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ABSTRACT 

AOA estimation using MUSIC, an eigendecomposition based superresolution 

algorithm, is investigated for the multipath radio environment. Bearing 

estimation is necessary for finding the location of a mObile cellular telephone by 

triangulation. The outdoor, UHF, multipath radio channel is assumed to consist 

of numerous clusters and a LOS component. Three different techniques to 

identify the LOS cluster and estimate its AOA are presented. Simulated data is 

used to evaluate the performance of these three techniques as well as a technique 

to estimate the AOA component within a cluster. The results indicate that good 

accuracy can be achieved in a multipath environment. In order to eliminate all 

ambiguities, a two dimensional array must be used. Whereas a virtual array 

created by travel along a straight path requires at least two antennas, it is 

demonstrated that a single antenna with a non-linear trajectory can create a 

sufficiently two dimensional virtual array. 
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CHAPTER 1 

INTRODUCTION 

1.1 Location Finding 

The art of location finding has been a popular field of study for centuries. Man 

has always wanted to know where he was in order to navigate to some other 

point. Equally important to man has been the location of natural and man-made 

objects. As a result, a myriad of different methods have been developed over 

time and the choice of the method has depended on the application. In the age of 

precise location finding, the methods have progressed from the sextant, which 

relied on natural satellites, to modern day systems which use artificial or man-

made satellites. 

The performance of a location finding method is not necessarily a fixed 

parameter. Continual research is producing and improving technology which in 

turn may be used to improve location finding methods which were developed 

long ago. This is precisely the aim of this thesis; not to present a new or novel 

method, but to apply recently developed technology to an age old technique. In 

this way, an older method which might have been overshadowed by more recent 

techniques, may be rejuvenated and given new life for modern applications. 

1.2 Objective and Motivation 

The main objective of this thesis is to estimate the angle of arrival (AOA) of radio 

waves in a multipath environment. If the bearings of multiple transmitters can be 

determined in this way, the location of the receiving antenna may be determined 

by triangulation. The intended application is to locate a mobile cellular telephone 
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subscriber within the outdoor cellular telephone geographical grid. The base 

stations act as the transmitters and the AOA of the radio waves arriving at the 

mobile are used to determine its location. 

The location of a mobile in the cellular system is required for two reasons. To 

initiate a telephone call, the mobile must know with which cell site to begin 

communication and vice versa. Secondly, while a call is in progress, the mobile 

may very likely travel from cell to cell. The call must therefore be handed off 

from base station to base station. As the number of cellular subscribers increases, 

the geographical size of the cells must decrease in order to increase capacity. As a 

result, the current methods of tracking the location of mobiles by paging and 

look up tables, will become far too slow to be practical. Faster means of 

determining which cell a subscriber is currently in, must be developed. 

Decreasing cell size will also place limits on the required accuracy of a location 

finding system. It is anticipated that in the future, microcells will have radii in 

the order of 1 km. Therefore, the positional accuracy required would be 100 

metres or less. 

Although triangulation has been unpopular in the past for high accuracy 

applications, new superresolution algorithms, which are able to estimate AOA 

very accurately; may change this. The algorithm investigated in this thesis is 

MUSIC (Multiple Signal Identification and Classification). A triangulation 

system using MUSIC is advantageous in that it is narrowband in nature. The 

transmitted signals need only be tones. In addition, very little additional RF 
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hardware, if any, would be required. The result would be a low cost system 

which could be implemented immediately. 

The outdoor radio propagation channel is characterized by multipath. Reflections 

and diffraction due to man made objects and topography, cause the transmitted 

signal to follow various indirect paths in addition to the line of sight (LOS) path. 

The result is a number of highly correlated signals with various arrival angles. In 

some cases the LOS path may not even exist. 

Consequently, the multipath nature of the radio propagation channel is a serious 

problem when attempting to locate by triangulation. In order to triangulate in a 

multipath environment one must assume that a LOS path does exist. This 

assumption made, two questions must then be answered: 1) which of the many 

arriving signals followed the LOS path, and 2) what is the AOA of that LOS 

arrival. In this thesis three techniques incorporating MUSIC attempt to answer 

these two questions. 

1.3 Thesis Overview 

Chapter 2 discusses various methods of location finding. It then focuses on 

triangulation and the means by which AOA may be estimated. The spatial and 

temporal forms of MUSIC, as well as the relevant theory, are described in detail 

in chapter 3. Chapters 4, 5, and 6 present and analyze the simulation studies 

conducted. The case of estimating AOA in the presence of multipath, while 

moving in a straight line, is addressed in chapters 4 and 5. Chapter 6 deals with 

estimating the AOA of a single arrival while travelling along a non-linear path. 
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Finally, the major conclusions of the thesis and recommendations for further 

work are presented in chapter 7. 
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CHAPTER 2 

VEHICLE LOCATION TECHNIQUES 

2.1 Introduction 

A wide variety of techniques exist for automatically locating vehicles. These 

methods have been developed in response to the needs specific to the 

intended application. Applications for vehicle location systems include fleet 

management, security for vehicles transporting important cargo or persons, 

and location of cellular subscribers within the cellular network. Although the 

intent of this thesis is to investigate technology to apply to the cellular 

subscriber location problem, this does not exclude the possibility of using this 

technology for fleet management and security purposes. 

2.2 Dead Reckoning 

Automatic vehicle location methods can be divided into three general classes: 

dead reckoning, proximity detection, and radio signal location [1]. Dead 

reckoning systems continually update a vehicle's location by monitoring 

changes in direction and distance travelled from a known starting point. This 

is commonly done with odometers and compasses. After initialization at the 

known reference point, the vehicle's position is determined by vectorially 

summing all changes in direction and distances travelled as the vehicle 

moves away from the reference point. Since all errors in the sensing of 

direction change or distance travelled will accumulate, periodic 

reinitialization is necessary at the known reference points dispersed 

throughout the service area. Error accumulation and the consequential 

reinitialization are the major drawbacks of this method. 
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2.3 Proximity Detection 

Proximity detection systems use radio signposts installed along likely routes 

of vehicular traffic. In one of the two types of proximity detection, the radio 

signposts continually transmit a low power radio signal that identifies the 

signpost. As a vehicle passes a signpost, it detects the signpost's signal and 

thereby identifies the signpost. Since the signpost's location is known, the 

vehicle's location is known. The vehicle may then relay this information to 

the central processing station. For a mobile cellular system however, this 

method is impractical due to the high cost of installing and maintaining a 

signpost network. 

2.4 Radio Signal Location Techniques 

There are numerous location techniques which fall under the radio signal 

location category. In all of these methods, radio signals are transmitted 

between the mobile vehicle and one or more fixed stations. Radio signal 

location techniques can be divided into three groups: radio ranging or radar, 

radio trilateration, and radio direction finding or triangulation. 

2.4.1 RADAR 

Radar determines both the range of a vehicle and its bearing. At the fixed site 

a directional radio signal is swept through a specified area. Any target within 

the area covered will reflect the signal back to the fixed site. Because a LOS 

path between the transceiver and the target is essential, radar is not practical 

for land mobile applications in which multipath propagation and 

obstructions are encountered. Reflections from the large number of structures 
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and obstacles found in an urban environment will render useless the 

information received at the transceiver. 

2.4.2 Radio Trilateration 

Radio trilateration technologies form a second group of radio location 

techniques. These methods rely on a quasi-constant wavefront velocity 

environment. By measuring the propagation time between the mobile and at 

least three fixed sites, the two dimensional position of the mobile may be 

determined as the point of intersection of three circles, centered at the sites, 

and each with radius equal to the propagation distance between the vehicle 

and the respective fixed site. 

A simpler method is to use difference in time of arrival instead of 

propagation distances. This is termed time difference hyperbolic location. The 

locus of points for which the difference in propagation time between the 

mobile and one site and the mobile and another site is equal, will form a 

hyperbola. Therefore, with three sites, at least two hyperbolas are available 

and the position of the mobile will be the intersection of the two hyperbolas. 

2.4.2.1 LORAN C 

The LOng RAnge Navigation system (LORAN C) is a marine navigation 

system that employs time difference hyperbolic trilateration [1]. It has been in 

use since 1956 and is operated by the United States and Canadian coast guards. 

• In the 1970's LORAN C was adopted as the primary marine radio navigation 

system by Canada and the United States [2]. Marine LORAN C coverage 

includes the Pacific, Atlantic, and gulf coasts of North America, the North 
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Atlantic, the North Sea, the Mediterranean Sea, as well as parts of the Asian 

Pacific coast. The system is comprised of chains of land based transmitter sites 
4. 

[3]. A chain consists of a master transmitter and from two to four secondary 

transmitters. These sites transmit amplitude modulated pulses in the 90 to 

110 kHz frequency band. A LORAN C receiver will receive the transmissions 

from one such chain and calculate time differences between the transmitters 

in the chain. The navigator may then use these time differences to make a 

location fix on navigational charts imprinted with LORAN C time difference 

LOP (Lines Of Position). 

Although LORAN C was designed as a marine navigational system, the 

introduction of two mid-continental chains in the U.S. as of 1991 [4, 5], has 

resulted in LORAN C signal availability throughout the continental U.S. as 

well as a marked increase in coverage in western Canada. Now there is 

almost uninterrupted LORAN C coverage for land vehicle users in southern 

regions oiCanada as shown in Figure 2-1. Transport Canada is presently 

investigating the potential benefits of adding more LORAN C transmitters in 

Canada [2]. 

Therefore, LORAN C may be suited to the problem of land vehicle location. 

An emergency vehicle location system, using LORAN C has been operational 

in Detroit since 1989 [6]. The system is able to estimate the location of 

emergency vehicles with an accuracy of 200 metres. Of prime importance for 

cellular mobile telephone location are accuracy, reliability, and coverage. The 

reliability of LORAN C transmitters is greater than 99%, which is more than 

adequate. However, overall system reliability also depends on adequate 
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coverage or signal availability throughout the travel path of the mobile 

cellular telephone. 

/ 
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Figure 2-1 North American LORAN C Coverage 

Lachapelle has conducted studies on LORAN C signal availability in the 

urban environment [4], as well as in mountainous regions [7, 8]. His findings 

indicate that signal availability in both environments is limited due to 

attenuation of the signal by large buildings and mountains. In the urban 

setting, signal degradation also results from multipath scattering and 

interference from power line carriers that transmit in the same frequency 

band [5]. In the city of Calgary, signal availability was 50% to 60% in the city 

core and 95% to 100% in residential areas. In mountainous regions the signal 

availability varied between 65% and 95%. 
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In Canada, the nominal accuracy of LORAN C is 500 metres or less. Rugged 

topography causes phase distortion which can result in errors of many 

hundred metres. Therefore, in most cases a stand alone, single chain, 

LORAN C system is not able to offer the degree of accuracy required for a 

microcellular mobile telephone system. However, the phase distortion effect 

is permanent and may therefore be calibrated for. Lachapelle reports that, 

with en-route calibration using GPS (Global Positioning System), the accuracy 

of LORAN C, in mountainous areas is approximately 50 to 100 metres [7]. 

Using more than one LORAN C chain to make a fix will also improve the 

accuracy of the location fix. 

A further requirement of a mobile cellular telephone location system is 

small, lightweight, and inexpensive user equipment. Currently a LORAN C 

receiver may be packaged on a 6 inch square board and costs roughly $500 or 

less. However, to obtain the necessary accuracy, LORAN C will have to be 

combined with some other navigational aid (e.g. GPS) and this will increase 

the equipment cost beyond what is practical for mobile cellular telephony. 

2.4.2.2 Spread Spectrum Techniques 

Also included in the group of trilateration technologies are those that employ 

spread spectrum signals. Spread spectrum signals have recently received 

much attention. CDMA (Code Division Multiple Access), a spread spectrum 

multiple access technique, has risen to be a serious contender with TDMA 

(Time Division Multiple Access) and FDMA (Frequency Division Multiple 

Access). Direct sequence spread spectrum signals are generated by multiplying 

the signal to be transmitted with a high frequency pseudorandom code. The 
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effect of this is to spread the bandwidth occupied by the signal. Consequently, 

spread spectrum signals are wideband. At the receiver, the same code is 

generated and used to despread and thus recover the signal. If each user in a 

communication system has a different orthogonal code, all users may use the 

same communication channel at the same time without interference from 

each other. 

2.4.2.2.1 GPS 

Spread spectrum signals may also be used for location finding. The GPS 

(Global Positioning System) is a position fixing spread spectrum based system 

which uses satellites [9]. It has been under development by the U.S. 

Department of Defense since 1973. When complete, 21 satellites plus 3 spares 

wIll orbit the earth at an altitude of 20,200 km. Presently, 18 satellites are in 

place. The satellites are distributed in orbit such that 5 to 8 satellites will be "in 

view" at any point on the earth almost all the time. By simultaneously 

receiving transmissions from at least 4 satellites, a user may determine his 3 

dimensional position as well as the receiver time bias. The GPS constellation 

is illustrated in Figure 2-2. 

The GPS is a ranging system. The pseudo-distance from each satellite to the 

point to be located is determined from the reception of the satellite 

transmissions at the receiver. Trilateration is then used to determine the 

point's location. Satellite transmissions occur on two frequencies; Li = 1575.42 

MHz and L2 = 1227.6 MHz. Each satellite transmits two pseudorandom codes. 

The P (Precision) code has a chip rate of 10.23 MHz and a code length of 10 

days whereas the C/A (Coarse Acquisition) code has a chip rate of 1.023 MHz 
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Figure 2-2 The GPS Constellation 

and a code length of 1 ms. The P code is transmitted on both the Li and L2 

frequencies while the C/A code is only transmitted on Li. Transmission on 

two separate frequencies allows for the correction of errors introduced by 

refraction in the ionosphere. Consequently, position fixes made using the P 

code will be more accurate than those made with the C/A code. As a result, 

use of the P code is restricted to the military whereas the C/A code is available 

for civilian use. 

The range between a GPS satellite and a GPS receiver is found from an 

estimate of the propagation time. The propagation path length is merely the 

product of the propagation time and the speed of the radio signal which is 

usually taken to be approximately 300,000 km per second. If the beginning of 
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the C/A code transmitted from the satellite is at time to, and the code arrives 

at the receiver at time ta, the propagation time is merely ta - to. This however 

requires the receiver to knowt0. Latitude, longitude, elevation, and to are the 

four unknowns to be solved for. Hence the requirement for pseudo-range 

measurements from four satellites. 

To find ta, the code transmitted from the satellite is synchronized with a 

replica of the code generated by the receiver. The replica code is shifted from 

to one chip at a time until the correlation between the replica and transmitted 

code is a maximum indicating synchronization. For the C/A code, each shift 

corresponds to a distance of 293 metres compared to 29.3 metres for the P code. 

Therefore, a more precise estimate of the propagation time can be achieved 

using the P code. 

The instantaneous single point accuracy of GPS in the C/A code mode is from 

20 to 50 metres [5] which is adequate for the microcellular mobile telephone 

application. However, the horizontal, 2 dimensional accuracy achievable by 

civilians has been intentionally degraded to approximately 100 metres by 

Selective Availability (S.A.). This may not be accurate enough for the location 

of microcellular telephone subscribers. Accuracy can be significantly 

improved with DGPS (Differential GPS) [9]. Because the satellites are at such a 

high altitude (20,200 km), two points on the earth's surface, even 100 km 

apart, will essentially have the same propagation path to a particular satellite. 

Hence, the errors caused by refraction in the ionosphere will generally be the 

same for a transmission from the satellite to each of the two points. If the 

location of one of the points is known exactly, these errors are known and can 
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be compensated for in making a position fix on the other point. Accuracy of ≤ 

5 metres is possible using DGPS [2]. 

The GPS requires LOS propagation paths between the satellites and the 

receiver. As a result, GPS signal availability is susceptible to masking by large 

objects such as high-rise buildings and mountains. Field tests [4] indicate that 

GPS signal availability in urban residential areas is in the order of 70% and in 

city cores it is only 40%. In mountain regions [7, 8], the signal availability is 

60%. Therefore, GPS signal availability is consistently less than that of 

LORAN C and far too low for a vehicle location system. 

A possible solution is to combine GPS with another system such as LORAN 

C. In mountain regions, a hybrid GPS/LORAN C system would have a signal 

availability of approximately 90%, which is an improvement over both 

LORAN C, and GPS individually, but still low for cellular telephone 

applications [7]. Interoperable GPS/LORAN C receivers are available but still 

too costly [5]. 

A land based automatic vehicle location and navigation system based on the 

integration of dead reckoning, digital map matching, and GPS has been 

investigated [10]. The system is based on differential odometry with location 

updates provided by map matching and GPS. The accuracy of the dead 

reckoning component in stand alone mode was 1% to 2% of the distance 

travelled. The addition of map matching updates gave negligible 

improvement. However, with both map matching and GPS coordinate 

updates, the system accuracy was maintained at approximately 40 metres. 
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Though able to offer a high degree of accuracy, this system, and in particular 

the map matching aspect, is complex. It is also hardware and software 

intensive. 

To conclude, GPS has the potential to offer extremely high accuracy should 

S.A. be removed or DGPS implemented. In addition, reasonably small GPS 

receivers are available for approximately $600 and the system is operable 

anywhere in the world. However, GPS signal availability is far too low, even 

in a hybrid system, for the reliability required by telephony. 

2.4.2.2.2 Other Spread Spectrum Methods 

Spread spectrum signals may also be used in ground-based location systems. 

Goud [6] investigated the performance of a spread spectrum radio location 

technique, applied to the mobile cellular radio location problem. His system 

uses time difference hyperbolic trilateration of direct sequence spread 

spectrum signals. The spread spectrum signals would be transmitted by the 

mobile over a 10 MHz multipath mobile radio channel typical of a dense 

urban environment. Computer simulations showed that the absolute 

location error for locating a mobile in a 3 km radius circular service area, with 

4 sensors on the circumference, is 50 metres. When the service area was 

overlaid with a cellular grid of hexagonal cells of radius 500 metres, the 

system was able to locate the cell in which a mobile was 94.8% of the time. 

A spread spectrum, time difference, hyperbolic automatic vehicle location 

system has been implemented in the Sydney Australia area [11]. It is called 

QUIKTRAK and has been in operation since 1987. Although the system was 
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developed primarily for fleet management, other applications are possible. 

The service area is approximately 2000 square kilometres and the system 

accuracy is roughly 30 metres. The system is capable of supporting thousands 

of vehicles and making 30,000 location fixes per hour. The direct sequence 

spread spectrum signals transmitted by the mobiles occupy a bandwidth of 2 

MHz. 

