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Abstract 

Principled induction is defined in this thesis as the process of arbitrarily selecting a 

valid description of a set of examples, and gradually simplifying this description until 

it is minimal in the preorder defined by the available simplification operators. If the 

preorder is well chosen, principled induction is a computationally feasible method for 

inducing descriptions. Algorithms are presented that perform principled induction 

of decision trees and rules from examples. These algorithms and empirical results 

obtained using them are shown to support the claim that principled induction is 

a clear and effective representation of the problem of learning concept descriptions 

from examples. 
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Chapter 1 

Principled induction in machine learning 

This work investigates some of the methods that enable artificial systems to induce 

concept descriptions from examples defined by vectors of feature values. Each exam-

ple is an instantiation of a template (ai, a2,. . . , a, c), where every a, is a particular 

feature (e.g., color) that describes an entity, and c denotes a class membership. The 

task is to produce descriptions of the concepts c, to be used in determining the class 

membership of other entities taken from the same domain. 

The first section of this chapter defines the notion of principled induction in the 

context of machine learning. This principled approach affords a clear and effective 

representation of the problem of learning concept descriptions from examples. In the 

second section, a number of well known algorithms are examined under the light of 

principled induction. The rest of the chapter formulates the goals of this thesis and 

gives an overview of the document. 

Subsequent chapters propose algorithms that follow closely the definition of prin-

cipled induction, and compare these algorithms to some of the methods reviewed in 

Section 1.2. 

1.1 The elements of principled induction 

Michaiski's (1991) inferential theory of learning defines machine learning as a process 

of knowledge transformations: the creation or improvement of knowledge represen-

tations. The knowledge contained in the examples is represented in a convenient 

1 
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fashion, and then transformed to achieve a particular goal. In the case of symbolic 

learning systems such as the ones to be discussed in this thesis (as opposed to neural 

net systems, for example), the theory requires that these knowledge transformations 

be performed in "explicit" and "conceptually comprehensible" steps. 

1.1.1 Induction 

To induce concept descriptions from training examples means to hypothesize de-

scriptions that agree with the examples. A successful inductive conclusion from 

the examples is a hypothesis that explains them. The following formal definition is 

adapted from one by Genesereth and Nilsson (1987). 

Definition 1.1 Let r be a set of statements in logic that embody some background 
knowledge about the domain from which the examples are taken. Let A be a database 

of observations about the domain (e.g., a set of examples), and let W be a hypothesis, 

expressed in the same language as A and r. We say that W is an inductive conclusion 
from r and A if the following conditions hold: 

1. zis provable from r and : r,wHL. 

2. W is consistent with r and L: r, L, W 7' F, where F denotes the logical constant 

false. 

If the entities in A are described by attribute values, 'I' is an inductive conclusion, 

or a valid description, if it correctly determines the class of every entity in L. 

While this definition does not provide a method for obtaining a valid description, 

it is easily verified that substituting A for IF satisfies both conditions. However, 

= A seems unsatisfactory as an induced description because it could only function 
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as a look-up table, and it does not appear to serve any transformation or learning 

goal. 

This arguments raises some fundamental issues: the need to order hypothesized 

descriptions by some criterion, and the identification of conceptually comprehensible 

steps that can be used to transform a particular hypothesis into one that meets some 

predetermined goal. 

1.1.2 Ordering descriptions 

The relationship among various valid descriptions of a set of examples is best cap-

tured by a preorder: a relation that is reflexive, transitive, but not necessarily anti-

symmetric. The last condition allows for distinct descriptions that are nevertheless 

equivalent in the preorder. 

Post (1960) examined the concept of simplicity in scientific hypotheses; he stated 

that simplicity is a quality whose desirability goes beyond a subjective, aesthetic ap-

praisal - it also embodies the concept of generality, or breadth of application. A 

simple hypothesis is also a "good mnemonic." From this point of view, a simple hy-

pothesis is of significant value in artificial systems; it has lower storage requirements 

than a less simple hypothesis, and is easier for a human user to understand. 

Sober (1975) put forward a more formal definition of simplicity: A hypothesis 

H1 is more simple than H2 if H1 requires less additional information than H2 to 

answer a particular question to which both are relevant. This formulation induces 

an informativeness preorder on a set of hypotheses. If the hypotheses are concept 

descriptions generated from vectors of feature values, then H1 is simpler if it needs 

to reference fewer of the entity's features than H2 in order to determine an entity's 

class membership. 
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Sober's formulation is consistent with Post's intuition. If a simple hypothesis 

needs to reference fewer of an entity's features, then it is more compact than others. 

It has greater breadth of application, since it is not restricted by the need to reference 

irrelevant attributes. Post correctly equated the problem of finding the simplest 

hypothesis to explain a phenomenon to that of finding an optimal coding for the 

phenomenon. 

However, the task of finding such an optimal coding constitutes an insurmount-

able hurdle from the computational point of view. The optimization of decision trees 

and decision rules, two representations commonly used in symbolic machine learning 

systems to represent induced descriptions, is NP-Complete (Hyafil & Rivest, 1976; 

Wegener, 1987). 

One common way of generating a preorder on a description space is to define a 

mapping from the set of possible descriptions to the non-negative real numbers. For 

example, the optimization problem for decision trees can be defined as the goal of 

minimizing the sum of the path lengths in the tree (Hyafil & Rivest, 1976). This 

mapping defines a total preorder on the decision trees that describe a particular 

domain, such that there exists an optimal element - one that is minimal with 

respect to the entire order. But since the task of finding this optimal element is 

NP-Complete, it is infeasible for all but the smallest instances of the problem. 

The approach used in some of the induction methods to be reviewed in Section 1.2 

is to build descriptions from scratch, augmenting them by making locally correct (or 

"greedy") choices. This bypasses the computational difficulty of true optimization, 

and typically results in good suboptimal solutions. 

Another approach, used in the algorithms presented in later chapters, is to gen-

erate a partial preorder on the descriptions, randomly select a class of comparable 
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descriptions, and find one that is minimal in the preorder. The effect is similar to that 

of the greedy approach; any minimal element in the preorder can be expected to be 

a good, though not provably optimal solution. The search for this minimal element 

is a local search and thus does not explore the entire space of possible descriptions. 

It must be noted that in spite of the ideas of Post and Sober, the preorder imposed 

on the valid descriptions of a set of examples is not fixed, since optimization goals 

may vary from situation to situation (Gaines, 1977). In general, it is convenient 

to speak of a reduction preorder (≤red) on the space of valid descriptions, without 

committing to the particular features of the relation. 

Definition 1.2 A description space is a logical calculus of descriptions (with opera-

tions and rules of inference) together with a reduction preorder (≤red) on descriptions. 

1.1.3 Transforming descriptions 

Having discussed the concept of a reduction preorder, it is now possible to turn to 

the task of transforming descriptions in order to achieve a particular goal. We begin 

with a definition of generalization by Niblett (1988). 

Definition 1.3 Given background knowledge r and statements S1 and S2, Si is a 

generalization of S2, or is more general than 52 (S ≥ 52), if r, S1 F s2 

This definition states that wherever 52 is applicable, S is also applicable; any 

observations that are explained by S2 are also explained by S. Requiring that the 

transformation of a valid description result in another description that is a gener-

alization of the original one guarntees that there will be no loss in the breadth of 

applicability. 
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Definition 1.4 Given description W of observations A with respect to background 

knowledge r, and a reduction preorder ≤rcd on the descriptions of L, t is said to be 

a valid transformation if 

1. 'I' is a valid description implies that i(W) is also a valid description, 

2. t(W) >g IF, and 

3. t(W) ≤red 

A valid transformation is a generality preserving mapping of the set of valid 

descriptions into itself. It transforms a valid description into another that is at 

least as general, and at least as reduced, as the original description. The task of 

formulating valid transformations is extremely awkward if one starts from a given 

reduction preorder, and then attempts to define transformations that preserve the 

preorder, as well as the validity and generality of descriptions. 

The strategy used in later chapters is to start from operations that preserve the 

validity and generality of descriptions, and also improve the descriptions by some 

criterion - or at least do not make them any worse. These operations can then 

be used to generate a reduction preorder on the space of valid descriptions, and be 

treated as valid transformations. 

Definition 1.5 A reduction preorder is transformational (written as ≤redt) if it is 

generated by the operations and rules of inference of a description space. A descrip-

tion space is transformational if its reduction preorder is transformational. 

A set of generality and validity preserving operations on a set of descriptions 

becomes a set of valid transformations when the reducing preorder used is the trans-

formational reducing preorder induced by the operations. Then it becomes easy to 
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identify elements that are minimal in the preorder: an element 'I' is minimal in < fedt 

if and only if there is no transformation t such that t(W) _< redt W and 'I' redt t(W). 

The concept of principled induction may now be formulated. 

Definition 1.6 'I' is a principled inductive hypothesis from background knowledge 

r and observations A if 

1. IQ is an inductive hypothesis from r and A by Definition 1.1 (e.g., W is in the 

description space for Lx). 

2. 'I' is minimal in the transformational reduction preorder for the description 

space. 

The following definition gives a general procedure for obtaining principled inductive 

hypotheses. 

Definition 1.7 Given observations i, background knowledge r, a transformational 

description space for L with operations and rules of inference that are valid trans-

formations, and a transformational reduction preorder ≤redt defined by the valid 

transformations, '] is obtained by principled induction if: 

1. To is some arbitrary valid description (an inductive hypothesis by Defini-

tion 1.1). 

2. I' is obtained from T o by application of valid transformations, and W is minimal 

in <redt. 

In other words, principled induction is the process of selecting an arbitrary valid 

description of the observations, and applying valid transformations until a minimal 

element in the preorder is obtained. The intent of stipulating that the initial valid 

description be selected arbitrarily is to allow for the use of an easily obtained valid 
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description. In practical terms, principled induction is the process of producing, 

inexpensively, an accurate working hypothesis, and then improving that hypothesis 

by small, well defined steps, until no further simplification is possible. 

1.2 Some induction algorithms 

As part of an introduction to principled induction, it is useful to survey some well 

known algorithms that induce concept descriptions from vectors of attribute values. 

These algorithms are described in some detail, and the descriptions are enriched 

with simple examples. The reader who is already familiar with these algorithms will 

benefit from the portions of the discussion that analyze them in terms of whether 

they can be characterized as forms of principled induction. The time complexity of 

two of the algorithms is also examined, as these measures will be used for comparisons 

in later chapters. 

1.2.1 Version space 

The version space learning algorithm, due to Mitchell (1978), is based on a reflexive, 

antisymmetric partial order on the space of all possible descriptions in a language. 

This ordering is indeed a generality ordering, in the sense of Definition 1.3. The 

entire relation can be represented as a graph, called the version space graph. 

Example 1.1 Given a domain in which entities are described by the features color 

(one of {blue, red}) and size (one of {small, large}), the version space graph of 

concept definitions in the domain is as shown in Figure 1.1. An arrow from node 

v1 to node v2 indicates that v1 is more general than v2. Thus, the top element in 

the graph, (*, *), which represents a description in which neither of the features is 
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(blue,*) (red,*) (*,small) (*,large) 

(blue,large) (blue,small) (red, large) (red,small) 

Figure 1.1. The version space of concepts in color and size. 

instantiated, is more general than any other description. The four minimal elements 

in the relation are the descriptions with both features instantiated. As long as 

nothing is known about the concept to be learned (e.g., no examples have been 

made available), any node in the version space graph is a possible description of the 

concept. 

For the purpose of learning concept descriptions, the version space V is not 

represented explicitly, but rather by two boundary sets of nodes: 

1. The most general boundary set: G = {g -i v E V, v 54 g A v ≥ g}. 

2. The most specific boundary set: S = {st— v E V,v =A s As >g v}. 

The algorithm uses positive and negative examples of the concept to be learned 

(the target concept) to specialize the G set and to generalize the S set. The examples 

are presented incrementally, and the boundary sets are modified to create a new 

version space, whose nodes constitute the set of possible concept definitions that are 

complete and consistent with respect to the examples that have been presented. If 

and when the boundary sets meet, G = S = {v}, and v is the concept description. 

The G set is initialized to the most general element in the graph, and the S set 

is initialized to the first positive example. With every additional positive example 
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e, G is updated by discarding any elements that are no more general than e. The 

specific boundary set S is updated to the least general elements in the graph that 

are more general than e. Positive examples are used to ensure that the S set is as 

general as possible. 

If the example e is negative, any elements in S that are more general than e must 

be dropped, and G must be replaced by the set of least general graph nodes that are 

not more general than e. This ensures that the G set is only as specific as necessary 

to avoid covering negative examples, so that all of the possible definitions in the new 

version space are consistent with respect to the available observations. 

Example 1.2 Consider the task of learning the concept "blue" in the descrip-

tion space depicted in Figure 1.1. Let the positive examples be (blue,large) and 

(blue,small), and let there be a single negative example (red,small). The boundary 

sets are initialized to G = {(*, *)} and S = {(blue,large)}. Let the next example 

be the negative one, (red,small). The current S set does not contain any elements 

that are more general than (red,small), so what remains is to replace G by the set 

of least general nodes that are not more general than the example. The single el-

ement of the current G is more general than (red,small), so the set is replaced by 

{(blue,*),(*,large)}. At this point the G and S sets define a version space with three 

nodes, or possible concept descriptions: { (blue, large), (blue,*),(*, large) }. The second 
positive example, (blue,small) is not covered by (*,large), so the latter node must be 

dropped from the G set, resulting in G = {(blue,*)}. The only element in the S set is 

not more general than (blue,small), so S is updated to {(blue,*)}. The boundary sets 

have met, and the learned concept is "blue, of any size", which may be interpreted 

as "blue". 

/ 



11 

It is easy to show that this algorithm learns concept descriptions by principled 

induction. The goal of the transformation process is to reduce the size of the set of 

possible concept descriptions, such that a single possible description remains. The 

initial guess To is obtained at little cost by creating an S set with an arbitrary 

positive example as its only member. The updatings of the boundary sets preserve 

the validity of the possible concept descriptions in the new version space - that is 

precisely their nature. Generality is preserved by updating the S set with nodes that 

are more general than the ones they replace. 

The updating operations induce a preorder on the valid version spaces. This 

preorder may be thought of as one of tightness: if an example triggers any change at 

all in the version space, the updated version space will have a G set that is at most 

as general as the previous G set, and - as discussed in the previous paragraph - 

an S set that is at least as general as the previous one. 

It could be argued that since the learning algorithm is strictly incremental, in the 

sense that it maintains consistency and generality with respect to one example at a 

time, a given state of the version space cannot be judged to be a valid description of 

all the examples. For example, the initial version space, defined on the basis of the 

first positive example, is not necessarily consistent with respect to future negative 

examples. 

However, consider the version space after k examples have been processed. To 

perform principled induction from those k examples, it is sufficient to select the 

current version space as TO. Since no valid transformations - or steps of the 

algorithm - can be performed without additional examples, the current version 

space is minimal in the preorder, and is the result of the principled induction task. 

The previous, incremental processing of the lc examples guarantees that the readily 
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available initial guess is in fact minimal in the preorder. 

1.2.2 Learning Boolean functions 

The task of simplifying a Boolean function is the same as learning a concept descrip-

tion from a set of examples made up of bit vectors for which the function is known 

to have value "1". While this is only a restricted form of the problem of inducing 

decision rules, the Quine-McCluskey simplification method (McCluskey, 1956; Quine, 

1955; Quine, 1952) is a clear example of principled induction and should be examined 

in this survey as well. 

The input to the algorithm is a set of N positive examples v defined in binary 

attributes X = {x1,. . . , x}. The output is a set of vectors, each of which is defined 

in some subset of X. The set is interpreted as a disjunction of conjunctive clauses. 

In dealing with binary attributes whose values may be "0" or "1", it is customary 

to represent r = 1 by x and x = 0 by . Thus the output set {a 1ff2, r3} is interpreted 

as the description "x1 takes the value one and x2 takes the value 0, or x3 takes the 

value 1." Each element v in the output set is interpreted as a conjunctive decision 

rule of the form v = 1. For example, x1ff2 is interpreted as 

(XI =1)A(x2=0)=1. 

Initially, the algorithm looks for all pairs of examples that differ on exactly one 

attribute x2. For every such pair (vi, v2), a new example v' is generated, such that v' 

is defined in x1,. . . , x_1, ... , x: v' is of length ii - 1, and is equal to both v1 

and v2 on every x, j 54 i. The examples v1 and v2 are marked as "used" to indicate 

that they have participated in the generation of a new vector; this does not preclude 

them from appearing in other pairs. The process is repeated with the all the new 

vectors of length n - 1, n - 2,... until no pairs of vectors of the same length can 
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be found that differ on exactly one attribute. Notice that vectors of length n - 1 

or less may be defined on entirely different attributes, and may therefore not be 

comparable. The output is the set of vectors that remain unmarked. 

# Xl X2 Xi+X2 

100 0 
201 1 
310 1 
411 1 

Table 1.1. A table for the Boolean function "or" W. 

