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Abstract 

Field orientation control, sometimes called vector control, is applied in the control of 

induction machines to obtain high performance dynamic responses. The key to field 

orientation control is knowing the instantaneous magnitude and direction of the rotor 

flux. The magnitude and direction of the rotor flux can either be measured directly with 

sensors in the direct field orientation control method or be estimated in the indirect field 

orientation control method. However the performance of the indirect field orientation 

control method is sensitive to variations in motor parameters such as the rotor resistance 

and the magnetizing inductance. Unfortunately motor parameters vary greatly with 

temperature, frequency and current amplitude. 

In this thesis a novel method of using a subspace identification method to estimate the 

rotor flux directly is presented. Simulations of field orientation control with both open 

loop and closed loop control schemes are first carried out and the sensitivity of field 

orientation control to the variations in motor parameters is studied. Furthermore the 

saturation effect in induction machines is taken into consideration. All of the models of 

induction machines are discretized in order that the identification algorithms can be 

implemented with a digital signal processor. Finally a subspace identification method for 

linear parameter-varying (LPV) systems is used to identify the rotor flux of the induction 

machine. Positive results have been obtained, indicating the potential of the subspace 

identification method in field orientation control of induction machines. 
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Chapter 1 

Introduction 

1.1 Induction Motor 

Energy is an important concept in an economic context. The mean energy consumption 

per capita in a country is an indicator of its state of technical development [24]. 

Electricity is a common form of energy due to its relatively efficient generation, low-loss 

transportation and flexible conversion into a final form. 

Among the possible final forms of energy, mechanical energy is of the most importance. 

It is estimated that about 60% of the electricity generated in an industrial country is 

eventually converted to mechanical energy [24]. Electric drives play an important role in 

the conversion of electricity into mechanical energy. One of the most common types of 

industrial drives is the induction motor drive. 

The induction motor has many advantages in comparison with other electric motors, e.g. 

cost, robustness, maintenance freedom, power density, and hence has wide application in 

industry. The induction motor was, and is, widely used in installations where no speed 

regulation is required since it was once difficult to adjust the speed of an induction motor. 

DC machine drives dominated variable speed drive applications for many decades. With 

research and development of semiconductor power devices and intensive research work 
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in variable speed AC drives, the performance of the induction motor in variable speed 

applications has improved rapidly. With the development of field orientation control in 

the early 70s, the performance of induction motor drives became comparable to, or even 

better, than that of DC machine drives [6]. 

1.2 Field Orientation Control 

The reason that DC motors have high performance in motion control is that a separately 

excited DC motor permits the separate control of torque and flux. The linearity of the 

system makes a DC motor easier to control than an AC motor. However, the mechanical 

commutation of the DC machine causes higher failure rates, even with frequent 

maintenance. Furthermore, commutation sparks constrain a DC motor from being applied 

in hazardous environments or in high power applications (i.e. megawatt level). In order to 

improve the performance of an induction motor in motion control, a principle, similar to 

that of separate excitation, was applied to induction motor control and is referred to as 

field orientation control [6]. 

Field orientation control, sometimes called vector control, is based on a vector 

transformation from a stationary reference frame to a rotating reference frame and vice 

versa when necessary. As its name implies, the principle of field, orientation control is to 

establish a synchronous reference frame such that the d-axis (i.e. direct axis) coincides 

with the orientation of the total rotor flux linkage of the machine. In this frame, stator 

currents are decoupled into two orthogonal components: the torque component along the 
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q-axis (i.e. quadrature axis) and the flux component along the d-axis. This decoupling 

permits the direct control of shaft torque while keeping the flux magnitude constant. In 

other words, the induction motor can be controlled like a separately excited DC motor. 

The key to the implementation of field orientation control is how to obtain the 

information about the instantaneous direction of the rotor flux vector. In general, there 

are two generic approaches. The first one is to utilize direct sensing of the air gap flux by 

the use of Hall probes, search coils or other measurement devices [29]. This technique is 

accurate and insensitive to variations in motor parameters. However it is expensive, 

intrusive and introduces sensor reliability issues. The second method is an indirect 

approach where the rotor flux is estimated from stator currents, stator voltages and/or 

rotor velocity. This approach uses a parameter model of the induction machine to predict 

the rotor flux with the available measurements and is therefore sensitive to variations in 

motor parameters such as the rotor resistance and the magnetizing inductance. 

Unfortunately motor' parameters vary greatly with temperature, frequency and current 

amplitude. Therefore in order to achieve the same performance as the direct method, 

motor parameters must be estimated accurately and instantaneously. 

1.3 System Identification 

A system model can be determined from physical principles or by system identification 

or by a combination of these approaches. System identification has the virtue of being 

nearly instantaneous in some cases. According to the definition of Zadeh, system 
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identification is the determination, on the basis of input and output, of a model within a 

specified class of models, to which the system under test is equivalent [9]. 

Referring to Fig. 1.1, system identification is the process of determining the model of the 

target system, the structure, order, and the corresponding parameters, from measurements 

of the inputs, U, and outputs, Z of the system, where the outputs, Z, are often 

contaminated by measurement noise, T". However if the structure of the model is well 

known, for example our system is an induction motor, what is needed might be to 

estimate some parameters within the model, which is called parameter estimation. 

According to Bykhoff [9], parameter estimation is defined as the experimental 

determination of values of parameters that govern dynamic and/or non-linear behavior, 

assuming that the structure of the process model is known. In this thesis, a subspace 

identification method is applied to estimate the values of rotor flux directly in order to 

obtain better performance from an induction machine in motion control applications. 

U 
Target 
System 

Y 

Fig. 1.1 Concept of System Identification 
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1.4 Thesis Organization 

This thesis is composed of eight chapters that present the identification of an induction 

machine so that the performance of field orientation control can be improved by reducing 

the impact of machine parameter variation. Chapter 2 is dedicated to the introduction of 

the induction machine models that are going to be used in this thesis. The model taking 

saturation into consideration is presented to introduce even more non-linearity into the 

induction machine model. 

In Chapter 3 the basic concepts of field orientation control of an induction machine are 

explained, including the two axes d-q theory, matrix transformations and field orientation 

control principles. The influences of variations of primary parameters will be discussed in 

Chapter 6. 

In Chapter 4, the fundamental concepts of system identification are introduced and an 

identification method for a linear parameter-varying (LPV) model is presented. 

In order to apply the identification algorithms in the simulation of an induction machine, 

the model should be discretized to accelerate the simulation and to facilitate final 

implementation (e.g. using a microcontroller). What is discussed in Chapter 5 is the 

discretization of induction machine models, both with and without saturation. 

Discretization of an LPV system is also discussed. 
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In Chapter 6, computer simulations of a 1 kW induction machine are developed. The 

results of simulating different models of induction machines are compared to theoretical 

calculations to validate the models. Field orientation controllers are incorporated into the 

simulations. 

Chapter 7 discusses the several steps that we employed for identification of rotor flux. 

The corresponding identification results are presented and explained. 

Discussions and a conclusion are provided in Chapter 8 together with requirements for 

future work. The contributions of this thesis are also discussed in Chapter 8. 



Chapter 2 

Mathematical Models of an Induction Machine 

In this chapter, some fundamentals of induction machines are first introduced such as 

torque generation and the effects of saturation. Then mathematical models, both with and 

without saturation effects, are described. Although these models include nonlinear terms, 

the nonlinearities can be represented by an appropriate choice of time-varying linear 

terms. Therefore a special linear parameter-varying model is presented to describe 

induction machines. Since identification methods for linear parameter-varying models are 

available, it makes good preparation for the identification of induction machine 

dynamics. 

2.1 Elementary Induction Machines 

When three-phase alternating current is supplied directly to the stator in a two-pole 

induction machine, a rotating magnetic field of the same frequency is established. By 

induction, i.e. transformer action, AC voltages are induced in the rotor along with 

alternating currents. With the interaction between the rotating magnetic field and currents 

in the rotor, electromagnetic torque is produced in the rotor, thus providing torque to the 

load that may be connected to the rotor shaft. Depending on the load torque, the shaft 

rotates at a frequency that is slightly less than the rotation frequency of the magnetic 

field. This frequency difference is referred to as the slip frequency. The frequency of the 
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voltages and currents induced in the rotor windings is the slip frequency. If an induction 

machine has more than two poles, the magnetic field rotates at a frequency equal to the 

three-phase frequency divided by the number of pole pairs. 

There are two basic types of rotors used in induction machines. A wound rotor carries a 

polyphase winding similar to, and wound with the same number of poles, as the stator. 

The terminals of the rotor winding are connected to insulated slip rings mounted on the 

shaft. Carbon brushes that contact these rings make the rotor terminals available external 

to the machine. Another, much more commonly used, kind of rotor is called the squirrel-

cage rotor. It has a winding consisting of conducting bars embedded in slots in the rotor 

iron and short-circuited at each end by conducting rings. Since induction motors with 

squirrel-cage rotors have many outstanding advantages, such as extreme simplicity and 

ruggedness, they are extensively used in industry [11]. Therefore we chose this kind of 

induction machine as the object of our research. 

2.2 Saturation in Induction Machines 

The stator and rotor of an induction machine are composed largely of high-permeability 

magnetic material that is normally called the core. The core is excited by a winding 

carrying current to produce a magnetic field in it. Since the stator and rotor cores have a 

much larger permeability, 1u, than that of surrounding air, the magnetic flux is 

confined almost entirely to the core materials and the air gap between the stator and rotor. 
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As a current is applied to the stator winding, a corresponding magnetic field intensity, H, 

is generated. The relationship between the magnetic field intensity, H, and magnetic flux 

density, B', is a property of the material in which the field exists, and may be 

approximated by 

B'tH (2-1) 

where u is the permeability. The magnetic flux, 0, crossing a surface, S, is the surface 

integral of the normal component of B', given by 

0= f Bda (2-2) 

Therefore through the use of magnetic materials with high permeability, it is possible to 

obtain large magnetic flux densities with relatively low levels of magnetizing force. Since 

magnetic forces and energy densities increase with increasing flux density, this effect 

plays a large role in the performance of energy conversion devices like induction 

machines. 

Ferromagnetic materials are the most common magnetic materials used by far in the 

construction of induction machines [11]. They are composed of a large number of 

magnetic domains. When the material is not magnetized, the domain magnetic moments 

are randomly oriented and the net resulting magnetic flux in the material is zero. When an 

external magnetizing force is applied to the material, the domain magnetic moments tend 

to align with the applied magnetic field. Thus the dipole magnetic moments add to the 

applied field, resulting in a much larger value of flux density than would exist from the 

magnetizing force alone. The larger the applied field is, the more magnetic moments are 
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aligned with the applied field. Eventually all of them become aligned, at which point they 

cannot contribute to increasing the magnetic flux density any further and the material is 

said to be saturated. 

Due to saturation, the effective permeability, 1U which is equal to ratio of magnetic flux 

density to the applied magnetizing force, is not linear with respect to the applied 

magnetizing force, H. A typical B'-. H curve for a magnetic material is shown in 

Fig. 2-1. Notice that with increasing magnetic field intensity, H, the curve begins to 

flatten out as the material becomes magnetically saturated. 

When saturation is taken into account, the inductance L, which is defined as 

B'A 

/ 
I 
/ 
/ 
/ 
/ 

10, 

H 

(2-3) 

Fig. 2-1 B' -  H curve for a magnetic material; B' is the magnetic flux density and H is 
the magnetic field intensity, also referred to as the magnetizing force. 

is no longer constant due to the nonlinear dependence of flux density on the magnetic 

conditions in the core. Note that 2 is referred to as flux linkage and is defined as 

2= NØ (2-4) 
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where N  is the number of conductor turns. 

In other words, to the right of the point marked b in Fig. 2-1, the magnetic flux will not 

increase with the increasing current I at the same rate as it does to the left of the point b. 

However the effects of the nonlinear magnetic characteristics of the core material can 

often be approximated by some sort of empirical linear relation, yielding solutions of 

acceptable engineering accuracy. When the induction machine is working below point b 

in Fig. 2-1, L is considered to be constant. Beyond point b, L will vary as the current 

increases, so that the magnetic flux linkage, 2, no longer increases linearly. Note that an 

induction machine operating under rated conditions has values of B' and H 

corresponding to point b, i.e., at the "knee" of the B'- H curve. 

In this thesis, the B' - H curve is approximated by the dashed line in Fig. 2-1 in order to 

take saturation into account in a relatively simple manner. 

2.3 Mathematical Model of an Induction Machine without Saturation 

For an induction machine with a balanced three-phase supply, the two axis or d-q, theory 

[15] is normally used for dynamic modeling. According to this theory, variables and 

parameters are expressed in orthogonal direct (d) and quadrature (q) axis components. 

The d-q axis representation of an induction machine is shown in Fig. 2-2. 
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In the induction machine representation of Fig. 2-2, the stator and rotor are abstracted 

into symmetrical windings d, q and dr, q,. The d-q axes are fixed on the stator. Since 

Fig. 2-2 Induction machine in d-q axis representation 

the rotor currents are rotating synchronously relative to the d-q axes, they are pseudo 

static currents. 

In Fig. 2-2, 'd )t are the magnetic flux linkages linking the d and q axis windings 

respectively. The positive directions of flux linkage, current and electromagnetic force 

are indicated by the arrows. The angular velocity of the rotor is denoted by where 

counter-clockwise rotation corresponds to a positive value of w,.. 

