
On Learning Decision Trees with Large Output Domains

Nader H. Bshouty Christino Tamon David K. Wilson

Department of Computer Science

The University of Calgary

Calgary, Alberta, Canada T2N 1N4

e-mail:fbshouty, tamon, wilsondg@cpsc.ucalgary.ca

Abstract

For two disjoint sets of variables,X and Y , and a class of functions C, we de�ne DT (X;Y;C)
to be the class of all decision trees over X whose leaves are functions from C over Y . We study
the learnability of DT (X;Y;C) using membership and equivalence queries. Boolean decision
trees, DT (X; ;; f0; 1g), were shown to be exactly learnable in [Bs93] but does this imply the
learnability of decision trees that have non-boolean leaves? A simple encoding of all possible
leaf values will work provided that the size of C is reasonable. Our investigation involves several
cases where simple encoding is not feasible, i.e., when jCj is large.

We show how to learn decision trees whose leaves are learnable concepts belonging to a
class C, DT (X;Y;C), when the separation between the variables X and Y is known. A simple
algorithm for decision trees whose leaves are constants, DT (X; ;; C), is also presented.

Each case above requires at least s separate executions of the algorithm from [Bs93] where s is
the number of distinct leaves of the tree but we show that if C is a bounded lattice, DT (X; ;; C)
is learnable using only one execution of this algorithm.

1 Introduction

Rooted binary trees, or decision trees, provide a natural representation both visually and con-

ceptually for functions that classify examples of a concept. Each node holds a yes/no question

concerning an example attribute and examples are classi�ed by moving through the tree from root

to leaf. Boolean decision trees hold the values 1 and 0 at their leaves indicating positive and neg-

ative membership in the given concept respectively. In terms of decision making, the nodes and

edges of a boolean decision tree specify the preliminary questions necessary to arrive at a response

and the leaves represent the responses themselves.

In the recent past, considerable e�ort has been devoted to �nding learning algorithms for deci-

sion trees [Bl92,EH89,H92a,H92b,H93,KM91,R87]. Boolean decision trees were shown to be learn-

able in [Bs93] using a technique called the monotone theory which is based on Angluin's algorithm

for learning monotone DNF formulas [A88]. Using this result we investigate some situations where

the leaves of the decision trees are non-boolean.

We now give a general de�nition for decision trees having various types of leaves. For two

disjoint sets of variables, X and Y , and a class of concepts C, we de�ne DT (X; Y;C) to be the

class of all decision trees over X whose leaves are functions from C over Y . We will study the

learnability of this class using membership and equivalence queries. Notice that DT (X; ;; C) refers

to decision trees with leaves that are constant functions or just simply leaves that are members of

C and DT (;; Y;C) is just the class of functions from C over Y . If the learner has prior knowledge

of the di�erence between X and Y we say that X and Y are distinguishable.

1

Allowing the leaves of the decision tree to hold non-boolean values may be thought of as repre-

senting a non-trivial action or response to a situation requiring a decision. Consider the following

examples.

� An engineer wants to predict the e�ects of a particular force on a certain type of metal. Before

this can be done a series of questions regarding the material's history (eg. manufacturing

technique) must be answered to determine what function must be applied to accurately predict

the result of the force.

� A physician is trying to determine an appropriate prescription for an ailing patient. After a

series of personal questions for the patient the doctor may be in a position to recommend dif-

ferent medicines to alleviate the patient's problem. This prescription may include a schedule

indicating speci�c dosages of certain medicines at di�erent times.

Both of these situations have a common separation that is seen in our de�nition for decision trees.

First, there is a set of preliminary questions that are dependent upon the subject itself. Second,

the completion of these questions classi�es the problem to the point where an appropriate set of

instructions or calculations may be applied. We are interested in learning these types of functions

but we must �rst show that a boolean encoding coupled with an application of the [Bs93] algorithm

is not always practical for this type of problem.

Consider the problem of learning decision trees with leaves that are constant values,DT (X; ;; C).

One approach would be to encode the set C in a boolean space such as C � f0; 1gm where jCj � 2m.

This e�ectively reforms our problem as m boolean problems since f : f0; 1gn ! f0; 1gm can be

broken into m functions of the form fi : f0; 1g
n! f0; 1g such that f(x) = (f1(x); f2(x); � � � ; fm(x)).

Such a technique is appropriate as long as the size of C is not extremely large. Size is obviously

a factor as the variable set Y grows also. We study some situations where it is not feasible to use

such an encoding and present the following results.

Theorem 1: Decision trees with leaves from an exactly learnable concept class C, DT (X; Y; C),

are learnable when X and Y can be distinguished.

Theorem 2: Decision trees of size s with constant valued leaves over the variablesX = fx1; : : : ; xng,

DT (X; ;; C), are learnable using O(s3) equivalence queries and O(s3n2) membership queries.

For the proofs of theorems 1 and 2 we introduce a representation for the hypothesis based on

decision lists [R87]. The advantage of this is that it guarantees that during the learning process

the hypothesis will evaluate to only one leaf value for each input eliminating the need to de�ne the

interaction of leaf values if an input evaluates to more than one possible output. Notice this is not

an issue for the target decision trees as they are disjoint, that is, each input leads to only one leaf

value in the tree.

Another issue arises with respect to our learning representation as we break the target function

into separate functions and then learn each of these. This requires the simulation of membership

and equivalence queries for these new functions using the oracles based on the target and we show

how to do this in all cases. The equivalence query simulation is especially important because we

must demonstrate that every counterexample can be used to progress the learning process.

The algorithm described for the proof of theorem 1 maintains a complete history of all values

of examples seen along with other values obtained by using combinations of di�erent X and Y

values already seen. At certain points during the running of this algorithm it may be necessary to

completely restart the entire learning process but we maintain the same values in the history table

to ensure we don't make the same mistakes repeatedly.

2

One more result is presented showing a case where the e�ciency of learning DT (X; ;; C) is

improved when C is a bounded lattice.

Theorem 3: When C forms a bounded lattice, DT (X; ;; C) is learnable using O(s2) equivalence

queries and O(s2n2) membership queries where s is the number of leaves of the tree.

This theorem follows from a generalization of the monotone theory from [Bs93] to functions

whose range forms any bounded lattice.

For the algorithms of theorems 1 and 2 the hypothesis to the equivalence query and the output

hypothesis are decision lists whose nodes are depth-three circuits and leafs are the hypothesis

representation of class C. For the algorithm of theorem 3 the hypothesis to the equivalence query

and the output hypothesis are depth-three circuits over the variable X .

The paper is organized as follows. After de�ning the learning model and hypothesis represen-

tation in section 2, we present the proof for theorem 2 in section 3. This provides a relatively

simple introduction for the proof of theorem 1 covered in section 4. The last section describes the

generalization of the monotone theory which gives us theorem 3.