Example 1.3 The Boolean function "or" is defined in Table 1.1. The positive ex-

amples are numbers 2 (ir2), 3 (xir2), and 4 (x1x2). Examples 2 and 3 differ on 

both attributes, so they may not be paired to generate a simplified vector. On the 

other hand, 2 and 4 differ on the value of x1; they are be used to generate a vector x2, 

and then marked as used. The same is true of 3 and'4, which generate x1. The two 

vectors of length one are defined on different attributes, so no further simplification 

is possible. Both vectors are unmarked, so they appear in the output set {x1, x2}, 

interpreted as two decision rules: If attribute ri has value 1, the Boolean function 

"or" has value 1; else if x2 has value 1, the function has value 1. 

It must be noted that the output of this algorithm is not optimal. All the algo-

rithm guarantees is that every conjunction is prime: if any attribute were dropped, 

the conjunction would cover some case defined in the original m attributes that was 

not included in the original set of positive examples. In order to truly optimize the 

output, it is necessary to identify and remove any redundant conjunctions - that is, 

conjunctions that only cover examples which are also covered by other examples. The 
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removal of redundant conjunctions, and hence the optimization of Boolean function 

definitions, is NP-Complete (Wegener, 1987). 

In order to understand why this simplification algorithm is an example of prin-

cipled induction, one must note that the reduction of two vectors that differ on one 

attribute to a shorter vector without that attribute preserves the generality and con-

sistency of the entire set of unmarked vectors - the potential output. The new 

vector is in fact more widely applicable than either of the two original ones, and 

it is consistent because the eliminated attribute is binary. The reduction operation 

induces a reducing transformation preorder on the valid sets of unmarked vectors, 

and constitutes a valid transformation with respect to that preorder. 

1.2.3 Top-down induction of decision trees 

Concept definitions can be represented as decision trees, where every internal node 

in the tree represents a query about the value of a particular attribute, and every leaf 

represents a class or concept name. The decision tree of Figure 1.2 is a representation 

of the Boolean function "or" described in Table 1.1. 

The classical approach to inducing decision trees is to build them from the top 

down, using local criteria to select the test attribute at every new node (Breiman, 

Friedman, Olshen & Stone, 1984; Quinlan, 1986b). 

Figure 1.2: A decision tree representation of the "or" function, described in Table 1.1. 

Given a set S of entities that belong to different classes, one would like to select as 
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the first attribute - the root of the decision tree - one that divides S into subsets 

Si,. . . , S,, such that the subsets are more homogeneous than S. More explicitly, 

suppose that the most frequent class among the N entities of S is c, of which there 

are k cases. Then the frequency of c in S is . Let Ci be the most frequent class in 

each S. One would like the average frequency of the cis to be higher than *; this 

means that the subsets are "closer" to containing only elements of a single class. The 

process is repeated on every S, until the resulting subsets are perfectly homogeneous. 

The crux of this method is the selection of an adequate attribute on which to split 

the set of examples. While the choice of an attribute is irrelevant to the correctness 

of the tree representation of the concepts, or classes, contained in S, there are choices 

that will produce more compact representations. 

In order to select a test that will lead to a simpler representation, the attributes 

that are available to partition S are rated on their impurity (Breiman et al., 1984). 

An impurity function i(S) assigns a nonnegative value to a set of examples and a 

possible test attribute a. This function must take on its maximum value when every 

class that is present in S occurs with the same frequency, and its minimum value 

when only one class occurs in S. 

In order to rate an attribute a € A, where A is the set of attributes available for 

partitioning 5, a is used to partition the examples into S1,. . . , S,, and the impurity 

of every Siis calculated. These impurities are weighted by the sizes of the subsets 

and averaged. The attribute that is selected is the one that minimizes the weighted 

average of the impurity measures. 

One of the impurity functions, proposed by Breiman et al (1984) is 

k 

I(S) = —Ep(ck) log(p(ck)) 

where c1,. . . , ek are the classes that occur in S. This is the entropy function defined 
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by Shannon (Shannon & Weaver, 1948); it is used with 2 as the logarithmic base in 

the tree induction systems ID3 (Quinlan, 1986b) and C4.5 (Quinlan, 1990b). 

Example 1.4 In this example, the ID3 algorithm is used to induce a tree from 

the data of Table 1.1. Partitioning on x1 would result in subsets {1,2} and {3,4}, 

corresponding to the examples with values 0 and 1, respectively, on x1. The first 

subset has one example of class 1 and one of class 0; the entropy of the set is 

—(0.5 10g2(0.5) + 0-5 - 1og2(0.5)) = —(-0.5 - 0.5) = 1. 

The second subset has two examples of class 1, so its entropy is 0. 

Partitioning by x2 would produce two subsets with the same entropies, so the choice 

is irrelevant. Let us select x1; the subset 13,4} requires no further partitioning, since 

both entities belong to class 1. A leaf node is created and labeled with that class. 

The subset {1, 2} still requires partitioning. The only remaining attribute is X2, and 

x2 

0 

0 1 

Figure 1.3. The tree induced top-down from Table 1.1. 

splitting on this feature produces two singleton subsets, obviously with entropy 0. 

The induced tree is shown in Figure 1.3. 

The top-down approach is clearly not principled induction. There is no initial 

guess as such; the unfinished tree does not qualify as a valid description of S. The 

tree is "grown" by specialization, rather than by generality preserving simplification. 

It is true that the finished tree could be used as the initial valid description of a 
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principled induction process; however, as discussed below, the cost of producing this 

initial guess is far from negligible. 

To analyze the cost of this approach to tree induction, consider a set S of training 

examples, described by the set of attributes A. In order to select some a E A to 

partition 5, the set must be partitioned by every a, and the impurities of the resulting 

subsets must be measured. Therefore, every member of S must be examined on the 

value of every attribute at a cost of ISI IAI. That is in effect the cost of constructing 

every level of the tree; since the number of levels is bounded by the number of 

attributes, the time complexity of the entire process is 0(lI• IAI2). Moreover, the 

average running time of the algorithm can be expected to approximate this upper 

bound. 

Trees induced by this method are not guaranteed to be optimal because test at-

tributes are selected by minimizing the average heterogeneity of the subsets resulting 

from a partition, which is a purely local criterion. True optimization would require 

that these selections be made by examining the finished decision trees that would 

arise from the various selections of test attributes for the current node of the tree. 

1.2.4 Statistical induction of decision rules 

PRISM (Cendrowska, 1987) is an algorithm that adapts the statistical approach of 

ID3 to induce sets of decisions rules. Like the Quine-McCluskey algorithm, PRISM 

produces a disjunction of conjunctive decision rules. PRISM, however, is capable of 

learning from examples described by n-ary attributes. 

A more significant difference between the Quine-McCluskey algorithm and PRISM 

is that the latter grows rules by specialization; this disqualifies it from being a prin-

cipled induction algorithm. 
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Decision rules are created by finding tests, or attribute-value pairs, of the form 

(attribute = value). Cendrowska treats these pairs as discrete messages in an infor-

mation system. The information, in bits, contributed by such a pair (abbreviated as 

(a = x)) to the classification of an entity as a member of class e, is defined by 

I(cl(a = x)) = 1og2(  = rI 
P(c) 

The interpretation of the fraction in the right hand side is: "the probability that the 

class is c after it is known that the entity has value x on feature a, divided by the 

probability that the entity belonged to class c before the value of its feature a was 

known." Rules are grown by adding to them attribute-value pairs that maximize the 

information function. 

In order to build a set of rules from training examples from classes c1,. . . , 

PRISM does the following, for each c. 

1. Selects the attribute-value pair (a = x) that maximizes the information func-

tion, adding the pair as a test to the conjunctive rule for class c. It then 

creates the subset of entities that meet this condition. 

2. Repeats step 1 until the subset contains only members of class c, and then 

removes the remaining subset from the original training set. 

3. Repeats steps 1 and 2 until no entities of class ci remain in the training set. 

As anticipated above, PRISM is not a principled induction algorithm. There is no 

initial valid description; the final description is grown by progressive specialization 

from an empty rule set, with no intermediate valid descriptions. 

This algorithm is somewhat less efficient that top-down tree induction. For every 

rule, every entity could be examined on every attribute with every test that is added 
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to the rule. Since a rule can be as long as the number of features, given a set of 

attributes A, the cost of creating rule from examples S is ISI Al2. Furthermore, the 

number of rules is bounded by number of examples, so the overall time complexity 

is O(ISl2• lAI2). However, unlike with the tree induction method, this is in fact a 

very pessimistic estimate, and the average time can be expected to be better. 

1.2.5 Other algorithms 

The algorithms described above exemplify some of the basic approaches to the in-

duction of descriptions from attribute vectors, and serve as positive and negative 

examples of principled induction. 

There are other effective induction algorithms worthy of mention. For example, 

the program AQ11 succeeded in learning a set of rules for the diagnosis of plant 

pathology, that performed better than rules generated by human experts from the 

same recorded cases described in terms of feature values (Michalski & Chulausky, 

1980). The system's basic method is not unlike that used in PRISM: decision rules 

are augmented with conjuncts that cover many positive and few negative examples of 

the target concept. The basic AQ11 algorithm has been extended in systems such as 

AQ1S (Michalski, Mozetic, Hong & Lavrac, 1986) and Einstein (Webb, 1991); these 

extensions enable the algorithm to cope with attributes whose values come from 

continuous domains (as opposed to discrete attributes), and with partially corrupted 

examples. INDUCT (Gaines, 1991) is an extension of PRISM that performs well on 

corrupted data. However, like the basic methods that underlie them, these effective 

algorithms fail to qualify as forms of principled induction. 
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1.3 Goals of this thesis 

The goal of this thesis is to argue that the principled approach to induction presented 

in this chapter provides a clear and effective representation of the problem of learning 

concept descriptions from examples. The principled induction algorithms presented 

in later chapters are not intended to provide solutions that are necessarily more 

efficient or effective than those reviewed in the previous section, but rather to support 

this claim. 

It will be shown how differences in the preorders used for principled induction 

affect the efficiency of the induction process and the quality of the results. These 

differences highlight the tradeoff between the cost of the principled induction process 

and the degree of optimization achieved. 

Furthermore, experiments comparing the performance of principled induction 

to the statistically based method of Section 1.2.3 shed some light on the value of 

statistical criteria when induction is performed from corrupted data. 

1.4 Overview of the chapters 

Chapter 2 reviews an algebraic theory for the manipulation of decision trees and an 

efficient algorithm for simplifying decision trees. Chapter 3 explains the application 

of the tree reduction algorithm to the task of learning concept definitions by princi-

pled induction from vectors of feature values. It is shown in that chapter that the 

original tree reduction algorithm fails to achieve the degree of simplification that 

can be expected of statistical methods. A new preorder is defined on the terms of a 

decision theory to support a modified tree reduction algorithm that achieves greater 

simplification. 
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Chapter 4 discusses the application of these methods to the task of inducing con-

cept definitions from incomplete and noisy data, and examines the value of statistical 

criteria when inducing decision trees in noisy domains. Some empirical results are 

presented to support the effectiveness of the principled induction algorithm presented 

in Chapter 3, and the extensions discussed in the current chapter. 

Chapter 5 presents an algorithm for inducing compact definitions in the form of 

prime decision rules, which are extracted by principled induction from a decision tree 

representation of the training examples. 

The last chapter summarizes the thesis and discusses its contribution. 



Chapter 2 

Algebraic decision theory 

This chapter presents an algebraic formulation of decision trees, developed by 

Cockett (1987a, 1987b, 1988). The formulation is used to define operations on 

decision trees, which in turn generate a preorder on the trees. An algorithm is de-

fined, using those operations, to find minimal. elements in that preorder (Cockett 

& Herrera, 1990). In Chapter 3 the algorithm will be used to perform principled 

induction of decision trees. 

2.1 Discrete decision theory 

This section presents an algebraic theory that can be used to model decision processes 

in which every atomic test is discrete: it has a predetermined, finite number of 

outcomes. 

Definition 2.1 A decision q is an operation, with an associated arity n ≥ 2 (written 

as arity(q) = ii), that partitions a set S into n disjoint subsets: 

q:S—+S+...+S, 

that is, q partitions a set S into Si,. . . , S, such that 

OSi=S 
i=1 

and for 1 ≤ i, j ≤ n, i 0 j implies that Sfl S = 0. 

The following example shows how this definition of a decision models the atomic 

component of a decision process. 

22 
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Example 2.1 S = lei, e2, e3}, where each element is in turn a set of n expres-

sions (qj): q is a decision that appears exactly once in a given e, and 1 ≤ 

i ≤ ariy(q). These expressions simply associate the value j with decision q. 

Let ariy(qi) = 2; the arities of q,. .. , qn may remain unspecified. Suppose that 

ei = {(q11),(q23),. . . (qG5)}, e2 = {(qiG2),(q2'7),. . . ,(q,G3)}, and e3 = 

{(qi 1), (q27), . . . , (q,4)}. It is useful to think of q as a gate with one input chan-

{el,e2, e3} 

{e 1,e3} {e2} 

Figure 2.1. The interpretation of decision q with arity two. 

nel, and ariy(qi) output channels, each labeled with a number from {1,. . . , arity(qi)} 

(see Figure 2.1). Decision q redirects each ej in a way that is determined by the 

value associated with q in e. 

In the following definition, decisions are composed to form terms, which are 

expressions analogous to decision trees. 

Definition 2.2 Given a set of decisions Q and a stock of variables x1, x2,. . . , 

a term defined in Q and the variables is an expression t formed as follows: 

• If t is one of x1,x2,...,x,..., it is a term. 
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• If ti,. . . , t, are terms, q is a decision in Q, and arity(q) = n, then q(t1 ... Its) 

is a term. In such a term, tj,. . . , t, are the arguments or subtrees of q. 

A term t also partitions a set into disjoint subsets, by the following rules: 

• If t = q(iil ... (t,), then partition the set with q, redirecting the disjoint subsets 

into the corresponding ts; that is, redirect the output from channel i into ti. 

• If t = x, the partition is complete. 

Intuitively, the variables in the term are possible outcomes of the decision or 

classification process. For every variable that occurs in the term, there is a "bucket" 

labeled with the variable name. As shown in Figure 2.2, elements of the set that are 

redirected to a variable x are deposited in the bucket labeled "x". This corresponds 

to our understanding of decision processes as represented by decision trees. Every 

N 
/ 1-1 

Figure 2.2. The interpretation of a term in a decision theory. 

internal node of the tree can be interpreted as a "gate" such as shown in Figure 2.1, 

labeled with the corresponding decision. However, the graphical representation of 

Figure 2.1 has been deliberately replaced by the standard graphical representation 
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of a decision tree. The arcs of the tree correspond to the channels, and its nodes 

represent occurrences of the variables in the decision term. Although a variable x 

may appear on several terminal nodes, all occurrences of x are linked to a common 

bucket. 

It must be noted that instead of discussing the classification of isolated events, 

these definitions deal with the partition of sets of events into disjoint subsets: if 

an event is deposited in a bucket labeled x, then it cannot also appear in a bucket 

labeled y. Formally, to classify a single event, it is necessary to ask in which bucket 

would the event be deposited if the entire set were partitioned with the, decision 

expression. In practice, it is sufficient to trace the application of the decision term 

to that particular element. 

Example 2.2 Consider the problem of determining the appropriate dosage of a 

medication on the basis of the patient's age group. If the patient is young, the 

dose should be one tablet; if he is middle aged, it should be two tablets; and if he 

is old, it should be one and a half tablets. This can be represented in a decision 

theory D = (agegroup, {}) with variables {1, 2, 1.5}, where agegroup has domain 

{ young, middleaged, old}; this domain is an ordered set, each of whose elements 

corresponds to one of {1, . . . , arity(q)}. The appropriate term is agegroup(l21.5), 

shown in Figure 2.3 If the query agegroup returns young, then the term is to be 

agegroup 

1 2 1.5 

Figure 2.3. Decision tree corresponding to agegroup(1J2I1.5). 
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taken in its first argument, or subtree, which yields the variable term 1. Formally, 

an event with the value young on test agegroup, is placed by the term into a subset 

that contains the class of individuals for whom the dosage is one tablet. 

Throughout this work the following will be used interchangeably: tree and term; 

subtree and argument; decision and test; and variable, leaf, and terminal node. 

The following definition completes the theoretical framework required to describe 

discrete decision processes. 

Definition 2.3 A decision theory D = (Q, E) is an algebraic theory with a set of 

decisions Q and a set of identities E. The terms defined in Q and a stock of variables 

are called the terms of D (written as terms(D)). The identities in E are of the form 

ti = tj, where t, tj e terms (D). 

In addition to any identities in E, every decision q in a decision theory must 

satisfy the following identities: 

D.1: Idempotence 

q(xj ... x)=x. 

D.2: Distribution 

qi(xi I . . . xj_iq2(yil . . . . . . Ix) = 

q2(qi(xi I. . . xj_iyj xj+i( . . . qi (x . . . Xi_lIYmIXi+lI . . . IXn)). 

D.3: Repetition 

q(xiI ... xj_i g(yi ... Iy)Ix+iI ... Ix.) = ... Ix.iIi4x+iI... Ix). 

An additional identity was introduced by Chen and Ras (1985): 
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D.4: Transposition 

qi(q2(xi,1J . . . I2(xm,iI Im,n)) 

= q2(ql(xl,1I ... Ixm,i)I ... qi(xi, . 

