Introduction

In this paper we examine closed chains of relations that are linked by
co-relationships, and prove a fundamental theorem involving polygonal join dependencies
and closed chains where the co-relationships are existentially significant. Join
dependencies have been known for some time [1, 4, 8, 14, 15, 16, 18], with most
of the published work dealing with their technical characteristics - as opposed
to their semantic characteristics, which are relevant to this paper. The join
dependencies that we deal with are a large class of join dependencies called polygonal
join dependencies [8]. Co-relationships, on the other hand, have not been much
studied by relational theorists, probably because of the relatively undefined
status often associated with relationships in data base theory [3, 4, 10, 15].

Indeed, nowhere in the basic theory of relations [15] is there even any mention

of the concept of a relationship between relations. Nevertheless, in many theoretical
papers the concept of a relationship surfaces frequently, without any precise
definition [2; 3, 4, 5, 6]. In this paper we use a reasonable but precise definition
that has proved very useful [7, 9].

Futhermore, there appears to have been few systematic attempts to classify
the different kinds of relationships that can occur in relational data bases. It
is nevertheless from a systematic classification developed by the author [7]
that the co-relationship has emerged as a well-defined type of relationship. Research
into co-relationships has revealed that for any co-relationship there is a level of
semantic significance, and that the well-known connection trap occurs with co-relation-
ships in cases where the user assumes the wrong level of semantic significance [9].

In this paper we go a step further, and examine closed chains of relations;
particularly binary relations, where each link of the chain is a co-relationship,
leading us to a fundamental theorem about such closed chains and join dependencies.
Essentially this theorem states that where the co-relationships of the chain all
are existentially significant, information cannot be reliably extracted even
from a complete join of the chain relations, that is; there is a sophisticated

connection trap, unless that join contains a polygonal join dependency [8].

3
1. CO-RELATIONSHIPS AND LEVELS OF SIGNIFICANCE

We begin with a brief review of the concepts of co-relationship and levels of significance,
reported on in detail elsewhere [7, 9].
1.1 Notation
Upper case bold letters are used for relation names, that is, instances of
relations. Upper case letters are used for relation attributes and attribute concatenations.
Relation schemes are implied throughout, but are not named [15]. Subcripted lower
case letters are used for attribute values with a tuple, with the convention
that if relation scheme [P, Q, S, T] could give rise to a relation P(P, Q,
1’ t6). The primary key attribute (or

attribute concatenation) will usually be underscored, and for reader convenience,

S, T), a tuple of P could be (pz, 5, S

will often have the same letter as the relation name, as in the case of P and P.

1.1 The co-relationship

A co-relationship is a particular type of relationship that can occur in a data

base. In a relational data base we can classify all relationships as either primitive
or non primitive. A primitive relationship is defined as follows [7]:

Primitive relationship definition

There is a primitive relationship between any arbitrary pair of relations
(A, B), iff by means of a single join operation, and no more than one projection
operation, it is possible to generate a relation R(A, B, ...), with mimimum
attributes A; B.
The relation R can be called a relationship relation, and in less formal terms,
if we have relations A(é, ...) and B(E, ...), then there will be a primitive relationship
between A and B, if we can construct a relation R(A, B) by joining A and B on a
common domain attribute,; and taking the projection on A and B, that is:

R(A, B) =1, (A B)

*
A,BY c,C

where 1 denotes projection, and *C c denotes a natural join on common domain attribute C.
b

Non primitive relationships are simply relationships that are not primitive,

in accordance with the above definition. They do not concern us in this paper, and

4

are covered in detail in [9]. There are two major categories of primitive relationship,
and these are the common one-to-many (l:n) relationship [2, 5, 6, 10, 11, 18] and

the co-relationship. Let C be the common domain attribute used to generate a relationship
relation R(A, B) for the case of a primitive relationship. We refer to C in either

A, or B, as a relationship supporting attribute, or relationship attribute.

One -to-many (primitive) relationship definition

A primitive relationship between relation A and B is one-to-many iff one,
and only one, of the relationship attributes C is a primary or candidate key.

Co-relationship definition

A primitive relationship is a co-relationship if neither of the relationship

attributes C is a primary or candidate key.
In accordance with the above definitions, if we have relations A(A, ...) and B(A, B, ...),
then there is a one to many relationship between A, and B, such that for any one
A tuple, there can be many related B tuples, all with the same A attribute
value. Incontrast, if we have relations A(A, C, ...) and B(B, C, ...), then there
is a co-relationship between A and B, such that for a given C value; every single
A tuple with that C value is related (co-related) to every single B tuple with
that same C value.