2 Preliminaries

2.1 The Learning Model

We use the exact learning model as introduced by Angluin [A88] and Littlestone [L88]. A target

concept, f , exists that is a member of a class of concepts C � 2f0;1g
n

. The learning algorithm is

allowed access to certain queries that are answered by oracles with knowledge of the target concept.

Those queries allowed here are as follows.

� Membership Query, MQf (x): The learning algorithm supplies an element x 2 f0; 1gn as the

input to a membership oracle and receives an answer f(x).

� Equivalence Query, EQf(h): The learning algorithm supplies a concept hypothesis h as the

input to the equivalence oracle. The reply of the oracle is either \Yes" signifying that h is

equivalent to f , or a counterexample, which is an element b 2 f0; 1gn such that f(b) 6= h(b).

A concept class is said to be learnable if any concept f 2 C is learnable requiring time and

a number of queries polynomial in n and the minimal representation size of f . For a concept

representation class H , the class of concepts C is learnable from H if C is learnable when the

hypothesis to the equivalence query is from H .

The goal of the learning algorithm is to output a representation, f 0, that is equivalent to f using

polynomial time and as few queries as possible.

As we will be dealing with the simulation of queries for other functions, we will subscript the

query name with the function in question to avoid confusion.

2.2 Function Representation

In this subsection we will address the issue of hypothesis representation. The size of a decision tree

is the number of leaves of the tree. For each f 2 DT (X; Y; C) let Tf denote a minimal size decision

tree for f . Let lv(f) be the set of functions that appear as leaves in Tf . Each such function,

c 2 lv(f), induces a boolean decision tree obtained from Tf by replacing each leaf of Tf with a 1 if

and only if the function at that leaf is c. An example of such a tree can be found in �gure 1.

3

x

x x

x

1

2

4

5

1

1

1

0

00

x

x x

x

1

2

4

5

1

1

1

0

00

1

1 0

0

0

0 1 0 1

(i) (ii)

c (y)

c (y)

c (y)

c (y)c (y)
1

1

4

3

6

Figure 1: An example of an induced boolean decision tree on c1.

It is easy to see that the boolean decision tree induced by c 2 lv(f) computes the boolean

function fc(x) = I [f(x; y) � c(y)] over X , where the notation I [statement] equals 1 if the statement

is true and 0 otherwise. Since f(x; y) is a decision tree over X , each assignment for x leads to a

unique leaf and therefore for every assignment x0 there exists exactly one c 2 lv(f) such that

fc(x0) = 1. This means if we de�ne c(y) + 0 = c(y), c(y) � 1 = c(y) and c(y) � 0 = 0 for each

y 2 Y then each f 2 DT (X; Y; C) admits the form f(x; y) =
P

c2lv(f) c(y)fc(x). For the purposes

of learning the following decision list representation will be more useful. Ordering the set lv(f) in

some arbitrary way, say lv(f) = fc1; c2; : : : ctg, gives the following equivalent form of the above.

f(x; y) = if fc1(x) = 1 then c1(y)

else if fc2(x) = 1 then c2(y)

else : : :

else if fct(x) = 1 then ct(y).

For brevity we will write

[fc1(x)c1(y); fc2(x)c2(y); : : : ; fct(x)ct(y)]

to mean the above decision list. Note that the size of the decision list matches the decision tree

size of Tf .

3 Learning Decision Trees with Constant Valued Leaves

This section is devoted to the proof of theorem 2. We begin with a discussion about the hypothesis

representation. We then describe the learning algorithm inductively showing �rst how to initialize

the learning process and then how to proceed at any stage of the algorithm.

Theorem 2: Decision trees of size s with constant valued leaves over the variablesX = fx1; : : : ; xng,

DT (X; ;; C), are learnable using O(s3) equivalence queries and O(s3n2) membership queries.

4

Proof We can view the target function f from DT (X; ;; C) being represented as

f(x) = [fc1(x)c1; fc2(x)c2; : : : ; fct(x)ct] where t = jlv(f)j � s:

Since Y is empty, each ci is just a member of the set C.

Each fci can be seen as a boolean decision tree that indicates which leaves of the target hold

the value ci. We will learn the target function by learning each decision tree for all fc; c 2 lv(f)

using the decision tree algorithm from [Bs93]. For convenience, we will refer to this algorithm as

DTA .

We begin the algorithm by asking MQf(0) where 0 is the all zero vector. The answer will be

ci1 which is one of the elements of lv(f). Then we use the equivalence oracle to ask whether the

function is the constant function ci1 . If the answer is yes then we are done but if not we will receive

an assignment x0 that satis�es f(x0) = ci2 6= ci1 .

At some stage of the algorithm the learner will have seen t di�erent leaf values L = fci1; ci2; : : : ; citg.

It assumes that these are the only leaf values in the target and proceeds to try and learn the decision

trees fci
j

for all 1 � j � t. The learning continues as long as no counterexample contrary to this

assumption is seen. If there is such a counterexample then it will be a new value c =2 L. This will

be added to the set L and the learning continues under the previous assumption. The following

will describe the above ideas in greater detail explaining the generation of decision tree algorithms

and query simulation.

Membership queries for fc for c 2 L are easily simulated for any vector x0 2 f0; 1g
n as follows:

MQfc(x0) I [MQf(x0) = c];

that is, we ask membership query MQf(x0) and if the answer is c then we return 1 and if not we

return 0.

The simulation of equivalence queries is not as obvious. Assume that at some point during the

learning we have t copies of DTA running for the values of L. We will let each copy of DTA run

until it requests an equivalence query. If the jth DTA asks the equivalence query EQfc
i
j

(hj) then

we ask the equivalence query EQf(h) where

h(x) = [h1(x)ci1; h2(x)ci2; : : : ; ht(x)cit; 1c�]:

Notice the special value c� which is any arbitrary leaf value not in the set fc1; c2; : : : ; ctg. The

purpose of this value is to mark the end of the decision list and the reason for doing this is to have

a well de�ned hypothesis.

We claim that if we receive a counterexample, a, then it is either a counterexample for one

of the existing decision tree algorithms or it leads to a new leaf value not currently in L. In the

former case we continue running the copy of DTA that this is a counterexample for. In the latter

case we add the new leaf value to the set L and initiate a new DTA for this value. This is an

important claim because it ensures progress towards the learning of f for each counterexample

returned until h � f . We defend this claim by describing the three possible cases that can occur

given the counterexample a. Since a is a counterexample we have ci = h(a) 6= f(a) = cj.

� Case 1: h(a) = ci for some ci 2 L.

Since fcj(a) = 1 and since fc for c 2 L are disjoint we must have fci(a) = 0. Now hci(a) = 1

which implies that a is a counterexample for hci . We may get another counterexample for

another algorithm in this case also. We check MQf (a) and see if the value returned is a

5

constant value we have already seen. If it is, we check to see whether the existing tree for this

constant classi�es this example correctly. If it does not then we can use it as a counterexample

to this algorithm. If the value of the membership query returns a value not already seen then

we can start a new algorithm for this value. If this new value is c� then we must select a new

c�.