The mathematical model of a squirrel cage induction machine can be expressed in 

differential equations as follows [32] 

Vds = 'd, r,+ PA d, (2-5) 

Vqs = + P2qs (2-6) 
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O — idrrr +PAdr +e (2-7) 

Ozqrl; +p%qr+ecq 

where v - d-axis component of stator voltage 

Vqs - q-axis component of stator voltage 

- stator resistance 

r,. - rotor resistance 

p - differential operator 

- d-axis component of stator current 

- q-axis component of stator current 

Ads - d-axis component of stator flux linkage 

- q-axis component of stator flux linkage 

ir - d-axis component of rotor current 

1qr - q-axis component of rotor current 

Ad, - d-axis component rotor of flux linkage 

aqr - q-axis component rotor of flux linkage 

eaw - d-axis component of rotor velocity electromagnetic force 

e - q-axis component of rotor velocity electromagnetic force 

The speed electromotive force, i.e. the induced voltage, can be expressed as 

(2-8) 

(2-9) 
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e = CO, Ad, (2-10) 

The flux linkages can be expressed in terms of inductances and currents as 

= + L1ç (2-11) 

2qs = Lslqs + L., 1q, (2-12) 

)tdr + Lrldr (2-13) 

= Lnilqs + Lrlqr (2-14) 

where L, - self stator inductance 

Lr - self rotor inductance 

- mutual inductance 

(2-15) 

= L11. + (2-16) 

where L& - stator leakage inductance 

- rotor leakage inductance 

Substituting (2-9) to (2-14) into (2-5) to (2-8) yields a mathematical model of the 

induction machine that may be expressed in matrix form as 

Vd 

Vqs 

0 

0 

r+Lp 0 L  0 - 

0 i+Lp 0 LmP 

L  COL., i. + LP (OrL,. 

- - wL LmP - O)rLr i. + LrP 

ds 

1qs 

1dr 

1qr 

(2-17) 

Note that if La,, L3 and Lr are kept constant then saturation is neglected in this model. 
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If rotor flux linkages Ad, and A, are used as the states to replace the rotor current id, and 

1qr' the mathematical model becomes [2] 

Vds 

Vqs 

0 

0 

0 

- 
- - 0 

Tr 41 
0 

1ds 

1qs 

2dr 

where = is the rotor time constant of the induction machine 
r,. 

The mechanical equation may be expressed as 

• a) 
= - L 

. +b (t,,, - tt,. - t) 1 

where the dot denotes the differential operation (ie th,. = P 0)r) 

- inertia coefficient, Nms2 

viscous friction coefficient, Nms 

p' -pole pairs 

, 11 
tin _ - P L (qs'dr - c'qr) - motor torque 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

(2-22) 
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t = f sgn((o) - friction torque, Nm (2-23) 

- Coulomb friction coefficient, Nm 

t,. - load torque, Nm 

Equation (2-19) is typically what is employed by machine designers and researchers for 

torque considerations. In some analyses, one or more of the friction terms may be 

neglected. We will employ (2-18) with and without saturation as well as (2-19) 

neglecting the friction torque and taking no load torque into consideration. 

2.4 Mathematical Model of an Induction Machine with Saturation 

In the mathematical model of section 2.3, linear magnetic conditions are assumed. When 

saturation of the main flux path is taken into account, this assumption is no longer valid. 

The effects of saturation on the performance of electrical machines have been discussed 

in many papers in the literature [5,10,12,34,35,36,37,38,40]. The importance of saturation 

and of the existence of the intersaturation effect, sometimes called cross-saturation, have 

been presented [41]. The cross-saturation effect involves saturation in one axis affecting 

saturation in the other and vice versa, so that the saturation effects introduce coupling 

terms between the two axes [7]. Due to cross-saturation, some parameters in the 

mathematical model of an induction machine have to be modified and additional terms 

introduced. For example the stator (and rotor) self-inductances in orthogonal axes are no 

longer equal. In this thesis, the generalized equations of the induction machine in [25] are 

used to take cross-saturation into account. Here is the starting model in [7] 
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Vd 

Vqs 

0 

0 

where 

- r. +Lp L2p (L0 +L)p L28p - 

L2p i +LJp L23p (L0 —L2 )p 

(4, + L2)p L2p + (O,.L, 1 + LdP L2p + O),Lr 

L2p— COL , (4, —L2)p L2sPOJI,.Lr i. +LqrP 

1ds 

1qs 

1dr 

1qr 

(2-24) 

4, =(L+L,)/2 (2-25) 

L2= (L — L,,) / 2 (2-26) 

4, = L2 cos25 (2-27) 

= L2 sin 28 (2-28) 

L = dl,t,,,I (2-29) 
dIi 

7. A. (2-30) 
in, 

A.,,, = - magnetizing flux linkage (2-31) 

= i + 1,. - magnetizing current (2-32) 

L d, =  L, + (4, + L20) (2-33) 

Lqs = L + (4, - L2) (2-34) 

8 - the angle of magnetizing current vector to the reference axis 

Note that L is a dynamic inductance while L is a static inductance and the equations 

given above are in a static reference frame fixed on the stator. 
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In this saturated model of the induction machine, the currents are chosen as the state 

variables in order that the cross-saturation effect can be fully explained both physically 

and mathematically. In order to integrate the saturated model into the model presented in 

the previous section, rotor currents should be replaced by rotor fluxes. A unified main 

flux saturation model in d-q axis form of induction machines can be found in [25]. The 

model with stator currents and rotor fluxes as the state variables is as below [25] 

where 

where 

[Vdq]=: []d[Xdq] [B] [Xdq] 
dt 

{Vdq I = [Y. Vqs 0 

[Xdq 11= qs Ad, qrJ 

[A]= 

[B]= 

T2 ll L--- _±k. 

Ldd Ldq 
T2 ll 
Ldq 

0 

0 

T2 

Lqq 
0 

0 

1— L11 - 

Ldd Ldq 

- 1—s-
Ldq Lqq 
1 0 

0 1_ 

Co 

r 
— —!:- 
rL 

(2-35) 

(2-36) 

(2-37) 

(2-38) 

(2-39) 

L1 = L,5 + Lir (2-40) 

( 1   Ldd )=(1)cos25+(I) A sin25 
A  

(2-41) 
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(-_) = (-) cos2 8+ (-i-) sin 2 8 (2-42) 

(_-) = (.--') cos 8 sin 8 (2-43) 

sin5= Aq 

= /1. + 

= ''dr + Lir = (L17. + Lm )1drn 

i%q = 'tqr + Lirlqs = (Li, + Lm )qrn 

A==Lir+Lm 
jilt 

(2-44) 

(2-45) 

(2-46) 

(2-47) 

(2-48) 

(2-49) 

(2-50) 

Note that equations (2-29) and (2-30) are still applied in this model. In the derivation of 

the two saturated models, it is assumed that saturation affects only the main flux path. 

Therefore leakage fluxes L, and L1, are constant in this case. Actually these two saturated 

models are equivalent. The proof of the equivalence is presented in Appendix A. 

2.5 Bilinear Model of Induction Machines 

A bilinear state-space system representation is a nonlinear extension of a linear system. In 

this system the evolution of the state does not only depend on the input and state, but also 

on the product between the input and state [42]. With this extension a bilinear system is 
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more general than a linear system while less complex than general nonlinear systems, and 

is thus relatively easy to analyze. 

In simulations of an induction machine, the rotor velocity is normally taken as one of the 

state variables. Therefore combining equations (2-18) and (2-19) and rearranging, we can 

obtain the induction machine model as below 

0 

0 

0 

L4 

0 

L4 

0 

Tr 

- r t'qr 

rdr 

tp'1'rn Lr & (iqs;Ldr - 1ds'qr) - 

0 

0 

0 0 

Tr 

0 0 

This model structure can be expressed as follows 

x=Ax+F(x®x)+Bu 

y=Cx+Du 

+ 

0 

1  
0 

0 0 

0 0 

0 0 

(2-51) 

(2-52) 

(2-53) 
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where 0 denotes the Kronecker product whose definition will be presented in Chapter 4, 

x E IR is the state, u E IR" is the input including two stator voltages in d-q axes and 

y (=— IR' is the output. 

However we do not have an identification technology for this structure. Therefore the 

rotor velocity will be regarded as an input variable during the identification of the 

induction machine model, although it cannot be changed independently of other inputs. It 

is still practical since the rotor speed can be measured and stored for a period of time for 

the purpose of identification. 

The induction model (2-18) can then be changed into this form as follows by taking the 

rotor velocity as one of the input variables 

0 

0 

4. 
5, 

0 

C r2Uqr 

Lrdr 

0 

0 

0 

+ 

1 0 
1  

s4. LS 

0 0 

0 0 

(2-54) 
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By studying the model representation of the induction machine above, we can determine 

that bilinear models can be applied to represent the induction machine quite well if rotor 

velocity is taken as one input. Therefore the induction machine model can be described as 

a continuous-time bilinear system, expressed by the following two equations 

x=Ax+F(u®x)+Bu (2-55) 

y=Cx+Du (2-56) 

With thorough investigation of the induction machine model, we can show that the only 

non-linear term in the time derivative of the state contains the product of rotor velocity 

and the state. To simplify the analysis even further, linear parameter-varying (LPV) 

models [42] are applied to obtain simpler representation of the induction machine. 

The general LPV system can be represented as 

(2-57) 

y=Cx+Du (2-58) 

where E IRS is the time-varying parameter vector. 

The general LPV system can be easily modified to represent an induction machine model 

by setting 

A=4 

B=B0 

[A1,4,...,A5]=F 
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[Bl,B2,...,BS]=0 

C = O). 

Then equations (2-57) and (2-58) become 

x = Ax + FO)rX + Bu (2-59) 

y=Cx+Du (2-60) 

2.6 Chapter Summary 

In this chapter, induction machine models with and without saturation are reviewed from 

the literature [2, 25] and implemented in this project, while the LPV model of induction 

machines is developed in this thesis. In Chapter 5, these models are discretized for 

identification purposes and to assist implementation in the vector control of an induction 

machine using a microprocessor. 



Chapter 3 

Analysis of Field Orientation Control 

In this chapter we give an overview of field orientation control, including the principles 

of vector transformation, descriptions of the characteristics of field orientation control in 

both steady state and under transient conditions and two basic methods of implementing 

field orientation control. The advantages and disadvantages of the two implementations 

are presented and discussed. Especially the prime disadvantage of the indirect method, 

namely sensitivity to parameter variation, which provides the motivation of this thesis, is 

discussed. 

3.1 DC Machine Torque Control 

Before discussing field orientation control in an induction machine, it is worthwhile to 

first discuss the torque control principle used in DC machines. Indeed before field 

orientation control theory was established by Blaschke in the 1970s [6], DC machines 

dominated electromechanical systems requiring fast response and four quadrant operation 

with good performance near zero speed [1]. DC machines have a proportional 

relationship between the armature current and shaft torque providing a direct means of 

achieving torque control. 
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A DC machine consists of a stationary field structure and a rotating armature winding 

supplied through a commutator and brushes. The commutator is used to reverse the 

direction of the armature winding currents as the coils pass the brush position so that the 

armature current distribution is roughly fixed in space for any rotor position. 

Fig. 3.1 shows the steady state armature equivalent circuit and the spatial representation 

of field and armature currents. V is the armature terminal voltage and Ra is the armature 

resistance. As illustrated in Fig. 3.1, the field flux and armature magnetomotive force 

(mmf) are always in a mutually perpendicular orientation. This ensures that the field flux 

Ea =Køi(Or IF 

Armature 
rnmf(I) 

(b) 

  Field 
Flux (If) 

Figure 3.1 DC machine model; 
(a) armature model (b) spatial current representation 

is basically unaffected by the armature current. Two results come from the 

electromagnetic interaction between the field flux and the armature mmf. One is an 

induced voltage proportional to rotor velocity, given by 

Ea =Kvt)fU)r (3-1) 

Another is an electromagnetic torque proportional to the armature current given by 

KgøiIa (3-2) 
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In mks units, the proportionality constants are equal, i.e., K  =K=K . E is the emf . 

is the flux produced by the field winding located in the stator; co,, is the angular velocity 

of the rotor and 'a is armature current. The speed is normally adjusted by maintaining a 

fixed field flux while varying the armature voltage. Normally, adjustable torque operation 

in the DC machine can be obtained by controlling the armature current since with a 

constant field flux, the torque is almost directly proportional to armature current. A 

feedback current regulator is usually used to accomplish the torque adjustment. Hence the 

torque is proportional to the current reference. 

In the DC machine, the separate field excitation system ensures a constant value of the 

field flux and the commutator ensures the orthogonal spatial angle between the flux and 

the armature MMF. That makes torque control in a DC machine relatively easy. For 

induction machines, it is much more complex to achieve both a constant field flux and an 

orthogonal spatial angle betweeli the flux and armature MMF. Thus the control 

mechanisms are more difficult to understand than these in a DC motor. 

