and K2 are obtained for 

the case when the crack is subjected to a constant pressure p1(z) = Po and 

P2(x) = 0, the thickness of the layers is the same (i.e, h1 = h2 = h) and the 

surfaces y = —h and y = h are stress—free. For the two orthotropic elastic 

materials considered here , the elastic moduli are the following: 

(10 11dynes/cm2)[5] 

C11 C12 C22 C66 

Beechwood 0.170 0.150 1.580 0.103 (layer 1 ) 

a—Uranium 21.47 4.05 19.86 7.43 (layer 2 ) 
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Numerical values of the stress intensity factors have been calculated for 

following four particular cases: 

Case 1. Let the length of the crack a = 1.0 and let hi/a = h2/a = h/a 

0.2(0.2)1.0,2.0(2.0)10.0; the numerical values of the stress intensity factor K1 

against h/a are displayed in Fig.4.5.1 and Fig.4.5.2, and the numerical values 

of the stress intensity factor K2 against h/a are displayed in Fig.4.5.3 and 

Fig.4.5.4. 

Case 2. Let h1 = h2 -+ w , and the length of the crack a = 1.0(1.0)10.0 ; the 

numerical values of the stress intensity factor K1 against a are displayed in 

Fig.4.5.5, and the numerical values of the stress intensity factor K2 against a 

are displayed in Fig.4.5.6. 

Case 3. Let h1=h2=20.0 and the length of the crack a = 1.0(1.0)10.0 ; the 

numerical values of the stress intensity factor K1 against a are displayed in 

Fig.4.5.7, and the numerical valued of the stress intensity factor K2 against a 

are displayed in Fig.4.5.8. 

Case 4. Let h1=h2=10.0 and the length of the crack a = 1.0(1.0)10.0 ; the 

numerical values of the stress intensity factor K1 against a are displayed in 

Fig.4.5.9, and the numerical values of stress intensity factor K2 against a are 

displayed in Fig.4.5.10. 
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0.3 0.4 0.5 0.6 0.7 

hl  

0.8 0.9 1.0 

Fig.4.5.1 

Numerical values of the stress intensity factor K1 against 

h/a (0.2 to 1.0) for a fixed crack length a and equal 

layer thickness (h1=h2=h). 
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Ncr 

• LU 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

h/a 

Fig.4.5.2 

Numerical values of the stress intensity factor K1 against 

h/a (1.0 to 10.0) for a fixed crack length a and equal 

layer thickness (h1h2=h). 
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

hl  

Fig.4.5.3 

Numerical values of the stress intensity factor K2 against 

• h/a (0.2 to 1.0) for a fixed crack length a and equal 

layer thickness (h1=h2=h). 
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hl  

Fig.4.5.4 

Numerical values of the stress intensity factor K2 against 

h/a (1.0 to 10.0) for a fixed crack length a and equal 

layer thickness (h1=h2—h). 
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2.0 3.0 4.0 5.0 6.0 7.0 

a. 
Fig.4.5.5 

Numerical values of the stress intensity factor K1 against 

the crack length a (tO to 10.0) for the layer thickness 

h1=h2 -, 

8.0 9.0 10.0 
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1.0 2.0 3.0 4.0 5.0 6.0 

a. 

Fig.4.5.6 

Numerical values of the stress intensity factor K2 against 

the crack length a ( 1.0 to 10.0) for the layer thickness 

h1=h2 -* 

7.0 8.0 9.0 10.0 
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7.0 2.0 3.0 4.0 5.0 6.0 

a 

Fig.4.5.7 

Numerical values of the stress intensity factor K1 against 

the crack length a ( 1.0 to 10.0) for the layer thickness 

h1=h2=20. 
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7.0 8.0 2.0 3.0 4.0 5.0 6.0 

a 

Fig.4.5.8 

Numerical values of the stress intensity factor K2 against 

the crack length a (1.0 to 10.0) for the layer thickness 

h1=h2=20. 
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C'j 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a. 
Fig.4.5.9 

Numerical values of the stress intensity factor K1 against 

the crack length a (1.0 to 10.0) for the layer thickness 

h1=h2=10. 
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1.0 2.0 3.0 4.0 5.0 6.0 

a 

Fig.4.5. 10 

Numerical values of the stress intensity factor K2 against 

the crack length a (1.0 to 10.0) for the layer thickness 

h1=h2=10. 

7.0 8.0 9.0 10.0 
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We make the following observations from the graphs : when the length 

of the crack a is fixed at a = 1.0 , the stress intensity factor K2 increases 

and K1 decreases as the thickness of the layers increases from 0.2 to 1.0 

while the stress intensity factor K2 decreases and K1 increases as the thickness 

of the layers increases from 1.0 to 10.0 ; and if the thickness of the layers is 

fixed (at 10.0, 20.0 or - w) the stress intensity factor K1 decreases and K2 

increases as the length of the crack increases. 



CHAPTER 5 

PENNY-SHAPED INTERFACE CRACK 

BETWEEN TWO DISSIMILAR TRANSVERSELY 

ISOTROPIC LAYERS 

5.1 Introduction 

The study of internal penny-shaped cracks is of practical importance in stress 

analysis, since it represents an idealization of the shape of internal flaws that 

are inherent in many engineering materials. The formulation of this class of 

boundary value problems can be expressed most conveniently in terms of the 

cylindrical polar coordinates (r, 0, z). A crack lying in the r0-plane and 

occupying the region 

r≤c, z=O; 

is called a penny-shaped crack. 