Although spread spectrum methods have tremendous potential, their 

processing complexity and need for large amounts of bandwidth continue to 

be of concern. A narrowband system is far simpler to design and implement. 

2.4.3 Radio Direction Finding 

The third group of radio location techniques is called radio triangulation or 

radio direction finding. Unlike the previous two groups, this group is 

narrowband in nature and therefore does not require any new spectrum other 

than the allocated cellular bands. This group estimates position by finding the 

AOA of radio waves. The concept is illustrated in Figure 2-3. Note that in 

Figure 2-3, it is intended that AOA be measured only in the horizontal plane. 

Throughout this thesis AOA refers to azimuth not elevation. 

Continuous wave (CW) radio signals are transmitted in all directions by 

transmitters A and B. The signals are received at the mobile and the AOA 

with reference to some direction (such as North) is determined for each 

transmitter. The position of the mobile is simply the intersection of the 

bearings for the two transmitters. 
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Figure 2-3 Location Finding by Triangulation 

Obviously the success of simple triangulation hinges on the existence of one 

direct propagation path between each transmitter and the mobile. 

Traditionally, triangulation has not been used for land vehicle location 

systems because of the multipath nature of the radio propagation 

environment in urban areas. Reflections of radio signals by obstacles such as 

large buildings or rugged topography can cause large positional errors. The 

accuracy of the position fix of course depends on the accuracy of the AOA. As 

the distance between the transmitters and the mobile increases, so does the 

error in absolute location due to an error in AOA. 
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Although much of the arrival direction of radio waves in the multipath 

environment is still unknown, recent research [12] indicates that radio waves 

originating from a single source and scattered or reflected, tend to arrive at a 

distant point in clusters. Indoor measurements reveal that two distinct 

arrival times generally dominate. The first cluster to arrive generally has the 

larger magnitude and can be attributed to the direct ray as well as reflections 

near the antenna. The second cluster is composed of reflected rays which 

travel longer and more attenuated paths. 

The outdoor multipath radio environment is also assumed to consist of two 

clusters. The digital cellular mobile radio standard IS-54 [13] states that a 

receiver should expect two separate equal powered arrivals separated by at 

least 41.2 p.s or one symbol interval. The frequency range is 800 to 900 MHz. 

More likely, if the first cluster to arrive follows a reasonably direct path it will 

be of greater power than any other cluster which follows an indirect path. 

Therefore, if a LOS cluster of higher power than any' other arriving cluster is 

assumed to exist, a triangulation method which is able to discern this cluster 

should be able to make a reasonably accurate estimate of a mobile's position. 

AOA may be determined by any one of a host of methods. The application of 

some of these methods is two-fold. First, these methods can operate in the 

temporal domain to estimate the frequencies of complex sinusoids in noise. 

This requires a time series of data. Second, estimating the AOA of planar 

wavefronts is a spatial problem that requires data from an array of sensors. 

These methods may be divided into two groups. Parametric methods are 

those which assume some sort of model for the data process. Nonparametric 
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techniques make no such assumptions about the data. Historically, many of 

the nonparametric techniques were developed before the parametric 

methods. That no assumptions about the input process are made and that 

they are relatively simple, are perhaps the two chief advantages of 

nonparametric methods. However, the resolution of these methods is limited 

and it is in this area that under certain conditions, the more modern 

parametric methods excel. Discussion begins with some nonparametric 

methods. 

2.4.3.1 Interferometry 

An interferometer such as an Adcock array is a very simple direction finding 

system [14]. It consists of two pairs of orthogonally positioned antennas. The 

antennas are positioned north-south and east-west. If 4NS is the signal phase 

difference between the north and south antennas, and 4EW is the same for the 

east-west antennas, then eAQA is calculated with the following equations: 

Adcock(eAQA) = arctan(Ew /NS) 

where 4NS = (27r/2) dNs cos(eAOA) 

kW = (21rI2)dEw sifl(eAOA) 

dNs = separation between north - south elements 

dEw = separation between east - west elements 

A. = signal wavelength. 

(2-1) 

The Adcock array is able to process only one signal. It is therefore unsuitable 

for a multiwave environment such as the mobile cellular radio 
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environment. Its other disadvantages include, bearing accuracy as a function 

of bearing, bearing ambiguity with larger apertures, and poor results when the 

wavefront is distorted. 

2.4.3.2 Beamformers 

Beamformers have long been used for AOA determination. The antennas of 

an array are so phased such as to form a beam in a certain direction. The beam 

is scanned through the space of interest either mechanically or electronically. 

The output of the array will peak when the beam is pointing in the direction 

of an incoming signal. The main drawback of conventional beamformers is 

resolution which is limited to the beamwidth of the main lobe of the array 

response. The array response also includes side lobes which can further 

reduce resolution. A large signal picked up by a side lobe could overshadow a 

smaller signal received by the main lobe. 

A system to estimate vehicle positions using multibeam antennas has 

recently appeared in the literature [15]. This system was specifically designed 

and tested to locate subscribers in a mobile cellular radio system. The AOA of 

signals transmitted by a mobile are estimated at two or more base stations 

using multibeam antennas. 

Each multibeam antenna consists of six beams spread over 120 degrees of 

azimuthal angle. At any one time, three beams are of interest: the beam with 

the strongest signal level, the beam on its immediate left, and the beam on its 

immediate right. The algorithm described in the reference follows a signal 

level comparison process among the three beams to estimate the AOA. The 
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method assumes that a single wave is received. The authors assume that 

errors will result with multiple arrivals. 

The system was tested with three base stations in a 20 square kilometre area of 

Tokyo. The free space accuracy of the system, tested with transmitters located 

on tall buildings, was found to be less than 100 metres. These errors are 

contributable to sidelobes of the antennas, signal level measurement accuracy, 

and the performance of the algorithm for AOA estimation. 

For a test car driving through the streets, the accuracy was considerably worse. 

The main reason is of course the multipath propagation environment. Errors 

were caused by reflections from buildings as well as confusion in AOA by 

multiple arrivals from various directions even when LOS existed. Errors 

from these causes were found to be from 500 to 1000 metres. 

As a result, the rms position error was found to be over 300 metres. This was 

reduced to approximately 200 metres by a combination of time series and 

positional averaging. The authors conclude that this method is only suitable 

for systems with cell radii in the order of several kilometres. 

2.4.3.3 Fourier Transform Methods 

The most well known nonparametric methods of determining AOA are 

those based on the Fourier transform [16, 17]. There are two conventional 

ways to use the Fourier transform to this end. The first is to perform the 

Fourier transform, with respect to electrical phase angle, on the spatial series 

of data (i.e. antenna array output). The power spectrum as a function of 
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electrical phase angle is then calculated as the magnitude squared of the 

Fourier transform. This is called the periodogram. Peaks in the periodogram 

correspond to directions of arrivals. The actual AOA, °AOA' is related to the 

electrical phase angle, e' by the relation, 

(2,,d)sm(OAOA) 

where d is the interelement spacing. 

(2-2) 

The Blackman-Tukey method is the second conventional Fourier method. 

The autocorrelation function of the data is first found and then the Fourier 

transform is performed on the autocorrelation function. The autocorrelation 

and periodogram methods both give similar results. 

The major limitation of Fourier based methods is resolution. For a linear 

array of finite aperture, the radiation pattern due to a single source 

illuminating the array, consists of a main lobe and a number of sidelobes. As 

previously mentioned, sidelobes are undesirable. Though their amplitude 

can be reduced by window functions, this also increases the width of the main 

lobe. A standard beamwidth (BW) is defined as the angular separation 

between the dominant peak and the first null in the array response. In 

equation form, 

BW=.-
N 

(2-3) 
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where N is the number of array elements [17]. 

The larger the array, the narrower the beamwidth of the response resulting in 

increased resolution. If there are two or more sources illuminating the array, 

the sources will be resolved if they are separated by two or more beamwidths. 

If separated by one to two beamwidths, they may be resolvable. Generally, 

Fourier methods are unable to resolve sources closer than one beamwidth. 

Therefore, resolution is limited by the width of the main lobe which is 

limited by the size of the array and any window functions which are 

employed. 

Fourier methods do have advantages which make them attractive for some 

applications. They are nonparametric and hence no input process model is 

required. As a result, they can be used with any type of signal. They are robust 

in that they are insensitive to parameter changes, and they are relatively 

simple to implement. 

2.4.3.4 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a parametric technique that may 

be used to directly estimate AOA [17]. Let x be the observed signal vector from 

the antenna array and 0AOA be the AOA, information of which is contained 

in x. The likelihood function is then defined as the joint probability density 

function f(x8AoA), of x given 8AQA• In other words, the AOA is estimated as 

that angle which most likely produced the observed signal vector x. 
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MLE overcomes the resolution limitation of the Fourier methods. Also, an 

MLE estimate of AOA, if unbiased, will achieve the Cramér-Rao lower bound 

with equality [17]. However, the practicality of MLE is limited by the 

complexity of maximizing the likelihood function when there are more than 

two arrivals. This difficulty in multidimensional maximization usually 

excludes the use of MLE in multipath environments. 

2.4.3.5 Superresolution Algorithms 

Recently, a number of parametric methods of estimating AOA, which have 

sub-Rayleigh resolution, have been developed. The Rayleigh resolution 

criterion was developed by Lord Rayleigh in 1879. For angular spectrum 

applications it states that two arrivals are considered resolved when the first 

maximum of one arrival coincides with the first minimum of the second. 

The Rayleigh resolution criterion is generally accepted as the criteria by which 

the resolving ability of AOA estimators is judged. Whereas Fourier based 

methods cannot exceed the Rayleigh criterion, those parametric methods that 

do are aptly named superresolution methods. However, to achieve the 

resolution and accuracy potential of these methods, the models assumed by 

these methods must closely match the actual physical model from which the 

data comes. Four fundamental superresolution methods are considered: 

Autoregressive (AR) modelling, Minimum Variance Distortionless Response 

(MVDR), Minimum-Norm, and MUSIC. 
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2.4.3.5.1 AR Spectrum Estimation 

AR spectrum estimation is based on linear prediction. A linear predictor or 

Prediction Error Filter (PEF) may be used to model a stochastic process. For an 

AR process, the inverse transfer function of the PEF yields a transversal filter 

or a lattice filter whose tap weights or reflection coefficients have been chosen 

such that white Gaussian noise at the input of the filter will produce a sample 

of the process of interest at the output. The spatial power spectrum may be 

determined from the transfer function of the PER Hence, AR spectrum 

estimation is an indirect method of determining AOA. Unlike Fourier based 

methods however, the amplitudes of the peaks in an AR spectrum do not 

correspond to signal powers. The AR spectral estimate is also called the 

Maximum Entropy (ME) spectral estimate. For a linear array, the AR 

spectrum is identical to the spectrum obtained by maximizing the entropy of 

the data process. 

In addition to the AR model, which is implemented as an all pole filter, there 

is also the MA (Moving Average) model and the ARMA (autoregressive - 

moving average) model. The MA model is implemented as an all zero filter 

whereas the ARMA model is a combination of the AR and MA models. The 

AR model is most often used since its coefficients are computed from the 

Yule - Walker equations which are linear. MA and ARMA coefficients must 

be computed from non-linear equations which are difficult to solve. 

There are three principal algorithms used to determine the AR coefficients. 

The Levinson-Durbin algorithm indirectly determines the coefficients. First 

the autocorrelation function of the data is estimated. The Levinson-Durbin 
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algorithm then computes the tap weights for a transversal filter and then the 

reflection coefficients for a lattice filter. The Burg algorithm is a more direct 

method which estimates the reflection coefficients directly from the data. 

Although it has excellent resolution and is very efficient, the Burg algorithm 

has three drawbacks [16, 17]. First, depending on the initial phase of the input 

signal and the length of the data, the Burg algorithm may give biased results. 

Second, a phenomenon known as line-splitting is known to occur with Burg. 

Line-splitting is the appearance of two closely spaced signals when there is in 

fact only one. Lastly, the Burg algorithm may fail to work properly for 

coherent arrivals such as those encountered in a multipath environment. For 

two coherent arrivals separated by less than a BW, the Burg algorithm will 

fail to resolve them properly unless the phase difference between them is an 

odd multiple of 90 1; in that case the process is spatially stationary. 

An alternative to the Burg algorithm is the Forward-Backward Linear 

Prediction method (FBLP). The FBLP method works for both stationary and 

nonstationary sources. Therefore, it is able to resolve two coherent arrivals 

which are separated by less than a BW, provided that the SNR is high 

enough. The FBLP method does have two drawbacks [17]. Unlike MLE, the 

FBLP method does not achieve the Cramér-Rao bound. Furthermore, below a 

threshold reached at high SNR, there is a serious degradation in the 

performance of the method. A modified FBLP method was developed by 

Tufts and Kumaresan in order to minimize these limitations. The 

improvement is substantial [19]. 
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For a two ray multipath environment, the modified FBLP method works 

very well. For diffuse multipath however, it is not able to resolve for the 

numerous arrivals. If on the other hand, there is a direct arrival accompanied 

by multipath components, the modified FBLP method should be able to 

estimate the AOA of that direct arrival. 

2.4.3.5.2 MVDR Spectrum Estimation 

The MVDR method was developed by Capon and is therefore known as 

Capon's method. It is also called the Maximum Likelihood Method, not to be 

confused with Maximum Likelihood Estimation. Like AR modelling, MVDR 

is based upon the method of least squares. It is different in that it imposes a 

constraint on the least squares solution. This is best explained by comparison 

to conventional beamformers [14]. For conventional beamformers, there is 

interference from signals which are not in the current scan direction. In the 

case of an MVDR estimator, the average beamformer output power is 

minimized under the constraint that the beamformer gain in the scan 

direction is always unity. In other words, the beamformer variance is 

minimized while the response is not distorted. The effect is to prevent off 

boresight interference, resulting in improved resolution. 

Although the resolution capability of MVDR is better than that of Fourier 

based methods it is not as good as that of AR modelling [17]. It does, however, 

determine the relative powers of the signals. 
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2.4.3.5.3 The Minimum-Norm and MUSIC Algorithms 

Minimum-Norm and MUSIC are two superresolution algorithms based on 

eigenanalysis of the correlation matrix of the data collected by an N element 

antenna array. Eigendecomposition of the correlation matrix will result in N 

eigenvalues and their corresponding eigenvectors. If K signals are impinging 

on the array, the eigenvalues' and eigenvectors can be divided into two sets: 

1. Those eigenvectors which correspond to the N - K smallest 

eigenvalues span a space named the noise subspace. 

2. Those eigenvectors which correspond to the K largest 

eigenvalues span a space named the signal subspace. 

Therefore, the total space spanned by the eigenvectors of the correlation 

matrix is partitioned into two subspaces. The signal and noise subspaces are 

orthogonal complements of each other. Hence the inner product of any signal 

eigenvector with any noise eigenvector will be null. 

The difference between the Minimum-Norm method and the MUSIC 

method is the processing which occurs after the partition of the eigenspace. In 

the Minimum-Norm algorithm, a vector b of length N is found such that: b is 

orthogonal to each signal eigenvector and hence lies in the noise subspace, 

the first element of b is unity, and its Euclidean norm is a minimum. The 

vector b may be computed from either the noise or signal eigenvectors. Let a 

steering vector a(e), also of length N, be defined as the complex gain of the 

antenna array. The Minimum-Norm spectrum is then calculated as, 
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Minimum - Norm Spectrum(8) = 1 2 

la' (e)bl 

where H indicates Hermitian transpose. 

(2-4) 

The MUSIC algorithm directly exploits the property that the eigenvectors 

spanning the signal subspace are orthogonal to those spanning the noise 

subspace. The MUSIC spectrum is created by projecting all possible signal 

directions, defined by the steering vector a(e), onto the noise subspace, 

defined by the matrix VN. VN consists of all the noise eigenvectors. For those 

values of 9 which are true signal arrival angles, a(0) will be orthogonal to the 

noise subspace and will result in a null in the spectrum (or peak in the 

inverse of the spectrum). Although only one noise eigenvector is 

theoretically required to make up VN, all are used in order to suppress 

spurious peaks. The MUSIC spectrum which yields a peak at the AOA of each 

signal is calculated as, 

1  
MUSIC Spectrum(9) = a'(9)VNVa(0) (2-5) 

For successful operation, both the Minimum-Norm and MUSIC algorithms 

require knowledge of the number of signals. This may be done by analysis of 

the eigenvalue magnitudes based on knowledge of the noise power, or by 

using one of the information-theoretic criteria available [18]. Since the 

eigenspace must be partitioned into two subspaces, there must be at least one 

eigenvector spanning the noise subspace. As a result, the antenna array must 
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have at least one more element than the number of signals impinging on the 

array. 

Since the inception of MUSIC, numerous modifications and variations have 

been developed in order to improve the characteristics and performance of 

the original algorithm. Perhaps most notable is Root MUSIC [18]. The original 

MUSIC algorithm must scan through the entire angular interval of 00 to 360° 

in order to find peaks which correspond to signals. In contrast, Root MUSIC 

determines the AOA of each signal by finding the signal zeros of a 

polynomial formed from the noise subspace. The signal zeros are identified as 

those which lie near the unit circle. Besides having a more direct approach, 

simulation studies [20] have determined that because of the radial nature of 

the errors in the estimated signal zeros, Root MUSIC is also superior to 

original MUSIC in terms of accuracy. Root MUSIC, however, is only suitable 

for linear, equi-spaced arrays. 

Three other variations of MUSIC are worthy of mention. Cyclic MUSIC 

algorithms eliminate some of the drawbacks of MUSIC when the signals of 

interest exhibit cyclostationarity [21, 22]. In addition to the spatial coherence 

properties of the signals, their spectral coherence properties are also used to 

determine AOA. Oh and Un [23] presented an improved MUSIC algorithm 

which removed the spatial correlation among sources in the spectral 

estimator. The result is an improvement in the ability to resolve closely 

spaced signals. Finally, Brandwood [24] shows that the projection of the array 

steering vector into the noise subspace can be found without eigenanalysis of 
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the data correlation matrix. His method demonstrates significant savings in. 

computational loads. 

2.4.3.5.4 Comparison of Superresolution Algorithms 

Haykin [18] gives a detailed discussion regarding the relationships between 

the four superresolution algorithms which have been discussed. As Haykin 

points out, these interrelationships are only valid for a wide sense stationary 

process whose correlation matrix is exactly known. In brief: 

1. The MVDR spectrum is a harmonic averaged or 

smoothed version of the AR spectrum. Hence it 

contains smaller fluctuations. 

