
THE UNIVERSITY OF CALGARY

Principled Induction

from Feature Values

by

Daniel Jaliff

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1992

© Daniel Jaliff 1992

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Principled Induction from Fea-

ture Values" submitted by Daniel Jaliff in partial fulfillment of the requirements for

the degree of Master of Science.

Supervisor, Dr. Mildred L. G. Shaw
Department of Computer Science

Dr. Robin Cockett
Department of Computer Science

Dr. Brian R. Gaines
Department of Computer Science

Dr J.ck MacIntosh
D patment of Philosophy

Date

11

1+I National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Canad1*8 a

Your file Voire rétérence

Our file Noire référence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant è la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protege sa
these. Ni lathèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-79151-9

I

Abstract

Principled induction is defined in this thesis as the process of arbitrarily selecting a

valid description of a set of examples, and gradually simplifying this description until

it is minimal in the preorder defined by the available simplification operators. If the

preorder is well chosen, principled induction is a computationally feasible method for

inducing descriptions. Algorithms are presented that perform principled induction

of decision trees and rules from examples. These algorithms and empirical results

obtained using them are shown to support the claim that principled induction is

a clear and effective representation of the problem of learning concept descriptions

from examples.

11'

Acknowledgments

Numerous people from the Department of Computer Science contributed to the com-

pletion of this thesis. Brian Gaines encouraged me to undertake this project and

was always supportive of my work. Rosanna Heise helped me formulate my research

goals, and gave freely of her time for technical discussions. Debbie Leishman, Dave

Maulsby, and Sonja Branskat read portions of the early drafts of the thesis; their

feedback brought much clarity to the concepts 1 attempted to convey (but what

obscurity remains is my own). John Aldwinckle, Todd Simpson, John Lewis, Bruce

MacDonald, and Thong Phan provided valuable comments and suggestions during

many discussions. The tutelage supplied by Gaston Groisman and Eric Schenk en-

abled me to negotiate safely the intricacies and pitfalls of LATEX.

One person's contribution was absolutely essential; I am enormously grateful to

Robin Cockett for his patient, committed, and insightful guidance.

iv

Dedication

To Rahamim Darab, his memory be blessed.

Contents

Approval page ii

Abstract iii

Acknowledgements iv

Dedication v

Contents vi

List of Tables viii

List of Figures ix

1 Principled induction in machine learning 1
1.1 The elements of principled induction 1

1.1.1 Induction 2
1.1.2 Ordering descriptions 3
1.1.3 Transforming descriptions 5

1.2 Some induction algorithms 8
1.2.1 Version space 8
1.2.2 Learning Boolean functions 12
1.2.3 Top-down induction of decision trees 14
1.2.4 Statistical induction of decision rules 1.7
1.2.5 Other algorithms 19

1.3 Goals of this thesis 20
1.4 Overview of the chapters 20

2 Algebraic decision theory 22
2.1 Discrete decision theory 22
2.2 The reasonable preorder on terms 30
2.3 Tree reduction to an irreducible form 34

2.3.1 The strategy for finding irreducibles 34
2.3.2 The reduction algorithm 37

2.4 Summary 41

vi

CONTENTS vii

3 Principled induction of decision trees 43
3.1 The basic principled induction algorithm 43

3.1.1 Generating an initial valid description 44
3.1.2 Reducing the valid description 45
3.1.3 Time and space complexity 46
3.1.4 The sparseness of the reasonable preorder 47

3.2 Enlarging the reasonable preorder 50
3.2.1 The significance of semi-essentials in tree reduction 50
3.2.2 Whiskers 55
3.2.3 The weak reasonable preorder 58
3.2.4 The strategy for finding whisker reduced terms 59
3.2.5 Whisker reduction 62

3.3 Some empirical results 66
3.4 Summary 69

4 Induction from imperfect data 70
4.1 Incomplete training sets 71

4.1.1 Functional identities 72
4.1.2 Migration 73
4.1.3 Generating trees from incomplete data 76
4.1.4 An experiment on a large data set 77

4.2 Noise 78
4.2.1 Incorrect descriptions 78
4.2.2 Reduction of complexity due to noise 81
4.2.3 Undefined values 88

4.3 Summary 90

5 Principled induction of decision rules 92
5.1 Good decision rules 93
5.2 Extraction of prime decision rules from trees 94