A co-relationship partitions the co-related relations,; as illustrated in

Figure 1. The tuples of a partition, whether from relation A or B all have the
same relationship attribute C value. If we display the co-relationship between
A and B using a matrix, each partion of the relationship appears as a rectangle;
as shown in Figure 2; within a rectangle of the display, each point denotes a pair
of co-related A and B tuples.
1.3 Co-relationship semantics and levels of semantic significance
To handle the semantics behind co-relationships we need to introduce levels of
segnificance, dealt with in detail in [9]. A brief review of this basic concept

is convenient at this point. Consider the following relations:

é C E C

a2 c1 b3 Cl

a; by
b1 e

a1 c3 b4 c3

a5 c3 b <3

&g 3

a3 cg by <5

8 ©5

A B

Figure 1. Two co-related relations are partitioned by the common relationship

support attribute (C)

L]

|

Figure 2. Each partition of a co-relationship appears as a rectangle when

the relationship is dispalyed as a matrix.

6

EP(E#, P#); a tuple tells what engineer (E#) works on what project (P#).

EC(E#, C#); a tuple tells what engineer (E#) uses what computer (C#)

Note that neither E#, P#, nor C# is a primary key.

Clearly we have a co-relationship between EP and EC, supported by the common

domain attribute E#. Depending on the semantics involved, we can have the following

levels of significance.

(a) Coincidental significance

Here if a pair of EC and EP tuples have a common E# value, it is purely
a coincidence and has no further meaning. We could not infer, for example,
that because engineer El uses computer C7, and engineer El works on project
P7, that computer C7 has anything to do with project P7. However, even this
minimum level of semantic significance for the relationship can be useful
in practice. For example, we might want to retrieve the computers used by
the engineers who work on project P7, with SQL expression:

SELECT C# FROM EC

WHERE E# IN (SELECT E# FROM EP

WHERE P# = 'P7')

(b) Existential significance

Here, for a given E# value, some of the EP tuples with that E# value can be
significantly related to some of the EC tuples‘ﬁith that E# value, where the
significance level is more meaningful than in the case of pure coincidental
significance. For example, it could be that for a given E# value, such as E7,
then some of the computers used by E7 might be used on some of the projects
worked on by E7. 1If such were the semantics, then with the retrieval:
Retrieval the computers used on project P6 by engineers working on project
P7, we still could mot use the SQL expression above, since it would

retrieve a superset of the

required computers. (As we shall see, a person accepting this SQL expression
would have fallen into a connection trap.)

(¢) Universal significance

Here, for a given E# value, all of the EP tuples with that E# value are
significantly related to all of the EC tuples with that E# value, where the
semantic level of significance is at a more meaningful
level than in the case of pure coincidental significance. For example, it
could be that for any given E# value, such as E7, then all of the computers
used by E7 are employed on all of the projects worked on by E7. With such
semantics then the retrieval: Retrieval the computers used on project
P6 by engineers working on P6, would be correctly expressed using the SQL
expression given under (a) above.
In addition to coincidental, existential and universal significance, two other
less important levels of significance can be readily distinguished. These are not
important for the purposes of this paper and readers are referred to reference [9].
1.4 Co-relationships and the connection trap
Co-relationship levels of significance enable easy definition of the connection
trap. Although levels of sinificance can give rise to connection traps in a fairly
wide variety of ways, as covered in reference [9], the essencerof the matter is
this: A user will fall into a connection trap if he or she assumes a wrong level
of significance. Thus, if the co-relationship between EP and EC is existential,
and a user assumes that all computers used by engineer E4 are used on projects
worked on by E4, when in fact, in accordance with existential significance; only
some of the computers used by E4 are used on projects worked on by E4, then that
user will have assumed a wrong level of significance and will have fallen into a
connection trap. However. there are even more sophisticated traps, where cllosed chains
of co-related relations are involved.
2. JOIN DEPENDENCIES AND CYCLIC CO-RELATIONSHIPS
We are now in a position to demonstrate the major point of this paper, namely that

polygonal join dependencies are fundamentally due to closed chains of existentially

8
co-related binary relations, where no connection trap is implicit in a complete
join of the relations. Initially we show this for the triangular join dependency.
2.1 Triangular join dependency
The triangular join dependency, so called because it occurs in a relation in which
each tuple denotes the three apexes of a triangle in a l-demensional grid of
triangles, or a set of intersection triangular grids [8], has the following properties:

Consider a relation J(X, Y, Z); if tuples (-, vy zl), (xl, -, 2z,), and (x

1 1’

Yy -) occur in J, then the tuple (xl, Vi zl) must also occur if the relation J
is to contain a triangular [8] join dependency [15, 16]. It can also be shown that
J cannot be non loss decomposed into any two projections each with two attributes;
that is, any two of relations XY(X, Y), XZ(X, Z), and YZ(Y, Z), where

XY(X, Y) = 1 (J(X, Y, 2)), and so on.