D.1 

D2 

D3 

D.4 

x  

x 

x 

/\ 

x 

x  

x 

Figure 2.4. Identities D.1-4 as they apply to binary trees. 

These identities, as they apply to binary trees, are illustrated in Figure 2.4. 

Their semantics correspond closely to intuitions about decision processes. 

The idempotence identity states that if every possible answer to a query results 
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in the same conclusion, then the conclusion may be safely drawn without reference 

to the query. Using the buckets analogy, it is pointless to continue partitioning the 

set if all of its elements are bound to end up in the same bucket. The repetition 

identity states that if the same query is posed at two consecutive stages of a decision 

process, then it may be assumed that the answer is equal both times - and that the 

second occurrence of the query may be omitted. The buckets corresponding to the 

variables of the second occurrence of the repeated decision that are removed by the 

elimination of repetition are going to have no contribution from those occurrences 

of the variables. The two remaining identities, D.2 and D.4, specify how changes in 

the ordering of two decisions affect the structure of the process, given that the order 

in which the decisions are taken must not affect the contents of the buckets. 

Cockett (1987b) showed that D.i-3 constitute a set of axiom schemes for the 

terms of a decision theory D(Q, E): if every q E Q satisfies these identities, then so 

does every term in the decision theory. It was also shown, in the same work, that 

D.4 can be derived from D.2 and D.3, and that D.3 can be obtained from D.1 and 

D.4. Hence D.1, D.2, and D.4 also constitute a set of axiom schemes. 

The identities D.1-4 can be rewritten as a set of equations that express their 

applicability to composite terms. Some additional notation is required: If W is a 

composite term with variables (from left to right) x1, x2,. . . , x,, the term will also 

be denoted by W(xilx2l ... Jx). 

DW.1: Idempotence for terms 

W(xl ... IX) =x. 
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DW.2: Distribution for terms 

Ixi_itT'V2(yil . . . IYm)IXi+1I . . . Jx,) = 

T4'2(T'V1(xij IXi_ilYil2i+il Ian)I IT4Ti(xil IXi_1IYmIXi+1I lx)). 

DW.3: Repeat reduction for terms 

T4T(xiI Ixi_iIT'V(yil • II • • • Ii)I • 1x+11 Ix) 

=W(x1J ... lx.1,1l ... jx +1 f...Ix). 

DW.4: Transposition for terms 

1471(T'V2(xi,iI • I"2(Xm,iI . !xm,n)) 

= T'V2 (WI (xi,iI Im,1)I . . . T'Vi(Xi,nI I'in,n)). 

Giving the equations DW.1 and DW.3 a direction in the obvious simplification 

direction results in rewriting rules which allow the definition of various special forms 

for decision trees. 

Definition 2.4 A term t is idempotence reduced if there is no decision that can be 

eliminated using DW.1. Any tree can be transformed into an idempotence reduced 

form (id(t)) by successive applications of DW.1. 

Definition 2.5 A term t is repeat reduced if there is no decision that can be elimi-

nated using DW.3. Any tree can be transformed into a repeat reduced form (rp(t)) 

by successive applications of DW.3. 
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Definition 2.6 A term t is simply reduced if it is put in repeat reduced form, and 

the result is then put in idempotence reduced form (id(rp(t))). 

Equations DW. 1-4 also allow us to define several equivalence relations between 

terms of a decision theory. 

Definition 2.7 Terms t, and t2 in the same decision theory are structurally equiv-

alent (t t2) if one is an identical copy of the other. 

Definition 2.8 Terms t, and t2 in the same decision theory are decision equivalent 

(t1 —D t2) if one can be obtained from the other by some sequence of applications of 

DW.1,3,4 (or DW.1,2,4). 

Definition 2.9 Terms t, and t2 in the same decision theory are transpose equivalent 

(ti = T t2) if one can be obtained from the other by DW.4. 

22 The reasonable preorder on terms 

The equations defined in the previous section can be used to generate a preorder on 

the terms of a decision theory. This is a reduction preorder in the sense mentioned 

in Chapter 1. 

Definition 2.10 The reasonable preorder, <,, on the terms of a decision theory is 

the least preorder 1 that is 

Monotonic: If t, ≤ t2, q(. .. ItIl ... ) ≤ q(... I2I .. . 

Idempotent reducing: t ≤,. q(t ... it). 

'As mentioned in Chapter 1, a preorder is a relation that is reflexive and transitive, but not 
necessarily antisymmetric. A least preorder can be formed by computing the transitive and reflexive 
closure of a relation. 
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Repeat reducing: 

q(xij • • Ix) ≤r 

Transposition invariant: 

qi(q2(xiij... xi n) ... q2(xmi... Xmn)) 

≤r q2(qi(xii . . . lXmi) . . . q1(x1 X n )). 

If a < b and b ≤ a are in a preorder, a and b are preorder equivalent. Cockett 

(1987a) showed that two terms of a decision theory are preorder equivalent if and 

only if they are transpose equivalent. If they are transpose equivalent, then they 

are preorder equivalent by the definition of ≤r. If they are preorder equivalent, 

they must be transpose equivalent, because the other inequalities that define ≤r are 

asymmetric. 

This can be seen as idempotence and repeat reduction shorten the average path 

length in the term, and only transposition preserves it. If the preorder is interpreted 

'as an ordering on the cost of the terms of a decision theory, then transposition 

equivalence partitions the terms into cost classes. 

The following definition provides an additional characterization of minimal ele-

ments in the reasonable preorder. 

Definition 2.11 A term t is irreducible if every t' such that ' =—T t is simply reduced. 

It is not difficult to see that a term is irreducible if and only if it is minimal 

in the reasonable preorder. If every transpose of t is simply reduced, it means 

that idempotence and repeat reduction cannot be applied to any t' that is preorder 
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equivalent to t; since the reasonable preorder is a transitive closure, this implies that 

there is no term that is strictly smaller than t in the preorder. 

However, Definition 2.11 is more useful in a practical sense, as it provides a 

procedural characterization of minimal elements. This is the characterization used 

later to formulate an algorithm to find a minimal element in the reasonable preorder. 

Example 2.3 The tree of Figure 2.5(i) is irreducible, since it is simply reduced, 

and so is its only transpose, shown in Figure 2.5(u). On the other hand, the tree of 

(i) (ii) 

Figure 2.5. (1) An irreducible tree, and (ii) its only transpose. 

Figure 2.6(i) is simply reduced, but not irreducible, since its transpose (Figure 2.6(u)) 

is not simply reduced. The transpose can be idempotence reduced to b(112). 

(i) (ii) 

Figure 2.6: (i) A simply reduced tree that is not irreducible, and (ii) a transpose 
that is not simply reduced. 
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The relationship between the minimality and the cost of elements in the reason-

able preordèr deserves further examination. Taking an arbitrary term and descending 

from it in the preorder is not guaranteed to yield a minimal element that is optimal 

with respect to a predetermined criterion. This is so because the preorder is a par-

tial ordering. The following discussion describes the connection between optimization 

criteria and the reasonable preorder. 

Definition 2.12 A reasonable criterion is a real cost function of the form 

cost terms(D) }+ 

that preserves the reasonable preorder. 

To prove that a cost criterion is reasonable, it is sufficient to show that if t1 

is obtained from t2 by idempotence or repeat reduction, or transposition, or by 

monotonic composition, then cost(ti) ≤ co.st(t2). Since the reasonable preorder is a 

transitive closure, this proves that if any ti ≤, t2, then cost(ti) Cost(t2)-

It is therefore easy to construct a proof that, for example, the height of a tree 

(height(t)) or its uniform size 2 (u.size(t)) are reasonable cost criteria. By the same 

token, it can be shown that the number of nodes is a reasonable cost criterion for 

binary terms. This is not true of arbitrary terms; the term 

q (q2(xi Ix2Ix3) Iq2(x4lxslx6)) 

has a total of nine nodes. Its only transpose, 

q2(ql(x1 Ix4) jqi (x 21 x 5) Ii (x 3I x e) 

2The number of leaves minus one. 
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has ten. Thus, the transposition of trees, which is treated in the preorder as "neutral" 

in terms of cost, can in fact disrupt a cost criterion that might at first hand appear 

to be reasonable. 

The proof technique described above can also be used to show, with little ef-

fort, that linear combinations of reasonable cost criteria (with positive coefficients) 

and powers (greater than one) of reasonable cost criteria are also reasonable. Fur-

thermore, there is a proof that any expected testing cost (e.g., an assignment of a 

positive cost to every decision in a tree, and a branching probability to every arc) is 

reasonable (Cockett & Herrera, 1990). 

Although a minimal element of the reasonable preorder cannot be guaranteed to 

be optimal with respect to a predetermined reasonable cost criterion, it can be shown 

that every irreducible term is optimal with respect to some reasonable cost criterion. 

In particular, every irreducible term is optimal with respect to some expected testing 

cost (Cockett & Herrera, 1990). 

23 Tree reduction to an irreducible form 

If a repeat reduced term is not irreducible, then there must exist some transpose 

equivalent term that is not idempotence reduced. Hence the problem of transforming 

a repeat reduced term into an irreducible form is that of finding transposes that are 

not simply reduced, performing idempotence reduction,, and repeating this process 

until the resulting term is irreducible. 

2.3.1 The strategy for finding irreducibles 

The method last discussed for finding irreducibles is impractical, given the large num-

ber of transposes a term may have. The worst case for the number of transposes of a 
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binary tree composed from decisions Q is given by the recurrence 

R(IQt) = IQI R(IQI - 1)2, where R(0) = 1 (Cockett, 1987b). 

To obtain a more efficient method, the problem must be viewed from a different 

perspective. It follows from Definition 2.11 that if a term t is not irreducible, then 

there exists a decision in t that can be transposed to the level above the leaves such 

that idempotence reduction will be applicable. Conversely, to show that the term is 

irreducible, it is sufficient to show that there is no such decision in I. The following 

definitions will allow the formalization of this intuition. 

Definition 2.13 A decision that occurs on every path from the root to a leaf of a 

term t is semi-essential in I. 

While it is clear that any conclusion to be reached using a given tree will probe 

every decision that occurs semi-essentially, this does not imply that the decision 

cannot be eliminated from some of the paths by idempotence reduction. 

Definition 2.14 A term t is semi-essentially simple when its only semi-essential 

decision is its root decision. It is said to be factored by q if the subtree at every 

occurrence of q is semi-essentially simple. 

If a tree t is factored by q, then no occurrence of q in t can be transposed to a 

lower level. These definitions allow the formulation of the following proposition, 

from (Cockett, 1987a). 

Proposition 2.1 A term t is irreducible if and only if for every decision q in t, t 

factored by q cannot be idempotence reduced. 

To understand why this proposition is true, it is useful to examine how the result 

could be applied to the problem of finding an irreducible form of a term. 
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Consider a simpler version of the problem: Let t = q(ti ... Its) be such that 

t1,. . . , t, are known to be irreducible. By the proposition, to test t for irreducibility 

(or transform it into an irreducible), it is sufficient to factor t by its root decision q 

and test for idempotence. 

In order to factor t, it is necessary to transpose q as far down the tree as possible. 

The problem becomes that of finding those decisions in t with which q may be legally 

transposed. The solution is provided by the following result from (Cockett, 1987a). 

Lemma 2.2 (Pulling up lemma) A decision q is semi-essential in t if and only if 

there is a term t' with q at the root, such that ' t. 

The factoring of t by its root decision q can be performed in the following manner. 

Find some decision q' 54 q that is semi-essential in t. If there is none, then t is already 

factored by q. Otherwise, build t' = q'(. . .), t' -T t (called pulling up q' in t). The 

existence of t' is guaranteed by Lemma 2.2. Repeat the process for every subtree in 

' that has q at the root. 

The correctness of this process - and of Proposition 2.1 - hinges on the as-

sumption that the order of pulling up does not affect the result. In other words, it 

is important to know that when factoring a term by its root decision q, the choice of 

semi-essential q' to be pulled up to the root does not in any way affect the presence 

(or absence) of idempotence when factoring by q is completed. The irrelevance of 

the order in which semi-essentials are pulled up is shown in the following lemma 

(Cockett, 1987a). 

Lemma 2.3 If t T i2 and both terms are factored by q, then 

tj = W(q(ziizi2j ... Iz1n)I ... q(zmi zm2 ... Izmn)Irm+il ... Izt) 

= V(q(yii yi2 ... ... Iq(yiIy2I... Iy)Iy+iI ... lyt) 
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(where W and V are composite expressions) then m = p and t = s, and there is a 

permutation ir such that 

W(xi,x2,... ,Xn) =T V(X ir(1) ,X ir(2),.. . ,X ir(n )), Z,. = T Yir(i)r, Zj = T Zir(j). 

Proof As tj = T  t2, the decision qo at the root of tj is semi-essential in i2. Since 

2 is factored by q, qo must always occur before q in V. By Lemma 2.2, it may be 

moved to the root of t2 by transposition, yielding t. The same argument can be 

applied to the subtrees of qo in t - which shows that W =T V given 7r - and to 

the arguments of q. 

2.3.2 The reduction algorithm 

This section presents the algorithm for transforming a repeat reduced term into 

an irreducible, followed by a complexity analysis, as given by Cockett and Herrera 

(1990). As hinted in the previous discussion, algorithm is recursive: to reduce a term 

t = q(tit2 ... It), first reduce t1,t2,. . . ,t, to ... ,t. Since the ts are irre-

ducible, the only way to (possibly) achieve idempotence reduction in q(tjj... 

is by manipulating q to the level above the leaves. 

Algorithm 2.1 

reduce(t) 

if t = q( it2j... It) then 

. .,t) i— map reduce over 

- factor(q(tt... I)) 

return (idp-reduce(t')) 

else %flsa leaf % 

return() 

(t1,t2,. . 
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The routine idp-reduce (not given here) is one that applies idempotence re-

duction in the tree wherever possible. When idempotence reduction returns a leaf, 

this result must be considered for reduction higher up in the tree. The following 

algorithm is the one that factors a term by its root decision. 
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Algorithm 2.2 

fact or(t) 

if t = q(tit2 ... It,) then 

SE - semi-es sent ials(t) - {q} 

if SE = {} then return(t) 

else %qoESE% 

qo(t'1 .. . It') - pull-up(qo,t) 

(r1,. . . , r) i- map factor over (, . . . , t) 
return(qo(r1 .... 

else %tisa leaf % 

return(t) 

As discussed above, the factoring is achieved by finding a decision that is semi-

essential in the term (other than the root decision), pulling it up, and repeating the 

process recursively for the siibtrees of the resulting tree. 

To find the semi-essentials of a term t, one need only add the root decision of t 

to the intersection of the semi-essentials of t's arguments. 

Algorithm 2.3 

semi-essentials(t) 

if t = q(ti22...I t.) then return({q} U fl=1 semi-essentials()) 

else return({}) % t is a leaf % 

Once the semi-essentials have been found, one of them, qo, must be pulled up to 

the root of the term. This is done by creating a term t' = qo(t - . . I) and repeat 

reducing it. Since t is repeat reduced, the only decision with repeated occurrences in 

t' is qo. The repeat reduction can be performed with branch- reduce (qo, r, i'), where 
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the branch reduction leaves t' unchanged, except that every occurrence of qo in t' is 

replaced by qo's r z argument. 

Algorithm 2.4 

pull -up (q, t) 

for i = 1 . . . arity(q) 

ti - branch- reduce (q, i, t) 

return(q(t1 . . . 

Algorithm 2.5 

branch- reduce (q, r, t) 

if t = qo(tilt2l... Itn) then 

if qo = q then return(tr) 

else for i = 1.. .n 

4— branch-reduce(q, r, t) 

return(qo(t ... Ii) 

else return(t) % t is a leaf % 

The complexity of reduction is analyzed in detail by Cockett and Herrera (1990). 

The relevant results are summarized here. 

semi-essentials The number of semi-essentials in a term is bounded by its min-

imum height (the length of the shortest path from the root to a leaf). The 

work at each node consists of intersecting the semi-essentials returned by the 

subtrees. The cost of intersecting two sorted lists is of the order of the sum of 

the lists; the work at term t = q(ti... I1) is bounded by 

2 Eminheight(tj). 



41 

The sum of this work over the entire term is bounded by k1 usize(t), where 

usize(t) is the uniform size of t. 

pull-up The cost of pulling up a term is that of performing branch reductions, and 

this is bounded by k2 usize(t), the size of the tree. 

factor The work required to factor a tree by its root decision is to pull up semi-

essentials until the root is at the level above the leaves. This requires applying 

pull-up at every level of the tree; the complexity is O(usize(t) height(t)). 

idp-reduce The cost of performing recursive idempotence reduction on a tree is 

that of traversing the entire tree, plus the comparisons required to check leaves 

for equality. The latter summand is smaller than the number of leaves. Idem-

potence reduction is O(usize(t)). 

reduce Finally, the complexity of reducing the entire tree is O(usize(t) . height2(t)). 

This is the cost of of factoring every subtree in the tree. 

2.4 Summary 

A algebraic formulation of discrete decision theory provides the foundation for defin-

ing operations to manipulate decision trees. These operations can are used to define 

a preorder on decision trees, and are then composed to obtain an efficient algorithm 

for finding minimal elements in the preorder, or irreducible.s. Given a repeat reduced 

input tree, this algorithm returns a tree that is decision equivalent to the input, and 

guaranteed to be no more costly than the input by the criteria used to define the 

preorder. 