3.2 Vector Transformation in Induction Machine Torque Control 

3.2.1 Principle of vector transformation for induction machine field orientation 

control 

Neglecting friction terms, the basic electromechanical motion equation followed by all 

rotational electromechanical systems is 

till - tr = J rn th (3-3) 
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where tm is the electromagnetic torque 

tr is the load torque 

J is the inertia coefficient 

ci is the angular acceleration 

From the above equation, we can see that controlling the dynamic performance of a 

system requires controlling the dynamic torque of that system (tm - tr )• In cases where 

the characteristics of tr are known, the problem becomes controlling electromagnetic 

torque tm 

The electromagnetic torque of an induction machine is 

t. = KtAaIr cos q (3-4) 

where K, is the torque constant 

Ia is the air gap flux linkage 

I, is the rotor current 

cos car is the power factor of rotor circuit 

Since the air gap flux linkage is generated by the excitation current 

I. = I + Ii,. (35) 

where I is the stator current 

Ir is the rotor current transformed to stator circuit 

Ia is not independent of I,.. Therefore these two variables cannot be controlled 

independently. Moreover both the air gap flux linkage, A, and the rotor current, Ir are 
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generated essentially by the stator. That means two variables have to be controlled within 

a single control loop. In this case, the two control processes influence each other, causing 

system oscillation or lengthening dynamic response time. In addition, stator currents can 

be denoted by time vectors while the air gap flux linkage is a rotating space vector. Since 

a vector has both magnitude and angle components, both must be controlled. In order to 

improve the dynamic performance of an induction machine, it is useful to transform the 

controlled variables from vectors to scalars first. Then the same method of torque control 

used in a DC motor can be applied to control torque in an induction machine. Among the 

principles of an induction machine, the generation of rotating flux linkage is the most 

important. Thus any transformation of stator currents has to be based on such a condition 

that it generates an identical rotating flux linkage. The three phase stator windings of an 

induction machine can be abstracted into static a-b-c coordinates. Applying three-phase 

sinusoidal AC currents distributed symmetrically in time, i, i and i,, we can obtain a 

rotating flux linkage with the same angular velocity as the AC currents co = 2J, 

displayed in Figure 3.2 (a), (d). 

Similarly two-phase stator windings d and q, with a phase difference of 90 degree in 

space, can also be abstracted into static d-q coordinates, applying two phases of 

sinusoidal AC current with a phase difference of 90 degrees, i.e., i , 1, to generate a 

rotating flux linkage as in Figure 3.2 (b), (e). If the two sets of windings generate exactly 

the same rotating flux linkages 2, they can be called equivalent windings. 
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In Figure 3.2 (c), (f), two orthogonal windings M and T are supplied with DC currents 

'Ms' 'Ts respectively, so that they generate a flux linkage, 2, that is static relative to the 

windings. If the windings M and T rotate at the synchronous velocity o = 2xf, then the 

flux linkage A, will also rotate at the synchronous velocity. The windings M and T are 

normally abstracted to the M-T coordinate system. As long as 2 is the same as 2, the 

rotating DC windings M-T are equivalent to the static AC windings. 

In terms of generating the rotating flux linkage, the three sets of windings in Figure 3.2 

are equivalent. Therefore there must be a relationship between the AC currents 

1as 1bs' j and i, i and DC currents 'Me' 'Ts so that they all generate the same rotating 

h 

(a) 

(d) 

(b) (c) 

I 

O)5t 

(e) (f) 

Figure 3.2 static 3-phase AC, static 2-phase AC and rotating DC 
equivalent windings 

O)5t 
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flux linkage. The relationship is called the vector transformation. In other words, for a 

given L, 1bs' ç, there must be a corresponding i , i and an 'Ms' 'Ts that all generate the qs 

same rotating flux linkage and vice versa. Hence 'Ms' IT, can be controlled completely 

through ç , 1bs' 'cs• 

In Figure 3.2 (c), the flux linkage A is generated only by the current 'Ms in M-T 

coordinates if we align the direction of 2 with the M-axis of the M-T coordinate system. 

IT, is only responsible for the generation of electromagnetic torque. Therefore in M-T 

coordinates, the induction machine is made equivalent to the DC motor where the M 

winding acts as the excitation winding in the DC motor and the T winding acts as the 

armature winding. The control of electromagnetic torque can be achieved by controlling 

the equivalent scalars, i.e. DC currents 'Ms"Ts through the vector transformation from 

'."b,"". In order to complete the transformation from i , i1, i to 'Ms' 'Ts for control 

purposes and further to transform the adjusted IMS,ITSback to 1as'1bs'1c to drive the 

induction machine, a coordinate transformation of vector quantities and the 

corresponding inverse transformation have to be utilized. That is why this kind of control 

system is called vector control. Normally in the coordinate transformation, the direction 

of rotor flux linkage, A,, is used as the M-axis of the rotating M-T coordinate system. In 

this coordinate system, equivalent stator currents comprise two orthogonal DC currents. 

One is the excitation current, 'Ms' aligned with the direction of rotor flux linkage, A,.. 
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The other is the torque current, IT,, perpendicular to 'Ms• Hence this control method is 

also called field-orientation vector control or simply vector control. 

3.2.2 Coordinate Transformation 

As indicated in section 2.3, the d-q axes, or two-axis, theory is normally used for 

dynamic modeling and analysis of an induction machine with a balanced three-phase 

supply. Actually all the models presented in Chapter 2 are based on the d-q axis theory. 

In this theory, variables and parameters are expressed in orthogonal axes with direct (d) 

and quadrature (q) components in either stationary or rotating reference frames. In the 

stationary reference frame the d-q axes are fixed on the stator and denoted as d and q 

respectively. For rotating cases, normally the speed is chosen the same as the rotor 

magnetic field to transform the AC variables in the stationary reference into DC ones (for 

steady state) and thus simplify the model of the induction machine. This synchronous 

rotating reference frame is the same as the M-T coordinates presented in section 3.2.1. In 

this frame, d-q axes are commonly denoted by d and q6. 

In this section, the principles of coordinate transformation are presented, including the 

transformation from three-phase coordinates, a-b-c, to two-phase coordinates, d-q, which 

are stationary with respect to the a-b-c system and the transformation from stationary d-q 

coordinates to synchronous rotating d-q coordinates, de , qC• 



(a) 
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3.2.3 Transformations between different coordinates 

The phasor (time-vector) diagrams of the three-phase and two-phase systems are shown 

in Fig. 3.3, while the space vector diagrams and windings are shown in Fig. 3.4 

According to the principle of rotating magnetic field generation in induction machines, 

the phase sequences of the a-b-c and d-q currents should be a, b, c and d, q respectively 

as in Fig. 3.3 if counterclockwise rotating magnetic fields are to be established, i.e. from 

winding a to b in Fig.3.4 (a) and from winding d to q in Fig. 3.4 (b). 

(b) 

Fig. 3.3 (a) Three-phase (b) two-phase phasor diagrams 

Let the a-phase winding axis be coincident with the d-phase winding axis as in Fig. 3.4. 

The principle of variable transformation is illustrated further in Fig. 3.5. Assuming that 

axes a and d have zero initial inclination when t = 0, the mathematical transformation for 

stator currents between three-phase coordinates a-b-c and the d-q two-phase frame fixed 

on the stator is given by 

'dqs = (3-6) 
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Where 

'dqs = [ds'qs] T 

r . . 

1 abcs L1ag' 1bs' 1cj 

T = 2 [1 cos(j) cos()1 

[o sin() sin() j 

or conversely 

where 

'abcs = T1 'dqs 

_l O 

= cos(2f) sin(2f) 

cos() sin() 

C 

(a) (b) 

Fig. 3.4 (a) Three-phase (b) two-phase space v ector diagrams 

(3-7) 

(3-8) 

(3-9) 
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Transformation from stationary two-phase d-q to synchronous frame d - q C 

The transformation between the d-q frame and d8 - q' synchronous one is given by [48] 

where 

re r r 
dqs - ''e dqs 

re -•e •e 1T 
2 dqs L1& 1qsi 

'dqs = Rfs,jqs]T 

Ce= 

or conversely 

[cos7 Sinq 

[—sinq cosp 

T —C' T° 
dqs - "e dqs 

a-axis d-axis 

Fig. 3.5 The principle of variable transformations 

(3-10) 

(3-11) 

(3-12) 
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where 

-1 [cos —sin•o] 

[sinp cos  

and is the instantaneous angle of the d6 - axis with respect to the d-axis. 

(3-13) 

Therefore the most important aspect of the transformation from the stationary two-phase 

d-q to the synchronous frame, de - q, is to find the parameter . In field orientation 

control of induction machines discussed in the next section, P is the direction of the rotor 

flux. 

3.3 Field Orientation Control 

3.3.1 Principle of Induction Machine Field Orientation Control 

As stated previously, with the help of vector transformation from a stationary reference 

frame to a rotating reference frame, stator currents are decoupled into two orthogonal 

components: the torque component and the magnetizing component. Then the torque can 

be controlled in proportion to the torque component of the stator current while keeping 

the flux constant. The principle of field-orientation control of induction machines can be 

interpreted further .by examining the equivalent circuit and phasor diagram, c.f. Fig. 3-6 

and Fig. 3-7. 

The three-phase stator current of an induction machine is represented by a phasor I. It is 

decoupled into two orthogonal components: torque current 'T and magnetizing current 
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as shown in the equivalent circuit in Fig. 3.6. In the equivalent circuit, 'M is 

transformed to the part of the stator current that is responsible for the generation of rotor 

flux. That is why there are some parameters in addition to the magnetizing inductance 

and rotor resistance. 

For field orientation control of an induction machine, normally the magnetizing current 

'M is maintained constant to keep the rotor flux constant. The torque current IT is 

controlled according to the torque requirement. In the stator current phasor diagram in 

Fig. 3.7, I corresponds to a small torque while I corresponds to a large one. 

As a consequence of the fact that the voltage across the magnetizing reactance and the 

voltage across the equivalent rotor resistance are equal (see Fig. 3.6), the following 

equation can be obtained. 

L2 
0Js nt r'M 7f 7'T 

where s is the slip 

+ 

is 

V, jO) 

2 
"I 

r,. 

Ls 

Fig. 3.6 Induction Machine Equivalent Circuit Without Rotor Leakage Flux 

(3-14) 
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s2 

d-axis 

Fig. 3.7 Phasor Diagram Showing Torque and Magnetizing Components of 
Stator Current 

Thus the slip angular frequency is 

= SO) = r  

L,J 
(3-15) 

For an induction machine the stator current and the slip frequency determine the torque 

completely and the current components I. and 'M specify both rotor flux and torque. 

Once IT and 'M are chosen, the corresponding slip frequency is determined so as to 

yield the proper torque and flux. This is the basis of field orientation control of an 

induction machine and is discussed in more detail next. 

The technique discussed above is a means of steady state control. The same concepts can 

also be applied for transient conditions. In order to analyze the transient conditions of an 

induction machine, a two-axis model in the synchronous reference frame rotating at a 
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speed corresponding to the stator excitation frequency, cog, is obtained by the appropriate 

coordinate transformations, discussed in section 3.2, as follows. The superscript e is used 

to denote the variables in the synchronous reference frame [32]. 

V(3 = ri7 + p,%ed - 

e - __ 

Vqs - rslqs Ptqs m 

0=i;4+P2ir-W Je s1''qr 

o = 7 .lqr + P'2r + s1''dr 

ds = Li sds + Ln:1r 

Lqs - - LS 1 S +L iqer 

dr - LJi + Lr1r - 

''qr = Li S + Lri:r 

3 •e 
qs 

ni 2 P Lr dr - 12q,) 

(3-16) 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

(3-24) 

In field orientation control of an induction machine, the stator currents should be oriented 

in phase and in quadrature with the rotor flux linkage. This is accomplished by choosing 

o.. to be the instantaneous speed of the rotor flux linkage and fixing the phase of the 

reference system so that the rotor flux linkage is completely along the d-axis. As a result, 

A,eqr = 0 (3-25) 

Applying (3-25) in (3-16) to (3-23), the following equations can be obtained for field 

orientation control of an induction machine in the synchronous reference frame 
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(l+v,.p)P  
I 

Lr 1 e =  dr'1r,  
1qs = r qr 

Lm 

AdrP - 

tdr - r,. 

le 
- dr 

'qr "'.i1 
rr 

e e 
tin =PqsJ1dr 

L r 

The slip angular frequency can be represented with the stator currents 

e  Li = - l+1:•rP . 

/tdr Tr 1ds 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

(3-30) 

(3-31) 

Based on these equations, the torque production in field orientation control of induction 

machine is illustrated in Fig. 3.8. 

1ds 

- Lrje 
qs - qr 

x 
3 L. 

2 L 

Fig. 3.8 Torque Production For Field Orientation in Terms of Currents 
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3.3.2 Implementation of Field Orientation Control in Induction Machines 

As indicated above, the implementation of field orientation control for induction 

machines can be carried out starting with a vector transformation provided the angle of 

the rotor flux is known. There are two basic approaches to obtain the flux magnitude and 

the angle Of namely 

1) The direct method where the rotor flux linkage is determined with direct magnetic 

field measurements. 

2) The indirect method where the rotor flux linkage is calculated using the slip 

relation in field orientation control. 

Direct Field Orientation Control 

For direct field orientation control, the magnitude and direction of rotor flux linkages are 

determined by sensing the air gap flux density, B', with flux sensing coils or Hall 

elements as shown in Fig. 3-9 [1]. 