In 1946 Sack [71] considered a penny-shaped crack in a three dimensional 

elastic space, he treated it as a limiting case of an ellipsoidal crack. It was 

Sneddon [72] who successfully introduced the application of Hankel transforms 

to solve a penny-shaped crack problem for an elastic solid when the surface of 

crack was under constant pressure. Green [73] solved the same problem by 

potential function methods. Collins [74] considered the case in which the 

surface of the crack was subjected to a variable pressure. Using Hankel 

transforms Muki [75] solved the problem of a penny-shaped crack under shear, 

and Sneddon [43] solved the problem of penny-shaped crack under torsion. 

175 
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Some researchers have considered the dynamical problems concerning 

penny—shaped cracks. Craggs [76] and Atkinson [77] considered the expanding 

penny—shaped crack problem; the response of a penny—shaped crack to a 

loading in the form of a plane harmonic dilatational wave propagating along 

the axis of the crack was discussed by Ma! [78]; the response to an incident 

plane harmonic shear wave polarized in a plane normal to the plane of the 

crack and propagating along the axis of the crack was considered by Ma! [79]. 

Olesiak and Sneddon [80] discussed the distribution of thermal stresses in 

the vicinity of a penny—shaped crack by assuming that the thermal conditions 

on the upper surface of the crack were identical with those on the lower 

surface of the crack. 

The distribution of stress in the vicinity of a penny—shaped crack in an 

elastic plate of finite thickness but infinite radius was discussed by Lowengrub 

[81], where the crack was taken to lie in the central plane of the plate with 

its surfaces parallel to those of the plate. Later Sneddon and Tait [82] and 

Sneddon and Welch [83] investigated the distribution of stress in a long 

circular cylinder 0 < r ≤ a, - w < z < w , containing a penny—shaped crack 

lying in the plane z = 0 and the cylinder being under tension. 

Many engineering structures are made by bonding together two or more 

materials with different elastic properties. The dissimilar material system is 

required to act as a single unit such that the loads are transmitted from one 

material to the next through the interfaces. The interface in bonded dissimilar 

materials often contains some flaws, such as cracks or hard inclusions, that 

may be induced during the process of joining the materials. These flaws, 

generally, form the nucleus of fracture initiation and propagation in the 

medium. The presence of flaws or cracks at the interface could cause high 

elevation of local stresses and lead to failure if the crack reaches a critical 
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size. 

Mossakovkii and Rybka [84] introduced a way of formulating the axially 

symmetric penny—shaped crack problem, when the crack is located at the 

interface of two dissimilar isotropic materials. Willis [85] considered the 

problem of obtaining the stress intensity factor for a penny—shaped crack 

between two dissimilar materials. Erdogan [86] solved the interface 

penny—shaped crack problem by reducing it to a singular integral equation. 

Erdogan and Arm [87] considered a penny—shaped crack between an elastic 

layer and a half—space. 

Elliott [88, 89] considered a penny—shaped crack in a transversely 

isotropic elastic solid. Kassir and Sih [90] investigated an elliptical crack 

problem in a transversely isotropic elastic solid, and Parhi and Atsumi [91] 

discussed the distribution of stress in a transversely isotropic elastic cylinder 

containing a penny—shaped crack. Recently, Saxena and Dhaliwal [92] 

considered a penny—shaped crack problem at the interface of two transversely 

isotropic half—spaces. 

In this chapter we consider the penny—shaped interface crack between two 

dissimilar transversely isotropic elastic layers. By means of Hankel transforms 

and Fourier transforms the problem is reduced to the solution of a system of 

singular integral equations. These equations are further reduced to a system of 

simultaneous algebraic equations by using Jacobi polynomials approximation. 

Numerical methods are employed to determine the stress intensity factors, 

which have been displayed graphically. 
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5.2. Basic equations and their solution 

As discussed in chapter 1, under the assumptions of axially-symmetric 

deformations in cylindrical polar coordinates (r,O,z), when the z-axis is the axis 

of anisotropy of transversely isotropic medium, the displacement components 

are defined by 

;= ;(r,z) , %= 0 , (5.2.1) 

along the v-, z-, and 0- directions respectively. The stress-displacement 

relations are given by 

thlr + C12- +C 
0 rr Ci1-8•;- 13 •9• 

Our Ur +c 
- 13 73T 

[ô1r 'U1. O'Uz 
-- °= c13 + - ] + c33 .— 

tt 
rz c44 [ ôtr ••- + • O;-] , (5.2.2) 

where cu's are the elastic moduli of the transversely isotropic medium. In the 

absence of body forces, the equations of equilibrium may be written as follows 

Tr Tr- - — C445Z2 + (c13 + c44) 82 Oraz  = 0, (5.23a) cii[% + 1 OUr j + 92 UT 

c44[0  + 1 OUz }+ C330;2  + (c13+ OUr + .] = 0. (5.2.3b) 
Or2 -;- T 

Multiplying equations (5.23a) and (52.3b) by rJi(r) and rJo(r) 

respectively, then integrating with respect to r from 0 —, aD , we get the 

following equations 
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—c112 02 - (ci3+c44)L = 01 

02 a 
—C44 2 1Lz +C33 + (c13+c44) Tir = 0, (5.2.4) 

where k and Ti are the Hankel transforms of Ur and uz of order 1 and 0 

respectively. 

