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Introduction

Homogeneous coordinates have a natural application to Computer Graphics; they form a basis for
the projective geometry used extensively to project a three-dimensional scene onto a two-
dimensional image plane. They also unify the trecatment of common graphical transformations.
The graphical use of homogencous coordinates is due to [Roberts, 1966]; today, homogencous
coordinates are presented in many computer graphics texts (such as [Foley, Newman, Rogers]); in
particular, [Newman] provides an appendix of homogeneous techniques. [Riesenfeld] provides an
excellent introduction to homogeneous coordinates and their algebraic, gecometric and topologic
importance to Computer Graphics.  [Bez] further discusses their algebraic and topological
propertics and [Blinn77, Blinn78] develop additional applications for Computer Graphics.

Homogencous coordinates are also used in the relecated arcas of CAD/CAM [Zeid], robotics
[McKerrow], surface modeling [Farin], and computational projective geometry [Kanatani]. They
can also extend the number range for fixed point arithmetic [Rogers].

Our aim here is to provide an intuitive yet theoretically bascd discussion that asscmbles the key
fecatures of homogeneous coordinates and their applications to Computer Graphics.  These
applications include affine transformations, perspective projection, line intersections and clipping.
For the sake of clarity in accompanying illustrations, we confine our development to two
dimensions and then use the intuition gained to present the use of homogencous coordinates in
three dimensions.

[Kline] provides a bricf history of homogeneous coordinates, crediting Mobius with their
introduction. Given a fixed triangle in the plane, Mobius defined a sct of homogeneous
coordinates for a point p to be the weights required at the triangle vertices such that p becomes the
center of gravity of the triangle (Figure 1, left). The point p is computed as

P = (wad, wpb, wce),

with the condition that wy+wy+w, = 1; this is an casily solved system of equations. The three
unknowns w,, wy, and w, are called the barycentric coordinates of p with respect to a, b, and c.
[Farin] relates w to area by w, = A,/(A;+Ap+Ac) and similarly for wy, and w, (Figure 1, middle).

Pliicker defined another sct of homogencous coordinates by considering the signed distances from
a point to the edges of a fixed triangle (Figure 1, right); here, p = (Ia, I, Lo)-

Figure 1: barycentric and Plicker coordinates.




Barycentric and Pliicker coordinates arc both cxamples of coordinate systems in which n+1 values
represent an n-dimensional point.  One immediate attribute of these coordinate systems is the
invariance of a point when scaled: scaling the Mobius weights or the size of the Pliicker triangle
does not change the position of p. For an exposition of n-dimensional Pliicker coordinates (also
known as Grassman coordinatcs), sec [Stolfi].

Homogeneous Coordinates for the Projective Plane

The homogeneous coordinates commonly used in Computer Graphics are equivalent to Pliicker
coordinates in which one side of the triangle is at infinity and the opposite vertex is the origin of
the coordinate system. The plane containing the triangle with the line at infinity is known as the
projective plane.

[Aleksandrov] describes the projective plane by considering all lines and planes passing through a
given point s; if they are intersected by a plane P that does not pass through s, then each point (or
line) on P may be associated with a line (or planc) through s, as shown in Figure 2, left. This does
not quite imply a onc-to-onc mapping of lines (or planes) through s with points (or lincs) on P,
because those lines or planes through s parallel to P do not intersect P. By convention, however,
the parallel lines are said to intersect P at ideal (infinitely distant) points; the parallel plane is said
to intersect P at the ideal line. The plane P, augmented by ideal points and the ideal line, is known
as the projective plane. It cannot be represented within the finite Euclidean coordinate system; it
can be, however, be represented by homogeneous coordinates, and this is the fundamental reason
for their use in projective geometry.
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Figure 2: the projective plane.

Projective geomelry is, in a scnse, the geometry of imaging. This was alrcady understood, for
example, by Albrecht Diirer who used a mechanical device to draw objects in perspective [Penna).
It is, therefore, a natural tool for Computer Graphics. General projective geometry is discussed in
several texts [Coxeter, Ryan], and its use in Computer Graphics is discussed in [Herman, Penna).