2. The MUSIC spectrum corresponds to an MVDR spectrum 

for a correlation matrix of infinite signal to noise 

ratio. This means that the resolution of MUSIC is better than 

that of MVDR. 

3. The Minimum-Norm spectrum corresponds to the AR 

spectrum for infinite signal to noise ratio. Consequently, the 

resolution of Minimum-Norm is superior to that of AR 

modelling. 

4. The MUSIC spectrum is a weighted harmonic average of 

the Minimum-Norm spectrum meaning that its 

spectrum is smoother. 

Studies on the performance of MUSIC compared to Minimum-Norm [25] 

indicate that the resolution threshold of Minimum-Norm is at a lower SNR 
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than that of MUSIC. However, above this threshold the variance in the 

MUSIC spectrum is smaller than that in the Minimum-Norm spectrum. The 

superiority of MUSIC over other methods, in regards to detecting the AOA of 

planar wavefronts, is well documented in the literature. R.O. Schmidt, the 

inventor of MUSIC, compares the ability of MUSIC to detect the AOA of two 

signals to that of conventional beamformers, Maximum Likelihood, and 

Maximum Entropy or AR modelling [26]. MUSIC was found to outperform 

them all in resolution and accuracy. Haykin [18] compares MUSIC to the 

Fourier based periodogram method. He displays several cases where the 

Fourier method has trouble resolving two signals separated by less than two 

beamwidths, while MUSIC easily and accurately resolves them. 

The superiority of MUSIC over the Fourier transform was confirmed by the 

author. To resolve two 840 MHz signals separated by 100, with an error less 

than 0.2°, the Fourier transform required data spread over 7.8 A. To achieve 

the same results, MUSIC required data spread over only 0.3 A. 

A further advantage of MUSIC is that it may be used with an array of arbitrary 

geometry. MUSIC only requires knowledge of the array geometry, which is 

provided by the steering vector. This is also true of the MVDR method but 

not AR modelling or Minimum-Norm which require a linear uniform array. 

A major drawback of MUSIC and many of the eigendecomposition methods 

is performance degradation when the signals to be detected are highly or fully 

correlated (coherent). In the multipath environment signals are in general 

highly correlated. As a result this issue is of concern when applying MUSIC to 
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the problem of direction finding in the mobile cellular radio environment. 

Techniques to overcome this are presented in the next chapter. 
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CHAPTER 3 

THE MUSIC ALGORITHM 

3.1 Introduction 

The previous chapter introduced MUSIC as a superresolution spectral estimation 

algorithm that may be used to estimate the AOA of radio waves. In this chapter, 

the theory and application of MUSIC to the mobile cellular telephone location 

problem is presented. Because MUSIC is able to process both spatial and 

temporal data, the chapter is divided into two major sections. The focus of the 

first section is the application of MUSIC in the spatial domain to directly estimate 

AOA. The second section shows how temporal processing, normally a frequency 

estimation exercise, may be used to determine AOA when motion is present. 

3.2 Spatial MUSIC 

3.2.1 Antenna Array 

The spatial form of MUSIC estimates the AOA of planar wavefronts impinging 

on an antenna array. As will be seen later, the number of elements in the array 

must be at least one greater than the number of signals for which AOA is to be 

estimated. The requirement of a multi-element array is the first obstacle to be 

overcome when applying MUSIC to the problem of estimating AOA at the 

mobile. A multi-element antenna array mounted on an automobile is impractical, 

costly, and unattractive. 

An alternative to a physical antenna array is to use a fewer number of physical 

antenna elements and exploit the motion of the mobile. A "virtual" antenna array 
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is produced by sampling, in time, one or more mobile mounted antennas as the 

mobile moves. Figure 3-1 illustrates an automobile with two antennas mounted 

A 

Direction of Travel 

5 

I 

Figure 3-1 Creation of Virtual Antenna Array 
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on the roof. When the automobile is in motion, sampling the signals received by 

the antennas at three different times will result in three spatially and temporally 

separated samples for each antenna. If the sampling rate is sufficiently high, the 

signal environment will not change significantly from the time of the first sample 

to the time of the third. Hence, the 6 spatially separated signals simulate a 6 

element array. 

The geometry of the array is dependent on the spacing of the physical antennas, 

the sampling frequency, and the velocity of the mobile. The separation of the 

physical antennas is fixed once the antennas are installed. The separation 

between virtual elements can be made constant if the sampling frequency is 

adjusted when the mobile velocity changes or, will vary with velocity if the 

sampling frequency is fixed. In either case, the separation of virtual elements for 

the simulations of chapters 4 and 5 was small enough (≤ 30 cm) that a rectangular 

geometry as in Figure 3-1 can be assumed even if the mobile is not following a 

straight path. 

MUSIC does not restrict the geometry of the array but merely requires 

knowledge of it. This knowledge is contained in the array gain or steering vector. 

Consider the virtual array for two physical antennas as shown in Figure 3-2. The 

direction of motion is in direction Y and the AOA is measured as shown. 

The steering vector is defined as 

a(0)=[al(0)a2(0)... al (Of (3-1) 
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Planar Wavefront 
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Figure 3-2 Two Dimensional Antenna Array 

where ; (0) is the complex gain of the n element for the direction 0. The angle 

of a(8) is the phase at the ntJ element with respect to the phase at element 1. 

The phase at element 1 is taken to be zero. For all simulations conducted, the gain 

amplitude for each element is unity. 

Due to the cosine and sine functions used in calculating the angle of a (0) , an 

ambiguity exists if the array is one dimensional. If a one dimensional array in the 

Y direction is used, the angular spectrum from 00 through 1800 will be repeated 

from 360° back to 180°. In the case of a one dimensional array in the X direction, 

the spectrum from 90° to 270° will be a mirror image of the spectrum from 90° 

back through 00 to 270°. If a two dimensional array is used, the ambiguity is 

eliminated and the angular spectrum is unique throughout the entire 360°. 

Therefore, at least two physical antennas, mounted perpendicular to the direction 
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of motion, are required. 

3.2.2 Formation of the Correlation Matrix 

The ensemble averaged correlation matrix R is defined as the expected value of 

the product of the data matrix D with its Hermite [18]. In equation form, 

R = E[DHD] (3-2) 

where the superscript H indicates Hermitian transpose and E the expectation 

operator. The correlation matrix itself is Hermitian. Although the MUSIC 

algorithm is based upon the ensemble averaged correlation matrix, in practice it 

is not known. It is necessary therefore to estimate it with a sample average. 

Towards this end, two principal methods of organizing the data matrix D are 

considered: temporal smoothing and spatial smoothing. It will later be shown 

that these two smoothing methods have a significant impact on the performance 

of eigendecomposition algorithms such as MUSIC [18]. 

3.2.2.1 Temporal Smoothing 

Let an antenna array (not virtual) of arbitrary geometry be composed of N 

physical antennas or elements. If the signal received at each element is sampled 

in time, the data matrix can be organized as a sequence of "snapshots". Each 

snapshot consists of the data received by the array at a specific instant in time. In 

this way the data is averaged over time and is therefore temporally smoothed. If 

S samples are collected for each element, the data matrix D is defined as, 
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dl,N 

(3-3) 

ds,N 

where N = the number of elements in the antenna array 

S = the number of samples per element 

df,k= the j sample of the ks" element. 

The estimate of the correlation matrix, Ik, calculated from such a data matrix 

will be an average over S snapshots of data. Hence, 

i!DHD. 
S 

(3-4) 

In the case of a virtual antenna array, strict temporal smoothing is not possible. 

Since virtual elements are separated in time as well as space, a snapshot of data 

as previously defined does not exist. However, again assuming that the signal 

environment does not change appreciably with time, adjacent samples can be 

grouped such that each group corresponds to a particular element of the virtual 

array. In this way, data samples may be grouped into snapshots even though the 

samples comprising a snapshot of data do not occur at the same instant in time. 

For example, in Figure 3-3 an antenna is moving in the direction shown. If the 

array is to consist of 3 elements with 2 samples each, samples 1 and 2 could 

correspond to the first element, samples 4 and 5 to the second, and 7 and 8 to the 

third. One snapshot of data would then consist of samples 1, 4, and 7, and the 

second snapshot of samples 2,5, and 8. 
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.III.•.III... 
Element 1 Element 2 Element 3 

Direction of Motion 

Figure 3-3 Samples in Virtual Antenna Array 

The scheme illustrated in Figure 3-3 is in fact temporal smoothing for a virtual 

array in motion. Sampling an array while it is in motion is an effective way of 

decorrelating coherent signals impinging on the array [27]. This decorrelation 

effect will later be shown to be important for the success of MUSIC. 

3.2.2.2 Spatial Smoothing 

Consider one snapshot of data for an N element array. A subarray is formed 

consisting of M elements, where M <N. Spatial smoothing is then introduced by 

sliding the subarray across the full array in both the forward and backward 

directions. 

Figure 3-4 illustrates the virtual array created by 2 physical antennas in motion. 

The antennas are sampled at 4 locations resulting in a 2 by 4, or 8 element array. 

Also shown are 3 subarrays each consisting of 4 elements. The data matrix is a 

collection of the 3 data subarrays. The data is thereby spatially averaged. 

Wherever spatial smoothing is used in this thesis, one dimension of the subarray 

is always equal to the number of physical antennas. The second dimension is 

variable. If in Figure .3-4 there were 3 antennas instead of 2, the subarrays could 

only be of dimension 3 by 2 or 3 by 3. 
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Figure 3-4 A 2 Antenna by 4 Virtual Element Array with 3 Subarrays 

The subarray may slide across the full array in the forward direction, backward 

direction, or both. For the array pictured in Figure 3-4 with both forward and 

backward spatial smoothing, the data matrix D will be, 

D= 

44 d3 d2 d1 

4 d5 4 d3 

4 d7 4 d5  

d d d d 

(3-5) 

where d is the complex data sample of the nHz *  element and indicates complex 

conjugate. The matrix elements above the partition line in D correspond to 

forward smoothing whereas the elements below the partition correspond to 

backward smoothing. 

Consider a virtual array of P physical antennas and V virtual elements yielding a 

total of P x V elements. If the subarrays are of dimension P by Sa, where Sa < V, 
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and only forward spatial smoothing is used, the averaging is performed over 

V - (Sa —1) subarrays. The correlation matrix estimate is then, 

1  DHD. 
V - (Sa —1) 

If both forward and backward spatial smoothing are used, the averaging is 

accomplished over a total of 2(V - (Sa - 1)) subarrays and hence, 

1  D11D. 
2(V - (Sa - 1)) 

(3-6) 

(3-7) 

For data which is spatially and temporally separated, temporal and spatial 

smoothing are somewhat similar. In this context, temporal smoothing can be 

viewed as one way spatial smoothing in which all possible subarrays are not 

used. Hence, for the same number of data points, temporal smoothing will not 

average the data to the extent that spatial smoothing will. 

3.2.3 Eigenanalysis of the Correlation Matrix 

There are numerous methods which may be used for the eigendecomposition of 

matrices. For the purpose of this thesis, eigenanalysis by Jacobi transformations 

for real symmetric matrices was chosen for its simplicity and availability in C 

code [28]. The simulation data used is complex and hence the complex Hermitian 

matrix 1. must be converted to a real symmetrical augmented matrix. 

Eigenanalysis on the real augmented matrix results in pairs of eigenvalues and 

eigenvectors. One eigenvalue and eigenvector are then chosen from each pair. 

Details concerning this method are available in [28]. 
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3.2.4 MUSIC Theory 

When planar wavefronts impinging on an array are uncorrelated, or at most 

partially correlated, MUSIC is able to accurately resolve the arrivals. However, 

the performance of MUSIC deteriorates when the signals are highly correlated or 

perfectly correlated (coherent) [29]. The cellular radio environment is of 

multipath nature due to the many reflections which occur. Hence, the many 

signal arrivals at a receiving antenna are merely amplitude-weighted, phase-

delayed copies of each other and are thus highly correlated. Therefore, the 

difficulty encountered by MUSIC when processing correlated signals must be 

resolved for the applications considered. 

Various schemes have been devised to overcome the correlated signal problem 

[29]. Of these, spatial smoothing, temporal smoothing, and an array in motion are 

of particular interest. For a virtual array, temporal and spatial smoothing are the 

same in a practical sense. Therefore, a description of how spatial smoothing 

overcomes the coherent signal problem will suffice. This is followed by a brief 

discussion of how array motion accomplishes the same thing. 

To show how spatial smoothing resolves the coherent signal problem, a 

description of the underlying theory of MUSIC is in order [29, 30]. For the sake of 

discussion, consider a linear uniform array consisting of N physical elements 

(not a virtual array). The K signals impinging on the array are assumed to be 

narrowband plane waves all centered at frequency w, and arriving from 

directions {Oj,02,. .. ,OK} measured with respect to the perpendicular of the array. 

The signal received at the kth array element is, 
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K d 
-100(k-1)-sinOj 

rk(t) as(t)e +flk(t) 

i=1 

(3-8) 

where s (t) is the signal of the ith wavefront, aj is the complex response of the 

element to the ith wavefront, d is the interelement spacing, c is the propagation 

speed, and nk(t) is the noise at the kth element [30]. 

The noises are assumed to be additive white Gaussian noise with variance a2. 

The signals are stationary, ergodic, complex random processes with zero mean 

and are uncorrelated with the noises. For convenience, the array elements are 

assumed to be omnidirectional and hence ai 1 for all i . Consequently, the array 

output vector can be written as, 

K 

r(t) = I s (t(0) + n(t) 
i=1 

(3-9) 

where a(8) is the steering vector of the array in the direction Gi and is defined as 

and 

ri a(0) = [i e '°° •• e$0(11)vi 

. 
't = d —smO 

C 

I T (3-10) 

(3-11) 

n(t) = [n1(t) n2(t) (3-12) 

Equation (3-9) can be written in the simpler form, 
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r(t) = As(t)+ n(t) 

where A is the N x K matrix 

(3-13) 

A = [a(e1) a(e2) a(OK )] (3-14) 

and s(t) is the K x  vector, 

S(t)=[(t) s2 (t) ... sK(t)1. (3-15) 

Under the above assumptions, the correlation matrix R of the array output can be 

calculated as, 

R = E[r(t)r"(t)] 

= E{{As(t) + n(t)}{As(t) + n(t)IH ] 

= AE[s(t)s'(t)}A'' + E[n(t)n''(t)} 

=ASAH +&i 

where S is the signal correlation matrix and I is the identity matrix. 

(3-16) 

If the interelement spacing d is less than one half of the signal wavelength, 

grating lobes will not exist in the array's field intensity pattern [18]. As a result, 

the columns of A will all differ from each other. This combined with the 

Vandermonde structure of A implies that the columns of A are linearly 

independent and the rank of A is thus K. 
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When the signals are at most partially correlated, S will be nonsingular and also 

of rank K. Consequently, ASAH will be of rank K and have K nonzero 

eigenvalues. Let {? ≥ X2 denote the eigenvalues of R and 

{1'2'ION  the corresponding eigenvectors [29]. Then the above rank 

properties imply that, 

2 

3"a(8)= 0, 

i ≥ K + 1, 

i=K+1,K+2,.•,N, 

j=1,2,..•,K. 

(3-17) 

(3-18) 

Those eigenvectors corresponding to the NK smallest eigenvalues span a 

subspace called the noise subspace [30]. The subspace spanned by the direction 

vectors of the signals (columns of A) is called the signal subspace and is 

orthogonal to the noise subspace. MUSIC exploits these facts in the sense that the 

projection of any steering vector which corresponds to a signal direction onto the 

noise subspace will result in a null. 

3.2.4.1 Decorrelation by Spatial Smoothing 

The rank of S is dependent on the degree of correlation between the signals. If 

the signals are uncorrelated, S is nonsingular, diagonal, and of rank K. If some of 

the signals are partially correlated, S is no longer diagonal but is still nonsingular 

and of rank K. When some of the signals are perfectly correlated (coherent), S 

becomes singular and its rank is less than K. In this case, the rank of R is also less 

than K. When this occurs, (3-1.7) and (3-18) no longer hold and MUSIC breaks 

down [30]. Therefore, the nonsingularity of S must be ensured for the proper 

operation of MUSIC. 
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As an example, assume that two of the signals, s1(t) and s2 (t), are coherent. 

They are related as, 

s2 (t) = as1(t) (3-19) 

where a is a complex scalar describing the gain and phase relationship between 

the two signals. The array output vector can still be written as (3-13). However, 

s(t) is now defined as, 

s(t) = [s1(t) as1(t) s3(t) SK(t)] . (3-20) 

The correlation matrix of r(t) is still written as (3-16). However, the rank of S, the 

signal correlation matrix, is now K —1. As a result, the number of eigenvalues of 

R with minimum value a2 increases from N - K to N - (K —1), meaning that 

K —1 signals are detected instead of K. The problem broadens when A is 

considered. Because A has Vandermonde structure, no linear combination of 

direction vectors can result in another true signal direction vector. The first 

column of A is therefore not a legitimate signal direction vector since it is a linear 

combination of the direction vectors for signals s1(t) and s2(t). The result is an 

inconsistency. Although K —1 signals are detected, only K —2 arrival directions 

are estimated. In general, if m of the K signals are coherent, MUSIC will detect 

K - m +1 signals and resolve K - m arrival angles corresponding to the 

incoherent signals [30]. 

Spatial smoothing as described in section 3.2.2.2 will ensure the nonsingularity of 

the source correlation matrix even when some or all of the signals are coherent. 
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Again consider a linear uniform array with a total of N elements. The array is 

divided into overlapping subarrays each consisting of M elements [29]. The first 

subarray consists of elements {1,2'. . .' MI, the second of elements {2,3,. . •,M + 

and so on. There will be a total of L such forward subarrays where 

L=N—M+1. (3-21) 

Let the output of the l' forward subarray be denoted as r((t). Following (3-8) to 

(3-15), 

r(t) = Ir, (t) r (t) ... (t)], l•1 

= A '11s(t) + n1(t), 1 ≤ 1 ≤ L (3-22) 

where AM is the M x K matrix identical to (3-14) with the last N - M rows 

removed, B' denotes the 1h power of the K x K diagonal matrix 

B = diag[e_1( 01 ,ej0t2 ,. . 

and 

n1(t) = [n, (t)n11(t) ... nI+Ml (t)]T . 