Let Cijk'5 be the elastic moduli for the transversely isotropic medium in 

the region Rk (k=1,2) where R1 is 0 ≤ z ≤ h2 and R2 is —h1 ≤ z < 0. Solving 

equations (5.2.4) for Ti. and then taking the inverse Hankel transforms we 

obtain the following solution 

e -, r] 

z)= (5.2.5) 

where u.j and uj denote the displacements for the region R (j=1,2), 

C44j /3j Ciij flj1 
Cli - C13j + C44j 

(fl, o) = {Ij 
,yj = 

C44j ôj - Ciij Sj' 

C13j + C44j 

nj -4•c11J•c33j•Chi 

2. csaj . CiiJ 

nj= C11j•C33j - 2C13jC44j - C3 

7 

j=1,2 . (5.2.6) 

and A, B, Cj and D (j = 1,2) are unknown functions of to be determined 

by the boundary and continuity conditions. 

Substituting from equation (5.2.5) into (5.2.2), we have 

o.zzj 
_3.z 

= [{( Ci3j + c33j aj /9)(A e + B e I ) 

+(ci3+75je33j)(Cje8 + Dei kz )}; r] (5.2.7a) 
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0rzj = C44j c[{(flj - aj)(Aj eJ kz ) 

+ (S ; -, , (5.2.7b) 

where Ozj and 0rzj denote stresses for the region R (j=1,2). 

5.3. Statment of the problem and boundary conditions 

We assume that two dissimilar transversely isotropic elastic layers, which 

occupy the regions R1 (0 ≤ z ≤ h2) and R2 (—hi ≤ z ≤ 0) respectively, are 

perfectly bonded except that there is a crack in the region 0 ≤ r ≤ a, z=0. In 

the first case we also assume that the surfaces z = —h1 and z = h2 are 

stress—free.(see Fig.5.3.1) It is assumed that the surfaces of crack are subjected 

to prescribed normal and shear stresses pi(r) and p2(r) respectively. Hence the 

problem of determining the stress and displacement field is subjected to the 

following boundary and continuity conditions: 

(r,0)=pi(r), rj (r,0)=p2(r), j=1,2; 0 ≤ r ≤ a, (5.3.1) 

u.i(r,0)=t r2(r,0), i(r,0)=;2(r,0), r ≥ a, (5.3.2) 

r ≥ a, (5.3.3) 

= 0, rrz1(r,h2) = 0, r ≥ 0, (5.3.4) 

o 2(r,—hi) = 0 ' Orz2(?', 1Il) = 0 , r ≥ 0. (5.3.5) 

With the help of conditions (5.3.1), the conditions (5.3.3) may be replaced by 

the following: 

rz1(T,0) 0rz2(1',0 ), r ≥ 0. (5.3.6) 
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z 

z=h2 

z=O 
-a   a 

z=-h1 

Fig.5.3.1 

Penny—shaped interface crack between two dissimilar 

transversely isotropic layers. 
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5.4. Analysis 

If we denote 

aj = c,3 + aj flj C33j 

di = C13j + Si 7i C33j 

bj = C44j (fi - aj) 

ej = C44 (S - j = 1,2 

then applying conditions (5.3.6), the equations (5.2.7) give 

ai(Ai + B1) + d1(Cj + D1) = a2(A2 + B2) + d2(C2 + D2) 

- B1) + ei(Ci - Di) = b2(A2 - B2) + e2(C2 - D2) 

and the conditions (5.3.4) and (5.3.5) yield 

aiAje 131 h2 + a1Bje 

blAlJ31h12 - blBje 1h12 

_4321 
a2A2e h + 

b2A2e 2hh1 - 

+ diCie61"2 + d1D1r612 = 0 

+ eiCie61"2 - elDle_ô1h2 = 0 

a2B2e 2hh1 + d2C2e621 

b2B2F2hh1 + e2C2e_62hh1 

+ d2D2e62"1 = 0 

- e2D2e62 '1 = 

Solving the equations (5.4.2) and (5.4.3) we obtain 

C1 = —l11A1e 

D1 = —l12A1e 

 6 1) kh2 øi - + lj2B1e 1 

61 h2 
- 111B1e 

C2 = —l21A2e (- 02+ 2 Eh1 

D2 = _l22A2e '32 h1 — 

A2 = 131 A1+ 132 B1 

(- 13i 61h2 

- l22B2e2 62h1 

l2iB2e2 &2)h1 

B2 =141A1 +142B1, 

0. 

(5.4.1) 

(5.4.2a) 

(5.4.2b) 

(5.4.3a) 

(5.4.3b) 

(5.4.3c) 

(5.4.3d) 

(5.4.4) 
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where 

llj = [a1ei-(-1)ibidi]/(2diei), 12j = [a2e2-{-1)ib2d2]/(2d2e2); j=1,2 

131 = (aijb22—a22 bji)/ , 132 = (ai2b22—a22bi2)/L 

141 = (a2ibii—ai1b2i)/ , 142 = (a2ibi2—a12b2i)/ 

all = a1 - d1l11e I3- 81) kh2 — d1112e -( 1' 6) kh2 

6 Eh2 — d1l11e - 6 ,h2 a12 = a1 - d1112e  

a21 = a2 - d2l21e - 2' 62) Eh1 - d2l22e 62) kh, 

a22 = a2 - d2l22e 62) th, — d2l21e 2 62) kh, 

= b1 — eiliie1 61) Eh2 + elll2e1 61) I12 

b12 = - b1 - e1l12e1 6i) e'2 + eiiiie - 01+  6) h2 

b21 = b2 - e2121e 2 kh, + 62122e 62 h1 

b22 = - b2 - C2l22C 2 62h1 + e2l2ie (3 2_l 62)h1 

= a2l b22 - a22 b21 (5.4.5) 

