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Abstract

The purpose of this research was to examine the use of missing data methods ap-
plied to risk adjustment procedures for binary outcomes. Incompletely observed risk
factors are problematic for researchers performing risk adjustment. The methods
employed for handling missing data in these cases have an intuitive justification and
have lacked underlying statistical theory. Two missing data methods were investi-
gated. These were muitiple imputation and expectation-maximization by the method
of weights. Three risk adjusted estimates of relative risk were explored. Two were
indirectly standardized measures, while the third was directly standardized. Esti-
mates of variance for these measures were derived for use with missing data methods.
These methods were then applied to 1995/96 data from the Alberta Provincial Pro-
gram for Outcome Assessment in Coronary Heart Disease initiative, which had up
to 25% of observations missing from important clinical variables. The three types of
risk adjusted point estimates were similar across the different missing data methods.
Directly standardized measures had the smallest variances and tended to be stable
across the missing data methods.

Monte Carlo computer simulations were employed to examine the performance
of the missing data methods over a variety of missing data mechanisms. For each
mechanism, 500 samples of 2000 cases were generated. The variables employed in-
cluded a binary outcome, and one continuous and one binary risk factor. A treatment
variable with three levels was used for risk adjustment. For all but the most severe
non-missing at random conditions, the bias in the risk adjusted estimates was mod-

est. The estimates were efficient when compared to the complete data estimates. The



standard error estimates for the indirectly standardized measure performed poorly.
An asymptotically unbiased variance estimate was derived using the delta method
and was tested using Monte Carlo simulations.

When covariate information is missing, risk adjustment with binary outcomes can
be performed using multiple imputation or expectation-maximization by the method
of weights. The Monte Carlo simulations indicated that these methods work well
under a variety of missing data conditions. As these methods are now becoming

widely available, good diagnostic tools will need to be developed.
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Chapter 1

Introduction

When researchers assess the efficacy of treatments or interventions on patient out-
comes, they employ procedures to ensure that differences in outcomes across treat-
ment groups cannot be accounted for by differences in the mix of patient character-
istics among the groups. The most widely accepted manner of controlling for these
differences is the randomized clinical trial, in which patients are randomly allocated
to treatment arms. In many cases, however, randomization is not practical, or is
not possible due to ethical considerations. In these cases, statistical methods may
be applied in an attempt to control for differences in patient characteristics which
may account for observed differences in outcomes. Such methods have also been
applied in cases where researchers wish to compare the quality of treatment afforded
to patients by different physicians or hospitals. When used in these contexts, these
methods are referred to as risk adjustment procedures, as they are an attempt to ad-
just the observed outcomes for the risk of an adverse outcome presented by patients
with different characteristics (Blumberg, 1986). In many cases, complete informa-
tion is not available on variables which are important when adjusting for patient
characteristics. The purpose of this dissertation is to examine the use of missing
data methods which may be useful when conducting risk adjustment using binary

outcomes.



1.1 Risk Adjustment Methods

Risk adjustment methods are based on the assumption that patient outcomes can
be expressed as a function of patient attributes, random events, and the quality of
treatment the patient receives (Iezzoni, 1995; Park et al., 1990). These methods have
been applied to a variety of outcomes including time to death, mortality, morbid-
ity, disease complications, quality of life, physiological functioning and costs of care
(Iezzoni, 1995). Risk adjustment methods are often based on a comparison of the
observed patient outcome with the outcomes that would be expected on the basis
of patient risks. In the case of binary outcomes, a frequently used measure is the
standardized mortality ratio (SMR) which is the ratio of observed to expected out-
comes (Ash and Shwartz, 1997). Measures based on the difference between observed
and expected outcomes can also be employed. These measures will be discussed in
greater detail in chapter 2.

The use of risk adjustment procedures in health research has been increasing.
This can be attributed to several factors. The first of these is the need to contain
growing health care costs in the face of innovative and expensive treatment proce-
dures. Further, the proliferation of new treatments has led to widespread variation
in medical practices across providers, making it difficult to assess the effectiveness
of these new procedures. Finally, the public is becoming more vigilant in their as-
sessment of the health care they receive, and are demanding evaluations of the care
provided by physicians and hospitals. In the United States, some states publish an-
nual risk adjusted performance indicators for hospitals and physicians for the public

(Epstein, 1995; Green and Wintfeld, 1995; Kassirer, 1994). In Canada, risk adjust-



ment has been used to compare the quality of cardiac care within provinces and

across the provinces (Ghali et al., 1998).

1.2 Missing Data in Risk Adjustment

Adequate risk adjustment requires both the identification of risk factors which can
affect the outcomes under investigation and specification of the correct model for the
data. Further, it requires that the sources of data be of high quality. Records need
to be complete and measurements need to be precise. The amount and quality of
information collected can vary according by hospital type (teaching vs. non-teaching;
Iezzoni et al., 1990). It can also depend on whether or not structured methods are
used for data collection (Duggan et al., 1990). Beers et al. (1989) found that records
tended to be more complete in inpatient facilities than in outpatient facilities.
While missing risk factors have been identified as a problem in risk adjustment,
the methods which have been employed for handling missing data have generally
had an intuitive justification and have lacked underlying theory or rationale. When
substantial information is missing from records, researchers can be faced with the
choice between removing patients with the missing data from the risk adjustment
procedure, or dropping risk factors which may be important for the analysis. Another
strategy employed has been to impute or infer the likely values for the missing risk
factors and then conduct the analysis as if the data had been completely observed.
For example, for studies of patients in intensive care facilities, it is often assumed
that in cases where the results of test procedures have not been recorded, the patient’s

measure falls within the normal range. The underlying logic for this procedure is that



if the patient was not tested, it was because there was no indication that the test was
needed. Although this is arguably a reasonable procedure, it can be criticized on both
logical and statistical grounds. There is no way of knowing that the patient would
have had a normal result if the test had been conducted. Even graver errors can
be committed. Blumberg (1986) reports a situation in which test results were often
missing because patients died before the test could be completed. The substitution
of normal results for missing data led to the anomalous result that tests in the normal
range were associated with adverse outcomes.

Simple imputation procedures can also be criticized from a statistical standpoint
(Little and Rubin, 1989a). Apart from biases that may occur due to errors com-
mitted in making the imputations, the use of imputed values can lead to estimates
of variances that are too small. This results in smaller than expected confidence
intervals and to inappropriate statistical inferences.

When risk adjustment procedures employ binary outcomes, risk adjustment can
be based on statistically derived methods for handling missing data in logistic re-
gression. The two methods examined for these purposes will be multiple imputation
(MI) and the likelihood based expectation-maximization by the method of weights
(EMMW). These methods will be described in chapter 3, and the performance of

these methods for risk adjustment will be examined in chapters 4 and 5.

1.2.1 Missing Data in Logistic Regression

Several methods have been proposed for handling missing covariate data in logistic
regression. These methods have received little use, and do not appear to have been

employed for risk adjustment with binary outcomes. Although these methods are



relatively easy to implement and apply, they are not available in commonly used
commercial statistical packages. Further, they are complicated by the need to specify
a joint probability distribution for the covariates, and because the conditions which
gave rise to the missing data often cannot be specified.

In complete data regression procedures, the probability distribution of the out-
come variable is considered to be conditional on the covariates. Because of this, the
probability distribution of the covariates is not considered when constructing regres-
sion models, and the observed covariate values are treated as fixed constants. For
many missing data procedures, accounting for missing data requires the specification
of the distribution of covariates. Rather than being treated as fixed and known, the
observed values of covariates obtained in the study are treated as realizations of ran-
dom variables. These variables are considered to have a joint distribution, and the
parameters of this distribution are employed when accounting for the missing data.
Different approaches have been taken to solve this problem. Some approaches model
this distribution non-parametrically and avoid the estimation of parameters for the
probability distribution (Pepe and Fleming, 1991; Brant and Tibshirani, 1991). The
methods employed in this dissertation first estimate the parameters for the covari-
ates, and then either use these parameters for the generation of multiple imputations
or use them within a probability model for the outcome.

Unless the mechanism which gives rise to the missing data can be specified, valid
use of missing data methods require that the data be missing at random (MAR)
(Rubin, 1976). When a variable is MAR, the probability that a variable is observed
can depend on the values of other observed covariates. However, the probability

that a variable is missing cannot depend on the value of the missing variable or on



the value of any other missing covariate. While un-intuitive, this is the minimum
condition required for valid maximum likelihood inference in the presence of missing
data. Further, it is less restrictive than the condition that would seem to be required,
in which the observations form a random subset of the complete data. In such a con-
dition, the data are missing completely at random (MCAR). Missing data methods
have been shown to be somewhat robust to violations of the MAR assumption (Vach
and Blettner, 1991). Further, these methods are more efficient than deleting all
cases with missing observations, and under appropriate conditions can be shown to
be consistent and to yield asymptotically unbiased estimates of variance. However,
the effectiveness of these methods within the context of risk adjustment has yet to

be investigated.

1.3 The APPROACH Data

The utility of missing data methods for risk adjustment will be examined using data
from the Alberta Provincial Program for Outcome Assessment in Coronary Heart
Disease (APPROACH) project. The APPROACH project was initiated to assess
the cost and clinical outcomes for patients undergoing angioplasty and coronary
bypass surgery in the province of Alberta, Canada. Starting in 1995, physicians
recorded clinical information from all patients undergoing cardiac catheterizaton.
This information was recorded with the assistance of a computer program developed
for the initiative. Using the program, physicians recorded information relevant to
the outcomes of interest. Data collected included information on tests, symptoms,

and family history. In 1995-1996, data was collected from more than 6,000 patients.



In the early stages of the study, the collection of data was often not complete, with
up to 25% of the data missing on clinically important variables.

The data have been used to compare the six-month mortality rates for 4 major
hospitals in Alberta. In an attempt to account for the missing clinical data, Nor-
ris et al. (1999) obtained ICD-9 discharge data for the patients. Using a computer
algorithm, this discharge data was converted into diagnoses relevant to the risk ad-
justment. For many of the clinical variables, the diagnoses were coded as binary
variables (diagnosis positive or negative). In these cases, a new variable was created
which was based on both the clinical and the administrative data. If the clinical
variable was missing, the administrative diagnosis was substituted for the clinical
diagnosis. If the clinical variable was observed, the condition was coded as positive
if either the clinical or administrative diagnosis was positive, and negative if nei-
ther was positive. For some of the variables, such as ejection fraction and coronary
anatomy, there were no administrative equivalents. In these cases, a separate cate-
gory was created to code for the missing observations. Following the creation of these
new variables, the resulting database had complete data for 97% of the patients, and
this database was successfully used for performing logistic regressions.

The strategy of creating an extra code for missing observations allowed the use
of all of the variables, but did not use available information among the variables
to account for the missing observations. Further, the use of such a procedure is
known to introduce bias into the estimation of logistic regression coefficients, even
when the observations are MCAR (Vach, 1994; Vach and Blettner, 1991). Multiple
imputation and likelihood based methods would allow the use of variables with no

administrative equivalents without requiring the use of an extra category to account



for missing observations. Consequently, these methods may provide a powerful tool
for researchers performing risk adjustment in cases where there are no administrative
equivalents for variables with missing observations. The risk adjustment procedures
will be used to examine the effectiveness of the following treamtments: medical
treatment, coronary artery bypass grafts (CABG), and percutaneous transluminal
coronary angioplasty (PTCA). Type of treatment was chosen for the investigation of
risk adjustment methods because group sizes were similar and because there appeared

to be reasonably large differences in the effectiveness of the different treatments.

1.4 Purpose

The purpose of this dissertation will be to examine the use of missing data methods
applied to risk adjustment procedures. This examination will be confined to the
cases where the outcome is binary. The first step in examining these issues will be an
investigation of risk adjustment measures and how they are estimated using logistic
regression. This will be followed by a discussion of methods of handling missing data
in logistic regression and risk adjustment. Missing data methods will then be used
to perform risk adjustment with the APPROACH data. These methods will be used
to examine the effectiveness of the treatments provided to the cases. Simulations
based on these results and on the distribution of the APPROACH data will provide
information regarding appropriate conditions for performing risk adjustment with

missing data.



Chapter 2
Risk Adjustment Methods

Several methods of risk adjustment have been employed by researchers. These meth-
ods tend to be based on indirect standardization, where the number of deaths fol-
lowing treatment by a provider is compared to the number of deaths that would
be expected on the basis of underlying patient risks. Risk adjustment measures
which are based on indirect standardization include the standardized mortality ratio
(SMR), the difference between observed and expected deaths (the O — E difference),
the population averaged proportion, and Z—scores (Shwartz et al., 1997).

In direct standardization, the observed number of deaths in a standard popula-
tion is compared to the number that would have been expected if patients in the
standard population had the same risk for death as patients treated by a particular
provider. Methods based on direct standardization are rarely used for risk adjust-
ment, probably because in traditional applications, variance estimates for directly
standardized measures tend to be larger than those obtained using indirect standard-
ization (Breslow and Day, 1987b). When direct and indirect standardization are used
for risk adjustment, however, stratum specific estimates of risk are usually based on
a regression model for the population under investigation. In this case, measures
obtained using indirect and direct standardization can have the same interpretation
and comparable variances.

The choice of risk adjustment methods can be guided by the underlying model

for the risks associated with treatment by providers. When risks are multiplicative,

9
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ratio measures such as the SM R are appropriate and interpretable. When underlying
risks are additive, difference measures such as risk differences, are preferable. The
following sections describe measures which have been employed, the interpretation

that may be given to these measures, and how variance estimates may be obtained.

2.0.1 Notation and Models

Notation
The following notation and models will be useful for considering the uses and in-
terpretation of the above measures. In our study population, we have m treat-
ment providers h, with £ = 1,2,...,m. In this population, there are N patients
i = 1,2,...,N, with n, patients being treated by the kt* provider. If we let y;
be a binary random variable indicating the occurrence of death or disease, we can
construct models in which an individual can be assigned a probability of death based
solely on patient characteristics and which is independent of the treatment provider.
This probability of death will be denoted as p;. Further, we can denote the proba-
bility of death for this patient if he or she is treated by provider h; as pi.

The quantity O, which represents the observed number of deaths for provider k

will be considered to be a random variable

O = vy

i€hy
where the y;; are Bernoulli random variables
Pr(ya =1) = pa
Pr(yie =0) = 1—pa

Var(yix) = pir(1l — Pik)-
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The expected value of O is therefore
E(Ok) = Z Dik,
i€hy
Assuming independence of the observations y; for i € hi, the variance of Oy is
Var(Oy) = E Pik(1 — pik)-
i€hg

The provider independent probabilities of death, p;, can be determined on the

basis of external rates or on the basis of the total observed population, and are often

treated as fixed constants. The expected number of deaths will be denoted as

E(Ek) = z Di,
i€hy
or as
E.= ) p (2.1)
i€hg

when the p; are estimated from the data. In general, when estimates of the p;; are
obtained from models which include provider effects, these estimates are subject to

the constraint that

Ok = Y_ ik = Ex. (2.2)

i€hy
In many situations, the characteristics which are used to determine the proba-

bility of death can be expressed as diagnostic or demographic categories. In these
cases, one can construct a composite categorical variable which denotes membership
in a particular joint diagnostic and demographic category. For example, one such
category could denote patients who are young, male smokers with diabetes. These
joint categories will be denoted as categoriesl = 1,2, ..., s. Individuals ¢ within each

of these categories have probability of death p;. Each of the n, can be broken into
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N, where each ny represents the number of patients treated by hx who are in risk
category . The set of the ny determines the patient mix for provider h;. Under a

binomial model, the maximum-likelihood estimate of py is

Pa = — D Ui
Nkl ichy
This leads to the following re-expressions:
S p = nup
i€hg
Z Pik = TPkl
1€REL
E. = Y nup (2.3)
=1
s
O = Yy = S nupu, and (2.4)
ichg =1
]
Var(Ox) = Y nupw(l — pu) (2.5)

=1

Definitions

The following definitions will be used for the discussion of risk adjustment measures.

Indirect Standardization. The calculation of a weighted average of the risks
in a standard population. It is obtained by weighting the stratum specific risks in
the standard population by the distribution of subjects treated by a given provider.
Dividing the observed proportion of deaths for a provider by this weighted average
yields the O/E ratio, which is also referred to as the standardized mortality ratio
(SMR). The standard population can be an external population, the entire popu-
lation of patients or the distribution obtained by combining the providers under

investigation.
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Direct Standardization. The calculation of a weighted average of the stratum
specific risks of patients treated by a provider, where the weights are based on the

distribution of patients in a standard population.

Homogeneity. Within the context of the following discussion, homogeneity
will refer to the constant increase in risk across risk categories that is associated with
treatment by a particular provider (Breslow and Day, 1987b; Rothman, 1986b). This
increase in risk has also been referred to as proportionality of effect (Kelsey et al.,
1996b), or the assumption of uniform effect (Greenland and Rothman, 1998c). For
the remainder of this dissertation, the condition of constant provider effects will be
referred to as homogeneity, as this term can be applied to both additive and mul-
tiplicative risk models. The goal of risk-adjustment is to compare the effectiveness
of providers after controlling for differences in patient mix that may confound this
comparison. As will be demonstrated, however, the commonly used risk-adjustment
methods are sensitive to changes in patient mix unless the level of risk associated with
a provider is constant across diagnostic categories. Under homogeneity, observed
fluctuations in risk across diagnostic strata are attributed to random error (Kelsey
et al., 1996c). The assumption of homogeneity can be tested using goodness-of-fit
tests, by inspection of the risks across strata, or on the basis of a priori evidence. For
risk-adjustment, the condition of homogeneity yields meaningful and interpretable

results.

Heterogeneity. Heterogeneity refers to the condition in which the risk associ-
ated with a provider varies across diagnostic categories. Under heterogeneity, a single

risk-adjusted value can no longer represent the performance of a provider. This is
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because heterogeneity implies that provider performance depends on the risk cate-
gories to which patients belong. In such a case, Kelsey et al. (1996b); Breslow and
Day (1987b) suggest that one should compare the performance within risk categories.
Greenland and Rothman (1998c), however, take a more liberal stance towards het-
erogeneity. They suggest that to assume the effects are uniform, one does not need
to rule out heterogeneity. Instead, they view homogeneity as a useful approximation
that simplifies analysis and reporting, and which is a reasonable assumption to make

provided that it is not clearly contradicted by the data or other evidence.
Multiplicative and Additive effects

Multiplicative effects. Models which assume multiplicative effects are the
most frequently encountered models in epidemiology (Kelsey et al., 1996a). There
are logical, mathematical and empirical grounds for justifying the use of multiplica-
tive models. When relative risks are used as a measure of association, a confounding
variable which exerts its influence through a causal variable will always have a weaker
association with the outcome than will the genuine causal variable (Breslow and Day,
1980; Cornfield et al., 1959). This implies that an exposure with a strong disease
association is more likely to be causal than an exposure with a weak association
(Kelsey et al., 1996a). Multiplicative models have provided stable measures of asso-
ciation in a wide variety of populations for a wide variety of diseases, and the effects
of combined exposures on an outcome are often found to be multiplicative (Breslow
and Day, 1980). Multiplicative risk models are convenient to work with mathemat-
ically, as these models are linear on a log scale, and maximum likelihood estimates

for the parameters in these models are more readily obtained (Bishop =t al., 1975).
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In the context of risk adjustment, a multiplicative model implies that treatment
by provider h; leads to a proportionate increase in risk for patients in each of the s
risk categories. This proportionate increase in risk will be denoted as RRy;. If effects
are multiplicative, the risk for patients in category { treated by provider h; can be

modeled as

Pri = RRup (2.6)

Under the assumption of homogeneity, the proportionate increase in risk associ-
ated with a provider is the same for all patients. This increase in risk will be denoted
as RR,. Using a multiplicative model, and assuming homogeneity, the probability

of death for patients in risk category [ treated by provider h; is
pu = RRipy (2.7)
and the expectation for the observed number of deaths is
E(Ok) = RR: )_nupt. (2.8)
=1
Additive effects Additive models are considered to be useful in determining
the public health impact of a risk factor (Breslow and Day, 1980; Kelsey et al.,
1996a), as they allow one to calculate the number of excess occurrences that are
associated with a particular exposure. Additive models often lack biological plausi-
bility (Breslow and Day, 1980), although some have argued that additive models can
provide a better means of assessing causal associations (Greenland, 1998; Rothman,
1974, 1976; Rothman et al., 1980).

Under an additive model, treatment by a provider adds to the risk of death

associated with patients on the basis of their diagnostic category. The additional
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risk associated with treatment by provider h, for patients in risk category ! will be

denoted as Ry;. The model for risk associated with these patients is
Pet = R + 1t (2.9)

Under the assumption of homogeneity, the amount of additional risk associated
with a particular provider is the same for all patients treated by the provider. This
additional or excess risk will be denoted as Ri. Using a model for additive effects

the probability of death for subjects in risk category l and treated by provider h; is
Pu=Ri +p (2.10)

and the expectation for the observed number of cases is
s

E(Ov) = ne Ry + §nupz- (2.11)
The choice between additive and multiplicative models can be based on empirical,
logical and practical grounds (Breslow and Day, 1980, 1987a; Kelsey et al., 1996a;
Rothman, 1986a). Empirical considerations include the goodness of fit of the model,
and how succinctly the model can account for the data (Breslow and Day, 1980).
It is desirable to capture the essential features of the data as succinctly as possible.
To this end, homogeneous models are more desirable than heterogeneous models,
as they do not require the calculation of parameters corresponding to interaction
terms. This is an important consideration when deciding between additive and
multiplicative models, since a model which is homogeneous on an additive scale will

be heterogeneous on a multiplicative scale and vice versa (Greenland and Rothman,

1998b). Breslow and Day (1987a) point out, however, that it can be difficult to
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discriminate between models on the basis of statistical considerations. Unless one
model can be shown empirically to be much better than another, Breslow and Day
suggest that 1) a-priori considerations are an important part of the decision and that

2) it is prudent to examine and present both additive and multiplicative models.

2.1 Methods Based on Indirect Standardization

As noted previously, in the face of strong evidence for heterogeneity, the use of a
single summary measure to represent provider performance is questionable. Under
homogeneity, risk-adjustment models can provide meaningful and interpretable re-
sults. As would be expected, difference measures, such as the O — E difference
are meaningful when the underlying risk model is additive. Ratio measures, such
as the SMR, are more appropriate where the underlying model is assumed to be
multiplicative.

Standardized risks have the general form

— Zl‘zl wlpkl

2.12
S w (2.12)

Pk

(Greenland and Rothman, 1998b). The weights w; are determined by the distribution
of patients across risk categories in the standard. For indirectly standardized risks,
this distribution is based on the patient mix across risk categories for the provider
under study. For provider h,, the indirectly standardized risk of death will be denoted
as

_ i1 TP _ Xin TPkt

_ Zi= 2.13
Pe Sol1 Mk n ( )

The expected risk of death, p.., based solely on patient risk factors and ignoring the
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effects of treatment by provider h; is

Pex = Li=1 NPt (2.14)
Tk

2.1.1 Ratio Measures

SMR
The SMR is a standardized risk ratio obtained by taking the ratio of indirectly

standardized risks. The use of the SMR is appropriate as a risk-adjustment measure
when the underlying risk model is multiplicative and when the provider effects can
be assumed to be homogeneous across risk strata. When these conditions are met,
SMR;: can be interpreted as an estimate of the constant proportional increase in
risk associated with provider he. The ratio of indirectly standardized risks can be

expressed as

P _ p R, = Yoi=1 kiPki / Yi—1 kDt
Dek Mg Nge
_ > -i=1 NPk
i1 kDt

When the px and p; are used as estimates, by 2.3 and 2.4,
RR. = Oy/Ex = SMR,. (2.15)

An estimate of the SMR can therefore be obtained by taking the ratio of the ob-
served deaths to the number of deaths that would be expected if the stratum specific
death rates associated with the provider were the same as those in the population

(Greenland and Rothman, 1998a; Last, 1988).



19

Multiplicative Risk Model

Under a multiplicative risk model, the SMR is a weighted average of the stratum
specific relative risks associated with a provider. The weights for these relative risks
are determined by the patient mix and by the risks associated with the risk categories.

By 2.3 and 2.6, RR; can be expressed as

S i—1 RRunup: ‘ (2.16)

RR, =
. S i=1

When the RRy and p; are estimates, the SMR, can be expressed as a weighted

average of the RRy:
Yoi-1 RRunup

= 2.17
=1 Dt ( )

SMR, = RR; =

It is evident from 2.16 that for given sets of RRy; and p;, the RR; can be sensitive
to changes in patient mix. This means that two providers with identical risks asso-
ciated with treatment can have different RR;’s if they differ in their mix of patients.
This can be demonstrated by taking the sum of the partial derivatives of RR; with
respect the set of ny, where | = 1,2,3,...,s. The relative risk for provider h; will
not be sensitive to change in patient mix for sets of RRy; for which each of the partial

derivatives of RR; is equal to 0. These derivatives will equal 0 when
pi(RRu/RR:) = pu- (2.18)

If the RRy differ across strata, the above equality will not hold (except in the
unlikely event that p;=0). Consequently, if there is heterogeneity of the risk ratios
across strata, the estimate of the SM R will be sensitive to patient mix. For an

example of the effects of heterogeneity on the SM R, see section (2.4.2) below.
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Homogeneity. The above equality (2.18) will hold if there is homogeneity of
the relative risks across risk strata. That is, it will hold if RRy = RR, for all
. Where there is homogeneity, the RR; will not be sensitive to patient mix, and
it can be interpreted as the constant proportional increase in patient risk across
risk categories that is associated with provider hg. Under homogeneity, the ERH
are all estimates of RRy, and fluctuations in the ﬁ{u are attributed to random
variability. Consequently, under homogeneity, RR, and SMR, are both estimates

of the constant proportional increase in risk associated with provider h.

Additive Risk Model

If the underlying risk model for treatment providers is additive, the SMR will be
sensitive to patient mix and consequently is a poor choice as a risk-adjusted measure.
By 2.3 and 2.11, the ratio of indirectly standardized risks would be

i1 (R + 1)

RR, =
k 2::1 nklpl

Under homogeneity, by 2.11 this can be expressed as

R
RR, = —** 41
=1 Pt

To facilitate interpretation of this measure, consider the set of weights w; =
(wi1, Wi, - - - y Wi, ) for provider hy, where wir = nu/ne. This set of weights denotes
the proportion of patients treated within each risk category. The RR; can then be

re-expressed as

Ry
RR, = ———— +1. 2.19
* i1 WP ( )

Since SMR; is an estimate of RRg, it is evident that with an underlying additive

risk model, an SM R will be sensitive to patient mix. With the risks associated with
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patients held constant, the denominator in the first term of the above expression
depends on wi. The term Y;_; wyp; will be large for providers which tend to treat
high risk patients and it will be small for providers treating low risk patients. Conse-
quently, if two providers that have the same additive risk associated with treatment,
the provider that tends to treat higher risk patients will have a smaller RR; than

will a provider treating lower risk patients.

Variance.
The simplest means of determining the variance of the SMR is to treat the p; as

fixed and known. In this case, the variance of the SMR is

Va.r(SMRk) = Var(Ok/E,,) = %(—20—’3—)
k
For the purpose of constructing confidence intervals, by 2.5 the variance is

Var(SME,) = ZizMpu(l ~ Pu) (2.20)
k

Under the null hypothesis, the py are assumed to differ from the p; due to random
variation. Therefore, for hypothesis tests, the Var(O) can be based on the p;, and

the variance of the SMR is

Var(SMRk) — Zl:l n“g;(l _pl). (2.21)
k

The p; are often not known and must be estimated on the basis of available data.
The E,, which are sums of the p, are therefore random variables. Further, if each
provider is a subset of the data used to obtain the p;, then estimates of the p; and

pri Will not be statistically independent. Using a first-order Taylor series expansion,
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an asymptotic expression for the variance of SMR; is

1 [(E©O0)
= Var(O 2.22
Var(SMR) E(E:)? [(E(Ek)) ar(Ok) ( )
E(Ok)
+ Var(Eg) — 2 (E(E,‘)) Cov(Ox, Ek)] ,
and an approximation for the variance of SM Ry is
Var(SMR,,) = —E—,z [(-E—,k-) Var(Ok) +Var(E,,) 2 (_Ek COV(O,,,E],)] .

Estimates of Var(O;) are obtained as above. Estimates of Var(E;) and Cov(Ox, E,)
are based on the model used for estimating the p;. For details of how these can be

derived from asymptotic likelihood theory, see appendices A and D.

The Population Averaged Proportion

The population averaged proportion is also referred to as the risk-adjusted mortality
(Shwartz et al., 1997). As with the SMR, its use as a risk adjustment measure
is appropriate where homogeneity and a multiplicative risk model can be assumed.
Under these assumptions, the population averaged proportion can be interpreted as
the proportion of persons in the treated population that would have died had all
patients been treated by a given provider. The population averaged proportion will

be denoted as P, and is calculated as
P, = RR:p (2.23)

where p = Y7, E(O.)/N. An estimate of P; for provider h; can be obtained by
multiplying p by the SM Ry, where p = 3k = 1™O/N.

As with the SMR, with an underlying multiplicative model, the B, will be sen-
sitive to patient mix in the presence of heterogeneity. It will also be sensitive to

patient mix if the underlying model for risks is additive.
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Variance Often, p and the f; are treated as fixed constants, and the variance

of P, is estimated as

-

2
Var(P:) = (l) Var(Ox)
E;
Where p and the p; are estimated from available data, the variance of P, can be

approximated using a first order Taylor Series expansion. In this case,

ar(B) = (i)zﬁr(om(gﬁﬁ)zﬁrwkw(g—:)zﬁr(ﬁ)

E; E}
0), - Ok = ~ ﬁ S AT =3
) (@) (2] -]

The variance of Oy is obtained by 2.20 or 2.21. The covariances and the variances
of E; and p depend on the model used in determining the estimates of the p;. For

further details of the asymptotic likelihood theory, see appendix A.

2.1.2 Difference Measures

Difference measures, such as the excess risk, are appropriate when the underlying
model for risks is additive. When the underlying risk model is additive and when
there is homogeneity of the effect for a provider, measures based on the risk difference
are not sensitive to patient mix. The O — E difference is a poor choice for a risk
adjustment measure, as the magnitude of this difference is directly proportional to
the volume of patients treated by a provider. If there is heterogeneity among the
additive risks for a provider or if the underlying model for risks is multiplicative,

difference measures will be sensitive to patient mix.
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Risk Difference

The risk difference is also referred to as the excess risk. It is the proportion of
deaths associated with treatment by a provider. If the underlying model for risks is
homogeneous and additive, it can be interpreted as the constant additive increase in
risk associated with treatment by a given provider. Using indirect standardization,

the excess risk Ry is

Tic1 (Pt — P1)Tkt
Z::l L]
=1 pkznun— i1 D1kl _ (2.24)
k

By 2.4, 2.3 and 2.24, an estimate of the excess risk is

- O — FE
Rk=—-ka—-£.

Additive Risk Model. If the underlying model for risks is additive, by 2.24
and 2.9 the excess risk can be expressed as

Yi—1((Ri + pt) — pi)n

R, =
Ny
s
R
_ Ziz Rumu (2.25)
N
When the Ry and p; are estimates, an estimate of the excess risk is
.  Oy—E ', R
B= Q=B _ Lizy Rt (2.26)

Ny Ng
From 2.25, it is evident that with an additive risk model, the excess risk may be
affected by patient mix. Taking the partial derivatives of R with respect to the ng,

the R, will not be sensitive to patient mix when

8
neRi; = Y Runu
=1
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for all j where the j = 1,2,3,...,r denote membership in risk strata. The above
equalities will hold when Ri; = Ry, for all j,I. In other words, it will hold for
each of the derivatives when there is homogeneity in the additive risks across risk
strata. Under homogeneity, R; can be interpreted as the constant additive increase
in risk associated with provider hx. The sz are estimates of R;, and the quantity
(Ox — Ei)/n: is therefore an estimate of the constant proportional increase in risk

associated with provider h;.