Mathematically, the mapping from planes and lines through s to lines and points on the projective
plane is the transformation of the usual Euclidean space into projective space. The following three
statements each define the two-dimensional projective space, p2 (from [Ryan]):

1) The set of all equivalence classes of ordered triples of non-zero veciors in e,
where equivalence is the mutual proportionality of two vectors.

2) The set of all lines passing through the origin of e,
3) The set of all pairs of antipodal points of S2, the unit sphere in e




We denote the usual two-dimensional Euclidean space (also known as ‘physical’ or ‘proper’ spacc)
by €% Within €2, cach point is represented as a two-component vector, (x', y), where boLh x
and y' are finite values in an orthogonal coordmalc system. The relationships belwcen 8 the
unit sphere (SQ) and the projective space (p ), are illustrated in Figure 2. Points in p arc lmcs
through the ongln as in the second dcﬁnmon above. This means that we use equivalence classes
of coordinates of € to represent points in P

In practice, homogeneous coordinates represent p by mapping each Euclidean point (x y) €
€210 [x, y, w] € € (w # 0), which is a member of the eqmvalence class of points in p The
mapping is achieved by the equivalences x ~ x/w and y' ~ yw (we enclose Euclidcan
coordinates within parentheses and homogeneous coordinates within brackets; their equivalence is
signified by ~).

p2 is not a vector space in the same manner as €2. Indeed, scalar multiplication simply forms a
new representative of the equivalence class. Furthermore, if the representatives are chosen from
the intersection with the plane w = 1, then the vector addition of two points in p computes a
representative of the midpoint between the two vectors.

Because of the division by w, the conversion of a homogencous point to its Euclidean cquivalent is
inherently a projection of the homogenous point onto the w = 1 plane. Figure 2, right, illustrates
this projection in the two-dimensional case; three-dimensional homogencous points on the $?
sphere are projected onto the w = 1 plane. [Ricsenfcld] provides an illustration of four-
dimensional homogencous points projected onto a three-dimensional hyper-planc.

Homogeneous points represent projection and as a consequence can also represent points at
infinity. Consider a homogencous point as w approaches 0; for example, in Figure 3, [2, 3, w] is
shown for w = {4, 2, 1, 1/2, 0). As w approaches 0, the projected Euclidean points move away
from the origin in the (2, 3) direction. At w = 0, the point is infinitcly far and may be treated as a
positionless vector.

Historically, the need for points at infinity arosc from the work of Kepler and Desargues between
the 16th to 17th centuries when they both realized that a parabola has two foci, one finite and one
infinite [Coxeter].
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Figure 3: projection to the w = 1 plane.

We close this section with a brief reflection on the term homogeneous, which [Oxford] defines as:
1) Of the same kind so as to be commensurable.
2) Of the same degree or dimension: consisting of terms of the same dimension.

With this in mind, consider a general ellipse in €%

fx,y) = ax’? +by'2 +cxX’y +dx’ +ey' +f = 0.




Trzlis can be formulatcd homogencously by replacing x' with x/w and y' with y/w; multiplying by
w* yields:

f x,y,w = ax2+by2 +exy +dxw +eyw +fw2 = 0.

Here, all terms have total variable degree two, as in definition 2), above. In fact, any polynomial
function in €2 has a form equivalent to f and may be transformed, via a change to homogeneous
coordinates, to a polynomial function with constant total degree for each term. This holds for any
polynomial function in a finite dimensioned space.

Homogeneous Coordinates for Two Dimensions

An important, practical aspect of the homogencous coordinate system is its unification of the
translation, scaling and rotation of geometric objects. In €% Euclidean space, the most general
affine mapping is

P’ = pA+c, or (o, py) = (Px, Py)A+(cx, ¢y),

where p' and p arc points in €2, A is a 2 x 2 matrix representing scaling and rotation, and the
point ¢ represents translation. In this formulation, translation is treated diffcrently from rotation
or scaling.

If, however, p is represented as a homogeneous point [px py 1] and a 2 x 3 matrix is employed,
then translation may be treated the same as rotation and scaling:

400 4ol

[P pyl = [px Py 11 | a10 an

G @

A more consistent, and ultimatcly simpler result is obtained by introducing a third column to the
matrix and a third (homogencous) coordinate to the result:

ag aol 0
px'py' 1] = [pxpyll |ag an O}

[ c2 1

px’ Py are unchanged, but the result is now three-dimensional and the matrix is square. Thus:

« the resulting (homogeneous) vector has the same dimension as the input (homogeneous) vector
o the matrix is invertible (assuming a non-zero detcrminant)
¢ two or more transformations may be concatenated.