The conditions (5.3.1) and (5.3.2) lead to the following integral equations: 

c7[(aiAi + a1B1 + d1C1 + d1D1) ; -, 7] = r < a, (5.4.6) 

- b1B1 + e1Ci - eiDi) ; -+ 7] = p(r); r < a, (5.4.7) 

c7[r1(Ai+Bi+Ci+Di—Az---B2—C2--D2) ; - 7] = 0 ; r> a, (5.4.8) 

— a1B1 + 71C, — 7Dj 

—a2A2 + a2B2 — 72C2 + 2D2) ; -' r] = 0 ; r > a. (5.4.9) 
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If we introduce two new unknown functions çti( ) and Ø2() by the relations 

A1+Bj+C1+Di—A2—B2—C2—D2 = 1(), 

a1A i—a 1B 1+ 7i C1-7 1D 1—a 2A 2+ a2B2-2C2+ 72D2= 2( ) 

then the equations (5.4.6) to (5.4.9) may be rewritten in the form 

r < a , (5.4.11) 

r < a , (5.4.12) 

r > a , (5.4.13) 

r > a , (5.4.14) 

[(A 11 01 + Al2 2) ; -4 r] = pi(r) 

[(A21 01 + A22 2) ; -' = p2(r) 

NO h() ; -3 r] = 0 

[1 q5() ; - r} = 0 

where AJk are functions of and they are given by 

(5.4.10) 

All = (aiii1 - a12711)/ A*  Al2 = (a12721 - aii722)/L 

A21 = (bi1i2 - b227ll)/* , A22 = (b12721 - bjl722)/ * 

* 

= 712 721 - 711 722 

and 'yjk's are defined as follows 

(5.4.15) 

711=a17-7111le (01- 61 h2+ ? ili2e(r31 61 h2—a2131+a2141-72151+'72161, 

712=—ar-? lli2e-31+ 6 j h2+?iliie( - 01+ 8 h2_a2l32+a2l42_l2l52 + 72162, 

2i=1—liie 61)h2_li2e(t1 f 61)h21111 

722=1-112e- 61) E,h2-11e ( - i+ 6) —132-142-152-162 , 

151 =- 121131e - 

152=- 121132e - 

2' 62 h1 122141(132k 62 h1 

2' 62li1122142 2' 62),h1 

-( 62) h1 62) li1 
161=-122131e 2il41 

2' 62) hi 1 2 62h1 
162=-122132e 2il42 
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It can be seen that as -ì a , "jk tends to constant, say Ak(w),and 

)jk() - i\jk(W) = 0 (e1+61h12) (5.4.17) 

To solve the integral equations (5.4.11) to (5.4.14), let us recall the 

following results [45] 

Ai[rJto{F(); r} ; y] = Yi[F() ; y] , (5.4.18) 

A2[Drrc7bj{ 1F() ; r} ; y] = 2 [F() ; y] , (5.4.19) 

r} ; y] = y '{5[F() ; 0] — Y[F() ; y]}, (5.4.20) 

2[Drc7{1F() ; r} ; y] = — Y ' 9 s[1U) ; y] , (5.4.21) 

where Dr denotes ô/ôr and A1, .A2 are Abel's operators ; Yr, and Yc are 

Fourier's operators defined by 

'i[F(r) ; y I = (2/f  /y2 - 
F(r)dr 

A2[F(r) ; y ] = (2/fOU  1  
Y, F(r)dr 

-  

2 s[F(r) ; y ] (2/T)f°'F(r) 8in(ry ) dr 

91 [F(r) ; y ] = (2/if°'F(r) cos(r'y ) dr . (5.4.22) 

Applying the operators A1r , , A2Dr and A2D to the equations 

(5.4.11), (5.4.12), (5.4.13) and (5.4.14) respectively, we obtain 

5 [(  ii 0i + '12 02) ; y I =fi(y 

2 c[( 21 01 + A 22 02) ; y I = f 2(y) 

5 c[0i() ; y] = 0 

2s[02() ; y] = 0 

0 ≤ y ≤ a, (5.4.23) 

0 ≤ y a, (5.4.24) 

y > a ; (5.4.25) 

y > a ; (5.4.26) 
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where 

fi( ) = A1[rpi(r) ; ii I , f(y ) = y .A1[ p2(r) 

C = 5 [(A21 01 + A22 02) ; 0] 

y]+ 

(5.4.27) 

By taking y-- ax, equations (5.4.23) to ( 5.4.26) can be written in the following 

form 

S[(ii i + i 02) ; x I = 71(z ) 

c[( 21 Oi + A22 02) ; x ] =j2(x 

YCPI x] = 0 

x]= 0 

where 

o ≤ x ≤ 1, (5.4.28) 

o ≤ x < 1, (5.4.29) 

X > 1, (5.4.30) 

X > 1, (5.4.31) 

Ajk()Ajk(/ a) , (e)=o(e/ a) 
f(x)=afj(ax) , j,k=1,2. 