Multiplicative Risks If the risks associated with providers are multiplicative,

by 2.24 and 2.6, the excess risk can be expressed as

Yici RRupimu 30— P
N L

_ 21’:1(RR: — )pinw (2.27)
k

R, =

For given RRy,; and p;, and a multiplicative risk model, the excess risk will be sensitive
to differences in patient mix. This will be the case even if the multiplicative risks

are homogeneous. Under homogeneity, RRi; = RR; and 2.27 can be expressed as

Ri = (RR, — 1) Y_ pww
=1

which, for given R; and p; will depend on the set of weights w;; denoting patient
mix. For example, consider two providers h; and h; with identical relative risks (i.e.
RR;, = RR,). If a large proportion of patients treated by provider h, are in high risk
categories, 3_;_, wip; will be large when compared to provider h;, which treats low
risk patients. Consequently, the expected excess risk associated with the provider h;
will be larger than that associated with provider hy, even though their relative risks

are identical.
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The difference between the observed and expected deaths is sometimes employed
when performing risk adjustment. It can be interpreted as the number of excess
deaths for provider h; that can be attributed to treatment by that provider. As
previously mentioned, a major weakness of this measure is that it is directly propor-
tional to the volume of patients seen by the provider. The O — E difference is closely

related to the excess risk. From 2.24
E
neRe =Y _ (Pt — Pt)ia-
=1
With estimates of py; and p;, by 2.4 and 2.3

nkfik = Ok - Ek = Z(ﬁu -—ﬁz)nu. (2.28)

=1

As with the excess risk, when risks are homogeneous and the risk model is addi-
tive, the O — E is affected by patient mix if additive risks are heterogeneous or if the
underlying risks are multiplicative. It is not affected by patient mix if the risks are
additive and homogeneous. For providers with identical risk, the magnitude of the
O — E difference is directly proportional to the volume of patients treated. Conse-
quently, providers with the same underlying risks will be ranked according to their

patient volume.

Population Averaged Proportion
When the risk model for providers is additive, an alternative version of the population

averaged proportion can be based on the excess risk. This alternative version is

Zl‘=l Runu

Pf=Re+p= -

+p. (2.29)

If the risks are homogeneous, this measure will be insensitive to changes in patient

mix. As with the population averaged proportion based on the relative risk, P* can



27

be interpreted as the proportion of patients in the treated population that would

Lave died if all had been treated by a given provider.

2.2 Z-—scores

Another measure used for risk-adjustment is the Z—score. Z—scores are not a good
measure for risk-adjustment as their use confuses issues of statistical significance with
the estimated magnitude of risk. Further, Z—score are proportional to the square
root of the volume of patients treated by a given provider, and are sensitive to patient
mix. The Z—score is the distance of the observed value from the expected value in
terms of standard deviation units. For binary data, calculation of the Z—score is
generally based on the binomial approximation to the normal distribution. Since
Var(y;) = pi(1 — p;) the variance of O, under the null hypothesis is
Var(Y wi) = D i1 —pi)
ichs, ichs
for continuous risk factors, or
Var()_ ui) = inupl(l - p)
ich, =1

for categorical data.

The Z—sccre is calculated as
_ (O — Ei)

\/i:fd nupi(1 — pr)

For an underlying additive model, this can be rewritten as

Zy

Z = Vi R : (2.30)
Vo wap(1 — 1)
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If the underlying model is multiplicative, this can be expressed as

Z, = ViR(RR: — 1) 31, WhiP1 (2.31)
\/ i wp(1 —pr)

From (2.30) and (2.31), it is evident that regardless of the underlying model, the

Z —score will be influenced by the volume of patients treated and by patient mix.
For a given patient mix, the magnitude of Z; will be proportional to \/nix. The
value of p(1 — p) is greatest when p = 0.5, and decreases as p approaches 0 or 1.
Consequently, providers with a predominance of patients in low or extremely high
risk categories will tend to have smaller denominators and larger values of Z.

In risk-adjustment, Z—scores are used to rank providers in terms of performance
and to indicate providers that may be “outliers”. An outlier is defined as a provider
with a Z—score of a magnitude that is unlikely to have occurred due to chance. As
such, however, it is a poor means of comparing the performance of providers, due
to the sensitivity of Z—scores to factors which are independent of the risk posed by
a given provider. Rather than using Z—scores, it may be advisable to separate the
information regarding the risk associated with a provider from the criteria used to
judge the statistical significance of the risk. A measure which is a better reflection of
the risk associated with a given provider could be employed, and confidence intervals
for these estimates could then be used to determine the precision of these estimates
and to indicate whether chance factors could account for the obtained estimates.
An “effect size” measure could be constructed by dividing the Z—score by /ng.
This measure would not longer be influenced by the volume of patients treated by a
provider. The use of a binomial model for the variance, however, will still lead this

“effect size” measure to be sensitive to patient mix.
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2.3 Direct Standardization

Directly standardized risks are standardized using the patient mix from some com-
mon standard population. This standard population can be hypothetical, based on
a distribution for a given year, or it may be determined by combining the patients
from the providers being compared. The standardized risk associated with provider

hi is

Si=1 TP
= 2.32
pk Zl‘zzl ny ( )

where the m; are the numbers within risk categories of the standard population.

Ratio or difference measures can be obtained by comparing these risks to the overall

standardized risk for patients in the standard population

. __ 2;:1 P

= ST =p. (2.33)

p

Directly standardized measures have two advantages over indirectly standardized
measures. First, they are not affected by differences in patient mix among providers.
This is because the same standard is applied to the stratum specific risks for each
provider. They are affected by the choice of standard population, however, except
where the choice of measure correctly reflects the underlying model for risks, and
where these risks are homogeneous across risk strata. In these cases, the directly
standardized measures estimate the same quantities as those estimated by indirectly
standardized measures under the condition of homogeneity; the constant additive or
proportional increase in risk associated with treatment by a given provider.

Second, although directly standardized measures may be affected by the choice

of standard population, providers with equivalent stratum specific risks will also
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have equivalent standardized measures. This is again because the same standard
population is used to weight the stratum specific risks for all providers.

One disadvantage attributed to directly standardized meacures is that their vari-
ances tend to be greater those that obtained for indirectly standardized rates (Bres-
low and Day, 1987b). This can be especially problematic when the strata have few
subjects, because the uncertainty in estimating the rates for these strata can result in
high variability for the directly standardized measure. In the case of risk-adjustment,
standardization is usually based on the stratum specific rates in the population re-
ceiving treatment by the providers of interest. Homogeneity is generally assumed in
these models, and the stratum specific rates used for both direct and indirect stan-
dardization are based on all subjects in the population (see appendix A for details).
As demonstrated in chapter 4 and chapter 5 (see section 5.2.2), the resulting variance

estimates are similar for directly and indirectly standardized measures.

2.3.1 Ratio Measures

The Relative Risk.

Ratios of directly standardized risks can be used to determine relative risks associated
with treatment by providers. A directly standardized ratio compares the risks which
would occur if all patients in the standard population were treated by a particular
provider with the actual risk in the standard population. The relative risk associated

with treatment by provider h; is

PE — RR; = Ef=‘1 TPkt 21'71 np
y 4 zz=1 np 21_—_1 n;
_ =1 TuPw

z::l nlpl

(2.34)
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When the p; and py are estimated from the data,
RR, =E;:/O (2.35)

where E; = ¥{_, mpu and O = Y- up = Zfil ¥i, the total number of deaths in

the standard population.

Multiplicative Risk Model. Under a multiplicative model, the directly stan-

dardized relative risk can be expressed as

Yi—1 RRunp
2;:1 n'pl

RR; = (2.36)

As noted previously, because the same standard is applied to each provider, the
RR; will not be sensitive to differences in patient mix among providers. They will,
however, be sensitive to the choice of standard population unless there is homogeneity
of the risk ratios. In this case, the choice of standard population is irrelevant, and
RR; = RR; = RRi;. When the RR,; and p; are estimated from the data,

RR = Z:‘:x‘RRk:Znﬁ:
Zl:l nlpl

Under homogeneity, the Iﬁu are estimates of RR;, and dsRR is

Y b _ 5

RR, = RR " = RR;.
k kZl‘.-_l n’lpl k

Consequently, R’72,: and SMR; are both estimates of RR,.

Additive Risk Model. Under an additive model, RR; can be expressed as

e Zimi(Ba+p)u _ Xisg Rt
RRk - s - ]
Py ! i1 P

+1. (2.37)

While not sensitive to patient mix, this measure will be sensitive to the choice of

standard population.
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Variance. If the p; are treated as fixed and known, the variance of RTZ,: is

Var(E;)
o

Var(RR,) = Var(E; /O) =
If this variance is to be used for hypothesis testing, under the null hypothesis of no
provider effects, the variance of E; is
Var(E) = Y_nup(1 — p),
=1
since E;* is the sum of binomial random variables. For the purpose of constructing
confidence intervals, the variance of E is
Var(E;) = Y mupu(l — pu)-
=1
The the py and p; are often estimated from available data. If each provider is
a subset of the data used to estimate the p;, the estimates of p; and pi will not be

statistically independent. The following estimate of the variance of ER,: is based on

a first-order Taylor series expansion:

Var(RR.) = 513 [(% )2\75(51,;) +Var(0) — 2 (%") Cov(Ey, 0)] (2.38)

Estimates of Var(E,’) are obtained as above. Estimates of Var(O) and Cov(E;, O)
are based on the model used to obtain estimates of the probabilities. For details of

how these estimates can be derived from asymptotic likelihood theory, see section

A.2 in appendix A.

The Population Averaged Proportion.
The directly standardized risk, p{ can be interpreted as the proportion of patients

expected to die if all patients in the standard population were treated by provider
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hs. If risks are homogeneous and multiplicative, p; is equal to the population aver-

aged proportion (P;) obtained using indirect standardization. Under homogeneity,

RRH = RRk, and
Y-y RRepiru

. = = RRip = P.

An estimate of the population averaged proportion can be obtained as

! Pumn 1
B = _Er—_xnf’_u = ~E;. (2.39)

Variance. When the py are estimated from the data, the variance of pg can

be obtained as
Var(p{) = ( 7 ) Var(Ey). (2.40)
For details on how V;r(ﬁ,:) can be derived using asymptotic likelihood theory, see

section A.2 in appendix A.

2.3.2 Difference Measures

Risk Difference
Directly standardized risks can also be used to measure excess risk, py —p*. This is
the excess risk of death that would occur if all patients in the standard population
were treated by provider hi. By 2.32 and 2.33, an estimate of the excess risk can be
obtained as

_Ziapumu _ Xiapmu _Ef -0

RRk - n n - n

Multiplicative Risk Model. Under a multiplicative model, this risk difference
is

_ X RRunpt X up
n n

Ry = pi—p°
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— Z;:l(RR:: - l)nlp‘. (2.41)

If the underlying risk model is multiplicative, the excess risk will be sensitive to the

choice of standard population.

Additive Risk Model. Under an additive model, the risk difference can be

expressed as
e o _ZiaRutplu  Tiap

Ri= pi—p n n
— Zl.=1 Runl

n

(2.42)

With additive risks under homogeneity, Ry = Rx = R;, and the excess risks obtained
using indirect and direct standardization are identical. When the Ry are estimated

on the basis of available data,

R = Yo Rumu
k — ——,
n

Under homogeneity, the Ry, are estimates of Ry, and R,: is a weighted estimate of

Ri.

The Population Averaged Proportion
Under a homogeneous additive model, p; is equal to the population averaged pro-
portion (P;*) obtained using indirect standardization, since

.« _ 2 (Re +piru
k 21.=1 n

=Rk+p=Pk.-

2.4 Logistic Models for the Probability of Death

When the proportion dying or becoming diseased is of interest, researchers typically

use logistic regression to model the probability of death or desease on the basis of
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patient characteristics. The p’s obtained from this regression are then used to es-
timate the expected number of deaths associated with a given provider. Logistic
regression can be used to obtain estimates which are based on both indirect and
direct standardization. When indirect standardization is employed, researchers of-
ten use logistic models which do not adjust for covariate effects when estimating the
risks associated with risk factors. The corresponding risk adjusted measures will be
referred to as baseline model (BM) estimates. Risk adjusted measures obtained from
logistic models which do account for treatment effects when estimating risks will be
referred to as full model (FM) estimates. When direct standardization is employed,
the corresponding logistic models also account for treatment effects. Consequently,
these directly standardized measures are also full model estimates. Logistic regres-
sion can be used for categorical and/or continuous covariates. In keeping with the
rest of this chapter, the following discussion will focus on categorical covariates. A
description of how logistic regression can be used for risk adjustment with continuous

covariates is presented in appendix A.

2.4.1 Models Adjusting for Provider Effects

For categorical covariates, logistic regression estimates are appropriate in cases where
the underlying probability model is binomial. In the case where we have patients
within risk categories treated at m different providers, the binomial probability for
the observed number of deaths is

s

Pr(0O) ﬁ I1 (n“) PO (1 — pg)mai =90, (2.43)

k=11=1
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Where O is a vector of the Oy, which denote the observed number of deaths in each
risk category for each provider. In logistic regression, the py’s are modeled as a

function of the covariates using the logistic probability distribution

exp(a + 61 + &)
1+ exp(a+ 6 + %) (2.44)

In the above formulation, the (3;’s are estimates of the increase in risk associated

Pki

with membership in a risk category relative to an arbitrary baseline risk category.
Likewise, the «,’s are the increase in risk associated with treatment by provider k
relative to some arbitrary provider which serves as a baseline. Rearranging 2.44,

Dkl
1 — pu

= exp (@ + G + %) (2.45)

and the odds of death is therefore a multiplicative function of the effect of treatment
by a provider and membership in a risk category. Where the probabilities of death
are small, odds and odds ratios can be used as approximations of risks and risk

ratios, and the logistic regression model approximates a multiplicative risk model.

Estimating the Coefficients. Maximum likelihood estimation is used to ob-
tain estimates of the coefficients in the logistic regression model. The likelihood of
the regression parameters is proportional to the probability of the data given these
parameters. Let 3 and v be vectors of the parameters 3; and 7. Maximum likeli-
hood estimates are obtained using the log of the likelihood function. For the logistic

regression model described above, the log-likelihood is

{a,B,79|0) = i i [Ou(a + B + i) — nualog(1 + exp(a + B +%))] . (2.46)

k=11I=1

In this formulation, the log (3‘;: ) are constant with respect to the log-likelihood and

can be ignored when maximizing the likelihood. Maximum likelihood estimates are
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obtained by taking the partial derivatives of the log of the likelihood function with
respect to the regression parameters and finding the values for the parameters for
which the partial derivatives are equal to zero. The partial derivatives are referred
to as score equations. The score equations for a, 3;, and v are

P

Sg = Y_(Ort — nupu) (2.47)
k=1

Sp = i(ou — NPu) (2.48)
I=1

Su = 33 (Ou — nwpnd) (2.49)

k=11=1
where py; is a function of the parameters as shown in 2.44.
The solutions to these equations are obtained numerically using iterative meth-
ods such as the Newton-Raphson algorithm (McCullagh and Nelder, 1989). The
inverse Fisher’s information matrix provides an estimate of the variance matrix of

the regression parameters.

Indirect Standardization

The logistic regression described above can be used to provide estimates of death
for individuals in certain risk factors treated by particular providers under study.
When we obtain parameter estimates by equating equations 2.47 - 2.49 to zero,
we are forcing the sum of these individual probabilities to be equal to the number
of deaths associated with the provider. Consequently, these probabilities will not
provide information regarding the performance of the provider. The coefficients for
membership in risk categories can however be used to provide estimates of risk for

patients that is independent of treatment by providers. A risk of death associated
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with membership in a risk category can be estimated as

P exp(d'{",él) 2.50
P Y epa+A) (2:50)

These risks, however, are not appropriately scaled for use with risk adjustment pro-

cedures, since the sum of these risks will not equal the number of observed deaths
for the entire sample under study. Consequently, all of the risk adjusted estimates
may be over or under estimated, depending on the choice of baseline provider and
on the degree and nature of confounding between the risk factors and the providers.
The probabilities produced by the above procedure correspond to the probabilities
that are fitted for the baseline provider. For example, if the provider with the worst
performance was chosen as the baseline, then for the rest of the providers, the ex-
pected death rates obtained on the basis of the risk factors would be greater than
the observed number of deaths. Consequently, the baseline provider would have
O = E, while the other providers would have O < E;. While such a procedure
would preserve the ranks of the providers, it would not provide information as to
whether the providers were performing better than expected. Instead, this procedure
would provide information as to whether the providers were performing better than

the baseline provider.

An offset model. The data can be rescaled to allow meaningful comparisons.
To re-scale, a new value for a, a, can be obtained by performing another logistic
regression where the §;’s associated with each individual are used as offsets in the
model. An offset is a component in the model that is known and requires no coef-
ficient (for details, see appendix A). The resulting fitted probabilities, pn, will be
scaled so that O = E. These probabilities are the weighted average of the p;, which



39

are the stratum specific probabilities of death associated with the different providers.
They can be interpreted as probability of death expected if all individuals in a risk

stratum were treated by some super provider which treated all patients.

Risk Adjusted Estimates. The expected number of deaths for provider k are

obtained as

E. = nupa,
=1

and SMR; and P, are obtained as in 2.15 and 2.23. Estimates of variance for these

measures can be obtained using the procedures detailed in appendix A (section A.1).

Direct Standardization

The full logistic regression model can be used to obtain directly standardized esti-
mates of relative risk and the population averaged proportion. These measures are
based on Ej, which is the number of deaths expected for all patients if they were all
treated by provider k. Using the logistic regression coefficients, E; can be obtained

as

. exp(a + G + %)
E; = .
* gnll‘*‘exp(a'*'ﬁz-*-’rk)

The E; can then be used in the calculation of risk adjusted estimates by 2.35 and

2.39. Variance estimates for these measures are derived by asymptotic likelihood

theory in appendix A (section A.2).

2.4.2 Models Ignoring Provider Effects

A common practice in risk adjustment will be referred to as baseline-model (BM) risk

adjustment. In BM adjustment, the models used to estimate the p; ignore provider
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effects. A logistic regression model is fit without including providers and stratum

specific estimates of risk are obtained as

. expla+p)
= T epla+B)

These p; are then used to obtain the expected numbers of deaths for each provider,
and risk adjusted estimates such as the SMR or population averaged proportion
obtained using 2.15 or 2.23. Variances of these estimates are then typically obtained
using 2.20 or 2.40.

A problem with this approach is that the p;, will differ from the pu obtained
using the offset method described above. Further, they are obtained from a logistic
regression model which does not adjust for provider effects. This has the potential
to yield incorrect results, since the risk adjustment is being performed because there
is a suspicion that the provider effects are confounded by patient mix on important
risk factors. This practice has been defended on the grounds that it is a practical
procedure and that while error prone, errors in the magnitude or variance of the risk
adjusted will be of little consequence, and the correct ranking among providers will
be maintained. The procedure is practical in the sense that it is computationally
simple. Variables are not required to code membership in the different providers.
This can be an important consideration for data sets in which many of providers
may be compared. Further, the estimated probabilities may not be obtained from
a single model, with sub-models being computed for different types of disorders.
Finally, the BM estimates are easily obtained from the output of widely available
statistical packages.

The following example demonstrates that it would be prudent to be aware that
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Table 2.1: Crude and Adjusted Risks

Provider A Provider B Provider C
Risk n y % n y % n y %
Low 500 5 1 500 10 2 5000 150 3
High 5000 250 5 2000 200 10 500 75 15
Risk Ratio 5 5 5
Summary Risks
Crude Risks Adjusted Risks

Low Risk Category 0.0275 0.0159

High Risk Category 0.07 0.0793

Risk Ratio 2.55 5

not adjusting for treatment effects can bias the risk adjusted estimates. In this
example, there are three providers, A, B, and C and one risk factor with two levels
(see table 2.1). The providers are strongly confounded with the distribution of
patients in the risk factor; in provider A, the ratio of patients in the high vs. low
risk categories is 10:1. In provider B, this ratio is 4:1 and in provider C, the ratio
is 1:10. The risks associated with treatment by the providers follow a homogeneous,
multiplicative model. For each provider, the relative risk associated with the risk
factor is 5. Within each risk category, however, the risk associated with treatment
by provider B is twice as large as that associated with treatment by provider A. The
risk of treatment associated with provider C is three times as large as that associated
with provider A.

The adjusted risk ratio (RR) associated with the risk factor is a weighted av-
erage of the relative risks for each provider. Using the adjusted RR and assuming

homongeneity of the effects for each provider, the risk associated with the low risk



42

Table 2.2: Risk-Adjusted Measures

Provider A Provider B Provider C

Outcome Measures

o 255 210 225
Egnm 363.75 153.75 172.5
Eppn 404.48 166.55 118.97
Risk Adjusted Relative Risks
O/Eppm .701 1.366 1.304
O/Erm .630 1.261 1.891
Direct .630 1.261 1.891

category can be obtained as

R[ — Zi:l Rlowk (nlowk + RR x n’u'gh,,)
i Zi:l(nlow., + RR x nhigh,,)

Where k = 1,2, 3 refers to providers A, B, and C. The adjusted risk for the high risk
category is obtained in a similar fashion.

In the low risk category, the crude risk has an upward bias due to confounding.
The crude estimate of risk is 0.0275, while the adjusted estimate of risk is 0.0159. In
the high risk category, the crude estimate of risk has a downward bias. The crude
estimate of risk is 0.07 while the adjusted estimate is 0.0793. The bias in these
estimates of risk then leads to bias in the BM risk adjusted estimates (see table
2.2). This bias is due to differences in the distribution of the risk categories across
providers. For example, provider C has a large proportion of patients in the low risk
category. Because there is an upward bias in the estimate of risk in the low risk
category, there is an upward bias in the number of expected deaths for this provider.

From table 2.2, the expected number of deaths associated with provider C based
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on crude estimates is 172.5 and is much higher than the expected number of deaths
based on FM adjusted estimates (118.97). When these expected deaths are then used
to calculated SMRs, the direction of the bias reverses, since the expected number
of deaths is placed in the denominator and because the observed number of deaths
is independent of the method which is applied. Therefore, the SMR for provider C
based on crude estimates has a downward bias (1.304 vs. 1.891). Also included in
table 2.2 are risk adjusted estimates of risk for providers which are based on direct
standardization (DS). Note that the directly standardized risks are identical to the
SMRs calculated using the FM adjusted estimates of risk. An important feature of
these two measures is that they maintain the relative risks among providers that
were observed in table 2.1. The ratio of the risk adjusted estimates for provider
B compared to provider A is 2, and the ratio comparing provider C to provider
A is 3. This does not hold for the BM risk adjusted estimates calculated on the
basis of risks which are not adjusted for provider effects. The ratio for provider
B vs A is close to a value of 2 (1.366/.701 = 1.94), but the ratio for provider C
vs A (1.304/.701 = 1.86) is not close to the correct value of 3. This is especially
problematic, since the ranking among providers has not been preserved among these
risks. When using baseline adjusted risks for the risk categories, the risk associated
with provider C (O/Epy = 1.304) is now smaller than the risk associated with
provider B (O/Egy = 1.366). In addition to the potential for bias in point estimates
obtained using the BM of risk adjustment, results in chapter 5 also indicate that the
commonly used method of obtaining variances for BM adjusted SMRs may result in

biased estimates of variance.
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2.4.3 Discussion

Although many risk adjustment methods are available, research in the remaining
chapters will focus on measures of risk and relative risk such as the population
averaged proportion and the SMR, as these methods are typically employed when
using logistic regression to perform risk adjustment. When examining the use of
missing data methods for risk adjustment, three risk adjustment strategies will be
investigated. The first will be BM estimates, as these are often employed for risk
adjustment. In keeping with the usual application of these measures, variance es-
timates will be obtained under the assumption that the fitted probabilities are the
true probability values. These risk adjustment measures will be contrasted with two
other types of full model estimates: FM estimates obtained using an offset model
for the logistic regression, and directly standardized estimates. Variance calculations
for the FM estimates will be based on asymptotic likelihood theory (see appendix

C) and will account for variability in the fitted probabilities.



Chapter 3
Missing Data Methods for Risk Adjustment

Risk adjustment procedures often require the use of numerous variables, since many
risk factors may influence patient outcomes. Although the amount of missing data in
each covariate may be modest, the proportion of subjects with missing data on one
or more of these covariates may be quite large. If risk adjustment is performed using
only the cases with complete data, patterns of missing data in the covariates may
require the exclusion of a large number of subjects. The subjects remaining in the
analysis may no longer be representative of the entire data set, and the elimination
of subjects also leads to a loss of efficiency, which results in inflated estimates of
variability.

As noted in Chapter 2, risk adjustment estimates are often based on logistic re-
gression models, and logistic regression can also be employed to perform risk adjust-
ment procedures with the APPROACH data. Several methods have been employed
for handling missing data in logistic regression, but for methods to be of practical

use in risk adjustment, they have to meet the following five criteria.

1. Estimates of variance. The methods need to yield information which can
be used to calculate not only risk adjusted estimates for providers, but also

estimates of variability.

2. Continuous and categorical covariates. The methods need to be able to

handle situations in which covariates are continuous or categorical, as well as

45
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situations in which there is a mixture of continuous and categorical covariates.

3. Large data sets. The methods have to be capable of working with large
data sets and with multiple covariates. Authors often explore the methods
they propose using data sets which are of limited size and complexity. For the
purposes of risk adjustment, missing data methods must be able to work with
data sets containing 20 or more covariates and thousands of cases. Limitations
of the methods are usually due to limitations in computer memory, storage and
processing speed, although the use of many categorical covariates can lead to

an inability to obtain unique parameter estimates.

4. Rare risk factors and outcomes. The methods need to work in situations
where outcomes are rare and where adjustments are made on the basis of risk

factors which have low prevalence or incidence.

5. Availability. The methods need to be available for use by researchers. In
general, the missing data methods are not difficult to implement. However,
with increasing numbers of covariates, efficient programming is not trivial.
With the exception of multiple imputation (MI) methods, implementations of

missing data methods are not widely available.

Before discussing missing data methods for logistic regression and risk adjustment,
however, it will be useful to examine general approaches which have been used for
handling missing data as well as some of the theoretical and practical issues sur-

rounding the use of these methods.
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3.1 Missing Data Methods

Many methods have been utilized for handling missing data. The most commonly
used methods are ones which have been described as simple or quick procedures.
Most of these methods are easily applied using standard statistical software. A
major weakness of these procedures is that they are not based on statistical theory
or rationale. The use of these procedures can lead to estimates that may be biased.
Some of these methods are inefficient, while others provide variances estimates that
are smaller than are warranted on the basis of the available data. More sophisticated
methods, such as multiple imputation (MI) or the expectation-maximization (EM)
algorithm can provide estimates which are unbiased and which make efficient use of
the data. The following notation will be used to describe the missing data methods

as well as the mechanisms under which the methods can yield valid results.

Notation
The notation of Little and Rubin (1989a); Schafer (1997a); Brand (1999), will be
employed for the following discussions of missing data mechanisms and missing data
methods. Let Y be an n x k matrix of complete data, where rows ¢ = 1,2,...,n
denote observations for individual cases, and columns k = 1,2,...,p denote obser-
vations for the variables. The observed portion of Y will be denoted as Y., and the
missing portion as Y., so that Y = (Yoss, Yomis)-

To specify models for the missing data, let R be an n x k matrix of indicator
variables with elements corresponding to the elements of Y. The elements of R
will be 0 if the corresponding elements of Y are missing and 1 of the corresponding

elements of Y are observed. Probability models for the missing data mechanism
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which are dependent on Y will be denoted as Pr(R|Y,v), where psi is a vector of

parameters which determines the joint distribution of R conditional on Y.

3.1.1 Missing Data Mechanisms

When the mechanism which gives rise to the missing data is known or is under the
control of the researcher, this mechanism can be included in the likelihood equation,
and maximum likelihood estimates can be obtained for the parameters in the proba-
bility model. Although there are specialized methods for handling these cases, these
methods will not be considered in this dissertation, since the missing data mecha-
nisms for data used in risk adjustment are generally not known. Consequently, it is
important to consider the conditions under which the missing data mechanism can

be ignored when employing missing data methods.

Missing Completely at Random (MCAR)
If for every variable with missing data, the missing observations are a random sub-
sample of observations for each variable, the missing data is missing completely at
random (MCAR). When data are MCAR, the complete cases form a representative
subset of the entire data set, and estimates based on the use of complete cases will
be unbiased. Data which are MCAR may occur when observations are randomly
missed due to equipment failure or transcription errors.

Another, less stringent, missing data mechanism is the stratified-MCAR condition
(Greenland and Finkle, 1995). When data are stratified-MCAR the probability that
observations are missing can depend on the levels of completely observed covariates.

However, within the strata of the completely observed covariates, the variables with
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missing data must be MCAR. For example, ejection fraction (EF) is an important
clinical indicator of cardiac function which is related to the age of the patient. If age
is completely observed but ejection fraction has missing observations, for missing EF
observation to be stratified-MCAR, the probability that ejection fraction is missing
can depend on the age of the patient. For subjects of a given age, however, the
probability that ejection fraction is missing cannot depend on the value of the ejection

fraction variable.

Missing at Random (MAR)

Rubin (1976) demonstrated that likelihood estimates could be consistent provided
that the probability that a covariate was missing did not depend on the value of the
missing covariate or on the value of any other missing covariate. The probability that
an observation was missing could, however, depend on the value of other observed
covariates. Rubin called this condition missing at random (MAR). The MAR con-
dition is less stringent than either the MCAR or stratified-MCAR condition; when
missing observations are MCAR or stratified-MCAR, the data are also MAR.

In many situations with missing data, the MAR assumption is clearly not met.
Consider studies that ask questions of a sensitive nature, such as annual income or
HIV status. The probability that a person responds to these questions is likely to
depend on the true answer, and the data cannot be considered to be MAR. In the
case of the APPROACH data, it is quite possible that the clinical variables are not
MAR, since the probability that physicians took the time to collect information may
have depended on the severity of the symptoms presented by the patient.

For the data to be MAR, all information necessary for specifying the a model for
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the missing data must be contained in Yo,. The inclusion or exclusion of variables in
the data can affect whether or not a data set meets the MAR condition. If congestive
heart failure is related to age, and congestive heart failure is stratified MCAR with
respect to age, then the exclusion of age from the analysis will result in a data set
which is non-MAR. This is because the probability that CHF is observed will depend
on whether or not a case has CHF, regardless of whether the observation is missing.
If we assume that age is completely observed, the inclusion of age in the data set
restores the stratified MCAR condition, and modeling the joint distribution of age

and CHF on the basis of Y., will yield valid inferences regarding CHF.