In Fig. 3-9, the asterisk is used to denote the command variables. In this thesis, PT 

controllers are normally applied for the speed or torque controller as well as the field flux 

controller [28]. The vector transformation block has been introduced in section 3.2. Many 

kinds of inverter are available such as the Voltage Source Inverter (VS I) and the Current 

Source Inverter (CSI) [29]. In the flux calculation block, a correction for rotor leakage 
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flux is carried out following equations (3-32) and (3-33) below, which were obtained 

from equations (2-13) to (2-16) and (2-31), (2-32). 

—L dr - - Lfr1 

2 qr £qnz hhlrZqs 
L  

(3-32) 

(3-33) 

In principle the direct method is inherently the most desirable control scheme since it 

uses feedback control and direct sensing of the regulated variable, hence it is essentially 

insensitive to variations in machine parameters. The only machine parameters required 

are the rotor leakage inductance, Ljr, which is essentially a constant value independent of 

temperature or flux level, and L,. 11m which is only moderately affected by saturation of 

the main flux paths in the machine. However this method suffers from high cost and 
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Fig. 3.9 Block diagram of direct field orientation control 
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the unreliability of the flux measurement. Moreover the special mechanical work required 

to place the sensing element in the machine makes the approach even more impractical 

[29]. 

Indirect Field Orientation Control 

Indirect field orientation control utilizes the slip relation (3-31) as part of the controller 

and does not require a direct measurement of the rotor field. That means satisfying the 

slip relation is a necessary and sufficient condition to produce field orientation, i.e. if the 

slip relation is satisfied, ij must be aligned with the rotor flux. 

Fig. 3.10 illustrates the slip relation in block diagram form. Note that the figure is for 

transient conditions and in steady state the diagram agrees with the steady state form of 

the slip relation given in equation (3-15). The block diagram of the indirect method is 

shown in Fig. 3.11. 

(torque command 

ur command) 

rr 

Fig. 3.10 Slip Calculator For Indirect Field Orientation Control 
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Fig.3.11 Block diagram of indirect field orientation control 
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The torque controller block and the field flux controller block in Fig. 3.11 are the torque 

and flux regulating loops that are the optional parts of the control system. Sometimes the 

torque regulating loop can be replaced by the speed loop, in which case the rotor velocity, 

co, will be needed as a feedback signal to compare it with the command speed. If an 

open loop approach is used to control an induction machine, then the torque and flux 

feedback are not required. Models of field orientation control with open loop control and 

with closed loop control of rotor speed are given in Appendix B. 

In the slip calculator of Fig. 3. 10, the major limitation of indirect field orientation control 

is clearly illustrated. The rotor time constant ,. = L,. / r directly affects the computed 

slip. If values of Lr / i, used to compute the slip are different from the actual ones, the 

resulting slip will be in error and correct field orientation will not be achieved. 

Unfortunately motor parameters change widely with temperature, frequency and current 

amplitude, especially the resistances, which vary dramatically with temperature. 

Consequently the control gains are not set accurately, leading to saturation or 

underexcitation of the induction machine [13]. Thus the dynamic performance of the 

machine will deteriorate. 

Much effort has been put into parameter identification methods for induction machines 

[3,8,13,14,18,19,20,21,30,36], basically focusing on identifying the resistances of the 

stator or rotor, or identifying the rotor time constant, rr. Many methods were introduced 

to update the identified parameters in field orientation control and so to improve dynamic 
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performance. In this thesis, a novel approach is introduced to identify rotor flux using 

subspace identification methods [16]. The background on subspace identification is 

given in the next chapter. 

Field Orientation Control Using Voltage as the Controlled Variable 

Since the induction machine model that is used in this thesis employs the stator voltage 

equations and indirectly controls the currents by controlling induction machine terminal 

voltages, the voltage equations will be decoupled in order to use voltage as the control 

variable. 

Rewriting the stator equations given in (3-16) and (3-17) to represent them in terms of 

rotor flux, and solving the equations from (3-20) to (3-23) yields 

2 =(L----)z Lr " +L2dr = 'sds 

2 =(L —)i 1s1s 

Then the stator voltage equations in terms of rotor flux linkages are 

(3-34) 

(3-35) 

Ve =(i +]p)i + L. Pi%j —a)5(Lç +&)Leqr) (3-36) 
Lr Lr  

v = (i +4p) i + w8(3i +A r) (337) 
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Now new voltage variables are defined to relate the currents directly in the following 

equations 

V&  (r + 4p) i = - + cv (1 s e + 
Lr Ad,  sqLr qr 

V e =(i +4p)i; =v —Lp2 — co(.4i + e L. !!I le r) 

(3-38) 

(3-39) 

Referring to equations (3-3 8) and (3-3 9), the "primed" voltages can be obtained through a 

PT controller as long as the command currents are known. Then the stator voltages are 

derived from equations (3-38) and (3-39) to control the stator currents as commanded. 

For a field orientation system, the decoupling equations become simpler since Xv=0 

and the equations are as follows 

V +4p)i V P'r +coi; (3-40) 

V e =(r +Ip)i =v — cv3(L.i +!L:r) (3-41) 

A diagram incorporating stator voltage decoupling is given in Fig. 3-12 to provide "a big 

picture". that illustrates where the decoupling is implemented in the field orientation 

control scheme. In the MatLab Simulink models provided in Apendix B, the decoupling 

is completed primarily within S-functions. 
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Fig.3.12 Block diagram of indirect field orientation control with stator voltage decoupling 
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3.4 Chapter Summary 

In this chapter, the principle of FOC is introduced first. Two basic methods of 

implementing FOC are presented, illustrating the advantages and the disadvantages of 

both methods. The disadvantage of the indirect method, sensitivity to variations of 

induction machine parameters, provides the motivation of identifying the rotor flux with 

a subspace identification method that will be introduced in the next chapter. 



Chapter 4 

System Identification 

In this chapter we start by presenting an overview of system identification. Then the basic 

principles of subspace model identification are discussed to provide a basis for 

discussions on identification of linear parameter-varying systems. Our work, presented in 

the following chapters makes use of the linear parameter-varying representation. 

4.1 Introduction 

Many engineering applications require an accurate model to describe the dynamic 

behavior of the system under consideration, especially for applications that employ 

automatic control. The fundamental approach to find a model is to derive it from physical 

principles. Naturally, in depth knowledge from one or more specialists is required, 

sometimes resulting in extremely complicated models, which may or may not be 

practical. Aside from the sophistication of the required model, in the case of a novel 

application a time consuming investigative procedure may be necessary. However in 

some cases, particularly for large systems with poorly understood components and/or 

varying parameters, it may be practically impossible to obtain a model only based on 

analysis of the fundamental principles. 
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Another way to develop a model is through system identification, as defined in Chapter 1 

[9,26]. The aim of system identification is to directly estimate the model of the system 

under consideration based on input and output data. Although physical principles are not 

necessarily used directly to model the system, fundamental principles are still very 

important for selecting the appropriate inputs to generate required measurements and for 

model selection and model validation. 

Normally four steps are involved in system identification [26]. First, a set of candidate 

models is selected within which it is expected that at least one will be suitable. Second, 

appropriate inputs are designed to excite the dynamic behavior of the system to be 

modeled. Then input and output signals are recorded from identification experiments 

carried out with the selected inputs. In the third step, an identification method is selected 

to estimate the parameters. The evaluation of model quality is based on how well the 

models are able to reproduce the recorded data. Finally the validity of the identified 

models is assessed in terms of how the models relate to the measured data, prior 

knowledge and their intended use. A separate data set from the one used for identification 

should be employed for the validation purpose. If the models first obtained do not pass 

the model validation tests, the procedure has to be repeated with revision of various steps 

until a model or models that meet the specified criteria are found. 

In many engineering applications, linear time-invariant models often provide acceptable 

accuracy. Therefore a considerable body of theory has been developed for the 
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identification of linear systems. In particular two methods are popular. One is known as 

the Prediction-Error Method (PEM), and is based on parameter optimization in a 

maximum likelihood framework [26]. The prediction of 9(k) at time step k-i is the 

minimum variance estimate of the outputy(k) based on the (unknown) model parameters, 

the present input u(k), the past values of the input u(f) and the output y(f) for j <k. The 

prediction error is the difference between the measured output and that predicted by the 

model y(k) - 9(k). The prediction error is used to create a cost-function, which is then 

minimized by tuning the model parameters. 

The other popular method, recently developed, is Subspace Model Identification 

[16,45,46,47] which is based on the state space realization algorithm developed first by 

Kalman and Ho [17] and later improved by Kung [22] who incorporated the Singular 

Value Decomposition (SVD). In subspace model identification, the order of the target 

system can be obtained with much more ease than in the PEM framework. No explicit 

cost-function needs to be optimized and the solution is based on geometrical properties of 

signal spaces. An overview of MIMO Output-Error State Space (MOBSP), one of the 

subspace model identification algorithms, will be presented to provide some background 

about subspace model identification algorithms. More details can be found elsewhere 

[16]. 

Although linear models have many advantages, they still have their limitations since most 

real systems involve nonlinear characteristics. Reviewing the model of an induction 
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machine as given by (2-5 1), we can obviously see a nonlinear term involving the product 

of rotor speed and rotor flux. Therefore identification methods for nonlinear systems have 

to be used to identify rotor fluxes directly. An identification algorithm for bilinear 

systems is introduced in Section 4.3 [42], but first some background on subspace model 

identification is needed. 

4.2 Subspace Model Identification 

In this section, a subspace model identification algorithm, known as MIMO Output-Error 

State Space (MOESP), is presented [45]. The advantage of the MOESP algorithm is that 

it can be applied to a wide variety of models in a unified manner. First, the state space 

realization algorithm that is the basis of MOESP is illustrated. Then the ordinary MOESP 

approach, denoted OM-MOESP, is explained. 

State Space Realization Algorithm 

This algorithm is used to construct a minimal state space model from a given impulse 

response. In the algorithm, no particular parameterization of the state space model is 

used, and no optimization of a parametric model is needed. Instead it uses geometrical 

properties of the system and specially structured of matrices, to obtain a model. 

The state space realization problem can be defined as follows. 

Consider a linear system described by the following state space equations [4] 
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x(k+l)=Ax(k)±Bu(k) (4-1) 

y(k) = Cx(k) + Du(k) (4-2) 

with x(k) E R' , y(k) E R1 and u(k) E Rm. The system matrices A, B, C and D are of 

appropriate dimensions. A set of impulse response parameters Lk E R'', k E [O,2i —1] is 

assumed to be available. The parameter i equals the number of block rows in the Hankel 

Matrix M defined from Lk. This parameter should be larger than the system order n. 

L(l) L(2) ... L(i) - 

L(2) L(3) ... L(i + 1) 
(4-3) 

L(i) L(i+l) ... L(2i-1) 

The state space realization problem is to calculate the system order, n, and the system 

matrices, AT, BT,CT and DT, where the additional subscript T refers to the determination 

of the system matrices up to a similarity transformation that does not alter the input 

output behavior of the system. 

According to Theorem 2.1 in [16], two results can be obtained 

1. The minimal order, n, of the system is equal to rank(M,). 

2. M can be factored into 

(4-4) 

with 
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CT 

CT4 

CT4 

= ATBT A'-1B T} 

which are the extended observability matrix and the extended controllability matrix of an 

equivalent state space description, respectively. The factorization of M 1 can be 

performed through singular value decomposition. 

If matrices r' and 'T' T are calculated, the state space matrices can be extracted from 

them. First Construct U1 from the top (i 1)*l rows of FT and U2 from the lower (i 1)*l 

rows. Then the matrix AT can be obtained with linear regression as follows. 

So 

or 

CT 

CT4 
4= 

CT4 

CTA2 

AT =(UTU1)-'UTU2 

or U1AT =U2 (4-5) 

(4-6) 

4=U1\U2 (4-7) 

where \ is the notation used by MATLAB to denote multiplication by the pseudo inverse 

(4-6). Then the matrix BT is read from the first m columns of 'P2 , C corresponds to 

the upper 1 rows of r'T, and DT is equal to L(0). 
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Ordinary MOESP Algorithm 

This algorithm identifies the state space matrices of a system from measurements of its 

inputs and outputs rather than through the use of the impulse response as employed in the 

state space realization algorithm. Although in practice measurements are always 

contaminated with noise, we present the identification problem in the noise-free case to 

illustrate the basic principle of the MOESP family of subspace identification algorithms. 

More elaborate identification problems are discussed elsewhere [16,47]. 

The noise-free identification problem is illustrated through reference to Fig. 4.1. Suppose 

the input and output data-set, {u(7ç), y(k)), k [O,N —1] with u(k) E R 2 and 

y(k) E R' of a system described by the state space equations (4-1) and (4-2) are known. 

Assume that the system is minimal and stable and that the number of samples is much 

larger than the order of the system (N >> n). Also assiune that the input is persistently 

exciting of sufficient order to permit the identification [16]. 

u(k)   A,B,C,D • y(k) 

Fig. 4.1 Schematic representation of the noise-free model 

As in the state space realization problem, the noise-free identification problem includes 

calculating the system order, n, and the system matrices AT, BT, CT and DT, where the 
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additional index T refers to the determination of the system matrices up to a similarity 

transformation. 