42 

Furthermore, the trees returned by the reduction algorithm are optimal with re-

spect to some reasonable cost criterion. The fact that the optimization criterion 

cannot be given as a parameter is what distinguishes this algorithm from true opti-

mization. 



Chapter 3 

Principled induction of decision trees 

This chapter shows how the tree reduction algorithm of Chapter 2 can be used to 

perform principled induction of decision trees. 

The first section defines the algorithms required to obtain an initial valid descrip-

tion of a set of training examples, which is then reduced to a tree description that is 

minimal in the reasonable preorder. The complexity of this algorithm is compared 

to that of the top-down tree induction methods reviewed in Section 1.2, and the 

algorithm is shown to be a form of principled induction. 

In the second section, a larger reasonable preorder is defined that supports a tree 

reduction algorithm which outputs more compact decision trees than Algorithm 2.1. 

The third section compares the performance of the two reduction algorithms on 

two simple examples. 

3.1 The basic principled induction algorithm 

At this stage of the presentation, it is assumed that the training examples from 

which the tree is induced constitute a complete set; every possible configuration of 

vectors attainable with the given attributes is present in the set. Furthermore, all 

of the examples are assumed to be given in full and correct form; each example is 

defined on all of its features, and without errors. These assumptions will be relaxed 

in Chapter 4, where the method is extended to enable principled induction from 

incomplete or noisy training sets. 

43 
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3.1.1 Generating an initial valid description 

The first step in performing principled induction of a decision tree from a set of 

examples is to generate, at low cost, an initial valid description to be used as a 

starting point for the descent in the preorder. 

Given a set of training examples e E S, e = (el, 62,. .. , e,, e+), described 

by discrete attributes Q = {al, a2,.. . , a,}, and uniquely classified by a value of 

5 E {S, 52,.. . , Sk}, where the elements of S are variable. The following algorithm 

is used to build a tree that represents the structure of S. 

Algorithm 3.1 

build-tree(Q) 

if Q = {} then return ("leaf") 

else 

Randomly select some ai E Q, with arity k 

Q'—Q—{a} 

ti,. . . , tk - map build-tree over Q',. . . , Q' 

return(ai(iil... Itk)) 

% Ic copies of Q' % 

Algorithm 3.1 builds a skeletal tree, with its leaf labels undefined, by randomly 

selecting a test attribute from those that are still available. The implementation of 

this algorithm used to generate the examples throughout this thesis actually defines 

an arbitrary order on the attributes, such that build-tree produces a tree in which 

only a given attribute appears at each level, and the attribute appears at only one 

level. On average, this method of building the tree can be expected to produce 

much the same final results (after reduction) as a truly random selection of the test 

attributes. 
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The values of the variables that must appear at the leaves of build-tree(Q) are 

set by applying Algorithm 3.2 for every example e E S. 

Algorithm 3.2 

ins ert- event (e, t) 

if t ="leaf" then return(e+1) 

else 

p 4- ej 

4— insert-even-t(e,t) 

return(a(ti I . . . Ii—i I Ip+1 I Itarity(ai) )) 

% the outcome S associated with e % 

% t = a(t1t2 .. . Iarity(aj)) % 
% the value of e on attribute a % 

The assumption that S is a complete training set guarantees that all of the 

leaves will be labeled with a variable, and the assumption that it is noise-free guar-

antees that every e E S can be inserted, and that no two events that are equal on 

(e', e2.. .. , e,) may differ on the class indicator e+i. 

Applying Algorithms 3.1 and 3.2 to a set of training examples S defined in 

discrete-valued features Q results in a decision tree that is a trivial but valid de-

scription of the classes in S. 

3.1.2 Reducing the valid description 

The initial valid description can be input to the reduction algorithm (Algorithm 2.1) 

to produce a reduced valid description of the examples; the entire process is a form 

of principled induction. To show that this is the case, it is sufficient to note the 

following: 

• The identities D.1 (Idempotence), D.3 (Repetition), and D.4 (Transposi-

tion), taken as operators on valid descriptions, preserve generality. D.4 merely 
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changes the order in which feature values are tested to determine a classifica-

tion; this does not affect the breadth of applicability. D.3 prevents repeated 

tests of the same attribute,' so this does not affect the breadth of applicability 

either. When D.1 is applied in the reducing direction (the use made in defining 

the reasonable preorder, and in the reduction algorithm), it functions as a gen-

eralization operator. The meaning of the tree q(xj... Ix) is "all of the events 

described by attribute q belong to class x, regardless of the value of q." The 

term can be idempotence reduced to x, which means "all of the events in the 

space belong to class x." Since the first statement is provable from the first, 

by the definition of generalization (Definition 1.3), idempotence reduction is a 

generalization operator. 

• These identities constitute, therefore, a set of valid transformations with re-

spect to the reasonable preorder. 

• The reduction algorithm uses only these valid transformations to produce a 

tree that is irreducible, or minimal in the reasonable preorder. 

3.1.3 Time and space complexity 

As discussed in Chapter 2, the time complexity of reducing a term t is 

O(u.size(t) . height2(t)). Assuming that the training set S is complete, 

ISI ≤ BIQI, where Q is the set of decisions on which the elements of S are defined, and 

B = max{arity(q)q E Q}. Since the initial tree is only as high as the number of 

of attributes that describe the examples in S, height(t) ≤ IQI• Building the original 

decision tree is 0 (ISI• IQI) hence the complexity of principled induction of decision 

trees is 0((BIQI - 1) . IQI2). 
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This time complexity is somewhat lower than O(SI IQI2) that of the top-down 

method employed by ID3 and C4.5 (see Section 1.2.3). In practice, the recursive 

reduction process usually decreases u.size(t) dramatically by the time t must be 

factored by its root decision. 

The space complexity is the same as that of ID3; in the worst case, ID3 can 

grow a full tree. However, since the algebraic method must grow the full tree before 

proceeding to prune it, the algorithms presented above could be impractical for 

inducing from training sets described by a large number of attributes, each with a 

high arity. 

This problem can be avoided with a minor modification. The reader will recall 

that the reduction process is recursive; the subtrees are reduced, and only then is the 

tree factored by the root decision, when appropriate. It is therefore possible to build 

the tree from the bottom up, turning the subtrees into irreducibles before creating 

the parent tree. The additional cost is in the greater number of traversals of S, but 

this does not affect the complexity of the reduction process. 

3.1.4 The sparseness of the reasonable preorder 

The principled induction method described above can produce decision trees that 

are disconcertingly large. This is because the reasonable preorder is sparse, and the 

descent through this preorder can often lead to one of the larger minimal elements. 

Two non-comparable minimal elements may approximate the desired optimization 

criterion in vastly different degrees, and yet one is "just as irreducible" as the other. 
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The following example illustrates this phenomenon, and provides the motivation 

for enlarging the reasonable preorder to allow for fewer of those less satisfactory 

irreducibles. 

abcSabcS 
11132113 
11232122 
12132213 
12212221 

Table 3.1. A complete training set for classification on 5. 

Example 3.1 Consider the complete training set of Table 3.1, described by the 

3 33 13 23 1 

Figure 3.1. An initial tree description of the data in Table 3.1. 

binary attributes fa, b,c}, each belonging to a class from S = {1,2,3}. Figure 3.1 

shows an initial valid description of the examples. Applying the reduction algorithm 

yields the tree in Figure 3.2. Now consider the tree shown in Figure 3.3, which is a 

more compact solution to the induction problem than that of Figure 3.2. Decision 

a, which is at the root of the tree in Figure 3.2, has been eliminated from all but two 

of the paths. 

It is somewhat disconcerting that the irreducible of Figure 3.2 should be optimal in 

any sense. In particular, the statement that there exists a reasonable cost criterion 

on which it is better than the smaller tree of Figure 3.3 provokes disbelief. Yet it is 
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3 3 

3 1 2 1 

Figure 3.2. Irreducible tree for the data of Table 3.1. 

3 

3 2 

Figure 3.3. A more compact tree for the data of Table 3.1. 

quite simple to define an expected testing cost criterion such that the larger tree has 

a lower cost. Let the testing costs of a, b, and c be 1, 1, and 5, respectively. For the 

Figure 3.4: An initial valid description for which the reduction algorithm produces 
the tree of Figure 3.3. 

sake of simplicity, assume that all branching probabilities in both trees are . The 

expected testing cost of the first tree is 

cost(ti) = cost(a) + (cos(b) + cost(c)) + (cost(c) + cost(b)) = 5.5. 

For the smaller tree, the cost is 

cost(t2) = cost(c) + .(co.st(b) + jcos(a)) = 5.75. 
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It is interesting to note that if the initial valid description had been the tree of 

Figure 3.4, the reduction algorithm would have produced the irreducible of Figure 3.3. 

However, the trees of Figures 3.1 and 3.3 are not related in the reasonable preorder. 

The goal of the next section is to enlarge the reasonable preorder such that initial 

valid descriptions will be more likely to be related to the smaller minimals in the 

preorder. 

3.2 Enlarging the reasonable preorder 

Enlarging the minimal preorder is not in itself a difficult task. However, care must 

be taken to ensure that it does not become too large. An excessively large preorder 

could make the cost of any algorithm that traverses it to find a minimal element 

prohibitive. In particular, as discussed in Section 1.1.2, searching through a total 

preorder to find a minimal, or optimal element, is an NP-Complete problem. 

The strategy used to define the enlarged preorder is to examine the basic tree re-

duction algorithm for a relatively inexpensive way of restricting the halting condition, 

such that more valid descriptions will be accessible from any given initial descrip-

tion. That investigation provides the motivation for a new identity on the terms 

of a decision theory, which is added to the generating conditions of the reasonable 

preorder to produce an enlarged preorder. 

The reduction algorithm is then modified to return minimal elements in the new 

preorder. 

3.2.1 The significance of semi-essentials in tree reduction 

The recursive strategy of the reduction algorithm is as follows: to reduce a term 

t = q(tiIt2... It), first reduce (t1,t2,. . .,t) to . .,t3, then attempt to fac-
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tor t' = q(t'1 t ... t) by q and search for possible idempotence reductions. The 

rationale is that since (t, t,. . . , t) are irreducible, only factoring by q can yield 

further idempotence reductions in t'. 

The precondition for factoring by q is that there be some decision qo 54 q that is 

semi-essential in i'. The role of qo is to replace q at the root of the tree. If no such 

decision can be found, the tree is returned as an irreducible. The tree of Figure 3.2 

was returned as an irreducible because when the time came to factor it by its root 

decision a, no semi-essentials could be found below that could replace a at the root. 

It is relevant to investigate the properties of semi-essential decisions that enable the 

basic reduction algorithm to output irreducible trees, and to inquire whether there 

exist other decisions in the tree that possess those properties. 

Algorithm 2.2 (factor) factors a tree t = q( ... ) by its root decision by finding 

a qo that is semi-essential in t and creating a tree t' = qo(t . .. t). It then proceeds 

to repeat reduce t'; since the arguments of the tree are already repeat reduced, the 

only decision that may be repeated in t' is qo. Hence the repeat reduction can be 

accomplished by applying branch-reduce to the arguments of the root decision, 

each of which is t. This procedure leaves t unchanged, except for the subterms with 

qo at the root; these are replaced by their rtI argument. The factoring is completed 

by applying factor recursively to the arguments of t'. 

The following example illustrates how pulling up a non semi-essential decision in 

an irreducible term with no semi-essentials other than its root decision leads to the 

loss of irreducibility. 

Example 3.2 Consider the decision tree of Figure 3.5, with both of a's arguments 

irreducible, and no semi-essentials other than a. This tree is already factored by 

its root decision, and therefore irreducible. Pulling up decision d yields the tree of 
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8 

Figure 3.5. A tree that is factored by its root decision. 

3 4 3 4 

Figure 3.6. The tree of Figure 3.5 with decision d pulled up. 

Figure 3.6. Note that the structure a(blc) appears in both subtrees. It may be substi-

tuted by a composite structure W, which results in the tree of Figure 3.7. Figure 3.8 

shows the result of transposing d and W, using equation DW.4 (transposition for 

terms). It is easy to verify that the last tree is not irreducible: transposing d and e 

would make it possible to eliminate d by idempotence reduction. 

It is not really necessary to perform the last transposition to find idempotence. 

The fact that the tree is not irreducible may be inferred from the structural equiva-

lence of its arguments. 

Lemma 3.1 If a decision tree is of the form t = q(to ... Ito), that is, all i arguments 

of the root decision are structurally equivalent, then t is not irreducible. In particular, 

factoring t by its root decision q causes idempotence at the leaves; the root decision 
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3 4 3 4 

Figure 3.7. The tree of Figure 3.6, represented using composite term W. 

2 5 67 8 

3 43 4 

Figure 3.8. The tree of Figure 3.7 after transposition of d and W. 

is redundant and can be eliminated from the tree altogether. 

Proof By induction on the height of the tree. 

What Example 3.2 shows is that semi-essential decisions are important in the 

reduction algorithm because pulling up a decision that is not semi-essential in a 

term - prompted by the fact that the term has no semi-essentials other than its 

root decision - leads to the loss of irreducibility. This is formalized in the following 

lemma. 

Lemma 3.2 Let t = q(t1 ... It) be a repeat reduced term such that every ti is 

irreducible, and the only semi-essential decision in t is q. .If a non-semiessential 

decision qo that occurs in t is pulled up to the root of t, the resulting t' is not 
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irreducible. In particular, factoring ' by qo makes some occurrence of qo idempotent. 

Proof Select an arbitrary path P in t, and let r = qj(rir2 ... jr,,) be the lowest 

subtree along P such that qo appears in some but not all of the n arguments - such 

a path exists, because otherwise qo would be semi-essential in t. Let t1 = qo(t . . . 

the result of pulling up qo in t. Subtree r occurs at the same height in every argument 

of qo in t. Let t2 = rpt(ti), the result of repeat reducing t1; let ri be some subtree 

of r in which qo does not occur. The repeat reduction leaves ri undisturbed in every 

copy of i. This ri appears in identical form, and in the same position, in t2. Note 

that the structure of t2's subtrees is identical from their root (q) down to qj. This 

structure can be replaced by a composite structure W; assuming that arity(qo) = 

this results in the term 

qo(T'V(si,i ... I3i,i_ilril8i,i+iI ... ... IT'V(si,iI ... I8k,i_llril8k,i+1I... I3h,m)) 

in which the i' argument of every occurrence of W is r. Transposing qo and W 

results in a term with W at the root; its i1L subtree is of the form qo(rj ... IrO. 

By Lemma 3.1, qo can be eliminated from this subtree. This implies that t2 is not 

irreducible, as factoring by qo produces idempotence. 

The result is discouraging in principle, since it appears to rule out non semi-

essential decisions as potential replacement roots that will allow the factoring of a 

tree by its root decision. However, by isolating the property of semi-essentials that 

makes them suitable candidates for being pulled up to the root, it in fact it provides 

a valuable clue for finding decisions that are not semi-essentials, yet might be pulled 

up without leading to a loss of irreducibility. 
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3.2.2 Whiskers 

The question that arises is whether there exist decisions that are not semi-essential, 

yet pulling them up in a tree and refactoring does not produce idempotence. To 

show that such decisions do indeed exist, it is necessary to isolate a special type of 

decision tree, the whisker. 

Definition 3.1 A whisker is a term of the form w = q(t1t2 ...I t,,), where each 

argument oft is either ti = x or of the form ti = qi(rjirj2 ... Irim), and there exists 

some j, 1 < j ≤ m, such that for every ti 54 x, rij = x. A whisker has three important 

components, as follows: q is called the whisker root, q1 is called the whisker decision, 

and x is called the whisker variable. 

Example 3.3 The term of Figure 3.9 is a whisker with j = 2, root a, decision b, 

and variable x. The subtrees y and z may or may not be variables. If they are, the 

whisker is called shallow. 

x 

Figure 3.9. A sample whisker. 

The following is an important operation on whiskers. 
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Definition 3.2 A whisker rearrangement (wr) is the operation composed of 

1. distributing the root of a whisker past its variables, and 

2. applying idempotence reduction. 

The result of a whisker rearrangement is also a whisker. 

Example 3.4 To rearrange the whisker of Figure 3.9, distribute b over a (Fig-

ure 3.10(i)) and apply idempotence reduction (Figure 3.10(u)). In general, if 

is a whisker, then wr(wr(w)) = w. 

X 

Figure 3.10: The whisker of Figure 3.9 after (i) distribution, and (ii) idempotence 
reduction. 

Weak transposition 

It is now possible to define a new identity for terms of a decision theory. 

D.5: Weak transposition for whiskers 

w = wr(w). 
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The validity of weak transposition follows from the definition of a whisker re-

arrangement in terms of distribution and idempotence reduction. Throughout the 

rest of this discussion, weak transposition and whisker rearrangement will be used 

interchangeably. 

The effect of weak transposition 

The effect of rearranging a whisker is that the whisker decision and whisker root 

exchange positions in the tree, making the former whisker decision semi-essential. 