Likelihood theory. Little and Rubin (1989b) provide likelihood theory that
applies to joint distributions with missing data. Let @ be a vector of parameters that
determine the joint distribution of Y. Our interest is in making inferences regarding
the parameters @ on the basis of the marginal probability density of Yo,, which can

be obtained by integrating the missing data out of the joint distribution of Y, or
[ (Y0s10) = [ £(Yate, Yinia|0)dYomis (3.1)

Following Little and Rubin (1989b), the likelihood based on Y., which ignores
the missing data mechanism will be any function of 8 which is proportional to 3.1. To
determine the conditions under which the missing data mechanism may be ignored,
consider the probability distribution which includes the missing data mechanism.
When data are incomplete, the observed data consist of Y., and R, and the likelihood

of 1) and @ will be any function of ¥ and 6 proportional to

£ (Yot R1By %) = [ £(Yesn, Yonia 8)F (R Yot Yoia, $)d¥mis. (3:2)
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Following Rubin (1976) and Little and Rubin (1989b), the missing data mech-
anism can be ignored and inference for @ can be based on the likelihood L(0|Yos,)

when

f(R|Yobu Ymiu ¢) = f(RIYobu 'I)) (33)

This allows the conditional distribution of the missing data to be moved outside of

the integral for the joint density. It can then be factored as:

(Yorus RIO, ) = F(RIYoos, %) X [ F(Voba, Vel 0)d Vo

= f(RlYobu ¢)f(Yobll0)' (34)

Provided that the parameters % and @ are distinct, 3.4 will be proportional to 3.1,
and the estimates of @ obtained by maximizing L(Ys,|0) will be the same as those

obtained by maximizing L(Ys,, R|6, ).

3.1.2 Quick and Simple Methods

Complete Cases

Several authors have addressed the performance of simple and commonly used meth-
ods of handling data with missing values (Little and Rubin, 1989c; Greenland and
Finkle, 1995; Vach, 1994; Vach and Blettner, 1991; Brand, 1999). The most com-
monly used method is the complete-case method, also referred to as list-wise deletion.
In this method, cases with missing values on any of the variables of interest are sim-
ply excluded from the analysis. All standard statistical packages offer this method,
and most default to this method when missing values are present. Miettinen (1985)
mistakenly claimed that this was the only legitimate method of handling missing

data. Not only is this method inefficient, it has been demonstrated to be prone to
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bias unless the data are MCAR (Little and Rubin, 1989c; Vach, 1994; Vach and
Blettner, 1991). The degree of bias is generally greatest when the probability that

values are missing is dependent on the outcome variable.

Additional Categories

When the covariates are categorical, researchers have attempted to add an addi-
tional category denoting whether or not observations are missing. Vach (1994) and
Vach and Blettner (1991) demonstrate that this method can introduce considerable
bias even when the observations are MCAR. Analogous methods using indicator
variables have been used with continuous covariates (Greenland and Finkle, 1995).
When covariates are continuous, each variable with missing values is replaced by two
variables. One of these new variables takes on the observed values for cases without
missing data, and 0 for subjects with missing data. The second variable is an indi-
cator variable coded with a 1 if the data is missing and a 0 if the data is observed.
Like the additional category method, the use of indicator variables can result in
considerable bias (Greenland and Finkle, 1995). A modified indicator approach can
be used to reduce this bias (Greenland and Finkle, 1995). However, the additional
parameters that are estimated using this approach lead to a loss of efficiency, and
simulations performed by Greenland and Finkle (1995) indicate that it is no more

efficient than a complete case analysis.

Removal of Variables
When missing data is limited to a few covariates, the variables with missing data
can be removed from the analysis. Such a procedure is questionable, as important

information may be excluded from the analysis. Since the goal of risk-adjustment
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is to examine the performance of providers after controlling for risk factors known
to be related to outcomes, the removal of variables could lead to inadequate risk

adjustment and invalid conclusions regarding the relative performance of providers.

Single Imputation

For single imputation methods, the values for missing data are imputed on the
basis of the observed covariates, and the imputed values are used to “fill in” the
data set. This “filled-in” data set is then used in subsequent analyses. There are
several methods for generating the imputations. These include unconditional mean
imputation, conditional mean imputation, and cold deck and hot deck methods.
In general, simple imputation results in an underestimation of the standard errors
associated with 1) the parameters of the joint distribution of the covariates and 2)
the regression parameters associated with the covariates (Little and Rubin, 1989c).
These standard estimates are not asymptotically unbiased; the degree of bias in the
estimates is not affected by sample size if the proportion of cases with missing data
remains constant (Little and Rubin, 1989c). Further, these methods are affected by

the accuracy of the method used for filling in the data.

Mean imputation. In unconditional imputation, missing covariate values are
filled in with the sample mean of the recorded values of the covariate. Since the
imputed values are placed at the center of the distribution, the variance of the re-
sulting covariate will underestimate the true variance. If the data are MCAR, the
estimate of the mean for this covariate will be unbiased. Conditional imputation is
a more sophisticated form of imputation. In conditional imputation, complete cases

are used to form regression models, where the covariates with missing data are re-
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gressed on the observed covariates. These regression models are then used to impute
values for the missing data conditional on the observed covariate values. As with un-
conditional imputation, results based on conditional imputation underestimate the
variances and covariances of the covariates (Little and Rubin, 1989c). Buck (1960)
provided a method of adjusting the variances for multivariate normal data, but valid

inferences based on this method require that the missing observations be MCAR.

Deck methods. Both cold and hot-deck methods involve the random selection
of a value from the possible values that the missing data could assume given the sub-
jects observed covariates. In cold deck imputation, covariate values are drawn from
an external source. Selections for the missing data are drawn from the subjects who
have similar patterns of response on the observed covariates. In hot deck imputation,
selections are drawn from the distribution of subjects in the sample who have com-
pletely observed covariates. The term “deck” refers to the deck of computer cards
which are similar to the subject with the missing data (Little and Rubin, 1989d).
In general, the results of these procedures will underestimate variances, since they
treat imputed values as if they are measured with certainty (Rubin, 1987a). Because
the “deck” from which imputations are drawn is based on complete cases, legitimate
inference requires that this deck be representative of cases with missing data. A
weakness of this approach is that this deck may not represent the possible range of
values from the population of interest, resulting in estimates of variance which are
too small.

The problems inherent with the use of simple methods in the presence of missing

data are perhaps best summarized by Little and Rubin (1989c) who state that
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it is hard to recommend any of the simple methods discussed
since (1) their performance is unreliable; (2) they often require ad hoc
adjustments to yield satisfactory estimates, and (3) it is not easy to
distinguish situations when the methods work from situations when they
fail. Furthermore, the methods fail to provide simple correct answers
when measures of the precision of estimates are required, as for interval

estimation.

3.1.3 Multiple Imputation

Multiple imputation requires the imputation of more than one value for each missing
observation. The general method for multiple imputation is to generate several “filled
in” data sets, in which values are imputed to complete the data in each data set.
Estimates of the parameters and their variances are then obtained by combining
the estimates from each of the data sets (Little and Rubin, 1989e; Rubin, 1987a;
Greenland and Finkle, 1995).

By following the methods described by Rubin (1987b) and Schafer (1997b), es-
timates for coefficients and their variances are easily obtained when using multiple
imputation. Consider the scalar estimate @, which can be a parameter of the im-
putation model or a function of the parameters in the model. In the case of risk
adjustment, @ could be a logistic regression coefficient, or a risk or SMR based on
the regression model. Let Q(Ydm Ymis) be a complete data point estimate of Q and
let U(Yobs, Yimis) be a variance estimate associated with Q(Yoss, Yimis). For brevity,
these will also be denoted as Q and U. The use of multiple imputation assumes
that the sample size is large enough for the normal approximation (Rubin, 1987b;

Schafer, 1997b).

U@ -Q) ~ N(0,1).
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Further, it is assumed that Q is a first order approximation to E(Q|Yoss, Ymis) and
that U is a first order approximation to V' (Q|Yoss; Ymis)-
Obtaining MI estimates of @ and U requires the imputation of m sets of Y,-

These sets of Y,,;, are then used to obtain complete data estimates of Q and U,

where these complete data estimates are

QY = QYo Y

U® = U(Yoss, Y. 9)

for imputations ¢t = 1,2,...,m. The MI estimate for Q, denoted as Q, is obtained

by taking the sample average of these complete data estimates

g = L3 qu. (3.5)

1
m

The MI estimate for the variance of Q has both a within-imputation compo-
nent and a between-imputation component. The within-imputation component is

obtained as the sample average of the complete data estimates:
g = L1 fj U, (3.6)
m

The sample variance of the complete data point estimates is used to estimate the

between imputation variance, or
1 . ~
B = —— ® _ Q)? .
@Y -a) (3.)

These estimates are then combined to obtain 7', an estimate of the total variance.

The variance estimates are combined using

T = U+(1+m1)B. (3-8)
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Inferences regarding Q are based on a t distribution with v degrees of freedom,

where

o T
v = (m—l)l:l-rm] .

In applications such as risk adjustment, where the fraction of missing information
is moderate and the sample sizes are large, v will be large and the standard normal
distribution can be used as an estimate for ¢,. When @Q is a vector, matrix analogues
for combining the complete-data estimates can be employed. These can be useful for
comparing two models for the data or when one wishes to obtain confidence regions

for the vector Q.

The Fraction of Missing Information
The fraction of missing information associated with a scalar Q can be obtained using
the estimates of between and within imputation variances. The relative increase in

variance due to non-response is

. (1+m™1)B
B U

and an estimate of the fraction of missing information is

r+(2/(v+3))
r+1 )

A =
Proper Imputations
Rubin (1987c) provides the conditions which must be met for valid multiple im-
putation inferences. Imputations which meet these criteria are proper in the sense

that estimators and their variances which are based on these imputations will re-

flect the uncertainty in the probability model used to generate the imputations.
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However, since it can be extremely difficult to determine whether imputations are
proper (Schafer, 1997b), these conditions will not be discussed. Instead, the simpler
Bayesianly proper approach of Schafer (1997b) will be adopted. Bayesianly proper
imputations yield valid Bayesian and likelihood inferences, but may not yield proper

imputations for frequentist estimates.

Bayesianly proper imputations. An important feature of proper multiple
imputations is that they not only reflect uncertainty regarding Yn:, given the pa-
rameters in the complete-data model, but also uncertainty about the unknown model
parameters. Multiple imputations are said to be Bayesianly proper if they are in-
dependent realizations of the posterior predictive distribution of the missing data
under a complete data model and prior. This distribution, denoted as Pr(Ymis|Yoss),
can be obtained as the conditional predictive distribution of Y,,, averaged over the

observed-data posterior distribution of §. This can be written as
Pr(YmiJIYob:) = /Pr(YmiclYobug) Pr(olyoba)do

Since this distribution does not depend on the missing data model for R, imputa-
tions which are Bayesianly proper are appropriate under the the same conditions of

ignorability which are required for valid likelihood inference (Schafer, 1997b).

Generating Imputations

One method which has been employed for generating multiple imputations uses Yo,
to obtain a maximum likelihood estimate for the parameters of the joint distribution
Y and then randomly samples Ymi;IYob;,é from this distribution. This strategy was
employed by Greenland and Finkle (1995). As they pointed out, however, these
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imputations were not proper, because they treated @ as fixed and did not reflect the
uncertainty in the estimation of . Using a Markov chain Monte Carlo (MCMC)
technique, Schafer (1997a) provides a means of generating imputations which are
Bayesianly proper. These methods, described below, are implemented by Schafer
(Schafer, 1999) and are available over the World Wide Web as stand-alone programs
for the Windows 95/98/NT operating systems or as S-PLUS (MathSoft, 1999) I-

braries. Finally, hot deck methods are available that can provide proper imputations.

Hot Deck Imputation Hot deck methods can be used to draw multiple imputa-
tions from Y. Generally, these imputations are not proper, and inferences based
on these imputations are not valid (Rubin, 1987c). This is because the distribution
of sample Y values is treated as if it is the population distribution. The variance
of the imputed values will underestimate the true variance, since they have been
sampled with a degree of precision not warranted on the basis of the sample data.
To be proper, the imputations must reflect the uncertainty in using Y to represent
the population distribution. Proper hot deck imputations can be generated using the
approximate Bayesian bootstrap (ABB) described by Rubin (1987c). In the ABB,
values of Y,,;, are sampled with replacement from the distribution of Y_,, which
has itself been sampled with replacement from Y,,. This approximate Bayesian
bootstrap is implemented in the SOLAS (Solutions, 1999) software package. Unfor-
tunately, the purchase price of the SOLAS implementation precluded its use in the

present research.

Data augmentation Data augmentation is a form of Markov chain Monte Carlo

which can be used to make imputations which are proper for likelihood inference
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(Schafer, 1997c). Data augmentation can be used to make pseudo-random draws
from probability distributions which are intractable or cannot be easily summarized
because of missing data. In many cases, it is difficult to sample from the posterior
distribution Pr(8|Y,s,). Data augmentation reduces the difficulty in generating draws
from the observed data posterior by augmenting Y, with Yn,;,. Two steps are
required for data augmentation. In the Imputation step or I-step, values for the

missing data are sampled from the predictive distribution of Yois:
Y&~ Pr(Yimis| Yoss, 69).

The obtained value of Y,f,'ifl) is then used in the Posterior step or P-step to draw

a new value of § from the complete data posterior:
6+~ Pr(0|Yoss, Ymis)-

It is possible to use data augmentation to simulate the posterior distribution of the
parameters. However, Schafer points out that this is computationally more expensive
than using imputations sampled from the MCMC chain in MI procedures.

The use of data augmentation procedures for MI requires information regarding
how large k must be for §¢*%) to be independent of 6(t). After a sufficient “burn
in” period to allow the distribution of iterates to converge to a stationary iteration,

every k* iterate of  could then be taken as an independent draw from Pr(6|Y,).

Monitoring Convergence. While there has been theoretical work regarding
the rate of convergence of Markov chains, this work does not translate into practical
guidelines for knowing when convergence has occurred (Schafer, 1997c). Using simple

examples, Schafer demonstrates that the rate of convergence is related to the fraction
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of missing information. He also points out, however, that this relationship is difficult
to formalize in a general way.
Schafer (1997b) suggests several means of monitoring the rate of convergence.

These include:

1. Examination of the rate of convergence of the expectation-maximization (EM)
algorithm. The EM algorithm, described in section 3.1.4, is an iterative method
of obtaining maximum likelihood estimates (MLEs) in the presence of missing
data.If the posterior distribution has multiple modes or is oddly shaped, the
EM algorithm will converge slowly. Further, the MLEs obtained from the EM

algorithm may depend on the starting point for the iterations.

2. Monitoring components or scalar functions of §. The convergence behavior of
the 8’s can be monitored using time series plots and autocorrelation plots. Time
series plots can be examined to determine how long it takes for the sequence
to converge to an area of high density. Autocorrelation plots can be used to
obtain linear trends among the parameters and can be used to detect long
term trends or drifts in scalar summaries of §. These trends or drifts indicate
a slow rate of convergence to stationarity. If the time series wander, this is
an indication that components of § may be nearly or entirely inestimable from

Yob,. as

There are, however, problems in using plots to monitor convergence. A correla-
tion of 0 is not the same as independence; non-linear associations may exist among
the iterates. The sequence may not have converged with respect to functions or

parameters which have not been examined. Finally, the posterior distribution may
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be oddly shaped and the sequence of iterates may not have visited regions which
might yield plausible choices for the mode. Schafer offers two possible solutions to
these problems. The first is to attempt multiple runs from different starting values.
The second is to examine the time-series plot of the worst linear function (WLF') of
the parameters.

The WLF requires an estimate of v;, the eigenvector associated with the largest
eigenvalue of the rate matrix from the EM algorithm. Schafer asserts that of all
linear functions, the asymptotic rate of missing information will be highest for vTé.
He shows that near the mode, #; = ) — @ is approximately proportional to v;, and

suggests the use of
£6) = 917(6 - 6)

as the worst linear function, where 8 is the MLE of 6 obtained from the EM algorithm.
In this function @ is subtracted from 6 to indicate the position of the function to the
mode with respect to ¢,. Schafer (1997a) reports that in real-data problems this is
one of the slowest functions to converge when the observed-data posterior distribution
is nearly normal, but that other functions may be slower to achieve stationarity when
some parameters are poorly estimated.

Multiple imputation methods show a great deal of promise. They are easily im-
plemented; many statistical programs now contain methods of obtaining parameters
for multivariate normal distributions with missing data. For the APPROACH data,
the primary drawback of the use of multivariate normal distributions to generate
imputations is that the APPROACH data consists primarily of categorical and di-

chotomous variables. Parametric methods of obtaining imputed values from discrete
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distributions are available, and these will be discussed in following section 3.2.3.

3.1.4 Likelihood Based Methods

Traditional likelihood methods can sometimes be applied to f(Yos,|0). In these cases,

the first and second derivatives of the log-likelihood with respect to 6

6|Yos) = log(f(Yoss|6))

can be used to obtain MLEs and estimates of variance for 6. Often, however, these
derivatives are intractable. In many of these cases, the expectation-maximization

(EM) algorithm provides an alternative means of obtaining MLEs.

The EM Algorithm

The EM algorithm is an iterative method of obtaining maximum likelihood estimates
in the presence of missing data. For each iteration, there is an E-step and an M-step.
In the E-step, the expectation of the complete data log-likelihood is obtained using
the observed data and the current estimates of the parameters §*). For the M-step,
the expectation of the log-likelihood is maximized with respect to the parameters
(Dempster et al., 1977). Following the notation of Schafer (1997c) and Little and
Rubin (1989f), consider Y = (Ypmi,, Yobs) where Yy, and Y., are the missing and

observed components of Y.
The E-Step. The complete data log-likelihood can be factored as:

= £(60|Yoss) + 10g f(Ymia|Yobs, 0)
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The expected complete data log-likelihood is:

Q(619) = [ LOY)f(YmialYotu, 89)d¥rmss
= £(81Yoss) + [ €O1Ymia)f (Yomia | Yote, 0°)d¥omi
= {(6[Yes.) + H(616®) (3.9)
The M-Step. If 6¢+1 is the value of # that maximizes the expected log-

likelihood, then
oIY) > £6%)

This result is central to the validity of the EM algorithm, and can be verified by

noting that:
€(9|Yes,) = Q(616) — H(616) (3.10)
and
€64V |Yop,) — £(6(Yop,)
= [QU*“V189) — QoY) -
[H(6¢169) — H(6®|69)]

The M-step of the EM algorithm ensures that Q(8¢*V[6®)) > Q(6|9®)), and

Jensen’s inequality can be used to show that
[H(g(t+1)|g(t)) — H(g(t)|g(t))] < o

The observed information matrix can be obtained as the negative of the second
derivative of £(6|Yos,)

82

I(0|Yoss) ~ 362

£(0|Yob,)-
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The inverse of I(0|Y.) evaluated at the observed data MLE for 6 (denoted as 6)
provides a large-sample estimate of the variance-covariance matrix for §. The pri-
mary advantage of the EM algorithm, however, is that it avoids the calculation of
the derivatives of £(6|Y.,). Applying the missing information principle (Woodbury,
1977), Louis (1982) provides a means of obtaining an estimate of [ (8|Yoss) which
relies only on the calculation of complete-data derivatives. According to the missing
information principle, by rearranging and taking the second derivative of 3.9, the

observed information can be expressed as:

62

62
602 e(oIYd‘, mu) + 302 log f(Ymulyobn 0)

1(6|Yos) =

Provided that there is sufficient regularity to pass the differentials with respect to

through the integral signs, taking expectations with respect to Pr(Ymi,|Yoss, 8) yields

62
I61Ym) = —eQO18) + o HOI). (3.11)
2
If we refer to —WQ(OW) as the complete information and — 8602H (6|0) as the
missing information, then 3.11 has the useful interpretation
observed information = complete information — missing information.

Louis (1982) demonstrated that when evaluated at 6, the missing information

can be expressed as

32
— 5z H(010) = E [S(6|Yass, Yinia) S (6|Yoba, Yomis) Yerss 6] |,

where S denotes the score function and E denotes expectation. The observed infor-

mation can then be obtained as

-~ 2 ~ oA
I0Yas) = —o53Q010) — E [S(O1Yobs Yinia) ST (61Yoter Vi) Yotn, 8] _y$3:12)



66

The inverse of 3.12 provides an estimate of the variance-covariance matrix of 6.
Details of how this method can be employed to obtain variance estimates for logistic

regression parameters are presented in appendix A.2.

Rate of Convergence

The rate of convergence of the EM algorithm is approximately linear near the mode.
For scalar parameters, Dempster, Laird and Rubin (1982) demonstrated that this
rate of convergence is determined by the ratio of missing information to complete
information. They denote this as ), the fraction of missing information. The rate of

convergence can be approximated as
@) —8) ~ A6 -4).

For vector parameters, where 6 is a vector of length k > 1, the rate matrix D is
obtained as

92 -1 92
D = [—WQ(OIB)] a—oaH(ale)

The rate of convergence of the EM for vector parameters is determined by A;, the
largest eigenvalue of the rate matrix. This is the fraction of missing information in

the parameter space corresponding to the direction of v;, the eigenvector associated

with A;.

3.1.5 Other Likelihood-Based Methods

There are other likelihood-based methods for incomplete data. In general, these
methods are applicable in special cases such as two-stage research designs, or when

the patterns of missing data allow the likelihood to be factored in a manner which
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makes traditional maximum likelihood estimation tractable (Pepe and Fleming, 1991;
Reilly and Pepe, 1995). These methods cannot be applied in typical risk-adjustment
problems, where the missing data mechanisms are not known and where the missing

data patterns can be complex. Consequently, they will not be considered in this

dissertation.

3.1.6 Evaluation of the methods.

The suitability of the methods for performing risk adjustment can be evaluated
using the four criteria outlined at the beginning of the chapter. Two methods will
be considered for obtaining risk-adjusted estimates in the presence of missing data,
as these methods come closest to meeting the criteria described at the beginning of
this chapter. These methods are 1) multiple imputation via data augmentation, and
2) EM by the method of weights (EMMW). Both of these methods have limitations,
however, and neither satisfies all of the criteria. Difficulties in meeting the criteria
are generally due to problems in specifying and fitting joint probability distributions.
Multiple imputation requires the specification of a joint distribution for the covariates
and the outcome measure; EMMW requires the specification of a joint distribution

for the covariates.

1. Estimates of variance. Both of the methods can be used to provide estimates
of variance for parameters in logistic regression and for risk adjusted estimates.
Estimates of variance are somewhat difficult to obtain when using EMMW.

Details are provided later in this chapter and in appendix A.3

2. Continuous and categorical covariates. Schafer has implemented impu-
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tation methods for continuous, and mixed categorical and continous covariates
(Schafer, 1999). His software for generating imputations from log-linear cat-
egorical models is not yet complete. Provided that continuous covariates are
completely observed, EMMW can handle mixed continuous and categorical
covariates. It can also data sets in which all covariates are categorical. If con-
tinuous variables are split into categories, EMMW can also be used in cases
where missing covariates are continuous or where both missing and observed

covariates are continuous.

. Large data sets. Both methods are somewhat limited in their ability to work
with large data sets. In the case of multiple imputation, these limitations are
due to difficulties in 1) modeling the joint distributions of covariates, and 2)
to making imputations on the basis of these models. For EMMW, the limita-
tions are due to difficulties in 1) fitting the joint distributions and 2) to the
construction of an augmented data matrix which accounts for possible values
the missing observations could assume. This augmented matrix can become

large and unwieldy in the presence of complicated missing data problems.

. Rare risk factors and outcomes. Provided that appropriate joint distribu-
tions can be modeled for the data, both methods will work with rare risk factors
and outcomes. With complex joint distributions, suitable covariate models may
be difficult to find. For EMMW, rare outcomes are not problematic, as these

are not included when fitting a joint distribution for the covariates.

. Availability. Suitable commercial implementations are not yet available for

either method. IML routines for performing multiple imputations using SAS
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can be obtained from SAS technical support (Sarle, 1999). As noted previously,
MI methods implemented by Joe Schafer are available over the World Wide
Web as stand-alone programs for the Windows 95/98/NT operating systems
or as S-PLUS (MathSoft, 1999) libraries (Schafer, 1999). S-PLUS will be re-
leasing commercial implementations of Schafer’s multiple imputation methods
(Schimert, 1999). Other than fitting a joint distribution for the covariates,
the primary difficulty in performing EMMW lies in the construction of an
augmented data matrix. Once this matrix has been obtained, the method of
weights algorithm can easily be implemented using standard statistical soft-
ware. Variance estimates can be obtained by implementing the calculations

outlined in appendices A.2 and A.3.

The first step in describing how these methods can be applied to risk adjustment is

to show how they are used for regression with missing data.

3.2 Missing Data Methods for Regression

Notation. For regression models, the distribution of a response vector Y is
modeled conditionally on a covariate matrix X, with parameters 8. The conditional
distribution of Pr(Y|X, 8) is assumed to follow a particular underlying probability
model. It will further be assumed that Y is fully observed, since this is generally the
case when employing risk-adjustment methods. The covariate matrix X will be par-
titioned as X = (Xobss Xmis), Where X, and Xp,;, denote respectively the portions
of X which are observed and missing. The use of MI requires the specification of the

joint distribution of Y and X,,. The parameters for this distribution will be denoted
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as 6, and the joint distribution will be denoted as Pr(Y, Xux,|8). EM by method of
weights utilizes the joint distribution of Xo,. The parameters for this distribution

will also be denoted as 6, and this distribution will be denoted as Pr(Xs,|6)-

3.2.1 Multiple Imputation

Parameters for regression models can be obtained using multiple imputation. The
first step in obtaining these estimates is to specify a distribution for Pr(Y, Xo,|6).
Several data sets are then obtained by using this distribution to impute values for
Xmis- The appropriate regression is performed on each data set, and point estimates
and estimates of variance are obtained using the methods described in section 3.1.3
above.

Greenland and Finkle (1995) employed multiple imputation methods in simula-
tions investigating methods of handling missing covariates in logistic regression. The
imputations were based on a multivariate normal model in which the covariates were
continuous. These simulations demonstrated the superiority of the MI methods over
simple missing data methods, even though only two imputations were performed for
each of the generated data sets. The authors suggest that an increase in the number

of imputations would have improved the performance of the MI methods.

3.2.2 EM by the Method of Weights

Whittemore and Grosser (1986) demonstrated that the conditional distribution of Y’

given X, could be expressed as

Fr1x0. (Y| Xobs, 0, B, %) = /fxm,,,,(xlxobna, B, ¥)frix(Y1X,B8)dX. (3.13)
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They also suggested that if fx|x,, was known by the researcher, that 3.13 could be
maximized using an EM algorithm to obtain maximum likelihood estimates for 3.
This was the approach taken by Brant and Tibshirani (1991) and Ibrahim (1990) for
obtaining maximum likelihood estimates in generalized linear models with missing
data in the covariates. This method, EM by the method of weights (EMMW) is

appropriate where variables with missing observations are discrete.

The E-Step. Denote the observed outcome and covariate values as y; and z;
respectively for cases i = 1,2,...,n. The complete data log-likelihood for our logistic

regression model can be specified as

¢B) = 3 log Pr(Y| X, B).

i=1
Where there is missing data, let Zops; and T, be the rows of Xg, and X,
corresponding to case i. Assuming the missing data mechanism is ignorable, the tth

expectation step of the EM algorithm is

Q(BIBY) = E{L(BIY, Xons BY)}

- Z/ log Pr(y:|zi, BY) fx1X0, (Zil%i: Tobe.s> 0)d:.
=1

In the case where all variables with missing values are discrete, the integral can be
replaced by a summation sign. The probability Pr(z;;|y:, Zobs.:) Will be used in place
of the density function fx|x,,, (Z|¥i, Zobs.i» @). For case i, let there be j = 1,2,...,k;
possible values of Z,i,; given zn,; and Xo,. The expectation step then takes the
form

n k;
QBIBLYY = Y-S log Pr(yi|zij, BY) Pr(zi;|y:, Zobe.ir 6)

i=1 j=1
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n ki
= 33 logPr(uiley, 8wy
i=1 j=1

The M-Step. The M-step can then be obtained as a weighted log-likelihood

using standard statistical software.

Obtaining the weights. Two steps are required when obtaining the w;;. A
model for the joint distribution of covariates must be specified and parameters (6) for
this distribution estimated using missing data methods. Several models are possible
for this joint distribution and these are described in more detail in section 3.2.3. The
approach taken to model this distribution warrants concern, since the legitimacy of
substituting estimates for parameters in a log-likelihood requires the estimates be
consistent (Gong and Samaniego, 1981).

Secondly, an augmented data matrix must be created. This matrix will be de-
noted as X, and contains the covariate patterns that are possible for cases with
missing observations. The following example illustrates the creation of an augmented

data matrix on the basis of observed data.

Example 1.

Consider the following simple ezample with variables z,z2 and z3. Each of these
variables has possible categories 1 and 2. Let there be j = 1,2,...,k; possible co-
variate patterns for subject i, wherei = 1,2,...,n. In the incomplete data matriz in
table 3.1, subjects 1 through 4 have completely observed data. Subject 5 is missing
an observation for variable 3 and subject 6 is missing an observation for variables
T2 and T3.

If we were to augment the data by filling out the data set with all possible covariate
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Table 3.1: Incomplete data matrix

Xoba
] Iy I I3
111 2 2
211 1 2
3i1 2 1
412 1 2
5({1 1 —
62 — -—

patterns for the missing observations, we would obtain the augmented data matriz

presented in table 3.2. Note that since there are two possible covariate values for each

Table 3.2: Augmented data matrix
Xaug

T2

B
8
)

N

[ I I N I N R e S I e e
DD DD bt ped bk bt bk DD
N = BN = BN =N = NN

DA O W N |
D DD = DD e e e e |4,

variable, subject 5 has two entries in the augmented matriz. There are four possible
covariate patterns for the missing observations for subject 6. Consequently, subject
6 now requires four rows in the augmented data matric.

Denote individual rows of X,,, as z;;. Each row is assigned a probability,
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Pr(zij|Tobais 0)- The conditional probability of z;; given Zo,.; can be obtained as

Pr(z;;16)
5, Pr(zy;10)

These probabilities are then used to obtain weights at each step of the EM algorithm

Pr(zijlxob:.iy 0)

as

Pr(y:|zij, BY) Pr(ij|Zobs.i, 0)
2;21 Pr(y:|zij, B®) Pr(zij|Tobs.i, 8)

wy; = Pr(zij[zobc.iy Yi, 0) =

3.2.3 Covariate models.

Of the many possible models for the joint distribution of covariates, three types
will be considered for use with risk adjustment. These are 1) multivariate normal
(MVN) models, 2) log-linear models, and 3) mixed continuous and categorical (MCC)

models. Other models, such as tree-based models, will not be considered.

1. Multivariate normal models. Multivariate normal models have been used
to model covariates when performing logistic regression using MI. The use of
this distribution has been advocated even when the joint distribution is clearly
not MVN (Schafer, 1997d; Greenland and Finkle, 1995). When variables are
binary or ordinal, these authors recommend rounding the imputed values into
the appropriate categories. Greenland and Finkle (1995) and Schafer (1997d)
used simulations to demonstrate that this method yields suitable results in the
presence of categorical and skewed data. A major advantage of this method
for large and complex data sets is that few parameters are required for the
model. Further, it is easy to implement and many implementations are already
available. Schafer (1999) provides programs to fit MVN models and to generate

proper imputations from these models.
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2. Log-linear models. With categorical covariates, one can fit a multinomial
model to the covariates using an EM algorithm or Newton Raphson algorithm.
When there are many covariates, such a fit is problematic, as there will be a
large number of parameters, many of which may be poorly estimated. The use
of log-linear models provides a means of reducing the number of parameters
(Bishop et al., 1975). Brant and Tibshirani (1991) used a Newton Raphson al-
gorithm to fit log-linear models to covariates when performing EMMW. Schafer
(1999) provides programs for fitting log-linear models. This program employs
an EM algorithm based on Bayesian iterative proportional fitting and allows
the user to specify a Dirichlet prior for the fit. A Dirichlet prior has the same

functional form as the likelihood for a multinomial distribution. Let
L(0|z) x 671652 - - - 6F

be a likelihood for the contingency table £ = (z,,...,zx) with multinomial

parameters § = (6, ...,0x). The Dirichlet prior for this distribution is
m(6) o 051703 E - 3x 7,

where a,...,ax are user specified hyperparameters. Multiplying the likeli-

hood by the prior produces the posterior
P(G[z) — 0T1+a1—10;:+a:——1 e ozx+ax—l_

When finding the mode of this posterior, setting the K hyperparameters to
some ¢ > 1 smooths the parameter estimates toward a uniform table and adds

the equivalent of ¢ — 1 observations to each cell. With sparse data, parameter
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solutions sometimes can not be obtained because the maximization algorithms
converge to boundaries of the parameter space. With an appropriate prior,
the posterior parameter distribution can be flattened, moving the soiution to
the interior of the parameter space (Schafer, 1997¢). Unfortunately, Schafer’s

program for generating imputations from these models is not yet complete.