X,Y
A join of, for example XY(X, Y) and XZ(X, Z) on join attribute X will not regenerate
J. In order to regenerate J, we must first join any two of the projections on
a common join attribute, and then join the result to the third projection on two
common join attributes, that is, for example:

Step 1: XYZ(X, Y, Z) = XY(X, Y) * XZ(X, Z)

Step 2 J(X, Y, Z) = XYZ(X, Y, Z2) *_ _YZ(Y, Z)

Y,Z
These properties can be seen in a geometrical light if the tuples describe triangles
in a grid, as shown in Figure 3. First we see that if triangles (xa, R zl);
(Xl’ Y, zl), and (xl, vy za) exist, then geometrically, the triangle (Xl’
K zl) must also exist. Secondly, since a projection on any two attributes will
give a relation each of whose tuples denote the side of a triangle, a join of two
projections on a common attribute (apex type) will generate spurious triangles
that can only be eliminated by a further join (of the third side) [8].

Essentially, we can say that a relation of degree 3 contains a triangular join
dependency if it always a join of all three of its projections. Similarly, a relation
of degree 4 will contain a join dependency, the rectangular join dependency, if

it must always be a join of all four of its projections. It can be called

the rectangular join dependency because it will occur in a relation where each
tuple describes a rectangle in a grid of rectangles [8]. Similarly, we can have
pentagonal join dependencies, hexagonal join dependencies, and so on, giving a
series of polygonal dependencies. It is these polygonal dependencies, particularly
the triangular join dependency, that appear likely to occur in practice.

2.2 Cyclic co-relatioships

We may define a cyclic co-relationship as follows:

Cyclic co-relationship definition

Any relation T participates in a cyclic co-relationship, that is, T is co-related
to T, if T is a relation in a closed chain of relations, where each pair of
adjacent relations in the chain are co-related.
The simplest chain has two relations. However, this is a special case and does not
involve any join dependencies. The simplest case of interest as far as join
dependencies are concerned is the closed chain of three co-related binary relations,
and we take as an example the relations EP(E#, P#), EC(E#, C#), and PC(P#, C#),
with no particular semantics, and with none of the attributes E#, P# or C# being
either a primary or candidate key. (Note that each relation must, by definition,
be "all key".) We now examine the implications of the different possible levels of
significance for these co-relationships, for a three relation chain.
(a) Coincidental significance for each link -
Suppose a tuple within any of the three relations, for example (82’ pa) within EP.
Such a tuple implies a semantically significant association between e, and P+
Similarly, a tuple (ps, CZ) in PC implies a semantically significant association
between Py and Cys and so on. However, because the co-relationship between EP and
EC, for example, is merely coincidental, for a pair of co-related tuples (e7, p3)
and (e7, cz), there can not be an association of semantic significance between Ps

and ¢ for otherwise the co-relationship would not be merely coincidental. In

2’

other words;

10

the relation:

(EP EC) = X(P#, c#)

ps,co ' BP gy ns

cannot have any semantic significance, nor even any tuples of X. But because of
our initial assumption of a chin of relations, there exists the relation PC(P#,
C#). It therefore follows that the co-relationship between EP and EC cannot be
coincidental. In a similar fashion we can prove that none of the remaining two
co-relationships can be coincidental either. As a result, in a closed chain of
three relations, each lined by a co-relationship, the co-relationships cannot be
coincidental. This result can be generalized:
Theorem 1. In a closed chain of n relations, where each adjacent pair of relations
on the chain is linked by a co-relationship, the co-relationships cannot all
be coincidentally significant.
The proof should now be obvious to the reader.
(b) Universal significance for each link
Consider again the closed chain of relations EP; EC, and PC. Taking any adjacent
pair of relations, such as EP and EC, we can be sure that for any E# value e s all
EP tuples containing e are significantly related to all EP tuples with that e,
value, that is, for any EP tuple (ex, px), where there is a EC tuple (ex, cx),
then P, and cy must be significantly related; and futhermore, P and ¢ can be
significantly related, only if the E# attribute value is common in the respective
EP and EC tuples. All this follows from the definition of universal significance.
More formally, a relation whose tuples give the association between P# and C#
values can be obtained from a join of EP and EC:
)