A shallow whisker is factored by its root, and delayed by its decision. The formal 

definition of a tree that is delayed by a decision was given by Cockett (1987a). 

Definition 3.3 A term t is decision delayed by q if t is simply reduced and at each 

leaf either the last decision is q or q does not occur at all on the path to that leaf. 

Another interpretation of weak transposition is that it transforms a shallow 

whisker w into another shallow whisker w' that is factored by the whisker decision 

of w and delayed by the whisker root of w. 

The distinction between factoring and delaying a term by a decision is significant. 

Factoring a tree t by a decision q only allows transposing q with other decisions in 

t. In order to delay t by q, it is necessary to apply whisker rearrangement; note that 

distribution alone will not do, since a delayed tree must be simply reduced. Delaying 

t by q implies that q will be pushed as far down the tree as possible by transposition 

and whisker rearrangement. 

It is important to point out that whether a tree is factored or delayed by q does 

not affect the possibilities of iderñpotently eliminating q. A tree can be delayed by 

q only if factoring it by q would not produce idempotence. 
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Weak transposition can be used jointly with the transposition identity to define 

an equivalence relation for terms of a decision theory. 

Definition 3.4 The terms t1 and t2 are whisker equivalent (t1 = t2) if one can be 

obtained from the other by some sequence of transpositions and whisker rearrange-

ments. 

3.2.3 The weak reasonable preorder 

Weak transposition can be used to enlarge the reasonable preorder. 

Definition 3.5 The weak reasonable preorder . on the terms of a decision the-

ory is defined like the reasonable preorder of Definition 2.10, with the additional 

stipulation that it be weak transposition invariant: 

wr(w) ≤.. W 

The preorder ≤vjr is a proper superset of the reasonable preorder; it includes pairs 

of terms that are weak transposes, which are not in the reasonable preorder. Since 

the weak reasonable preorder is also a least preorder (e.g., a transitive and reflexive 

closure), it also includes pairs of terms that are whisker equivalent. 

While it is easy to show that ≤wr preserves the height of the tree, just as ≤r 

does, the weak reasonable preorder preserves the uniform size of binary trees only. 

Example 3.5 Consider the shallow whisker 

q1(xi q2(xiJx2x3)) 

with arity(qi) = 2 and arity(q2) = 3. Applying weak transposition produces 

q2(xilqi (xix2)jqi (xi Jx3)). 
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The weak transposition increases the uniform size from 3 to 4, because a decision 

was distributed in front of another with lower arity. 

This is somewhat discouraging, because it implies that descending in the weak 

reasonable preorder might actually increase the unifoFm size of the original term. 

However, this increase is bound not to be all that significant, for two reasons. If 

either x2 or x3 in the last example were equal to x1, the weak transposition would 

not change the uniform size of the tree. The second reason is that arbitrary whisker 

rearrangements in a term can be expected to distribute a decision in front of another 

with higher arity, as often as in front of one with lower, arity. 

The following is a procedural characterization of the minimal elements in the 

weak reasonable preorder; it is analogous to the definition of irreducible trees (Defi-

nition 2.11). 

Definition 3.6 A term t is said to be whisker reduced if every term that is whisker 

equivalent to it is simply reduced. 

From this definition it follows that every whisker reduced tree is also irreducible; 

the converse is not true. 

3.2.4 The strategy for finding whisker reduced terms 

It is possible now to return to the task of characterizing the decisions that can be 

pulled up to the root of a tree, such that refactoring by them does not produce 

idempotence. 

Definition 3.7 A decision q that occurs in term t is a suitable root for t if it can be 

made semi-essential in i by any sequence of whisker rearrangements. 
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It follows from this definition that any decision which is semi-essential in a term 

is also a suitable root for it. 

The following lemma shows that suitable roots may be pulled up to the root of 

a tree that needs to be factored by its root decision without any deleterious effects. 

In order to ensure that this is the case, the pulling up is followed immediately by 

idempotence reduction of the entire tree. 

Lemma 3.3 Let t = qo(jI ... It,,,), with every t1 irreducible. If q is a suitable root 

for t, q 0 qo, pulling up q to the root of t, idempotence reducing the resulting tree, 

and refactoring it by q will not produce any idempotence at the leaves. 

Proof If q is semi-essential in t, the result is given by the fact that t1,... , are 

irreducible, and factoring by q would just give transposes of the ts, which are also 

irreducible. 

If q is not semi-essential in t, consider the lowest subtree r = q1(ri I ... Irs) in t such 

that q appears in some but not every r. Since q is not semi-essential, at least one 

such subtree must exist in t. Recall that pulling up q to the root of i initially results 

in a term t' = q(i ... It), where the ith copy of t is branch reduced by q and i. 

Refactoring by q will produce idempotence if in all copies of t, the rs on which q 

does not appear are left intact by the idempotence reduction (see Lemma 3.2). 

Since q is a suitable root for t, by definition it is possible to whisker rearrange q to 

the root of r. For this to be true, q must appear as the whisker decision on one of 

a chain of whiskers along the non-terminal rs, of which r itself is highest in t. All 

of these whiskers must have the same whisker variable. In fact, every r2 in which 

q does not occur must be a terminal with the whisker variable as its label. When 

pull-up(q, t) is idempotence reduced, in the copy of t such that i corresponds to 

the argument number of the whisker variable with q at its root, the entire chain of 
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whiskers will collapse. In particular, the idempotence reduction will also eliminate 

the ts in which q did not occur. 

This result can be used to prove the whisker-equivalence analog for the pulling 

up lemma (Lemma 2.2). 

Lemma 3.4 Decision q is a suitable root for t if and only if there exists a term i' 

with q as its root decision, such that t' w t. 

Proof If q is a suitable root for t, let t1 be t with q made semi-essential by whisker 

rearrangement. By Lemma 2.2, there exists a 2' with q at the root that is transpose 

equivalent to t1. It follows that t' is also whisker equivalent to 2. Now let 2 be whisker 

equivalent to some 2' with q as its root decision, and assume that q is not a suitable 

root for t. Then q is not semi-essential in 2, since being semi-essential implies being 

a suitable root. By Lemma 2.2, in order to obtain 2 from 2', q must at some point 

become semi-essential. Since transposition cannot affect semi-essentiality, and the 

only other available operation is whisker rearrangement, it must be possible to make 

q semi-essential in t by, whisker rearrangement only. By the definition of a suitable 

root, this contradicts the assumption that q is not a suitable root for 2. 

Before formulating the algorithm for finding whisker reduced trees, it remains to 

prove a result analogous to Proposition 2.1 

Proposition 3.5 A term 2 is whisker reduced if and only if for every decision q in 

2, delaying 2 by q cannot be idempotence reduced. 

It has already been shown that pulling up a decision q that is a suitable root for 

2 = qo(. . .), and idempotence reducing, preserves the irreducibility of the tree up to 

delaying by qo (recall that pulling up suitable roots, as opposed to semi-essentials, 

causes the tree to be delayed, as opposed to just factored, by qo). 
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Once again, the validity of the proposition hinges on the irrelevance of the order 

in which decisions are pulled up. 

Lemma 3.6 If i t2 and in both terms q has been pushed as down as close to the 

leaves as possible using transposition and whisker rearrangement, then both terms 

are delayed by q, then 

tj = W(q(zij zi2 . . ... jq(z. 11Z. 21 krnn)krn+il ... Izt) 

= V(q(yiiyi2 ... Iq(yPiIyP I... Iyt) 

(where W and V are composite expressions) then n= p and t = s, and there is a 

permutation ir such that 

W(xi,x2,.. . ,Xn) = ,j, V(Xir(1),Xir(2),. . . ,X ir(n )) Z,. w Yir(i)r, Z Z,(j). 

Proof As t1 =w t2, the decision qo at the root of t1 is a suitable root for t2 

(Lemma 3.4). Since t2 is delayed by q, qo must always occur before q in V. By 

Lemma 3.4, it may be moved to the root of t2 by transposition and whisker re-

arrangement, yielding t. The same argument can be applied recursively to the 

arguments of qo in t. This restructuring determines the permutation ir, and shows 

that W V. The same process can be applied to the arguments of q. 

This result proves Proposition 2.1. 

3.2.5 Whisker reduction 

Only minor modifications are required to convert the algorithm for finding an irre-

ducible into one for finding a whisker reduced term. The definition of these changes 

is followed by an analysis of their impact on the time complexity of the original 

algorithm. 
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The whisker reduction algorithm 

First the pulling up algorithm is modified to accommodate non semi-essential suitable 

roots. Recall that it is necessary to idempotence reduce the tree following the pull-up. 

Algorithm 3.3 Whisker-branch-reduce is obtained by composing idp-reduce 

and branch-reduce. 

The most significant change is in the selection of the candidate decisions for 

pulling up. For the sake of efficiency it is convenient to separate semi-essential and 

non semi-essential decisions, and to express the algorithm as a query: it is known 

that q is not semi-essential in t; is it a suitable root for t? 

Algorithm 3.4 

suitable-root?(q, t) 

return(2i E {1,. . . , arity(q)} suit able-root-branch?(q, t, i)) 

suitable-root-branch?(q, t, r) 

if t is variable return(false) 

else ifq=qo %tqo(til...Itn) % 

else 

if Vi  {1,. ..,n},i is non-terminal then 

return(A..1 suit able-root-branch? (q, ti, r)) 

else 

return (reduce (whisker-branch-- reduce (q, t1, r) = 

= whisker-branch-reduce(q, t, r) = x)) 

Recall that in order for a non semiessential decision to be a suitable root for t, 

pulling up q to the root of t must result in a tree from which q cannot be eliminated 

by delaying and idempotence reduction. This requires that in one of the copies of t 
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appearing as arguments of q, some path on which q does not appear be pruned at 

the bottom, so that refactoring by q will not yield a subterm with q at the root and 

all arguments structurally equivalent. 

The query posed by suit able-root-branch?(q, t, r) is whether whisker branch 

reducing t by q on its rth argument will cause the elimination of at least one of the 

subterms that would otherwise appear as structurally equivalent arguments of q (see 

proof of Lemma 3.3). 

Let us examine the non trivial cases of this algorithm for correctness. If the term 

is of the form t = qo(til... It)., with every ti non terminal, the algorithm returns the 

conjunction of the query for the arguments: if q can be made semi-essential in each 

of the subtrees, then it can be made semi-essential in the parent tree. If some of the 

arguments are terminal, then in order for q to be a suitable root with branch r, all 

of the leaf children of t must be equal to, say x, and whisker branch reducing every 

non terminal argument with r must yield x. This is the condition for the terminal 

children of t to be "cleaned up" by idempotence reduction. 

The following algorithm returns the semi-essentials of a i, if any, or a singleton 

set containing one suitable root of t. If none can be found, the algorithm returns the 

empty set. 
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Algorithm 3.5 

suitable-roots(t) 

SE - semi-essentials(t) %t = q( ... )% 

if SE 0 {q} then return(SE - {q}) 

else 

D - decisions(t) - {q} 

for each q E D 

if suit able-root?(q, t) then 

return({q}) 

return({}) 

The following two algorithms complete the procedural definition of whisker re-

duction. 

Algorithm 3.6 Whisker-delay is obtained by substituting the algorithms 

whisker-branch-reduce for branch-reduce and suitable-roots for 

semi-essentials in factor (Algorithm 2.2). 

Algorithm 3.7 Whisker-reduce is obtained by substituting whisker-delay for 

factor in reduce (Algorithm 2.1). 

The complexity of whisker reduction 

The following proposition analyzes the time complexity of whisker reduction. 

Proposition 3.7 The time complexity of whisker-reduce applied to full normal 

trees is O(IBI . (IBI1Q1 - 1)1. JQI3) where B is the maximum arity of any q E Q. 

Proof The only truly different algorithms are whisker-branch-reduce and 

suitable-roots. 
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• The additional work done by whisker-branch-reduce over branch-reduce 

is checking for idempotence. Both the branch reduction and the checks for 

idempotence are bounded by the size of the tree, so this algorithm does not 

change the complexity. 

• In the basic reduction algorithm, the work is dominated by the intersections 

required to compute the semi-essentials of a tree. The cost of finding a suitable 

root is that of finding the semi-essentials, plus checking whether each decision is 

a suitable root. The cost of suitable-root-branch? is bounded by k.usize(); 

applying this for every branch of each decision is 

0 (IB i.height(t).usize(t)). This bound replaces 0(u.size(t)) in the complexity 

analysis of Chapter 2, yielding 0(1111 . usize(t) . height3(t)). Substituting IQI 

for height(t) and (IBl1Q1 - 1) for usize(t) gives the desired result. 

The order of whisker reduction is larger than that of standard reduction by a 

factor of IBI . IQI. The form of the algorithm guarantees that this additional cost 
will not be incurred unless no semi-essentials can be found. The effectiveness of this 

modification is evident in the small examples presented in the following section. 

3.3 Some empirical results 

This section presents three sample applications of whisker-reduce, all on complete 

training sets. First, Example 3.1 is recomputed using whisker-reduce instead of 

the basic reduction algorithm. 

Example 3.6 When whisker-reduce is applied to the tree of Figure 3.1, the root's 

right subtree is reduced exactly as before, to c(31b(211)) (Figure 3.2). The left subtree 

is first reduced to b(3Ic(311)). The basic reduction algorithm can do no more with this 
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Figure 3.11: The term of Figure 3.1 after its arguments have been whisker reduced. 

subtree, since it has no semi-essentials other than the root b. But whisker-reduce 

attempts to delay by b, finds suitable root c, and pulls it up, resulting in the tree 

of Figure 3.11. This tree has suitable root c (which is also a semi-essential); pulling 

up c and factoring by a, followed by idempotence reduction at the leaves, yields 

c(31 (b (a (312))I1)), the term of Figure 3.3. 

#abcdS #abcdö #abcdS 
1 1 1 1 1 3 9 2 1 1 1 3 17 3 1 1 1 3 
2 1 1 1 2 2 10 2 1 1 2 2 18 3 1 1 2 3 
3 1 1 2 1 3 11 2 1 2 1 3 19 3 1 2 1 3 
4 1 1 2 2 1 12 2 1 2 2 1 20 3 1 2 2 1 
5 1 2 1 1 3 13 2 2 1 1 3 21 3 2 1 1 3 
6 1 2 1 2 2 14 2 2 1 2 2 22 3 2 1 2 2 
7 1 2 2 1 3 15 2 2 2 1 3 23 3 2 2 1 3 
8 1 2 2 2 1 16 2 2 2 2 3 24 3 2 2 2 3 

a: 1=young 
b: 1=myope 
C: 1=not astigmatic 
d: 1=reduced tear production 2=normal tear production 
5: 1=fit hard contact lenses 2=soft contact lenses 3=no contact lenses 

2=pre-presbyopic 
2=hypermetrope 
2=astigmatic 

3=presbyopic 

Table 3.2. Data set on the prescription of' contact lenses. 

Example 3.7 Table 3.2 contains a data set for the prescription of contact lenses, 

taken from (Cendrowska, 1987). The columns labeled a, b, c, and d contain the 
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3 1 2 2 3 3 

Figure 3.12: Tree obtained from the data of Table 3.2 by both ID3 and whisker 
reduction of an initial description. 

2 13 2 3 13 2 

Figure 3.13. Tree for the contact lens data, using the basic reduction algorithm. 

values of attributes, and the columns labeled S contain the recommendations in the 

cases described by the attributes. Figure 3.12 shows the decision tree induced from 

the data by ID3 as reported by Cendrowska (1987). Building an initial tree with 24 

leaves and applying whisker-reduce results in a tree that is structurally equivalent 

to that of Figure 3.12. The basic reduction algorithm returns a much larger tree, 

shown in Figure 3.13. 
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3.4 Summary 

This chapter described the application of the tree reduction method of Chapter 2 

to the principled induction of decision trees from complete sets of examples given 

as vectors of feature values. The analysis of tree reduction's time complexity was 

reexamined under the light of this application to show that it is somewhat better 

than that of the statistical method used in ID3 and C4.5. 

It was shown that the sparseness of the reasonable preorder can result in rela-

tively large minimal elements. The weak reasonable preorder, a superset of of the 

reasonable preorder, was defined to enable greater reduction in the size of the trees. 

The complexity of the algorithm that produces whisker reduced trees - trees 

that are minimal in the weak reasonable preorder - was shown to be greater than 

that of the algorithm for irreducibles by a factor that is linear in the number of 

features and the maximum number of categories of any of those features. The form 

of the algorithm is such that the additional cost is incurred only when the less costly 

technique of the original reduction algorithm has proven fruitless. 

Empirical results obtained from small sets of training examples were presented to 

illustrate the improvement obtained in the results by exploring the larger preorder. 

The examples highlight the tradeoff between the size of the preorder - the cost 

of finding minimal elements in that preorder - and the degree of simplification 

achieved. This tradeoff serves to validate the claim that principled induction is a 

clear representation of the problem of learning concept descriptions from examples. 



Chapter 4 

Induction from imperfect data 

Induction tasks are rarely performed on perfect data such as were used in the previous 

chapter to demonstrate the principled induction of decision trees. 

One frequent form of imperfection is the incompleteness of training data. In 

domains defined by sets of discrete features this translates into training examples 

that do not cover the entire space defined by the attributes. 