Using (3-16), the correlation matrix of the jth subarray is 

R = E[ri'(t)(r(t))] 

(3-23) 

(3-24) 
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= AB1..1S(B 1)H A H + (3-25) 

The forward spatially smoothed correlation matrix Rf is defined as the average 

of all the forward subarray correlation matrices. So, 

R 

= A[ B14S(B'')JA' + cy2l 

= AS./AFI +a2I (3-26) 

where S1 is the forward spatially smoothed signal correlation matrix. If all K 

signals are coherent, then (3-15) can be written as 

s(t)[as(t) a2s1(t) ... as, (t) (3-27) 

where ct, relates the i' signal to s1(t). Assuming that E[ s1 (t)I2] = 1, it can be 

shown that, 

a aH 

=[c 1 Cc •• cx J( ]. (3-28) 

In that case, the forward spatially smoothed signal correlation matrix can be 

written as, 
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where 

- B a aH  (B11)" 

- 

!CCH 
L 

C = [ a Bog B2 a B 1 a ] 
a 1 

0 

=DT. 

0 - -1 e 1'°° eI2"01 •.. - 

a 2 1 e 1'°' eJ 2'1'02 ••• ei(" l)°)2 

cLK 1 e 1'°°< e 2° 

(3-29) 

(3-30) 

The rank of SI is equal to the rank of C which in turn is equal to the rank of T, 

since D is of full rank. Matrix T is a Vandermonde matrix of dimension K x L 

and its rank will be the lesser of K and L. Therefore, T will be of rank K if L ≥ K. 

In that case 5f, also being of rank K, will be nonsingular and R1 given in (3-26) 

will be of the same form as R in (3-16). Consequently, MUSIC may be 

successfully applied even though the signals are all coherent. 

The price paid is the total number of sensors N that are required. From (3-18) it is 

evident that each subarray must have at least K +1 elements. Therefore, 

M ≥ K + 1. The total number of subarrays L, will always be given by 

L=N—M+1. (3-31) 

However, to ensure the nonsingularity of S1 we require that L ≥ K. From this it 
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follows that the total number of elements required is at least 2K. For MUSIC with 

no spatial smoothing, a total of K +1 elements are required. 

The number of elements N can be reduced from 2K to 3K/2 by incorporating 

both forward and backward spatial smoothing. Consider the same array of N 

elements with L backward subarrays. The first backward subarray of size M 

consists of elements {N,N —1,•• •,N - M + 1}, the second consists of 

IN - 1,N - 2, •,N - M} etc. The complex conjugate of the output vector of the l' 

backward subarray is 

r T 

r(t) = (t) r 1 (t) ... r 11 (t)] 

= AMB11 (B_1s(t))* + fi(t), 1:9 1:9 L 

where, AM is identical to that of (3-22), and 

-* * * 

nN_J(t) •.. n* L-1+1 / 

and B is defined in (3-23). 

(3-32) 

(3-33) 

Following a procedure similar to that for forward spatial smoothing, it can be 

shown that the backward spatially smoothed correlation matrix is 

R" = ASbAH + i. (3-34) 
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If all K signals are coherent, then 

S" !EEH 
L 

where 

E=[ 6 BB B' 8 BL-1 } = FT 

with T defined in (3-30) and 

8 1 8 1 8 2 *** 8 K ]T, 

= ae1 ')°'° , k= 1,2,-- -,K.  

The matrix F is the diagonal matrix 

0 

F= 

(3-35) 

(3-36) 

(3-37) 

(3-38) 

and is of full rank. Therefore, if L ≥ K, T will be of rank K making S" 

nonsingular and R' of full rank. So as in the case of forward spatial smoothing, 

MUSIC will be able to resolve K coherent signals so long as the number of 

backward subarrays is at least equal to K. Simulation results demonstrating 

MUSIC performance for coherent signals, with and without forward/backward 

spatial smoothing, are given in [29-31]. 
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When both forward and backward smoothing are used, the forward/backward 

smoothed correlation matrix fZ is defined as 

2 

Using the previously given expressions for R1 and Rb gives 

where 

(3-39) 

R = ASAH + CF21 (340) 

2L 

The matrix G is given by 

where 

(3-41) 

G = [ a B a 112 a BLI a 8 B 8 B2 8 8L-1 

= [DTIFT] = D[TIHT] = DG, (342) 

El 

H= 
82 

0 

_0 

8k' k=1,2,•••,K. 
eLk 

(3-43) 
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If all 8k in (3-43) are equal, the rank of G. will be the lower of K and L. In this 

case nothing has been achieved by backward smoothing since the condition of 

L ≥ K still holds. However, the likelihood of all 8k being equal is very small. If at 

most L of the 8k are equal and 2L ≥ K, then G. will be of rank K and S will be 

nonsingular. Using (3-31) in 2L ≥ K gives 

2N-2M+2≥K (3-44) 

and recalling that M ≥ K +1 yields, 

N≥ -. 
2 

(3-45) 

Hence with forward and backward smoothing the minimum number of elements 

required for complete resolution has been reduced compared to forward or 

backward smoothing alone. 

The smoothed array output correlation matrix for a coherent environment is of 

the same structure as that for a noncoherent environment allowing the use of 

MUSIC. Spatial smoothing works equally well for a mixed signal environment 

consisting of coherent signals and partially correlated signals [29]. 

3.2.4.2 Decorrelation by Array Motion 

Decorrelation of partially correlated or coherent arrivals may also be achieved 

through motion of the receiving array [27]. In the case of a real array, motion is 

advantageous to spatial smoothing as a decorrelation scheme because periodic 
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spacing of the array elements is not required. For a virtual array however, this is 

not significant since the element spacing will be periodic for a constant sampling 

frequency and mobile velocity. 

Consider several signal arrivals all *ith the same carrier frequency, impinging 

on an array which is moving. If each of the signals has a unique AOA, then the 

Doppler shift induced on each signal due to the motion, will also be unique. It 

can be shown [27] that estimating the correlation matrix R by time averaging 

while the array is in motion, ensures the nonsingularity of the signal correlation 

matrix S and hence the full rank of R. If r1 (t) is the output signal of the jthl array 

element and rk (t) is the same for the kth element, then the time averaged 

correlation between these two is written as; 

R Jk = ..5 r1(t)r(t) dt (3-46) 

where 7 is the duration of time over which the averaging is performed. 

To achieve this decorrelation the time averaging must be performed over many 

differential Doppler cycles for each pair of arrivals. The differential Doppler shift 

for a pair of arrivals, say the jt and kt, is 

fk-- 

v(cose1 - cos 9k) 

(3-47) 

where v is the array velocity, A is the carrier wavelength, and 0 denotes AOA. 

The number of differential Doppler cycles is then TfJk. Hence, there is a 
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minimum distance to be travelled for decorrelation to occur. However, it may not 

always be desirable to decorrelate closely spaced arrivals. In the case of 

multipath where the arrivals are expected to be grouped into clusters of closely 

spaced coherent signals, a single AOA for each cluster rather than the AOA for 

each individual signal, may be appropriate. 

The time averaging of (3-46) is continuous whereas temporal smoothing as given 

by (3-3) and (3-4) is discrete. Beyond this difference temporal smoothing of a 

virtual array is identical to time averaging of a real array in motion. Therefore, 

inherent to the concept of the virtual array is the decorrelation effect produced by 

motion. 

3.3 Temporal MUSIC 

Parallel to the spatial problem of estimating AOA is the temporal problem of 

estimating the frequencies of sinusoids. Whereas spatially spread data collected 

by an array is required to solve for AOA, estimating the frequencies of sinusoids 

impinging on a single antenna element requires a time series of data. 

The model used for processing the time series data- is a transversal FIR filter of 

length M [18]. The data matrix is constructed using the covariance method which 

makes no assumptions about the data outside of the data record. Consider the 

time series of data Idl,d21 . .,dN} where d1 occurs before d2, d2 occurs before d3 

and so on. Then with forward and backward smoothing 



57 

D -

dM •.. d1 

dM+l d2 

dN dN +l 

d 

1* 1* 

_1N-d*  aJ - 

(3-48) 

where the smoothing is temporal for a stationary time series. This temporal 

smoothing is somewhat different from temporal smoothing for data collected by 

an array, as described in section 3.2.2.1. Note however that the structure of (3-48) 

is identical to that of (3-5) which defines the data matrix for a virtual array with 

spatial smoothing. Indeed if the virtual array of (3-5) is one dimensional in the 

direction of motion and the time series of (3-48) is, in addition to temporally 

distributed, spatially distributed, the two data matrices are identical. Hence, for 

spatially and temporally separated data, temporal smoothing based on the FIR 

filter model is identical to spatial smoothing. Temporal smoothing as described 

here will therefore differ from temporal smoothing of array collected data in the 

same way as spatial smoothing does (see section 3.2.2.2). 

As with spatial MUSIC, the correlation matrix is estimated from the smoothed 

data matrix. For a data series of length N, filter length M, and smoothing in both 

directions, 

 DHD . 
2(N—(M-1)) 

(3-49) 
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Eigenanalysis of Ik yields M eigenvectors which are divided into the noise and 

signal subspaces. The matrix VN is comprised of the noise space eigenvectors. In 

contrast to the steering vector of (3-1), the temporal form of MUSIC utilizes a 

frequency scanning vector defined as 

f(e)) = 1  e1' e_ibo(M_l) I T F 

—lt≤O)≤lt (3-50) 

where co is angular frequency normalized by the sampling frequency. For those 

values of Co which correspond to the normalized angular frequencies of the 

sinusoids contained in the data, f(o) will be orthogonal to the noise subspace 

spanned by the eigenvectors contained in VN. Hence, the angular frequencies of 

the sinusoids will correspond to peaks in the MUSIC spectrum defined in (2-5) 

with a(e) replaced by f(Co). 

The AOA and frequency estimation problems become related when motion is 

involved. The Doppler spread in frequency due to motion, precipitates a 

relationship between the AOA of an incoming sinusoid and its frequency. This 

relationship may be exploited such that MUSIC applied in the temporal domain 

may be used to estimate AOA. 

For the purpose of locating a mobile, consider a single tone transmitted by a base 

station which due to multipath arrives at the mobile at various arrival angles. If 

the mobile is stationary, the multiple arrivals will all have the same frequency. In 

that case, the temporal form of MUSIC will provide no direction information. If 
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however, the mobile is in motion, the frequency of each arrival will shift due to 

Doppler. The Doppler shift experienced by each arrival is dependent on its AOA. 

As illustrated in Figure 3-5 a signal arriving at 00 with respect to the mobile will 

experience the maximum Doppler shift of V/At, where V is the mobile's velocity 

and ? isthe signal wavelength. A signal arriving from 90° will experience no 

Doppler shift. 

Direction of Mobile Motion 

900 

Figure 3-5 Signals Affected by Doppler Shift 

Due to the fact that the received antenna signal is sampled, any signal processing 

will be concerned with the signal's lowpass equivalent rather than the bandpass 

spectrum. Therefore, applying MUSIC or any other spectral estimation method 

(i.e. Fourier) will yield the Doppler shift of each sinusoid instead of the absolute 

frequency. 

Let 0MusIc be the normalized Doppler shift corresponding to a peak in the 
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MUSIC frequency spectrum. The AOA, °AOA' of the sinusoid corresponding to 

that Doppler shift can be determined from the relation 

2it cos(8 AOA) fsMUSIC (3-51) 

where f is the sampling frequency, and 8AOA is measured as in Figure 3-5. 

The cosine function in (3-51) again results in an ambiguity. An arrival from say 

20° will experience the same Doppler shift as a signal from 340°. As in the case of 

spatial MUSIC, two physical antennas will eliminate the ambiguity provided the 

axis connecting the two antennas is orthogonal to the direction of motion. 

Figure 3-6 shows two moving antennas and a planar wavefront arriving from 8. 

If the antennas are separated by d wavelengths, then the phase difference, J12 in 

radians, between the signals at the two antennas is related to 8 by 

cos(0) = (3-52) 
2ird 

In this case there is also an ambiguity since the phase difference will be the same 

for 8 and -8. Note however that the angular reference in Figure 3-6 is 90° from 

the reference in Figure 3-5. Therefore only one of the two possible solutions for 9 

using (3-52) will overlap with one of the solutions using (3-51). The ambiguity is 

thus eliminated. 
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Direction of Antenna Motion 

.  
Antenna 1 

Planar Wavefront 

d 

Figure 3-6 Planar Wavefront Approaching Two Antennas 

The signal amplitude and phase at each antenna in Figure 3-6 can be determined 

if the signal frequency is known. Consider K sinusoids impinging on one of the 

two moving antennas of Figure 3-6. Although the sinusoids all originate from a 

single transmitted tone, their Doppler shifts will all be unique given that their 

arrival angles are unique. For N data samples {d11 d2,. ,dN} collected at a 

moving antenna, the following set of equations hold; 

eJ°1 e1°2 ••• - a1e11 

e12°'l e12'°2 ... a2e12 

eJJ(01 e1' 2 e1N(0K __aKejOK - 

d2 

dN 

(3-53) 

where coi is the Doppler frequency, a1 the amplitude, and Oj the phase of the 

sinusoid. 
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In summary, AOA may be found using Temporal MUSIC and two moving 

antennas with the following procedure: 

1) Calculate the Doppler frequency for each arrival using temporal MUSIC 

and the data time series for one antenna. 

2) Use (3-51) to calculate the pair of possible arrival angles e and -e, for 
each arrival. 

3) Repeat 1) for the second antenna. 

4) Use the Doppler frequencies found in 1) and 3) in (3-53) to find the 

amplitude and phase of each arrival at each antenna. 

5) Calculate the difference in phase, between the two antennas for each 

arrival. 

6) Use the phase differences in (3-52) to calculate another pair of arrival 

angles for each arrival. 

7) For each arrival find the common angle between the pair found in 2) 

and the pair found in 6). 
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CHAPTER 4 

TECHNIQUE #1- PETRA: RESULTS & ANALYSIS 

4.1 Introduction 

In a multipath environment, it is the AOA of the LOS signal which allows one to 

triangulate and thereby locate. Therefore, in addition to determining the AOA of 

the numerous arrivals impinging on the antenna array, one must also determine 

which of the arrivals is LOS. Towards this end, PETRA (PEak TRacking 

Algorithm) was developed. 

This chapter begins with a description of the three cluster signal environment. 

This is followed by a more detailed description of PETRA, as well the computer 

simulation results and an analysis of these results. 

4.2 Signal Environment 

The IS-54 cellular standard [13] models the mobile cellular radio channel as two 

independently fading, equal power, Rayleigh channels. The assumed time delay 

between the two channels is between 0 and 1 symbol intervals, where one 

symbol interval is 41.6 J.ts. These two channels can be viewed as two clusters of 

signals separated by time of arrival. 

The IS-54 standard makes no assumptions regarding the direction of arrival of 

the two clusters or the paths travelled. It is reasonable to assume however that 

the two clusters are distinguished not only by time of arrival but also by AOA. In 

this thesis we assume that the first cluster to arrive is composed of signals which 

approximately follow a direct or LOS path. The signals in this cluster would 
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therefore arrive at nearly the same time and from approximately the same 

direction. In the same way we assume that the second cluster consists of signals 

which arrive at a later time and follow a reflected or more indirect path. 

It follows that two reasonable assumptions may be made. Firstly, those signals 

following the reflected path will travel farther and lose power at the reflection. It 

is therefore probable that the second cluster will be of lesser power than the first. 

Secondly, signals are more likely to survive a direct path than a reflected path. 

Hence the LOS cluster will contain more arrivals than the reflected cluster. 

The signal environment assumed, for the channel between any one base station 

and a mobile, is as illustrated in Figure 4-1. Three clusters are assumed instead of 

two since in an urban environment there are many potential reflectors. The first 

cluster of signals to arrive corresponds to the LOS path. It contains more arrivals 

Figure 4-1 Signal Cluster Environment 
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and has greater power than the other clusters. The second and third clusters to 

arrive contain progressively fewer arrivals and are of lesser power. 

Table 4-1 summarizes the characteristics of the three clusters used in the 

computer simulations. The mean power is the average power of the individual 

arrivals which make up each cluster. The total power is the sum of the arrival 

powers in each cluster. Time spread refers to the time separation between the 

first and last arrival in a cluster. The time delay is the time span between the 

beginning of the impulse response and the first arrival in the cluster. Note that 

the time delay of the 3rd cluster is much shorter than the full symbol interval of 

41.6 p.s. Because the definable impulse response of the simulated data is only 7.1 

p.s in length, a time separation between clusters of one symbol interval is not 

possible. 

Table 4-1 Cluster Characteristics 

Cluster No. of Arrivals Mean Power Total Power Time Spread Time Delay 

LOS 13 -15.9 dBW -4.8 dBW 1.9 p.s 0 

2 6 -18.2 dBW -10.4 dBW 2.1 p.s 1.9 p.s 

3 4 -20.5 dBW -14.5 dBW 0.9 p.s 4.44s 

All simulated data used in this chapter as well as chapter 5, was generated by the 

modified SURF (Simulation of the Urban Radio Propagation Channel) software 

package [32]. Hasherni developed SURF using actual measurements in the 

mobile cellular band, in order to simulate an urban radio propagation channel. 
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The model used is characterized by the path amplitudes, arrival times, phases, 

and angles of arrival. Fattouche et al. [32], modified the package so that it 

simulates short term fading in addition to long term fading. 

4.3 PETRA and Spatial MUSIC with Temporal Smoothing 

4.3.1 Introduction 

PETRA was developed to determine the LOS cluster in a three cluster 

environment by tracking the dominant peak in the MUSIC spectrum as the 

number of allocated signal eigenvalues varies from one to three. Recall that the 

eigenvalues obtained from the eigenanalysis of the data correlation matrix are 

divided into those attributable to noise and those attributable to signals. The 

corresponding eigenvectors then span the noise and signal spaces respectively. 

The user of MUSIC has the freedom to allocate any number of the eigenvalues to 

signals with the remaining allocated to noise. Allocating only the largest 

eigenvalue to the signal side, is equivalent to limiting MUSIC to finding only one 

signal. If the two largest eigenvalues are attributed to signals, then MUSIC is able 

to resolve two signals, and so on. 

PETRA employs spatial MUSIC with temporal smoothing. This form of MUSIC 

was chosen for no other reason than it was the first studied, and implemented in 

code, by the author. Temporal smoothing based on array data is used as opposed 

to temporal smoothing based on the FIR filter model. 
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4.3.2 Basic Assumptions 

PETRA is based on the assumption that when the signal space is defined by only 

one eigenvector, the dominant peak in the MUSIC spectrum will correspond to 

that signal (or cluster) with the highest power. If the LOS cluster is of the highest 

power, then the dominant MUSIC peak should estimate its AOA. 