X(P#, C#) = 1 (EP *

P, CH w#, E# EC
But we already have a relation PC(P#, C#) within the chain of relations, and this

portrays the association between P# and C# values. Because of the definition of

universal significance PC cannot be a superset of X(P#, C#). Hence PC is either

11
equal to X or a subset of X. Either way, PC must be redundant, since the tuples it

contains can be generated from EP and EC. In a similar manner, we can show that
any of the three relations EP, EC, and PC can be generated from the other two if
the links are all universally significant. This result can be generalized futher,
in that no matter how many relations are in the closed chain, if the links are all
universally significant co-relationships, then any one of the relations of the
chain can be generated from the other relations (provided we are dealing with
binary relations). This gives us the following theorem:
Theorm 2 A closed chain of binary relations linked by universally significant
co-relationships is redundant, in the sense that any relation of the chain
can be generated from the remaining relations.
It follows that we need never deal with a closed chain of binary relations linked
by universally significant co-relationships, it being sufficient to deal with an
open chain of non redundant relations. It is such open chains linked by universally
significant co-relationships that when joined give relations with multivalued
dependencies [7, 12, 15, 17].
(c) Existential significance for each link.
Consider once more the closed chain of relations EP, EC, and PC. If we take any
pair of adjacent relations, such as EP and EC, then we can say that for any E#
value e s only some of the EP tuples with that e, value will be related to only
some of the EC tuples with that e, value. In other words, if we have tuples (ex, px)
and (ex, cx), if we use a join to form the tuple (ex, P> cx), and possibly with a
projection the tuple (px, cx) we cannot be sure that either of these tuples are
valid, in the sense that there is semantic significance, that is, that they
are not spurious. This is in accordance with the definition of existential significance.
Thus the relation:
X(P#, C#) =1

(EP EC)

p#,c# “EF Fpp g

may easily contain spurious tuples. The same will be true for the relation:

Y(P#, E#, C#) = EP *E#’E# EC

However, the relation PC(P#, C#) necessarily contains valid tuples that associate

12
P# and C# values correctly. Accordingly, only Y(P#, E#, C#) tuples that have pairs
of P#, C# values that also occur in PC(P#, C#) can be valid, although, as we shall
see, this is merely a necessary condition for validity, but not a sufficient one.
It follows that a join of Y(P#, E#, C#) with PC(P#, C#), using both P# and C# as
the join attribute, will give rise to a relation that is a subset of Y and will
thus contain a higher proportion of valid tuples, that is, tuples where the
association involving E#, P# and C# values is semantically correct. Thus the relation:
PEC(P#, E#, C#) = PC(P#, C#) *

) (EP *)

(P#,CH) , (P#,CH B#,E# O
has generally a higher proportion of valid tuples than Y(P#, E#, C#).

Exactly why PEC may still contain invalid tuples is best understood initially
using an example. Assume that EP(E#,P#) gives the engineers (E#) that work on
projects (P#), that EC(E#, C#) gives the engineers (E#) that use computers (C#),
and that PC(P#, C#) gives the projects (P#) that use computers (C#). The three
relations form a closed chain linked by co-relationships, and we further assume
existentially significant co-relationships as follows:

1. With EP(E#, P#) and EC(E#, C#), some of the computers used by a given
engineer will be be used on some of the projects worked on by that engineer.
2. With EP(E#, P#) and PC(P#, C#), some of the engineers that work on a given
project will use some of the computers used on that project.
3. With EC(E#, C#) and PC(P#, C#), some of the engineers who use a given computer
will work on some of the projects that use that computer.
The question is whether we can determine with certainty what engineers work on
what projects using what computers. The answer is that we can not if we merely
form the relation PEC(P#, E#, C#) as shown above, since this relation may contain
invalid tuples. The following should explain why.