Another type of imperfection is noise, which can be divided into inconsistencies 

and undefined attribute values. Inconsistencies appear in the form of examples with 

equal values on all attributes but different class descriptions, or, in the case of data 

sets that are also incomplete, in the form of full descriptions of examples which have 

not in fact been observed. 

This chapter extends the methods of Chapter 3 to enable principled induction 

from imperfect data. The extended methods are shown empirically to produce re-

sults that are satisfactory in terms of their compactness and predictive accuracy. 

These results compare well with those obtained using the tree induction system C4.5 

(Quinlan, 1990b), and validate the claim that the principled approach to inducing 

decision trees is an effective one. However, a new dimension is defined to rate de-

cision trees induced from noisy data. It is shown that trees built top-down with 

statistical techniques are are better suited for later pruning using statistical criteria. 

70 
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4.1 Incomplete training sets 

The reduction of decision trees constructed from incomplete training data is compli-

cated by the occurrence of leaves that lack a class label. Such a situation is illustrated 

in the following example. 

Example 4.1 Consider the training examples 

{(a = 1,b = 1, class = = 2,b = 1, class = t); (a = 2,b = 2, class = 

where tests a and b have arity two and the possible classes are t and f. These events 

can be represented by the decision tree of Figure 4.1. The second leaf from the left 

f 

Figure 4.1. Decision tree representing the data from Example 4.1. 

does not have a class label, since the tree was constructed from three distinct training 

events from a space of size four. This tree is irreducible, since it is idempotence 

reduced (the idempotence operator cannot be applied anywhere in the tree), and the 

same is true of its only transpose, obtained by transposing decisions a and b. Yet 

the simpler term b(tlf) is also a valid description of the examples. 

The goal of this section is to introduce a new operator that further enlarges the 

weak reasonable preorder to allow the simplification of trees with unlabeled leaves. 

The formal treatment of decision trees with unlabeled leaves is based on the 

theoretical framework developed by Herrera (1988). 
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4.1.1 Functional identities 

The discussion in previous chapters dealt exclusively with decision theories of the 

form D = (Q, {}), that is, without any identities beyond those preserved by all terms 

of any decision theory. 

Decision theories may contain additional identities of the form tj = t2. A special 

type of identity, called functional identity, is useful in characterizing trees formed 

from incomplete training data. 

Definition 4.1 Let a term t in a decision theory D = (Q, E), and a decision q that 

does not occur in t; let arity(q) = n, and let the distinct variables {x1,.. . , x,} be 

the possible outcomes of q. The identity 

is called a function on q. 

Unlabeled leaves in a decision tree such as that of Figure 4.1 are called unreachable 

leaves. It is convenient to label every such leaf in a tree with a unique variable. Then 

a decision problem defined by a set of examples with class attribute 5 E f 81,  

can be expressed by the functional identity 

where t is the decision tree formed to describe the examples. 

Example 4.2 Labeling the unreachable leaf of the tree in Figure 4.1 with the unique 

variable x yields the term 

a(b(tlx)Ib(tlf)). 



73 

The decision problem can then be expressed by the functional identity 

a(b(tlx)Ib(tlf)) = class(tlf), 

which can in turn be rewritten as 

class ::> a(b(tl?)Ib(tlf)). 

The latter representation is obtained by replacing every variable that is not among 

the outcomes of class with the symbol "?". This symbol indicates that the leaf is 

unreachable, and therefore irrelevant to the decision problem. 

Functional identities provide a useful representation for induction problems in 

general, and particularly for induction from incomplete training data. 

4.1.2 Migration 

In order to take advantage of the functional identity representation, it is necessary 

to present a rule that operates on terms with unreachable leaves, also introduced by 

Herrera (1988). 

Definition 4.2 A deduction node in a term t is an identity at a leaf of t of the form 

x => t', read "x entails t'." A deduction node can be treated as a leaf in the sense 

that its antecedent is a valid leaf label. The deduction node x = x is equivalent to 

a leaf x. 

The migration rule illustrates how deduction nodes might be formed. 

D.6: Migration. 

t+il ... Ix => t)) 

- (x q(t1 I . . . Iti_i ?It1+j I . . . It)). 
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Migration is very,, similar to idempotence reduction. However, whereas idempotence is 

defined as an identity (of which only the simplifying direction is used in the reduction 

algorithms), the direction in which migration is applied is enforced. The major 

difference between them is that the condition for the application of migration is 

weaker. Migration does not require that all leaves (or deduction node antecedents) 

be equal; it is sufficient that all reachable leaves be equal. From the viewpoint of 

induction, this makes migration a more powerful simplification operator, for it makes 

"convenient" assumptions about unseen events. The assumption is that if an unseen 

configuration of feature values that appears in the tree as an unreachable leaf were 

in fact a possible event, its value on the class attribute would be such that it would 

enable idempotence reduction. Since the tree has been built without evidence to the 

contrary, application of migration yields a consistent - and hence valid - induced 

description. A second difference between idempotence reduction and migration is 

that instead of producing a leaf, as the former does, the latter operator produces a 

deduction node whose conclusion is the tree from which the antecedent was reduced. 

Substituting migration for idempotence reduction in the generating conditions 

for the reasonable preorder produces a larger preorder that includes pairs of trees 

with unreachable leaves. The following example shows the effect of applying Algo-

rithm 2.1, with migration substituted for idempotence reduction. 

Example 4.3 Replacing idempotence reduction with migration in Algorithm 2.1 

(reduce), and applying the modified algorithm to the tree of Figure 4.1 yields the 

decision tree of Figure 4.2. The entailed tree is the one that "hangs" from variable 

t. 

Substituting migration for idempotence reduction in the generating conditions 

for the weak reasonable preorder produces a further enlargement. The algorithmic 
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t ? 

Figure 4.2. Irreducible form of the tree in Figure 4.1, using the migration operator. 

interpretation of the interaction between migration and weak transposition is ob-

tained by modifying Algorithm 3.3 (whisker-branch-reduce): if the target tree 

is a deduction node, then instead of returning the antecedent, or leaf value, apply 

the function to the conclusion tree. The following example illustrates the sort of 

reduction afforded by this modification. 

Example 4.4 Starting from the partially reduced tree of Figure 4.2, b is pulled 

(ii) 

Figure 4.3. Use of the modified branch reduction on the tree of Figure 4.2. 

up using the modified version of whisker-branch-reduce. Figure 4.3(i) shows the 

result of the first step, prior to migration. Figure 4.3(u) shows the final result after 

migration. After the entire tree has been reduced, the deduction nodes may be 

replaced by their antecedents; in this case, the result is b(tlf). 
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In the rest of the discussion, it may be assumed that the reduction and whisker 

reduction algorithms are used with the migration operator wherever applicable. 

Use of the migration operator in whisker reduction enables the induction of com-

pact and accurate representations from incomplete data. 

Example 4.5 In Example 3.7, the decision tree of Figure 3.12 was induced from the 

complete space of 24 sample contact lens prescriptions. Gaines (1991) identified 14 

of those cases 1 as being critical to induce the correct rules for the problem. Using 

the methods described in this section, these critical cases yield the same decision 

tree as the complete training set. 

4.1,3 Generating trees from incomplete data 

If the training examples cover only a small portion of the space defined by the set of 

attributes, it is wasteful to generate a full tree, as this increases the running time of 

reduction. The alternative is to expand the tree, as required, with each new example 

that is inserted. This method can be used with two different strategies. The first is 

to split leaves only when the new event would create an inconsistency (lazy strategy), 

and the second is to create a full branch corresponding to each event (full branch 

strategy). 

It is clear that the lazy strategy creates smaller trees, while the other creates 

more unreachable leaves. These unreachable leaves can be used to advantage by the 

whisker reduction algorithm to accomplish greater simplification. The reader may 

assume, for the rest of the discussion, that all decisions trees are built by generating 

a full branch for every event, unless the proper branch already exists. 

'The cases are numbers 1-4, 6, 8, 10, 12, 13, 16, 18, 20, 22 and 24 in Table 3.2 
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4.1.4 An experiment on a large data set 

The whisker reduction algorithm was compared to standard reduction, and to C4.5 

on a large incomplete set. The "551" chess endgame data due to Quinlan (1987) 

consists of 551 chess board positions described by 39 binary attributes - all of 

whose values are correct - and classified as "safe" or "unsafe" positions for one 

of the players. This set is interesting because it is sizable, yet covers a very small 

portion of the space defined by the attributes. The set was randomly partitioned 

15 times into learning and testing portions of roughly equal sizes. On each occasion 

the entire learning portion was used to induce a decision tree using each of the three 

methods, and each of the trees was used to classify the test data. The results of these 

tests are reported in Table 4.1, which summarize average tree sizes (in nodes) and 

successful classification rates on the unseen events. The trees produced by whisker 

Method Nodes Hit rate 
C4.5 93.9 86.6% 
Whisker reduction 102.9 85.9% 
Standard reduction 573.7 71.1% 

Table 4.1. Comparative results on 551 chess endgame data. 

reduction were on average about nine percent larger than those produced by C4.5. 

The predictive accuracy of C4.5 trees on the unseen data was somewhat better. 

These results also show the magnitude of the advantage of whisker reduction over 

standard reduction, in both size and predictive accuracy. It must be noted that 

approximately 45% of the errors produced by the trees that had been reduced by the 

standard method were due to "unknown" classifications, that is, by events that were 

classified by unreachable leaves. The whisker reduced trees had only a negligible 

number of unreachable leaves; on average, less than one half of one percent of the 
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test data could not be classified. 

4.2 Noise 

The presence of incorrect descriptions in the data set is likely to give rise to trees 

that classify unseen events with high error rates. Furthermore, noisy descriptions 

force tree building algorithms to discriminate among events when, were the noise not 

present, no discrimination would be required. This results in trees that are unduly 

large and complex (Quinlan, 1987; Quinlan, 1986a). Events that are not defined 

on all of their attributes are of questionable value for the induction process, yet 

discarding them could result in the loss of valuable information, and might indeed 

prevent any induction if this defect is highly frequent in a given data set. 

This section examines the methods used in ID3 and C4.5 to deal with these prob-

lems, and incorporates some of them to principled induction by whisker reduction. 

4.2.1 Incorrect descriptions 

The reader will recall that ID3 and C4.5 build decision trees top-down, and the 

decision to be made at a given node is determined by a statistical criterion. The main 

stopping criterion is that the set of events at the node be entirely homogeneous. An 

additional stopping criterion, used to prevent tree complexity that is due to noise, is 

to collapse subtrees into terminal nodes when this does not lead to an increase in the 

absolute number of errors with respect to the training events from which the subtree 

was constructed (Quinlan, 1990b). In fact, this particular criterion constitutes a form 

of pruning, since the subtrees mu'st be generated so that their absolute error can be 
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computed to evaluate the convenience of discarding them 2• Lastly, when the current 

node is the last on a branch that already includes the entire set of attributes, there 

are obviously no decisions left on which to branch. This occurs when the attribute 

set is insufficient to express differences among classes, or when some of the event 

descriptions have been corrupted. 

Use of the last stopping criterion gives rise to nodes that must necessarily be 

leaves, yet have no unique class label. The classification errors can be reduced by 

labeling such leaves with the most frequent class in the subset of the training events 

being processed at the node (Breiman et al., 1984; Quinlan, 1986a). It is important 

to note that the value of this labeling criterion rests heavily on the assumption that 

the class distribution of the training events is highly representative of the population 

from which they are drawn. 

This labeling criterion was adopted to resolve inconsistencies at the leaves of the 

trees built before the reduction process, and experiments were performed to compare 

the results, in terms of tree size and predictive accuracy, to those of C4.5. As these 

experiments were aimed at comparing principled induction by whisker reduction to 

the basic top-down method, C4.5 was forced to report the fully grown trees, unpruned 

with the absolute error criterion described above. These experiments were performed 

on the two following noisy data sets: 

Digits This domain was presented by Breiman et al (1984). It consists of 3000 

events described by seven binary attributes, each of which represents the status 

of an LED, as used to represent the digits 0-9. Every feature value of each 

event has been inverted with probability 0.1. 

'This stopping criterion, used in C4.5, replaces the x2 significance testing used by ID3 (Quinlan, 
1986a; Quinlan, 1986b) to verify the selected branch attribute's relevance to the classification. 
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Disjunction The 600 events are described by nine binary attributes. Events that 

satisfy the propositional formula 

(aoAa1 Aa2)V(a3Aa4Aas)V(a6Aa7Aas) 

are classified as members of class Y with probability 0.9 and as members of N 

with probability 0.1. Other events are classified as members of Y or N with 

the respective probabilities 0.1 and 0.9. 

Method Nodes Hit rate 
C4.5 190.2 72.7% 
Whisker reduction 116.3 72.3% 

Table 4.2. Comparative results on the Digits data. 

Each of the sets was partitioned randomly 15 times to produce learning and test 

files of approximately equal sizes. With each partition, the entire learning set was 

used by C4.5 and whisker reduction to produce a decision tree. The average tree 

Method Nodes Hit rate 
C4.5 168.1 77.1% 
Whisker reduction 173.8 75.0% 

Table 4.3. Comparative results on the Disjunction data. 

sizes and successful classification rates on the corresponding test sets are reported in 

Tables 4.2 and 4.3. 

C4.5 trees obtained better predictive accuracy than whisker reduction in both 

cases; on the Disjunction data the difference was 2.1%, and on the Digits data, 

0.4%. On the Digits data whisker reduction produced trees that were considerably 
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smaller than C4.5's, whereas on the Disjunction data, C4.5 induced trees than were 

on average approximately three percent smaller than those produced by whisker 

reduction. 

These results indicate that the principled induction method using whisker reduc-

tion produces trees that are comparable in compactness and predictive accuracy to 

those built top-down using statistical criteria. 

4.2.2 Reduction of complexity due to noise 

Quinlan (1987, 1992) devised pessimistic pruning methods to further reduce tree 

complexity due to noisy examples. These methods are based on making a pessimistic 

estimate of the error rate to be expected when the tree is used to classify unseen 

events. Then the tree is replaced with a leaf labeled with the most frequent class in 

the tree. If the error caused by this replacement with respect to the events used to 

form the original tree is less than the pessimistic estimate, then the replacement is 

made permanent. 

It will be shown that trees built top-down by C4.5, using the average entropy of 

the subsets resulting from a partition as the criterion for selecting a test attribute, 

are particularly well suited for pessimistic pruning. The trees resulting from pruning 

C4.5 trees are much more compact and have better predictive accuracy than trees 

pruned from whisker reduced trees. It will also be shown that in spite of this im-

proved prunability, applying a combination of pessimistic pruning and the structural 

manipulation technique used in tree reduction can result in further improvement in 

the compactness of pruned C4.5 trees. 
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Pessimistic pruning 

What follows is a description of the latest pessimistic pruning method due to Quinlan 

(1992), a version of which is used by C4.5. 

Consider a terminal node t formed from N events, J of which are misclassified. 

The number of errors can be treated as a random variable with binomial distribution'. 

The probability p that a random unseen event will be misclassified by t can be 

bounded from above by po with certainty level 1 - a, where po is found by solving 

J 

a = C(".p. (1 —po . 

The notation used will be Po = (J, N). 

For a general tree t', the upper bound p0 can be determined by averaging the 

upper bounds of it subtrees, weighted by the number of events Ni from which each 

subtree t1 was generated. This P0 can be treated as a pessimistic estimate of the 

probability of error of when t' is used to classify unseen events. 

To estimate the quality of the leaf obtained by pruning t' to a leaf labeled 

BestClass(t'), the upper bound p, of the probability of error is computed with 

N, the total number of events from which t' was generated, and J, the number of 

those events that do not belong to BestClass(t'). The tree is pruned to a leaf if 

P1 <P0. 

This procedure is applied to a tree from the bottom up, as shown in the following 

example. 

Example 4.6 In order to allow application of the pessimistic pruning algorithm, 

every leaf of the tree must have, in addition to a class label, a count of the events 

'Quinlan cautioned that the statistical underpinnings of this method "should be taken with a 
large grain of salt," and indicated that the method's merit lies in the quality of its results. 



83 

of each class covered by that leaf. Such a tree is shown in Figure 4.4(i), where the 

notation (A.B) indicates that the leaf covers A events of class B. 

To apply pessimistic pruning to this tree, we start with the left subtree, with test b 

at its root. The confidence limit used throughout the rest of this discussion will be 

a = 0.25. The error probabilities for the subtree's three terminal nodes, from left to 

right, are B0.25 (0, 80) = 0.0172, Bo.25(0, 50) = 0.0273, and B0.25 (0, 1) = 0.7500. In 

a 

3 1 3 
(100.3) (130.1) (100.3) 

1 1 2 (1.2). 
(80.1) (50.1) (1.2) 

Figure 4.4. An example of pessimistic pruning (Example 4.6). 

all cases J = 0, since none of the leaves misclassify any of the training events. The 

error probability for the subtree with b at the root is the weighted sum of these three 

values: 

80 0.0172+ 50 0.0104+ 0.7500 = 0.0266. 
131 131 131 

If the subtree were to be replaced by a leaf labeled "1", the leaf would misclas-

sify one out of 131 training events, so the error probability would be given by 

B0.25 (1, 131) = 0.0204, which is lower than the average probability of the subtrees. 