� Case 2: h(a) = c� and f(a) = cj where cj 2 L.

This again means we have a counterexample for the algorithm learning fcj because 0 =

hcj(a) 6= fcj (a) = 1.

� Case 3: h(a) = c� and f(a) = c for some c =2 L.

This means we must initiate another algorithm to learn fc.

Once all of the values in lv(f) have been seen at least once then only cases 1 and 2 can occur

which implies that, excluding the special value, the number of terms in h never exceeds the number

of terms in f . The placement of the new terms in the hypothesis will not hinder the learning

process and is therefore arbitrary.

Letting s represent the size of the target decision tree we know from [Bs93] that each copy of

DTA will run in polynomial time using O(s2) equivalence queries and O(s2n2) membership queries.

At most we will have s copies of DTA to learn f so we conclude that the algorithm we have just

described will run in polynomial time using O(s3) equivalence queries and O(s3n2) membership

queries.

4 Learning Decision Trees With Leaves That Are Functions

The proof for theorem 1 is presented in this section. This section proceeds in a similar fashion to

the previous one. The main di�erence being the need for additional algorithms to learn the leaf

functions. Again the learning algorithm is described in an inductive manner.

Theorem 1: Decision trees with leaves from an exactly learnable concept class C, DT(X,Y,C),

are learnable where X and Y are disjoint variable sets that can be distinguished.

Proof We will let A represent the learning algorithm for the concept class C and, as before, we

will let DTA represent the boolean decision tree algorithm from [Bs93]. The target formula f can

be represented in decision list form as follows

f(x; y) = [fc1(x)c1(y); fc2(x)c2(y); : : : ; fct(x)ct(y)]

where lv(f) = fc1; : : : ; ctg:

To learn this function, our algorithm will generate a copy of A and DTA for each ci and fci
respectively where 1 � i � jlv(f)j. The generation of each algorithm and simulation of membership

and equivalence queries for each is not done as easily as in the previous section where the leaves

were constants. We employ the help of a history table or matrix which will contain previously seen

information in a form that will allow us to simulate queries and learn the above class.

This history matrix, denotedHM , will have its rows indexed with values from Y and its columns

indexed with disjoint subsets of X . Our goal is to build a table such that there will be a column

for each distinct function that appears as a leaf in the target. The columns are labeled with sets

containing the X values seen so far that appear to lead to the same function, that is, for each X

6

in the column set, the value of f(x; y) will be the same for every Y value that there is a row for.

Notice these x values may lead to di�erent leaves in the target tree. Each set will be referred to by

its leader which is any chosen member of the set.

Throughout the entire learning process the history matrix will be maintained as follows. Each

time a counterexample is returned from an equivalence query, say x0y0, we add a row for y0 and

calculate its value with MQf (x; y
0) for every x in each column set. If this value is the same for all

x then the set remains intact. If however there is some disagreement, the set is divided into subsets

which agree on this value and new columns are created for these subsets. Once this is done we add

the value x0 to the table by �rst calculating MQf (x
0; y) for all the y values in the matrix. If all of

these values correspond exactly to an existing column then x0 is added to the set of x values that

label this column. If there is no such column then a new column is added with fx0g as its label

and leader. The same procedure is also followed for every membership query that any algorithm

asks on an input not yet placed in the table.

Notice that it is possible that at any time during the construction of this table that one column

may actually be labeled by a set of x values that lead to di�erent functions. This will happen when

the only examples that have been seen evaluate to the same values for each of these functions. We

will demonstrate that after a polynomial number of queries we can build a table that achieves our

goal of having one column for each distinct function of the target. We will do this shortly but �rst

we will show that if our goal concerning the matrix has been achieved then we can simulate any

query for any copy of A or DTA allowing us to learn the target.

To illustrate the simulations, we will refer to Figure 2 which depicts a possible target tree

along with a possible partial history matrix. Our discussion will be oriented towards any arbitrary

hypothesis and Figure 2 will be used for speci�c examples. Notice that the goal of having a column

for each distinct function has been achieved in Figure 2.

x

x

xx

x

1

2 3

4 5c

c cc

c

c1

1

2

2

3 4

0

0 0

00

1

1

11

1 Y

2 X

00111

01010

11111

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)

C (y)
1 1 1

1

11

1 2 22

2

2

2

2

4

4

4

33

3

33

3

3

10110

11100

11010

10011

10000

11101

Figure 2: An example target from DT (X; Y; C) with a possible history matrix.

Assume the leaders are the topmost element of each set.

Even though the matrix goal is complete we continue to maintain the table as before because we

have no way of telling this has happened. We are however guaranteed that no additional columns

7

will be added because each new example will have an x value that leads to one of these function

which means it will agree with some column on all values of y seen so far.

This algorithm is similar to the algorithm in the previous section. We will use the same initial-

ization procedure except this time the leaves are functions.

Assume that the current hypothesis has the following form for some t = jlv(f)j,

h(x; y) = [h1(x)d1(y); h2(x)d2(y); : : : ; ht(x)dt(y); 1c�(y)]

where di is a hypothesis for ci and hi is a hypothesis for fci .

Notice the special function c� which serves a purpose similar to the special character in the

hypothesis of the previous section. At this point of the learning there will be t copies of A and

DTA running for each portion of the hypothesis. First we show how to simulate membership queries

for each of these algorithms.

� Membership Queries for any fci .

We are trying to learn the boolean decision tree for the leaf function in question. We know

that the leader of the column set, x0, leads us to the function we want so we use this value

to see if the example we want to question does also. This is done as follows.

MQfc
i

(x1) = I [8y 2 HM; MQf(x1; y) = MQf(x0; y)];

that is, fci(x1) = 1 if for every y in the table f(x1; y) = f(x0; y). This is because fci(x) =

I [f(x; y) = ci(y)] and for every cj(y), j 6= i there exists a y0 in the table such that ci(y0) 6=

cj(y0).

As an example, suppose we wanted to ask a membership query for the copy of DTA generated

by the second column of HM in Figure 2. Suppose that speci�cally we want the value of

MQfc
i

(00011). The leader of the column set is 11010 which leads to the function c1 and we

can see that 00011 also leads to the same function on a di�erent leaf so they will agree on all

values of Y resulting in a 1 being returned for the membership query. Had the value been

10001 for a membership query for this same algorithm, the answer would have been zero as

this vector leads to a di�erent function.

� Membership Queries for any ci.

Under our assumption of a column for each distinct function, the membership query for any

copy of A is just the value of the target when the leader of the column representing this leaf

function is used as the X portion of the query.

MQci
(y1) = MQf (x0; y1)

So say we wanted to �nd out what the value c2(y) was for the algorithm generated to learn

this function. All we do is askMQf (10000; y) because this leader allows access to this speci�c

function.

As in the previous section the simulation of the equivalence queries is not as straightforward.