If we join EP(E#, P#) and EC(E#, C#) giving the relation Y(P#, E#, C#), in

a tuple of Y we cannot be sure that the project identified actually uses the computer

identified, because of existential significance. However, if

13

project Py actually uses computer ey then some tuple of Y(P#, E#, C#) will be of
the form (py, -, cy). That means that Y(P#, E#, C#) tuples that do not have P# C#
values that occur in PC(P#, C#) are clearly invalid and must be eliminated. We can
do this with a join of Y(P#, E#, C#) with PC(P#, C#) on both P# and C# attributes.
But some of the tuples in the resulting relation PEC(P#, E#, C#) can still be
invalid. To see this consider the following semantic situation:

1. Engineer ey works on project Py using computer c,-
2. Engineer e works on project Pg using computer ¢y -

3. Engineer eq works on project 13 using computer cq-

From this we can see that the following tuples of the relations of the chain apply:

E# P# B+ C# P+ C#
1 71 €1 <y P ¢y
€1 Pg 1“4 Pg 1
€9 P1 €9 9 P 9

EP EC PC

First with a join of EP and EC we form Y, and then with a further join of Y and

PC we form PEC:

P# E# C# P# E# C#
1 P1 ¢ 7 P17
1 Pg ©1 €7 Pg 4
¢ P1 9 € P11
¢ 1 4 &2 P14
€1 Pg 7

Y PEC

We see that the last two tuples of Y are invalid; but one of these invalid tuples
(el Pg c7) is eliminated in the final join that forms PEC; leaving one invalid
tuple in PEC.

If the last tuple of PEC above had to be valid as well, or, in more

general terms, if the relation PEC(P#, E#, C#) formed by the two joins always had

to contain only valid tuples, then PEC would contain a triangular join dependency.

14
This is clear in the case of the example above, since the requirement that tuple
(e

1* P> Cl) exist if tuples (e ?), (el, 7, cl), and (?, Pys cl) exist is the

1 P
condition for a triangular join dependency. This leads us to the fundamental theorem
oof closed chains of existentially co-related binary relations:

Theorem 3. A join of all the relations of a closed chain of existentially

co-related binary relations,; where the last join involves the two possible

join attributes, will always contain only semantically valid tuples only

if the resulting relation contains a polygonal join dependency of order equal

to the number of relations in the chain.

Proof We shall prove the theorem for the case of order 3, that is; a chain of

three relations EP(E#, P#), EC(E#, C#) and PC(P#, C#). Suppose that the relation
PEC(P#, E#, C#) formed from a join of EP and EC on join attribute E#, followed
by a join with PC on join attributes P#, C#, contains the tuples (ex, Py ?),
(ex, 7, cx), and (?, P, s cX). By projection, it follows that EP must contain
a tuple (ex, px), and EC a tuple (ex, cx), and PC a tuple (px, cx). If we join
the EP and EC tuples we get a tuple (ex, Py Cx) which may not be valid semantically.
A necessary, but not sufficient, condition for this tuple to be semantically
valid is that there exist a PC tuple (px, Cx)' There does, but (ex, Py s Cx) may
still be semantically invalid, since the sole reason for the existence of PC
tuple (px, cX) may be some other valid PEC tuple (ey, Py cx), as originally
assumed. However, if (ex, P> cx) is to be always valid, no matter what the values
assigned to e s Pus and s then by the definition of a triangular join dependency,
PEC must contain such a dependency.

The proof for the general case of a closed chain of length n relations is similar

and is left to the reader.

A practical consequence of this theorem is that it is not possible to extract
meaningful (other than coincidental) information from two or more existentially
co-related relations in such a chain if the complete join of the chain does not
contain a join dependency. As an example with the three-relation chain EP; EC,

and PC, suppose that we have the query: Find the engineers and projects that use

15

computer ¢ The "obvious' SQL expression:

3°

SELECT E#, P#, C# FROM EP, EC

WHERE EP.E# = EC.E# AND EC.C# = c3
is completely wrong, and will normally retrieve invalid data, because only one
join is involved. But the more sophisticated SQL expression involving two joins,
with the second join having two join attributes:

SELECT E#, P#, C# FROM EP, EC, PC

WHERE EP.E# = EC.E# AND EP.P# = PC.P# AND EC.C# = PC.C#

AND EC.C# = c3
is also wrong, and will normally retrieve data that is invalid. With the first
SQL expression the user has fallen into the common connection trap that occurs
with existential co-relationships. With the second SQL expression the user will at
least have the consolation of having fallen into a very sophisticated connection
trap. The user will avoid the trap with this expression only if PEC contains a

triangular join dependency. This leads us to a practical corollary to Theorem 3.