As indicated above, the number of samples of input and output is N 1, with u(k) E R 3, 

k E [O,N 1 —1]. The output of the system can be represented as follows 

y(0) = Cx(0) + Du(0) 

y(l) = Cx(1) + Du(l) 

= CAx(0) + CBu(0) + Du(l) 

y(2) = CA2x(0) + CABu(0) + CBu(1) + Du(2) 

y(k) = CAcx(0) + CAc_lBu(0) + . .. + CBu(k —1) + Du(k) 

With N = N, - i +1 this can be transformed into the following matrix form 

y(0) y(l) ••• y(N—l) 

y(l) y(2) ... y(N) 

y(i—l) y(i) y(N+i -2) 

+ 

C 

CA 

CA' 

[x(0) x(l) • x(N - l)J 

D 0 0 - u(0) u(l) ... u(N —1) - 

GB D 0 u(l) u(2) u(N) 

CA'-2B CA'-'B ••• D u(i —1) u(i) u(N + 1-2) 

(4-8) 

(4-9) 

This equation is called the data equation, and relates all the measured data in one 

equation. The input and output matrices are again Hankel matrices. A shorthand notation 

is normally used to represent a Hankel matrix. Take the Hankel matrix constructed from 

the outputy(k) as an example. 
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= 

- y(i) y(i+1) ••• y(i+N—l) - 

y(i+l) y(i+2) ••• y(i+N) 

y(i+j-1) y(i+j) ••• y(i+j+N-2) 

where the three subscripts of ijN denote 

i - the index in the left upper entry of Y  

j - the number of rows 

N -  the number of columns 

A two-subscript notation is used to denote a row-vector constructed from x(lc). 

X,,N={x(i) (i+1) (i+N-1)] 

where i - the starting index 

N— the length of vector 

The data equation (4-9) can be transformed into a condensed form as 

= + 

where 

r= 

C D 0 0 

CA GB D ... 0 
and H, = 

CA'-2B CA'-'B - - - D 

(4-10) 

(4-11) 

(4-12) 

(4-13) 

The initial goal of the identification is to estimate the state space matrices A and C. From 

the state space realization algorithm introduced above, we know that the matrices A and 

C are easily estimated as long as the matrix 1', is known. 
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In the data equation (4-12), there are two terms required to construct the output of a 

system. The past input is accumulated in the state of the system. Both the state and the 

present input build up corresponding vector spaces. These two vector spaces form the 

output vector space in a particular way characterized by the target system. The process of 

subspace identification is to find that particular combination in terms of the state space 

matrices. MOESP tries to find the mapping from the state to the output, i.e. matrices A 

and C. Therefore the second term in the data equation (4-12), which is the contribution to 

the output from the input, has to be eliminated first. 

In order to remove the input term from the output, a method called orthogonal projection 

is used. It involves the right multiplication of the output with an orthogonal projection 

matrix, 11,0 that projects the output onto the orthogonal complement of UO IN . 

The orthogonal projection matrix can be determined by 

ri-I-
1-lu 

- T TT' (IT ITT 'c 1TT 
- •' "O,i,Nk"O,i,N'-'O,i,N) 'O,I,N 

(4-14) 

Obviously UO,iN11OIW =0. 

In order to , insure that exists, U0JNU,N has to be full rank. This will be 

guaranteed if the input is persistently exciting of order I or greater [16]. 

V i-i.1 
Y O, i,N I IUO,I,N 

TT.L A 
'-' O,i,N 

= IXoN IT -  Uogw  170,i,N 

Fig. 4.2 Orthogonal Projection of the output 
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After the orthogonal projection onto the output, we obtain 

v rn- —r'v rn-
1 0,i,N 11u01 , - 1 i'O,Nl IUOIN 

from which I can be obtained from the column-space. 

Actually the orthogonal projection can also be done by QR factorization as follows 

- fRII 0 ]IQ,] 
Yi, l-  [R2,R22 Q2 

(4-15) 

(4-16) 

where Uo,I,N E RflI<N and YO,j,jv € R1 '. Q1 is of the same size as Uo,,,N and Q2 as O,i,N• 

Correspondingly, R11 E R I", R21 c= R"><" and R22 E= Rhixhi. 

According to Theorem 2.2 in [16], with the QR factorization (4-16), the following holds 

R22 = I-XO,NQr 

Then performing the singular value decomposition on R22 , we obtain 

(4-17) 

R22 —UZVT (4-18) 

The number of non-zero singular values is the order of the system, n. The column-space 

of R22 is equal to the first n columns of U, which is equivalent to r', in the state space 

realization algorithm. Therefore 4 and C. can be calculated in a similar manner. 

Construct U1 from the top (1 1)*l rows of rT and U2 from the lower (i 1)*l rows. 

Then, 

CT = the upper lrows of IFT 

4 =U1 \U2 
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Unfortunately, due to the ,influence of the input term in (4-12), BT and DT cannot be 

found directly as in the state space realization algorithm. Therefore new methods need to 

be developed to do that. Here only the method to estimate BT, DT and the initial state for 

the noise-free identification problem will be introduced, while other details are found in 

[l6]. 

The output y(k) of a system described by (4-1) and (4-2) can be rewritten as 

k-I 
y(k) = CAcx(0) + Y, CA Bu(r) + Du(k) (4-19) 

Let 0 denote the Kronecker product of a matrix E R PX and 'P E R ><", defined as 

011'P 012'P ØJ'I' 

021'P 22'P  :" 02'P 

ø'P 

(4-20) 

and let vec() denote the vector containing the columns of the matrix () on top of each 

other. Using this notation, (4-19) becomes 

k-I 

y(k) = CAkx(0) + [Zu()T 0 CA I vec(B) + u(k)T 0 Ij]vec(D) (4-21) 

If the following matrices are defined 

y(0) 

Y(l) 
170,N,1 = 

y(N-1) 

C 

CA 

CAN-1 

(4-22) 
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p= 

0 

u(0)T®C 

N-2 u(i)T ®CAN_2 

17= 

u(0)T®I1 - 

u(1)T Oh 

u(N_1)T ®1 

13 = vec(B) 8 = vec(D) 

then (4-21) can be rewritten as 

xo 

= [r P 17] 8 
-16-

(4-23) 

(4-24) 

Then the coefficients of B, D and x0 can be calculated by solving (4-24) as a linear 

regression: 

xo 

,8 

S 

[TN P (4-25) 

In practice, the true values of matrices A and C are not available. Therefore only their 

estimates, AT and Ô, can be used to estimate the matrices hT and 15T and .io 71 to within 

the same similarity transformation as AT and CT . 

The subspace identification algorithms have been implemented in the toolbox SMI2.0 by 

B. Haverhamp [16]. In section 7.1, SMI2.0 is used to verify the model of induction 

machines. 
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4.3 LPV State Space System Identification 

As shown in sections 2.3-2.5, nonlinearities are involved in models of induction 

machines. Therefore identification algorithms for nonlinear systems have to be used to 

identify rotor fluxes directly either with PEM methods and or with subspace 

identification methods. There are two approaches to determine the structure of a 

nonlinear model. The first approach is to choose a relatively simple structure for which 

the corresponding identification method is computationally attractive. However, this 

represents a limited class of nonlinear systems due to its simple structure. Linear models, 

bilinear models, Hammerstein models and Wiener models are examples of this approach. 

The second approach is to choose the model structure that can represent a large class of 

nonlinear systems. The disadvantage is that the corresponding identification algorithms 

are complicated. Examples of this approach are sigmoidal neural networks, radial basis 

function networks, local linear model structures, Takagi-Sugeno fuzzy models and 

hinging hyperplanes models. Reviewing the model structure of the induction machine, we 

choose a bilinear state space model to identify rotor fluxes directly. Since bilinear 

systems are one kind of multivariable linear parameter-varying (LPV) system, subspace 

identification of an LPV system will be presented first. 

4.3.1 Introduction to Subspace Identification of LPV Models 

A linear parameter-varying (LPV) system can be described by state equations with the 

following structure [43], that is an extension of the state space model in innovation form 

Xk+j 1CkOxk] k0 uk] Xk +B' Uk + K1 ekLC LCk®ek] (4-26) 
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Yk =Cxk+Duk+ek (4-27) 

where ® denotes the Kronecker product, Xk E R' represents the unknown state, 

Uk E is the input, Yk c- R' is the output, Ck E RS is the time-varying parameter 

vector (s is the number of the elements in the time-varying parameter vector) and 

ek E R' is a white noise disturbance signal that is independent of Uk and Ck . The 

identification objective is to determine the matrices A, B, C, D and K given measurements 

of the input Uk, the output Yk and the parameter vector Ck - 

It can be seen that by taking the parameter vector k equal to the input Uk and setting all 

columns of the matrix B to zero except the first m columns, the LPV model (4-26) and 

(4-27) will become a bilinear system model. Therefore the LPV identification method 

presented below is easily modified for the identification of a bilinear system. 

A major problem with subspace identification methods for both bilinear and LPV systems 

is the huge dimension of the data matrices involved. The number of rows in the data 

matrices grows exponentially with the order of the system. In [42], an approach that 

selected a subset of the most dominant rows from the data matrices was introduced to 

solve the dimensionality problem. In this way the identified LPV model is an 

approximate one. Then a nonlinear optimization algorithm can be applied to improve the 

initial model estimate provided by subspace identification of the LPV system. In section 

4.3.2, subspace identification of an LPV system is presented 
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4.3.2 LPV Subspace Identification Method 

The following matrix partitions need to be defined before further derivation [42] 

A={4,A1,A2, ... A] 

B= [B0, B1, B2,• 

K[K0,K1,K2,• .•K] 

4=4 —K1C, B1 :=B1—K1D 

where A,B,C,D,K are the matrices used in (4-26) and (4-27), B1 e RXmn , K1 E R' <' for i 

0'1,2,..., S. 

The Khatri-Rao product; denoted by the symbol, G, will be used extensively in the 

derivation. It is a column-wise Kronecker product for two matrices that have an equal 

number of columns. Let M E R Pq and NE R q be two matrices, then the Khatri-Rao 

product of them equals 

M Q N = { m ® n1 m2 ® n2 mq ® flq ] (4-28) 

where mand n (i = 1,2, ..., q) are the columns of the matrices M and N respectively. 
More matrix partitions are defined below [44] 

P k 
1- 1 1 DSXN 

k Lk k-f1 k+N_1iE .L 

Xk := [xk Xk+1 Xk+N_1 ] e 
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Xk,JU Xj_1 1 E R( 1) ')nxN 

Q X•j_1 ] 

:= [Yk Yk+1 Yk+N_1IE Rlx'v 

Yj, :=[p Rl)lxN j 9  j] E= 

k+jLi := 

k+j - 

'k+j D k+J E R1)'_1)1+1)1<N 

Yk+f—Ill 

F'k+J 0 k+f—II] - 

The matrices Uk and Ek are defined similarly to Yk while 

similarly to Note that the recursion in the definition 

Ek+JIJ leads to very large matrices whose rows increase e 

the system. Also, 

R8 

Yk+J 1 
7k+JL/ IER' 

Ii+i-L j 

P jU 
E RSXN 

-1'k+jli : 

i—ll) 

'k+j,1 0 f—If 

k+j,s 

'k+f,s 0 1 + - 

E R(+1'_1)><1v' 

Uk+f , and Ek+f , are defined 

s of Xk+JU, k+jj' Uk+f 1/ and 

xponentially with the order of 
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where P1, denotes the ith row of P,. Then the relation between Xk+JL, and P,,jV is as 

follows 

Xi = 1pk+jV 9 xi] 
(4-29) 

Based on these defined matrices, the data equations for an LPV system representation can 

be formulated as below according to Lemma 1 and Lemma 2 in [44]. 

For the LPV system of (4-26), (4-27), the state data equations are 

v - Kx v _ I X' v 
k+j - '- k'-' k+j-1[/ mk k+j-1IJ k+j-1Ij 

where 

and the output data equations are 

where 

Yk+j[/ = HXk+J_IU + +H +H + HEk+J_I& + GUk+J + GEk+J 

H:=[ 
CA0 CA1 ... CA 

C 0... 0 

H=A01 CA1& r14X kl LJ1 k-I 

k1 rrx 0 •.. 0 
L 11 k-1 

(4-30) 

(4-31) 



4.3 LPV State Space System Identification 67 

z 

Yk := [4I,AILl,...,ASLI] 

[CBCB...CB Hl":=I 0 1 S 

[D 0 0 

H"=° CB, CBs C4& z' 1 ki CA 1 k—I k—li 

kIGfl 0 •.. 0 H' 0 0] 
L Gk-1 k—I 

,N,(:= i. 1B B 

[i,' A t' 4,,N'  1 k—i' 1 k—I'"" k—li 

[cK0 CK1 ... CK5 

' •[ i 0 ... 0 

CK1 •.. CK5 CA 1 CA1i 1 C4z 1 

0 ... 0 H 1 0 0 

[KØ,KI,...,K5] 

[91,404-11 A i.e 1 
'11 k-1'''sk—lJ 

[D] , Gk [I 

Based on the data equations for system (4-26) and (4-27), let 

:= [Yj-1101 
U. 10 

and 

Uk+J 

Zk,J,O Uk+f_1u 

_c+j—iLi G 

then according to Lemma 4 in [44], the following QR factorization can be made 
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Will R11 0 

Zk,J,O = R21 R22 

_Yk-i-j[i R31 R32 

0 

0 

R33 

Under the assumption that the matrix 

• ir 
hm—I 
N—oo LZk,j,o ,0 

QI 

Q2 
Q3 

(4-32) 

(4-33) 

has full row rank, the noise ek is non-zero, the pair (4 ,C) is observable and there exists 

aj> n such that ArIX1-110 =0 we have 

lim_-LrX =lim—'(:,l:n 
NN-->w . N—oo VN 

where rk :=H(:,1:n) 

( 1  
:=.jL[R3lR32](J==[RII R 

21 

0111 
R22 ]J 

(4-34) 

n is the total number of rows in W 

w.p. 1 means 'with probability 1' 

The state sequence can be calculated as the row space of the right hand side of (4-34). 