3. Mixed continuous and categorical models. Little and Schluchter (1985)
proposed a model for mixed normal and categorical variables. This model fits
a joint distribution to the categorical variables using multinomial or log-linear
models. A joint MVN distribution is fit to the continuous variables conditioned
on the categorical variables. Schafer (1999) provides implementations of these
models as well as programs for generating imputations from these models using
data augmentation. His programs allow the user to specify log-linear models for
the categorical variables as well as contrasts among the means of the continuous
variables within the categories. These contrasts are then used when fitting the
MVN component of the model. These constraints allow the user to reduce the
number of parameters required for the models (Schafer, 1997f). These programs
also allow the user to specify Dirichlet priors for the categorical component of

the model.

3.3 Missing Data Methods for Risk Adjustment

Logistic regressions models based on both MI and EMMW can be used to obtain
risk adjusted estimates when observations are missing in the covariates. Obtaining

point estimates and variances estimates is straight-forward when using MI. Point
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estimates are easily obtained using EMMW, but variance estimates requires some

modification of the methods outlined in appendix A.1.

3.3.1 Multiple Imputation

To obtain risk adjusted estimates using MI, one needs to impute m data sets. Logistic
regression is then performed using each imputed data set and the parameters from
these logistic regressions are then used to obtain risk adjusted point estimates and
variance estimates by applying the procedures outlined in chapter 2 and appendix
A. For each provider, the m point and variance estimates are treated as the Q) and
U® in 3.5 - 3.8 and are combined to obtain risk adjusted estimates and variances.
For example, if we wish to obtain a point estimate of RR; on the basis of m values

of RRY), by 3.5

By combining 3.6 - 3.8, a variance estimate for RR; could then be obtained as

Var(RR:) =—1—ZV (RR) + [l+m 1] SNRRY - RR.)*.

m t=1

These procedures will work for indirectly and directly standardized measures, whether
the measures are baseline-model or full-model adjusted estimates. It should be noted
that as these estimates are not maximum likelihood estimates, if the imputations are

based on data augmentation procedures, these estimates may not be proper.

3.3.2 EM by Method of Weights

Both baseline and full-model adjusted estimates are based on weighted averages of

the risks obtained for each subject. The calculation of baseline adjusted rates does
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not utilize variables to code for the treatment providers. The linear combination for

the covariates of interest will be denoted as

ﬁij = zg‘ﬁv
where the z;; are the rows of X,.,. For the purposes of calculating the point esti-
mates, Xgug Will be comprised of the covariates and risk factors of interest and it

excludes any variables which code for the different providers. For full-model adjusted

estimates, the linear combination for the covariates of interest will be denoted as

~

ﬁa’j = ZE
where the Bc are logistic regression parameters for the covariates of interest which

have been obtained from a model which includes variables which code for the different

providers.

Baseline-model adjusted estimates. For baseline-model adjustment, the 7;;
are used to obtain p;;’s which correspond to rows of X,.,. These are

N exp(& + 7i;)
7 1+exp(d +ﬁ,'j).

The p;;’s are then combined to get a single estimate for each subject as

P = ‘Zjlﬁx’jwija
where the w;; are the weights obtained from the final iteration of the baseline-model
logistic regression performed using EMMW. These weighted estimates are then used
in place of the p;’s to obtain the point estimates detailed in chapter 2. For example,
the expected number of deaths for provider k can be obtained as

E. = Y p

i€hy
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Since the outcome variable is available for all subjects, the observed number of deaths
and the proportion dying in the population can be obtained in the normal manner.
The E, can then be used to calculate SMR; and P using 2.15 and 2.23.
Variances for baseline-adjusted estimates are typically based on the variances
of the observed number of deaths. These in turn are estimated using the estimated
probability of death for each subject to estimate the variance of the outcome for that
subject, or Var(Y|X). When X has missing values, the variance of Y is conditional

on X s, which can be obtained as
Var(Y|Xa,) = Var(E(Y|X)|Xo,) + E(Var(Y|X)| Xobs)-

For EM by method of weights, estimates of Var(y;) = Var(Y|Xos,) for individuals

i=1,2,...,n can be obtained as
n; ng 2 ng
Var(y;) = {Eﬁ?jwij - (Zﬁijwij) } + [Zﬁij(l '-ﬁij)‘wij]
=1 j=1 i=1
n; ng 2
= Y Piwij — (Zﬁijwij)
=1 j=1
= pi(1— ).

Following the typical approach for estimating variances for the BM measures, the j;

are treated as fixed and the variance of SMR, is obtained as
Ok
Var(SMR.) = Var (—)
E;
1 _ _
= = > (1 - ).
k ichg
The variance of the population proportion is obtained as

Var(P,) = 7—11; Y 5:(1 - ).

i€Ry
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Full-model adjusted point estimates. Similar procedures are employed for
indirectly standardized FM risk adjusted point estimates. Estimates of p are ob-
tained using the estimates of death

. exp(do + ficij)
1+ exp(do + f]c._,)

ot j

from the offset model. The d, for the offset model is obtained using EMMW to

ensure that 30, Z;-‘;l Doij = iy ¥i- The estimate of death for individual 7 is
nj
P = Zﬁoﬁjwij-
i=1
Risk adjusted point estimates are then calculated using

E. = E Doi-
ichs
in 2.15 and 2.23.
For directly standardized measures, the calculation of risk adjusted estimates is
based on the weighted probabilities of death obtained by treating all subjects as if
they had been cared for by the provider in question. For individual i treated by

provider k, the weighted estimate of the probability of death is
ng
P = Eﬁ:jkwﬁ'
Jj=1

The pj;,. are obtained as

. = exp(a + Be + ﬁa‘j)
ijk 1+exp(&+ﬁk+ﬁa-,-)’

where (3 is the regression parameter associated with treatment by provider k. The

DS risk adjusted estimates for the RR and population averaged proportion are then
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calculated using
E;, = Y Px
i=1

in 2.35 and 2.39.

Variances of the full-model estimates. For both indirectly and directly
standardized full model measures, estimation of the variances requires modification
of the methods outlined in chapter 2 and appendix A. In general, these methods
must be adapted to account for the use of Pr((Y'|X)|Xe,) rather than Pr(Y|X)
in the logistic regression. These variance estimates must account for the weights
obtained in the final iteration of the EM algorithm and for the variance-covariance
matrix of the the coefficients obtained using Louis’s Method. The necessary changes

to the variance estimates are described in detail in appendix C.



Chapter 4
Risk-adjustment using the APPROACH Data

Risk adjustment procedures are used to adjust the outcomes associated with treat-
ment providers for the mix of patients treated by the provider. In the present investi-
gation, risk adjustment procedures will be applied to the types of treatment provided
to the cases. These treatments included medical treatment, bypass surgery (CABG),
and percutaneous transluminal coronary angioplasty (PTCA). Type of treatment was
chosen for risk adjustment because there was evidence with the complete cases that
the risks varied across treatment groups. The clinical justification for such a choice
is not strong. Although the treatments appear to vary in effectiveness, the choice
of treatment involves multiple factors such as the appropriateness of the treatment
given the condition of the patient, the quality of life (such as absence of chest pain)
that is expected after a given form of treatment, and the willingness of the patient to
allow invasive procedures. Consequently, the effectiveness of the therapies will not
be discussed and attention will be focussed on the performance of the missing data
methods and risk adjustment proceedures.

To account for data missing in the APPROACH project data base, Norris et al.
(1999) produced a second set of diagnoses based on administrative ICD-9 discharge
data. These administrative variables were then used to augment the available clinical
data. Three different data sets were created from this data. In one data set, only
subjects with complete information were included. In the second data set, missing

variables were coded as having the reference level of risk. In the third data set,
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termed the enhanced data, diagnoses were considered positive if they were positive
in either or both of the administrative and APPROACH diagnostic variables. Some
important clinical indicators did not have equivalent administrative variables. Most
notable among these was ejection fraction (EF). In 1995, 27% of the APPROACH
cases were missing the EF variable. To use EF in their analyses, Norris et al. (1999)
used a separate category to code for missing EF observations. While allowing for
the use of EF information, such a procedure is known to produce bias in regression
coefficients, even when data are MCAR (Vach, 1994; Vach and Blettner, 1991). This
chapter will explore the use of missing data methods as an alternative to the data
enhancement technique employed by Norris et al. (1999). This examination will
use APPROACH data from 1995. Only the observed data will be employed; the

administrative variables will not be utilized.

4.0.3 Variables

Norris et al. (1999) compared logistic regression models based on the three data sets.
They concluded that the enhanced data provided a better fit for one-year mortalities
than the other two methods of handling the missing data. The resulting model had

30 coefficients (see table 4.1).

Covariates The number of variables used by Norris et al. (1999) in their analy-
ses proved problematic for modelling the joint distribution of covariates for EMMW,
as well as for creating an augmented data matrix. The use of categorical or mixed
continuous and categorical models for the covariates required a reduction in the num-

ber of variables used in the logistic regression model. Ignoring age, the treatment
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Table 4.1: Variables used by Norris et al. (1999) in their enhanced model.

. Odds | 95% Confidence

Variables Coeflicient | Ratio Interval
INTERCEPT -7.2
AGE for each 10 yr. 0.32 14 (1.2- 3.3)
Cerebrovascular Disease 0.75 2.1 (1.4- 3.3)
Congestive Heart Failure 0.97 2.7 (1.9- 3.6)
Pulmonary Disease 0.32 14 (09- 2.0)
Renal Disease 1.72 5.6 (3.4- 9.1)
Diabetes Mellitus 0.18 1.2 (0.8 - 1.6)
Dialysis 0.23 1.3 (0.5 - 3.3)
Hyperlipidemia -0.27 0.8 (0.6 - 1.0)
Hypertension 0.07 1.1 (0.8- 14)
Liver/GI Disease 0.00 1.0 (0.5 - 2.0)
Malignancy -0.26 0.8 (0.4- 1.6)
Prior CABG 0.19 1.2 (0.8- 1.8)
Prior Myocardial Infarct 0.11 1.1 (0.8- 1.6)
Ejection Fraction

<30%: >50% 0.96 2.6 (1.6 - 4.4)

30 -50%: > 50% 0.45 1.6 (1.0- 2.4)

V-gram not done : > 50% 1.29 3.6 (1.9- 6.9)

missing: > 50% 0.75 2.1 (1.5- 3.1)
Coronary Anatomy

1& 2 vessel disease: normal 0.29 1.3 (0.6 - 2.9)

2 vessel disease PLAD: normal 0.85 2.3 (0.8 - 6.5)

3 vessel disease: normal 1.17 3.2 (1.5- 7.0)

3 vessel disease PLAD: normal 1.22 34 (1.5- 7.6)

Left Main: normal 1.59 4.9 (2.2-11.2)
Missing: normal 0.76 2.1 (0.8 - 5.6)
Prior PTCA -0.09 0.9 (0.6 - 1.4)
Peripheral Vascular Disease 0.14 1.5 (0.7- 1.8)
Prior Lytic Therapy 0.35 1.4 (09- 2.2)
Sex (female: male) 0.27 1.3 (1.0- 1.8)
Clinical Indication

Myocardial infarct: Stable Angina | - 0.03 1.0 (0.7- 1.4)

Other: Stable angina 0.34 1.4 (0.9- 2.2)
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variable, and the outcome, the number of categories defined by the variables used
by Norris et al. (1999) is 2'6 x 4 x 6 x 3 = 4,718,592. Even with restrictions on
the multinomial model, acceptable fits for the categorical and mixed continuous and
categorical missing data models were difficult to obtain. For the use of EMMW,
the size of the required augmented data matrix greatly exceeded the capacity of the
computer used for the analyses.

Although the variables included by Norris et al. (1999) were of clinical interest,
the effects attributable to several of these variables were negligible. Models em-
ploying cases with complete data as well as models based on the enhanced data were
examined to determine the relative importance of the variables. Decisions were based
on the clinical and statistical relevance of the variables and were made in consulta-
tion with Dr. William Ghali, a physician involved with the APPROACH project.
The covariates used for the missing data models are described in table 4.2.

Depending on the model used for covariates, EF and coronary anatomy (CA)
were either left as categorical variables or were broken into sets of dummy variables.
As there were 4 possible categories for ejection fraction (missing values were not
placed in a separate category), 3 dummy variables were required to represent mem-
bership in these categories. Patients who did not receive venograms were coded as
a separate category rather than as missing. This is because the cardiologist may
choose not to perform a venogram when the condition of patients is poor. If no in-
formation was recorded regarding the venogram, the ejection fraction was recorded
as missing. The variables were coded so that the logistic regression coefficient for
each variable represented a comparison between the risk for a given EF category and

the risk associated with an EF > 50. For coronary anatomy, 5 dummy variables



Table 4.2: Descriptions of the covariates used in the missing data analyses.

Variable | Description Count | % of Total
Age By Decade .
< 40 162 | 2.67
40 - 50 786 | 12.96
50 - 60 1362 | 22.46
60 - 70 2028 | 33.44
70 - 80 1463 | 24.12
>80 264 | 4.35
CVD Cerebrovascular Disease .
No 5492 | 90.55
Yes 219 | 3.61
Missing 354 | 5.84
CHF Congestive Heart Failure .
No 4057 | 66.89
Yes 519 8.56
Missing 1489 | 24.55
PD Pulmonary Disease .
No 5139 | 84.73
Yes 273 | 4.50
Missing 653 | 10.77
Creat Creatinine .
No 5073 | 83.64
Yes 84| 1.38
Missing 908 | 14.97
EF Ejection Fraction .
<30% 256 | 4.22
30-50% 1126 | 18.57
>50% 2901 | 47.83
Venogram Not Done 128 | 2.11
Missing 1654 | 27.27
CA Coronary Anatomy .
Normal 618 | 10.19
1& 2 Vessel Disease 2937 | 48.43
2 Vessel Disease PLAD 191 | 3.15
3 Vessel Disease 1091 | 17.99
3 Vessel Disease PLAD 637 | 10.50
Left Main 389 | 6.41
Missing 202 | 3.33
Sex Male 4339 | 71.54
Female 1726 | 28.46

86
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were employed to represent the 6 categories. These were coded so that the logistic
regression coefficients represented comparisons of the different CA risk categories
with the normal CA category.

For the logistic regressions there were 14 covariates and two additional variables
to code for treatment effects. The covariates in table 4.2 were included in all logistic
regression analyses. For descriptive purposes, age has been broken down by decade.
However, in the analyses age was treated as a continuous variable. For the logistic
regressions requiring treatment effects, two binary variables were included to compare
the three treatment categories. These categories were 1) Medical treatment, 2)
Coronary Artery Bypass Graft (CABG), and 3) PTCA. Sex was included in all
models even though there was no evidence that influenced the outcomes at the 5%
level of significance. It was retained in the models because 1) it was of clinical
interest, 2) it was significant in the original enhanced model and 3) the possibility
existed that it might be statistically significant in one or more of the missing data

models.

Outcome measure. The outcome measure for the analyses is one year mortal-
ity. Subjects dying within one year of their cardiology examination received a code
of 1, while subjects surviving received a code of 0. A total of 301 of the 6065 cases

(approximately 5%) died within one year of their initial angiograms.

Patterns of missing data. From table 4.2, it is evident that CHF and ejec-
tion fraction have the highest percentages of missing observations (24.6% and 27.3%
respectively). This warrants concern, as these variables had large effects in the en-

hanced model. The APPROACH investigators were aware that the rates of missing
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Table 4.3: Missing data broken down by variables of interest.

Ejection Fraction CHF
N in N % N %
Variable Category | Category | Missing | Missing | Missing | Missing
Quarter First 1516 806 | 53.2 503 | 33.2
Second 1601 456 | 28.5 396 | 24.7
Third 1494 212 | 14.2 350 | 23.4
Fourth 1454 180 | 124 240 | 16.5
Hospital 1 1431 374 | 26.1 415 | 290
2 1624 181 | 11.1 115 7.1
3 1380 3211233 627 | 454
4 1630 778 | 47.7 332 | 204
Treatment | Medical 2880 761 | 26.4 676 | 23.5
CABG 1337 376 | 28.1 338 | 25.3
PTCA 1848 517 | 28.0 475 | 25.7
Outcome | Alive 5764 1537 | 26.7 1401 | 24.3
Dead 301 117 | 38.9 88 | 29.2

data varied by time and by hospital. This variation can be attributed to the time
required to educate physicians about the APPROACH project, and because the
project was embraced more readily at some hospitals than others. In table 4.3, the
missing observations in CHF and ejection fraction are broken down by the quarter
of 1995 as well as by hospital. Also included are breakdowns by type of treatment
received and by outcome.

The percentages of missing observations are greatest in the first quarter and
decline as the year progresses. In the first quarter, 52.2% of the cases were missing
EF data and 33.2% were missing CHF data. By the end of the year, the percentages
of missing data declined to 12.4% and 16.5% for EF and CHF respectively. In

1995, angiograms were performed at four Alberta hospitals. There is a large degree
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of variation in the percentage of missing data by hospital. Percentages of missing
ejection fraction data ranged from 11.1% to 47.7% and percentages of missing CHF
data ranged from 7.1% to 45.4%.

Although hospital and quarter were related to the proportion of missing data,
they were not included as variables in the analyses. In preliminary investigations
with the complete cases, the inclusion of these variables did not improve the fitted
models. Further, these variables did not appear to be related to 1) the outcome, 2)
the observed values of the variables with missing data, or 3) to the other risk factors
used in the logistic regression models. Consequently, they have been excluded when

performing missing data methods and risk adjustment procedures.

4.1 Logistic Regressions with Missing Data

The application of risk adjustment methods to the data first required the develop-
ment of logistic regression models. Two sets of models were employed. The first
set of models did not contain treatment effects. These models were used for the
calculation of baseline-model (BM) risk adjustment measures in which the effects
of the covariates were not adjusted for the effects of treatment. The second set of
models included treatment effects and were used to calculate full-model (FM) risk

adjustment measures as well as directly standardized measures.

Adequacy of the fits
No formal methods of assessing the adequacy of logistic regression fits based on
missing data methods have been addressed in the literature. For this reason, the fits

will be examined using ad hoc methods which parallel some of the methods employed
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when performing logistic regression with complete data. The methods employed will
include C statistics, residual deviances (D), and by the use of Pearson residuals (rp).
For multiple imputation models, tests of adequacy were based on the average of the
fitted probabilities obtained from each of the s = 1,2,...,m imputed models. For
individuals ¢ = 1,2, ..., n, an average fitted probability was calculated as

Di = Y_ Pia- (4.1)

s=1

For EMMW models, tests of adequacy were based on the weighted average of the
fitted probabilities obtained for each subject. For each subject, the fitted probability

was calculated as

n;
P = Y wijbij- (4.2)
~

C statistics. These fitted values were then used to obtain C statistics for the
logistic regression models. For binary outcomes, the C statistic is the area under
the receiver operating characteristic (ROC) curve. It is based on all possible pairs of
patients, where one patient has the disease and the other does not. The C statistic
is the proportion of these pairings in which the patient with the disease has a higher
predicted probability of death than does the patient who does not die (Harrell and
Lee, 1984)

Residual deviances. The residual deviance, or D, is twice the discrepancy be-
tween the maximum log-likelihood achievable and the log-likelihood achieved by the
model under investigation (McCullagh and Nelder, 1989). For the MI and EMMW
models, the achieved iug-likelihood is obtained using the average fitted probabilities

and weighted average fitted probabilities respectively. The residual deviances were
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obtained as

D = 2" [ylog(p:) + (1 — ) log(1 — 7] (4.9

These will be calculated for comparison purposes only and will not be used for
statistical tests. Schafer (1997b) notes that for MI models, likelihood ratio test
statistics must be devised that are based only on the observed data. For likelihood

ratio tests, Schafer (1997c) describes a method provided by Meng and Rubin (1992).

Pearson Residuals. To further explore the adequacy of the model, the Pearson
residuals from the marginal distribution of the joint EF and CHF categories were
examined. These variables were chosen as they had the largest percentages of missing
observations as well as the largest X’s in the MI model. This joint distribution also
included categories for subjects with missing data on one or both of the variables.

In constructing the tables, CHF was considered to have three categories: no,
yes and missing. Ejection fraction was considered to have five categories: < 30%,
30—-50%, > 50%, not done, and missing. Tables were based on the cross-classification
of these variables. For each category, the observed number of deaths was compared
to the expected deaths from the model. For each category ¢; where l =1,2,...,n,,
the expected number of deaths (E;) was obtained by summing the p;’s of the cases
falling within the joint category. The observed number of deaths in the joint category
¢; was denoted as O,. Pearson residuals were obtained as the raw residual (O; — E;)

scaled by the estimated standard deviation of O; (McCullagh and Nelder, 1989), or

. - O-E
° VVar(0r)

Assuming that the observations were independent, the variance of O, was esti-
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mated as

Var(0y) = Var(3_w) = Y Var(w).

i€c 1€cy

When MI is used to obtain logistic regression models, the estimate (see section 3.1.3)

of Var(y;) from the m models is

o, 1 m - = Ps
Var(y;) = — (ZP:‘: - pr?') .
s=1 =

For EMMW, the estimate of Var(y;) is

, 2
Var(y:) = > pijwii — (Eﬁijwij)
j=1 j=1

= pi(1— )

For details, see C.7 in appendix C. For diagnostic tables with Pearson residuals, see

tables 4.6 and 4.9.

4.1.1 Joint Distributions

As noted in chapter 3 (section 3.2.3), the application of missing data methods requires
the specification of models for the joint distribution of the covariates. For analyses
employing MI, multivariate normal distributions were employed. For analyses using
EMMW, two types of models were employed. These were 1) mixed continuous and

categorical models, and 2) multivariate normal models.

Multiple Imputation
As suggested by Schafer (1997d) and Greenland and Finkle (1995), the joint distri-
bution which formed the basis for the imputations included not only the covariates

but also the outcome measure. A multivariate normal distribution was applied to
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these variables when employing MI methods. Although attempts were made to find
other models to form a basis for imputations, these attempts failed due to compu-
tational difficulties posed by the number of covariates in the models. Attempted
models included a log-linear model in which age was broken into categories, and a
mixed continuous and categorical variables model, in which age was treated as a
continuous variable. Complications generally arose because of the large number of
categories defined by the variables. For example, by breaking age into 6 decades,
a total of 6 x 24 x 4 x 6 x 2 = 4,608 categories were defined by the covariates.
With two outcome categories and three treatments included in the model, the num-
ber of categories expanded to 27,648. By placing constraints on the model, a fit
could be obtained for the joint distribution of the categories. However, the programs
written by Schafer (1999) were incapable of drawing imputations from a categorical
model. Similar problems were encountered when attempts were made to fit mixed
continuous and categorical models to the data. Treating age as a continuous variable
and the remaining variables as categorical, with appropriate constraints, fits could
be obtained for the joint distribution of the variables. Unfortunately the program
tmp.miz provided by Schafer was not capable of generating imputations from the
mixed continuous and categorical distributions from the APPROACH data. When
running the imp.miz program in S-PLUS (MathSoft, 1999), the program terminated
abruptly with no diagnostic errors. After debugging in S-PLUS, the error appeared
to occur after the S-PLUS object made a call to a FORTRAN (Free Software Foun-
dation, 1998) routine. The problem appeared to be due to memory limitations on
the computer used for the analyses: when tested with simpler models with fewer

covariates and observations, the program was capable of generating imputations.
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Method of Weights

Two types of covariate models were employed when fitting logistic regressions using
EMMW. These were 1) mixed continuous and categorical models, and 2) MVN mod-
els. While Schafer’s imputation programs could not generate imputations from the
mixed continuous and categorical models, with appropriate constraints, the programs
were capable of fitting mixed continuous and categorical models to the covariates. In
these models, age was treated as a continuous variable, and the remaining covariates
were treated as categorical. For both the mixed continuous and categorical models
and the MVN models, the probabilities associated with the covariate patterns in X

were then used to obtain weights at each iteration of the EMMW algorithm (see

section 3.2.2).

4.1.2 Baseline-Adjusted Models

Logistic regression models used to obtain baseline-adjusted estimates did not include
treatment effects. For these logistic regressions, 14 covariates were employed (see
table 4.4). Age was the only continuous variable. Ages were divided by 10, and
the resulting logistic regression coefficients reflect the change in outcome per 10 year
increase in age. The comparisons defined by the EF and CA codes are described in

section 4.0.3.

Multiple Imputation
Multiple imputations were created through the use of data augmentation procedures
(see section 3.1.3). An EM algorithm was used to fit a MVN distribution to the

variables. The parameter estimates for this distribution served as the starting point
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for the data augmentation sequences. To ensure the legitimate use data augmen-
tation procedures, time series plots of the sequences of parameters were examined
to establish that the generated parameters were stationary about a single value
(Schafer, 1997b). Correlations among parameters generated from the data augmen-
tation sequences were examined using autocorrelation functions (ACFs) to determine
1) whether imputations selected from the series could be considered independent, and
2) the number of iterations of the DA procedure needed between draws of imputed
data sets for these draws to be considered independent. Due to the large number
of parameters associated with the MVN model, attention was focused on plots of
the means and standard deviations. To further ensure the appropriateness of the
methods, the worst linear function (WLF) of the parameters was also examined (see
section 3.1.3).

Examples of the plots are provided in figures 4.1 and 4.2. Figure 4.1 contains
plots of the standard deviation of the first ejection fraction variable. Of all time series
plots, this series had the longest runs which deviated from a stationary point. The
autocorrelations for this plot also tended to have larger values than those for other
parameters. As expected, the WLF time series showed even greater deviations from a
stationary point and the autocorrelations for the WLF were considerable even past 80
lags. Note that WLF was scaled so that if the time series was stationary about zero,
it would be stationary about the mode of the likelihood function (Schafer, 1997b).
Despite the problems apparent in the WLF, the time series plot still appeared to be
stationary about zero. Similarly, although the autocorrelations appear large, after
60 lags, the majority of these correlations are less than p = 0.1. In an attempt to be

conservative, imputations were obtained by sampling every 100th iterate from the
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Figure 4.1: Diagnostic plots based on iterates from MVN model without treatment
effects. a) Time series plot for standard deviation of the first ejection fraction vari-
able. b) ACF for this series from iterations 100 to 1100. Dashes indicate approximate
0.05-level critical values for testing px = pr+1 = pPr+2 =---=0.



97

0 4106

-6*10%-6

0 200 400 600 800 1000

b)

1

etttz :"mn‘.'irH'h"i'l'l';":m1';:";;"1’rH'Hr i

0.0

1L b 1l
JAALL MSUURLS 11 L LAY} LN
[ "

0 20 40 60 80 100
Lag
Figure 4.2: Diagnostic plots based on iterates from the MVN model without treat-

ment effects. a) Time series plot for the worst linear function of the parameters. b)
ACF for the worst linear function using iterations 100 to 1100.
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series.

Ten imputations were sampled, and regression results as well as fitted values were
stored for each imputation. Regression parameters and standard errors for the 10
imputations were combined using (3.5) - (3.8). The resulting regression parameters
and standard errors are presented in table 4.4. Also included are estimates of the
fraction of missing information for each regression parameter (5\). These \s relate
the between imputation variance to the within imputation variance. They can be
used to estimate the size of the obtained standard errors relative to the size of the
standard errors which would have been obtained if m = oo imputations had been
employed. According to Rubin (1987c), the relative efficiency of a point estimate
relative obtained from m imputations relative to a point estimate based on infinite
imputations is approximately (1 + A/m)~'. As CHF and ejection fraction had the
largest percentages of missing observations, one would expect the As associated with
these variables to be large. For CHF, the variable with the largest A (A = 0.4), the use
of mm = 10 imputations yielded a standard error approximately \/—m/_l_O = 1.02
times as large as the standard error which would have been obtained with m = oo
imputations. For the C-statistic, residual deviance and Pearson residuals, see tables

4.5 and 4.6.

EMMW with Mixed Continuous and Categorical Model

For the first method of weights model (MW-1), the joint distribution of covariates
was fit using a mixed continuous and categorical model. To reduce the number of
parameters required to fit this model, a log-linear model was used for the categorical

component of the model. This log-linear model fits main effects for the categorical
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variables as well as one-way interactions among the variables. This component of
the model required 83 parameters. Contrasts among categories were used to fit ages
to the cells defined by the categories. The model for the means used a least squares
approach to fit main effects for each categorical variable; no interactions terms were
included. The continuous component required 14 parameters: 13 for the contrasts
and 1 for the variance of age within the cells. Using Schafer’s “ecm.mix” program,
a maximum likelihood fit was obtained for this model. Despite the parameter re-
strictions, the algorithm appeared to converge to a boundary of parameter space,
as many of the fitted probabilities were zero, and because many of the fitted means
could not be estimated. To move the solution into the interior of the parameter
space, a uniform Dirichlet prior was applied to the data (see section 3.2.3). The
hyperparameters for this prior were all initially set at 1.05, but this also resulted in
inestimable parameters. The magnitude of the hyperparameters was increased by
increments of .05 until all parameters could be estimated. The final hyperparameters
were 1.15, and the EM algorithm required 21 iterations to converge.

The use of a flat prior smooths the parameter estimates towards a table in which
all probabilities are equal. The use of a hyperparameters of 1.15 is equivalent to
adding 0.15 of an observation to each cell (Schafer, 1997g, p. 253), and is analogous
to adding .15x 768 = 115.2 observations evenly throughout the cells. Schafer suggests
that when specifying priors, the results will not be grossly distorted as long as the
the number of observations added using prior information does not exceed 10-20% of
the number of total observations. In the present case, the prior information amounts
to 100 x 115.2/6065 = 1.9% of the total number of observations, which is well below

the suggested guideline.
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The joint probability of the covariates in the augmented data matrix was esti-
mated by obtaining the probability associated with the cell membership defined by
the categorical variables, and then multiplying this probability by the normal proba-
bility density associated with patient’s age. These joint probabilities were then used
in the EMMW algorithm as described in chapter 3 (see section 3.2.2).

Following convergence of the EM algorithm, the final weights and the augmented
data matrix were used to obtain estimates of variance for the coefficients according to
the method described in appendix B. The parameter estimates and their standard
errors are shown in table 4.4. For the C-statistic, residual deviance and Pearson

residuals, see tables 4.5 and 4.6.

EMMW with MVN Distribution

A MVN distribution for the covariates was used to obtain a second method of weights
model (MW-2). Dummy variables were used to represent the variables with multiple
categories. Unlike the MVN applied for the multiple imputations, the outcome mea-
sure was not included in the model. The probabilities associated with the covariates
in the augmented data matrix were estimated by calculating the normal probabil-
ity density defined by the fitted MVN distribution. These probabilities were then
used in the EMMW algorithm (see section 3.2.2). Variances for the coefficients were
obtained using Louis’s method (see appendix B). The resulting logistic regression co-
efficients and standard errors are presented in table 4.4. For the C-statistic, residual

deviance and Pearson residuals, see tables 4.5 and 4.6.



101

Table 4.4: Logistic regression models with no treatment effects. For the complete

case (CC) analysis, n=3171.