If we introduce two new unknown functions Ø1(t) and Ø2(t) such that 

c[i(x); t] = {• Ø1(t), 
0, 

5 s[ 2(x) ; t] = { p2(t), 
0, 

0 < i < 1; 

t > 1; 

0 < t < 1; 

t>1; 

(5.4.32) 

(5.4.33) 

(5.4.34) 

the equations (5.4.30) and (5.4.31) are identically satisfied. Let e(t) and 0(t 

be the even extension of b1(t) and odd extension of p2(t) on (-1 , 1) 

respectively, then as we did in section 4.3, we have 

X1 = - f  e(t) 1 t - dt , (5.4.35) 

X1 = 1 1 0(t) dt. (5.4.36) 
T fi t — z 
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Now if we denote Fl(x) the odd extension of i(X) and F2(x) the even 

extension of f 2(X) on (-1 , 1), the equations (5.4.28) and (5.4.29) become 

Al2(a)Øo(x) Aii(w)f 1 ? e(t) dt + f e(tKii(x,tdt 

+ f 1 o(t)Ki2(x,t)dt = Fi(x) , lxi < 1 , (5.4.37) 

)121(w)be(x) + ..122(m)f' dt + fbe(t)K21(x,t)dt 

+ f ',o(t)K22(z,t)dt = F2(z) , IxI < 1 , (5.4.38) 

where the kernels Kjk are given by 

Kii(x,t) = 

K12(z,t) = 

K21(x,t) = 

K22(x,t) = 
T fo 

- iii(w)]cos(t)sirt(ex) d 

- .i2()]sin(1t)sim(x) d 

- A2i(co)]sin(t)cos(x) d 

922() - d . (5.4.39) 

Equations (5.4.37) and (5.4.38) may be rewritten as follows: 

i(x)+f '()  dt+J' 'C( t) Mii(x,t) dt+f 'C2(t)M12(x,t) dt=gi(x), (5.4.40) 

irz.A C2(x)—   dt+J' Ci()M2 i(Z, t) dt-i-J' 1C2(t)M22(x, t) dt=g2(x), (5.4.41) 

where 
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A1 = A2i(w)/A22() , A2 = Al2(00)/All(CO) , A = v'A1 A2 

Ci(z)=flbe(x) + i v'iøo(x) , 2(X)fTháe(X) i flj,b(x) 

gi(z) = VT2 F2(x)/A 22(w) + i V'Ti Fi()/Aii(a) 

92(X) = 72 F2(x)/A 22((D) - i V Fi(x)/A 11(w) 

Mji(x,t) = j A2 4/A 2  
- cn)%/ K12(x,t) + A22(w)4/ K2i(x,t) 

+ (Kll(X t) K2 2(X, t)\1 
Ai'(w) A22(w) 

1 1  -4/A 1 4/ 
M 12(x,t) = lii(w)V A2 K12(x,t) + A22(wA2 )4/ Al K21(x,t) 

+ (Kl i(X, t) + K2 2(X, t) 1 
A22(w) )1 

1 IAjjj) 4/ 
-4/A1 VA2  

M21(x,t) =  A2 K12(X) + A22 (c)4/ A1 

- (Kl1(X t) + K2 2(--,  
A11(w) A22(w) j 

M22(At) = - 
JA •T  A2 K12(x,t) + A22 

A2  

+ (Kll(Z t) K22(x, t)1 
A (w) A22(w) 1j 

K21(x,t) 

K21(x,t) 

(5.4.42) 

The analytic solution of equations (5.4.40) and (5.4.41) has been 

extensively studied (see, for exemple, [67] and [68]) by using regularization 

method, which, in this case, however becomes cumbersome. Here we try to use 

an approximation method described by Erdogan [69] to find the stress intensity 

factors. 

Since the kernels Mk's are bounded, aside from a multiplication constant, 

the singular behavior of the functions Cj (j=1,2) at the points x = 1 is 
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determined by the dominant part of the singular integral equations. The 

equations (5.4.40) and (5.4.41) will be solved under the assumption that j 

(j=1,2) satisfy a Holder condition on every closed part of the interval (-1 , 1) 

not containing the ends. 

The solution of the equations (5.4.40) and (5.4.41) may be assumed in 

the form of Jacobi polynomials P(0Tc)(x) [69] by 

where 

00 
= Ckfl W k(X)Pfl( T (X) 

n1 

Wk(Z)(1_Z)k(1 + z)Tk 

A1 
k (_1)k+1, , 0 = 1 1n 11+ — A ] 

(5.4.43) 

= 1, 2 ; (5.4.44) 

and Ckn are unknown coefficents. 