This assumption is based on the results of two sets of simple tests. In the first set, 

a two ray model was simulated. One signal arrived from 600 and the other from 

2000. If two signal eigenvalues were allocated, the peak at 60° in the resulting 

MUSIC spectrum was of higher amplitude than the peak at 200°. This was true 

regardless of which signal arrived first or which was of higher power. If 

however, only one signal eigenvalue was allocated, the dominant peak in the 

MUSIC spectrum corresponded to the signal of higher power. The results of this 

test are shown in Table 4-2. 

Table 4-2 Two Ray Model Results 

1st Arrival 2nd Arrival 
1st Arrival 
Amplitude 

2nd Arrival 
Amplitude 

Dominant 
Peak 

2000 60° 2.5 1.0 192° 

200° 60° 1.0 2.5 54.5° 

60° 200° 1.0 2.5 192° 

600 200° 2.5 1.0 54.5° 

The second set of tests used a three ray model. With three rays there are six 

possible combinations of signal power order. In one particular test, for one 
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allocated signal eigenvalue, the dominant MUSIC peak corresponded to the 

cluster of highest power in four out of the six combinations. In another test, the 

association occurred in three out of the six combinations. Therefore, in a more 

complex signal environment the assumption does not prove to be consistently 

valid. However, a majority precedence does exist. 

4.3.3 The PETRA Process 

The process of tracking the dominant peak for 1, 2, and 3 signal eigenvalues is as 

follows: 

1) Find the eigenvalues and corresponding eigenvectors of the data 

correlation matrix; 

2) Define the signal subspace as that space spanned by the eigenvector 

corresponding to the eigenvalue of highest magnitude; the remaining 

eigenvectors span the noise subspace; 

3) Generate the MUSIC spectrum for the partition specified in 2) and note 

the AOA of the dominant peak; 

4) Repartition the eigenvalues and eigenvectors found in 1) such that the 

two highest magnitude eigenvalues are attributed to signals and the 

remaining to noise; 

5) Generate another MUSIC spectrum based on the partition in 4) and 

note the AOA of the peak closest to the AOA found in 3); 

6) Repeat step 4) with three signal eigenvalues; 

7) Generate another MUSIC spectrum based on the partition in 6); 

8) The AOA of the peak closest to the AOA determined in 5) will be the 

estimate of the AOA of the LOS cluster. 
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4.3.4 Testing the PETRA Assumption with Clusters 

Three clusters of varying widths were used as a first step in determining how 

well PETRA performs in a cluster environment. The AOA of the LOS, 2nd and 

3rd clusters were 2400, 300°, and 90° respectively. The cluster characteristics were 

as shown in Table 4-1. A 2 x 2 array, with 50 data samples per element and a 

spacing of 200 data samples between virtual elements was used. The 2 physical 

antennas were separated by one half of a wavelength. The speed of the mobile 

was 50 km/hr. A more detailed explanation for the choice of some of these 

parameters follows in the next section. 

The angular width of the clusters was varied from 2° to 80° (all 3 clusters always 

having the same width) and PETRA was run on 10 consecutive sets of data for 

each cluster width. Thus there are 10 trials for each cluster width. For each trial, 
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the dominant MUSIC peak for 1 signal eigenvalue and the corresponding peaks 

for 2 and 3 signal eigenvalues were recorded. The results for the dominant peak 

for 1 signal eigenvalue are shown in Figure 4-2. 

The bold horizontal line in Figure 4-2 corresponds to the true AOA of the LOS 

cluster at 2400 whereas the dots correspond to the dominant MUSIC peaks for the 

10 trials at each cluster width. Clearly illustrated is the fact that the majority of 

dominant peaks correspond to the LOS cluster at 240°. Dots in the vicinity of 300° 

and 90° demonstrate that occasionally the other clusters will dominate. 

Figure 4-3 shows the results for 2 and 3 signal eigenvalues. The average of the 10 

trials at each cluster width has been shown instead of the individual results. 
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Recall that for 1 signal eigenvalue, the AOA of the dominant peak is of interest. 

For 2 and 3 signal eigenvalues however, the peak closest in AOA to the estimate 

made with 1 and 2 signal eigenvalues respectively, is the LOS estimate. Figure 4-

3 clearly demonstrates two points. First, the LOS AOA estimate becomes more 

accurate as the number of signal eigenvalues increases; second, as the width of 

the clusters increases, the LOS estimates tend to drift away from the true value of 

2400. 

The results in Figure 4-2 and 4-3 demonstrate that PETRA must be run over 

several data sets in order to be reliable and accurate. Since the LOS cluster is not 

always properly identified, enough PETRA estimates must be generated to 

obtain a clear LOS majority. It was also determined that the accuracy of the 

individual PETRA estimates is very poor. If, however, many LOS PETRA 

estimates are averaged, the resulting error is much smaller. 

4.3.5 Simulation Parameters for Statistical Tests 

To obtain a more statistical appreciation for the performance of PETRA, 

simulations were conducted on a number of different cluster sets. Table 4-3 

summarizes the parameters used in these computer simulations. 

The number of physical antennas was chosen to be two since this is the minimum 

number required and hence the most practical and cost efficient. The vehicle 

speed was chosen to be that typical of urban speed limits. The frequency of 

transmission is located within the cellular band. 
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Table 4-3 Simulation Parameters for PETRA 

Number of physical antennas 2 

Array size 2 x 2 

Physical antenna spacing 0.5 2 

Virtual antenna spacing 0.5 ? 

Number of data samples per element 300 

Vehicle speed 50 km/hr 

Frequency 840 MHz 

The other parameters in Table 4-3 were chosen according to tests designed to 

evaluate their effect on the performance of spatial MUSIC with temporal 

smoothing. The signal environment for the tests was as given in Table 4-1. The 

optimal spacing between the physical antennas, as well as the virtual antennas, 

was found to be in the range 0.4 X. to 0.5 X. Using as many data samples per 

element as possible, lowered the variance of the LOS solutions. For a sampling 

interval of 41.6 p.s per sample (data) point and the parameters given in Table 4-3, 

the virtual elements are separated by 309 data points. Therefore, 300 samples per 

element will use almost all of the available data. 

Regarding array size, a 2 x 2 array gave comparable results to a 2 x 5 array for 

the same amount of total data used. For example, with 10,000 available data 

points and 200 data samples per array element, a total of 10 data sets were 

available to the 2 x 5 array and 25 data sets to the 2 x 2 array. For the 2 x 2 array, 
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23 of the 25 data sets yielded a LOS solution and the mean of these solutions was 

5.5° in error. In the case of the 2 x 5 array, 9 LOS solutions were obtained in 10 

trials and the LOS mean was 4° in error. 

There are however, two advantages to using a smaller array: processing time and 

efficient data use. The data processing for the 2 x 2 array ran almost twice as fast 

as that of the 2 x 5 array. With regards to data efficiency, if the amount of 

available data is fixed, more data samples per element are available for a 2 x 2 

array than for a 2 x 5 array. If instead the number of data samples per element is 

fixed, the 2 x 2 array will require less data and therefore less distance travelled. 

4.3.6 Simulation Results for Statistical Tests 

Simulations were run for 15 different sets of clusters. The cluster angles were 

randomly selected and the angular width of all clusters was 50° (± 25°). For each 

cluster set, PETRA estimated the AOA of the LOS cluster for 200 consecutive 

data sets. This required a total of 123,600 data points which cover a distance of 

200 ? or 71.4 metres at the given frequency. At 50 km/hr, this distance is 

travelled in 5.1 seconds. A total of 200 simulations was considered adequate to 

give a LOS majority and to obtain a reasonably accurate LOS AOA estimate. 

The results of these simulations are given in Table 4-4. The cluster angles listed in 

the second column for each particular set, are listed in the order of arrival. Hence, 

the first angle is the true LOS cluster AOA. 
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Table 4-4 Simulation Results for PETRA 

user ges of LOS 

Solutions 

Mean of 
LOS 

solutions 

Variance of 
LOS 

solutions 

LOS 

Error 

1 2400 300° 90° 161/200 236.6° 170.1 (0)2 34 

2 120° 40° 200° 130/200 122.8° 286.9 (0)2 2.8° 

3 325° 175° 115° 151/200 323.4° 361.1 (o)2 1.60 

4 180° 240° 270° 129/200 174.2° 659.8 (0)' 5.80 

5 328° 271° 295° 108/200 345.2° 1920.5 (0)2 17.2° 

6 19° 174° 321° 169/200 19.0° 164.8(0)2 0.02° 

7 250° 275° 79° 124/200 238.0° 276.3 (0)2 12.0° 

8 226° 84° 137° 159/200 239.4° 480.8 (0)2 13.4° 

9 331° 67°"243° 108/200 329.7° 115.2 (0)2 1.4° 

10 319° 300° 45° 90/200 326.7° 131.2 (0)2 77 

11 86° 352° 158° 100/200 91.9° 152.9 (0)2 59 

12 206° 322° 138° 119/200 193.0° 189.1 (o)2 12.9° 

13 180° 235° 0° 146/200 180.2° 72.0 (0)2 0.2° 

14 59° 339° 320° 112/200 58.8° 322.9 (0)2 0.2° 

15 216° 7° 278° 153/200 215.5° 323.0 (0)2 0.5° 

Average - 131/200 - 
375.1 (o)2 57 

The average difference between the LOS cluster AOA estimated by PETRA over 

200 simulations and the true AOA specified in the Hashemi model was 5.7° (LOS 

Error). For sets 5, 7, 8, and 12, the LOS error was greater than 10°. If these 4 sets 

are disregarded, the average LOS error becomes 2.7°. 
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4.3.7 Analysis of Results 

Set 5 had the highest LOS error. Upon closer inspection of the 200 trial solutions, 

the reason became obvious. The AOA solution for each of the 200 trials had to be 

classified as to which of the three clusters it corresponded to. This classification 

was done according to boundaries drawn halfway between the actual cluster 

angles. For example, in set 5 any PETRA solution which fell in the range 311.5° - 

119.5° was classified as an AOA estimate of the 328° cluster. If the solutions 

which fall into this range all lie close to 328°, this method is successful. However, 

as indicated by the very large variance, some solutions in this range, were not at 

all close to 328°, but instead congregated around other angles in this range. The 

mean AOA solution for 16 of the 200 trials was 87° and for another 13 it was 184°. 

The mean solution of 87° falls into the range corresponding to the LOS cluster 

and will obviously introduce a large amount of error. If the 16 solutions with 

mean of 87° are removed from the 108 LOS solutions, the new mean of the 

remaining 92 solutions is only 0.5° in error. 

Sets 7, 8, and 12 also had LOS errors far higher than the average. However, the 

LOS estimate variance for these three sets was close to, and in two cases even less 

than the average. Therefore, the reason for their high LOS error is different from 

that of set 5. In set 7, the span of only 25° between the LOS cluster and 2nd 

cluster, may be the cause. For set 8 there is no apparent reason; the LOS estimates 

are just poor. In the case of set 12, a histogram of the 200 trial solutions clearly 

shows that MUSIC merged the LOS cluster with the third cluster. This resulted in 

numerous solutions midway between the two clusters. 
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4.3.8 Critique of PETRA 

A total of 200 trials were performed in order to ensure a LOS estimate majority as 

well as good accuracy. In doing so,it was found that on the average, 66% of the 

solutions produced by PETRA correspond to the LOS cluster. Therefore, as 

expected, PETRA must run on several sets of data. The number of data sets need 

not be as high as 200, but must be large enough to produce a clear majority of 

LOS solutions. 

The number of data sets required to give a reliable LOS AOA is also dependent 

on the way the non-LOS solutions (those solutions which correspond to the 2nd 

and 3rd clusters) are distributed amongst the LOS solutions. It was found that 

the non-LOS solutions often occurred in groups of adjacent trials with the largest 

group being 9 (sets 4 and 11) and the average being 6. It was also found that 

blocks of data would yield certain solutions no matter how fine or coarse the 

block was divided into data sets. The number of data sets would have to be more 

than twice the largest block of non-LOS solutions to ensure a LOS majority. 

As previously mentioned, the accuracy of the individual PETRA LOS AOA 

estimates is poor. The RtVIS error for the LOS solutions, averaged over all 15 

cluster sets, is 18.4°. This is not sufficient to obtain the positional accuracy 

required. A far more accurate LOS AOA estimate is obtained if a number of LOS 

PETRA solutions are averaged (5.7°). Although less than 200 PETRA solutions 

may give a LOS majority, the accuracy of the LOS AOA estimate will most likely 

suffer with fewer solutions to average over. The requirement for a large number 

of solutions to obtain an accurate estimate is PETRA's greatest disadvantage. 
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Another drawback of PETRA is the processing time. Although the eigenanalysis 

of the data correlation matrix is performed only once per data set, the MUSIC 

spectrum is generated three times in order to ensure that the dominant peak is 

accurately tracked. This is compounded by the requirement of several data sets, 

in terms of processing time and the time required to collect the necessary data. 

The poor accuracy in set 5 was due to the method of classifying the AOA 

solutions. This method is not practical since it requires apriori knowledge of the 

AOA of each cluster. A more practical method is to use a sliding window. The 

concept is to window the sorted solutions such that the largest number of 

solutions fall into a window of smallest possible width. 

A sliding window was tested on the 200 trials of set 1. The solutions were first 

sorted into ascending order. For the purpose of this exercise alone, a variable 

width window, centered at the actual LOS cluster AOA, was then used to 

determine the saturation window width. The saturation window width is that 

width, which when increased, does not result in a significant increase in the 

number of window contents. 

For the data of set 1, the saturation width was found to be approximately 30°. 

The 30° window from 222° - 252° contained the maximum number estimates of 

132. The mean of the solutions contained in this window is 232.8°. Using this 

figure as the LOS AOA estimate gives a large error of 7.2°. On the other hand, the 

centre of the window is 237° which is only 3° different from the true LOS AOA. 

A sliding window is therefore a promising technique for estimating the LOS 

AOA from a series of PETRA solutions. 
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4.3.9 Effect of Mobile Speed 

The effect of the distance between data samples was observed by repeating sets 1 

through 4 of Table 4-4 at 5 km/hr instead of 50 km/hr. With the data time 

interval held constant at 41.6 p.s, the data samples are 10 times closer than when 

the speed is 50 km/hr. As a result, the virtual elements are separated by 0.05 ? 

instead of 0.5 X. Table 4-5 compares the results at 5 km/hr with the 

corresponding results for 50 km/hr from Table 4-4. 

Table 4-5 Comparison of 50 km/hr and 5 km/hr Results 

Set 
No. of LOS 

Solutions in 200 
50 / 5 (km/hr) 

Mean of LOS 
Solutions 

50 / 5 (km/Kr) 

Variance of LOS 
Solutions 

50 / 5 (km/hr) 

LOS Error 

50 / 5 (km/hr) 

1 161 /186 236.6° / 233.6° 170.1(0)2 / 95.4 (0)' 3.40/6.40 

2 130 /112 122.8° / 128.7° 286.9(0)2 /322.6 (0)2  2.80 /1.30 

3 151 /111 323.4° / 313.5° 361.1(0)2 /779.4 (0)2 
 1.60/ 11.5° 

4 129 /149 174.2° / 173.5° 659.8(0)2 /990.6 (0)2  5.80/6.50 

Average 143/140 - 370 (° / 3.40/6.40 

The results of Table 4-5 indicate that spatial distance between data points has a 

negligible effect on the number of LOS solutions but a significant effect on the 

accuracy of these solutions. This decrease in accuracy may be attributed to the 

smaller distance between virtual elements rather than the smaller distance 

between data samples allotted to each individual element. The performance of 

any resolving type of algorithm will suffer as the interelement spacing of the 

antenna array decreases. 
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4.3.10 Effect of Noise 

To determine the effect of SNR on the performance of MUSIC and PETRA, white 

Gaussian noise was added to the data produced by Hashemfs model. The 

powers of all 23 arrivals were summed together to calculate the SNR. As a result, 

the SNR figures are pessimistic since only the arrivals in the LOS cluster are of 

concern. 

Set 4 of Table 4-4, was chosen for noise tests since the results for that set are very 

close to the average for the 15 sets. A total of 200 trials were run for each value of 

SNR tested. The results are shown in Figure 4-4. 
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In Figure 4-4, the thin solid line corresponds to the average of the LOS solutions 

given by PETRA. Each of the 200 solutions was again classified by the method 

requiring apriori knowledge of the cluster angles as described in section 4.3.7. 

The bold solid line shows the true AOA of the LOS cluster, 180°. Both of the solid 

lines are referenced to the left-hand vertical axis. Referenced to the right-hand 

vertical axis, the dashed line is a measure of the number of LOS solutions per 200 

trials. 

Figure 4-4 illustrates two important points. First, the accuracy of the LOS 

estimate, given by PETRA, does not begin to deteriorate significantly until the 

SNR drops below 0 dB. This demonstrates the robustness of MUSIC when the 

noise power is comparable to the signal power. Second, there is a significant 

performance improvement as the SNR drops to 0 dB. Both the number of LOS 

solutions per 200 trials, and the accuracy of the mean of these solutions increase 

as SNR drops from approximately 30 dB to 10 dB. Recall from Table 4-1 that the 

second and third clusters are of lesser power than the LOS cluster. As the noise 

power increases, the second and third clusters become overwhelmed by the 

noise, leaving only the LOS cluster above the noise floor. Hence it becomes more 

likely that the PETRA solution will correspond to the LOS cluster since there is 

only one cluster to choose from. Accordingly, the accuracy of the LOS estimates 

will also increase since there are no other clusters to skew or affect the estimate. 
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CHAPTER 5 

TECHNIQUES #2 & #3: RESULTS & ANALYSIS 

5.1 Introduction 

In this chapter, two additional techniques to identify the LOS cluster and 

estimate its AOA, in a three cluster environment, are considered. If PETRA is 

called technique #1, then the two approaches considered in this chapter are 

named technique #2 and technique #3. The primary objective in developing 

techniques #2 and #3 is to achieve the required AOA accuracy without the need 

for a large number of estimates to average over. 

Technique #2 uses spatial MUSIC with forward and backward spatial smoothing. 

The LOS cluster is identified by clustering individual arrivals and choosing that 

group with the most arrivals. Technique #3 is based on temporal MUSIC. Three 

signals corresponding to the three clusters are resolved and the signal with the 

highest amplitude is chosen as LOS. 