CC MW-1 MW-2 MI
Variable | Coef SE Coef SE Coef SE Coef SE 100\
Intercept | -6.93 0.773 |-7.11 0531 |-6.90 0.522 |-6.71 0.501 6
age 0.367 0.0982 | 0.380 0.0638 | 0.373 0.0628 | 0.367 0.0631 1
CVD 0.813 0.317 | 0.698 0.237 | 0.667 0.229 | 0.666 0.233 3
CHF 0.500 0.252 | 0.988 0.183 | 1.06 0.164 | 1.18 0.186 40
PD 0.414 0.356 | 0.213 0.239 | 0.323 0.225 | 0.285 0.229 7
creat 1.014 0.489 | 1.54 0303 | 1.598 0.286 | 1.55 0.293 4
EF.1 1.38 0.204 | 1.28 0.246 | 0.895 0.232 | 0.992 0.233 34
EF.2 0.585 0.227 | 0.454 0.193 | 0.450 0.188 | 0.267 0.154 13
EF.3 157 0382 | 1.30 0314 | 1.10 0293 | 1.06 0.291 9
CA.l 0.467 0.483 | 0.521 0.364 | 0.531 0.358 | 0.305 0.313 16
CA.2 -0.661 1.10 1.04 0480 | 1.09 0.471 | 0.881 0.434 5
CA3 110 0.496 | 1.30 0.369 | 1.33 0364 | 1.12 0.314 14
CAA4 111 0.508 | 1.18 0.382 | 1.23 0.376 | 1.03 0.330 15
CA5 1.31 0526 | 1.60 0391 | 1.63 0385 | 1.43 0.339 12
sex 0.113 0.207 | 0.210 0.139 | 0.209 0.135 | 0.204 0.137 2

Table 4.5: C statistics and residual deviances for the logistic regression models.

Model C D

Enhanced | 0.802 | 1982.45
MW-1 0.831 | 1977.94
MW-2 0.785 | 2063.73
MI 0.815 | 1982.55
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Table 4.6: Standardized residuals for the marginal observed and expected values
for the joint distribution of ejection fraction and CHF in models without treatment

effects

| Model — MW-1 MW-2 MI

EF CHF Count | O E z E z E z

<30% No 112 11 || 13.26 | -0.68 || 11.36 | -0.12 || 11.02 | -0.01
Yes 99 22 || 23.67 | -0.41 || 21.24 | 0.19 || 23.66 | -0.41
Missing | 45 5 6.74 | -0.75 5.69 | -0.32 6.48 | -0.66

30-50% | No 752 34 | 32.59 | 0.26 || 38.90 | -0.82 || 30.42 | 0.67
Yes 133 12 || 19.83 | -2.00 || 23.56 | -2.76 || 22.10 | -2.47
Missing | 241 12 || 12.80 | -0.23 || 12.26 | -0.08 || 11.79 | 0.06

>50% No 2264 43 || 53.16 | -1.42 || 63.88 | -2.68 || 60.76 | -2.33
Yes 86 8 7.60 | 0.16 9.41 | -0.50 || 10.39 | -0.81
Missing | 551 18 || 13.49 ] 1.25{| 14.90 | 0.82 || 16.23 | 0.45

Not No 64 7 7.16 | -0.07 || 6.95 | 0.02 6.22 | 0.34

Done Yes 28 6 8.25 | -1.00 8.09 | -0.93 8.34 | -1.03
Missing | 36 6 6.06 | -0.03 395 1.13 4.62 | 0.74

Missing | No 865 27 | 29.80 | -0.53 || 29.77 | -0.52 || 28.32 | -0.26
Yes 173 43 || 35.01 | 1.63 || 28.77 | 3.12 || 32.50 | 2.23
Missing | 616 47 || 31.58 | 2.89 || 22.26 | 5.41 || 28.17 | 3.78
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4.1.3 Full-model Logistic Regressions

The calculation of risk-adjusted estimates in which the effects of covariates were
adjusted for treatment effects required the use of logistic regression which included
treatment effects. The procedures used in fitting these models were analogous to
those used to fit the logistic regressions without treatment effects. For these mod-
els, however, the joint probability models for the covariates included the treatment

categories.

Multiple Imputation

The starting point for the imputations was based on parameters fit to a MVN distri-
bution using the “em.norm” program (Schafer, 1999). Time series plots were used to
examine the rate of convergence of the Markov Monte Carlo process, and to ensure
that the series for the individual parameters were stationary about a single point.
Autocorrelation functions were used to determine the number of iterations required
before the imputations could be considered independent. Plots were also made of
the WLF of the parameters.

Examples of the plots are provided in figures 4.3 and 4.4. Figure 4.1 is a plot
of the standard deviation of the first ejection fraction variable, as this parameter
appeared to have the worst time series and ACF of all parameters examined. Both
the ejection fraction variance and the WLF appeared to be stationary about single
points. However, they both also demonstrate fairly long runs where the measures
tend to deviate to one side or the other of these points. This tendency for system-
atic deviations is also evident in the ACF plots (figures 4.3b and 4.4b). These plots

demonstrate a tendency for adjacent autocorrelations to be > or < 0. The auto-
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Figure 4.3: Diagnostic plots based on iterates from MVN model with treatment
effects. a) Time series plot for standard deviation of the first ejection fraction vari-
able. b) ACF for this series from iterations 100 to 1100. Dashes indicate approximate
0.05-level critical values for testing px = pr+1 = pPrs2 = --- = O.
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Figure 4.4: Diagnostic plots based on iterates from the MVN model with treatment

effects. a) Time series plot for the worst linear function of the parameters. b) ACF
for the worst linear function using iterations 100 to 1100.
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correlations in these plots are also frequently greater than the 5% critical values for
testing whether the correlations are equal to zero.

Despite the weaknesses evident in these plots, it should be noted that these are
plots of the worst cases of the plots examined. As with the model with no treatment
effects, a decision was made to sample every 100th iterate, as it was felt that this
would sufficiently guard against dependence among the imputations.

Ten imputations were sampled, and regression results and fitted values were
stored for each imputation. Regression parameters and variances were combined
using (3.6) and (3.8). The resulting regression parameters and standard errors are
presented in table 4.7. The s are also included. When compared with the MI model
without treatment effects (see table 4.4), the As are larger for several of the variables
and especially for the ejection fraction variables. The second ejection fraction vari-
able has the largest associated A (100A = 57). The use of m = 10 imputations
yielded a standard error approximately \/1—:37/_10 = 1.03 times as large as the
standard error which would have been obtained with m = oo imputations. For the

C-statistic, residual deviance and Pearson residuals, see tables 4.5 and 4.6.

4.1.4 Method of Weights

Two models were fit to the data using the method of weights. In the first of these
models (MW-1), a mixed continuous and categorical model was applied to the co-
variates. As with the method of weights without treatment effects, restrictions were
placed on the model for the estimation of parameters. The categorical component
of the model was fit using a log-linear model with main effects and first order in-

teractions. The continuous portion of the model was fit using main effects for the



107

categorical variables. In total, 108 parameters were estimated, 91 for the categorical
component of the model and 17 for the normal component. Without any prior infor-
mation, estimates of means could not be obtained and many cells had probabilities
of zero. With a flat prior of 1.15, all parameters could be estimated. The use of
this prior is equivalent to adding .15 to each cell (Schafer, 1997g), an amount equiv-
alent to adding .15 x 2304 = 345.6 observations. This prior information amounts to
100 x 345.6/6065 = 5.7% of the total number of number of observations, well below
the guideline of 10 — 20% suggested by Schafer.

The joint probabilities of the covariates were used to obtain estimates of regression
parameters and standard errors as described previously. These are shown in table
4.7 (MW-1). For the C-statistic, residual deviance and Pearson residuals, see tables

4.8 and 4.9.

MVN Model for Covariates

A second method of weights model, MW-2, was obtained using a MVN for the
covariates. Binary variables for type of treatment were included in this model but
outcome was not included. The probability densities for covariates were used to
obtain estimates of regression parameters and standard errors as detailed above.
The resulting coefficients and standard errors can be found in table 4.7. The C-
statistic, residual deviance, and Pearson residuals are presented in tables 4.10 and

4.11.
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Table 4.7: Logistic regression models with treatment effects. For complete case (CC)
analyses, n=3171.

CC MW-1 MW-2 MI
Variable | Coef SE Coef SE Coef SE Coef SE 100\
intercept | -6.83 0.772 |-7.05 0532 |-6.80 0522 |-652 0494 06
age 0.358 0.0982 | 0.373 0.0641 | 0.362 0.0629 | 0.355 0.0631 01
CVD 0.815 0.317 | 0.686 0.237 | 0.671 0.230 | 0.700 0.233 02
CHF 0.461 0.254 | 0.977 0.183 | 1.01 0.165 | 1.17 0.169 26
PD 0.399 0.358 | 0.175 0.239 | 0.322 0.226 | 0.296 0.230 08
creat 1.05 0.491 | 1.55 0.2903 | 1.63 0285 | 1.590 0.294 06
EF.1 1.30 0298 | 1.15 0.249 | 0.783 0235 | 0.899 0.238 37
EF.2 0.559 0.228 | 0.413 0.195 | 0.414 0.189 | 0.207 0.214 57
EF.3 1.51 0.388 | 1.24 0.321 | 1.04 0298 | 1.01 0.322 25
CA.1 0.659 0.488 | 0.788 0.368 | 0.774 0.362 | 0.434 0.303 15
CA.2 -0.364 1.11 142 0490 | 1.50 0479 | 1.15 0.448 11
CA.3 1.32 0506 | 1.61 0376 | 165 0370 | 1.31 0.310 16
CA.4 1.33 0521 | 1.50 0390 | 1.56 0383 | 1.22 0326 15
CA.5 1.52 0544 | 192 0402 | 198 0395 | 1.64 0340 13
sex 0.107 0.208 | 0.193 0.140 | 0.212 0.135 | 0.220 0.137 01
CABG |-0.317 0.248 |-0.500 0.165 |-0.526 0.159 | -0.458 0.163 03
PTCA |-0.541 0.265 |-0.640 0.175 |-0.618 0.168 | -0.574 0.170 02

Table 4.8: C statistics and residual deviances for the logistic regression models with
treatment effects.

Model C

D

MW-1 | 0.829
MW-2 | 0.787
MI 0.808

1954.47
2044.36
1975.84
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Table 4.9: Standardized residuals for the marginal observed and expected values for
the joint distribution of ejection fraction and CHF in models with treatment effects

Model — MW-1 MW-2 MI
EF CHF Count | O E z E z | E z
<30% No 112 11 |} 12.55 | -0.48 || 11.04 | -0.01 | 1143 | -0.14
Yes 99 22 i1 24.01 | -0.49 || 21.39 | 0.16 || 24.23 | -0.55
Missing | 45 5 6.88 | -0.82 5.91 | -0.41 6.64 | -0.72
30-50% | No 752 34 (1 3163 | 044 | 38.31 | -0.73 || 32.21{ 0.33
Yes 133 12 {1 20.38 | -2.12 || 23.78 | -2.82 || 22.69 | -2.59
Missing | 241 12 {{ 12.66 | -0.19 {| 11.97 | 0.01 jj 11.94 | 0.02
>50% No 2264 43 |1 52.93 | -1.39 || 64.18 | -2.71 || 59.09 | -2.14
Yes 86 8 7.44 | 0.22 9.03 | -0.37 9.24 | -0.44
Missing | 551 18 | 13.75 | 1.17 || 14.98 | 0.80 || 15.48 | 0.66
Not No 64 7 7.36 | -0.15 7.29 | -0.12 6.66 | 0.15
Done Yes 28 6 8.17 | -0.98 8.02 | -0.92 8.13 | -0.96
Missing | 36 6 6.23 | -0.11 3.69 | 1.33 4.46 | 0.83
Missing | No 865 27 11 29.73 | -0.52 || 29.84 | -0.54 || 28.78 | -0.34
Yes 173 43 || 3408 | 184 | 28.76 | 3.12 || 31.82 | 2.40
Missing | 616 47 11 33.23 | 2.53 |1 22.80 (| 5.24 || 28.20 | 3.80

4.1.5 Discussion

Coeflicients
The estimated coefficients and standard errors for the baseline- adjusted models are
presented in table 4.4. The coefficients and standard errors for the full models are
presented in table 4.7. Also included in these tables are models based on the 3171
subjects with complete data. These will be referred to as complete case (CC) models.
It would be difficult to choose among the missing data models on the basis of
coefficients and standard errors. Across the models, the coefficients and standard
errors are reasonably similar, and without a complete data model for comparison,
the accuracy and efficiency of the missing data models cannot be directly evalu-

ated. However, the missing data models all appear to be superior to their respective
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CC models. The missing data models have standard errors which are considerably
smaller than those obtained for the CC models, generally being approximately 2/3
as large. Further, the coefficients for the second CA variable in the CC models
are negative (3 = —0.661 for the baseline-adjusted model), a finding which would
not be expected clinically as it implies that cases with 2 vessel disease and PLAD
are at a lower risk than cases with normal coronary anatomy. A test of statistical
significance does not provide evidence at a = .05 this coefficient differs from zero
(Pr(]z] > 1.96) = .548). However, in all missing data models, the coefficients are pos-
itive and in each case, there is evidence at a = .05 (or smaller) that the coefficients

differ from zero.

4.1.6 Adequacy of the fits.

Residual deviances and C-statistics. The ad hoc methods used to examine
the adequacy of the fits provide limited information regarding the relative perfor-
mance for the models. For the baseline-adjusted models, table 4.5 displays the C-
statistics and residual deviances for the three missing data models, as well as those
obtained from the enhanced model employed by Norris et al. (1999). Note that the
C-statistics and residual deviances from the MW-1 model (C=.831;D=1977.94) and
the MI model (C=.815;D=1982.55) compare favorably with those obtained from the
enhanced model (C=.802;D=1982.45).

Two points need to be made when comparing the measures from the missing data
models with those from the enhanced model. The first is that while the enhanced
model makes use of additional information from administrative data, this information

may contain inaccuracies when compared to the (unobserved) clinical information.
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Further, there was no administrative variable to represent ejection fraction. The use
of missing data methods to account for the missing EF data may have improved the
enhanced model.

The second point is that both complete data and missing data logistic regression
methods are not designed to optimize the C-statistic. Consequently, while the C-
statistic may provide information regarding the ability of the model to discriminate
between those that do and do not die, it may not be a reasonable measure of goodness
of fit. Further, the missing data fitting proceedures may yield C-statistics that are
more optimistic than is justifiable on the basis of the observed data. In MI, the joint
distribution of the covariates and y is used when generating imputed data sets. At
each iteration of the EMMW algorithm, current estimates of Pr(y|Xs,, B4, 8) are
incorporated into the weights to be used in the subsequent iteration. The resulting
logistic regression fits may reflect random idiosyncrasies in the data to a greater
degree than the fits that would be obtained using complete data. Before confidence
is placed on the C-statistics obtained from missing data models, it would be prudent
to use cross-validation studies to examine the performance of these measures.

Although there is no equivalent enhanced model for comparison, the pattern
of C-statistics and D’s among the three full-model logistic regressions is similar
to the pattern among the baseline-model logistic regressions (see table 4.9). The
MW-1 model appears to have the best fit (C=.829;D=1954.47) followed by the MI
model (C=.808;D=1975.84) and the MW-2 model (C=.787;D0=2044.36). Note that
although the residual deviances for these models are smaller than their baseline
model counterparts, the C-statistics are slightly smaller. This is consistent with the

observation made by Harrell and Lee (1984), that increasing the number of variables
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in a model can reduce the ability of the model to discriminate among outcomes.

The tables of Pearson residuals (tables 4.6 and 4.9) indicate that there are prob-
lems with the logistic regression fits obtained using missing data methods. In several
of the cells of the tables, the discrepancies between observed and expected counts are
large. The largest discrepancies occur in the cells where cases were missing observa-
tions on both the CHF and the EF variables. For all models, the expected counts
in these cells are lower than the observed counts, indicating that the missing data
procedures tended to assign (or weight) these subjects to categories for which the
risks of death were too low. To a lesser degree, this also appears to have happened
to cases with missing EF observations who are known to have CHF. Other notable
discrepancies occurred for cases with EF > 50% and a diagnosis of CHF; and for
cases with and EF of 30-50% and a diagnosis of CHF. In both of these conditions,
the expected counts were greater than the observed counts.

Several plausible explanations may account for these discrepancies. First, it is
possible that the logistic regression model has been misspecified. Terms for a CHF
x EF interaction may be needed in the model. However, a test of this possibility
using cases with complete data revealed no evidence of an interaction (x2 = 4.61;p =
0.203).

A second possibility is that the joint probability models have been misspecified.
To some degree, this is supported by the pattern of Pearson residuals found in the
table. A mixed continuous and categorical model is arguably better than a MVN
model for the joint distribution of the covariates. The discrepencies for the MW-
1 model, which employed a mixed continuous and categorical model, are generally

smaller than those from the MW-2 and MI models, which employed MVN models
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for their joint distributions. In addition to the choice of probability distribution,
the relationships among the variables also have to be considered, and important
interaction terms may have been excluded from the models.

Thirdly, it is possible that the data are not MAR. In the absence of information
regarding the missing data mechanism, observations with missing data will tend to
be placed into (or weighted to) the joint categories with the highest probabilities. Of
the cases with an observed CHF variable, 89% had a negative diagnosis. Of the cases
with an observed EF, 65% had an EF > 50%. If the data are MAR, the information
in the observed data will ensure that the cases with missing observations will tend to
be placed in (or weighted toward) the categories to which they truly belong. If the
data are not MAR, the inappropriate weighting or placement of cases to categories
could lead to distortions in the logistic regression parameters.

It would be difficult to determine how to pursue these different possibilities. Not
only are the modeling procedures unwieldy, but the problem could lie in any or all
of the possibilities noted above. Even more problematic is that without complete
data, it would be impossible to verify that any changes in fitting procedures would
produce a more adequate fit.

Although there appear to be problems in the baseline-model fits, they will still
be used in risk-adjustment procedures. This is because 1) it is difficult to know
what corrective measures may be taken to improve the fits, 2) it is possible that the
observed distortions will have little impact on the risk-adjusted estimates, since these
distortions may be distributed fairly evenly among the providers, and 3) although
flawed, the risk-adjusted estimates may be still be more efficient and less biased than

those obtained using only the complete cases. The effects of different missing data
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mechanisms on risk-adjusted estimates is explored using computer simulations in

chapter 5.

4.2 Risk Adjustment with Missing Data

As in chapter 2, a standardized mortality ratio (SMR) will be considered to be
an indirectly standardized relative risk (RR) which represents the increase in risk
associated with treatment by a provider. The population averaged proportion (PAP)
will be considered to be the average risk of death for cases treated by a given provider
or treatment. The baseline-model (BM) measures of risk and relative risk employ
indirect standardization and are based on logistic regression models which do not
include the treatment variables. For brevity, only the offset model estimates will
be referred to as full-model (FM) estimates. The directly standardized estimates
will be referred to as DS estimates. The FM and DS measures are based on logistic
regression models that include treatment effects. For details regarding the estimation
of these measures, see chapters 2 and 3 as well as appendix C.

In tables 4.10 and 4.12, complete case risk estimates have been provided for
purposes of comparison with the estimates obtained using missing data methods.
In all cases, risk-adjusted estimates of standard errors obtained using missing data
methods were smaller than those obtained using the CC logistic regressions. This is

not surprising, as only 3171 subjects had complete data.
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4.2.1 Risk Ratios

Standard Errors

Several observations regarding relative risks can be made on the basis of the data
presented in tables 4.8 and 4.9. The standard errors for risk ratios are smaller for the
full-model adjusted measures than they are for the baseline-model adjusted measures.
The largest differences occur in the medical treatment condition. For the indirectly
standardized measures based on MI, the standard error for the baseline-model RR
is over 50 % larger than the standard error for the full-model RR (0.0804 vs 0.0523).

The standard errors for the directly standardized measures tend to be slightly
smaller than those for the the full-model measures, although they are generally of
comparable magnitude. For the MI model, however, the standard error for the full-
model RR is smaller than the standard error for the directly standardized RR for
those receiving medical treatment. It is also worth noting that within each of the
three different treatments, the full-model RRs are more sensitive to the type of risk

adjustment method than are the directly standardized and baseline-model RRs.

Point estimates

The relative risks obtained using directly standardized and full-model methods are
very similar. For the PTCA treatment group, the RRs are similar regardless of the
method of adjustement employed. For CABG, the full-model and directly standard-
ized measures are very similar and are generally smaller than the baseline-model
relative risks. In the medical treatment group, the RRs tend to be larger for the
adjusted and direct methods of standardization than for the unadjusted measures.

In the present example, the differences in standard errors and point estimates
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Table 4.10: Relative risk measures with missing data in the covariates. The
full-model and baseline-model relative risks are also known as standardized mor-
tality ratios (SMRs).

| Treatment — Medical CABG PTCA |
Model | Method | RR SE RR SE RR SE
CC BM 1.17 0.121 | 0.916 0.161 0.737 0.180
FM 1.19 0.0784 | 0.900 0.152 0.726 0.171
DS 1.20 0.0972 | 0.900 0.144 0.731 0.143
MW-1 | BM 1.23 0.0784 | 0.858 0.0984 | 0.747 0.107
FM 1.25 0.0708 | 0.836 0.0852 | 0.745 0.0877
DS 1.26 0.0619 | 0.833 0.0820 | 0.739 0.0862
MW-2 | BM 1.25 0.0797 | 0.844 0.0980 | 0.743 0.108
FM 1.28 0.0651 | 0.813 0.0807 | 0.746 0.0875
DS 1.28 0.0652 | 0.812 0.0803 | 0.748 0.0870
MI BM 1.23 0.0804 | 0.855 0.0984 | 0.753 0.108
FM 1.24 0.0523 | 0.831 0.0900 | 0.765 0.103
DS 1.24 0.0644 | 0.831 0.0821 | 0.768 0.0890

Table 4.11: 95 % confidence intervals for relative risks associated with CABG treat-

ment.
| Treatment — CABG PTCA |
95 % 99 %
Model | Method | RR | Confidence Interval | RR | Confidence Interval
MW-1 | BM 0.858 0.665 - 1.05 0.747 0.471 - 1.02
FM 0.836 0.669 - 1.00 0.745 0.519 - 0.971
DS 0.833 0.672 - 0.994 0.739 0.517 - 0.961
MW-2 | BM 0.844 0.652 - 1.04 0.743 0.464 - 1.02
FM 0.813 0.655 - 0.971 0.746 0.520 - 0.972
DS 0.812 0.655 - 0.969 0.748 0.524 - 0.972
MI BM 0.855 0.662 - 1.05 0.753 0.474 - 1.03
FM 0.831 0.655 - 1.01 0.765 0.499 - 1.03
DS 0.831 0.670 - 0.992 0.768 0.538 - 0.998
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are small enough that conclusions based on 95 or 99 % confidence intervals would
not generally depend on the missing data model or on the method of estimating
the relative risk. An exception to this occurs in the CABG treatment condition,
where conclusions based on strict adherence to 95 % confidence intervals would differ
(see table 4.9). It should be noted, however, that the magnitude of the differences
in standard errors in the medical treatment condition indicates that the choice of
missing data model and adjustment method has the potential to lead to very different

conclusion regarding risk adjusted estimates.

4.2.2 Population Averaged Proportions

Table 4.12: Measures of population averaged proportions obtained using missing
data methods.

| Treatment — Medical CABG ] PTCA ]
Model | Method | PAP SE PAP SE PAP SE
CC BM 0.0459 0.00473 | 0.0358 0.00628 | 0.0288 0.00705
FM 0.0467 0.00428 | 0.0352 0.00679 | 0.0284 0.00734
DS 0.0468 0.00547 | 0.0352 0.00640 | 0.0286 0.00612
MW-1 | BM 0.0610 0.00389 | 0.0426 0.00489 | 0.0371 0.00533
FM 0.0622 0.00503 | 0.0415 0.00488 | 0.0370 0.00486
DS 0.0627 0.00458 | 0.0414 0.00466 | 0.0367 0.00475
MW-2 | BM 0.0619 0.00400 | 0.0419 0.00486 | 0.0369 0.00537
FM 0.0634 0.00466 | 0.0403 0.00459 | 0.0370 0.00479
DS 0.0635 0.00466 | 0.0403 0.00457 | 0.0371 0.00477
MI BM 0.0609 0.00399 | 0.0424 0.00488 | 0.0374 0.00537
FM 0.0615 0.00411 | 0.0413 0.00500 | 0.0380 0.00552
DS 0.0617 0.00453 | 0.0413 0.00465 | 0.0381 0.00489

From table 4.12, it is evident that within given missing data models, the adjusted

and directly standardized measures are very similar. For the medical treatment
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group, the standard errors for the baseline-model risks are smaller than those for the
full-model and directly standardized measures. The standard errors for the directly
standardized risks are generally smaller than those for the full-model risks. An
exception to this occurs in the medical treatment group for estimates obtained using
the MI logistic regression models. In this case, the directly standardized estimate has
the largest standard error. As with the relative risks, the standard errors obtained
using the direct standardization and baseline-model adjustements are the most stable

across missing data models within types of treatment.

4.2.3 Discussion

The finding that direct standardization often yielded the smallest variances may
seem surprising in the light of the generally held view that directly standardized
rates are less efficient than indirectly standardized rates (Breslow and Day, 1987b).
It should be noted, however, that the model-based methods of obtaining directly
standardized rates in the present examples differs from the method on which the
assertion of inefficiency is based. In direct standardization, the typical method of
calculating rates is to obtain stratum specific estimates of risk for each treatment
group and then apply these estimates of risk to a common population standard. The
loss of efficiency in this method arises because the entire data set is not employed to
estimate common estimates of risk for the risk strata.

In the current example a model-based approach is employed, the entire data set
is utilized to obtain common estimates of risk. These common estimates are then
applied to a common population standard, which in this case is the distribution of

patients in the observed population. The resulting rates appear to be stable and
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efficient when compared to the indirectly standardized rates.

Although the standard errors estimated using missing data methods were a good
deal smaller than those based on the complete cases, in the absence of the complete
data, an adequate assessment of the performance of these methods is not possible.
When employing missing data methods to obtain risk adjusted estimates, it would
be useful to know 1) the degree of bias one might encounter in the point estimates, 2)
how well the standard errors represented the variability of the point estimates, and
ultimately, 3) the trustworthiness of inferences based on these point estimates and
standard errors. The following chapter will use Monte Carlo simulations to address

these issues.



Chapter 5

Monte Carlo Simulations

5.1 Missing Data Simulations

The purpose of this chapter is to employ Monte Carlo simulations to explore how
well missing data methods for risk adjustment work under a variety of missing data
conditions. The simulations were based loosely on the distribution of variables in
the APPROACH data set. Due to the number of variables and the complexity of
the relationships among these variables, the problem was simplified by considering a
subset of the APPROACH variables. Only the performance of relative risk estimates

was examined.

5.1.1 Variables

The variables chosen as a basis for the simulations were age, CHF, 6-month mortality
(y), and treatment. Age was selected because it is continuous and was completely
observed in the APPROACH data set. The risk factor CHF was chosen because it
is binary, because a positive diagnosis was rare (11.34% of the observed diagnoses
were positive), and because a large proportion of the CHF observations were missing
(24.55%). These factors indicate that the use of a normal model will not be appro-
priate for CHF, and provide an opportunity to examine the effects of misspecifying
the multivariate normal models used for the joint distributions of the variables. The

simulations used the age and CHF variables to obtain risk adjusted estimates for the

120
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medical, CABG and PTCA treatment groups. These groups will be denoted as hy,

hg and h3 .

5.1.2 Computations

The computer used for the simulations was a Sun™ Ultra™ 1 Model 140 (Sun
Microsystems Computer Company) with 128 megabytes of random access memory.
The computer software for the missing data methods is described in sections 4.1.1
and 4.1.1. Computer code to perform the simulations was written in S-PLUS 5

version 2 (MathSoft, 1999).

5.1.3 Generating the Random Samples

The distribution of the APPROACH variables served as a basis for the parameters
used in generating data for the simulations.The degree of confounding between both
age and CHF and the treatment groups was modest. An initial set of simulations was
based on the observed distributions among the APPROACH variables. The results
from these simulations are not reported, as they are similar to the results presented
below for simulations in which a greater degree of confounding was introduced. For
each case i in a given sample, observed values for covariates and treatment variables

were generated randomly using a mixed continuous and categorical model.

The covariate model. The mean ages and probabilities by joint CHF xtreatment
category are presented in table 5.1. The variance of the ages within each of the joint
categories was 125, and was based on the variance observed in the APPROACH

data.
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Table 5.1: Distribution of covariates for the missing data simulations. The means,
variance and probabilities are all based on the observed data in the APPROACH
database. However, confounding was increased to provide a more rigorous test of the
missing data methods. a) Marginal and joint distributions of age across the CHF
and treatment categories. Within each joint category ¢ = 1,...,6, age ~ N(u.,125).
b) Marginal and joint probability distributions for treatment and CHF.

a) Mean age by category

CHF

No Yes
h; { 63 68 | 63.72
Treatment hy | 61 66 | 62.46
hsy | 65 70 | 65.75
63.14 68.67 | 63.73

b) Joint distribution of treatment and CHF

CHF
No Yes
hy| 45 .05 |.5
Treatment ho | .19 .01 | .2
hs | .255 .045| .3

.895 .105
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Sampling from the covariate model. To generate the data, each of the cases
were assigned to a category by randomly sampling from a multinomial distribution on
the basis of the probabilities in table 5.1 b). The age of the cases were then randomly
sampled from a normal distribution. The mean of this distribution corresponded with

the category to which the case and assigned, the variance of this distribution was

125.

Generating the outcomes. The model for the outcomes was based on a mul-
tiplicative model with no hospital by risk factor interactions (see 2.7 in chapter 2).
For each sample, two steps were employed to determine the probability of death for
each subject. In the first step, a logistic model was applied to the sampled age and

CHEF variables. For case i, the fitted probability of death from this model was

exp(—6.59 + .0488 x age; + 1.71 x CHF,)

1 + exp(—6.59 + .0488 x age; + 1.71 x CHF})’ (5.1)

Di

The coefficients for age and CHF were based on the logistic regression models for the
APPROACH data presented in chapter 4. The intercept was chosen to ensure that
the expected death rate was 5%, as the six-month mortality rate in the APPROACH
data was approximately 5%.

In the second step in obtaining the the probability of death, the p; for each case
was multiplied by the relative risk associated with the treatment provider h; to which

the case was assigned, or

Pir = RR;p; (5.2)

The relative risks were 1.25 for provider h;, .85 for provider h,, and .731 for provider

hs. The relative risks for providers h; and h; were based on the relative risks observed
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Table 5.2: Regression parameters for simulations

Coef | OR
Intercept | -6.59
age 0.0488 | 1.05
CHF 1.71 5.593

for the treatments in the models in chapter 4. The relative risk for hy was selected
so that the expected value of the p;; was .05. This ensured that for each sample
n n 3
E(Z yi) = E(Zpi) = E(Z Z pik)
i=1 i=1 k=1ich
as this condition was necessary for obtaining risk adjusted estimates of relative risk
with expectations equal to the RR,.

For each case in a given sample, the outcome variable y; was generated by
sampling from a Bernoulli distribution with the parameter p;.. For each sample,
N = 2000 complete observations were generated according to the procedures de-
scribed above. The number of observations for each provider was not fixed, but
had expectations based on the proportion of subjects treated by each provider. For
providers h,, hy and h3, the expected numbers of observations were 1000, 400, and
600 respectively. Observations were then deleted from the CHF variable according
to the missing data models described below. A total of 500 samples was generated

for each of these models.