Substituting from equation (5.4.43) into equations (5.4.40) and (5.4.41) 

we obtain 

OD 1_1 ' I W 
E Clfl( 2i -1n )P(111)(X)+J [ E (C1M1i(x,t)W1(t)P (o1,rj)(t) 
n1 =1 

+c2Ml2(z,t)w2(t)p(2T2)(t))1dt = gi(z), lzl < 1 , (5.4.45) 

OD 2)1 C2Apui (-2—r2)() - C'[ (C1M21(x,t)W1(t)P(1n1)(t) 
2i 1 

+C2 M 22(z,t)W2(t)P( 02 T2)(t))]dt = - g2(z), IxI < 1 , (5.4.46) 

where we have used the following result by Karpenko [70]: 

1 r'  -jWk(t) p(k,rk)f" I dt + (_1)kAWk(x) p(okrk)() 
t—x 

= _(1_A2) p(—OkTk)() , IxI < 1 (5.4.47) 



190 

Multiplying equations (5.4.45) and (5.4.46) by W1(x)P01n1)(x) and 

W1(z)02_T2)(x) respectively, and using the orthogonality relations of Jacobi 

polynomials 

0 
fw(t)pT)(t) Pm(01 (t) dt { (o,r) 

0 n=m 

m+o+1)r (m+r+1)  

m! ( 2m+c+r+1)r(m+o+r+1) 
(5.4.48) 

we get the following infinite system of simultaneous algebraic equations for the 

determination of Ckm. 

—(1—A 2)1 Cim 

—(1—. 2)1 c2 

where 

Om(_01_T t) + E (Linm 
n1 

o (— i,—ri) -  in (L1 m 

Cm + L2nm C2n)G1m 

* 

Cm + L fl C2n)G2m 

Ljnm = f'Lkj(x) 1()p 0i_Ti)() dx 

Lkjn = f1Muwüp( i,ni)() dx 

Gkm = dx19k M 

k,j = 1 , 2 

(5.4.49) 

(5.4.50) 

n,m = 1,2,3,4,  (5.4.51) 

After we find the coefficients Ck by solving the system of linear 

algebraic equations (5.4.49) and (5.4.50), by taking n, in =1, 2, JV we can 

determine the stress intensity factors. To do so, we make use of the following 

integrals [44]: 
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Vf-2 UI{.& put, ]<9 ' V <2 ua& pqj os ' v/2=$ lal 

[2 
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c[Ai2(a)q52() ; r]=11 " c7 [ 2() ; s] 

.....)I12(w) 1 {sc7[1c62() ; s]} 
a2 s 

_) r > a, (5.4.60) 

which by using equation (5.4.53) gives 

c[12(w)ø2() ;r] 

112 )(2/ T)U. [f 2(t)t/(s2_-t2ydt, r > a. (5.4.61) 

Similarly by means of equations (5.4.52) and (5.4.54) we get 

[22(w)ø2() ; r] = 0 , r > a, (5.4.62) 

[, 21(Co)q1() ;r] 

e2icO)(2/R.)+..L [fbi(t)/(s2_t2)dt, r > a. (5.4.63) 

Now 

; r] 

1 •2/7r)if —Ajj(co)]Jo(s•)d•f 

= 

= 0 (l) , as r -+ a+ , (5.4.64) 

and when r -, a, [(, ii()—Aii(w))Øi(e);r} has no singularity. Similarly we 

have 

c[( i2()A 12(W))2() as r -+ a4 

as r -, a 

as r -+ a (5.4.65) 
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So as r -+ 

oi(r,0 ) a2(/2){X/A 12(w)=iirn kJ fX 1n2( t) t/(s2_t2) dt+ (5.4.66) 

orzi(r,O +) a2(T/2)+f,/, 21( w)=li?fl --jJ' 0(1). (5.4.67) 

But 

f 'i{ 2(t)t/(s2 _t2)+dt = .T'dSj 1[Ci(t)_C2(t)]t/(s2_t2)dt 

and 

1w2 
(1)k+1 Ckfl[f t[i—] Wk (ak,rk)(t)(S2t2)_4dj] 

1+t 2 n = 1k 1 

10 
= .J01[ i(t)+C2(t)]/(s2_t2)+dt 

=: (_1)k+1Ckfl[Jl[_] WkP(ak,.Tk)(t)(2t2)..4dtl 
Ik=1 .3 

If we define the stress intensity factors K1 and K2 by 

(5.4.68) 

(5.4.69) 

AUK1 + ( 1)k+1  '' K2 = urn (T/2)+[(r a) Uilk (r+a)++ h1 ] 

a2[A ozzl(r,O+ )+(_i)k+hif1 )orzl(r,O+ )] , k=i,2; (5.4.70) 

then using the substitution s=r/a , equations (5.4.66) to (5.4.69) and following 

the method of Goldstein and Vainshelbarm [93] by taking 

s — i 
z=1 

we get 

3— t 

 K1 + ( i)1i u';'-; K2= (l)'C+hia[2(lA2)]+  r(i+i&k  
)I12(w) A21(co) r.++i&k) 

k=1,2. (5.4.71) 
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5.5. Other cases 

In the previous two sections we have considered the case when the surfaces 

z=—h1 and z—h2 are stress—free. In this section we will consider other kinds of 

boundary conditions at the faces - h and z=h2 while the conditions at the 

interface z=O are kept the same. 

5.5.1 One face fixed and the other stress—free 

In this case, we assume that all the conditions (5.3.1) to (5.3.4) remain the 

same and the conditions (5.3.5) are replaced by 

;2(r,—hi) = 0 , ur2(r,—ht) = 0 r ≥ 0 . (5.5.1) 

In this case condition (5.5.1) yield the following algebraic equations 

A2e2l11 + B2e2hu1 + C2e_62hh1+ D2e62hh1 = 0 

A2a2e 2 kh 1_B2a2e121+C272e_62hh1_D272e62hh1 = 0 

(5.5.2) 

(5.5.3) 

which replace the algebraic equations (5.4.3a) and (5.4.3b) respectively. 