Simulations are carried out for both techniques using the same three cluster 

signal environment described in section 4.2. Techniques #2 and #3 are first 

described in more detail and their simulation results presented separately. This is 

followed by a comparison of the major results for PETRA and techniques #2 and 

#3. 

The chapter concludes with an investigation of temporal MUSIC for the purpose 

of identifying the LOS arrival in a single cluster environment. 
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5.2 Technique #2: Resolving for Individual Arrivals 

5.2.1 Introduction 

Whereas PETRA only attempts to resolve for clusters, technique #2 is based on 

the ability of MUSIC to resolve for as many of the individual arrivals which 

make up the clusters as possible. Identification of the LOS cluster is based on one 

of the assumptions stated in section 4.2; the LOS cluster contains more arrivals 

than any other cluster. If the individual arrivals in the MUSIC spectrum can be 

grouped into clusters, the cluster with the most arrivals is chosen as LOS and the 

AOA of that cluster is estimated by the mean of the arrival angles in that cluster. 

If the assumption regarding the relative number of arrivals in the clusters is true, 

and MUSIC is able to resolve for all of the arrivals, this technique would be fool 

proof. However, a number of factors exist which prohibit this. The subarray size 

must be at least one greater than the number of arrivals to be resolved for. Hence, 

depending on the number of arrivals, practical data limitations may exist. 

Perhaps of greater significance is the ability of MUSIC to resolve for numerous 

arrivals. General experience has shown that there is a limit. Spatial MUSIC as 

implemented by the author was never able to accurately resolve for more than 

approximately 12 signals no matter how far apart the signals were in terms of 

AOA. Of course, signals which are very close (approximately 2° and less) may 

not be distinguishable. 

The above drawbacks proved not to be as serious as originally thought. 

Resolving for fewer than the total number of arrivals still gives an indication of 

which cluster contains more signals. Consider the MUSIC spectrum shown in 



83 

Figure 5-1. Three clusters exist as defined in section 4.2. The three clusters are 

each 200 (±10°) wide and are centred at 240°, 300°, and 90° in order of time of 

arrival. The 240° cluster is LOS and therefore contains more arrivals than the 

other two clusters. The spectrum was obtained from simulated data for two 

antennas separated by 0.5 ? and moving at 50 km/hr. The antennas were 

sampled every half wavelength (17.9 cm at 840 MHz), a total of 18 times. The 

subarrays were of size 2 x 9 and MUSIC was asked to resolve for 12 arrivals. 
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Figure 5-1 Resolving Individual Arrivals with Forward and 

Backward Smoothing 

Clearly seen in Figure 5-1 is that only 9 arrivals of the 23 present are resolved (a 

maximum of 12 are resolvable since that is all that was asked for). However, it is 

obvious that 3 clusters exist and that the cluster at 240° contains more arrivals. 
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Therefore it is not necessary to resolve all of the existing arrivals in order to 

identify the LOS cluster. 

5.2.2 The Process 

Unfortunately, not all clusters are as clearly segregated as those in Figure 5-1. 

Depending on distance between the clusters in terms of AOA, grouping arrivals 

is a potentially difficult process. When two clusters are close, the arrivals in the 

spectrum may be such that it is impossible to know that two clusters exist or 

where one ends and the other begins. This creates a further problem; if the 

second and third clusters are so close that they are indistinguishable, the total 

number of arrivals in the combined cluster may outnumber the arrivals in the 

true LOS cluster. As a result an error will be made in LOS cluster identification. 

A sophisticated windowing technique, which takes into account numerous 

factors, is required for grouping the arrivals in the spectrum. Due to time 

constraints it was not possible to incorporate such a technique for the results 

presented. The grouping of the arrivals was therefore done "manually". This 

approach is of course not entirely objective. It does, however, suffice to give an 

indication of the performance of technique #2 should a sophisticated, software 

implemented, grouping process be used. 

A number of factors were considered when grouping the arrivals. For spectrums 

such as Figure 5-1 the clusters are obvious. If the clusters were not as obvious, 

boundaries halfway between the true cluster angles were used. This required 

apriori knowledge of the cluster angles and as a result is certainly not practical. 

The distance, in terms of AOA, between adjacent peaks in the spectrum is an 
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important factor. The primary question is how close must arrivals be in order to 

be considered as part of the same cluster? Two criteria were used to answer this 

question. First, the relative heights of the peaks was considered. In Figure 5-1, for 

example, the small peak at 265° is not considered to be part of the 2400 or 300° 

clusters. A threshold of 0 dB was used to eliminate small spurious peaks. 

Secondly, 20° was used as a round number for the maximum distance between 

arrivals of the same cluster. It is expected that a considerable amount of work 

would be required to investigate the nature of typical MUSIC spectrums in order 

to develop a suitable grouping technique. 

5.2.3 Simulation Parameters 

The cluster sets used to test technique #2 are identical to those used to test 

PETRA. The simulation parameters which determine the data matrix differ 

however and are summarized in Table 5-1. 

Table 5-1 Simulation Parameters for Technique #2 

Number of physical antennas 2 

Array size 2 x 24 

Subarray size 2 x 17 

Physical antenna spacing 0.5 ? 

Virtual antenna spacing 0.32 ? 

Signal subspace dimension 10 

Vehicle speed 50 km/hr 

Frequency  840 MHz 
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The vehicle speed, frequency of transmission, number of physical antennas and 

their separation are the same as for the PETRA simulations. The most significant 

difference is the form of smoothing used. The version of spatial MUSIC used in 

PETRA, employed temporal smoothing based on snapshots of data from an 

array. MUSIC as used in technique #2 uses forward and backward spatial 

smoothing. As previously described, the two forms of smoothing, though similar 

for spatially and temporally separated data, differ with regards to the extent of 

smoothing they introduce. Each element in the 2 x 24 array of Table 5-1 has only 

one data sample as opposed to the 300 samples per element used in the temporal 

smoothing of technique #1. 

Twenty-four virtual elements were chosen such that either physical antenna 

could provide enough data to stand alone. Tests to determine the optimum 

subarray size confirm linear prediction theory which states that the prediction 

order (subarray size) be 0.75 of the number of array elements [18]. Signal 

subspace dimension refers to the number of eigenvectors spanning the signal 

subspace or equivalently, the number of signals MUSIC is asked to resolve. The 

value 10 is sufficient to identify the LOS cluster. It also satisfies the equations 

which relate the number of signals to the subarray size as well as to the total 

number of array elements required for forward and backward spatial smoothing 

(see section 3.2.4.1). Tests also determined.that a virtual element spacing greater 

than 0.32 X gained nothing and a spacing less than 0.32 X reduced resolution. 

Although 24 virtual elements per physical antenna are more than enough to 

solve for 10 signals using one direction of smoothing, it was found that 

smoothing in both directions is advantageous. The MUSIC spectrum in Figure 5-
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1 was created using both forward and backward spatial smoothing. The 

spectrum of Figure 5-2 was generated in an identical manner except that only 

forward smoothing was used. For the purpose of clustering, Figure 5-1 is clearly 

superior to Figure 5-2. In general, it was found that when smoothing in both 

directions was used, the spectrums were smoother and more representative of 

the cluster nature of the signal environment. Therefore, both forward and 

backward smoothing are used. 
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Figure 5-2 Resolving Individual Arrivals with Forward Smoothing Only 

5.2.4 Simulation Results 

For each of the 15 cluster sets, 20 simulations were run. The distance travelled to 

collect 24 data points spaced by 0.32 A. with a sampling rate of 41.6 ps/sample, is 

2.67 metres (7.5 A.). Therefore, enough data is collected for 20 simulations in 55.6 
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metres. This distance is covered in 4 seconds at 50 km/hr. The simulation results 

are shown in Table 5-2. The cluster angles listed in the second column for each 

particular set, are listed in the order of arrival. Consequently, the first angle is the 

true LOS cluster AOA. 

Table 5-2 Simulation Results for Technique #2 

Set Cluster Angles I No. of 
LOS 

Solutions 

Percent 

by Peak 

Count 

Percent by 

Peak 

Magnitude 

RMS LOS Error 

with respect to: 

centre average 

1 240° 300° 90° 19/20 84.2% 15.8% 4.5° 5.0° 

2 120° 40° 200° 16/20 81.3% 18.7% 2.9° 3.0° 

3 325° 175° 115° 17/20 76.5% 23,5% 4.1° 5.4° 

4 180° 240° 270° 0/20 - - - - 

5 328° 271° 295° 3/20 66.7% 33.3% 1.9° 4.0° 

6 19° 174° 321° 11/20 63.6% 36.4% 5.2° 6.2° 

7 250° 275° 79° 5/20 20% 80% 5.2° 4.1° 

8 226° 84° 137° 16/20 93.8% 6.2% 19.5° 11.4° 

9 331° 67° 243° 7/20 57.1% 42.9% 2.8° 3.9° 

10 319° 300° 45° 20/20 100% 0% 13.2° 13.8° 

11 86° 352° 158° 19/20 94.7% 53% 36° 29° 

12 206° 322° 138° 1/20 100% 0% 0.5° 7.3° 

13 180° 235° 0° 0/20 - - - - 

14 59° 339° 320° 18/20 61.1% 38.9% 5.0° 5.9° 

15 216° 70 2780 20/20 80% 20% 41° 36° 

Mean - 11.5/20 75.3% 24.7% 5.6° 5.9° 
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The "No. of LOS solutions" refers to the number of simulations out of 20 in 

which the cluster chosen as LOS was indeed the true LOS cluster. This number is 

further broken down in the next two columns of Table 5-2. In the event that two 

clusters had an equal number of arrivals, the magnitude of the MUSIC peaks 

were used to make the decision. In such a case, the cluster with the highest 

average magnitude of peaks was chosen as LOS. Hence, "Percent by Peak Count" 

refers to the percentage of LOS solutions which were chosen because that cluster 

contained the most peaks. "Percent by Peak Magnitude" corresponds to the cases 

in which there was a tie and the cluster with the highest average peak magnitude 

was chosen. Take set 1 as an example. In 19 out of the 20 simulations, the cluster 

chosen as LOS was indeed the LOS cluster. In 16 out of those 19 simulations 

(84.2%), the cluster was chosen because it contained the most arrivals. In the 

other 3 of the 19 simulations (15.8%), there was a tie and the correct cluster was 

chosen because of peak magnitude. 

The LOS cluster AOA was estimated by averaging the AOA of each of the peaks 

(arrivals) in the correctly identified LOS cluster. The RMS error of these estimates 

was then found with respect to the spatial centre of the Hashemi LOS cluster 

(second last column of Table 5-2) as well as the average arrival angle of the 

Hashenii LOS cluster (last column). 

5.2.5 Analysis of Results 

The true LOS cluster was identified by a slim majority of 57.5%. For 5 of the 15 

cluster sets, the number of correct identifications was significantly less than 50%. 

In the case of set 4, the LOS cluster was never correctly identified because the 

240° and 270° are close enough that they appear as one. As a result, their 
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combined peaks always outnumbered those of the 1800 cluster. For sets 12 and 13 

there is no apparent reason for the dismal success rate. In both cases the peak 

count of the second cluster outnumbered the peak count of the LOS cluster, two 

to one. Two or more of the clusters in sets 5 and 7 were sufficiently close that it 

was very difficult to distinguish between clusters. As a result, errors in the 

grouping process are likely to be numerous. 

Of the solutions that correctly identified the LOS cluster, a sizable majority 

(75.3%) were so reached by peak count as opposed to relative peak magnitude. 

Not appearing in Table 5-2 is the number of correct solutions arrived at by peak 

count as a percentage of the total number of simulations. On the average, for 46% 

of the simulations, the LOS cluster was correctly identified by peak count. 

Breaking ties with relative peak magnitude increases the success rate to 57.5%. 

However, since the height of a peak is not an indicator of the power of the signal 

it represents, this process is questionable. 

The average accuracy of the AOA estimate was 5.6° RMS. For sets 8 and 10 the 

error was much larger. Again the small angular separation between clusters is to 

blame in the case of set 10. The 319° and 300° clusters appear as one and the 

effect of the 300° cluster is to skew the AOA estimate down. For set 8, spurious 

peaks close enough to the LOS cluster that they must be considered as part of the 

cluster by an objective grouping technique, have again skewed the LOS AOA 

estimate. 

Bias in the AOA estimates was observed in the results of technique #2 as it was 

in those of PETRA.. For example, bias is apparent in Figure 4-4. In the results for 
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technique #2, a general trend regarding bias was observed. For larger absolute 

errors (i.e. > 5°), the errors tended to be one-sided and hence the AOA estimates 

skewed in one direction. When the absolute error was smaller no bias was 

evident. 

The cause of the bias is not due to a bias within the LOS cluster generated by 

Hashemi. This is demonstrated by the results of Table 5-2. The RMS error does 

not significantly change when it is calculated with respect to the average arrival 

angle of the cluster as opposed to the spatial centre. It is likely that the presence 

of the two other clusters affects and biases the AOA estimate for the LOS cluster. 

5.3 Technique #3: Resolving Cluster Angles with Temporal 
MUSIC 

5.3.1 Introduction 

For cases in which the amplitude of the arriving signals is desired, temporal 

MUSIC is convenient to use since it directly yields frequency. As described in 

section 3.3, the frequencies of the arrivals can be used to estimate the amplitude 

and phase of the arrivals. Using data from two physical antennas, the phase 

information may be used to eliminate the cosine and sine ambiguities. In this 

section, the amplitude information is used to identify the LOS cluster. That the 

signals comprising the LOS cluster are of higher power than those signals in the 

other clusters, is an assumption made in this thesis. Therefore, the LOS cluster 

should be recognizable by determining the amplitude of the individual clusters. 
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5.3.2 The Process 

In concept, the process of technique #3 is very simple. As in PETRA, MUSIC is 

set up to resolve only 3 signals and the assumption is made that an average of 

each cluster is obtained rather than individual arrivals. In conjunction with the 

original data collected, the frequencies estimated by MUSIC are used to estimate 

the corresponding amplitudes and phases. The frequencies are converted to 

AOA and the phases are used to eliminate the ambiguities. The signal of highest 

amplitude is chosen as LOS and its AOA is the LOS AOA estimate. 

5.3.3 Simulation Parameters 

Temporal MUSIC can be thought of as processing a time series of data with an 

FIR transversal filter. Two time series are required in order to ensure a unique 

spectrum. The length of the filter is comparable to the subarray dimension in 

spatial MUSIC. Hence, the length of the filter must be at least one greater than 

the number of signals to be resolved. In order to facilitate some smoothing, the 

data record length must be at least one greater than the filter length. 

In contrast to spatial MUSIC, in which the subarrays consist of data from each of 

the two physical antennas (see Figure 3-4), temporal MUSIC processes the two 

data series separately. Forward and backward smoothing was used and therefore 

the data matrix for each of the two antennas was constructed as equation (3-48). 

Thus the temporal smoothing used here differs from that used in technique #1. 

The simulation parameters are summarized in Table 5-3. 



93 

Table 5-3 Simulation Parameters for Technique #3 

Number of physical antennas 2 

Data series length 5 

Filter length 4 

Physical antenna spacing 0.25 ? 

Data point spacing 0.0647 ? 

Signal subspace dimension 3 

Vehicle speed 50 km/hr 

Frequency 840 MHz 

An advantage of temporal MUSIC over the spatial form is immediately obvious 

upon comparison of Table 5-3 with Tables 4-3 and 5-1. Temporal MUSIC requires 

far fewer points to make an AOA estimate. In addition the points need not be 

spaced as far apart as with spatial MUSIC. 

A physical antenna spacing of 0.25 X was used as opposed to the 0.5 X. used with 

techniques #1 and #2. To a certain extent, eliminating the angular ambiguity with 

phase was more successful when the two time series were spatially closer. 

5.3.4 Simulation Results 

Simulations were run using the same 15 cluster sets used for techniques #1 and 

#2. The distance travelled to collect 5 data points spaced by 0.0647 A, with a 

sampling rate of 41.6 ps/sample, is 0.095 metres. Fifty simulations were 
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conducted for each cluster set. For 50 simulations, enough data is collected in 5.9 

metres. This distance is covered in 0.42 seconds at 50 km/hr. 

Although technique #3 is simple in concept, the implementation was not. A 

significant problem encountered was the pairing up of signals obtained from the 

two time series for the purpose of eliminating the angular ambiguity. Although 

only three signals were to be resolved, there were often more than three or less 

than three peaks in the MUSIC spectrum. As a result, the number of peaks 

produced by one time series was not always equal to the same produced by the 

second time series. When this was the case, pairing of the signals was done 

manually. This was further complicated by the fact that the amplitudes, phases, 

and AOA of signals resolved from the two time series were often different 

enough to cast doubt on which signals should be paired up. 

Another major problem was eliminating the angular ambiguity. This had two 

possible causes. In those cases in which the pairing of signals was at best a guess, 

errors most probably existed. The angular ambiguity elimination process was in 

those cases doomed to fail. At other times, when there was no doubt regarding 

the pairing of signals, the phases themselves had to be blamed. The frequency 

matrix of equation (3-53) must be inverted to determine the amplitudes and 

phases. It is possible that this matrix was at times close to being nonsingular. This 

would cast suspicion on the resulting phase values. 

Due to the above problems, not all simulations were successful. A decision 

process was required to determine whether any particular simulation was valid 

or not. Two criteria were used: signal amplitude and elimination of the angular 
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ambiguity. For a simulation to be considered valid, the angular ambiguity of the 

signal of highest amplitude had to be eliminated successfully. 

Table 5-4 Simulation Results for Technique #3 

Set Cluster Angles % of 

Valid 

Solutions 

RMS 

Error 

Valid 

w.r.t. 