5.2.1 The extraction algorithm 95
5.2.2 Extraction of prime rules from noisy data 105

5.3 Summary 106

6 Conclusions 107
6.1 Summary and contribution 107

6.1.1 Clarity 107
6.1.2 Effectiveness 108

6.2 Future work 108

References 110

List of Tables

1.1 A table for the Boolean function "or" W. 13

3.1 A complete training set for classification on 5. 48
3.2 Data set on the prescription of contact lenses. 67

4.1 Comparative results on 551 chess endgame data 77
4.2 Comparative results on the Digits data. 80
4.3 Comparative results' esult on the Disjunction data. 80
4.4 Comparative results on the Digits data after pessimistic pruning.. . 84
4.5 Comparative results on the Disjunction data after pessimistic pruning. 84
4.6 Pessimistic pruning and dynamic pruning results on the Disjunction

data 87
4.7 Results on the Digits data, with each attribute value deleted with

probability 0.5. 89
4.8 Results on the Disjunction data, with each attribute value deleted

with probability 0.5. 90

5.1 Rules generated by ID3 and PRISM for each class 5 in the data of
Table 3.2. 93

5.2 Training examples used to build the tree of Figure 5.3. 101
5.3 The rules for x0 and the examples covered by each. 102
5.4 Results on the chess data described in Example 5 4 104

vi"

List of Figures

1.1 The version space of concepts in color and size. 9
1.2 A decision tree representation of the "or" function, described in Ta-

ble ll 14
1.3 The tree induced top-down from Table 11 16

2.1 The interpretation of decision q with arity two. 23
2.2 The interpretation of a term in a decision theory. 24
2.3 Decision tree corresponding, to agegroup(121.5). 25
2.4 Identities D.1-4 as they apply to binary trees. 27
2.5 (1) An irreducible tree, and (ii) its only transpose. 32
2.6 (i) A simply reduced tree that is not irreducible, and (ii) a transpose

that is not simply reduced 32

3.1 An initial tree description of the data in Table 3.1. 48
3.2 Irreducible tree for the data of Table 3.1. 49
3.3 A more compact tree for the data of Table 3 1 49
3.4 An initial valid description for which the reduction algorithm produces

the tree of Figure 3.3. 49
3.5 A tree that is factored by its root decision 52
3.6 The tree of Figure 3.5 with decision d pulled up 52
3.7 The tree of Figure 3.6, represented using composite term W 53
3.8 The tree of Figure 3.7 after transposition of d and W 53
3.9 A sample whisker. 55
3.10 The whisker of Figure 3.9 after (1) distribution, and (ii) idempotence

reduction. 56
3.11 The term of Figure 3.1 after its arguments have been whisker reduced. 67
3.12 Tree obtained from the data of Table 3.2 by both ID3 and whisker

reduction of an initial description 68
3.13 Tree for the, contact lens data, using the basic reduction algorithm. 68

4.1 Decision tree representing the data from Example 4.1. 71
4.2 Irreducible form of the tree in Figure 4.1, using the migration operator. 75
4.3 Use of the modified branch reduction on the tree of Figure 4 2 75
4.4 An example of pessimistic pruning (Example 4.6) 83
4.5 Two transpose equivalent trees: (i) Prunable tree built to minimize

entropy; (ii) The only transpose, which cannot be pruned. 85

5.1 A shallow whisker. 95

ix

x

5.2 The rules generated at each node for a portion of the tree in Figure 3.12. 98
5.3 A whisker reduced tree that yields one redundant rule. 102

Chapter 1

Principled induction in machine learning

This work investigates some of the methods that enable artificial systems to induce

concept descriptions from examples defined by vectors of feature values. Each exam-

ple is an instantiation of a template (ai, a2,. . . , a, c), where every a, is a particular

feature (e.g., color) that describes an entity, and c denotes a class membership. The

task is to produce descriptions of the concepts c, to be used in determining the class

membership of other entities taken from the same domain.

The first section of this chapter defines the notion of principled induction in the

context of machine learning. This principled approach affords a clear and effective

representation of the problem of learning concept descriptions from examples. In the

second section, a number of well known algorithms are examined under the light of

principled induction. The rest of the chapter formulates the goals of this thesis and

gives an overview of the document.

Subsequent chapters propose algorithms that follow closely the definition of prin-

cipled induction, and compare these algorithms to some of the methods reviewed in

Section 1.2.

1.1 The elements of principled induction

Michaiski's (1991) inferential theory of learning defines machine learning as a process

of knowledge transformations: the creation or improvement of knowledge represen-

tations. The knowledge contained in the examples is represented in a convenient

1

2

fashion, and then transformed to achieve a particular goal. In the case of symbolic

learning systems such as the ones to be discussed in this thesis (as opposed to neural

net systems, for example), the theory requires that these knowledge transformations

be performed in "explicit" and "conceptually comprehensible" steps.

1.1.1 Induction

To induce concept descriptions from training examples means to hypothesize de-

scriptions that agree with the examples. A successful inductive conclusion from

the examples is a hypothesis that explains them. The following formal definition is

adapted from one by Genesereth and Nilsson (1987).

Definition 1.1 Let r be a set of statements in logic that embody some background
knowledge about the domain from which the examples are taken. Let A be a database

of observations about the domain (e.g., a set of examples), and let W be a hypothesis,

expressed in the same language as A and r. We say that W is an inductive conclusion
from r and A if the following conditions hold:

1. zis provable from r and : r,wHL.

2. W is consistent with r and L: r, L, W 7' F, where F denotes the logical constant

false.