Comparing the two sets of equations, we find that if we take 

a2=1 , d2=1 , b2=a2 e2=72 

in the results of section 5.4, we get the solution for this case. 

(5.5.4) 
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5.5.2 Both laces fixed 

In this case all the conditions (5.3.1) to (5.3.3) remain the same but the 

conditions (5.3.4) are replaced by the following: 

;1(r,h2) = 0 , url(r,h2) = 0 7. ≥ 0 ; (5.5.5) 

and (5.3.5) are replaced by 

In this case , equations (5.4.3) will be replaced by equations (5.5.2), 

(5.5.3) and the following equations 

Ale 1kh 2 + Bie 1kh 2+ Cie612+ D2e612 = 0 , (5.5.6) 

Cl7ie_612_Dl7le_ö1h12 = 0 

Comparing the two sets of equations, we find that if we take 

a=d=1, b=a, ej=7i, 

(5.5.7) 

(i=1,2) , (5.5.8) 

in the results of section 5.4 , we get the solution for this case. 

5.5.3 One face rigidly restrained and the other fixed 

In this case, we assume that the boundary conditions (5.3.5) are replaced by 

(5.5.1) and conditions (5.3.4) are replaced by 

= 0 0rz1(Z,h2) = 0 (5.5.9) 

and all the other conditions remain the same.So the equations (5.4.3) should 

be replaced by (5.5.7), (5.4.3b), (5.5.2) and (5.5.3). Solving equations (5.4.2), 

(5.5.7), (5.4.3b), (5.5.2) and (5.5.3) we can express B1, D1, A2, B2, C2 and D2 
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in terms of Al and C1 by the following equations 

Bi=Aie21"2 , DI= Cie2612 

C2=—l2jA2e 22 kh,_l22B2e Eh1 

D2=_l22A2e3262 h1_l2lB2e(l3262) kh1 

A2=l31A1+l32C1 , B2=l41A1+142C1 

where 121 and 122 are given by 

121=(72+a2)/272 122=(72- 02)/272 

(5.5.10) 

(5.5.11) 

and ljk (j=3,4; k=1,2.) are still given by (5.4.5) while the expression for aji 

and bjk (j,k=1,2) are given by the following: 

aii=ai(1+ e 1E 2) 12= di(1+ e2612) 

a21=2—d2l21e 2'2 Eh1 a22=a2+d2122e 2'2 h1 

bji=bi(1_e 1th2) , bi2=bi(1_e2612) 

b21=b2—e2l21e h1 , b22=—b2+e2l22e 13262) E,h1 (5.5.12) 

Consequently the expressions for 'yjk (j,lc=1,2) for this case are given by 

h2 
lii a1—a1e 231 —a2l31+ a2l4j-2l51+2l61 

712=71-71e 261h2 —a2l32+a2l42-2l52+2l62 

721=1+e 20,kh 2-13 1—l4 1-151-161 

722=1+e 26,•h2-13 2-142-152-162 (5.5.13) 

where ljk (j=5,6; k=1,2) are the same as given in (5.4.16). The solution for 

this case is given by the results of section 5.4 after we have made above 

raplacements. 
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5.5.4 One face rigidly restrained and the other stress—free 

In this case, the boundary conditions (5.3.4) are replaced by (5.5.9) and all 

the other boundary conditions remain the same as in section 5.4 . So in 

equations (5.4.2) and (5.4.3) we only have to replace equation (5.4.3a) by 

(5.5.7). Now we find that for this case ljk (j=2,3,4; k=1,2) are all given by 

(5.4.5), ajk and bJk (j,k=1,2) are given by (5.5.12) and the solution for this 

case is given by the results of section 5.4 after we have made above 

modifications. 

5.5.5 Both faces rigidly restrained 

In this case, we are assuming that the boundary conditions (5.3.4) and (5.3.5) 

are replaced by conditions (5.5.9) and 

0rz2(Z,h1)0 (5.5.14) 

The equations (5.4.3a) and (5.4.3c) will be replaced by equations (5.5.7) and 

(5.5.3) while all other equations remain the same. Solving equations (5.4.2), 

(5.5.7), (5.4.3b), (5.5.3) and (5.4.3d) we can write 

B1=A ie21"2 

B2=A2e 

Di=Cie281"2 

D2= C2e262"1 

A2=131A1+132C1 , C2=141A1+142C1 (5.5.15) 
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where ijk (j=3,4; k=1,2.) are given by (5.4.5) but the expression for ajk and 

bjk (j,k=1,2) should be replaced by the following 

aii=ai(1+ e 1Eh12) 

a21=a2(1-i- e2hh1) 

bii=bi(1_e 20 1'2) 

b2i=b2(1_e-20 21) 

a12= d1(1+ e26 lh2) 

a22=d2(1+e-26 ,h 2 1) 

b12= ei( l_e261Eh12) 

b22=e2(1_e 262 1) 

Consequently for this case we should replace ljk (j,k=1,2) by 

- 
hi=  ai(1 e2f31Eh12 )—a213i (1_e2hh1)_72l4i(1_e -262h1 ) 

26 Eh- 262 h1 
712=71(1—e I 2)_a2l32(1_e262"l)_72l42(1_e ) 

721=1+e 2r31h 2_l3i(1+ e_2I2kh 1)_l4l(1+e_2ö2 hh I) 

722=1+e 26 Ikh 2_132(1+ e262kh I)-142(1+e -282khl) 

Then the solution for this case is given by the results of section 5.4. 