Similar to before we wait until each copy of an algorithm requests an equivalence query and then

we use the entire hypothesis h(x; y) as input to the equivalence query. In order to guarantee

that the learning process progresses, we must again show that each counterexample returned will

8

be a counterexample for at least one of the learning algorithms currently running. We proceed

by analyzing all possible cases given the return of a counterexample, (x0; y0), to the following

equivalence query,

EQf([hc1(x)d1(y); hc2(x)d2(y); : : : ; hct(x)dt(y); 1c�(y)])! (x0; y0):

We know that f(x0; y0) 6= h(x0; y0). Now we �nd the column that corresponds to x0 by checking

f(x0; y) for all y 2 HM . Suppose that f(x0; y) = ci0(y). This implies that fcj (x
0) = 0 for all j 6= i0

and fci0 (x
0) = 1. Now we have three cases.

� Case 1: hck(x
0) = 1 for some k < i0.

In this case x0 is a counterexample for the hypothesis hck because fck(x
0) = 0.

� Case 2: hck(x
0) = 0 for all k � i0.

In this case x0 is a counterexample for the hypothesis hci0 because fci0 (x
0) = 1.

� Case 3: hck(x
0) = 0 for k < i0 and hci0 (x

0) = 1.

In this case y0 is a counterexample for ci0 because

ci0(y
0) = f(x0; y0) 6= h(x0; y0) = di0(y

0):

We now address the issue of showing that the history matrix can be built to the point where no

more splitting or addition of a new column will occur after using a polynomial number of queries.

At any point during the overall algorithm's execution it is assumed that the matrix does have a

column for each distinct leaf function. We start with the assumption that there is only one such

function and label this column with the all zero vector. This is the same as assuming that there is

no tree portion and all we are learning is one function from C. Whenever we �nd it necessary to

split or add a column we will start the learning process again except the start will be based on the

existing history matrix. We will restart a copy of DTA and A for each column but any time we

ask an equivalence query we will check to see if the hypothesis is consistent with the matrix. If it

is not, then we will take our counterexample from there.

We will now show that only a polynomial number of queries are required to build a history

matrix that has a column for each distinct leaf function in the target tree.

Suppose we have r columns in the table, r < t. Let Li = fci1(y); : : : ; cili(y)g be the set of leaf

functions that are consistent with column i in the table. Since each time we get a counterexample

or we want to ask a membership query for column i we check all other entries in the table. If no

splitting or addition of a new column happens this means that the counterexample or the answer

to the membership query is valid for all cij in Li. Therefore in column i the equivalence and

membership query gives , in particular, a correct answer for ci1. Since the algorithm for C runs

in polynomial time we must at some point receive a counterexample that forces a splitting of the

ith column or it will force a new column to be added. This only shows that the algorithms for the

c's do not run more than polynomial time before a splitting or addition happens. We still need to

show that the algorithms for the fc's also do not run more than polynomial time when the number

of columns is less than the size of the set lv(f).

Since computing fc is done by comparing f(x; y) with the columns of the table for all Y seen

so far, the function corresponding to column j will be

fLj
= I [f(x; y)� ci(y) for some ci 2 Lj]:

9

Notice that the fLj
is the decision tree resulting from the decision tree of f by replacing all leaves

that are in Lj by 1 and all remaining leaves by 0. Therefore before a splitting happens to column

j we will see at most a polynomial number of counterexamples for fLj
.

4.1 Algorithm Complexity

We will show that the size of the table is bounded by some polynomial and therefore the algorithm

will run in polynomial time. By size of the table, we refer to the ordered pairs of X � Y that it

contains.

Suppose we were given an x for each distinct function in the tree, call it set X0, along with one

y value such that f(xi; y) 6= f(xj ; y) for all pairs xi; xj 2 X0. Note the size of X0 is at most s.

Since we have the information to construct a table with a column for each distinct leaf function it

is clear that to learn the target function from this point would require s(s2n2+ s2) x values added

to the table and s(M(C) +E(C)) y values added to the table.

We will not be given this information at the beginning of our algorithm but we have descibed

how to build such a table using stages that do however make this assumption. Clearly, each stage

of the algorithm requires at most this number of additions to the table and there are at most s

stages so the size of the table will be at most

s3((s2n2 + s2)(M(C) +E(C))):

Since this is polynomial we conclude that the running time of the algorithm is also polynomial.

5 A Generalization of the Monotone Theory

This section demonstrates the learnability of decision trees whose leaves are elements of a bounded

lattice. The technique is a generalization of the ideas presented in [Bs93]. First we generalize An-

gluin's algorithm for learning monotone DNF boolean formulas. Next we apply the same algorithm

to learn an arbitrary DNF assuming that the equivalence oracle only returns positive examples.

Finally, we remove this restriction and obtain the promised learning algorithm for decision trees.

5.1 De�nitions

Our functions, called L-functions, are maps from the boolean n-cube f0; 1gn into a lattice L,

f : f0; 1gn! L. Standard boolean functions are a special case where the range is f0; 1g. The order

present in the output helps speed up the learning of decision trees that represent L-functions.

We begin with necessary background on ordered sets [DP]. A partial order (X;�X) is a set X

with a re
exive, antisymmetric and transitive relation �X . Two elements x; y 2 X are comparable if

x �X y or y �X x, and are incomparable, denoted by x k y, otherwise. The notation x <X y means

x �X y and x 6= y. An element x covers y if x <X y and there is no w such that x <X w <X y. In

this case x is an immediate descendant of y. The set of immediate descendants of x is denoted by

bxc.

For a subset Q � X , an element x 2 Q is a minimal element of Q if x �X y for all y 2 Q that

are comparable to x. It is a minimum element if x �X y for all y 2 Q. The de�nitions for maximal

and maximum are similar. The set of upper bounds for a subset Q is de�ned as

Qu = fx 2 X j(8q 2 Q)q �X xg:

10

The set of lower bounds for a subset is de�ned as

Ql = fx 2 X j(8q 2 Q)q �X xg:

If the set Qu has a minimum element, q, then q is the supremum of Q which is denoted by sup Q.

If the set Ql has a maximum element, q, then q is the in�mum of Q which is denoted by inf Q.

A lattice (L;�L) is a partial order where inffx; yg and supfx; yg exist for all x; y 2 L. The lattice

L is complete if the previous fact holds for any S � L. The two standard commutative operations

on a lattice, the meet ^ and the join _, are de�ned through inf and sup, i.e., x^ y = inffx; yg and

x _ y = supfx; yg. The minimum and maximum elements of a lattice are called the top, >, and

bottom, ?, respectively. The following properties hold for any element x of a lattice: ?^ x = ?,

?_ x = x, >^ x = x and >_ x = >.