Corollary to Theorem 3 A user who attempts to extract meaningful information

from a complete join of a closed chain of n existentially co-related binary
relations will invariably fall into a connection trap unless the relation resulting
from the join contains a polygonal join dependency of order n.
In practice, this corollary will most commonly apply to chins of order 3 and 4,
since these do occur reasonably often in commercial data bases. But what is
of concern is that in commercial data bases, it is most uncommon for a complete join
to contain a join dependency that eliminates the connection trap. This leaves the
designer with the problem of how to eliminate the connection trap implicit in
such closed chains of relations that are existentially co-related.
A limited solution is for the designer to construct a correct relation that

is the correct subset of the relation resulting

16

from the complete join. For example, we saw that the complete join relation
PEC(P#, E#, C#) resulting from a join of first EP(E#, P#) and EC(E#, P#), and then
PC(P#, C#), will contain invalid tuples uless it contains a triangular join
dependency. The designer would have to construct a data base with the original
relations EP, EC and PC, together with a relation PECV(P#, E#, C#) that is the
correct subset of the relation PEC. This may just be possible in some cases, particularly
where EP, EC, and PC are not updated much. However, it may be quite out of the
question in cases where these relations are subject to frequent updating, in which
case the only solution would appear to be education of wusers in the dangers of the
connection trap.
2.3 Cyclic co-relationships with non binary relations
The difficulties that arise with closed chains of non binary co-related relations
are similar to those that occur in the binary case. However, there are many
subtle differences, and this topic is relegated to a separate paper.
3. CONCLUSIONS

Closed chains of co-related binary relations exhibit severe connection
trap phenomena when the co-relationships in the chain links are existentially
significant. Two relations are co-related if they each have a a non primary
or candidate key attribute drawn on a common domain. The properties of a co-relationship
depend markedly on the level of significance that attaches to it. The most
common levels of significance are coincidental, universal and existential. It
has been shown that closed chains where the linking relationships are coincidental
cannot exist, and that at least one of the relations in a closed chain of universally
significant co-relationships is redundant, so that the chain is effectively
open. With a chain of binary relations that are linked by existentially significant
co-relationships, connection traps are implicit, except in the rare case where
a complete join of the chain contains a polygonal join dependency of order equal
to the number of relations in the chain. This has been formulated as-a fundamental

theorem and proved.

17

References

1.

10.

11.

12.

Aho, A. V., Beeri, C., and Ullman, J. D. The theory of joins in relational
data bases, ACM Trans. Database Syst., 4(3), 1979, 317-314.

Armstrong, W. W. Dependency structure of data base relationships, Proc.

IFIP 74, North Holland, Amsterdam, 1974, 580-583.

Beeri, C. On the membership problem for functional and multivalued dependencies
in relational data bases,; ACM Trans. Database Syst., 5(3), 1980, 241-259.
Beeri, C., Kifer, M. An integrated approach to logical design of relational
data base schemes, ACM. Trans. on Database Syst., 11(2), 1986, 134-158.
Bradley, J. An extended owner-coupled set data model and predicate calculus
for data base management, ACM. Trans. on Database Syst., 3(4), 1978, 385-416.
Bradley, J. SQL/N and attribute/relation associations implicit in functional
dependencies, Int. J. Computer and Information, 12(2), 1983,

Bradley, J. A fundamental classification of associations in relational data
bases, Research Report No. 85/204/17, University of Calgary, Alberta, Canada,
32 pages.

Bradley, J. Join dependencies in relational data bases and the geometry

of spatial grids, Computer Journal, 29(4), 1986, 378-380.

Bradley, J. Co-relationships, levels of significance, and the source of the
connection trap in relational data bases, Research report No. 86/250/24
University of Calgary, Alberta, Canada.

Chen, P. P., The entity-relationship model: Towards a unified view of data,
ACM. Trans. on Database Syst., 1(1), 1976, 9-36.

Codd, E. F., Relational database: A practical design for productivity,

CACM, 25(2), 1982, 109-117.

Fagin, R. Multivalued dependencies and a new normal form for relational

data bases, ACM Trans. on Database Syst., 2(3), 1977, 262-278.

14.

15.

16.

17.

18.

18

Fagin, R. Horn clauses and data base dependencies, J. ACM 29(4), 1982,343-360.
Maier, D. The Theory of Relational Databases, Computer Science Press,
Potomac, Md., 1983.

Rissanen, J. Theory of joins for relational data bases - a tutorial Survey.
Lect. Notes in Computer Science 64, 537-551, Springer-Verlag, 1979.

Sagiv, Y., and Walecka; S. F. Subset dependencies and a completeness result
for a subclass of embedded multivalued dependencies, J. ACM 29(1), 1982,
363-372.

Wiederhold, G. Database Design, McGraw-Hill, New York, 1983.