5.1.4 Missing Data Models

The simulations examined missing data models in which the CHF variable was

MCAR, stratified MCAR within levels of the outcome (MD,), MCAR within levels
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of age (MD,g.), and non-MAR (NMAR) with respect to CHF. For each of the mod-
els, two levels of missingness were examined; one in which 25% of cases had missing

CHF values, and one in which 40% of cases had missing values.

MCAR
For the MCAR condition, the values of CHF were randomly deleted using a Bernoulli

model in which each case has a given probability of having missing data. There were
two levels of missingness, with Pr(R = 0) = .25 and Pr(R = 0) = .4, where R is a

binary (0,1) variable with 0 indicating a missing response for CHF.

Stratified MCAR

Missing dependent on y. For the models in which the missing data were
dependent on the outcome, a total of 4 conditions were examined. For two of these
conditions, the probability that an observation was missing CHF was 1.5 times as

great for cases with y = 1 than for cases with y =0, or

Pr(R = Oly = 1)

PrR=0y=0) _ >

As described above, this missing data model was examined where 25% and 40% of the
observations were expected to be missing from the CHF variable. The probabilities
in the ratios were adjusted to reflect this requirement (see table 5.3).

For the other two conditions in which the missing data mechanism was dependent
on y, the probability that observations were missing was 2 times as great for cases

with y = 1 than for cases with y = 0, or

Pr(R=0|y =1)
Pr(R =0|y =0)




Table 5.3: Missing data probabilities for the M D, conditions

% Missing | RRmiss | Pr(R=0ly =1) | Pr(R =0[y = 0)
25 1.5 .366 244
2.0 476 .238
40 1.5 .585 .390
2.0 .762 381

Table 5.4: Coefficients used for the M D, . condition.

ORg.cade | %o Missing a Bage

1.1 25 -1.69 | .00953
40 -0.997 | .00953

1.2 25 -2.24 .0182
40 -1.54 .0182
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As above, this probability model was examined where there was 25% and 40% missing

data. The probabilities that correspond to these models are provided in table 5.3.

Missing dependent on age.

A logistic model was used for the conditions

where the probability of a missing CHF observation depended on age. The coeffi-

cients for age in these models were based on the odds ratios associated with a ten

unit difference in age. The odds ratio associated with a ten year increase in age was

1.1 in two of the models and 1.2 for the other two models. Intercepts for these mod-

els were obtained to ensure that the expected number of cases missing for models

employing each of the coefficients was 25 and 40%. The coefficients used for these

models are in table 5.4.



127

Table 5.5: Missing data probabilities for the NMAR conditions

% Missing | ERoiss | Pr(R = OCHF = 1) | Pr(R = O]CHF = 0)
25 1.5 357 238
2.0 455 227
0 15 571 381
2.0 727 364

Non-missing at Random

Missing dependent on CHF. For the NMAR condition, the probability
model for deleting values of CHF depended only on the value of CHF. A total of
four NMAR conditions were examined. In two of these conditions, the probability
that CHF was missing was 1.5 times as great for cases with CHF = 1 than for cases

with CHF =0, or

Pr(R = O|CHF = 1)
Pr(R = O|CHF = 0)

1.5.

This missing data model was examined where there were 25% and 40% of the CHF
observations expected to be missing for the total sample.
For the two other NMAR conditions, the probability that CHF was missing was

2 times as great for cases with CHF = 1 than for cases with CHF =0, or

Pr(R = O|CHF = 1)
Pr(R = O|CHF = 0)

The probabilities of missing observations in the four different conditions are presented

in table 5.5
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5.1.5 Missing Data Methods

Both MI and EMMW methods were examined. For M1, multivariate normal (MVN)
models were employed for the joint distributions of variables. For each sample with
missing observations, three imputed data sets were generated. Estimates and stan-
dard errors were based on these three imputed data sets. For EMMW, mixed con-
tinuous and categorical models were employed for the covariates. A MVN model was
pot used for the EMMW analyses. This is because this method did not appear to
perform well in chapter 4, and because the more appropriate mixed continuous and

categorical model was available.

5.1.6 Risk-adjustment Methods

Two risk-adjustment methods were examined. These were the baseline model (BM)
and direct standardization (DS). Full-model (FM) adjusted rates and standard errors
were not calculated as these estimates were similar to the DS estimates in chapter
4, and because calculation of their standard errors is computationally expensive and

would have greatly increased the time required to perform the simulations.

5.1.7 Parameters Examined

For each sample generated, both EMMW and MI were used to obtain BM and DS
estimates of relative risk, as well as the standard errors of these relative risks. These
standard errors are denoted as sz3;. Note that the BM adjusted relative risks are
standardized mortality ratios (SMRs).

The expectations and standard deviations for the Monte Carlo relative risks were

obtained under the assumption that the distribution of a relative risk is asymptoti-
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cally normal. The expectation for the Monte Carlo relative risks is

1 3% —
Bgr = — Z RRy,,, (5.3)
Ny s=1
for the samples 1,.. . ., n, generated for the given condition v. The standard deviations

for the Monte Carlo relative risks was obtained as

TR = J 3 (RR - umm) (5-4)

Ny — 1 =1

For each condition v, the mean of the estimates of the standard errors from each of

the n, Monte Carlo samples was obtained as

Sgr = — O SR, (5.5)
The regression coefficient for the CHF variable was also examined. The mean re-
gression coefficient, the mean standard error of the coefficient and the 95% coverage
probability for the coefficient were examined for each missing data method and miss-

ing data condition.

5.1.8 Evaluation of Methods

Relative Bias

For each condition, the means of both the DS and BM relative risks were compared
with the true relative risks used in generating the data. When evaluating the bias,
a measure of relative bias was obtained as the difference between the mean of the

Monte Carlo relative risk and the true value divided by the true value, or

= — RR
Bﬁz‘i&_a._,

RR

The bias was scaled in this manner to facilitate comparison of the biases across

relative risks with different magnitudes.
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Precision

There are two issues of concern when addressing the precision of the estimates. While
smaller variance estimates reflect a more precise estimate, the variance estimates (or
the corresponding standard errors) should accurately reflect the variability of the
Monte Carlo estimates. If the estimates are an accurate reflection of the variability
of the estimates, and if the distribution of the the point estimates is asymptotically
normal, the mean of estimates of error will equal the standard deviation of the Monte

Carlo point estimates.

Standard errors. For each missing data condition and method, the mean of
the standard errors of the relative risks (5z3) was compared with the standard de-
viation of the relative risks for the given condition and method (oz;) to determine
whether the standard errors tended to over- or under-estimate the standard deviation

of the relative risks.

Coverage probabilities. Coverage probabilities were employed to ensure that
inferences based on the point estimates and estimated standard errors were valid.
The coverage probabilities were the proportion of the samples for which the 95%
confidence interval contained the values of the relative risks used in generating the
data. For each sample, the 95% confidence interval was calculated as RR+1.96xs AR

The number of samples was 500 for each condition. Assuming that the distribu-
tion of the relative risks is approximately normal, and using a normal approximation
to the binomial distribution, approximately 95% of the coverage probabilities would

be expected to fall in the interval

.95 + 1.96/(.95)(.05)/500) ~ .93 < CP < .97], (5.6)
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provided the RR are unbiased and if the sgg do not systematically over- or under-
estimate the oz;. This interval served as a rough guideline for assessing the coverage

probabilities.

Efficiency
Mean squared errors were used to determine efficiencies of the relative risk estimates.
For both the complete data and missing data estimates of relative risk, the mean

squared error (MSE) was defined as

MSE = 0%; + bias® (5.7)
where
bias = pzz — RR (5.8)

and the U%R are the Monte Carlo variances of the estimated relative risks. The

relative efficiency of the missing data estimated relative risks will be defined as

MSEcamplete

eff(fi?i, ERcomplete) = MSE. ...
missing

(5.9)

If the efficiency is smaller than 1, the missing data estimate of relative risk (RR) has
a larger MSE than does the complete data estimate.

A crude estimate of a critical region for the efficiencies can be obtained by treating
the variances of the complete data relative risks (based on 5000 samples) as if they
are the true population variances. In the absence of bias, and if the true variances
for the missing data relative risks and complete data relative risks are identical, the

efficiency can be expressed as

2
D DD I complete
ef f(BR, RRemmpicee) = 2232 (5.10)
RR
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which is distributed as 1/x25. On the basis of the above assumptions, a 5% critical

region for the efficiencies is ~ [.887-1.137].

5.1.9 Results

Complete data estimates. The complete data Monte Carlo mean relative
risks and standard errors were based on 5000 samples and can be found in table 5.6.
The true relative risks used in generating the data were 1.25, .85, and .731 for A,
hs, and h3 respectively. The complete data Monte Carlo mean relative risks for the
DS and BM methods are comparable to the true value for h;. The relative risks for
the h, and h; conditions appear to be biased. For provider h;, the DS estimate is
biased towards the null (.857 vs .85) and the BM estimate is biased away from the
null (.842 vs .85). For hj, the mean of the DS estimates is biased away from the null
(.723 vs .731).

Table 5.6: Complete data Monte Carlo mean relative risks and standard deviations,

based on 5000 samples with complete data. The true values of the relative risks are
1.25, .85, and .731 for providers h,, h, and hj respectively.

KRR id7:]
h, ha h3 h, h, hs
DS | 1.25 ] 0.857 | 0.723 || 0.0962 | 0.2119 | 0.1176
BM | 1.25 | 0.842 | 0.732 || 0.0963 | 0.2121 | 0.1138

Missing data point estimates. For provider h3, the means of the missing
data relative risks are similar to the true values (see table 5.7) and the relative
biases are small (see table 5.8). The observed differences can be attributed to random

variability, since these means are based on 500 samples. For provider h,, the means
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tend to be smaller than the true values, indicating tendency to over-estimate the
magnitude of the effect associated with this treatment. The degree of bias is greatest
in the MDcyr; RRcxr = 2 condition with 40% of the CHF observations missing.
Across all missing data conditions, the degree of bias in the indirectly standardized
(BM) estimates is greater than the bias in the DS estimates. For provider hj, the
means of the relative risks tend to be larger than the true RRs, indicating a tendency
to underestimate the magnitude of the true effect. The degree of bias is generally
greater for the BM estimates than for the DS estimates, and the degree of bias is
greatest in the MDcyr; RRcar = 2 condition with 40% missing CHF observations.
In this condition, the estimates for the MI missing data method demonstrate enough
bias that the mean of the estimates for h; is smaller than the mean of the estimates
for hs. For all other methods and conditions, the correct ranking of the mean relative

risks is preserved.

Missing data standard errors. In table 5.9 it is evident that the standard
errors of the BM adjusted estimates are much larger than those obtained using the DS
method of adjustment. The standard errors for provider h; are also larger than those
obtained for providers h; and h3. This is not surprising, as the expected number of
observations for these providers is 400 for k, and 1000 and 600 for providers h; and
hs respectively. For each provider, The means of the standard errors appear to be

similar across the missing data conditions.

Standard deviations of the relative risks. Across all missing data condi-
tions, missing data methods and adjustment methods, the standard deviations of

the relative risks are similar (see table 5.10). While there are fluctuations in the
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standard deviations, these may be due to random variation.

Bias in the standard error estimates. For the BM method of standard-
ization, the mean standard errors all over-estimate the standard deviations of the
relative risks. This bias appears to be greatest for provider h;, where the mean stan-
dard errors are generally 40-50% larger than their respective standard deviations.
The reasons for the inflation in the standard errors is discussed below (see section
5.1.11) and is explored using Monte Carlo simulations in section 5.2.

Across the missing data conditions, standard errors for the DS relative risks are
similar to their respective Monte Carlo standard deviations (the oz3). There appears
to be a tendency for the DS estimates to underestimate the standard deviations.
This is most noticeable when EMMW is used as the missing data method. The
greatest degree of underestimation occurs for provider h; in the M Dgge; ORgecade =
1.1 condition with 40% of the CHF observations missing, where the MW 5 is only
.916 times as large as the o=;. This may be due to Monte Carlo error; it would be

RR

difficult to argue that the degree of bias in the 5z3’s is related to the missing data

mechanism, as the bias is smaller in the corresponding OR4.cqqe = 1.2 condition.

95% coverage probabilities. The 95% coverage probabilities for the different
conditions are displayed in table 5.12. The coverage probabilities for the baseline
method of standardization are all > .97, a reflection of the tendency of the mean
standard errors to be larger than the standard deviations of the relative risks when
the baseline method is employed. A majority (55/84) of these coverage probabilities
are > .99. The coverage probabilities for the DS method are more reasonable, with

83% (35/42) of those from the MI method falling between .93 and .97., and 76%
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(32/42) from the EMMW method falling within this range. However, there appears
to be a tendency for the DS coverage probabilities to be too small; 34/42 of the MI

and 37/42 of the MW coverage probabilities are < .95.

Efficiency. The efficiencies of the relative risk estimates are close to one across
most of the missing data conditions and missing data methods. There appears
to be a tendency for the efficiencies to be smaller in conditions where 40% of
the CHF observations are missing, although this effect is most noticeable in the
MDecur; RRcur = 2 conditions. Efficiencies are generally highest in provider h;
and lowest in k3. This is not surprising since the proportions with CHF in h,, h; and
hs were .1, .05, and .15 respectively, and CHF was the only variable with missing
observations.

There are anomalies in the efficiencies which warrant further investigation. In
two of the conditions, the efficiencies for h, are larger than the upper bound for the
critical region of [.887-1.137] described above. The greatest discrepancy occurs in the
MDcyr; RRcar = 1.5 condition with 40% of the CHF observations missing. In this
case, 3/4 of the efficiencies for h, are > 1.2. It is possible that this anomaly is due
to Monte Carlo error and that the 5% critical region used to evaluate the efficiencies
is incorrect. Bias was ignored when constructing this region, but in tables 5.7 and
5.8 the estimated relative risks appear to be biased. To examine the possibility that
the large efficiencies were due to chance, 2000 more samples were generated for this
condition. The results of this simulation are presented in table 5.14. In this case,

the efficiencies for h, are all close to 1.
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Regression parameter simulations. Results for the regression parameter for
CHF are presented in table 5.15. The true value of the regression parameter is 1.71.
In most conditions, the mean regression parameter is close to the true value. The
largest distortions occur for EMMW where the missing data mechanism depended on
the outcome. In the M D,; RR, = 2 condition, the regression parameters are under-
estimated to a large degree (1.32 and 1.21 for the DS and BM models respectively).
The only other distortions of note occur in the NMAR (M Dcgr; RRcur = 2) con-
dition with 40% of the CHF observations missing. All of the regression parameters
were underestimated in this case.

The standard errors of the coefficients are largest where the missing data mech-
anism depended on the outcome (RR,=2; 40 % missing). The standard errors are
also large in the NMAR (M Dcgr) conditions where 40% of the CHF observations
were missing. The coverage probabilities are often poor. When MI was used as the
missing data method, all but one of coverage probabilities for the 95% confidence
intervals are < .95. In some cases they are much smaller than .95, most notably for
the M D, mechanism where RR,=2 and 40% of the observations were missing. In
this case, the 95% CPs from the MI method are .776 and .774 respectively for the

DS and BM adjusted estimates.

5.1.10 Discussion

In all but the most extreme NMAR (MDcgr) condition, the DS risk adjustment
procedures appeared to work well when employing either EMMW or MI to handle
missing data. The performance of the MI method was comparable to the EMMW

method, even though the models for the joint distributions employed when using MI
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Table 5.7: Monte Carlo mean estimates of relative risk. Each condition is based
on 500 random samples. For each sample, data was deleted from the variable CHF

according to the missing data mechanism.

MI
MW

2 A

=

MI

DS
BM
DS
BM

DS
BM
DS
BM

DS
BM
DS
BM

DS
BM
DS
BM

DS
BM
DS
BM

DS
BM
DS
BM

DS
BM
DS
BM

25% Missing

40% Missing

hy |

h;

| hs

hy |

hy | hs

MCAR

1.25
1.25
1.25
1.25

0.838
0.825
0.856
0.840

0.727
0.735
0.718
0.730

1.24
1.24
1.25
1.24

0.815
0.804
0.840
0.825

0.748
0.756
0.734
0.747

),

ID,; R

R, =15

1.25
1.25
1.25
1.25

0.845
0.832
0.860
0.843

0.732
0.741
0.723
0.735

1.25
1.25
1.25
1.25

0.819
0.807
0.835
0.817

0.741
0.749
0.729
0.743

MD,; RR, =

2

1.24
1.24
1.25
1.24

0.846
0.834
0.855
0.839

0.739
0.747
0.731
0.743

1.25
1.25
1.26
1.25

0.817
0.806
0.801
0.783

0.738
0.746
0.738
0.752

MD,,.; O}

Rdecade = 1.1

1.25
1.25
1.25
1.25

0.835
0.822
0.853
0.838

0.734
0.742
0.723
0.736

e~ —

1.24
1.24
1.25
1.24

0.805
0.794
0.832
0.817

0.749
0.756
0.734
0.746

MD,ye; ORgocaze = 1.2

1.25
1.25
1.25
1.25

0.818
0.806
0.837
0.822

0.739
0.747
0.729
0.741

1.24
1.24
1.25
1.24

0.830
0.819
0.859
0.842

0.744
0.752
0.727
0.742

MDcur; R

Rcur

= 1.5

1.24
1.24
1.25
1.24

0.845
0.833
0.861
0.847

0.738
0.746
0.728
0.740

1.24
1.24
1.24
1.24

0.818
0.807
0.841
0.827

0.751
0.758
0.736
0.749

RRcuar = 2

1.23
1.23
1.24
1.23

1.23
1.23
1.24

1.23

0.772
0.764
0.794

0.783

0.776
0.781
0.760
0.770
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Table 5.8: Relative bias of the Monte Carlo mean estimates of relative risk. The
relative bias was obtained as (ugz—RR)/RR. Each condition is based on 500 random
samples. For each sample, data was deleted from the variable CHF according to the

missing data mechanism.

25% Missing 40% Missing
P | R | s | h: | Fa
MCAR
MI DS 0.0016 | -0.0144 | -0.0054 || -0.0055 | -0.0411 | 0.0241
BM | 0.0012 | -0.0296 | 0.0064 || -0.0059 | -0.0543 | 0.0347
MW DS 0.0039 | 0.0066 | -0.0179 || -0.0014 | -0.0112 | 0.0042
BM | 0.0007 | -0.0120 | -0.0011 || -0.0063 | -0.0295 | 0.0227
MD,; RR, = 1.5
MI DS | -0.0028 | -0.0064 | 0.0017 |[ -0.0017 | -0.0369 | 0.0138
BM | -0.0033 | -0.0212 | 0.0135 | -0.0022 | -0.0507 | 0.0248
MW DS 0.0003 | 0.0113 | -0.0108 || 0.0033 | -0.0180 | -0.0024
BM | -0.0031 | -0.0077 | 0.0066 | -0.0019 | -0.0390 | 0.0172
MD,; RR, =2
MI DS | -0.0076 | -0.0052 | 0.0108 | 0.0009 | -0.0385 | 0.0098
BM | -0.0082 | -0.0190 | 0.0223 || 0.0003 | -0.0522 | 0.0208
MW DS | -0.0038 | 0.0060 { -0.0002 || 0.0061 | -0.0574 | 0.0097
BM | -0.0073 { -0.0129 | 0.0171 § 0.0010 { -0.0783 | 0.0285
MD.,.; ORgonge = 1.1
MI DS | -0.0020 | -0.0180 | 0.0042 | -0.0049 | -0.0530 | 0.0249
BM | -0.0024 | -0.0326 | 0.0155 || -0.0054 | -0.0658 | 0.0344
MW DS 0.0009 | 0.0036 | -0.0100 j| -0.0010 | -0.0209 | 0.0040
BM | -0.0024 | -0.0143 | 0.0066 || -0.0061 | -0.0383 | 0.0214
MD,,.. ORgus. = 1.2
MI DS | -0.0006 | -0.0372 | 0.0118 || -0.0064 | -0.0234 | 0.0186
BM | -0.0010 | -0.0513 | 0.0224 || -0.0069 { -0.0364 | 0.0290
MW DS 0.0024 | -0.0157 | -0.0025 || -0.0014 | 0.0101 | -0.0044
BM | -0.0011 | -0.0328 | 0.0137 || -0.0069 | -0.0090 | 0.0152
MDcyr; RRcpr = 1.5
MI DS | -0.0063 { -0.0058 | 0.0097 (| -0.0096 | -0.0382 | 0.0280
BM | -0.0067 | -0.0195 | 0.0208 || -0.0101 | -0.0504 | 0.0379
MW DS | -0.0033 | 0.0134 | -0.0034 || -0.0048 | -0.0103 | 0.0073
BM | -0.0064 | -0.0036 | 0.0126 || -0.0093 | -0.0271 | 0.0247
MDcur; RRcar = 2
MI DS | -0.0138 | -0.0276 | 0.0322 || -0.0130 | -0.0923 { 0.0623
BM | -0.0142 | -0.0399 | 0.0423 || -0.0135 | -0.1016 | 0.0693
MW DS | -0.0104 | -0.0105 | 0.0186 | -0.0083 | -0.0656 | 0.0401
BM | -0.0133 | -0.0255 | 0.0334 j| -0.0120 | -0.0785 | 0.0539
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Table 5.9: Monte Carlo means of the estimated standard errors of the relative risks
(555)- Each mean is based on 500 random samples. For each sample, data were
removed from CHF according to the specified missing data mechanisms.

25% Missing 40% Missing
i ] R | Fa | a | R [ P
MCAR
MI DS | 0.0953 | 0.2051 | 0.1175 || 0.0969 | 0.2040 | 0.1205
BM | 0.1365 | 0.2478 | 0.1560 || 0.1377 | 0.2486 | 0.1575
MW DS | 0.0936 | 0.2114 | 0.1151 || 0.0943 | 0.2132 | 0.1159
BM | 0.1364 | 0.2500 | 0.1559 ]| 0.1374 | 0.2516 | 0.1573
MD,, RR, =15
MI DS | 0.0965 | 0.2071 | 0.1186 || 0.0961 | 0.2035 | 0.1198
BM | 0.1376 | 0.2488 | 0.1568 || 0.1368 | 0.2466 | 0.1572
MW DS | 0.0947 | 0.2131 | 0.1161 | 0.0941 | 0.2122 | 0.1156
BM | 0.1377 | 0.2504 | 0.1570 || 0.1372 | 0.2481 | 0.1576
MD,. RR, =2
MI DS | 0.0958 | 0.2071 | 0.1191 || 0.0967 | 0.2053 | 0.1198
BM | 0.1369 | 0.2486 | 0.1570 || 0.1370 | 0.2490 | 0.1568
MW DS | 0.0942 | 0.2125 | 0.1168 || 0.0953 | 0.2086 | 0.1174
} BM | 0.1374 | 0.2492 | 0.1574 || 0.1380 | 0.2453 | 0.1597
MD,,.. ORgoage = 1.1
MI DS | 0.0958 | 0.2053 | 0.1182 || 0.0963 | 0.2018 | 0.1207
BM | 0.1368 | 0.2479 | 0.1561 {| 0.1372 | 0.2473 | 0.1580
MW DS | 0.0941 | 0.2118 | 0.1155 || 0.0932 | 0.2118 | 0.1160
BM | 0.1368 | 0.2503 | 0.1560 || 0.1369 | 0.2509 | 0.1578
MD.,,.; ORpoonae = 1.2
MI DS | 0.0961 | 0.2031 | 0.1193 ;| 0.0972 | 0.2063 | 0.1211
BM | 0.1371 | 0.2468 | 0.1572 || 0.1381 | 0.2490 | 0.1586
MW DS | 0.0940 | 0.2095 | 0.1166 || 0.0944 | 0.2165 | 0.1160
BM | 0.1370 | 0.2491 | 0.1571 || 0.1380 | 0.2523 | 0.1585
MJDCHF; H:R(;Hp = 1.5
MI DS | 0.0964 | 0.2054 | 0.1196 || 0.0966 | 0.2012 | 0.1223
BM | 0.1377 | 0.2472 | 0.1579 || 0.1379 | 0.2451 | 0.1599
MW DS | 0.0948 | 0.2114 | 0.1173 || 0.0948 | 0.2102 | 0.1182
BM | 0.1377 | 0.2491 | 0.1578 || 0.1381 | 0.2480 | 0.1597
MDcur; RRcpr =2
MI DS | 0.0961 | 0.2031 | 0.1193 || 0.0959 | 0.1916 | 0.1251
BM | 0.1371 | 0.2468 | 0.1572 || 0.1375 | 0.2394 | 0.1623
MW DS | 0.0940 | 0.2095 | 0.1166 || 0.0948 | 0.2001 | 0.1217
BM | 0.1370 | 0.2491 | 0.1571 || 0.1376 | 0.2427 { 0.1614
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Table 5.10: Monte Carlo standard deviations of the estimated relative risks. Each
condition is based on 500 random samples. For each sample, data was deleted from
the variable CHF according to the specified missing data mechanisms.

25% Missing 40% Missing
hi | R | s A | Rz | Pa
MCAR
MI DS ([ 0.0980 | 0.2198 | 0.1241 [} 0.0921 | 0.2103 | 0.1167
BM | 0.0979 | 0.2198 | 0.1203 || 0.0920 | 0.2104 | 0.1131
MW DS | 0.0992 | 0.2247 | 0.1244 || 0.0940 | 0.2193 | 0.1163
BM | 0.0977 | 0.2218 | 0.1193 || 0.0917 | 0.2143 | 0.1106
MD,; RR, =15
MI DS | 0.0999 | 0.2081 | 0.1241 || 0.0949 | 0.1938 | 0.1244
BM | 0.0997 | 0.2083 | 0.1202 || 0.0946 | 0.1939 | 0.1201
MW DS | 0.1009 | 0.2136 | 0.1234 || 0.0970 | 0.1998 | 0.1246
BM | 0.0992 | 0.2103 | 0.1182 || 0.0943 | 0.1936 | 0.1174
MD,; RR, = 2
MI DS | 0.0995 | 0.2049 | 0.1234 {| 0.1003 | 0.2067 | 0.1211
BM | 0.0994 | 0.2056 | 0.1194 || 0.1001 | 0.2072 | 0.1176
MW DS | 0.1010 | 0.2095 | 0.1236 | 0.1019 { 0.2075 | 0.1222
BM | 0.0993 | 0.2058 | 0.1178 [ 0.0992 | 0.1988 | 0.1157
MD,,.; ORyecode = 1.1
MI DS | 0.0925 | 0.1995 | 0.1182 {{ 0.0931 | 0.1950 { 0.1207
BM | 0.0925 | 0.2001 | 0.1145 {| 0.0930 | 0.1951 | 0.1169
MW DS | 0.0936 { 0.2044 | 0.1171 || 0.0946 | 0.2013 | 0.1203
BM | 0.0920 | 0.2026 | 0.1122 || 0.0929 | 0.1987 | 0.1151
MDage; ORM =1.2
MI DS | 0.0980 | 0.2119 | 0.1277 [ 0.1009 | 0.2060 | 0.1215
BM | 0.0976 | 0.2127 | 0.1243 || 0.1008 | 0.2071 | 0.1179
MW DS | 0.0998 | 0.2214 | 0.1266 {| 0.1028 | 0.2141 | 0.1201
BM | 0.0970 | 0.2174 | 0.1210 || 0.0999 | 0.2100 | 0.1142
MJDCHF; E!RCHF =1.5
MI DS | 0.1027 | 0.2022 | 0.1241 [ 0.0963 | 0.1873 | 0.1227
BM | 0.1025 | 0.2027 | 0.1202 [l 0.0960 | 0.1878 | 0.1191
MW DS | 0.1038 | 0.2076 | 0.1234 || 0.0976 | 0.1957 | 0.1217
BM | 0.1020 | 0.2057 | 0.1183 || 0.0952 | 0.1919 | 0.1161
MDcgr; RRcpr = 2
MI DS | 0.0930 | 0.2055 | 0.1179 || 0.0959 | 0.1928 | 0.1258
BM | 0.0928 | 0.2065 | 0.1143 || 0.0958 | 0.1931 | 0.1222
MW DS | 0.0938 | 0.2100 | 0.1174 [ 0.0980 | 0.1995 | 0.1254
BM | 0.0924 | 0.2082 | 0.1126 || 0.0961 | 0.1971 | 0.1194




141

Table 5.11: Bias in the standard error estimates. The bias was obtained by dividing
the mean of the standard errors for each condition by the standard deviation of the
estimated relative risks obtained for the condition, or 3g;/0g%-

25% Missing 40% Missing
Pi | h: | ha || P | h2 | P
MCAR

DS [ 0.973 | 0.933 | 0.946 || 1.052 | 0.970 | 1.033
BM | 1.393 | 1.127 | 1.296 || 1.496 | 1.181 | 1.393
DS | 0.943 | 0.941 | 0.926 {{ 1.003 | 0.972 | 0.997
BM | 1.396 | 1.127 | 1.307 || 1.498 | 1.174 | 1.422
MD, RR, =15
DS | 0.966 | 0.995 | 0.955 || 1.012 | 1.050 | 0.963
BM | 1.380 | 1.194 | 1.304 || 1.446 | 1.272 | 1.308
DS | 0.939 | 0.998 | 0.941 || 0.970 | 1.062 | 0.928
BM | 1.389 | 1.190 | 1.328 | 1.455 | 1.281 | 1.343
MD,, RR, =2
DS | 0.963 | 1.011 | 0.965 || 0.964 | 0.993 | 0.989
BM | 1.377 | 1.209 | 1.314 || 1.369 | 1.202 | 1.333
DS | 0.933 | 1.014 | 0.945 || 0.935 | 1.006 | 0.961
BM | 1.384 | 1.211 | 1.336 || 1.391 | 1.234 | 1.380
MD.,.. ORgocage = 1.1
DS | 1.036 | 1.029 | 1.000 || 0.983 | 0.953 | 0.945

MI
Mw

2 8

2 8

MI BM 1479 {1239 1.363 || 1.405 | 1.163 | 1.271

MW DS | 1.006 | 1.036 | 0.987 || 0.934 | 0.956 | 0.916

BM | 1.488 ; 1.235 | 1.390 || 1.412 | 1.154 | 1.304
MDagc; ORdecade = 1.2

MI DS | 1.032 ] 1.042 | 0.988 J| 0.963 | 1.001 | 0.996

BM | 1474 | 1.265 | 1.344 || 1.370 | 1.202 | 1.346

MW DS | 0.994 | 1.041 | 0.969 || 0.918 | 1.011 | 0.966

BM | 1474} 1.254 | 1.364 || 1.381 { 1.201 | 1.388
MDcrr; RRcar = 1.5

MI DS [ 0.938]1.016 | 0.964 || 1.004 | 1.075 | 0.997

BM | 1342 | 1.219 | 1.313 || 1.437 | 1.305 | 1.342

MW DS | 0.914( 1.018 | 0.950 || 0.971 | 1.074 | 0.971

BM | 1350 (1.211 | 1.334 )] 1.451 | 1.292 | 1.375
MDcyr; RRcpr =2

MI DS | 1.028 | 0.975 | 1.027 || 1.000 | 0.994 | 0.994

BM | 1.472 | 1.182 | 1.384 || 1.435 | 1.240 | 1.328

MW DS | 1.005 | 0.981 | 1.011 { 0.967 | 1.003 | 0.971

BM | 1.482 | 1.180 | 1.403 || 1.431 | 1.231 | 1.352
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Table 5.12: Monte Carlo coverage probabilities for relative risks. The probabilities
are the proportion of the 500 95% confidence intervals RR +1.96sg5 containing RR.