We now review some standard notation for the boolean n-cube f0; 1gn. For a vector x 2 f0; 1gn,

we denote the i-th bit of x as x[i]. For two vectors x and y, x � y if x[i] = 1 implies y[i] = 1. For

x; y 2 f0; 1gn, x + y means the bitwise exclusive-OR of vectors x and y. The Hamming weight of

x 2 f0; 1gn is the number of ones contained in vector x. The term induced by a vector a 2 f0; 1gn

is de�ned as

T a(x) =
^

i:a[i]=1

xi:

As an example, for a = 01101, we get T 01101(x) = x2x3x5.

The following de�nition extends the notion of DNF and CNF from boolean functions to L-

functions.

De�nition 1 The formula f =
Wm

i=1 (�iTi(x)), is called an L-DNF where Ti is a term over n

variables, �i 2 L, x 2 f0; 1g
n and

�iTi(x) =

(
�i Ti(x) = 1

? Ti(x) = 0

To di�erentiate between di�erent kinds of terms, the �iTi's are called L-terms while the Ti's

are simply called terms. The number of L-terms in an L-DNF formula is the L-DNFsize of the

formula.

De�nition 2 The formula f =
Vm

i=1 (�i _ Ci(x)) ; is called an L-CNF where Ci is a clause over n

variables, �i 2 L, x 2 f0; 1g
n and

�i _ Ci(x) =

(
�i Ci(x) = 0

> Ci(x) = 1

Analogous to L-DNF's, the Ci's are called clauses and the �i _ Ci's are called L-clauses. The

L-CNFsize of an L-function is the number of L-clauses contained in the L-CNF representing it.

Just as boolean decision trees have a natural DNF and CNF representation, decision trees with

leaves from L have a natural L-DNF and L-CNF form. For example the L-DNF and L-CNF forms

of Figure 1, under the assumption that the c's are from a lattice, are respectively,

fL-DNF = c1(�x2 �x4)_ c4(�x2x4) _ c1(x2 �x1 �x5) _ c3(x2 �x1x5) _ c6(x2x1);

fL-CNF = [c1_ (x2_ x4)]^ [c4_ (x2_ �x4)]^ [c1_ (�x2_ x1_ x5)]^ [c3_ (�x2_ x1_ �x5)]^ [c6_ (�x2_ �x1)]:

11

De�nition 3 An L-function f is called monotone when 8x; y 2 f0; 1gn,

x � y =) f(x) �L f(y):

When dealing with monotone DNF, we will write MDNF. All previous de�nitions containing

L-DNF also hold for L-MDNF.

De�nition 4 An L-DNF is called reduced if it has a minimal L-DNFsize. We also assume that

each term has minimal size, i.e., as few literals as possible.

5.2 Learning Monotone L-DNF Formulas

This section presents a learning algorithm for L-MDNF formulas. The algorithm is based on

Angluin's algorithm for learning monotone DNF boolean formulas [A88].

We begin by showing that any L-MDNF has a unique reduced representation and then we

describe an algorithm that learns this representation exactly.

De�nition 5 The vector x 2 f0; 1gn is a minterm of the monotone L-function f if_
y2bxc

f(y) <L f(x):

The set of minterms of f is denoted by Min(f).

The next lemma gives one L-MDNF representation for each L-monotone function.

Lemma 5.1 If f is a monotone L-function then
W
a2Min(f) f(a)T

a(x) is an L-MDNF for f .

Proof Let h(x) =
W
a2Min(f) f(a)T

a(x). First we show that 8x0 2 f0; 1g
n, h(x0) �L f(x0). Let

x0 2 f0; 1g
n be any arbitrary vector such that h(x0) >L ?. If one does not exist the result is

obvious, otherwise we have the following

h(x0) =
_

a2Min(f)

f(a)T a(x0)

=
_

a 2 Min(f)

a � x0

f(a)

�L f(x0):

Now using induction on the Hamming weight of x0, it will be shown that 8x0 2 f0; 1g
n, f(x0) �L

h(x0).

Base Case: Let the Hamming weight of x0 be 0. Obviously f(x0) �L h(x0).

Inductive Hypothesis: For all vectors x0, whose Hamming weights are less than k, let f(x0) �L

h(x0).

Inductive Step: Show that f(x0) �L h(x0) for any vector x0 that has a Hamming weight of k. If

there is no x0 such that f(x0) >L ? then the result is obvious. Otherwise there are two cases to

consider.

12

Case 1: If x0 2Min(f) then

f(x0) �L f(x0) _
_

a 2Min(f)
a < x0

f(a) = h(x0):

Case 2: If x0 =2Min(f) then

f(x0) �L

_
y2bx0c

f(y)

=
_

y2bx0c

h(y) inductive hypothesis

=
_

y2bx0c

_
a 2 Min(f)

a � y

f(a)

=
_

a 2 Min(f)

a � x0

f(a) since x0 =2Min(f)

= h(x0):

So for all x0 2 f0; 1g
n, f(x0) = h(x0).

The next lemma provides a lower bound on the size of any reduced L-MDNF for L-monotone

functions.

Lemma 5.2 If fr is a reduced L-MDNF for an L-function f then

L-DNFsize(fr) � jMin(f)j:

Proof Let g =
Wm

i=1 �iT
vi(x) be an L-MDNF for f with m < jMin(f)j. Because of this size

restriction there must be a vector a 2Min(f) such that for all T a 6= T vi. Since a is a minterm and

f is monotone, we have f(a) >
W
b<a f(b). Now note that

g(a) =
m_
i=1

�iT
vi(a) =

_
vi�a

�i =
_
vi<a

�i;

as vi 6= a, for all i. But then _
b<a

g(b) =
_
b<a

_
vi�b

�i =
_
vi<a

�i;

which implies g(a) =
W
b<a g(b), a contradiction.

Combining Lemma 5.1 and Lemma 5.2, allows us to conclude that the size of a reduced L-

MDNF equals the number of minterms. Moreover, the L-MDNF stated in Lemma 5.1 is the unique

representation of this size.

Lemma 5.3 All monotone L-functions have a unique reduced L-MDNF.

Proof Let f =
Wm

i=1 �iTi be a reduced monotone L-DNF. The portrait P(f;�P) is a partially

ordered subset of L� f0; 1gn where �P is de�ned as

(�i; Ti) �P (�j; Tj) () �i �L �j and Ti � Tj:

Speci�cally,

P(f;�P) = f(�i; Ti) j �iTi is an L-term of f for 1 � i �mg:

13

LEARN-L-MDNF

(1) h ?;

(2) EQ(h)! v. If the answer is Yes then stop;

(3) Walk v down while 9w 2 bvc so that h(w) 6�L f(w) ;

(4) h h _ f(v)T v;

(5) Go to step 2;

Figure 3: An algorithm that learns monotone L-functions.

An element x 2 P(f;�P) is at level k if the shortest downward path from x to a minimal

element of P(f;�P) has k edges.