With singular value decomposition 

= [u, u 2] [o 
0 ][VIT]2 ' 

where R" 11 , the state sequence can be estimated as 

(4-35) 

(4-36) 
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If the noise is not excessive, the singular values in E, will be much bigger than those in 

Hence the order of the system, n, can be determined from the gap in the singular 

values. Then the system matrices can be estimated up to a similarity transformation by 

linear regression as follows 

where 

[o,n]=[ UjT UjT  

Ej = in - [ôô][i] 

[A, .& t] (ee )1 

eT 
j = L L JTj' U11, ET} 

Xi 

[Pi G ±J] 
_ E, 

[Pi oE 

(4-37) 

(4-38) 

(4-39) 

Now the system matrices can be estimated with a subspace identification method. 

However the number of rows in the matrices Wj,O and Zk,J,O increases exponentially with 

the order of the system. In order to compute the QR factorization, the amount of memory 

required is excessive as compared to that available in present day desktop computers. 

Table 4-1 gives the number of rows for the data matrices j'Oand Zk,J,O as a function of 

block size k and of the system dimensions for a square system with three time-varying 

parameters (Ck E R3) [44]. 
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Therefore the method above is impractical without any modification. A method of 

selecting the most dominant rows of the data matrices is proposed in [42] to overcome 

the dimension problem with subspace identification of an LPV system. Also an efficient 

implementation of the selection algorithm is introduced to process the data matrices row 

by row instead of building the formation of the complete matrices. Even with these 

modifications, it still takes a couple of days to perform the identification algorithm on an 

induction machine model, a fourth-order system with two inputs and two outputs, using a 

server with four 900MHz SPARC III processors and 4GB memory that is available in the 

department of electrical engineering of University of Calgary. 

Table 4-1 Total number of rows in the matrices W,0 and Zk,J,O; s=3,m=l,k=j-1, from [42] 

1=1 1=2 1=3 1=4 1=5 

k=2 168 336 504 672 840 

k=3 2712 5424 8136 10848 13560 

k=4 43608 87216 130824 174432 218040 

k=5 698712 1397424 2096136 2794848 3493560 

Thus far, we have illustrated how to estimate the system matrices of an LPV system with 

the subspace identification method. However the estimated model can only be used as an 

initial model since some errors are introduced in the process of subspace identification. 

One obvious error source is the selection of the most dominant rows of the data matrices 

used in the QR factorization. Further optimization of the initial estimated model is needed 
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to identify a more accurate model of the system. A nonlinear optimization method is 

presented in [42] to identify the LPV model using a local gradient search. 

Comparing the LPV representation of (4-26) and (4-27) and the model of a bilinear 

system, (2-55) and (2-56), it is straightforward to extend the identification method for an 

LPV system discussed above, to the identification of a bilinear system. Taking the 

parameter vector Ck equal to the input Uk and the matrices B1, B2,..., B and K1, K2,. .., K 

equal to zero, we obtain a bilinear system 

Xk 

Yk = CXk +DUk +ek 

Correspondingly the data matrices become 

Y1j = Yj E R€XN 

k+jLf = 

k+j 

Uk+J G +j-1Lj 

(4-40) 

(4-41) 

Similar modifications must be made to the matrix Uk+J&. Also the same selection 

algorithm to reduce the rows in the data matrices can be applied in subspace 

identification for bilinear systems. 

All of the operations discussed in this section, including identification, row selection and 

optimization algorithms have been recently incorporated into a Matlab toolbox by 

V. Verdult. Dr. Verdult kindly provided the author with a pre-release copy of this 
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toolbox. 

4.4 Chapter Sununary 

This chapter reviewed subspace identification methods for linear and LPV systems, based 

primarily on the work of Haverkamp [16] and Verdult [42]. Modified version of these 

methods will be used to identify the dynamics of a simulated induction machine in 

Chapter 7, which will also present our modifications. First discussions are presented on 

our induction motor discretization and modelling approaches in 'chapters 5 and 6 

respectively. 



Chapter 5 

Model Discretization 

In the literature, models of induction machines are almost always presented as 

continuous-time models. However the identification methods discussed in the previous 

chapter are based on a discrete-time system representation. Therefore we present in this 

chapter our own discrete time induction motor model. This is necessary for the purpose 

of system identification and flux estimation using the LPV approach since we must verify 

that the discrete-time model also has the LPV structure. Furthermore, the eventual 

controller implementation on a microprocessor will be facilitated by using a discrete-time 

model. 

5.1 Introduction 

In order to employ the subspace methods discussed in the previous chapter, a discrete-

time induction machine model is needed. Also due to the advantages of decision-making 

capability and flexibility offered by digital control systems, induction machine drives are 

usually implemented with microprocessor control. For a discrete-time control system, 

signals can change only at discrete instants of time corresponding to the times at which 

some physical measurement is performed or the times at which the memory of a digital 

computer is read or written [33]. 
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According to [27], suppose there is a continuous nonlinear system described as follows 

A(t)x + B(t)u + g(t) (5-1) 

where A(t), B(t) are the time-varying matrixes 

g(t) incorporates all nonlinear terms 

For discretization, the above expression needs to be integrated from time t = t1 to t = t2, 

where t2— tj = h is the time step. Without losing generality, let t1 = k/i, t2 = (k + 1)/i. 

Rewriting equation (5-1) as 

= A(t1)x + (A(t) - A(t1))x + B(t)u + g(t) (5-2) 

Pre-multiplying by exp(—A(t1)t) and defining &1 = A(t) - A(t1), then 

- e"'A(t1)x = e 1"' (44x + B(t)u + g(t)) 

 = e'°'' (&4x + B(t)u + g(t)) 
dt 

Integrating the left hand side of (5-4) gives 

2 

S dt dr = e'1)t*) 
11 

= e4i'x(t2) - e_A 1)h1x(ti) 

4 

Integrating and multiplying both sides of (5-4) by exp(A(t1)t2) gives 

x(t2) - eA4:h1)t2_h1)x(4) = $ eA(u1)2 (zA(17)x + B(r)u + g())dz 
11 

(5-4) 

(5-5) 

(5-6) 

Now substitute t1 = k/i, t2 = (k + 1)h and denote Xk = x(kh), Ak = A(kh). From (5-6) this 

gives 

(k+1)l: 

Xk+l = e" X   + $ e41" (LsA(i)x + B(v)u + g(r))dr 
ku 

(5-7) 
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Defining LB(t) = B(t) - Bk gives 

(k+1)h (k+1)1z 

Xk+l = e1'Ak  Xk + J e(l)h_dBku + J e411' (ZA()x + zB(v)u + g())di 
kh Mi 

(k-i4)h 

= Adkxk + Bdku + 5e4+1)h1_(M(.r)x + AB('z)u + g(i))d1' 
Ms 

where Adk = e"k is the discrete time state transition matrix [4,27], and 

(5-8) 

(k-i-i)!, 

Bd,k = 5 e4 +i)/i-i)d1Bk is the discrete time B matrix mapping inputs to states 

5.2 Discretization of the Induction Machine Model without Saturation 

Adding angular speed co as a state and re-arranging equation (2-18), (2-19) into the form 

of (5-1), we obtain 

ids 

1qs 

'q, 2: 

0 0 

L r  0 
s IL,. s 4. 

* 0 —* 00 

0 * 0 —* 0 
0 0 0 0 

4. COAq,-

4. L 

4 0)rAd, 

O)i2 qr 

WrAdr 

*1n,P'4'(2tdr1qs - 2qrs) - bmtc 

ds 

1qs 

'dr 

'qr 

1 

s 4. 
0 

+ 0 

0 

0 

0 
1 Vd5 

V 5 

0 

0 

0 

+ 

(5-9) 
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Since in this model Ak and Bk are constant, M(r), AB(i) are equal to 0. By denoting 

Ak and Bk as A and B, equation (5-8) becomes 

(k+1)h (k+1)h 

Xk+1 = e 11A xk + JeA+1)hi_dTB + Je4+1)h_g(i)d 
kh kh 

The discretized A matrix Ad can be obtained by taking a Taylor approximation 

Ad 6 

(5-10) 

(5-11) 

(k+1)Iz 

However, for the discretized B matrix Bd = 5 e 11'dzB, calculation of the integral 
kh 

is required. This can be accomplished as follows. Suppose the curve in Fig. 5.1 represents 

the function of eAt. First order estimation of the integral includes two parts. One is the 

shaded rectangular area and the other is the triangular area above the rectangle. 

eAt 

Fig. 5.1 Calculation of the integral 

The area of the rectangle is he"' and the area of the triangule is 4 h2 (_AeA). Therefore 

the 1st order approximation of the integral becomes 
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(k+1)h 

Je'1 d'r = helIA + - h (— Ae"1) = he"" (I - hA' (5-12) 
kh 

The same type of approximation is applied to the last integral in equation (5-10) and 

gives 

(k+1)ls J eA+l)i1_g(r)dr = he"1 g(kh) + Jh2 (g(kh)(_Ae/1A) + e"1( ' g(i)  th+ 2) (5-13)CO  DA 

where the derivative of g(t), Lg = ag() +  g()  Jt. Differentiating the nonlinear 
dt aa) DA 

term in equation (5-9), we obtain 

dg_ 

dt 

- 

L 171 °)r+ L,. ' 2 
L2 qr 

s Lr 

• co Lr dr L,  

- L2 0r L -- id, 

• 

- 2 qr 'r Or 2 qr 
• 

'dr (0r+ CO. Ad, 

- b,p'4- (1q 2 dr4 Ad, 1;5 - 2 qr 1z - tis jr) 

(5-14) 

The derivatives in (5-14) can be approximately calculated with the difference of the 

corresponding variables between current values and previous ones divided by the 

sampling period h. 

5.3 Discretization of the Induction Machine Model with Saturation 

The model of the induction machine with saturation (2-35) to (2-39) can be rewritten as 

= A'v—A'Bx 
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K'v— A'B1x - ATlB2x (5-15) 

where B = B1 + B2 (5-16) 

B1 

0 

0 

1; 

0 

—7.-z-

0 

0 

4. 

0 

0 

0 

0 
-L-
4 

, B= 

0 0 0 0 

00 0 0 

0 0 0 O)r 

0 

and ; = [yd, Vqs 0 0]T• Adding O)r as one of the state variables gives 

x=I rA-' 0] [] - [ A-'Bl [A_1B1 01 A'B2x' 

] (2 rqs qr1) rntc] Lo 00 0 

(5-17) 

(5-18) 

where x' is the previous state vector with 4 states. Therefore the last term of (5-18) is the 

nonlinear part of the model. Substituting for B2 and x' in the last term of (5-18) gives, 

g(t) = 

OJ'rA' (1'4)1dr - 0)r4_1(1,3)2qr - 

- 

0 r 4—' (3,4))tdr - 

COrA1(4,4)Adr - (DrA(4,3)2qr 
3 L -bp L('drqs 2 qrZ&) )mtc 

Then the derivative of g(t) is 

dg= 

O)r A (1,4)2dr + OrA (1,4) 2 dr 0)r A (13)2qr - wA 1(1,3) aqr 

CO, A'(2,4)2dr + O.rA1(2,4) 2 dr 0r A' (23)2qr - 1r4_1(23) Aq, 
S • S 

O)r K' (3,4 )Adr + (/.)A'(3,4) 2dr or K' (3,3)i1qr 0)r44 1(3,3) 2qr 

a. A'(4,4))tdr + O)rA1(4,4) )tdr - co, K' (4,3)2qr 0)r4T' (4,3) 2q,. 

;bnJP  LLI '(2dr ;5+ Ad, ' q., 'qr A,. i) 

(5-19) 

(5-20) 
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5.4 Discretization of the LPV Induction Machine Model 

In order to discretize the LPV model of the induction machine (2-59), simply take the 

term FWrX as g(t) and obtain 

(k+1)h (k+1)h 

Xk+l = e" Xk + Je4+1_drB + $eA((k+l)h_)F:Orxdz 

kh kit 

(5-21) 

where the third term can be derived with the same method introduced previously to 

obtain 

(k+I)/i 

$ e l)/s_z)Fa)xd,j. = he"4wrkFxk + h2 ( WrkFXkA(_ehA) + ellA (0)rk Fxk + OJ1rkF Xk)) (5-22) 

where F is constant and derivatives of 0k and Xk can be obtained in the same way as 

introduced in section 5.2. 

5.5 Chapter Summary 

In this chapter, the induction machine models introduced in Chapter 2 are discretized for 

identification purposes as well as for the eventual implementation of the identification 

algorithms with a microprocessor. 