% of LOS 

Solutions 

RMS LOS Error 

with respect to: 
centre average centre average 

1 2400 300° 90° 66% 11.1° 11.00 66% 11.10 11.00 

2 120° 40° 200° 38% 32.70 288° 30% 11.10 8.50 

3 325° 175° 115° 42% 66.6° 67.2° 34% 11.0° 11.2° 

4 180° 240° 270° 58% 32.0° 32.0° 40% 19.2° 19.2° 

5 328° 271° 295° 58% 25.8° 27.5° 38% 12.6° 13.9° 

6 19° 174° 321° 64% 30.3° 31.8° 42% 12.9° 8.4° 

7 250° 275° 790 54% 15.8° 14.3° 54% 15.8° 14.3° 

8 226° 84° 137° 70% 29.8° 33.6° 64% 10.3° 14.7° 

9 331° 67° 243° 52% 11.8° 11.8° 52% 11.8° 11.8° 

10 319° 300° 45° 54% 27.1° 27.0° 44% 9.8° 9.7° 

11 86° 352° 158° 16% 30.1° 30.6° 10% 8.4° 7.6° 

12 206° 322° 138° 48% 36.7° 36.4° 34% 8.8° 13.9° 

13 180° 235° 0° 58% 31.0° 31.0° 28% 18.6° 18.6° 

14 590 3390 320° 56% 384° 38.00 46% 14.5° 14.4° 

15 216° 7° 278° 58% 32.3° 31.2° 52% 9.0° 7.7° 

Mean  - 52.8% 30.1° 30.1° 42.3% 12.3° 12.3° 
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The simulation results are presented in Table 5-4. The "% of Valid Solutions", is 

the number of simulations, as a percentage of 50, which are valid in the sense 

described above. The "RMS Valid Error" is the RMS error of the valid solutions 

calculated with respect to the spatial centre of the Hashemi LOS cluster and with 

respectto the average arrival angle of the Hashemi LOS cluster. The next three 

columns contain the same type of information but only for the LOS solutions 

within the valid solutions. LOS solutions are those for which the absolute error is 

less than 25°. Any solution with an error greater than 25° is considered to 

correspond to a non-LOS cluster. The "% of LOS Solutions" is also represented as 

a percentage of 50. 

5.3.5 Analysis of Results 

The results of Table 5-4 demonstrate that in only a slim majority of simulations 

was the angular ambiguity of the signal of highest amplitude eliminated 

successfully. As discussed in the previous section, eliminating the angular 

ambiguity with phase is very problematic. However, these problems seem to be 

particular to the cluster environment. When temporal MUSIC was used to 

estimate the AOA of a few individual arrivals, eliminating the ambiguity by 

phase worked much better; indeed the case of unsuccessful ambiguity 

elimination was very rare. When resolving for clusters as opposed to individual 

arrivals, it is likely that the signals resolved from the two individual data series 

did not correspond close enough. This was also seen when comparing the AOA 

and amplitude of signals resolved from consecutive data sets of the same data 

series. Often the MUSIC spectrum and signal amplitudes were quite different. 

These inconsistencies are not a major problem in spatial MUSIC where the 

angular ambiguity is inherently eliminated. 
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A much more promising result is the number of valid solutions which 

correspond to the true LOS cluster. Expressed as a percentage of the total number 

of simulations, this number is less than a majority (42.3%). However, 80.1% of the 

valid solutions corresponded to the LOS cluster. The other 19.9% represented one 

of the other clusters or spurious peaks. Hence, of the 3 techniques for estimating 

the LOS AOA, technique #3 has the highest success rate in terms of identifying 

the LOS cluster. 

Those valid solutions which were non-LOS, of course had high AOA errors and 

therefore inflated the RMS error. When these solutions were removed, the 

average RMS error decreased from 30.1° to 12.3°. How much the error decreased 

for specific cluster sets, of course depended on how many non-LOS solutions 

existed and how far they were from the true LOS AOA. 

An EMS error of 12.3° is roughly twice as large as the errors obtained with 

techniques #1 and #2. Evidently, temporal MUSIC with the number of data 

points used, does not estimate the "average" AOA of a cluster as well as spatial 

MUSIC does in technique #1. For one cluster set, the cluster width was decreased 

to 10° (±5°). This resulted in an absolute error of 2.3°. The number of valid 

solutions, and the percentage of those which were LOS however, did not 

increase. As expected, cluster width has a significant effect on accuracy. 

The EMS errors in Table 5-4 again confirm that there is little if any bias in the 

arrival angles of the Hashemi LOS cluster. The EMS error is the same regardless 

of whether the spatial centre or the average arrival angle of the Hashemi LOS 

cluster is used to calculate it. Any bias in the AOA estimates of the valid 
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solutions is most likely due to the non-LOS solutions. This will however, depend 

on whether more than one non-LOS cluster has the tendency to be chosen and 

whether these non-LOS solutions lie on either side of the LOS AOA. When 

considering only the valid LOS solutions, large biases were evident in some cases 

and small biases in others. Again it is likely that the non-LOS clusters have an 

effect in those cases which exhibit a bias. 

5.4 Comparison of Techniques #1, #2, and #3 

Table 5-5 summarizes and compares the significant results for all three 

techniques. 

Table 5-5 Summary of Results for Techniques #1, #2, and #3 

Technique # Mean Percentage 

of Success 

AOA Error 

1 65.5% 5.7° 

2 57.5% 5.6° 

3  80.1% - 12.3° 

Mean percentage of success refers to the number of times the method was able to 

identify the LOS cluster and estimate its AOA, expressed as a percentage of the 

simulations conducted or, in the case of technique #3, the valid simulations. For 

technique #1, every simulation resulted in a solution but not all solutions 

corresponded to LOS. A successful solution is defined as one which does 

correspond to LOS. Technique #2 is similar in that each simulation resulted in a 

spectrum from which a solution could be obtained. Solutions for which the 
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largest group of peaks were clustered around the LOS AOA are deemed 

successful. Technique #3 is somewhat different in that the angular ambiguity 

elimination process did not work for every simulation. Practically, it would be 

simple to throw away the invalid solutions. For the purposes of comparison, the 

ability of technique #3 to produce a solution for which the angular ambiguity is 

eliminated, is separated from performance in terms of LOS cluster identification 

and AOA estimation. The results in Table 5-5 are based on the latter. 

In addition to the results of Table 5-5, the three techniques may also be compared 

in terms of the amount of data required and complexity. For the results presented 

in chapters 4 and 5, the following simulated travel distances were required to 

collect enough properly spaced data, at 50 km/hr, to run one simulation (that is 

make one AOA estimate): 

• technique #1 - 0.36 metres 

• technique #2-2.67 metres 

• technique #3-0.095 metres. 

By far, temporal MUSIC requires the smallest interpoint spacing and therefore 

the shortest travel distance. Technique #2 requires many virtual array elements 

in order to resolve closely spaced individual arrivals. Techniques #1 and #3 do 

not require arrays as large since they only attempt to resolve for three clusters. 

The number of simulations required to obtain a majority of LOS solutions and an 

accurate AOA estimate must also be considered. The results for technique #1 

were obtained with 200 simulations. This required a travel distance of 72 metres. 

Techniques #2 and #3 required far fewer simulations and hence shorter travel 
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distances, 53.4 metres and 4.75 metres respectively. When the transmitter and 

receiver are very close, the AOA will change quickly as the receiver moves. As a 

result, the shorter the travel distance to make an AOA estimate, the better. 

Therefore, in terms of interpoint spacing, the number of points, and the number 

of solutions required, technique #3 is clearly the best and technique #1 the 

poorest. 

The actual number of data points used affects complexity as well as the distance 

travelled. Along with smoothing, the number of data points determines the size 

of the data matrix which must be multiplied by its Hern-ilte to calculate the 

correlation matrix. The data matrix for technique #3 was the smallest (4 x 4) and 

even though 2 data matrices must be generated and processed, the number of 

computations involved will be by far the fewest. Technique #1 required a 300 x 4 

data matrix whereas Technique #2 required a 16 x 34 data matrix. 

Complexity is further affected by the size of the correlation matrix generated 

from the data matrix. The larger the correlation matrix, the larger the number of 

eigenvalues and eigenvectors to be calculated. Both techniques #1 and #3 

generate a 4 x 4 correlation matrix whereas technique #2 generates a 34 x 34 

correlation matrix. Obviously the eigenanalysis for technique #2 involves the 

most computations. 

A third complexity factor is the type and amount of processing which needs to be 

done after a MUSIC spectrum has been generated. It is in this area that technique 

#3 suffers the most. To begin, two separate MUSIC spectrums must be generated 

from the data series of the two antennas. Secondly, the phase and amplitude of 
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each resolved arrival must be computed. This calculation involves the inversion 

of a complex matrix. After this, the phase values are used to calculate AOA for an 

orthogonal reference and this AOA must be compared to the original AOA 

calculated from the frequencies resolved by MUSIC. 

Techniques #1 and #2 are roughly equivalent in terms of post-processing. 

Technique #1 requires the generation of three MUSIC spectrums as well as the 

peak tracking process. In addition, a windowing or grouping process is required 

to distinguish the LOS solutions from those which are not. Technique #2 is most 

straightforward in the generation of the MUSIC spectrum but requires a 

sophisticated technique for clustering the peaks in the spectrum. Division of the 

solutions into two groups, those which are LOS and those which are not, is also 

required. 

In conclusion, although technique #3 has many advantages, it does not achieve 

the required accuracy for the intended application. Techniques #1 and #2 have 

identical accuracy and comparable success rates. Although more complex, 

technique #2 requires a shorter travel distance for data collection than does 

technique #1. Therefore, technique #2 is the best choice for accurately estimating 

AOA in the shortest possible distance. 

5.5 The Single Cluster Environment 

5.5.1 Introduction 

To this point, the assumed signal environment has consisted of three clusters. 

This chapter concludes with an investigation of a single cluster which contains a 
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LOS component. It is assumed that the LOS arrival is of significantly greater 

power than all others. Temporal MUSIC is therefore used to resolve for as many 

of the individual arrivals as possible. The arrival of highest amplitude is then 

identified as the LOS component. 

A potential AOA estimation system for the multipath environment could use one 

of techniques #1, #2, or #3 to identify the LOS cluster and estimate its AOA. 

Using this knowledge, the other clusters may be spatially filtered out of the data. 

It is likely that a more accurate AOA estimate for LOS could then be achieved 

[331. 

5.5.2 Cluster Configuration 

The structure of the clusters used for simulation purposes is identical to that of 

the LOS cluster in the three cluster environment (see Table 4-1) except in one 

respect. That arrival closest to the centre of the cluster, in terms of AOA, is given 

a power 10 dB greater than the next most powerful arrival. With this exception, 

all other cluster parameters are identical, including the number of arrivals in the 

cluster (13), the cluster width (± 25°), the impulse response, and the power of 

each arrival. 

The single clusters used here are identical to the LOS clusters used previously in 

terms of AOA as well. Table 5-7 contains the AOA of the LOS arrival in each 

cluster. Cluster #13 has not been included since it is identical to cluster #4. 
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5.5.3 Simulation Parameters 

Temporal MUSIC, with forward and backward smoothing as per technique #3, is 

used. The simulation parameters are presented in Table 5-6. 

Table 5-6 Simulation Parameters for Single Cluster Tests 

Number of physical antennas 2 

Data series length 25 

Filter length 19 

Physical antenna spacing 0.25,% 

Data point spacing 0.1 ? 

Signal subspace dimension 13 

Vehicle speed 50 km/hr 

Frequency  840 MHz 

Compared to the parameters used for technique #3 (Table 5-3), more points and 

more widely spaced points are used here. This is necessary since in the single 

cluster case, up to 13 individual, and relatively closely spaced arrivals are to be 

resolved. Technique #3 attempted to resolve only 3 widely spaced signals and 

therefore required fewer data points which could be more closely spaced. 

5.5.4 Simulation Results 

Simulations were conducted using the LOS clusters of the 15 cluster sets used in 

simulations for techniques #1, #2, and #3. Twenty simulations were run for each 
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cluster. A distance of 0.85 metres was travelled to collect the 25 data points 

necessary for 1 simulation. Table 57 summarizes the results. 

Table 5-7 Single Cluster Simulation Results 

Cluster # LOS AOA % of Valid 

Solutions 
11S Error 

1 237.1° 70% 5.2° 

2 120.6° 85% 1.3° 

3 325.5° 75% 2.5° 

4 177.5° 60% 13.5° 

5 328.7° 80% 3.3° 

6 18.6° 90% 2.1° 

7 247.3° 75% 2.3° 

8 221.5° 80% 3.2° 

9 330.6° 90% 2.3° 

10 318.0° 80% 4.3° 

11 79.8° 75% 0.9° 

12 207.0° 100% 2.5° 

14 58.6° 95% 2.2° 

15 214.1° 90% 2.3° 

Mean - 82% 3.4° 

In Table 5-7, LOS AOA refers to the AOA of the most powerful arrival in the 

cluster. In some cases, this LOS arrival was not very close to the spatial centre of 
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the cluster. For example, the centre of duster #11 is 86°. It is important to note 

that the errors reported in the results for techniques #1, #2, and #3 were with 

reference to the centre of the LOS cluster or the average arrival angle of the 

cluster. The RMS errors of Table 5-7 are referenced to the LOS AOA values 

shown. 

Because temporal MUSIC was used, not all simulations yielded a solution. As in 

the case of technique #3 which also used temporal MUSIC, the angular 

ambiguity of the signal of highest amplitude was not always successfully 

eliminated. However, unlike technique #3, all solutions are assumed to be LOS. 

Therefore, percentage of valid solutions refers to the number of simulations, 

expressed as a percentage of 20, for which the angular ambiguity of the signal of 

highest amplitude (LOS) was successfully eliminated. 

5.5.5 Analysis of Results 

The success rates presented in Table 5-7 are far higher than those for technique 

#3 in Table 5-4. This is attributed to the fact that in the single cluster case, 

individual arrivals are resolved as opposed to clusters. Elimination of the angular 

ambiguity is far more successful when dealing with individually resolved 

arrivals than with signals which represent entire clusters. Put simply, angular 

ambiguity elimination with individual arrivals does not suffer from many of the 

problems which plague the process when dealing with whole clusters. 

The RMS errors in Table 5-7 are lower than those for techniques #1, #2, and #3. 

Improved accuracy was predicted because of fewer potentially interfering signals 

from other clusters. More likely, better accuracy has been achieved because the 
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AOA of a specific individual arrival has been estimated whereas techniques #1, 

#2, and #3 all estimate an average AOA for a cluster. 

Cluster #4 is the only cluster which had a significantly higher than average error. 

It also has the lowest success rate. Because of the cosine ambiguity, an arrival 

from say 165° will have the same Doppler frequency shift as a signal from 195°. 

Temporal MUSIC is therefore unable to distinguish the two. A cluster centred at 

180° will have arrivals both above and below 180° and in the case of cluster #4, 

there are numerous pairs of independent arrivals which are reflections of one 

another around 180°. These pairs of arrivals may add constructively or 

destructively and as a result MUSIC will see arrivals spread from 155° to 180° 

instead of from 155° to 205°. 

Since all solutions for cluster #4 were less than 180°, the mean signed error is 

-12.6°. Hence the average solution was 167.4° which is almost exactly the centre 

of the new half size cluster. Considering this, as well as the fact that the range of 

errors was from -5.6° to -21.2°, it appears that the AOA estimate is more of an 

average in this case. It is expected that a cluster centred at 0° would experience 

the same problem. 
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CHAPTER 6 

ESTIMATING AOA WITH CURVED ARRAYS 

6.1 Introduction 

In all previous chapters, the simulated data has been for antennas travelling in a 

straight line. As a result, at least two antennas were necessary in order to create a 

two dimensional virtual array. An advantage of MUSIC is its ability to work for 

an array of any geometry. Thus the array need not be rectangular, nor the array 

elements uniformly spaced. We may therefore eliminate the need for two 

antennas, but still obtain a two dimensional virtual array, by sampling an 

antenna as it moves along any non-linear path. 

The advantage of sampling along a non-linear trajectory is obvious; a MUSIC 

spectrum unique through 360° is obtained with only one antenna. There is a price 

to pay however, in the form of increased complexity. Since MUSIC requires 

knowledge of the array geometry, the trajectory of the antenna and relative 

positions of the data samples must be known. This would require additional 

instrumentation onboard the vehicle to detect the amount of curvature in the 

vehicle's travel path. In addition, smoothing and definition of the steering vector 

must be re-examined. 

The primary focus of this chapter is not to determine whether a non-linear virtual 

array suppresses all cosine ambiguities. That the ambiguities are suppressed is 

demonstrated in Figure 6-1. 
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Figure 6-1 Suppression of Ambiguities 

Three signals are present and the pointers in Figure 6-1 show their angular 

locations. The solid line represents the MUSIC spectrum for data collected over 

2.5° of an arc of radius 20 metres. The three signals and their ambiguities are 

clearly evident. When the same number of data samples are collected over 25°, 

the resulting spectrum is indicated by the dashed line. 

The primary question then is how much curvature is required in order to 

adequately suppress the cosine ambiguity? In this chapter an answer is sought 

for the case of one arrival only. Simulated data for path radii of 20 metres and 90 

metres are used to this end. 



109 

6.2 MUSIC and the Curved Array 

Spatial MUSIC with forward spatial smoothing was used to investigate the 

ambiguity suppression for a single arrival. An arc was chosen as the antenna 

trajectory because it is the simplest non-linear trajectory to deal with. For data 

lying on an arc, smoothing is possible in only one direction. Recall that spatial 

smoothing uses a subarray which slides across the data points of the virtual 

array. In the case of a linear array, the forward and backward subarrays will 

always have the same orientation, with respect to the arriving signals, as they are 

slid across the array data. When the array data lies on an arc however, the 

orientation of the subarrays changes as they are moved across the array. 

Moreover, the orientation change for the forward subarray will be different from 

that of the backward subarray. As a result, the AOA determined, will differ 

between the two directions of smoothing. 

Direction of Antenna Travel 

Subarray 1 

Subarray 2 

Subarray 3 

Figure 6-2 Smoothing Along a Curved Array 
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The orientation of the steering vector will determine which direction of 

smoothing gives the correct AOA and which gives a false AOA. Figure 6-2 

illustrates the case of a virtual array consisting of five data points and subarrays 

of dimension three. Let the forward subarrays be defined as subarrays 1, 2, and 3 

where the first element of subarray 1 is element 1, the first element of subarray 2 

is element 2 and so on. If the steering vector of the array is defined as subarray 2, 

with element 2 as the first element, then forward smoothing as defined will give 

the proper AOA. The first backward subarray would be subarray 3 and its first 

element would be element 5. The second backward subarray would be subarray 

2 and it would begin with element 4. The third backward subarray would be 

subarray 1 and its first element would be element 3. For the steering vector 

defined as above, backward smoothing will produce an AOA which is a 

reflection of the correct AOA with the line connecting elements 1 and 5 as the 

axis of reflection. Therefore, if both forward and backward smoothing are used, 

the correct AOA as well as an ambiguity (not to be confused with the cosine 

ambiguity) will result. 