The above transformation may be represented compacdy by bordering the matrix A with the
column vector (0, 1)T and the row vector c:

A 0
p'll=[pl] [ ]
c 1




Here [px’ py’ 1] and {py py 1] arc rcplaced with their compact forms [p” 1] and [p 1] so that the
components conform in size with the sub-matrices. In this formulation, all affine transformations
are matrix multiplications. Computer graphic transformations are usvally encoded as matrices
because of their representational simplicity and computational efficiency. We now summarize the
use of homogeneous coordinates for affine transformations.

Transformations

o Translation. In the Euclidean coordinate system, translation is p’ = p+¢ = pl+c,
where I is the identity matrix. In the homogeneous coordinate system this is

1 0 0
PPy 11 = [pxpy11] 0 1 0]

Cx Cy 1

I 0
Compact notation yiclds [p’ 1] = [p 1] [ ]
c 1
¢ Rotation. In the Euclidean coordinate system, rotation is defined by p’ = pR,
cos(0) -5in(0)
where R = .
sin(0) cos(6)

Objects are rotated by 0 radians counter-clockwise about the origin. Using homogeneous
coordinates, this becomes

cos(0) -5in(0) 0
[px' Py 1 = [px Py 11 | 5in(0) cos® 0

0 0 1

R 0
and, compactly, {p' 1] = [p 1] .
0 1

Sx 0
® Scaling. A non-uniform scaling is defincd by § = [ ]
0 Sy

In a homogeneous coordinate system this becomes

Sx 0 0
(px’ py. 11 =Ipxpyll] 0 Sy 0t
0 0 1

S 0
and, compactly, [p' 1] = [p 1] .
0 1




Sequences

A sequence, or concatenation, of affine transformations can be expressed as a single matrix. For
example, a translation followed by a rotation and then a scaling is equivalent to

1 offr oO}fs o© RS 0
(p'1] =1[p 1][ ][ ][ ] =[p1] [ ]
¢ 1ilo 1o 1 RS 1

Reducing a sequence of transformations to a single matrix improves computational performance,
especially when numerous points are to be transformed by the same transformation.

Homogeneous Lines

A line ! in €2 is defined by ax+by+c = 0, with a, b, ¢ constant; the intersection of lines Iy and I is
found by solving

apxtbyy+cy = 0
ayxtbyy+cy = 0,
-cq b |a by a -c1| |4 by
obtaining: x = VY =
-2 byl lap by a 2l lap by

The two lines /y and I, intersect in €2 provided they are not parallel. This special provision may be
eliminated by representing a line homogencously [Newman}:

ax+by+cw = 0 (with w = 1, in general),

and representing the intersection as a homogeneous point:
~C] b 1 a) -C] al b]
[x,y,w] = , ,
-Cy byl 142 -2

a b

Dividing by w yiclds a finite point in €2 if w = 0, and a point at infinity if w = 0 (ie, the lincs are
parallel). [x, y, w] is simply the cross product, [ay, by, c1] X [a2, b2, ¢2].

If the intersection of two lines is the cross product of their coefficients, the intersection of two
parallel lines may be given as [a, b, ¢} X [a, b, d] = [b, -a, 0], or [1, -a/b, 0], which is the point at
infinity in the direction of the line’s slope. Note that the line at infinity may be represented as {0, 0,
al; the dot product with this line and any point at infinity is zero; thus, all points at infinity lie on
the line at infinity.

We also note the duality between line and point in that the cross product of two homogencous
points yields the coordinates of their connecting line. This duality between point and . line in two
dimensions has, in three dimensions, a corresponding duality between point and plane. See
[Blinn77] for the use of homogeneous coordinates to represent lines in e,




Applications in Three Dimensions

We now apply homogeneous coordinates to three-dimensional Euclidean points. Early in the
development of Computer Graphics, L. G. Roberts noted the value of homogeneous coordinates,
stating, ‘‘the use of homogencous coordinates throughout is extremely important in order to
maintain the simplicity of the results, although its original purpose was to allow perspective
transformations’ [Roberts].