25% Missing 40% Missing
hi | hz | hs || b | ha | hs
MCAR

MI DS | 0.948 | 0.906 | 0.934 || 0.954 | 0.926 | 0.954

BM | 0.992 | 0.972 | 0.992 || 0.992 | 0.978 | 0.996

MW DS | 0.940 | 0.918 | 0.930 | 0.944 | 0.936 | 0.944

) BM | 0.992 | 0.972 | 0.990 || 0.994 | 0.976 | 0.996

MD,; RR, =15

MI DS | 0.942 | 0.932 | 0.930 || 0.950 | 0.938 | 0.940

BM | 0.998 | 0.988 | 0.994 |l 0.998 | 0.988 | 0.986

MW DS | 0.938 | 0.932 | 0.920 || 0.940 | 0.938 | 0.928

BM | 0.998 | 0.990 | 0.994 || 0.998 | 0.984 | 0.988

MD,; RR, =2

MI DS | 0.934 | 0.940 | 0.938 || 0.940 | 0.942 | 0.948

BM | 0.998 | 0.986 | 0.984 || 0.996 | 0.984 | 0.992

MW DS | 0.936 | 0.942 | 0.936 || 0.938 | 0.938 | 0.942

BM | 0.998 | 0.988 | 0.986 || 0.998 | 0.984 | 0.996
MD,,.; ORgocnze = 1.1

MI DS | 0.972 | 0.934 | 0.954 || 0.934 | 0.910 | 0.924

BM | 0.998 | 0.992 | 0.994 || 0.994 | 0.976 | 0.992

MW DS | 0.962 | 0.948 | 0.946 || 0.930 | 0.926 | 0.926

BM | 0.998 | 0.990 | 1.000 || 0.994 | 0.980 | 0.994
MDage; Olzdecadc =12

MI DS | 0.958 | 0.942 | 0.952 || 0.926 | 0.934 | 0.944

BM | 1.000 | 0.994 | 0.996 || 0.988 | 0.982 | 0.994

MW DS | 0.950 { 0.952 | 0.944 || 0.920 | 0.946 | 0.926

BM | 0.998 { 0.994 | 0.996 || 0.990 | 0.978 | 0.998
MDCHF; E:RCHF =1.5

MI DS | 0.930 | 0.938 | 0.938 || 0.944 | 0.940 | 0.948

BM | 0.988 | 0.988 | 0.990 | 0.994 | 0.992 | 0.992

MW DS | 0.922 | 0.944 | 0.932 || 0.940 | 0.946 | 0.934

BM | 0.994 | 0.986 | 0.988 || 0.996 | 0.990 | 0.992
MDcrr; RRcar =2

MI DS | 0.952 | 0.930 | 0.942 || 0.948 | 0.892 | 0.940

BM | 0.998 | 0.982 | 0.996 || 1.000 { 0.984 | 0.988

MW DS | 0.954 { 0.926 | 0.938 || 0.940 | 0.910 | 0.950

BM | 0.998 | 0.980 | 0.998 || 1.000 | 0.984 | 0.992
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Table 5.13: Efficiency of the relative risk estimates, obtained by dividing the MSE of
the complete data relative risks by the MSE the relative risks obtained using missing

data methods.

25% Missing 40% Missing
Bi | Rz | Fa | P | Bz | P
MCAR

MI DS | 0.965 | 0.928 | 0.901 {[ 1.085 | 0.989 | 0.997

BM | 0.966 | 0.920 | 0.894 || 1.088 | 0.971 | 0.965

MW DS | 0.938 { 0.889 | 0.888 || 1.048 | 0.933 | 1.027

BM | 0.970 { 0.914 | 0.910 || 1.094 | 0.968 | 1.035

MD,. RR, =15

MI DS | 0.927 { 1.037 | 0.902 || 1.028 | 1.167 | 0.892

BM | 0.930 | 1.031 | 0.890 || 1.034 | 1.143 | 0.878

MW DS | 0.911 | 0.983 | 0.910 || 0.982 | 1.119 | 0.895

BM | 0.941 | 1.017 | 0.926 || 1.042 | 1.168 | 0.929

MD,, RR, =2

MI DS | 0.927 | 1.070 | 0.908 || 0.921 | 1.026 | 0.944

BM | 0.928 { 1.059 | 0.892 || 0.926 | 1.003 | 0.921

MW DS [ 0.906 | 1.024 | 0.909 || 0.887 | 0.989 | 0.927

BM | 0.933 | 1.061 { 0.923 || 0.942 | 1.025 | 0.938
MD,,.. ORgeonze = L1

MI DS [ 1.082 | 1.123 | 0.994 || 0.961 | 0.958 | 0.835

BM | 1.083 | 1.104 | 0.978 || 0.967 | 0.932 | 0.806

MW DS | 1.058 | 1.075 | 1.010 || 0.930 ; 0.911 | 0.867

BM | 1.095 | 1.094 | 1.027 || 0.980 | 0.932 | 0.870
MD,,., ORueeaze = 1.2

MI DS | 1.068 | 1.152 | 0.949 || 0.904 | 1.049 | 0.930

BM | 1.071 | 1.128 | 0.929 || 0.906 | 1.027 | 0.903

MW DS | 1.034 | 1.105 | 0.959 || 0.876 | 0.979 | 0.962

BM | 1.073 | 1.119 | 0.970 || 0.921 | 1.020 | 0.984
MDcyr; RRcgr = 1.5

MI DS | 0.873 | 1.099 | 0.899 || 0.984 | 1.245 | 0.898

BM | 0.875 | 1.089 | 0.882 || 0.988 | 1.215 | 0.866

MW DS [ 0.859 | 1.040 | 0.912 || 0.968 | 1.172 | 0.937

BM | 0.885 | 1.065 | 0.921 || 1.009 | 1.206 | 0.938
MDchr; RRcar = 2

MI DS | 1.035 | 1.051 | 0.961 || 0.978 | 1.038 | 0.776

BM | 1.037 | 1.029 | 0.924 || 0.980 | 1.007 | 0.740

MW DS | 1.033 | 1.017 | 0.995 || 0.953 | 1.048 | 0.838

BM | 1.052 | 1.028 | 0.976 || 0.979 | 1.041 | 0.819
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Table 5.14: Improved Monte Carlo simulation for the MDcyr; RRcur = 1.5 con-
dition with 40% missing observations in the CHF variable. Parameters are based on

2000 samples.

hy | hy | hs
EgR
MI DS | 1.242 0.8015 | 0.7540
BM | 1.241 0.7912 | 0.7611
MW DS | 1.248 0.8237 | 0.7388
BM | 1.243 0.8096 | 0.7515
Relative Bias
MI DS | -0.0065 | -0.0571 | 0.0319
BM | -0.0069 | -0.0692 | 0.0417
MW DS |-0.0013 | -0.0309 | 0.0111
BM | -0.0058 | -0.0475 | 0.0285
SRR
MI DS | 0.0965 | 0.1986 | 0.1222
BM | 0.1376 | 0.2443 | 0.1594
MW DS | 0.0947 | 0.2075 | 0.1181
BM | 0.1378 | 0.2472 | 0.1592
9%k
MI DS | 0.0956 { 0.2008 | 0.1206
BM | 0.0955 | 0.2014 | 0.1169
MW DS | 0.0977 | 0.2081 | 0.1199
BM | 0.0953 | 0.2045 | 0.1141
Sie/95R
MI DS | 1.009 0.989 | 1.013
BM | 1.441 1.213 | 1.363
DS | 0.969 0.997 | 0.985
MW BM | 1.446 1.209 | 1.396
95% CP
MI DS | 0.9445 | 0.9185 | 0.9500
BM | 0.9940 | 0.9795 | 0.9890
MW DS | 0.9370 | 0.9255 | 0.9445
BM | 0.9940 | 0.9790 | 0.9925
Efficiency
MI DS | 1.005 1.053 | 0.921
BM | 1.008 1.023 | 0.887
DS | 0971 1.022 | 0.962
MW BM | 1.016 1.037 | 0.964
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Table 5.15: Simulation results for the regression parameter associated with the binary
risk factor CHF.

25% Missing 40% Missing
B TSEJCP] X | B SE]CP ] X
MCAR
MI DS [1.71]0.273 | 0.920 | 0.280 || 1.72 | 0.305 | 0.890 | 0.409
BM | 1.67 | 0.268 | 0.926 | 0.279 || 1.68 | 0.299 | 0.882 | 0.405
MW DS | 1.70 | 0.268 | 0.952 - 1.70 | 0.300 | 0.946 -
BM | 1.64 | 0.261 | 0.944 - 1.63 | 0.291 | 0.936 -
MD,, RR, =15
MI DS | 1.70]0.290 | 0.898 | 0.351 || 1.66 | 0.345 | 0.882 | 0.513
BM | 1.66 | 0.284 | 0.896 | 0.346 || 1.62 | 0.339 | 0.868 | 0.514
MW DS | 1.66 | 0.289 | 0.944 - 1.56 | 0.350 | 0.946 -
BM | 1.59 | 0.282 | 0.940 - 1.47 | 0.338 | 0.924 -
MD,. RE, = 2
MI DS [ 1.70 | 0.320 | 0.864 | 0.450 || 1.73 | 0.447 { 0.776 | 0.659
BM | 1.66 | 0.313 | 0.868 | 0.446 || 1.68 | 0.439 | 0.774 | 0.658
MW DS | 1.62 | 0.313 | 0.946 - 1.32 | 0.439 | 0.854 -
BM | 1.54 | 0.305 | 0.930 - 1.21 | 0.423 | 0.788 -
MDoge; ORuenae = 1.1
MI DS (1.71]0.279 | 0.952 | 0.310 || 1.71 | 0.308 | 0.914 | 0.411
BM | 1.67 | 0.273 | 0.946 | 0.305 || 1.68 | 0.303 | 0.904 | 0.409
MW DS | 1.70 | 0.271 ; 0.964 - 1.69 | 0.302 | 0.968 -
BM | 1.64 | 0.264 | 0.958 - 1.63 | 0.294 | 0.966 -
MDog; ORusoass = 1.2
MI DS | 1.72 | 0.275 | 0.946 | 0.287 || 1.71 | 0.313 | 0.906 | 0.432
BM | 1.68 | 0.270 | 0.936 | 0.285 || 1.67 | 0.307 | 0.914 | 0.430
MW DS | 1.71 | 0.272 | 0.966 - 1.69 | 0.310 | 0.956 -
BM | 1.65 | 0.266 | 0.970 - 1.62 { 0.301 | 0.950 -
MDcypr; RRcur = 1.5
MI DS 169 0.288 | 0.906 | 0.289 [ 1.69 | 0.334 | 0.886 | 0.378
BM | 1.65|0.283 | 0.894 | 0.288 || 1.66 | 0.328 | 0.886 | 0.375
MW DS | 1.68 | 0.284 | 0.936 - 1.68 | 0.337 | 0.956 -
BM | 1.62 | 0.278 | 0.932 - 1.61 | 0.328 | 0.940 -
MDcyr; RRoyr = 2
MI DS |{1.68 | 0.303 | 0.914 | 0.301 j] 1.55 | 0.402 | 0.900 | 0.323
BM | 1.65 | 0.298 | 0.910 | 0.298 || 1.53 | 0.397 | 0.886 | 0.323
MW DS | 1.67 | 0.299 | 0.944 - 1.60 | 0.404 | 0.952 -
BM | 1.62 | 0.292 | 0.936 - 1.54 | 0.394 | 0.950 -
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were misspecified. The standard error estimates were similar across all conditions,
and the coverage probabilities were reasonable, although they had a tendency to
be too narrow. The indirectly standardized (BM) estimates did not fare as well.
Biases in the means of the estimated relative risks were generally larger than those
observed when DS was employed. The biases in the standard erzors of the coeffi-
cients were large, with the means of the standard errors consistently being larger
than the standard deviations of the estimated relative risks. Further, the large
coverage probabilities indicated that the the confidence intervals performed poorly.
The overestimation of the standard errors and the poor performance of the coverage
probabilities indicate that the method typically used for calculating the variance of
the BM relative risks performs poorly. Reasons for this poor performance are dis-
cussed and explored in sections 5.1.11 and 5.2 below, and an alternative formula for
calculating the variance is derived in appendix D.

The simulations also indicate, however, that caution should be used in interpret-
ing individual regression coefficients, especially for variables with a large proportion
of missing observations. The CHF risk factor demonstrated considerable bias in
several of the conditions, most notably for EMMW when the missing data mecha-
nism depended on the outcome. The coverage probabilities for the CHF coeflicients
deteriorated in this condition.

When using EM by method of weights, a missing data method such as the EM
algorithm is used to estimate the joint distribution of the covariates. Information
from y is not employed in this estimation process and if some of the covariates are
MD,, the exclusion of y from this joint distribution will make it likely that the data

are NMAR (see section 3.1.1 in chapter 3). While the conditional distribution of y
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given the covariates is used when obtaining the weights in the EMMW algorithm,
it appears that this does not provide sufficient information to allow unbiased esti-
mates of coefficients associated with covariates which are M D,. Caution is therefore
advised in situations where EMMW is employed to perform logistic regression when
covariates are M D,,.

The coverage probabilities for the CHF variable were poor when MI was em-
ployed. The most likely explanation for this poor performance is the misspecification
of the joint distribution of the variables which formed the basis for the imputations.
In the present case, a MVN distribution was applied to data in which all variables
but one were binary. Further, in some of these variables, positive outcomes were
rare (5% in the case of y and 12% in the case of CHF). Other authors have demon-
strated acceptable performance of MI in the face of misspecification of the MVN
model (Schafer, 1997a; Rubin, 1987c; Greenland and Finkle, 1995). As noted by
Schafer (1997a), however, this misspecification will have minimal impact if the bi-
nary variables are completely observed, as this ensures that the imputations are made
conditionally on these variables. Greenland and Finkle (1995) also found a degree
of bias in binary variables when the proportion of positive responses was small. In
general, where more appropriate models for the joint distributions exist, it would
appear to be preferable to use them, especially if the misspecified variables are not

completely observed.

5.1.11 Variance of Baseline Model Estimates

The tendency of the BM variance estimates to be too large warrants further consid-

eration, especially since the BM adjusted estimates and variances are encountered
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frequently in the risk adjustment literature. When employing the BM, the variance

estimate typically employed for the SMR is

Var(SMR) = Var (g—:) (5.11)

In this expression, the probabilities used in E; = 3 ;. P: are treated as fixed.
When treating the p;’s as fixed, the implicit assumption is that any variance in the
pi's will be negligible when compared to the variances of the y;’s used to obtain
Ok = Y icn, ¥i- As in the case of the FM adjusted estimates, however, one can treat
the p;’s as random and employ the variance of a first order Taylor Series expansion
of the (Oy/E.) ratio. The resulting estimate will be referred to as the delta method

estimate. As in A.11 of appendix A, the variance of the SMR can be estimated as

2
Var(SMRy) = Ei,';’ [(%) Var(Ey) + Var(Ox) — 2 (-OEf) Cov(Ox, E,,)] .

Details of the expressions for the variances in 5.13 can be found in appendix D. Using

the delta method, the estimates for Var(E;) and Cov(Og, E}) are the same (see D.10

and D.12 in appendix D), and 5.13 can be re-expressed as

1

Var(SMR,) = 2 [(SMR(SMR, — 2)) Var(Ey) + Var(Os)| . (5.13)

A method for computing an estimate of the delta method approximation for Var(SM Ry)
is presented in appendix D. By subtracting 5.13 from 5.12, a first-order asymptotic

estimate of the the additive bias in 5.12 is

. _ Var(E)

k
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From this expression the following statements can be made about the usual variance

calculation employed when using the BM.

1. If SMR, =0 or SMR;=2, then B,. = 0 and the two variance estimates 5.12

and 5.13 will be identical.

2. If 0 < SMR < 2, then B, > 0 and the usual BM variance estimate will
asymptotically overestimate the true variance. For constant E; and V;r(E,,),

the degree of overestimation will be greatest when SM R,=1.

3. If SMR > 2, then B, < 0 and the usual variance estimate will underestimate the
true variance. For fixed E; and Var(E;), the increase in this underestimation

will be quadratic with respect to increases in SM R, beyond 2.

Note that it is unlikely that the E; and Var(E;) would remain constant while SMR;
varies, and the relative sizes of these quantities will affect the degree of over or
underestimation. Monte Carlo simulations were therefore performed to determine
the degree of bias in the standard error estimates that might be expected when the
BM method is applied to the APPROACH data. These simulations also examined
the performance of the DS method as well as standard errors obtained using the
delta method to estimate the BM standard errors. These standard errors will be

denoted as BMj,.
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5.2 Standard Error Simulations

5.2.1 Generating the Random Samples

The simulations were conducted to determine if the problems in estimation were
related to the probability of a positive response or to the sample size. For each
condition, 2000 random samples were generated. Simulations were based on complete
data; no observations were deleted. For the first set of simulations, the sample size
was fixed at N=2000 cases, and the expected response rates set at 5%, 10%, 25%, and
50%. The methods used to generate the samples were identical to those used in the
missing data simulations (see 5.1.3). However. the parameters used to generate the
the samples were based on the simulations in which there was modest confounding.
The parameters for this model were obtained by using an EM algorithm to obtain a
mixed continuous and categorical model for the covariates in the APPROACH data.
The mean ages and probabilities by joint category are presented in table 5.16. The
coefficients used for age and CHF are the same as those in the previous simulations
(see 5.2) except that the intercepts in the logistic models were altered to obtain
the desired expected response rates for y. The accuracy of these response rates
was verified during the simulations. In the second set of simulations, the expected
response rate was fixed at 5% and the sample sizes for the two conditions set at

N=4000 and N=6000 cases.

5.2.2 Results

The results are presented in tables 5.2.2 through 5.2.2.
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Table 5.16: Distribution of covariates for the standard error simulations. The means,
variance and probabilities are all based on the observed data in the APPROACH
database. a) Marginal and joint distributions of age across the CHF and treatment
categories. Within each joint category ¢ = 1,...,6, age ~ N(u.,125). b) Marginal
and joint probability distributions for treatment and CHF.

a) Mean age by category

CHF

No Yes
hy| 61 66 | 61.5
Treatment h, | 63 68 | 63.5
hz | 61 66 |61.5
61.4 66.4 | 61.9

b) Joint distribution of treatment and CHF

CHF

No Yes
hi| .45 .05 .5
Treatment hy | .18 .02 | .2

hy | .27 .03 |.3
9 1
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Point estimates. For completeness, the point estimates for the RR, are pre-
sented for the BM and DS methods of standardization (see table 5.2.2). There is
little variability in these estimates across the conditions, and all are similar to the

corresponding true relative risks.

Standard Errors. The means of the standard errors of the I’{I\%k and the stan-
dard deviations of the RR, are presented in table 5.18. As expected, the standard
errors obtained using the typical BM method are a good deal larger than those ob-
tained using the delta method. For all methods, the mean standard errors decrease
as the expected probability of response increases. The standard errors also decrease
as the sample size increases. The mean standard errors obtained using the BM,
and DS methods are comparable to the standard deviations of the RRys. The BM
mean estimates are always larger than their corresponding standard deviations. The
relationships between the mean standard errors and the standard deviations of the
RR;s was examined by taking the ratio of these quantities. The ratios are presented
in table 5.19, and can be used as an indication of the biases in the standard errors.

The ratios for the BM method are generally much greater than 1, with the lone
exception occurring in the condition with an expected response rate of 50%. The
mean standard errors for the BM, and DS methods fare much better. In general, the
BM, estimates appear to overestimate the standard deviation of the relative risks
for provider h;. The DS estimates tend to slightly underestimate the corresponding

standard deviations.

Coverage Probabilities. The patterns observed in the mean standard errors

are reflected in the coverage probabilities. The 95% CPs are presented in table 5.2.2.
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Based on a normal approximation (.95 + 1.96\[( .95)(.05)/2000), 95% of the coverage
probabilities would be expected to fall in the interval .94 < CP < .96]. None of the
CPs from the BM method fall within this range. In the first set of simulations, 58%
(7/12) of the BMa CPs and 58% of the DS CPs fall within this range. In the set
of simulations with larger sample sizes, 3/6 of the BMs CPs fall between .94 and
.96, while 4/6 of the DS CPs fall within this range. All but one of the DS coverage
probabilities are < .95.

Table 5.17: Mean Monte Carlo relative risks. For each condition in means are based
on 2000 randomly generated samples. Probabilities of death in a) are 5%, 10%, 25%

and 50%, and all samples have N=2000 cases. In b) rates of death are 5%, and the
samples are of size N=4000 and N=6000

a)
BER RR
Rate | Method hl h2 h3 h1 hg h3
5% BM 1.25 | 0.849 | 0.699 | 1.25 | 0.85 | 0.692
DS 1.25 | 0.847 | 0.700 h - -
10% BM 1.25 | 0.849 | 0.695 | 1.25 | 0.85 | 0.692
DS 1.25 | 0.847 | 0.696 - - -
25% BM 1.25 | 0.851 | 0.691 | 1.25 | 0.85 | 0.690
DS 1.25 | 0.847 | 0.692 b - B
50% BM 1.24 | C.858 | 0.693 | 1.25 | 0.85 | 0.688
DS 1.24 | 0.852 | 0.696 h B -
b)
FER RR
N Method h1 h2 h3 h1 h2 h3
4000 BM 1.25 | 0.852 | 0.691 | 1.250 | 0.850 | 0.692
DS 1.25 | 0.850 | 0.692 B - -
6000 BM 1.25 | 0.849 | 0.692 | 1.250 | 0.850 | 0.692
DS 1.25 | 0.848 | 0.693 - N -
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5.2.3 Discussion

Tables 5.18 through 5.2.2 demonstrate that the standard errors obtained using the
DS method are superior to those of the BMs and BM methods. In the conditions
with larger sample sizes, the DS estimates appear to work very well, although the
coverage probabilities are generally smaller than .95. Consequently, the DS esti-
mates may be a prudent choice for use in risk-adjustment, where sample sizes tend
to be large. The good performance of the DS standard errors provides more evi-
dence of the utility of direct standardization. Directly standardized estimates and
standard errors are easily obtained (see A.2 in Appendix A) and also appear to yield
the most stable results across missing data methods (see 4.2.1 in chapter 4). Di-
rectly standardized estimates should be seriously considered by anyone performing
risk adjustment studies both in the presence of missing data or when the data are
complete.

While note as good as the DS estimates in the conditions with sample sizes
of N=4000 and N=6000, the BM, standard errors are clearly superior to the BM
standard errors and the performance of confidence intervals based on BM, standard
errors is comparable to those based on direct standardization. The simulation results
indicate that the BM method of obtaining standard errors should be discouraged.
The BM, standard errors can be obtained without any computer programming,
using the variance covariance matrix for the regression coefficients and the fitted
probabilities that can be produced when performing logistic regression with most

statistical packages.
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Table 5.18: Means of the standard errors of the relative risks (5z3) and standard
deviation of the Monte Carlo estimates of relative risk (0z3)- In a) all relative risks
and standard errors are based on random samples with N=2000 cases. Rates of
death in a) are 5%, 10%, 25%, and 50%. In b) the rate of death is 5%, and relative
risks and standard errors are based on random samples with N=4000 and N=6000

cases.

a)
§ARR Ozn

Rate | Method h1 h h3 h1 h2 h3
BM 0.1350 | 0.204 | 0.175 || 0.0966 | 0.173 | 0.131

5% | BMa 0.0996 | 0.182 | 0.150 " h h
DS 0.0936 { 0.170 | 0.130 |l 0.0969 | 0.174 | 0.131
BM G.0910 | 0.138 | 0.1180 j; 0.0637 | 0.116 | 0.091

10% | BMa 0.0668 | 0.123 | 0.1010 - h b
DS 0.0631 | 0.117 | 0.0884 || 0.0637 | 0.117 | 0.091
BM 0.0518 | 0.0787 | 0.0670 || 0.0375 | 0.0679 | 0.0527

25% | BMa 0.0379 | 0.0701 | 0.0573 N h -
DS 0.0358 | 0.0676 | 0.0511 || 0.0373 | 0.0692 | 0.0527
BM 0.0305 | 0.0463 | 0.0394 || 0.0216 | 0.0401 | 0.0330

50% | BMa 0.0222 | 0.0414 | 0.0336 - h h
DS 0.0211 | 0.0416 | 0.0315 || 0.0214 | 0.0413 | 0.0330

b)
= o=

N | Method hy h, hs h, h, h;
BM 0.0951 | 0.143 | 0.1230 | 0.0659 | 0.122 | 0.0924

4000 | BMa 0.0702 | 0.128 | 0.1060 h N -
DS 0.0661 | 0.120 | 0.0912 || 0.0660 | 0.123 | 0.0924
BM 0.0777 | 0.1170 | 0.1000 || 0.0549 | 0.101 | 0.0761

6000 | BMa 0.0573 | 0.1040 | 0.0861 - - -
DS 0.0540 | 0.0983 | 0.0745 || 0.0549 | 0.102 | 0.0760
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Table 5.19: Ratios of the mean of the estimates of the standard errors of the RR’s
to the Monte Carlo standard deviation of the RR’s. Each of the RR’s and ogy’s
is based on 2000 random samples. Probabilities of death in a) are 5%, 10%, 25%
and 50%, and all samples have N=2000 cases. In b) rates of death are 5%, and the
samples are of size N=4000 and N=6000.

a)
Eﬁ/dA
Rate | Method | h; hy hs
BM 1.400 | 1.180 | 1.340
5% BMAa 1.030 | 1.050 | 1.150
DS 0.966 | 0.976 | 0.993
BM 1.43 1.190 | 1.290
10% | BMa 1.05 | 1.060 | 1.110
DS 0.99 | 0.995 | 0.972
BM 1.380 | 1.160 | 1.270
25% | BMj 1.010 | 1.030 | 1.090
DS 0.959 | 0.977 | 0.969
BM 1.410 | 1.16 1.190
50% | BMa 1.030 | 1.03 1.020
DS 0.987 | 1.01 | 0.956
b)
EER/UA
N Method hl hg h3
BM 1.44 1.180 | 1.330
4000 | BMa 1.07 1.050 | 1.140
DS 1.00 | 0.976 | 0.986
BM 1.410 | 1.160 | 1.32
6000 | BMa 1.040 | 1.030 { 1.13
DS 0.983 | 0.959 | 0.98
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Table 5.20: 95 % coverage probabilities for the estimated relative risks. These are
the proportion of intervals RR + 1.96 X sz which contain the mean of the Monte
Carlo estimates of relative risk (1z;). Each coverage probabilities are based on 2000
random samples. Probabilities of death in a) are 5%, 10%, 25% and 50%, and all
samples have N=2000 cases. In b) rates of death are 5%, and the samples are of size

N=4000 and N=6000.

a)
95% CP
Rate | Method | h; ha hs
BM 0.996 | 0.977 | 0.992
5% BMa 0.957 | 0.961 | 0.979
DS 0.939 | 0.937 | 0.945
BM 0.996 | 0.979 | 0.985
10% | BMj, 0.960 | 0.964 | 0.971
DS 0.945 | 0.946 | 0.942
BM 0.993 | 0.976 | 0.990
25% | BMa 0.947 | 0.960 | 0.970
DS 0.939 | 0.940 | 0.946
BM 0.990 | 0.971 | 0.982
50% | BMa 0.947 | 0.953 | 0.951
DS 0.926 | 0.953 | 0.927
b)
95% CP
N Method h1 hz h3
BM 0.996 | 0.977 | 0.990
4000 | BMa 0.967 | 0.959 | 0.975
DS 0.949 | 0.938 | 0.947
BM 0.995 | 0.979 | 0.989
6000 | BMa 0.955 | 0.954 | 0.973
DS 0.944 | 0.936 | 0.941




Chapter 6
Summary and Conclusions

Risk adjustment procedures are used in cases where researchers wish to compare
the quality of treatment afforded to patients by different physicians, procedures or
hospitals. This dissertation addressed methods of dealing with missing covariate in-
formation when performing risk adjustment with binary outcomes. These methods
were explored using 1995/96 data from the Alberta Provincial Program for Out-
come Assessment in Coronary Heart Disease (APPROACH) initiative. Norris et al.
(1999) had previously accounted for missing data in this database by augmenting
the data with diagnoses based on administrative discharge data. For some of the
variables, such as ejection fraction (EF), there was no administrative equivalent,
and extra categories were used to account for missing observations. This type of
procedure does not use available information to account for possible values for the
missing observations, and can result in bias in the estimation of logistic regression
coefficients (Vach, 1994; Vach and Blettner, 1991). Multiple imputation (MI) and
likelihood based methods can account for missing data in logistic regression, but
these methods have not been applied to risk adjustment procedures. The purpose
of this dissertation was to examine the use of missing data methods applied to risk
adjustment procedures.

Chapter 2 described risk adjustment procedures in detail. The underlying ra-
tionale for risk adjustment methods was examined. Risk adjustment procedures

typically use indirect standardization, where the number of deaths following treat-
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ment by a provider is compared to the number which would be expected on the basis
of underlying patient risks. An example of an indirectly standardized measure is the
standardized mortality ratio, which is the ratio of observed to expected deaths for a
given provider. The most commonly used methods of obtaining the expected number
of deaths are baseline model (BM) estimates. Baseline models do not adjust the risks
for effects associated with the providers. Methods of indirect standardization which
adjust for provider effects when calculating individual patient risks will be referred
to as full model (FM) estimates. A case was made for the utility of directly stan-
dardized (DS) measures. In direct standardization, the observed number of deaths
in a standard population is compared with the number of deaths expected to occur
in the population if all cases in the population had been treated by a given provider.
Methods for obtaining variance estimates were described briefly in this chapter and
are presented in greater detail in appendix A. An illustration was used to point
out potential weaknesses in BM adjusted measures.

Chapter 3 examined missing data methods. Criteria were presented to de-
termine whether the potential missing data methods are appropriate for use with
risk adjustment. To be useful, missing data methods must 1) provide estimates of
variance for the risk adjusted point estimates; 2) be capable of working with large
and complex data sets; 3) be able to employ rare risk factors and outcomes; and
4) be available for use by researchers. Multiple imputation (MI) and expectation-
maximization by the method of weights (EMMW) both satisfied these criteria. These
methods showed some weaknesses with respect to points 2) and 4). Both methods
require the specification of a joint distribution for the covariates, and this can be

problematic with large and complex data sets. Suitable implementations, while
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available from researchers or from the World Wide Web, do not come packaged with
standard statistical software. Theoretical and practical concerns were addressed for
these methods. Procedures for obtaining risk adjusted point estimates and corre-
sponding variance estimates were presented in this chapter as well as in appendices
B and C.

In chapter 4, the MI and EMMW methods described in chapter 3 were applied
to a subset of the APPROACH data. For each of these methods, BM, FM, and
DS estimates were obtained. The risk adjustment methods were used to examine
the effectiveness of the type of treatment used for the cardiac patients. There were
three possible treatments: medical treatment, coronary artery bypass graft (CABG),
and percutaneous transluminal coronary angioplasty (PTCA). A multivariate normal
model (MVN) was used for the joint distribution of variables to generate multiple
imputations. For EMMW, MVN and mixed continuous and categorical models were
used to model the joint distributions of covariates. Attempts were made to assess
the goodness-of-fit of the logistic regressions, as well as to diagnose the adequacy
of the missing data methods. Diagnostic tables of Pearson residuals indicated that
there were some problems with the missing data methods. The most plausible ex-
planations for these problems were 1) that models for the joint distributions of the
variables were misspecified, and 2) that assumptions regarding the patterns of miss-
ing observations had been violated. However, other diagnostic measures, such as the
residual deviance, indicated that the logistic fits worked well in comparison to the
models developed by (Norris et al., 1999). Risk adjusted point estimates were similar
across missing data methods and methods of risk adjustment. Directly standardized

measures had the smallest variances, and the variance estimates of the DS and BM
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measures tended to be the most stable across missing data models.