When smoothing with subarrays is used, the steering vector must be of the same 

dimension as the subarrays. Hence the question arises as to which of the 

subarrays is to be used as the steering vector. Obviously the middle subarray 

should best represent the entire array; hence the choice of subarray 2 as the 

steering vector for the case illustrated in Figure 6-2. In the case of an even 

number of subarrays, a middle subarray does not exist. In that case one of the 

two subarrays adjacent to the centre of the array must suffice. 



For the simulation results to follow, forward smoothing as defined above for 

Figure 6-2, is used. The AOA is referenced as shown in Figure 6-3. The first point 

of the virtual array is assumed to be positioned at the origin of the vertical and 

horizontal axes and subsequent points follow on a circle in a counter-clockwise 

direction. 

Plane Wave 

Direction of Antenna Travel 

Figure 6-3 AOA Reference for Curved Arrays 

6.3 Simulations for 20 metre Radius Arc 

6.3.1 Introduction 

The simulation data used in this section consisted of data points collected by an 

antenna travelling along an arc of radius 20 metres. The antenna velocity was 20 

km/hr and the sampling rate 41.6 ps/sample. The frequency of transmission was 

840 MHz. The signal environment consisted of only one signal with an AOA of 

246.7°. 
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Two groups of simulations were conducted. In the first group, the distance 

between data points was fixed at 0.5 X. The number of points (i.e. number of 

elements in the virtual array) was increased from 3 to 40 in steps of 1. The 

dimension of the subarrays was always made to be the integer value of 0.75 of 

the array dimension. Hence, the subarrays became longer and more numerous as 

the number of elements in the virtual array increased. For each array dimension, 

the magnitudes of each of the two peaks in the MUSIC spectrum, as well as 

AOA, were recorded. The same data was then generated for a straight line and 

the same results recorded for comparison. 

For the second group of simulations, the number of virtual array elements was 

held fixed and the spacing between points was varied from 0.026 A. to 0.53 X. For 

each interpoint spacing, the magnitude and AOA of each of the two peaks in the 

resulting MUSIC spectrum were recorded. Simulations in this manner were 

conducted for 17,20, and 21 points. 

Through these two groups of simulations, the extent of suppression of the 

ambiguity is measured as a function of the degrees of arc over which the data is 

collected. In addition, the nature of the suppression when more data points are 

added is compared to that achieved when the spacing between a fixed number of 

data points is increased. 

6.3.2 Simulations for Fixed Interpoint Spacing of 0.5 A. 

The peak magnitude results for the curved array are shown in Figure 6-4. The 

length of the virtual array in degrees of arc, is measured along the horizontal 

axis. The individual measurement points are shown. The first point corresponds 
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to the array consisting of 3 elements whereas the last point corresponds to the 

array of 40 elements. In addition to the peak magnitudes, the magnitude of the 

spectrum floor is also shown. 

As the virtual array becomes longer, it eventually becomes sufficiently two 

dimensional and the ambiguity altogether disappears. The peak corresponding 

to the correct AOA also decreases in magnitude; but since it starts at a higher 

value and does not fall off at the same initial rate, it eventually dominates the 

spectrum. 
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Figure 6-4 Peak Magnitude Comparison for Radius of 20 metres and 

Fixed Interpoint Spacing of 0.5 7 

A very consistent square wave type pattern is evident in the true signal curve. 

The levels are defined by groups of 4 points. This pattern is particular to the 
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curved array since it does not arise for a linear array. Figure 6-5 illustrates the 

same information as Figure 6-4 but for linear arrays up to a total of 28 elements. 

Because the data falls on a straight line, the length of the array is measured in 

wavelengths and not degrees of arc. The square wave type pattern does not 

appear in Figure 6-5. Also clear is that the ambiguity does not disappear with 

increased array length. 

60 50 I:: 
30 

20 

Cz 
10 

-10 

-20 
0 2 4 6 8 10 12 14 

Array Length (wavelengths) 

Figure 6-5 Peak Magnitude Comparison for Linear Arrays 

The square wave pattern of Figure 6-4 is a function of whether the number of 

subarrays used is even or odd. For arrays with 3 through 10 elements, Table 6-1 

contains information regarding the number of subarrays, their dimension, and 

the subarrays used as steering vectors. Also presented are the true signal peak 

magnitudes and the corresponding arrival angles. 
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Table 6-1 Subarray and Steering Vector Information for Various Arrays 

No. of 
Array 

Elements 

No. of 

Subarrays 

Subarray 

Dimension 

Steering 
Vector 

Subarray 

AOA 
Peak 

Magnitude 

(dB) 

3 2 2 1 246.4° 78.5 

4 2 3 1 246.4° 72.3 

. 5 3 3  1 

2 

246.1° 

246.7° 

56.0 

58.2 

6 3 4 1 

2 

246.1° 

246.7° 

51.9 

54.1 

7 3 5 1 

2 

246.1° 

246.7° 

48.8 

51.0 

8 3 6 1 

2 

246.1° 

246.7° 

46.3 

48.5 

9 4 6 2 246.4° 69.2 

10  4 7 2 246.4° 60.5 

One sees from Table 6-1 that the peak magnitudes are dependent on the number 

of subarrays. Arrays with three or four elements, have two subarrays. When the 

number of elements increases to five, the number of subarrays increases to three 

and remains at three until there are nine array elements. The number of 

subarrays then becomes four. The sudden changes in the peak magnitudes as one 

changes from four elements to five, and from eight elements to nine are clearly 

seen. 

Whether the number of subarrays is even or odd will also effect the choice of 

steering vector. When there is an odd number of subarrays, the middle one is the 
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best choice for the steering vector. When the number of subarrays is even, one of 

the two subarrays slightly off centre must be chosen. The choice of steering 

vector will affect the degree to which it is orthogonal to the noise subspace and 

consequently will affect the peak magnitude. The square wave pattern in Figure 

6-4 is the result. 

Table 6-1 also shows the effect of the steering vector on the accuracy of the AOA 

estimate. Recall that the true AOA is 246.7°. When there is an odd number of 

subarrays and the middle one is chosen as the steering vector (subarray 2 for the 

case of three subarrays), the error in the AOA estimate is nil. If the middle 

subarray is not chosen or does not exist, as in the case of an even number of 

subarrays, error in the AOA estimate appears. 

A comparison of the AOA estimate between the true peak and the ambiguity is 

presented in Figure 6-6. Except for the slight shift in AOA when the number of 

subarrays changes from even to odd and vice versa, the AOA estimate for the 

true peak is constant as the array length increases. The ambiguity AOA estimate, 

however, changes in a consistent manner as the array increases in length. This is 

to be expected since the axis of reflection, which can be thought of as the line 

connecting the first and last points of the array, changes orientation as additional 

array points are added. 
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6.3.3 Simulations for Fixed Number of Array Elements 

The purpose of this group of simulations is to determine the extent of ambiguity 

suppression as the array is made longer by increasing the spacing between data 

points. Figures 6-7 and 6-8 compare the true and ambiguous peak magnitudes for 

curved arrays of 20 and 21 data points respectively. In both cases the interpoint 

spacing is varied from 0.026 ? to 0.53 A.. The horizontal axes again measure the 

length of the arrays in degrees of arc. 
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Since for a fixed number of array points, the number of subarrays is also fixed, 

the square wave type pattern of Figure 6-4 does not appear in Figure 6-7 or 6-8. 

There is however, a difference in the true peak curves of Figures 6-7 and 6-8. The 

curve in Figure 6-7 exhibits a peak at 2.6° of arc length and does not drop 

consistently as the curve in Figure 6-8. Again this difference is attributable to the 

number of subarrays. For the array of 20 points the number of subarrays is 6; an 

even number. For the 21 point array, there are 7 subarrays. This is confirmed 

with an array of 17 points. It too has 6 subarrays and exhibits a peak at 2.6° of arc 

length. In the case of an even number of subarrays, one of the two innermost 

subarrays must be used to define the steering vector. How well this off-centre 

steering vector approximates the ideal one depends on the number of subarrays. 

In larger arrays, which contain many subarrays, the two innermost subarrays 

will better approximate the middle of the array than in the case of smaller arrays 

with fewer subarrays. In any case, the relationship between the noise subspace 

and the steering vector corresponding to the signal AQA, will not vary with 

array length in the smooth consistent manner of Figure 6-8. 

The peak at 2.6° in Figure 6-7 allows for a 20 dB difference in peak magnitude 

between the true signal and the ambiguity, with an array arc length as small as 

1.3°. In the case of Figure 6-8, the same separation is obtained with an array arc 

length of 3.3°. These results are comparable to those for Figure 6-4. In that case 

the separation was already 20 dB with the smallest array of 3 points, which has 

an arc length of approximately 1°. However, in Figure 6-4, the separation tends to 

decrease with increased array length whereas in Figure 6-7 and 6-8 the separation 

tends to increase. 
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A comparison between the AOA estimates of the true signal and the ambiguity, 

for an array of 20 points and increasing interpoint spacing, results in a figure 

virtually identical to Figure 6-6. 

6.4 Simulations for 90 metre Radius Arc 

6.4.1 Introduction 

In order to observe the effect of arc radius, simulations were conducted for data 

lying on an arc of radius 90 metres. The vehicle velocity was 50 km/hr, the 

sampling rate 41.6 .is/sample, and the frequency of transmission 840 MHz. 

Again the data was simulated for only one arrival and its AOA was 130°. 

Measurements of the true signal peak magnitude and ambiguity peak magnitude 

were made as the array size was increased by adding additional points to the 

array. The interpoint spacing was fixed at 0.4 A. 

6.4.2 Simulations for Fixed Interpoint Spacing of 0.4 A 

Simulations were conducted for array sizes of 3 elements up to 50 elements. Once 

again the dimension of the subarrays was 0.75 of the total number of elements in 

the array. Figure 6-9 shows the results of the simulations. 

The true signal curve of Figure 6-9 also exhibits the square wave pattern seen in 

Figure 6-4. Again there are two different levels in the curve corresponding to odd 

and even numbers of subarrays. However, in contrast to the 20 metre radius case, 

here, arrays with an even number of subarrays have lower peak magnitudes than 

do arrays with an odd number of subarrays. This is not a function of the 
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interpoint spacing since the same pattern was observed for spacings other than 

0.4 X. From these results it is impossible to predict whether an even number of 

subarrays or an odd number of subarrays will give the larger peak magnitudes. 

In Figure 6.9, a worst case separation of 20 dB is achieved for arrays greater in 

length than 2.3°; the worst case being the lower level of the decaying square 

wave pattern. For the 20 metre radius case of Figure 6-4, a worst case separation 

of 20 dB is obtained with array lengths of approximately 3° of arc length. Of 

course 30 of arc length corresponds to a longer travel distance for the 90 metre 

radius arc than for the 20 metre radius arc. 
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6.5 Conclusions 

In conclusion, it may be stated that an odd number of subarrays will give the best 

AOA accuracy since there is a middle subarray available for definition of the 

steering vector. In addition, it was found that the AOA estimate for the true 

signal remained constant with varying array length whereas the AOA estimate of 

the ambiguity changed in a consistent manner. 

The ambiguous peak was totally suppressed with an array length of 20 arc 

degrees for a 20 metre radius arc and with an array length of approximately 10 

arc degrees for a 90 metre arc. To obtain a 20 dB separation between the true 

signal and the ambiguity required arrays of length 1 to 3 degrees of arc. This 

depended on the combination of interpoint spacing and the number of array 

elements (Figures 6-7 and 6-8), as well as whether the number of subarrays was 

even or odd (Figures 6-4 and 6-9). 
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CHAPTER 7 

CONCLUSIONS 

7.1 The MUSIC Algorithm 

The MUSIC algorithm, as implemented, was foimd to be very capable of 

accurately estimating the AOA or frequency of individual arrivals using 

simulated data. In particular, the resolution possible with MUSIC exceeds that of 

more traditional methods, such as the Fourier transform, by many times. The 

temporal form of MUSIC is especially impressive since it is able to resolve signals 

with very few, and closely spaced points. It was found that methods such as 

temporal or spatial smoothing, as well as array motion, effectively decorrelate 

coherent arrivals. Therefore, MUSIC is not excluded from use in a coherent signal 

environment such as the multipath radio channel. 

7.2 Three Techniques for the Three Cluster Environment 

Three different techniques for estimating the LOS AOA in a three cluster 

environment were developed and tested. Simulations were conducted in order to 

evaluate the performance of each technique in the areas of identifying the LOS 

cluster and estimating the corresponding AOA. Technique #3, which bases the 

identification process on cluster amplitude, was found to have the best success 

rate in terms of LOS cluster identification. This assumed, however, that 

simulations for which the cosine ambiguity could not be eliminated are not 

included in the success rate calculation. If all simulations were included, the 

success rate of technique #3 fell below 50% and technique #1 became superior in 

this regard. 
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Both techniques #1 and #2 estimated the LOS cluster AOA with an accuracy in 

the order of 5.5°. The accuracy of technique #3 was only 12°. Both techniques #1 

and #3 attempted to estimate an average AOA for the LOS cluster. Spatial 

MUSIC as used in technique #1, was far more successful in this venture than 

temporal MUSIC in technique #3. A significant reason for this was found to be 

the cosine ambiguity elimination process used with temporal MUSIC. For 

individually resolved arrivals, the ambiguity of each arrival was very 

successfully eliminated using the phase data of the two antennas. For resolved 

clusters however, signal matching between the two antennas as well as phase 

errors, severely reduced the effectiveness of the process. However, even in those 

cases where the cluster ambiguity could be eliminated, temporal MUSIC was not 

able to determine an average cluster AOA with the same degree of accuracy as 

spatial MUSIC in technique #1. 

In comparing the three techniques, other factors were considered as well. 

Technique #1 required a large number of solutions in order to obtain an AOA 

estimate of reasonable accuracy. Technique #2, although requiring more array 

points, required the fewest number of solutions. Since technique #3 used 

temporal MUSIC, it required fewer data points to make an AOA estimate than 

either of techniques #1 or #2. In addition, the required spacing between data 

points for temporal MUSIC is much less than for spatial MUSIC. As a result, the 

AOA update rate would be much higher for a system using technique #3. 

Complexity in terms of eigenanalysis and additional processing are also 

considerations. Due to the relative sizes of the correlation matrices, technique #2 

required many more computations to perform the eigenanalysis than techniques 
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#1 or #3. Technique #1 required a large amount of additional processing albeit 

relatively simple. In addition to the generation of three MUSIC spectra, the peak 

tracking algorithm and a windowing technique which groups the solutions such 

that a LOS majority can be found, are required. Technique #2 also requires such a 

windowing process as well as a sophisticated algorithm for clustering the peaks 

in the MUSIC spectrum. Elimination of the cosine ambiguity with signal phase 

incurred a relatively large processing burden on technique #3. 

Considering all of the above factors, technique #2 was found to be the best 

overall method for estimating the LOS AOA in a three cluster environment. 

An AOA accuracy of 5.6° (as achieved by technique #2) should be adequate to 

obtain a positipnal accuracy of 100 metres or less in the microcellular radio 

environment. If 2 transmitters situated on a circle are 900 apart, and the mobile 

receiver is located at the centre of the circle, the minimum and maximum 

positional errors for AOA errors of 5° will be 11% and 14% of the circle radius 

respectively. Although a transmitter separation of 90° is perhaps the ideal case, 

using AOA estimates from multiple transmitters will give a positional accuracy 

better than 10% of the circle radius. Therefore, if the above mentioned circles 

correspond to cells with radii in the order of 1 km, the desired positional 

accuracy will be obtained with AOA estimates made by techniques #1 and #2. 

7.3 The Single Cluster Environment 

Temporal MUSIC was used to estimate the AOA of the LOS component in a 

single cluster. Because individual arrivals were resolved and not clusters, the 

resulting accuracy was better than 4°. For the same reason, elimination of the 
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angular ambiguity was not a significant problem as it was with technique #3. 

This was reflected in the very high success rate. 

A more accurate system could use a two stage process. In the first stage, 

technique #1 would be used to estimate the AOA of the LOS cluster. The antenna 

data is then spatially filtered in order to remove the non-LOS clusters. Temporal 

Iv[EJSIC could then resolve for individual arrivals, identify the LOS arrival by its 

amplitude, and provide a more accurate estimate of its AOA. 

7.4 Curved Arrays 

Simulations confirmed that the angular ambiguity can be eliminated by using a 

two dimensional virtual array created with one antenna moving along a non-

linear path. A circular arc was chosen as the antenna path since it is the least 

complicated non-linear trajectory for which to define an array steering vector. 

The definition of the steering vector was determined to have a significant effect 

on AOA accuracy. When spatial smoothing using subarrays was used, the best 

accuracy was achieved when the number of subarrays was odd and the middle 

subarray was used to define the steering vector. 

To suppress the MUSIC peak of the angular ambiguity by 20 dB with respect to 

the true signal peak, the virtual array length was required to be at least 10 to 30 of 

arc. This was affected by the number of array elements, their spacing, and 

whether the number of subarrays was even or odd. Arc radius, however, did not 

have a significant effect on the required array length in degrees of arc. 
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As the arrays were made longer, the ambiguous peak eventually dropped to the 

spectrum floor and disappeared. This occurred at 20 degrees of arc for a radius of 

20 metres and approximately 10 degrees of arc for a 90 metre radius. When 

converted to circumference, the antenna had to travel twice as far on the arc of 90 

metre radius in order to generate a sufficiently two dimensional array and 

eliminate the ambiguity. 

7.5 Recommendations for Further Work 

It is possible that technique #1 may be improved in the areas of efficient data use 

and perhaps accuracy by employing spatial smoothing in the form of subarrays 

rather than temporal smoothing. Computational complexity would be reduced 

since fewer data points in total would be required. The additional smoothing 

obtained with forward and backward subarrays may improve decorrelation and 

accuracy. 

As seen in the single cluster results, temporal MUSIC has the potential to make 

very accurate AOA estimates for individual arrivals. Technique #3 would be the 

preferred technique if this same degree of accuracy could be achieved for 

clusters, perhaps by improving the ambiguity elimination process. This may be 

possible by using SVD to calculate the signal phases. 

Throughout this thesis the direction of transmission has been from the cell site to 

the mobile. Consideration should be given to the reverse case. The availability of 

arrays at the cell sites as well as no signal processing required at the mobile may 

make the reverse case more desirable. 
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The value of this thesis work is dependent upon the actual AOA nature of the 

outdoor urban radio channel. Tests to determine whether arrivals actually do 

cluster, as well as what the configuration of these clusters might be, would 

determine whether the techniques presented would provide the accuracy 

required. In addition, the percentage of time a LOS path exists between a cell site 

and a mobile should be determined. 
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