In other words, the use of the additional, homogencous coordinate not only produces polynomials
of fixed degree, as observed in the Introduction, it also provides a method for consistent
manipulation of the Euclidean space.

It is well known that a 3 X 3 matrix can represent three-dimensional scaling and rotation, but not
translation. As in the two-dimensional case, translation becomes possible with the addition of a
row and column to the matrix:

XyzZw]=[xyzl]

Although it is possible to represent this in compact form:

I 0
(p'1] = [pl] [ ], where / is the identity matrix and t the translation,
t 1

we do not do so when considering three-dimensional applications because individual components
of the transformation matrix. will be discussed in detail.

Perspective Projection

Fundamental to three-dimensional Computer Graphics is the projection of three-dimensional
objects onto a two-dimensional image plane. This projection is usually a perspective projection
with the center of projection being the point of view (eyepoint) and the central projector
perpendicularly intersecting the projective (image) plane. [Carlbom] provides a review of planar
projections. In creating shaded images, a perspective projection is not strictly necessary; ray
tracing, for example, computes pixel values directly without a perspective transformation of the
object. For line drawings and polygon rendering, however, the perspective  transformation  is
essential.

As shown in Figure 4, we identify the screen of an output device with a rectangular domain in €%
the rendering of objects in €3 is naturally performed via their projection to €2,
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Figure 4: perspective projection onto the raster-screen.

Referring to the side view in Figure 5, the image point (x', y°) is computed from the object point
(x, y, ) via similar triangles:

y/y = D/zand x'/x = D/z,0r (x',y") = (xD/z, yD/z).

*,y.D)

0,0,0) /— D —
&— image window

Figure 5: the perspective projection

The division by z is known as the perspective divide. This non-linear relationship in three
dimensions can be formulated as a lincar relationship in four dimensions through the use of
homogencous coordinates; the formal foundation for such a formulation is provided by [Bez].

Until now we have used the homogencous coordinate to accommodate the larger matrix required
to perform affine transformations; after the transformation the fourth coordinate, w, has remained
1. If, however, the resulting homogeneous coordinate w is proportional to the distance from the
eye to a point, a perspective projection of that point onto the image planc is cffccted.

For example, if we assume the eyc (o be located at the origin and dirccted towards the positive z-
axis, with the x-axis to the right and the y-axis up, we can project points onto the z = D planc with
the following matrix transformation:

1 0 0 0

0 0

.y, 2)=(D/z,yD[z,D) ~ [x y z 2/D]=[xyz1]
0 0 1 1/D
0 0 0 0

As D approaches oo, w' = 1/D approaches 0 and the transformed points become infinitely far;
their position parallel to the xy planc is unaffected by z and, effectively, an orthographic
transformation results.




Perspective, Projection, and Perspective Projection

The perspective projection above produces a constant z' = D; this loss of depth information is
due to the linear dependence of the matrix’s third and fourth columns. If we introduce a second
non-zero term into the third column, eg. -1, we do not affect x' and y’, but z’ becomes D-Dfz.
The motivation for this additional term is to compress the Euclidean space z € [1, «] to 2’ € [0,
D).

1 0 0 0
1 0 0

(,y,2) = (Dfz,yD[z,D-Dfz) ~ [x y z-1 z/D] = [xyz 1]
0 0 1 1/D

0 0 -1 0

This, then, is the perspective transformation; multiplicd by a pure projection it yields the
perspective-projection transformation:

1 0 0 0 1 0 0 0 1 0o 0 0
0 1 0 0 0 1 0 of _ |0 1 0 0
0 ©0 1 D fjo 0 0 0 0 o0 1 1/D
0 0 -1 0 o 0 D 1 0 o0 0 0
perspective projection perspective-projection

Perspective Space

The homogeneous perspective transformation transforms Euclidean points in €3 (represented as
homogeneous points) to new homogencous points, which may then be converted to Euclidean
space. These transformed points exist in perspective space. We now investigate the properties of
the perspective transformation in terms of the relation between perspective space and the
untransformed object space.