Assume that a monotone L-function f has two reduced L-DNF representations, fr1 and fr2. To

prove fr1 = fr2, it will be shown that P(fr1;�P) = P(fr2;�P). De�ne Ai and Bi to be the i
th level

elements of P(fr1;�P) and P(fr2;�P) respectively. Let
W
Ai and

W
Bi represent the disjunction of

the elements contained within the speci�ed set. Using this notation fr1 and fr2 can be represented

as

fr1 =
t_

i=1

Ai and fr2 =
s_
i=1

Bi

where s and t are the number of distinct levels that the elements of each set occupy.

Using induction on increasing level numbers, the equality of sets Ai and Bi shall be proven. For

the induction, the element (?; T0n) is added to the portraits of both fr1 and fr2. De�ne arti�cially

A�1 = B�1 = f(?; T0n)g.

Base case: For level i = �1, A�1 = B�1 by de�nition.

Inductive Hypothesis: Assume Ai = Bi for all levels i � k � 1.

Inductive step: Show thatAk = Bk. Assume for contradiction thatAk 6= Bk and let �T 2 AknBk.

Let g represent the disjunction of all elements from levels i � k � 1.

� Case 1: There exists bT v 2 Bk but b 6= a.

This is a contradiction since fr1(v) = g(v)_ a 6= g(v)_ b = fr2(v).

� Case 2: There exists bT v0

2 Bk with v0 < v.

This is a contradiction since fr1(v
0) = g(v0) 6= g(v0) _ b = fr2(v

0).

� Case 3: There is no bT v0

2 Bk with v0 < v.

This is a contradiction since fr1(v) = g(v)_ a 6= g(v) = fr2(v).

There are no other cases so Ak = Bk.

Now that we have proven that the reduced form of an L-MDNF for an L-monotone function is

unique we present an algorithm that learns any function from this class exactly and outputs this

unique representation. This algorithm, LEARN-L-MDNF, is given in Figure 3, and its correctness

is claimed in the next lemma.

14

Lemma 5.4 LEARN L-MDNF exactly learns any monotone L-function, f , using s EQ's and sn

MQ's where s is the L-MDNFsize of f .

We divide the proof of the above into two lemmas.

Lemma 5.5 Let f =
Wm

i=1 �iTi be a reduced monotone L-MDNF. Then

1. I [f(x) 6= ?] =
Wm

i=1 Ti(x).

2. Suppose h =
Wr

i=1 �iTi and g =
Wm

i=r+1 �iTi. Then

(a) I [h(x) 6�L f(x)] � I [g(x) 6= ?].

(b) If x0 2 f0; 1g
n is minimal in satisfying h(x0) 6�L f(x0), then x0 is a minterm of g.

Proof

(1) Notice that f(x) 6= ? if and only if one of the Ti(x), 1 � i �m, is 1. This implies the result.

(2a) Let x0 be such that h(x0) 6�L f(x0). Assume that g(x0) = ?. Then f(x0) = h(x0) 6�L f(x)

which is a contradiction.

(2b) Assume that x0 is minimal in satisfying h(x0) 6�L f(x0), i.e., 8y 2 bx0c, h(y) �L f(y).

Since 8x 2 f0; 1gn, h(x) �L f(x), the statement 8y 2 bx0c, h(y) �L f(y) implies that 8y 2 bx0c,

h(y) = f(y).

Assume x0 is not a minterm of g, that is,
W
y2bx0c

g(y) �L g(x0). Since h(y) = f(y), for all

y 2 bx0c, it follows that g(y) �L f(y) = h(y), 8y 2 bx0c: Therefore

g(x0) �L

_
y2bx0c

g(y) �L

_
y2bx0c

h(y) = h(x0)

and

f(x0) = g(x0) _ h(x0) = h(x0);

which contradicts the assumption that h(x0) 6�L f(x0) meaning x0 is a minterm of g. Since g is

monotone, lemma 5.3 implies that T x0 is a term in g.

Lemma 5.4(1) shows that after the �rst equivalence query in the algorithm we will �nd some

minterm of the target f . Lemma 5.4(2) shows that after �nding some of the minterms, the next

equivalence query will lead to a new minterm that has not been found before.

Lemma 5.6 Let f(x) =
Wm

i=1 �iTi(x) be the reduced monotone L-DNF representing the target

function and let h(x) be the hypothesis of LEARN L-MDNF. Then at each iteration

1. For some 0 � r �m, h(x) = _i2R�iTi(x), where jRj = r and r < m.

2. There is a j > r, such that Tw = Tj, where w is the stopping point of the walk down.

Proof The proof is an easy induction based on the previous lemma.

The complexity of the algorithm depends on the number of membership queries asked in step

3 where the walking down procedure takes place. Exactly as in Angluin's paper [A88], the walking

down procedure is done by
ipping each one bit to zero one at a time and checking the value of

the function with a membership query. Note that if we
ip a bit and do not move down then we

will never try to
ip that bit again. This implies that the number of membership queries for each

walk down is bounded by n. Each equivalence query coupled with a walk down from the returned

counterexample will add an L-term to the hypothesis implying that we will need s equivalence

queries, where s is the L-MDNF size of the target.

15

5.3 Learning the Monotone of L-DNF Formulas using Superset Queries.

This section shows that we learn the minimal monotone L-function that covers the target L-function

f if the equivalence query oracle for f is restricted to only return positive counterexamples. This

section generalizes the notion ofM(f) de�ned in [Bs93] to L-functions.

De�nition 6 The monotone of an L-function f , denoted M(f), is the minimal monotone L-

function that satis�es

8x 2 f0; 1gn; f(x) �LM(f)(x):

The following lemma shows thatM(f) is unique.

Lemma 5.7 For any L-function f there is only oneM(f).

Proof Suppose there are two minimal monotone functions for f , call them g and h. Since 8x 2

f0; 1gn, f(x) �L g(x) and f(x) �L h(x) then 8x 2 f0; 1gn, f(x) �L g(x) ^ h(x) which is a more

minimal function and a contradiction to the assumption.

Lemma 5.8 The monotone of f admits the following representation.

M(f)(x) =
_
y�x

f(y) =
_
y

f(y)T y(x):

Proof Let h(x) =
W
y�x f(y). Notice that h is monotone and 8x 2 f0; 1gn, f(x) �L h(x). Assume

that there is another monotone L-function g which satis�es 8x 2 f0; 1gn, f(x) �L g(x) <L h(x).

Then

h(x) =
_
y�x

f(y) �L

_
y�x

g(y) = g(x)

which is a contradiction so h is the unique minimal monotone that includes f .

Lemma 5.9 The following properties ofM hold for any L-functions g and f .

1. If f �L g thenM(f) �LM(g).

2. M(f ^ g) �M(f)^M(g).

3. M(f _ g) =M(f)_M(g).

4. If f =
W
i �iTi thenM(f) =

W
i �iM(Ti).

5. If f is an L-monotone function thenM(f) = f .

Proof (1,3) This is immediate from Lemma 5.7. A more general statement is proven for (2). Let

fi be a L-function, for i 2 [n], and let g =
V
i fi. Note that g �L fi for all i 2 f1; 2; ::; ng. Thus by

(1),M(g) �LM(fi) for all i and hence M(g) �L

V
iM(fi). (4) By (3),M(f) =

W
iM(�iTi) and

M(�iTi) = �iM(Ti) by the de�nition ofM. (5) is obvious.