As a result, the tree is pruned to that of Figure 4.4(u). 

The probability of error in the new tree is 

131 100 
0.0204+ .j- .Bo.25 (0, 100) = 0.0176. 
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No further changes are made because pruning the tree to a leaf would give a higher 

error probability (B0.25 (100, 231) = 0.4616). 

The results of applying pessimistic pruning to the trees generated from the Digits 

and Disjunction and shown in Tables 4.4 and 4.5, which also incorporate the sum-

maries in Tables 4.2 and 4.3. The prefix "P-" in the method names indicates that 

the trees were pessimistically pruned. On both data sets the pruned C4.5 trees were 

Method Nodes Hit rate 
C4.5 190.2 72.7% 
P-C4.5 63.0 72.6% 
Whisker reduction 116.3 72.3% 
P-Whisker reduction 96.6 72.4% 

Table 4.4. Comparative results on the Digits data after pessimistic pruning. 

considerably smaller and had better classification rates on the unseen data. This 

seems puzzling, considering that both methods were applied to trees of similar size 

and predictive accuracy. To explain this phenomenon it is necessary to reexamine 

Method Nodes Hit rate 
C4.5 168.1 77.1% 
P-C4.5 45.5 81.8% 
Whisker reduction 173.8 75.0% 
P-Whisker reduction 70.0 76.5% 

Table 4.5. Comparative results on the Disjunction data after pessimistic pruning. 

the ways in which the respective methods build the trees prior to pruning. The 

method presented in this work builds trees by random selection of test attributes 

and then reduces them by structural manipulation; C4.5 carefully selects every at-
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tribute from the root down to minimize the heterogeneity of the resulting partitions 

of the training set. 

Here lies the advantage of the statistical method which results in improved prun-

ability. Sets with low impurity values are those that require little information to 

discriminate among their elements. These are typically sets in which some class is 

strongly represented, and others appear with low frequency. This characterization, 

albeit approximate, is also true of sets whose corresponding statistically built deci-

sion trees are configured propitiously for pessimistic pruning. This is illustrated in 

the following example. 

Example 4.7 Figure 4.5 shows two transpose equivalent trees that correspond to 

a training sets consisting of 100 events of class 1, 100 events of class 3, one event 

1 2 1 3 4 3 1 3 2 4 1 3 
(50.1) (1.2) (50.1) (50.3) (1.4) (50.3) (50.1) (50.3) (1.2) (1.4) (50.1) (50.3) 

(i) 

Figure 4.5: Two transpose equivalent trees: (i) Prunable tree built to minimize 
entropy; (ii) The only transpose, which cannot be pruned. 

of class 2, and one event of class 4. To calculate the average entropy of the subsets 

obtained by partitioning on attribute a, it is sufficient to calculate the entropy of 

the subset in the left subtree of Figure 4.5(i) (the entropy of the subset in the right 

subtree is the same), given by 

100 100 1 1 
—ior log21f + loT log2fI = 0.0803. 
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Likewise, to calculate the average entropy of the subsets obtained by partitioning 

on b, it is sufficient to calculate the entropy of the subset in the leftmost subtree of 

Figure 4.5(u): 
50 50 

-2 1092100 100 =1. 

Since partitioning on a gives a lower average entropy on the resulting subsets, C4.5 

would select this test to be at the root of a tree induced from the 202 events. Let us 

now analyze the prunability of each of these trees. The error probability of the left 

subtree of Figure 4.5(i) is 

50 B-  

.25 (0, 50) + B 50 0,25 (o, 1) + 101 B0.25 (o, 50) = 0.0344. 

Replacing this subtree with a leaf labeled "1" would produce one error out of 101 

events, so the leaf's error probability is given by B0.25(1, 101) = 0.0264. Since this 

error probability is lower, the left subtree would be pruned to a leaf. The same 

calculations are valid for the right subtree; hence the tree of Figure 4.5(i) would be 

pruned to a(113). No further pruning of this tree is possible, as there is no dominant 

class. The same is true of the tree in 4.5(u); clearly, no pessimistic pruning is possible, 

either at the subtrees or at the root. 

The greater pruning achieved on C4.5 trees is explained by the fact that these 

trees are suited for pruning - which is not necessarily the case with the trees pro-

duced by whisker reduction. The superior predictive accuracy of pruned C4.5 trees 

is explained by the fact that pessimistic pruning works on the tree from the bottom 

up, thus increasing the likelihood of eliminating decisions in the lower portion of the 

tree - the decisions that were delayed because of their relatively low discriminating 

power. 
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The fact that C4.5 trees are well suited for later pruning does not mean, however, 

that their configuration enables every possible application of pessimistic pruning. 

Substituting a pessimistic pruning routine for migration in whisker reduction makes 

it possible to utilize the restructuring power of the tree reduction algorithm to search 

for further applications of pessimistic pruning. 

Algorithm 4.1 Algorithm dynamic-prune is obtained by substituting a pessimistic 

pruning routine for migration in Algorithm 3.7 (whisker-reduce). 

A new experiment of 15 trials, as before, was performed on the Disjunction data 

to test Algorithm 4.1. Each time, the full tree induced by C4.5 was pruned directly 

(P-C4.5), and the pruned version was further pruned dynamically (DynamicPrune-

P-C4.5), using the modified reduction algorithm. This algorithm was also applied 

directly to the unpruned tree induced by C4.5 (DynamicPrune-C4.5). The aver-

age results are reported in Table 4.6. Comparison of the results from P-C4.5 and 

Method Nodes Hit rate 
P-C4.5 46.6 82.8% 
DynamicPrune-C4.5 50.3 82.7% 
DynamicP rune- P-C4.5 21.8 81.3% 

Table 4.6: Pessimistic pruning and dynamic pruning results on the Disjunction data 

DynamicPrune-C4.5 confirm that the C4.5 trees are better suited for pruning. Al-

though DynamicPrune-C4.5 evaluated a greater number of pruning opportunities, 

these opportunities were evidently not the most propitious, since it produced larger 

trees, with slightly lower classification accuracy. On the other hand, DynamicPrune-

P-04.5 attempted dynamic pruning only after all of the convenient pruning opportu-

nities present in the original tree had been processed, and then reshaped the tree in 
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an attempt to make further improvements. This resulted in a more than 50% reduc-

tion in size, with a loss of one and a half percentage points in classification accuracy. 

The optimal tree built from a complete set of noise-free Disjunction examples would 

have 19 nodes, and its best classification accuracy on unseen examples, corrupted 

with the probabilities discussed before, would be 90.0% 

It is important to note that Algorithm 4.1 lacks the theoretical foundation of 

the original reduction algorithm. The basic algorithm guarantees that after a tree's 

branches have been reduced, any further improvement can only be produced by 

factoring the root decision to the roots and (perhaps) eliminating it. Pessimistic 

pruning is a much deeper reduction operator that idempotence reduction, and there 

is no guarantee that the best possible pruning can be achieved when the root decision 

reaches the level above the leaves. Optimal pruning might in fact occur with the 

original root decision somewhere between the root and the leaves. This indicates 

that dynamic application of pessimistic pruning is a more complex problem than 

dynamic application of migration. While evidence was given here that dynamic 

pessimistic pruning can be expected to improve decision trees, work remains to be 

done to determine how a good order of pruning is to be selected during the tree 

restructuring process. 

4.2.3 Undefined values 

Training examples with undefined values on some of their attributes pose a special 

problem, since it is not immediately evident where they fit in a decision tree, or how 

the information they contain can be used to facilitate the induction task. While it 

is tempting to discard such examples, the loss of the information they contain can 

be expected to hinder the induction task. This was found to be the case through 
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empirical studies reported by Quinlan (1989). 

In the same studies it was found that good performance could be achieved by 

assigning a fraction of each case with an undefined value on test a to each of the sub-

sets created by partitioning on a. This method, used in C4.5, assigns the fractional 

values on the basis of the relative frequencies of the known values of a in the set. 

A similar approach was taken to insert events with unknown attribute values into 

trees to be used as initial valid descriptions. Prior to insertion, each event is assigned 

a weight w = 1. When inserting an event whose value on a is undefined into a subtree 

a(til... Its), the event is redirected into each ti with weight f. This insertion method 

generates a great deal of unreliable information at the leaves, particularly since no 

consideration is given to the relative frequencies of values on a. However, this was 

solved effectively by treating any leaf as unreachable (or "unknown") until the most 

frequent class it covers appears in a proportion that is at least as large as its frequency 

in the entire training set. This allows the "?" decision at the leaf to be migrated 

until a clear mode emerges at the leaf. Once such a mode appears, the leaf label is 

bound to the most frequent class, and the leaf becomes reachable. 

Method Nodes Hit rate 
C4.5 120.5 71.7% 

Whisker reduction 117.5 72.6% 

Table 4.7: Results on the Digits data, with each attribute value deleted with proba-
bility 0.5. 

Tables 4.7 and 4.8 show the average results obtained on 15 trials involving the 

partition of the Digits and Disjunction data into roughly equal parts, for learning 

and testing, where every attribute value of each event selected for the learning set 

was deleted with probability 0.5. The results reported for C4.5 corresponded to trees 
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Method Nodes Hit rate 
C4.5 68.5 73.9% 
Whisker reduction 36.7 74.7% 

Table 4.8: Results on the Disjunction data, with each attribute value deleted with 
probability 0.5. 

after the absolute error pruning mentioned in Section 4.2.1 - not to be confused 

with pessimistic pruning, which was not used at all. Whisker reduction performed. 

better on both data sets, particularly in terms of tree size. 

4.3 Summary 

In this chapter it was shown how the whisker reduction algorithm can be used ef-

fectively to induce decision trees from incomplete and noisy data. Empirical results 

obtained using large, noisy data sets indicate that principled induction by whisker 

reduction produces trees that are comparable in compactness and predictive accu-

racy to those built by C4.5 using statistical criteria. These results validate the claim 

that principled induction is an effective representation of the problem of learning 

concept descriptions from examples. 

An important observation arising from the experimental use of pessimistic prun-

ing jointly with tree reduction is that statistically built trees are better suited for 

pruning than those simplified by whisker reduction. 

This suggests a topic for further research: improving the dynamic pruning algo-

rithm. The structural manipulation technique can be used to advantage as a way to 

find good pruning opportunities. Although the cost of applying such an algorithm 

to unreduced trees (e.g., before whisker reduction) would probably be prohibitive, 
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the cost of dynamically pruning C4.5 trees that have already been pessimistically 

pruned is likely to be absorbed by the cost of all previous processing. 



Chapter 5 

Principled induction of decision rules 

Decision trees have often been rated as inadequate for use in expert systems because 

they lack the explanatory value often required of concept definitions and are ill-suited 

for performing backward chaining (Cendrowska, 1987; Quinlan, 1987). 

This has motivated methods for transforming decision trees into sets of decision 

rules (Quinlan, 1987), and for inducing decision rules directly from data using statisti-

cal methods much like those underlying ID3 and CART, as proposed by Cendrowska 

(1987). 

The difference between tree representations and rule sets is that whereas the 

former have a built in control strategy, decision rules must be complemented by some 

external control strategy (e.g., order of application) (Cockett & Herrera, 1986). 

This suggests that decision trees and rule sets are not directly comparable. A 

decision tree may in fact be abstracted as a pair (F, D), where D is an intensional 

description of the space from which the tree was generated, and P is a body of 

procedural knowledge pertaining to the use of D. 

Under this definition the problem of transforming decision trees into sets of de-

cision rules is that of extracting the descriptive knowledge from the tree. A good 

solution to this problem can also be expected to provide a method for inducing 

decision rules via a tree representation created from a training set (e.g., using Algo-

rithms 3.1 and 3.2). This extraction process is the topic of the present chapter. The 

first section characterizes good decision rules as rules that are prime. The second 

presents a principled induction algorithm for extracting prime decision rules from 

92 



93 

ID3 PRISM 
(d = 2) A (c = 2) A (b = 1) 
(d=2)A(c=2)A(b=2)A(a= 1) 

(c = 2) A (d = 2) A (b = 1) 
(a= l)A(c=2)A(d=2) 

8=2 
ID3 PRISM 

(d=2)A(c=1)A(b=1)A(a=1) 
(d=2)A(c=l)A(b=1)A(a=2) 

(d=2)A(c=l)A(b=2) 

(c=1)A(d=2)A(a=1) 
(c=1)A(d=2)A(a=2) 
(c=l)A(d=2)A(b=2) 

8=3 
ID3 PRISM 

(d=1) 
(d=2)A(c= l)A(b= l)A(a= 3) 
(d=2)A(c=2)A(b=2)A(a=2) 

(d=2)A(c=2)A(b=2)A(a=3) 

(d=1) 
(a=3)A(b= l)A(c= 1) 
(b=2)A(c=2)A(a=2) 

(b=2)A(c=2)A(a=3) 

Table 5.1: Rules generated by ID3 and PRISM for each class 8 in the data of Ta-
ble 3.2. 

decision trees. 

5.1 Good decision rules 

Quinlan (1987) approached the problem of extracting rules from decision trees by 

treating every path from the root to a leaf as a distinct decision rule, which could 

later be pruned using statistical criteria. 

Table 5.1 shows the decision rules extracted trivially from the tree of Figure 3.12, 

and those induced directly by PRISM (Cendrowska, 1987) from the data of Table 3.2 

(Example 3:7). 

Cendrowska pointed out that the PRISM rule set is better because several of its 

elements contain fewer antecedents than there are tests on the paths of the deci-

sion tree. In fact, her algorithm is based on the observation that the goals of rule 
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generation differ from those of decision tree generation. Tests that are required to 

provide adequate control of the decision process in a tree may not be relevant to 

the classification of members of a particular class. A "correct" rule is "one which 

references all the relevant attributes and no irrelevant ones" (Cendrowska, 1987). 

This statement points toward the desirability of rule sets that contain only ele-

ments that are prime. 

Definition 5.1 A decision rule r, subsumes 1 r2 if 

1. Both rules have the same conclusion, and 

2. The decision-outcome pairs in r1 

pairs in r2. 

constitute a subset of the decision-outcome 

Definition 5.2 A decision rule r in a rule set R that is complete and consistent with 

respect to instances S is said to be prime if there is no other rule r' that properly 

subsumes r, and can replace r in R such that the rule set remains consistent. 

In order for a rule set to be optimal, it is also necessary that it contain no 

redundant rules. The rule extraction method presented in the next section fails to 

meet the second requirement. It is this shortcoming that makes it computationally 

feasible. 

5.2 Extraction of prime decision rules from trees 

A very general description of an algorithm for extracting prime rules from decision 

trees is given in (Herrera, 1988). This algorithm examines every path in the tree sep-

arately, attempting to identify test-outcome pairs that can be pruned away without 

'This definition was adapted from one by Genesereth and Nilsson (1987). 
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losing consistency. This section presents in detail a principled induction algorithm 

that performs the task by sweeping the tree from the bottom up. 

5.2.1 The extraction algorithm 

The algorithm for extracting prime rules is based on the observation that if at a 

given tree t, some of the rules generated from the paths of one of t's subtrees are 

subsumed by some rule generated from each of the remaining subtrees, then it is 

unnecessary to augment those subsumed rules (set SR in Algorithm 5.1) with the 

test at the root of t. 

Example 5.1 In the tree of Figure 5.1, the right subtree b(112) has trivial rules 

{(b=1)='1;(b=2)2} 

and the left subtree, 1, has the singleton rule set = 1. The trivial rule set for the 

entire tree is 

{(a= 1) l;(a=2)A(b= 1) = 1;(a=2)A(b=2) =2}. 

The rule (a = 1) A (b = 1) 1 is not prime, because replacing it with (b = 

2 

Figure 5.1. A shallow whisker. 

1) 1 leaves the set consistent. To see why this is the case, observe that although 

(b = 1) = 1, a rule generated for the right subtree, covers events in both subtrees, 
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it is still consistent because the events in the left subtree all belong to class 1. In 

general, the corresponding test-outcome pair corresponding to decision a may be 

omitted from (a = 1) A (b = 1) = 1 because this rule is subsumed by some rule in 

the rule set of each sibling tree, namely, = 1. 

The algorithm traverses the tree bottom up, searching for paths that can be reduced 

to primeness by "pruning" specific tests, as discussed in the previous example. This 

is the simplification step used in the algorithm. All other rules - those that are not 

included in SR - are treated as they normally would be during trivial extraction 

of rules from a tree. If the test at the root of t is a, then rules generated from the 

th subtree of t - from left to right - are augmented with the antecedent conjunct 

(a=i). 
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Formal presentation of the algorithm 

Algorithm 5.1 Given as input a repeat reduced decision tree t that is complete 

and consistent with respect to a bag of training examples S, this algorithm re-

turns a set of prime rules R that is also complete and consistent with respect to S. 

extract-prime-rules(t) 

if t is a leaf labeled with outcome x then 

return({ =t x}) 

else %t is a tree with test a at its root and subtrees t1,. . . , 

(R1,. . . , Rj) - map extract-prime--rules over (t1, . . . , t,) 

SR4—{} 

for i=1, ... ,k 

for every r E R1 

if every R, j 0 i, contains a rule r' that subsumes r 

then SR - SR U {r} 

for i=1,...,lc 

Rj  — R— SR 

R U1 UrERj(2 = i) A  

return(R U SR) 

Example 5.2 Figure 5.2 shows the rules generated by Algorithm 5.1 for a portion 

of the tree in Figure 3.12. Terminal nodes return singleton sets; the only rule is 

one without antecedents and with the conclusion associated with the leaf. What 

is noteworthy in this example is that the rule set for node ni contains the rule 

(a = 1) =. 3; the antecedent (b = 2) has been omitted because the rising rule 

(a = 1) =. 3 is subsumed by the rule from n2, 1. 
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{(b=1)=>1; (a=1)=>1; (a=2) A (b=2)=>3; (a=3) A (b=2)=>3 I 

b 

{=>1 

{=>1} 

((a=1)=> 1; (a=2)=>3; (a=3)=>3) 
a 

{=>3} {=>3} 

n5 n6 

3 3 

Figure 5.2: The rules generated at each node for a portion of the tree in Figure 3.12. 