In an affine transform, the last column is [0 0 0 l]T; multiplication with a direction vector {a, b, ¢, 0]
yiclds another dircction vector a7, b, ¢', 0]. In a perspective transform, howcver, the last column
is [0 0 -1/D l]T; multiplication with a dircction vector yiclds [a, b, ¢, -¢/D). This is a
homogencous point not direction and is known as the vanishing point for the given direction. A set
of three-dimensional parallel lines will intersect at the same vanishing point, with the one
exception that parallel lines in the xy plane remain parallel after perspective.

In many graphics systems, points in object space are transformed by a matrix that is the
concatenation of all rotation, scaling, translation, and perspective transformations.  Usually the
projection transformation is not incorporated into this concatenation, for scveral reasons. First, the
perspective matrix is invertible whereas the perspective-projection matrix is singular. Secondly,
the value of z' before projection is often uscful for incremental scanline depth sorting or for
intensity variation in linc drawings. ~Morc importantly, however, z' can simplify three-
dimensional clipping of Euclidcan lines and line scgments against the viewing frustum by clipping
homogeneously against a parallelepiped. After clipping, points are simply projected to the z = D
image plane and displayed.




The vicwing frustum consists of six plancs defined in terms of the cye position, the visible portion
of the image plane, and the allowable depths of three-dimensional objects.  ‘The viewing [rustum
shown in Figure 6 has a visible image sized 2*S, by 2*Sy, and the ncar and far clipping planes
arbitrarily settoz=D and z = F.

(CHER0) B SRTERET) ¢

Euclidean space perspective space

Figure 6: viewing frustum

To effect the image size above, we simply scale the first and sccond columns of the perspective
matrix by Sx and Sy respectively. Assuming a square window, Sy and S, may be derived from the
field of view, fov, by Sy = §, = Dtan(fov/2).

To simplify clipping, we’d like the near clipping plane to transform to z' = 0, and the far clipping
plane to transform to 2’ = 1. By considering the transformations of the points (0, 0, D) and (0, 0,
F), where [P] is the perspective matrix:

[00D 1][P] = [0,0,D-1,1]1~(0,0,D-1)
{00 F1][P] = [0,0,F-1,F/D} ~(0,0,D-D/F)

i

we see that the near and far clipping planes can be transformed by scaling the z-terms, resulting in:

Fl/sx 0 0 0 L
0 /8y 0 0
(P] = 1
0 0 DA 1/D
-1
| 0 0 1-D/F 0 J

Now, as desired:
D ____1
'D(-D/F) 1-DJF

[0001][P]=[0,0 ,1]=[0,0,0, 1]

- _F __1_E|_ F-D -
[OOFI][P]—[O,O,D(I_D/F) I_D/F,D] [O'O'F(I-D/F)'l] [0,0,1, 1.
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Example Perspective Transformations

To familiarize oursclves with the perspective matrix, we list the following homogencous points and
their transformations:

[abD 1][P] = [a,D,0, 1] point on near clipping plane (z = D)
: transforms to xy plane (2’ = 0)
[abF 1][P] = [a', b, 1,1] far plane transforms to 2’ = 1
[0010]P] = [0,0,1/(1-D/F), 1] vanishing point for line parallel to z-axis
labcOl[P] = [a,b, ", 1] vanishing point for arbitrary line
[ab D 1][P] = [a/Sy, b/Sy,0,1] but for scale, point on image plane unchanged
ab 0 01[P] = [a/Sx, b/Sy, 0,01 point at infinity in xy plane is unchanged,;
ie, parallel lines in xy plane remain parallel
[@0b 0P} = [22,0,—L— 1]  pointateo in xz planc lics
bS, ' " 1-DIF . .
on perspective horizon
[£8x £Sy D 11(P] = [£1,£1,0,1] frustum corners become image window corners
000 1P = 0,0, II—-)-I/—I':—' 0] cye transforms to point at infinity on

negative perspective z-axis

Associated Vertex Transformations

The efficient shading of a polygon whose vertices have been transformed to the display screen is
usually accomplished by incremental techniques described in the literature [Newman]. Similar
techniques may be applied to vertex parameters such as color and texture. Any parameter
interpolated across a polygon must follow the same transformation as the polygon vertices; if the
transformation includes perspective, a homogencous division is required at each pixel within the
screen space polygon (in practice, linear interpolation in screen space is usually not objectionable
for parameters such as color, but is immediately apparent when applied to texture coordinates).