The following de�nition will prove to be useful in illustrating the working of our main algorithm.

De�nition 7 Superset Query, SQ(h): The learning algorithm supplies a concept hypothesis h as

the input to the superset oracle. The reply of the oracle is either \Yes" signifying that all satisfying

assignments of h form a superset of all satisfying assignments of f , or a counterexample, which is

an element b 2 f0; 1gn such that f(b) >L h(b).

16

Our goal is to show that if we replace the equivalence query oracle with the superset query

oracle in LEARN-L-MDNF then it will learnM(f). First we extend the de�nition of minterm for

all L-functions.

De�nition 8 The vector x 2 f0; 1gn is called a minterm of the L-function f if_
y2bxc

f(y) 6�L f(x):

The set of minterms of f is denoted by Min(f).

The next lemma provides a representation ofM(f) in terms of the minterms of f .

Lemma 5.10 Let f be any L-function. Then

M(f) =
_

a2Min(f)

f(a)T a:

Proof By Lemma 5.7

M(f)(x) =
_
y

f(y)T y(x):

If y =2Min(f) then
W
b2byc f(b) �L f(y) and_

y

f(y)T y(x) �L

_
y2Min(f)

f(y)T y(x):

ThereforeM(f)(x) �
W
y2Min(f) f(y)T

y(x). The other inequality follows from

_
y2Min(f)

f(y)T y(x) �L

_
y

f(y)T y(x) =M(f)(x):

Next we want to show that jMin(f)j is bounded from above by the L-DNF size of f .

Lemma 5.11 Let f be an L-function. Then

jMin(f)j � L-DNF size of f:

Proof Suppose f(x) =
Ws

i=1 �iTi(x). Let a 2 Min(f). Without loss of generality we assume that

T1(a) = : : : = Tr(a) = 1 and Tr+1(a) = : : : = Ts(a) = 0. This implies that f(a) = �1 _ : : : _ �r.

Suppose that for all i, 1 � i � r, there is a variable xji not in Ti such that aji = 1. If we show that

this cannot happen then there exists a term Ti0 such that if xi is not a variable of Ti0 then ai = 0.

Since Ti0(a) = 1 this is equivalent to saying that a is a minterm of Ti0. Therefore every minterm of

f is a minterm of one of the Ti's which implies that the number of minterms of f cannot be larger

than the number of terms in f . Now we show that the above assumption leads to a contradiction.

Let bji be the assignment a when we
ip the entry ji from 1 to 0. Obviously, Ti(b
ji) = 1, and

therefore f(bji) � �i. This implies that

f(a) = �1 _ : : :_ �r �
_
i

f(bji) �
_
b2bac

f(b);

which contradicts the fact that a 2Min(f).

We are ready to prove the main lemma of this section.

17

Lemma 5.12 If LEARN-L-MDNF uses superset queries instead of equivalence queries, then it

learnsM(f). The number of superset queries required is s and the number of membership queries

required is n2s where s is L-DNFsize(f).

Proof Notice that in the algorithm the hypothesis is of the form
W
v2V f(v)T

v, for some set of

assignments V . Therefore the hypothesis of the algorithm is always monotone and by Lemma 5.7

we have

h �LM(f):

When the algorithm stops, we will have a hypothesis h0 such that h0 �L f . SinceM(f) �L h0 �L f ,

h0 is monotone, andM(f) is the minimal monotone that is greater than f , we have h0 =M(f).

Let f(x) =
Ws

i=1 �iTi(x). We will show that the hypothesis is of the form h(x) =
Wr

j=1 �ijM(Tij)(x).

We will show that if the superset query oracle returns a counterexample then after running step 3 we

add to h the term �ir+1M(Tir+1), for ir+1 =2 fi1; : : : ; irg. Since by Lemma 5.8,M(f) =
W
i �iM(Ti),

the algorithm will stop and outputM(f) after at most s superset queries.

Assume, without loss of generality, that h(x) =
Wr

i=1 �iM(Ti)(x). Suppose in step 3 the algo-

rithm stops at v = v0. Then by the condition in the algorithm we have

h(v0) 6�L f(v0) and 8w 2 bv0ch(w) �L f(w):

Again without loss of generality let M(T1)(v0) = � � � =M(Tl)(v0) = 1 and M(Tl+1)(v0) = � � � =

M(Tr)(v0) = 0. The latter implies that Tl+1(v0) = � � � = Tr(v0) = 0. Suppose that Ti(v0) = �i, for

i 2 f1; : : : ; lg. Then h(v0) = �1_� � �_�l and f(v0) = �1�1_� � �_�l�l_�r+1Tr+1(v0)_� � �_�sTs(v0).

Since h(v0) 6�L f(v0) we must have Tj(v0) = 1, for some j > r, and �j 6�l f
Wl

i=1 �i. Because for all

w 2 bv0c, h(w) �L f(w), we must have for every w 2 bv0c, Tj(w) = 0. Therefore v0 is a minterm

of Tj and the term that is added to the hypothesis is �jM(tj).

5.4 Learning L-Functions

This section proves that subclasses of L-functions with small L-monotone basis are learnable. In

particular, decision trees whose leaves form a bounded lattice are learnable. The next de�nition

extends the notion of an L-monotone basis.

De�nition 9 A subset A � f0; 1gn is called an L-monotone basis (LM-basis) of f if there exists

an L-CNF representation of f such that for every clause, �i_Ci, in this L-CNF, there is an aj 2 A

such that Ci(aj) = 0.

As in [Bs93] we consider the shifted boolean cube (f0; 1gn;�a), where a 2 f0; 1gn and the

relation �a is de�ned as follows.

x �a y () x+ a � y + a:

The function f is a-monotone if f(x + a) is monotone. We can now de�ne Ma(f) in a similar

manner as M(f) except f0; 1gn is ordered with respect to �a. Moreover we have the following

relation betweenMa andM.

Lemma 5.13 Ma(f)(x) =M(f(x+ a))(x+ a).

18

Proof Let h(x) = f(x+ a). Then we have

Ma(f)(x) =
_
y�ax

f(y) =
_

y+a�x+a

f((y + a) + a)

=
_

z�x+a

h(z) =M(h)(x+ a)

= M(f(x+ a))(x+ a):

The following lemma generalizes the main representation theorem of the monotone theory in

[Bs93].

Lemma 5.14 If A is an L-monotone basis of f then f(x) =
V
a2AMa(f)(x).