Chapter 6 

Modelling and Simulation 

The underlying research for this thesis progressed in several stages. First continuous-time 

induction machine models were simulated and verified. Then Field Orientation Control 

(FOC) of the induction machine was designed and tested based on the simulation model 

of the induction machine. In the simulation of FOC, two control methods were applied: 

open loop and closed loop. The impacts of variations in the parameters of the induction 

machine on the performance of the FOC system were also studied, providing the 

motivation of this project. The third stage was to take account of saturation effects in the 

induction machine model. The next stage was the discretization of the induction machine 

models both with and without saturation, as well as the discretization of the induction 

machine LPV model used as a candidate model to identify rotor fluxes of the induction 

machine. The next stage shown in Chapter 7, was to identify and validate the LPV model 

of the induction machine. 

In this chapter, modelling and simulation results are discussed in detail including model 

verification, field orientation control, the effect of saturation and model discretization. All 

the simulations are carried out by employing S-Functions in Simulink, the dynamic 

system simulator for MATLAB from The MathWorks Inc. Details on the use of S-

Functions are available elsewhere [39]. 
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6.1 Simulation of the Induction Machine Model without Saturation 

The simulation of the induction machine without saturation is carried out in Simulink 

with an S-Function based on the model (2-18) and (2-19). The model represents a 1-kW 

induction motor with parameters listed in Table 6-1 [2]. 

Table 6-1 Induction Machine Parameters 

parameters Values 

1:r 0.07697s 

R3 4.64191 92 

IL5 0.14392 H 

IL,. 0.14392 H 

0.1375 H 

J. 0.00657 Nms2 

0.04397 Nm 

0.0003383 Nms 

1 

Note that for all simulation results presented in this thesis, the induction machine is 

operated with no load. From a controller perspective, the no load condition represents a 

more difficult control problem than is the case for a loaded machine. However, from an 
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identification perspective, the no load condition presents an opportunity to capture the 

higher frequency dynamics of the induction machine. 

In the S-Function, the scaled rotor flux linkages =Lm 'r instead of A, are chosen as 

the last two state variables. Thus (2-18) becomes 

Vds 

Vqs 

0 

0 

1 -CO, 
2  2 -- F 

- 

0 Wr Tr 
0 (Or 

1714 TrLr  -(4c._ 0 

and (2-22) becomes 

tin = P'(qs2 ar - 1ag%qr) 

(6-1) 

(6-2) 

As an initial test of the model, we apply a three-phase voltage input to the model's stator 

terminals; this is often referred to in industry as a cold start. For t ≥ 0 

Va =120*sin(50*2)r*t) 

Vb =120*sin(50*2,r*t_2,r/3) 

v 4ir  

The three-phase voltage is transformed into a two-phase representation as in (6-1), i.e., 

the S-Function is written in terms of the d-q voltages. In Fig. 6-1, shown for a cold start 

are, (a) stator currents, (b) rotor fluxes, and (c) the rotor velocity and torque. In Fig. 6-1 

(a) and (b), the lower figures are the zoomed-in variables of the q-axis. Note that the 

steady state values of the stator currents, rotor fluxes, rotor velocity and the torque for the 

cold start simulation agree with traditional steady state calculations [11 ]. 
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Rotor Velocity 
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(c) rotor velocity and torque 

Fig. 6-1 Cold start stator currents, rotor fluxes, rotor velocity and torque 

A further test of the S-Function model is carried out by using a simulated Pulse Width 

Modulation (PWM) inverter to control the induction machine [23]. The method 

(commonly) employed to generate the output of a PWM inverter is to compare the 

(continuous time) input signal with a much higher frequency and slightly higher 

amplitude triangle wave signal. When the triangle signal is smaller than the input, the 

inverter outputs a positive DC voltage; when the triangle signal is larger than the input, 

the inverter outputs a negative DC voltage. In the actual simulation, 1 and —1 are the 

outputs corresponding to positive DC voltage and negative DC voltage respectively. Then 

DC voltage is multiplied to the result to obtain the PWM inverter output. 
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For our test, we generated a triangle wave signal whose amplitude was 1.1 times, and 

whose frequency was 10 times, that of the sinusoidal input. With this triangle signal, the 

PWM inverter output signal is generated as in Fig. 6.2. The resulting stator current and 

the corresponding torque are presented in Fig. 6.3. The large steady state torque 

pulsations are related to the non-sinusoidal components of the PWM voltage input. 
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Fig. 6.2 Output signal of PWM inverter 
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Fig. 6.3 Stator current and torque with PWM inverter as the source 
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From Fig. 6.3, we can tell that the PWM inverter introduces much higher frequency terms 

in both stator currents and the torque. Also it takes more time to reach the steady state in 

the PWM inverter case as shown in Fig. 6.4. - 
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Fig. 6.4 Comparison of rotor velocity 

4 5 

6.2 Simulation of the Induction Machine Model with Saturation 

The saturated induction machine model is simulated with equations (2-35) to (2-39). The 

key to introducing the saturation effect is the application of a dynamic inductance, L, and 

a static inductance, L1, defined by (2-29), (2-30), respectively. According to the 

simplified saturation model represented by the dashed line in Fig. 2.1, the dynamic 

inductance L is equal to the static inductance L1 when the magnetizing current is less 

than that of point b. When the magnetizing current is larger than that of point b, the 
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magnetic flux Zrn remains constant, equal to the magnetic flux at point b In this case 

according to (2-29) and (2-30), 

L=0 (6-3) 

L .. (6-4) 

Therefore, before simulating the saturated model, the rated magnetizing current and flux 

corresponding to point b must be obtained. 

The simulated induction machine is a 1kW two pole induction machine with a rated input 

frequency of 50Hz. The rated torque can be calculated as follows: 

ated P ><P 

Taking the rated slip as 0.06, 

Trafed = 1000x 1=3.4 Nm 
50x2vx0.94 

(6-5) 

Applying the rated voltage with a peak value of 169.7 V and load torque 3.4 Nm, we can 

calculate the rated magnetizing current 1 = 3.166 A and the corresponding flux linkage 

)Lmb =0.4159Wb. 

Now we apply the sinusoidal voltages with a peak value of 200V, which is larger than 

rated, to the models with and without saturation. By comparing the rotor fluxes from the 

two models in Fig. 6.5, we can see that the flux of the saturated model remains constant 

beyond the rated point while the flux of the model without saturation continues to 
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increase. 
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Fig. 6.5 Comparison of rotor flux with and without saturation 

6.3 Simulation Results of Field Orientation Control 

As indicated in Chapter 3, indirect Field Orientation Control of an induction machine is 

the implementation approach with which this thesis is concerned. For an open-loop 

control method, the reference rotor flux and torque are set to generate the command stator 

currents used to control the induction machine as shown in the Simulink model in 

Appendix B. 1. If a closed-loop control method is applied, the actual rotor flux and torque 

are required for comparison with the reference ones to generate the stator currents that 

perform the control. In the simulink model shown in Appendix B.2, a closed-loop 

controller for rotor velocity is used and the flux control loop is kept open. 
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In order to compare the performance of FOC with cold start performance, the rotor flux 

magnitude O.356Wb in Fig. 6.1 (b) and the rotor speed 312.7 radls in Fig. 6.1 (c) are set 

as the reference values. As shown in Fig. 6.6, the dynamic response of FOC has a much 

faster rising time than that of a cold start while the overshoot is a little bigger and the 

settling time is longer. 

However the disadvantage of indirect FOC, as indicated in section 3.3.2, is the sensitivity 

to variations of induction machine parameters. The parameters change widely with the 

environmental temperature, frequency and current amplitude. We take rotor resistance as 

an example to investigate the impact of parameter variations on the generation of torque 

in FOC. 
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Fig. 6.6 Comparison of rotor velocity of FOC and cold start 
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Let Rra denote the actual rotor resistance of an induction machine while R,, denotes the 

value of rotor resistance as derived from nameplate data that is used in FOC. The ratio 

between the two values is 

kr= (6-6) 

The open-loop model in Appendix B.1 is used to perform the investigation. First a 

reference value of torque is set to 2 Nm, ie about half the rated value. Then simulations 

are performed with kr = 1 (i.e. Rra=Rr,,), icr = 2 and icr = 0.5. As shown in Fig. 6.7, the 

variations of rotor resistance cause considerable errors in torque generation, hence 

deteriorating the dynamic performance of FOC. Therefore it is essential to perform 

identification to alleviate the influence of induction machine parameter variations. 
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Fig. 6.7 Impact on torque from variation of rotor resistance 
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To make the FOC simulation more realistic, a PWM inverter is utilized to control the 

induction machine. Unlike the cold start case, however, the PWM signal cannot be 

generated through comparison between a sinusoidal signal and a triangle wave since the 

input stator voltages are produced instantaneously according to the reference values of 

torque and flux. Therefore, the principle that two voltage signals with the same value of 

volt-second product are equivalent is applied to generate the PWM signals, as shown in 

Fig. 6.8. 

In Fig. 6.8, tk, tk+1 are the sampling points of time. v3 (tk) is the command stator voltage 

at time tk and J2 is the voltage of the DC link. The idea is to find out the turn-off time 

t0ff so that the areas of the two shaded rectangles are equal. That means: 

VdC (tOff tk) = v8(tk)(tk+1 tk) (6-7) 

voltage 

tk tojftk+1 time 

Fig. 6.8 The principle of PWM signal generation 
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The open-loop model in Appendix B.1 is used with the same reference values for rotor 

flux and rotor speed as in Fig. 6.6. Therefore we choose the switching frequency as 1kHz, 

i.e. the switching period is O.00ls. The simulation step is 0.00004s, i.e. 25 steps in one 

switching period. The DC link voltage is selected as 120V. The calculation of pulse width 

is carried out in the S-Function. 

In Fig. 6.9, we can see that the dynamic performance of the model with a PWM inverter 

is a little worse than that of the model without it, such as a longer rising time and a larger 

overshoot. This is expected as the inverter operation introduces a delay into the system. 

The width of pulses in the PWM signals varies according to the command input voltage 

as illustrated in Fig. 6.10. Also the line voltage between phase a and phase b is presented 

in Fig. 6.10. We can see that the line voltages of PWM inverters resemble sinusoidal 

signals more than the individual phase voltages do. 
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Fig. 6.9 Comparison of rotor velocity with and without PWM in FOC 
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Fig. 6.10 Upper: Command voltage input of phase a and the 
corresponding PWM signal; Lower: Line voltage between phase a 
and phase b 

6.4 Bilinear Model Simulation 

As shown in Section 2.5, an induction machine can be described with a bilinear model or 

a linear parameter-varying (LPV) model. To verify the applicability of these models for 

induction machines, a bilinear Simulink model and a LPV Simulink model were designed 

to simulate induction machines, where the rotor velocity has been added as one of the 

input variables. As expected, exactly the same stator currents and rotor fluxes are 

obtained as with the model taking the rotor speed as a state variable. Note that taking the 

rotor speed as an input variable is just a technique to make the identification easier. 

Actually we cannot adjust the rotor speed independently for identification purposes. It 

can either be measured in practice or be obtained via simulation. 
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6.5 Simulation of Discretized Models 

In the simulation of continuous models, the time step varies and is determined by 

Simulink according to dynamic characteristics of the simulated model. However the time 

step is fixed for discretized models. From the derivation of discretized models in 

Chapter 5, we can tell the impact of the time step on the accuracy of the simulation 

results. The larger the time step is, the more considerable the error introduced by 

discretization is. 

In Fig. 6.11, a three phase sinusoidal voltage signal, i.e. same cold start input as in 

Section 6.2, is used as the input to the discretized model. As the time step increases, the 

error in rotor velocity, as compared to that from the continuous model, increases 

accordingly. 

The simulation result of the discretized model for the saturated induction machine is 

represented in Fig. 6.12. A three phase sinusoidal signal with peak value of 200V is 

applied to excite saturation effects in the model. Due to the error from discretization, the 

integral of the generated torque of the simulation with a small time step, 0. lms, is larger 

than that of the simulation with a larger time step, ims. Therefore the steady state of the 

rotor velocity for the simulation with small time step is a little bigger. 

For the discretized LPV model, if the time step is 0. ims, the stator currents and the rotor 

fluxes are almost the same as those of the continuous LPV model. Fig. 6.13 presents the 
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comparison of d-axis stator currents for the discretized LPV model with the time step 

lms and O.ls. 

350 

300 

250 

200 

300 

10 

Rotor velocity of discretized model with different steps 

- continuous 
step 0.0001 

-- step 0.001 
  step 0.002 

I 2 3 
time (S) 

4 

Fig. 6.11 Comparison of rotor velocity for different steps 

Comparison of rotor velocity for different steps 

5 

  step 0.Ools 
-- step 0.0001s 

0.2 0.4 0.6 0.8 
time (5) 

1.2 1.4 1.6 0 

0.2 0.4 0.6 0.8 1 1.2 1.4 

Comparison of 8uSi)or different steps 

1.6 

Fig. 6.12 Comparison of rotor velocity and torque for discretized 
saturation model with different steps 



6.6 Chapter Summary 96 
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6.6 Chapter Summary 

Chapter 6 presents some simulation results about induction machines including cold start 

and PWM inverter drive simulation. We have verified that a rotor resistance error in a 

FOC system can produce a large error in torque command tracking. The model with 

magnetic saturation is also simulated. Simulation results of all the discretized models 

with different time steps illustrate the influence of time step size in the accuracy of the 

discretized simulation. As a rule of thumb, we have shown that a time step of at most ims 

should be employed to achieve reasonable accuracy. 