Specifically, for perspective transformations, an interpolated parameter will have the form
(asy+bsy+c)/(dsytesytf),

where 5, and s, are screen space coordinates.  [Heckbert] refers to this as ‘rational linear
interpolation,’ in a detailed discussion of texture coordinate transformations. [Blinn92], which
provides an intuitive review of graphics transformations and homogeneous coordinates, refers to
this as ‘hyperbolic interpolation.” In the case where the polygon is parallel to the projection planc,
d = e = 0 and the above equation reduces to lincar interpolation.

Homogeneous Clipping

Three-dimensional line segments and polygon cdges must be clipped to the viewing frustum. This
shoud be performed in perspective space, after vertex colors have been computed; otherwise,
clipping, by modifying a vertex’s location, would modify its color. By clipping in perspective space
the integrity of the polygon is maintaincd longer. Also, the equations for the clipping planes in
homogeneous screen space are of the form x = w, whereas they are more complex in object space.
[Blinn78 and Blinn91] develop this material in greater detail.

We use “*’ to represent homogeneous coordinates before the conversion to Euclidean space. That
is, ¥, y*, 2%, w*] = [xyz 1][Pland (', y', 2)) = (x*/w*, y*/w*, 2*[w¥).

11
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As shown in Figure 6, the vicwing frustum is transformed by the perspective matrix to a
parallelepiped in perspective space, and (x', ¥, z) is clipped such that -1 < x', y < 1 and 0 <
z < 1. Note that negative z values result in negative w values, with 27 = z*w* > 0. Thus,
points behind the eye must be clipped before the homogencous division. In summary, we test that:

for positive w: for negative w:
-wk < x*, y* -- left, bottom -- -wk 2 x*, y*
x*, y* s wH -- right, top -- x* y* 2w
0<z* -~ near -- 02z

¥ Sw* -- far -- * 2w

Let us represent the line segment to be clipped as, p* = py*+0(p*-p1*), & € [0, 1], where p*
and p,* are the perspective-space endpoints [x;*, yi*, zi*, wi*] and [x*, yo*, 2%, wo*]. The
intersection of the line segment with a clipping planc is then given in terms of Ol

Qe = X Olrigh b
-(wo*-w*)-(xp*-x1%) gt (wo*-w*)-(x2*-x1*)

- yrtwr* _ yi¥-wi*
Footiom = -(wo*-w*)-(y2*-y1%) Gop = (wo*-wi*)-(y2*-y1%)

Oear = z* o _ Z*-wi*
T et )

For example, consider the perspective space line segment from pi* = [2, y1, 21, 2] to po* = [-1,
2, 22, 1/2]. For the first point, pix* > -p1w* (2 > -2); but, for the second point, pax* < -p2w* (-1 <
-1/2), implying an intersection with the left clipping plane. We compute

Qe = (2+2)/((2-1/2)-(-1-2)) = 8/3.
The intersection with the left clipping plane is now given by
P’ = [-23, y1*+@3)02*-n1*), 21*+(8/3)(z2*-21%), 2/3].

The projected x-coordinate of p* = x*w* = (-2/3)3/2) = -1, which is the left boundary of
the viewing frustum,

Conclusion

In this paper we have offered a unificd view of homogencous coordinates within a Computer
Graphics context. First, a brief historical review revealed that, as the understanding of perspective
and projections increased, new coordinate systems were developed to represent the underlying
spaces; one of these systems was the homogeneous coordinate system, which was later seen to
possess properties uscful for Computer Graphics.

Next, we formally introduced the homogeneous coordinate system. Its application in two-
dimensional Euclidean space was discussed in some detail; it was shown that affine transformations
can be effected consistently with matrix multiplicaion, thus simplifying sequences of
transformations, and that the intersection of two-dimensional lines can be performed without
- special cases.

Homogencous coordinates in three dimensions were discussed in greater detail, with particular
attention devoted to perspective transformations.  Finally, a method to clip lines with respect to the
viewing frustrum was provided.
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