Proof First note that f(x) �L Ma(f)(x) for all x 2 f0; 1gn and a 2 A. This implies that

f(x) �L

V
a2AMa(f)(x). For the converse direction let g =

Vm

i=1(�i _ Ci)(x) such that for every

Ci there exists a 2 A where Ci(a) = 0. Then^
a2A

Ma(f) =
^
a2A

Ma(g)(x)

=
^
a2A

Ma

m̂

i=1

(�i _ Ci)

!
(x)

�L

^
a2A

m̂

i=1

Ma (�i _ Ci) (x); by Lemma 5.8(2)

=
m̂

i=1

^
a2A

Ma (�i _ Ci) (x)

=
m̂

i=1

^
a2A

(�i _Ma(Ci)) (x)

�L

m̂

i=1

�
�i _Maj (Ci)

�
(x); where Ci(aj) = 0

=
m̂

i=1

(�i _ Ci) (x)

= f(x):

Note that we have used the fact if C(a) = 0 thenMa(C) = C which follows from [Bs93].

The algorithm L-� learns L-functions f with LM-basis A = fa1; : : : ; atg. This algorithm

simulates the running of t copies of LEARN-L-MDNF, one for each f(x + ai). In step 2 in the

algorithm we ask equivalence query with
Vt

i=1 hi, where hi is the hypothesis of the i-th algorithm.

Since hi �LMai(f), we have
t̂

i=1

hi �L

t̂

i=1

Mai(f) = f:

Therefore the counterexample v always satis�es
Vt

i=1 hi(v) 6�L f(v). This implies that there exists

at least one hi that satis�es hi(v) 6�L f(v). This shows that after each equivalence query the

counterexample will be a superset query counterexample for at least one of the algorithms. This

implies the following lemma.

19

Algorithm : L-�

/* A = fa1; a2; : : : ; atg is anM-basis for C and f 2 C. */

(1) hi 0 for all i 2 f1; 2; : : : ; tg;

(2) v EQ(
Vt

i=1 hi); (3) I = fi : hi(v) 6�L f(v)g;

(4) For each i 2 I do

(a) vi v;

(b) Walk vi down while 9w 2 bvicai so that hi(w) 6�L f(w);

(c) hi hi _ f(vi)T
vi(x+ ai);

(5) Go to step 2;

Figure 4: An algorithm to learn L-functions when the monotone basis is known.

Lemma 5.15 Let C be a class with LM-basis A. Then L-� exactly learns any f 2 C using sjAj

equivalence queries and sjAjn2 membership queries, where s is the L-DNFsize of f .

Next we extend the CDNF algorithm in [Bs93]. Recall that this algorithm simultaneously

searches for a basis while learning the target. A CDNF is a boolean function whose CNF size is

polynomial in its DNF size. The term L-CDNF has the obvious similar de�nition.

Theorem 5.1 L-CDNF exactly learns any f 2 C using s equivalence queries and sn2 membership

queries where s is the product of the L-DNF and the L-CNF sizes of f . In particular, decision trees

of size s are learnable from s2 equivalence queries and s2n2 membership queries.

The above theorem will follow from the following lemma which states that each counterexample

that satis�es H(a) �L f(a) yields a new basis point of C.

Lemma 5.16 Let f =
Vs

i=1(�i_Ci) be a minimal size L-CNF of f . Also let A = fa1; a2; : : : ; atg �

f0; 1gn that satis�es the following property for some �xed r < s.

For every Ci, i � r, there exists aj(i) 2 A such that aj(i) falsi�es Ci.

If hi, i 2 f1; 2; : : : ; tg, are L-functions which satisfy hi �Mai(f), then any assignment a 2 f0; 1gn

that satis�es f(a) <
Vt

i=1 hi(a), must falsify some Cj, j > r.

Proof Suppose that Ci(a) = 0 for all i > r. Then

f(a) =
r̂

i=1

(�i _ Ci(a)):

Now for every i we have

hji(a) �L Maj
i

(f)(a)

�L Maj
i

(�i _ Ci)(a)

= �i _ Ci(a):

20

Algorithm : L-CDNF

(1) t 0;

(2) v EQ(>); If the answer is Yes then stop;

(3) t t+ 1, Ht ?, at v;

(4) v EQ(
Vt

i=1 hi); If the answer is Yes then stop;

(5) I = fi : hi(v) 6�L f(v)g;

(6) If I = ; then go to step 3;

(7) For each i 2 I do

(a) vi v;

(b) Walk vi down while 9w 2 bvicai so that hi(w) 6�L f(w);

(c) hi hi _ f(vi)T
vi(x+ ai);

(8) Go to step 4;

Figure 5: An algorithm that learns L-functions without a monotone basis as

input.

Therefore

f(a) <L

t̂

i=1

hi(a)

�L

r̂

i=1

hji(a)

�L

r̂

i=1

(�i _ Ci(a))

which implies

f(a) <L

r̂

i=1

(�i _ Ci(a));

a contradiction.

6 Open Problems

We o�er some open problems that arise from this paper. In order of increasing di�culties, we ask

if:

1. Is it possible to learn DT (X; Y;MDNF) when the sets X and Y are not distinguishable?

2. Is it possible to learn any DT (X; Y;C) when the sets X and Y are not distinguishable?

3. Are there any other structures S, other than decision trees, that preserves learnability, i.e.,

S(X; Y;C) is learnable whenever C is a learnable class over Y ?

21

References

[A88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319{342, 1988.

[AHK93] Dana Angluin, Lisa Hellerstein and Marek Karpinski. Learning Read-Once Formulas

with Queries. Journal of ACM, 40(1):185-210, 1993

[Bl92] Avrim Blum Rank-r Decision Trees are a Subclass of r-Decision Lists. Information Pro-

cessing Letters, 43, pages 183-185, 1992.

[Bs93] Nader H. Bshouty. Exact Learning via the Monotone Theory. In Proceeding of the 34th

Symposium on Foundations of Computer Science. pages 302{311, November 1993.

[DP] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 1990.

[EH89] Andrzejz Ehrenfeucht and David Haussler. Learning Decision Trees from Random Exam-

ples. Information and Computation, 82, pages 231-246, 1989.

[H92a] Thomas R. Hancock. Learning 2�DNF Formulas and k� Decision Trees. In Proceedings of

the Fourth Annual Workshop on Computational Learning Theory, August 1991.

[H92b] Thomas R. Hancock. The Complexity of Learning Formulas and Decision Trees that have

Restricted Reads. TR-15-92, Harvard University. (Thesis)

[H93] Thomas R. Hancock. Learning k�Decision Trees on the Uniform Distribution. In Proceedings

of the Sixth Annual Workshop on Computational Learning Theory, pages 352-360 July, 1993.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees using the Fourier Spectrum.

SIAM J. Computing, 22(6):1331{1348, 1993.

[L88] Nick Littlestone. Learning Quickly when Irrelevant Attributes Abound: A New Linear-

Threshold Algorithm. Machine Learning,2, pages 285-318, 1988.

[R87] Ronald L. Rivest Learning Decision Lists. Machine Learning, 2, pages 229-246, 1987.

[Val84] Leslie G. Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134{

1142, November 1984.

22