If this procedure is applied to the entire tree of Figure 3.12, the resulting rules 

are the same as those generated by PRISM and shown in Table 5.1. 

Proposition 5.1 Given a decision tree t that is complete and consistent with respect 

to training examples S, algorithm 2.1 generates a set of rules R such that R is 

complete and consistent with respect to S, and every rule in R is prime with respect 

to S. 

Proof Consider the base step. If t is a leaf labeled x, the algorithm returns the rule 

set R = { = x}. R is complete because a rule without antecedents can classify any 

instance. It is consistent, because the generating tree was constructed exclusively 

from examples in class x - and that is the only class that R is able to classify. The 

rule is prime because there cannot exist any rule that properly subsumes a rule with 

no antecedents. 

If the tree is not a leaf, then let a be the test at its root, and let ii,. . . , tk be its 

subtrees, which return rule sets R1,.. . , Rk. The inductive hypothesis is that these 
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rule sets are complete and consistent, and that their elements are prime, with respect 

to the examples covered by t1, . . . , tj. The inductive step is shown by contradiction, 

separately for each of the three properties. As a notational convention, S will denote 

the portion of S used to build a tree t that is complete and consistent with respect 

to S. 

Completeness Suppose that R is inconsistent with respect to S; then there exists 

an example e E St that does not fire any of the rules in R. Let e be in Sti, and 

let r E Rj be one of the rules fired by e - by the inductive hypothesis there 

must be such a rule. If r was in SR, then it also appears unchanged in II, and 

that contradicts the assumption. Otherwise r appears in R with an additional 

antecedent (a = i). But since e e St,, this example must also fire the rule 
(a = i) A r, which also contradicts the assumption. 

Consistency If R is inconsistent, then then must be some example e E St that is 

misclassified by some rule r E R. If r contains antecedent (a = i), then e is 

covered by ti and fires the rule in Ri from which r was generated. That rule 

must also misclassify e, in contradiction with the inductive hypothesis. If r 

does not contain antecedent (a = i), it must have been in SR. Therefore every 

subtree returned a rule that subsumes it, and every such rule must also be fired 

by 5, again in contradiction with the inductive hypothesis. 

Primeness Suppose that there exists a rule r0 E R that is not prime with respect 

to S. Then there exists some rule r1 that properly subsumes r0, such that r1 

is prime, and if r0 is replaced by r1 in R, the rule set remains consistent with 

respect to S. 

First suppose that r0 was not in SR when R was constructed. Then r0 contains 

an antecedent (a = i), and Ri contains a rule r that is equal to r0 but for 
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the lack of antecedent (a = i). In other words, ro = (a = i) A r, and by the 

inductive hypothesis, r is a prime rule in set R. 

Consider the relationship between r1 and r. If r1 contains antecedent (a = i), 

then r1 = (a = i) A r, and r', must properly subsume r. The assumption that 

r1 can replace r0 in R implies that r can replace r in R, but this contradicts 

the inductive hypothesis that all rules in R2 are prime. 

This argument is valid even if r1 does not include an antecedent (a = i), as 

long as r1 properly subsumes r. 

Consider the case r1 = r. For r1 to be prime in R - that is, consistent with 

respect to S - it must either contain an antecedent (a = i), where a is the 

test at the root of t, or it must be subsumed by some rule in every R5. We 

assumed that the first condition does not hold; therefore the second condition 

must hold, and r1 is subsumed by some rule in every R. But r1 = r, implying 

that r0 = r, and this contradicts our assumption that r0 was not in SR and 

must therefore have an antecedent (a = i). 

Suppose now that r0 was in SR because it is subsumed by some rule in every 

R1. Then r0 is present in some R. However, the fact that r1 subsumes r0 and 

can replace it in R implies that the replacement is also valid in R, and this 

contradicts the inductive hypothesis that r0 is prime in R1. 

Rule extraction as principled induction 

Before showing that this is a principled induction algorithm, it is necessary to point 

out that the intermediate valid descriptions are hybrid in their structure. The initial 

description is a decision tree, and the result is a set of decision rules. During the 

extraction process, the valid transformations are decision trees with rule sets at the 

leaves. If one were to use an instance of this hybrid structure for classification, the 



101 

a b c d 8 # a b c d 5 
1 1 1 1 1 x0 9 2 1 1 1 x3 
2 1 1 1 2 x0 10 2 1 1 2 x3 
3 1 1 2 1 x0 11 2 1 2 1 x4 
4 1 1 2 2 xo 12 2 1 2 2 x4 
5 1 2 1 1 x1 13 2 2 1 1 x3 
6 1 2 1 2 x1 14 2 2 1 2 x3 
7 1 2 2 1 X2 15 2 2 2 1 x4 
8 1 2 2 2 x0 16 2 2 2 2 XO 

Table 5.2. Training examples used to build the tree of Figure 5.3. 

tree classification procedure would be followed until a leaf is reached. Then the 

classification would be completed using the decision rules at that leaf. 

That the algorithm preserves generality and consistency follows directly from the 

proof of Proposition 5.1. The algorithm determines a preorder on valid descriptions 

by detecting and eliminating irrelevant conditions from the descriptions of particular 

concepts or classes. 

As anticipated above, the algorithm does not guarantee that the resulting out-

put will not contain redundant rules. The following example illustrates how Algo-

rithm 5.1 can return a rule set that contains redundant elements. 

Example 5.3 The tree of Figure 5.3 is whisker reduced for the training data of 

Table 5.2.1. The rules for class x0 are the following: The left subtree yields 

(a = 1 ) A (b = 1) xo and (a = 1) A (c = 2 ) A (d = 2) = x0. Decision  

is omitted from the latter rule because (c = 2) A (d = 2) x0 is subsumed by 

= xo. The right subtree gives rule (b = 2) A (c = 2) A (d = 2) => x0, from which 

a has been omitted because the rule is subsumed by (c = 2) A (d = 2) => xo. 

Table 5.3 summarizes the events covered by each of these three rules. Rule 2 covers 

only cases that are also covered by the other rules, and is therefore redundant in the 
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x X 1 

x 2 X  

4 
X 
4 

x 
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Figure 5.3. A whisker reduced tree that yields one redundant rule. 

# Rule Examples 
1 (a = 1) A (b = 1) = so {1,2,3,4} 
2 (a = 1) A (c = 2) A (d = 2) xo {4,8} 

3 (b=2)A(c=2)A(d=2)*xo {8,16} 

Table 5.3. The rules for x0 and the examples covered by each. 

rule set. 

The example also provides insight into the form of a decision tree that yields 

redundant rule sets by Algorithm 5.1. Both arguments of the root decision contain 

the path (b = 2) A (c = 2) A (d = 2) => so. If the pruning were delayed to 

the root decision, then it would be clear that one of the versions could be discarded. 

But the version of the path from the left argument is pruned because at an earlier 

stage it is subsumed by some other rule; hence equality is lost and neither rule may 

be discarded. 

To obtain irredundant rule sets using Algorithm 5.1, every rule in the output 

must be checked for redundancy. 
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Time complexity of rule extraction 

The following proposition analyzes the complexity of the rule extraction algorithm. 

Proposition 5.2 Given a decision tree of height h and a maximum branch factor 

of B, the time complexity of Algorithm 5.1 is O(h . B2'+1). 

Proof Consider a full tree of height h and homogeneous branch factor B. The work 

at a given node is dominated by the need to check each rule in every subset of rules 

rising from one of B subtrees, for subsumption by the rules in the remaining subsets. 

The cost of checking two rules with n and m antecedents for subsumption - assuming 

that the antecedents are sorted by some ordering on the tests - is 2 . max(m, n). 

If the node is the root of a subtree of height 1, this cost is bounded by 2 . 1. The 

cost of processing the node contains the following factors: B, the number of rule 

subsets rising from the subtrees; B'', the bound on the number of rules in every 

subset that have to be checked for subsumption by other rules; B - 1, the remaining 

subsets against which every rule must be checked; B' 1, the number of rules in every 

other subset; and 2 . 1, the cost of a single subsumption check. 

This product is equal to 2. 1 . B2'. The number of nodes in the tree that are roots of 

subtrees of height 1 is B'_'. Hence the cost of processing the entire tree is bounded 

by 

2•B'.T, l.B'. 
1<l<h 

Using the identity for linear exponential sums, 

(n_1).xTh+l_n.x 2+x  

O<i<n (x - 1)2 

and substituting h = n - 1, B = x, and 1 = i, we obtain the bound 

' h.Bh+2 2.h.B2', 2-B .   < 
(B—i)2 B2-2•B - 

which is O(h. B2'1). 
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Method Rules Tests Relative 
time 

PRISM 15 48 1.0 
EXTRACT-1 15 46 0.6 
EXTRACT-2 16 48 1.0 
EXTRACT-3 15 46 1.7 

Table 5.4. Results on the chess data described in Example 5.4. 

If a tree is in full - every q E Q appears once - this bound translates to 

0 (IQI .B2.'11 ). The complexity of PRISM was given in Section 1.2.4 as O(ISI2 •!Al2), 

where S are the examples and A are the attributes on which they are defined. This 

translates to O(B2I'.IQI2), which is somewhat larger if IQI > B. The actual running 

times of the two algorithms on various examples were found not to differ significantly. 

Comparative running times on a sample training set are given in Example 5.4. 

Example 5.4 The King-Knight-King-Rook chess endgame problem was formulated 

by Quinlan (1979). It describes chess board positions using four ternary and three 

binary attributes; the possible outcomes are lost and safe for one of the players. The 

set is of size 647, and hence almost complete; there is one combination of the seven 

attributes that is not legal. PRISM and the prime rule extraction algorithm were 

applied to the data, with the results reported in Table 5.4. The extraction algorithm 

was applied in three different ways. EXTRACT-i denotes the extraction of prime 

rules from the tree built trivially from the examples. EXTRACT-2 corresponds to 

rule extraction from the whisker reduced tree for the data, and EXTRACT-3 is the 

result of eliminating redundant rules from the output of EXTRACT-2. The Rules 

column indicates the number of rules produced by each method, the Tests column 

indicates the total number of tests in the rule set, and the last column indicates the 
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relative running times required to produce the results, with the time required by 

PRISM taken as a base 2• Extraction of prime rules from an unreduced tree gave 

the same number of rules as PRISM; in particular, both gave the same nine rules 

with outcome safe. As for the rules with outcome lost, they, too, were equal, except 

that two of the PRISM rules had one additional test each - the PRISM rule set was 

not prime. EXTRACT-2 produced a rule set that contained that of EXTRACT-1, 

and also included an additional rule with two tests rule and outcome safe. This is 

significant because it gives further evidence that the whisker reduced description can 

be mapped by Algorithm 5.1 .onto rule sets with redundant elements. EXTRACT-3 

(EXTRACT-2 plus the removal of redundant rules if any) returned the same rule 

set as EXTRACT-1. All three rule sets achieved perfect classification accuracy on 

the data from which they were generated. 

5.2.2 Extraction of prime rules from noisy data 

Since the rule extraction algorithm is purely qualitative, its output is subject to the 

same error rates the tree from it is generated. But as pointed out by Gaines (1991), 

the statistical criterion used by PRISM to grow rules is not sufficient in itself to cope 

with noise. INDUCT, Gaines' extension of PRISM, uses an additional quantitative 

criterion to filter out tests selected by the basic PRISM algorithm which are likely 

to have arisen by chance. 

Another approach to inducing rules from noisy data is analogous to the testwise 

pruning of Herrera's algorithm, mentioned earlier in this chapter. C4.5 turns every 

path of a tree into a decision rule and rates the tests of each rule by their significance 

to the identification of the class that is predicted by the rule. If any of the tests are 

2For the purpose of this comparison, PRISM was implemented in the same language as the 
reduction and rule extraction algorithms, Chez Scheme. 
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deemed to be individually insignificant, the least significant is pruned from the rule, 

and the process is repeated until no test of a rule can be judged to be irrelevant 

(Quinlan, 1987). This approach is very similar to the one used in INDUCT, since 

the basic PRISM algorithm also selects rule antecedents in order of significance. The 

major difference is that Quinlan's method works by gradual simplification. 

Although the prime rule extraction algorithm could also be modified to use a 

quantitative criterion for pruning, the method would be at a disadvantage with 

respect to INDUCT and C4.5. Since the algorithm sweeps the tree from the bottom 

up, attempting pruning at each node, there is no possibility to sort the tests by some 

criterion prior to pruning. 

5.3 Summary 

The chapter presented an efficient principled induction algorithm that transforms an 

initial valid description represented as an arbitrary decision tree into a set of prime 

rules. Examples were shown which indicate that the degree to which the initial tree 

has been simplified has no bearing on the likelihood of obtaining redundant rules. 



Chapter 6 

Conclusions 

This chapter summarizes the contribution of this thesis and points to some research 

topics arising from this work. 

6.1 Summary and contribution 

Principled induction from examples described by their values on a set of attributes 

was defined as the process of defining a set of valid transformations that generate - 

and therefore preserve - a reducing preorder on the set of valid descriptions, and 

then applying these transformations to some arbitrary initial valid description until 

a minimal element in the preorder is obtained. The goal of this thesis was to show 

that principled induction affords a clear and effective representation of the problem 

of learning concept descriptions from examples. 

6.1.1 Clarity 

To validate principled induction it was examined in the area of decision tree induction 

using the algebraic theory of decision trees by Cockett (1987a, 1987b, 1988), and the 

reasonable preorder generated by the manipulations provided by this theory. The 

operations used to generate this partial preorder were composed to form an efficient 

algorithm for finding minimal elements in the preorder (Cockett & Herrera, 1990). 

It was shown that when used for principled induction this algorithm produced 

trees that were considerably more complex than those produced by statistical top-

down tree building methods. 

107 



108 

In order to improve the compactness of the trees obtained by principled induction, 

the reasonable preorder was enlarged by adding a new generating identity, weak 

transposition. The whisker reduction algorithm was formulated to obtain minimal 

elements in this weak reasonable preorder. This algorithm was shown to yield results 

comparable to those produced by statistical top-down tree induction methods. 

This success shows the value of pure principled induction when tackling the com-

putationally intractable problem of optimizing inductive conclusions by restricting 

the optimization to sparse preorders. Every operation that is added to the gener-

ators of the preorder brings with it an additional simplification capability, and an 

additional computational cost, that are well defined. 

6.1.2 Effectiveness 

A number of sample data sets were presented, in Chapters 3 and 4, on which the 

principled induction of decision trees produced results that were comparable in com-

pactness and predictive accuracy to those built top-down using statistical criteria. 

Since both approaches give solutions that are not provably optimal, the compara-

tive advantages of each are problem specific. In Chapter 5 a principled induction 

methods that produces prime decision rules from a decision tree representation of 

the training examples was shown to be somewhat more efficient and effective than 

an algorithm that grows rules using a statistical criterion. 

6.2 Future work 

The most immediate extension of the work presented in this thesis is the definition of 

additional preorders for the principled induction of decision trees. This can be done 

by identifying irrelevant tests which whisker reduction is not capable of elimination 
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from trees, and then defining operations that are capable of mapping the source tree 

to the decision equivalent tree with the irrelevant test removed. 

In this thesis, principled induction was defined and illustrated in the context of a 

very restricted subset of inductive learning problems, in which examples are defined 

by their values on discrete attributes. Work remains to be done to define principled 

induction methods in more complex domains. 

One such domain is that in which the feature values are continuous and are not 

amenable to a single categorization; different subsets of the training examples may 

be better described by different categorizations of the continuous domain. Another 

type of inductive learning is one in which the target concept is a relation, to be 

described in terms of other relations (Quinlan, 1990a). It is possible that these 

problems can be be treated as instances of the discrete attributes problem, once 

adequate categorizations of continuous values, or instantiations of logical predicates 

have been defined. The problems could then be solved using the principled induction 

methods described in this thesis. 

In Chapter 4 it was shown that a variation of the principled induction method can 

be used to further reduce the complexity of trees that had been grown and pruned 

statistically. As indicated in the summary of that chapter, work remains to be done 

to produce an efficient algorithm that takes full advantage of the structural manip-

ulations supplied by the algebraic decision theory of Chapter 2 and the extensions 

introduced in this thesis to find good applications of statistical pruning operators. 
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