Chapter 7 

Identification and Validation 

In this chapter, system identification methods are applied to data obtained from the 

simulation models described in Chapter 6, and the results discussed. First, a linear system 

was created by taking the products of rotor velocity and rotor fluxes as inputs. Since the 

system was linear, we used the toolbox SMI2.O [16] to identify the model. Next, an LPV 

description was identified using full state measurements. We then showed that the rotor 

fluxes could not be reliably estimated using only stator currents and rotor velocity 

measurements. This suggested that a new measurement should be introduced to assist 

with the identification of rotor fluxes. Hence we proposed the use of the time derivative 

of rotor velocity to obtain the optimized estimation of the rotor flux components. 

7.1 Subspace Identification of an Induction Machine with the Products of Rotor 

Velocity and Rotor Fluxes as Inputs 

Based on the algorithms presented in Section 4.2, the subspace method identification 

toolbox (SMI 2.0) was developed [16]. However since this toolbox is designed for linear 

system identificatiOn, it cannot be applied directly to identify induction machines. As 

indicated in Chapter 2, nonlinearity is encountered in the model of an induction machine 

in terms of the product of the rotor speed and the rotor fluxes. In order to make sure that 

the product of the rotor speed and the rotor fluxes is the only significant nonlinear 
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component in the discretized model of induction machines, we assume for simulation 

purposes that this product could be measured. Although it is not practical to directly 

measure the products of rotor velocity and flux components, it is still very useful to 

employ these products in simulation to determine the significance of the rotor velocity 

and flux product nonlinearity. In this case, the model of the induction machine (2-54) 

becomes: 

1ds 

1qs 
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1S L 
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+ B*u (7-1) 

and u= 

In order to make the exciting inputs richer than sinusoidal signals, three chirp voltage 

signals with 120 degrees of phase difference between each other are applied as inputs to 

stimulate the induction machine dynamics. The frequency range of the chirp signals is 

from 30 Hz to 50 Hz, and the frequency ramps up over a five second period (this will 

likely be possible in practice by utilizing the appropriate modulating signals in a PWM 
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inverter drive). In the simulation, the products of the rotor velocity and rotor fluxes are 

calculated. Using the stator voltages and the products of rotor velocity and rotor fluxes as 

inputs and the stator currents as outputs, we used the SMI2.O toolbox to identify the 

model (7-1) and obtained the results shown in Fig. 7.1. 

identified vs true values 

3 

\Jj 

true 
- - identified 

i 

3.68 3.7 3.72 3.74 3.76 3.78 3.8 3.82 3.84 3.86 
time (s) 

Fig. 7.1 Comparison of true stator d-axis current with the identified current 

For a quantitative indication of how close the true signal and its estimate resemble each 

other, the Variance-Accounted-For (VAF) figure-of-merit is calculated as follows [16]: 

variance(y -  

VAF=1 xl00% 
variance(y) 

(7-2) 

For the case above, the VAFs of the d-axis and q-axis stator currents are 99.7% and 

99.8% respectively. Note that for validation purposes all the VAFs in this thesis were 

obtained through a separate data set from the one used in the identification process. 
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The results of identification using SMI2.0 strongly suggest that the primary nonlinearity 

of the induction machine model involves the products of the rotor velocity and the rotor 

fluxes. Therefore we can represent the induction machine model with an LPV system 

model, using the rotor speed as the varying parameter. 

7.2 LPV System Identification with Full State Measurements 

All remaining results presented in this chapter were obtained using a pre-release copy of 

the LPV toolbox developed by V. Verdult [42]. However, our induction motor model (c.f. 

section 2.5) is not suitable for standard LPV representation, therefore it was necessary to 

modify Dr.Verdult's toolbox, such that only a portion of the full state is employed in the 

update equation (4-26). 

A well-designed input is essential to the success of the identification process. After trying 

a variety of types of inputs, the white noise signal is finally chosen as the input signal to 

perform identification of the induction machine. Although it does not seem practical to 

apply pure white noise signals to real induction machines, it is still a good choice in the 

simulation stage due to its property of Persistence of Excitation. However, it is possible 

to superimpose a noise signal on a practical input for experimental identification. 

Using the white noise signals as inputs to simulate induction machine operation, we 

obtain results of stator currents, rotor fluxes and the rotor speed presented in Fig. 7.2. 
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In this section, the white noise voltages are the inputs, the rotor speed is to be measured 

and is used as the linear varying parameter in the LPV model of the induction machine. 

We also suppose that we are able to obtain the measurements of all the state variables in 

the LPV model, the two stator currents in d-q axis representation and the two rotor fluxes 

in d-q axis representation. Our ultimate goal is to identify the rotor fluxes with 

measurements of stator voltages as inputs and stator currents as outputs only. However 

identifying the LPV model of an induction machine with full state measurements is a 

good start. 
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Fig. 7.2 White noise inputs and corresponding outputs 

Before identifying with the full state measurements, we need to check the input signals 

and the output signals to make sure that they are suitable for identification. 
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First we observed that the values of the rotor fluxes are too small compared with the 

values of the stator currents. Therefore scaling was required to make sure that the 

identification algorithm puts equal weights on the rotor fluxes and the stator currents. 

Comparing the values of the two sets of quantities, we applied a multiplication factor of 

40 to the rotor fluxes. 

The other issue is the power-up transient. Since the system is not in the steady state, the 

data obtained in the power-up transient probably contains information inconsistent with 

that from the data in steady state. Therefore the data should be truncated to remove the 

transient. In our case, the first 6000 points of both the inputs and the outputs are cut off, 

corresponding to about 1/4 second of the start-up time. 

With the scaled and truncated data of inputs and outputs, the LPV nonlinear identification 

toolbox [42] can be used to identify the stator currents and the rotor fluxes shown in Fig. 

7.3. 

As presented in Fig. 7.3, the identified rotor flux fits the true rotor flux quite well. A 

quantitative analysis in this case gives, 

VAIF=95.4% 

At the same time, the VAF of the stator current estimation is also high, 84.9% (figure not 

shown). 
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7.3 Stator Current Identification with a Second Order LPV Model 

As we noticed in Fig. 7.2, the values of rotor fluxes are much smaller than the values of 

stator currents. This begs the question: How significant are the rotor fluxes in the 

evolution of the states of stator currents? In order to determine the significance of rotor 

fluxes, we identify the stator currents with a second order LPV model using stator 

currents as the inputs and stator voltages as the outputs. The result is shown in Fig. 7.4. 

When designing this test, we expected that if there was a lot of correlation between stator 

currents and rotor fluxes, it would not be possible to identify stator currents quite well 

with a second order LPV model without measuring the rotor fluxes. If so, then a higher-

order model could be expected to include information for the rotor fluxes in its state 

vector and we can identify rotor fluxes with measurements of stator currents only. 
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Unfortunately the stator currents identified even with the second order LPV model are 

quite similar to the measured values. The VAF of this estimation is 88.1%, even better 

than the counterpart of the identification result with a fourth order model. From the result 

of this test, we conclude that rotor fluxes are difficult to estimate given only stator current 

measurements. This indicates that more information has to be introduced to complete the 

flux identification task. 

7.4 Identification of Rotor Fluxes with the Assistance of th 

In order to estimate rotor fluxes from the measurements of stator currents, we need to 

introduce another known variable to link the two together. After reviewing the induction 

machine model in Chapter 2 we considered that th might be suitable for this purpose. 
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The equation for th is obtained by substituting (2-20) to (2-23) into (2-19), or for 

convenience 

th = O)flL(T3P' J!L(jqs2dr - 1j>iqr) f sgn(co)) 
rn J. Lr 

(7-3) 

Obviously, in practice it is difficult to measure th even though it is possible to calculate it 

from w (t). However we still can suppose that th is measurable and known for 

identification purposes. Employing (7-3), d) can be obtained by the simulation, and is 

shown in Fig. 7.5 for the white noise input data. 

Here th is used to optimize the identified LPV model and thus provide an accurate 

estimation of rotor fluxes. In the LPV nonlinear identification toolbox [42], the nonlinear 

optimization is completed by performing a gradient search known as the Levenberg-

Marquardt algorithm in the local parameter space surrounding the model estimated by the 

subspace identification methods [31]. Therefore to incorporate th into the nonlinear 

optimization, what is needed is to calculate the gradient of ( with respect to the local 

parameter space denoted by 4. From (7-3), we can obtain the gradient of th as follows 

— —(i —i p4-2 ) 
2 j L qs ao ao fr Do  qrDo  

Taking the scaling of rotor fluxes into consideration, (7-4) becomes 

ad) ai DA ai 
.-ao  4+2 q.,240 L qs dr qr ao ao Do Do 

(7-4) 

(7-5) 
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In the nonlinear optimization with a gradient search method, it is of paramount 

importance to obtain a good initial starting point of 4. Otherwise the gradient search 

process is easily stuck in a local minimum. In our case, the identified model obtained in 

section 7.2 provides a good initial starting point for optimization. After the optimization 

process, rotor fluxes are estimated with a relatively high accuracy as shown in Fig. 7.6. 

The VAF of the estimated rotor fluxes is 70.9%. Although this is a reasonably accurate 

result, indicating that our proposed approach has merit, it would be desirable to obtain a 

higher VAF. 
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Fig. 7.6 Identified rotor flux after optimization 

7.5 Chapter Summary 

Identification results of rotor fluxes with the subspace identification method and 

nonlinear optimization are presented. Although the identification method is still 

premature, the positive identification results reveal the potential of the proposed use of th 

in the identification of rotor fluxes in induction machines. 



Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The objective of this thesis is to identify a model of an induction machine that can predict 

its rotor flux in order to alleviate or even eliminate the impact from variations of 

induction machine parameters upon the performance of the field orientation motor drive 

system. In the process we have not only presented a proof-of-concept identification 

method, but we have also presented novel induction machine representations in 

continuous and discrete time. 

To perform field orientation control, coordinate transformations are required to transform 

AC variables of the induction machine to DC ones in the d-q frame to be used by the 

controller. The resulting command inputs achieved in the controller have to be 

transformed back to AC variables to perform the control to the induction machine. These 

transformations are discussed in Chapter 3 and the sensitivity to variations of induction 

machine parameters is also studied. To extend the applicability of the identification 

algorithm, saturation effects are taken into consideration in the model of the induction 

machine. Basic principles of subspace identification, and a technique for LPV 

identification are reviewed in Chapter 4. In Chapter 5 all the models are discretized for 
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identification purposes and to assist eventual implementation of the algorithm with a 

microprocessor or digital signal processor. In Chapter 6 the discretized models are 

presented along with preliminary simulation results to verify the accuracy of the proposed 

models. An LPV system model was proposed and found to be most suitable to describe 

the induction machine. Therefore a subspace identification method for LPV systems is 

chosen to identify the rotor flux by using the angular velocity CO, as the varying 

parameter. The simulation results in Chapter 7 show that if the derivative of the angular 

velocity O)r is known then the rotor flux can be identified with the proposed LPV system 

identification approach. 

In summary, the original contribution of this thesis includes: 

1. Proposal of a continuous time induction machine model with LPV representation 

(c.f. equations (2-59)) 

2. Discretization of different models of induction machines (Chapter 5) 

3. Introduction of a novel method for estimation of rotor fluxes with subspace 

identification (Chapter 7) 

4. Application of th to assist in the identification of rotor fluxes (Section 7.4) 

8.2 Future Work 

Some suggestions for future work are: 

1) An investigation of the derivative calculation for the angular velocity to make the 

algorithm more practical, 
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2) Optimization of the identification algorithm to shorten the computation time 

required, 

3) The application of the method in field orientation control to identify the rotor flux, 

4) The physical implementation of the identification method with a digital signal 

processor. 
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Appendix A 

A.! Equivalency Proof of Saturation Models 

The purpose of this appendix is to prove the equivalency of the saturation model of 

induction machines (2-24) from [7] and (2-3 5) from [25]. 

Expanding the model (2-3 5) for v, we can obtain: 

— 4.. Lir )P'dr — P2'qr 
Ldd Ldq Ldd Ldq 

(A-i) 

We take the parameter between v and i in the models as an example to prove the 

equivalency. According to [25], 

where 

d2dr + + (A' — A)[1dm did,fl + 1qrn1dm d1qfl8] 
d 51 dt i dt i, dt 

= d1q ____ dt c5, -a-- + 52 dlqr + (A'— A)[2! + 1g,n1drn didfl, 
irn dt i dt 

C51 = L. 

052 = L 

.2 

d. - c052 S 
'I2 - n 

1din1qn1  - cosS sinS 
.2 - 

'In 

For the model with the stator currents i, i and the rotor currents 1dr' qr 

A'=L 

(A-2) 

(A-3) 
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A=Lm 

Substituting (A-2) and (A-3) into (A-i), we can obtain the parameter between v1 and i 

as follows: 

aVd,ld ={(L1 COS2S---(L--L) cos S sin ö (A-4) 
Ldd Ldd Ldq 

Then substituting (2-41) to (2-43) into the above formula and rearranging, we can get 

= . +L +Lcos2ö+L, sin2 S (A-5) 

The parameter between vd, and i in (2-24) is the same as the parameter above. The rest 

parameters in the two models can be proved to be same in a similar way. 
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The following diagrams are the simulink models for open-loop and closed-loop field orientation control in B.l and B.2 respecitvely. 
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