5.6. Numerical results and discussion 

(5.5.16) 

(5.5.17) 

To evaluate the stress intensity factors, we truncate the infinite system of 

simultaneous algebraic equations (5.4.49) and (5.4.50) at n = 10 and the 

Crout's factorisation method is used to solve these equations. And Gaussian 

quadrature formula is used to perform the numerical integrations involved in 

the solution. The relative error is controlled under 0.01. Numerical results for 

the, stress intensity factors K1 and K2 are obtained for the case when the crack 

is subjected to a constant pressure pi(r)=po and p2(r)=0, the thickness of the 
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layers is kept the same (i.e, h1 = •h2=h) and the surfaces z = —h and z = h 

are stress—free. For the two transversely isotropic materials considered here 

the numerical values of the elastic moduli are taken as follows 

(lo 11dynes/cm2)[5] 

C11 C12 C13 C33 C44 

Cadmium 11.00 4.04 3.83 4.69 1.56 (layer 1 ) 

Beryl 26.94 9.61 6.61 23.63 6.53 (layer 2 ) 

Numerical values of the stress intensity factors have been calculated for 

following three particular cases: 

Case 1. The length of crack a = 1.0 and hi/a = h2/a = h/a = 

0.2(0.2),1.0,2.0(2.0)10.0; the numerical values of the stress intensity factor K1 

against h/a are displayed in Fig.5.6.1 and Fig.5.6.2, and the numerical values 

of the stress intensity factor K2 against h/a are displayed in Fig.5.6.3 and 

Fig.5.6.4. 

Case 2. h1 = h2 -4 M , and the length of the crack a = 1.0(1.0)10.0 

the numerical values of the stress intensity factor K1 against a are displayed 

in Fig.5.6.5, and the numerical values of the stress intensity factor K2 against 

a are displayed in Fig.5.6.6. 

Case 3. h1=h2=20.0 and the length of the crack a = 1.0(1.0)10.0 ; the 

numerical values of the stress intensity factor K1 against a are displayed in 

Fig.5.6.7, and the numerical values of the stress intensity factor K2 against a 

are displayed in Fig.5.6.8. 
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I I 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

h/a 

Fig.5.6.1 

Numerical values of the stress intensity factor K1 against 

h/a (0.2 to 1.0) for a fixed crack length a and equal 

layer thickness (h1=h2=h). 
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

hl  

Fig.5.6.2 

Numerical values of the stress intensity factor K1 against 

h/a (1.0 to 10.0) for a fixed crack length a and equal 

layer thickness (h1=h2=h). 
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

hl  

Fig.5.6.3 

Numerical values of the stress intensity factor K2 against 

h/a (0.2 to 1.0) for a fixed crack length a and equal 

layer thickness (hj=h2=h). 
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c'J 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a 
Fig.5.6.4 

Numerical values of the stress intensity factor K2 against 

h/a (1.0 to 10.0) for a fixed crack length a and equal 

layer thickness (hi=h2=h). 
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CQ 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a 

Fig.5.6.5 

Numerical values of the stress intensity factor K1 against 

the crack length a ( 1.0 to 10.0) for the layer thickness 

h1=h2 -* 
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c:J 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a 

Fig.5.6.6 

Numerical values of the stress intensity factor K2 against 

the crack length a ( 1.0 to 10.0) for the layer thickness 

h1=h2 - 4 00-
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t-1 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a, 
Fig.5.6.7 

Numerical values of the stress intensity factor K1 against 

the crack length a (1.0 to 10.0) for the layer thickness 

h1=h2=20. 
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a 

Fig.5.6.8 

Numerical values of the stress intensity factor K2 against 

the crack length a (1.0 to 10.0) for the layer thickness 

h1=h2=20. 
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We make the following observations from the graphs when the length 

of the crack a is fixed at a=1.0 , the stress intensity factor K2 increases as 

the thickness of the layers increases; while the stress intensity factor K1 

decreases as the thickness of the layers increases from 0.1 to 1.0, but increases 

when the thickness of the layers increases from 1.0 to 10.0. If the thickness of 

the layers is fixed at 20.0 or -, co  the stress intensity factors K1 and K2 

decrease as the length of the crack increases. 
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Recommendation for future work 

As a continuation of the present work, the following problems may be 

considered in the future 

As an extension of the work of chapter 2 one could consider the 

Reissner-Sagoci problem of a finite elastic cylinder embedded in an infinite 

elastic layer and the whole is perfectly bonded to an elastic half-space. 

The problem considered in chapter 3 may be extended to two dissimilar 

transversely isotropic layers with a penny-shaped flaw located at the interface, 

when a rigid shaft bonded to the elastic layer is rotated through a small 

angle. 

The problem of chapter 4 may be extended to study the determination of 

stress intensity factors at the tips of a column of Griffith cracks, which are 

parallel to the x-axis and are equally spaced along the y-axis, located at the 

interfaces of the orthotropic multilayer composite materials. 

Similarly, a problem related to chapter 5 is a problem of determination 

of stress intensity factors at the edges of of a column of penny-shaped cracks, 

which are parallel to the xy-plane and are equally spaced along the z-axis, 

located at the interfaces of the transversely isotropic multilayer composite 

material. 
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