In chapter 5, computer simulations were employed to explore the performance
of the missing data methods across a variety of conditions. The parameters of the
probability model used to generate the random samples were based on the distri-
bution of variables in the APPROACH data set. For practical reasons, simulations
were based on a subset of the APPROACH variables. The variables employed were
1) congestive heart failure (CHF), a rare binary risk factor with a high proportion
of missing data; 2) age, a completely observed continuous variable, 3) treatment,
a categorical variable denoting the treatment providers which were to be examined
using risk adjustment procedures; and 4) 6-month mortality, which was used as the
outcome variable. For each simulation condition, 500 samples of 2000 cases were
generated. In each sample, observations in the CHF variable were deleted on the
basis of a given missing data mechanism. The missing data could be missing com-
pletely at random (MCAR), missing dependent on the outcome (MD,), missing
dependent on age (M D,,.), or missing dependent on CHF (M Dcgr). The MDcyr
conditions violated the assumptions required for valid use of likelihood-based missing
data methods. Both MI and EMMW were used to produce BM and DS risk-adjusted
estimates of the effectiveness of the treatment providers. A MVN model based on
the joint distribution of variables used to generate multiple imputations. A mixed
continuous and categorical was used for the joint distribution of covariates when gen-
erating weights in the EMMW analyses. The risk adjusted point estimates for two of
the tlree of the treatment groups appeared to be biased. The degree of this bias was
generally greater for the BM estimates than for the DS estimates, and the degree

of bias was largest in the strongest M Dcyp condition with the greatest proportion
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of missing CHF observations. Standard errors and 95% coverage probabilities were
reasonable for the DS risk adjusted estimates. The BM standard errors were all
over-estimated and the 95% coverage probabilities were all > .97.

The logistic regression coefficient for CHF was also examined in the simulations.
When using EMMW, these parameters were underestimated when the missing data
mechanism was dependent on the outcome. To a lesser extent, the coefficients using
both MI and EMMW were also underestimated when the missing data mechanism
was dependent on CHF. Coverage probabilities were often poor, but were generally
better when EMMW was used as the missing data method.

The tendency of the BM standard errors to be over-estimated was examined by
comparing the formula for the typical variance estimate with the formula for a delta
method estimate of variance. The degree of over-estimation was also examined using
computer simulations without missing data. In these simulations, BM estimates were
compared with BM estimates obtained using the delta method (BMa), and with DS
estimates. It was concluded that the DS standard error estimates were superior and
that the typical method of obtaining BM standard errors should be abandoned in
favor of DS or BM, estimates.

Conclusion. In conclusion, when covariate information is missing, risk adjust-
ment with binary outcomes can be performed using multiple imputation or EM by
the method of weights. Difficulties in applying these methods generally stemmed
from the need to model the joint distribution of variables in the data set. Due to
the complexity of the data, the adequacy of the fit of the joint distributions can be
difficult to evaluate. As it is likely that suitable multiple imputation methods will

soon be included with commercially available statistical packages, the development
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of good diagnostic tools will be needed to evaluate the adequacy of the missing data
methods. Although cumbersome with complex data, Monte Carlo simulations can
be used to examine the sensitivity of missing data methods to model misspecification
and to violations of the missing at random assumption. In this dissertation, the re-
sults from Monte Carlo simulations indicated that risk adjusted estimates obtained
from these methods perform well under a variety of conditions, and that with modest
amounts of missing data, the efficiencies of these estimates are comparable to those
obtained with complete data. Finally, the standard errors obtained using the typical
method for baseline adjusted models performed poorly, and should be abandoned in
favor of delta method standard error estimates. Directly standardized estimates and
standard errors performed well and should be considered by researchers conducting

risk adjustment with binary outcomes when covariate information is incomplete.



Appendix A

Variances of Full-Model Adjusted Estimates

A.1 Indirectly Standardized Estimates

A.1.1 Full-Model SMR

Let y be a binary response vector for n patients i = 1,2, ..., n. Indicator vectors d.
of length n will be used to denote providers k = 1,2, ...,l. The elements of §; equal
1 if case i is a has been treated by provider h; and 0 otherwise. Let X, = (1,X,),
where 1 is a unit vector of length n and X, is an n x ¢ matrix containing the ¢
covariates of interest. Let X = (X,,X) be a matrix of covariates, where X, is
n x (I — 1) matrix of covariates used to code treatment by a given provider. Rows of
X will be denoted as 7. The first step in obtain the full-model adjusted SMRs is to
use logistic regression to fit y to X. The resulting (g +!) length vector of regression
parameter estimates will be denoted as . From this model, we obtain P, an n length
vector of estimates of the probability of death. The element of p for case i is

. _ _exp(z{B) (A1)
" 1+exp(e7B)
From these estimates, we obtain the diagonal matrix

Vv = Var(y), (A2)

with diagonal elements v; = p;(1 — p;). Let Bc be a vector containing the g elements

of 3 which correspond to the covariates of interest. The vector
1. = X.B. (A.3)
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has elements 75 which correspond to the n individual cases. The 7 are then treated
as fixed constants in a second logistic regression which does not contain X,. This
regression will be referred to as the offset model. The offset model is used to estimate
probabilities of death for each case subject to the constraint that the sum of these
probabilities will be equal to the number of deaths in the sample. For case i, the

estimated probability of death from the offset model is

- = exp(do+ﬁc‘) . (A.4)
% 1+ exp(d, + fie;)

The intercept for the offset model, a,, is obtained to satisfy the condition

Zﬁo.- = zyi'
=1

i=1
Let p, be a column vector of the p,,’s. The full-model adjusted estimate of the

expected number of deaths for provider k is then
E. = 87p, (A.5)

and the observed number of deaths for provider k is

O = GZY (A.6)
The full-model adjusted SMR is
(0
SMR;, = Z=. (A7)
E;

A.1.2 Delta Method Approximations

Many of the variance estimates in these appendices rely on the delta method of
approximation, in which the variance is obtained from a first-order Taylor series ex-

pansion. Consider the random variable 8, which is an estimate of the true parameter
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6 of the probability distribution of the random variable Z. Let z = {z1,22,...,2n}
be a vector of n independent realizations of the random variable Z, and let 6 be a
function of z, or § = f(z). When we know the variance of 6 but we wish to obtain
the variance of some function of 6, say g(é), we can do so by taking the variance of

a first order Taylor series expansion of g(é) The Taylor series expansion of g(é) is
9(8) = g(6) + g'(0)(6 — 6) + ¢"(6)( — 6)*/2 + - --

Taking the variance of the zero and first order terms of this expansion yields the

approximation

Var (g(6)) ~ [¢'(6)]* Var(8). (A.8)

In most applications, the true parameter @ is not known, and § is substituted for
8. To account for this substitution, the meaning of ~ is broadened to indicate

approximation in a probablistic sense. The resulting approximation is
Var(g(8)) ~ [¢'(9)]” Var(§). (A.9)
Using more careful notation we have
n [Var(9(6)) - [¢'®)]" Var()] — 0

as n — o0.

A.1.3 Variance of tne Full-Mode! SMR
Let V, be a diagonal matrix with elements v, = Poi(1 — Poi)- Let

- Q,
B, = (A.10)

-~

B
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and let
7, = XoB,
with elements 7,,.

By first order Taylor Series expansion,

Var(SMRk) = Var(Ok/Ek)

1
E;

O

2
[ %:) Var(Ey) + Var(O;) — 2 (E_,,

) Cov(O, E,,)](A.u)

The following are expressions for the variances and covariance used in obtaining the

variance of the SMR:
Variance of O,

Var(Ox) = Var(éyy)

= 8, Var(y)s; (A-12)
which can be estimated by substituting V for Var(y).
Variance of E;

Var(Eg) = &5 Var(po)ds

~ T 9P z _a&
~ &F aﬁfvax(ﬂ")aﬁ i (A.13)

The partial derivative used above can be expressed as
3P, b, 9,
oaT ol ap7
= VoX,. (A.14)
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Variance of 3,. The variance of 3, can be expressed as the matrix

- = Aa\T
Vargy | V(@) CovlanB) (A15)

Cov(é,,8;)  Var(B.)
The variance of Bc is easily estimated by taking the submatrix of

-1

(XTVX)

which corresponds to the covariates contained X.. This submatrix will be denoted

as

Var(3,) = [(xTvx)“]c (A.16)

Variance of &é,. The variance of &, can be approximated by taking the variance

of the first-order Taylor series expansion

of
The variance of this expression can be approximated as
~ 7/ ~ .0 0 d d - 7]
Var(a) ~ = [;ErVar(ﬁ oE + hvarngL + éCov(ﬁc,y)-a—f,
(A.18)

Estimates of the variances in the above equation are obtained from A.2, A.16 and

by the following:

Cov(8B.,y) COV(

= gf;.Var(y).

Q

ayTy, y)




169

This can be estimated by
Cov(B.,y) = [XTVX)'XT| V (A.19)

3B,

where V is used to estimate Var(y). The term for By contains the g rows of

[(XTVX)_1 XT] which correspond to the covariates of interest.

The implicit function theorem can be applied to obtain the derivatives needed
for the approximation of Var(4,). Although a, = f (B.,y), there is no closed form
expression for this function. From the score equations used to obtain G,, we have a
function of a,, 8. and y whick is equal to zero at the maximum likelihood estimates

of the parameters for the observed data
F(&ov 3(:7 Y) = Z?:l(yi - ﬁoi) =
According to the implicit function theorem

of  OF/oB. . Of _  OF/dy

9B, OF/éa, ' 8y  OF/da,
where
aF/an —_ Z apo' 3710
{ o7 a3
= —lTV,,Xc
dF/0yT = Xn: iy_
i=1 ay '
= 1
0F/da, = Z Obo. O,

T
r—l aao

= _Zvoi

=1
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So

0 f —14T 7 f
(2a— vog) 1 voxc ’ Z‘ Vo, -1 1 (A20)
Bﬁc 1 ayT ( =1 V0i )
Substituting the above results into A.18, an estimate of Var(a,) is therefore
Var(d,) =

(A.21)
(5_: v) [17VX (XTVX) T XIVo1 +17V1 - 2 1TV.X. [(x7vx)™ x7| 1]
i=1

Covariance of a, and 3.. The covariance of &, and Bc can be approximated

by taking the covariance between the right hand term of A.17 and 3.. This yields

Cov(do,B.) ~ ‘;f Var (ﬁ)+ 97 Coviy.B.)

By A.16, A.19 and A.20, this can be estimated as
n -1 - _

Cov(ae, B.) = (Z v) 17 [v [x (XTVX) 1] ~V,X. [(xTvx) 1] ] (A.22)

i=1 c e

Covariance of O, and E;

The covariance of O, and E; can be approximated as

Cov(Ox, Ex) = Cov(81y,68%Po)

Q

JZ’Var(y)gy%’Jk- (A.23)

By the chain rule, the partial derivative used above can be expressed as
ob, _ 0Bo OB,
ayT ﬁ ayT
The expressions for the derivatives can be found in A.14 and in

9.
98, ayT

ay | 9B,
3yT
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(ZFv,,) 11T
[(xTvx) - xT]

An estimate of A.23 can be obtained by using V as and estimate of Var(y).

c

A.1.4 Full-Model Adjusted Population Averaged Proportion

When logistic regression is used to calculate the the probability of death, the hospital

adjusted population averaged proportion can be calculated as

P. = SMRip = (Or/Ex) [n’llTy] . (A.24)

A.1.5 Variance of the Population Averaged Proportion

By first order Taylor Series expansion,

_ 2 2
Var(By) =~ (5;)2Va.r(0k)+(%§ﬁ) Var(E'k)-i-(—g—:) Var(p) (A.25)

fo7 Ep
Expressions for Var(Oy), Var(E;) and Cov(Og, Ei) are presented in A.12, A.13 and

—2 (0" -) [(%) Cov(Ex, p) + (ﬂ) Cov(Ok, Ex) — Cov(O, p)] .

A.23. The remaining terms can be obtained by noting that

Cov(p, Ex) = Cov(n '1Ty, 87 o)
~ n"llTVar(y)gy—p%Jk

Cov(Ok,p) = Cov(6Ty,n'1Ty)

n~ 181 Var(y)d.

Var(p) = Var(n'1Ty)

= n~21TVar(y)1
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A.2 Directly Standardized Rates

Directly standardized rates are obtained by estimating the expected number of deaths
that would have occurred if all patients in the population of interest were treated by
a given provider. Let Ci be an n x (I — 1) matrix in which each row contains the
codes associated with treatment by provider k. Let X, = (X,, Ci) be the covariate
matrix associated with provider k, where X, is defined in section A.1.1. Let L:) be
the (g + k) length vector of logistic regression parameters obtained by regressing y
on X. Define

i = X3 (A.26)

with elements 7.
On the basis of the covariate values associated with an individual % and the risk
associated by treatment by a given provider k, an estimate of the probability of death

can be obtained for each individual in the population

Pk = ﬁ‘xei—x%)r) (A.27)
These estimates are elements of n length column vector pi. The expected number
of deaths in the population which would have occurred if all patients were treated
by provider & is

E; =1Tps. (A.28)

A.2.1 Directly Standardized Risk Ratio

The directly standardized risk ratio can be obtained as

RR, = % (A.29)
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where O = 1Ty.

A.2.2 Variance of the Standardized Risk Ratio

Let V. be a diagonal matrix with diagonal elements Pix(1 — Pir). An approximation
for the variance of the standardized risk ratio can be obtained by a first-order Taylor

Series expansion:

Var(RRx) = Var(E;/O)

~ 7((3)

The following are expressions for the variances and covariances used in obtaining the

* Var(0) + Var(Ey) ~ 2 (%—") Cov(EL, 0)] .(A.30)

variance of the above risk ratio.

Variance of O

The variance of O is

Var(0) = Var(1Ty)

= 1TVar(y)1
which can be estimated as
Var(0) = 1TVL (A.31)

Variance of E;

The variance of Ef can be expressed as

Var(E;) = 1TVar(pi)1

Q

1Tg—g;Var(B)%%51. (A.32)
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Applying the chain rule, the partial derivative used above can be expressed as

b _ 0P O,
88" O 63"
= VX (A.33)

By using
Var(d) = (XTVX)™,
Var(E}) can be estimated as
Var(E;) = 17ViXi (XTVX) " XIVil. (A.34)

Covariance of O and Ef

A first-order approximation of the covariance of O and E} is

Cov(0,E;) = Cov(1Ty,1Tp;)

lTVar(y)Q;y—kl.

Q

An expression for the partial derivative used above is

9k _ b OB
6yT 6BT6yT
= ViX, (XTVX) T XT
by A.33 and by noting that 20 = (XTVX) ™ XT. An esti f ) i
y A.33 and by noting t atgf—( ) . estimate of Cov(O, E}) is

Cov(0,Ef) = 1TVX (XTVX)™ XiVil. (A.35)
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A.2.3 Population Averaged Proportion
A directly standardized extimate of the population averaged proportion is

P = % (A.36)

The variance for this estimate is
- 1

Using A.34, this can be estimated as

o 1
Var(P;) = —17ViX, (XTVX) X[ V1. (A.37)



Appendix B
Variance of 3 for EM by Method of Weights

The method described by Louis (1982) can be used to estimate the variance-covariance
matrix of the logistic regression parameters (B). When using the EM algorithm, the
observed information matrix I(3|Xe,, Y) can be obtained by taking the second
derivative of the log-likelihood £(3|X s, Y) with respect to 3, or

62
_5_‘55

n 82
= — g —a?ez(ﬁlyu xobs.i)'

I(BY, Xas) = ¢(B1Xobs; Y)

by 3.10. Louis demonstrated that the information matrix could be expressed terms

of the complete data quantities:

n

I(BY.Xws) = I I[E{IBiyi zi)|zossi} — E{S:(Blyi, z:)}

=1

+ E{S:i(BI2:, 1:)|Tobes} E {Si(Blzi, ) [zass}T|  (B.1)

where
62
L(Blzi,y:) = ‘a_ﬂ_zei(ﬁlzi’yi)
= vz;zT
SiBlzay) = ~zti(Blriu)
as
= (¥ —p:i)zi-

Futher v; = p;(1 —p;), and the p; are probabilities of death obtained from the logistic

regression model. Recall that the w;; from the final iteration of the EMMW logistic

176
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regression are
Wiy = Pr(zijlyiaxoba.iy.éaé)- (B.2)

Using the w;;, expectations of the complete data quantities in B.1 can be obtained

as
1)
S E {L‘(Blyi, xi)lzoba.i} = > Z wijvijzijx?;’
i=1 =1 j=1
= XTWVX (B.3)

Where X is the augmented X, matrix, and W and V are diagonal matrices con-

taining the w;; and the v;; respectively.
2)

> E {S:(Blye, 28:(Blze ) iTobns} = 33 wis(e — piy) w7

i=1j=1

= XTWD*X (B.4)
where D is a diagonal matrix with elements (y; — p;;).
3)

2": E {S:(Blz;, yi)|-’13obs.i} E {Si(ﬂli’-‘i, yi){zobs.i}T =

i=1

. ng T
Z {Z wi;(y: — Pij)l‘ij] [}: wij(yi - Pij)l‘ijJ (B.5)

i=1 |j=1 Jj=

This quantity will be denoted as A.
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Combining B.3, B.4 and B.5, the observed information can be expressed as
I(BY,Xw) = XTW(V-D})X + A. (B.6)

The variance-covariance matrix for the regression parameters 3 can be obtained as

I"Y(BY, Xos)-



Appendix C

Variances of Estimates with Missing Data in the

Covariates

C.1 Indirectly Standardized Estimates

C.1.1 Full-Model SMR

The variance estimates must account for the weights obtained from the final step
of the EM algorithm and for the use of Louis’s method in obtaining the variance of
the regression coefficients. Let X be the augmented covariate matrix. Let i denote
cases i = 1,2,...,n and let i be the number of rows in X. Let n; be the number of
covariate patterns for case i in the augmented covariate matrix. For cases with no
missing data, n; = 1. Cases with missing data have j = 1,...,n; covariate patterns
in X, and & = 3%, n;. Let X, = (i,f(c), where 1 is a unit vector or length 7
and X, is an 7 x ¢ augmented matrix of the covariates of interest. Partition the

augmented covariate matrix as X = (Xo,X4), where X,, is an 7 x (k — 1) matrix of

T
ij-

covariates used to code for treatment provider. Rows of X will be denoted as z
Let ¥ be an # length outcome vector with elements corresponding to the rows of X.
The first step in obtaining the full-model SM Rs is to use EMMW to fit y to Xina
weighted logistic regression. The resulting estimated probability of death associated

with covariate pattern j for subject ¢ will be denoted as

5. = _R(E0)
71+ exp(z%3)
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The vector of the p;;’s will be denoted as p. From these estimates, we obtain the
diagonal matrix V, with diagonal elements v;; = p;;(1 — p;;). Let B. be a vector
containing the g elements of B which correspond to the covariates of interest. The
vector
1. = XcB.

is of length 7 and has elements 7j5;. The fj; are then treated as fixed constants in
a second logistic regression which does not contain X,. For case i with covariate
pattern j, the estimated probability of death from this model is

5 - exp(d, ‘{"ﬁcu) (C.1)
o 1 + exp(d, + f):.-,—)

The intercept for the offset model, &,, is obtained to satisfy the condition

Z Z wijPo,; = 0,

i=1;j=1
where the w;; are the weights obtained from the final iteration of the EMMW algo-
rithm. Let p, be a column vector of the p,,;’s, and let W be a diagonal matrix with
the w;; as diagonal elements. The n x 7 indicator matrix S has rows 6T, where the
5, are 0, 1 indicator vectors denoting the rows in X corresponding to case i. As in
appendix A, 6, is a 0, 1 indicator vector of length n deﬁoting treatment by provider
k.

The full-model adjusted estimate of the expected number of deaths for provider
k is then

Be = 3.3 wibois

i€hg j=1
STSWp, (C.2)

&% Po (C.3)
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As in appendix A, the observed number of deaths for provider k is
Or =08y (C.4)

The full-model adjusted SMR, obtained using EMMW is

Ok
SMR, = —E;
C.1.2 Variance of the Full-Model SMR

As in appendix A, the estimate of variance of the SMR is obtained by taking the

variance of the first order Taylor Series expansion, or

2
Var(SMR:) =~ —El_,f [(Z_:) Var(Ey) + Var(Oy) — 2 (%:) Cov(Ox, E,,)] (C.5)

The following are expressions for the variances and covariances used in obtaining the

variance of the SMR:

Variance of O,

As in the complete data case, the variance of O can be expressed as
Var(Ox) = 67 Var(y)ér .
which can be estimated as
Var(O) = 8¢ Var(y|Xos,)ds. (C.6)

Variance of y given X,,. Since the y; are condsidered to be independent
observations of the outcome, Var(y|X,) will be an (n x n) diagonal matrix with

elements

Var(y:|Tobsi) = Var (E(yi|z:)|Toss.i) + E (Var(yi|:)|Tobs.i)
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An estimate of this variance can be obtained as

_ n 2
Var(yilTobei) = [Zﬁ?jwﬁ' (Zﬁijwij)] [Zpu(l Pij) w,,]
j=1 j=1
Ny Iy 2
= Y pijwij — (Zﬁijwij)
j=1 Jj=1

_ B-5). (1)

Variance of E,
Let 7, = XT33,.
The variance of E; can be approximated as
ar(Ex) = &% Var(p,)d:

57 9P sVar(B, )‘9"°6k (C.8)
PY 9B,

By applying the chain rule and noting that p = SWp,, the derivative used above

Q

can be expressed as

b, _ 0p, 07,
CY A an, ap3
_ swle op ano
ony aﬁ
= SWV,X,.

Variance of Bo. As in appendix A, the variance of ﬁo can be expressed as the

partitioned matrix

: Var(é,)  Cov(de,B.)"
Var(3,) = X e (C.9)
Cov(a,,8.)  Var(B.)
The submatrix of Var(3) obtained via Louis’s method (see appendix B) correspond-

ing to the covariates of interest can be used as an estimate of Var(3,).
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Variance of 4,. As in appendix A, Var(&,) can be approximated as

o 5 of
Var(do) ~ 3f O Var (ﬂ) S 3;; o Cov(ac,y)

c

Va.r(y)gyf- +
(C.lO)

To obtain an estimate of C.10, Var(y)|Xe, is used to estimate Var(y). An

approximation of Cov(B.,y) is:

Cov(Bc, y) = COV(‘a—y?y, y)

(C.11)
which can be estimated using
Cov(B.,y) = [XTVWX)'XKTW| ST (Var(y)Xa)

where %ﬁ_ﬁ contains the q rows of [(XTVWX) lXTW] which correspond to the
covariates of interest and :;;. = ST,

The derivatives required to approximate the variance of &, are obtained using
the implicit function theorem as outlined in appendix B. In this case, however, the
solutions must account for the weights obtained from the EMMW. To account for
these weights, the implicit function theorem is applied to

F(doa Bca y Z Z wij (yl ﬁoij) = 0. (C12)
i=1j=

According to the implicit function theorem

a8f  OF/8B., . Of _ OF/oy

2B, 0F/éa, ' 9y OF/da,
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where
-T 04 67’0
OF/0B. = -— Wij =T —
/ gz—:l "o 0p!
= —-1TWV, X.
BF T = Yn‘ of, 3
/8y ;._1_12 w J ayy
= Zl Y Z Wij
=1
R _ L aﬁoij ai’o
= - Z z w,J'Uo‘J
i=1j=
So
of n o 13T % -
aB’: =~ (Zi=l PR wiiv""i) VXe ByT (Z =1 wijv“j) 1

Using the above derivatives and estimates of variance, Var(&,) can be estimated as

i W\?)’( [(x"wvx) J'(Tw] ST(Var(y)| Zose.s)1]

Covariance of O, and E;

The covariance of O and E; can be approximated as
Cov(O, Ex) = Cov(b’,‘ Y, 0, Do)

~ JZVar(y)?—p—ak

ay; (C.13)
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Using the chain rule, the partial derivative used above can be obtained as

P, op. 08, 9y (C.14)

ayT - a‘faiTayT

where
[ 900 05
B, _ | o¥TayT
ay | 8B. 8y
| 3y7T ayT

_ (T2 T Weijvoij) 11TW ST (C.15)
| [(xrvwx) T xTW] ' '

C.1.3 Full-Model Adjusted Population Averaged Proportion

When logistic regression is performed using EMMW or MI, the full-model adjusted

population averaged proportion can be calculated as
P. = (Ou/EW)p (C.16)

where E is obtained using C.3, and p = 1Ty.

C.1.4 Variance of the Population Averaged Proportion

With missing covariate data, the variance of the full-model adjusted population
averaged proportion can be approximated by taking the variance of the first-order

Taylor series expansion:

_ 2 2
Var(B.) =~ (%)ZVar(ok)Jr (%ﬁ) Var(E,,)+(g—:) Var(p) (C.17)

_2 (g—gﬁ) [(‘;—:) Cov(Ex, p) + (—g—:) Cov(Ok, Ex) — Cov(Ox, 5)] :
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Estimates for Var(Og), Var(E:) and Cov(Ok, Ei) are presented in C.6, C.8, and

C.13. Estimates for the other terms can be obtained by substituting Var(y)| X, for

Var(y) in the following expressions

Cov(p,Ex) = Cov(n~'1Ty,éd;po)

= n'llTVar(y)%p%Jk

Cov(Ok,p) = Cov(6Ty,n'1Ty)

= n7'6% Var(y)dk

Var(p) = Var(n'17y)

= n 21TVar(y)1.

C.2 Directly Standardized Rates

As in the case where covariates are completely observed, directly standardized rates
are obtained by estimating the expected number of deaths that would have occurred
if all cases in the population of interest were treated by a given provider. Let C: be
an i x (k— 1) matrix iz which each row contains the codes associated with treatment
by provider k. Let X, = (X., (.3;‘) be the augmented covariate matrix associated with
treatment by provider k. Let 3 be the (g + k) length vector of regression coeflicients

obtained by regressing y on X using EMMW. Define
e = XeB (C.18)

with individual elements 7j;jx. For each case i = 1,2,...,n, there are j = 1,...,n;

possible covariate combinations. The estimated probability of death for the covariate
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combination j for individual i treated by provider k is

exp(7iji)

Piik = ———=-
! 1 + exp(7ij)

Let px be a vector of length n with elements

4
Dik = Y PijkWij-

j=1
The expected number of deaths if the population had been treated by provider k is

Er = Y wipik
i=1 =1

n
- Zﬁiky
=1

where the w;; are the weights obtained from finial iteration of the EMMW algorithm.

C.2.1 Directly Standardized Relative Risk

As in appendix A, the directly standardized relative risk is obtained as

Ei

RR, =

where O = Y1, ¥i-
C.2.2 Variance of the Standardized Risk Ratio
A first-order approximation to the variance of the standardized risk is
Var(RR:) = Var(E;/O)
1 [[E:\? E;
= {(6) Var(O) + Var(Ey) — 2 (—é—) Cov(Ex, 0)] .(C.19)

The following are expressions for the variances and covariances used above.
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Variance of O

The variance of O is

Var(O) Var(1Ty)

= 1TVar(y)1.
An estimate of Var(O) can be obtained by substituting Var(y|Xa,) for Var(y).

Variance of E;.

The variance of E is

Var(E,) = Var(i"Wp)

Q

'Twﬁ 3y P i
1 6ﬁTVar(f)) Y Wi1.

This can be estimated by using the Var() obtained from Louis’s method (see ap-

pendix B). Applying the chain rule, the partial derviative used above can be ex-

pressed as
OPr _  ODk Oi
a8 9 og
= ViXs

Covariance of O and Ej

A first order approximation of the covariance of O and E; is

Cov(0,Ex) = Cov(1Ty,17p.)

~ lTVar(y)%’;'—k—l,,.



189

An estimate of Cov(O, Ei) can be obtained by substituting Var(y)| X o, for Var(y).
By the chain rule, the derivative above can be expressed as
9P _ 0Pk 0P OB By
3T ~ Obugg oy  Ov"
= SWV.X, (XTVWX)™ X"WsT,

Where V, is a diagonal matrix with elements p;x(1 — Dijk)-

C.2.3 Population Averaged Proportion

A directly standardized estimate of the population averaged proportion is

- E

A = =,

n
Variance of the Population averaged proportion

The variance of the population averaged proportion is
. 1 n
Var(P) = ;-IEVar (Zpik) .
i=1

This variance can be approximated as

~ lTap"V (B)apk
03"
(C.20)
where
OB _ il
aBT aﬁk aBT
= SWV.X,.

The Var(3) from Louis’s method can be used in C.20 to obtain an estimate of

Cov(O, Ey).



Appendix D

Taylor Series Approximation for the Baseline

Model

Let y be a binary response vector for n patients ¢ = 1,2,...,n. Indicator vectors dx
of length n will be used to denote providers k = 1,2, ...,l. The elements of 8, equal 1
if case i is a has been treated by provider h; and 0 otherwise. Let X = (1, X.), where
1 is a unit vector of length n and X, is an n x ¢ matrix containing the g covariates of
interest, but excluding the covariates used to code for treatment provider. Rows of X
will be denoted as zT. To obtain baseline-model adjusted SM Rs, logistic regression
is used to fit y to X. The resulting (g + 1) length vector of regression parameter
estimates will be denoted as 3. From this model, we obtain p, an n length vector of
estimates of the probability of death. The element of p for case ¢ is

s exp(7):
b Er=ca) (01

where 7; = =T 3. From these estimates, we obtain the diagonal matrix
V = Var(y), (D-2)

with diagonal elements v; = p;(1 — p;)- The baseline-model adjusted estimate of the

expected number of deaths for provider k is then

E,=6.p (D.3)
and the observed number of deaths for provider k is

O.=8Ty (D.4)
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The full-model adjusted SMR is

SMR, = —. (D.5)

D.1 Variance of the Baseline-Model SMR

By first order Taylor Series expansion,

Var(SMR.) = Var(Oi/Ew)

~ '1;_;-; [(}Og—:) Var(Ex) + Var(Ox) — 2 (0 ) Cov(Ox, E.,)] (D.6)

The following are expressions for the variances and covariance used in obtaining the

variance of the SMR:

Variance of O;
Var(Ox) = Var(8iy)

= & Var(y)d: (D.7)
which can be estimated by substituting V for Var(y)-

Variance of E;

Var(Ey) = & Var(p)dr

~
~~

Pl Var(ﬂ)i’iak (D.8)
a3" o3

Let 7 be an n length vector with elements 7;. The partial derivative used above can

be expressed as

= VX. (D.9)
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By using Var(3) = (XTVX)-I, the variance of Ej can be estimated as
Var(Ex) = 6TVX (XTVX)™ XTV4.. (D.10)

Covariance of O, and E;

The covariance of O, and E; can be approximated as

COV(Ok, Ek) = COV(JZY7 6}1;13)

GZ'Var(y)%Jk. (D.11)

Q

By the chain rule, the partial derivative used above can be expressed as

% _ ob 0B

ayT a3 Oy
. LC) _ (T “l T
Noting that 7 7 = (XTVvX) X7,

;%BT = VX (xTvx)'l > <

Using Var(y) = V, the covariance of O and Ej can be estimated as
Cov(On Ex) = STVX (XTVX)™ XTVé.. (D.12)

Noting that this estimate is equal to the estimate of Var(E}) from D.10, an estimate

of the variance of SM R, is

Var(SMR,) = [(SMRu(SMR. — 2)) Var(Ey) + Var(Ox)| (D.13)

1

E?

_ -I;—za{ [(SMR,,(SMR,, ~2)) VX (XTVX) T XTV + v] 5e.
k
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