If the entities in A are described by attribute values, 'I' is an inductive conclusion,

or a valid description, if it correctly determines the class of every entity in L.

While this definition does not provide a method for obtaining a valid description,

it is easily verified that substituting A for IF satisfies both conditions. However,

= A seems unsatisfactory as an induced description because it could only function

3

as a look-up table, and it does not appear to serve any transformation or learning

goal.

This arguments raises some fundamental issues: the need to order hypothesized

descriptions by some criterion, and the identification of conceptually comprehensible

steps that can be used to transform a particular hypothesis into one that meets some

predetermined goal.

1.1.2 Ordering descriptions

The relationship among various valid descriptions of a set of examples is best cap-

tured by a preorder: a relation that is reflexive, transitive, but not necessarily anti-

symmetric. The last condition allows for distinct descriptions that are nevertheless

equivalent in the preorder.

Post (1960) examined the concept of simplicity in scientific hypotheses; he stated

that simplicity is a quality whose desirability goes beyond a subjective, aesthetic ap-

praisal - it also embodies the concept of generality, or breadth of application. A

simple hypothesis is also a "good mnemonic." From this point of view, a simple hy-

pothesis is of significant value in artificial systems; it has lower storage requirements

than a less simple hypothesis, and is easier for a human user to understand.

Sober (1975) put forward a more formal definition of simplicity: A hypothesis

H1 is more simple than H2 if H1 requires less additional information than H2 to

answer a particular question to which both are relevant. This formulation induces

an informativeness preorder on a set of hypotheses. If the hypotheses are concept

descriptions generated from vectors of feature values, then H1 is simpler if it needs

to reference fewer of the entity's features than H2 in order to determine an entity's

class membership.

4

Sober's formulation is consistent with Post's intuition. If a simple hypothesis

needs to reference fewer of an entity's features, then it is more compact than others.

It has greater breadth of application, since it is not restricted by the need to reference

irrelevant attributes. Post correctly equated the problem of finding the simplest

hypothesis to explain a phenomenon to that of finding an optimal coding for the

phenomenon.

However, the task of finding such an optimal coding constitutes an insurmount-

able hurdle from the computational point of view. The optimization of decision trees

and decision rules, two representations commonly used in symbolic machine learning

systems to represent induced descriptions, is NP-Complete (Hyafil & Rivest, 1976;

Wegener, 1987).

One common way of generating a preorder on a description space is to define a

mapping from the set of possible descriptions to the non-negative real numbers. For

example, the optimization problem for decision trees can be defined as the goal of

minimizing the sum of the path lengths in the tree (Hyafil & Rivest, 1976). This

mapping defines a total preorder on the decision trees that describe a particular

domain, such that there exists an optimal element - one that is minimal with

respect to the entire order. But since the task of finding this optimal element is

NP-Complete, it is infeasible for all but the smallest instances of the problem.

The approach used in some of the induction methods to be reviewed in Section 1.2

is to build descriptions from scratch, augmenting them by making locally correct (or

"greedy") choices. This bypasses the computational difficulty of true optimization,

and typically results in good suboptimal solutions.

Another approach, used in the algorithms presented in later chapters, is to gen-

erate a partial preorder on the descriptions, randomly select a class of comparable

5

descriptions, and find one that is minimal in the preorder. The effect is similar to that

of the greedy approach; any minimal element in the preorder can be expected to be

a good, though not provably optimal solution. The search for this minimal element

is a local search and thus does not explore the entire space of possible descriptions.

It must be noted that in spite of the ideas of Post and Sober, the preorder imposed

on the valid descriptions of a set of examples is not fixed, since optimization goals

may vary from situation to situation (Gaines, 1977). In general, it is convenient

to speak of a reduction preorder (≤red) on the space of valid descriptions, without

committing to the particular features of the relation.

Definition 1.2 A description space is a logical calculus of descriptions (with opera-

tions and rules of inference) together with a reduction preorder (≤red) on descriptions.

1.1.3 Transforming descriptions

Having discussed the concept of a reduction preorder, it is now possible to turn to

the task of transforming descriptions in order to achieve a particular goal. We begin

with a definition of generalization by Niblett (1988).

Definition 1.3 Given background knowledge r and statements S1 and S2, Si is a

generalization of S2, or is more general than 52 (S ≥ 52), if r, S1 F s2

This definition states that wherever 52 is applicable, S is also applicable; any

observations that are explained by S2 are also explained by S. Requiring that the

transformation of a valid description result in another description that is a gener-

alization of the original one guarntees that there will be no loss in the breadth of

applicability.

6

Definition 1.4 Given description W of observations A with respect to background

knowledge r, and a reduction preorder ≤rcd on the descriptions of L, t is said to be

a valid transformation if

1. 'I' is a valid description implies that i(W) is also a valid description,

2. t(W) >g IF, and

3. t(W) ≤red

A valid transformation is a generality preserving mapping of the set of valid

descriptions into itself. It transforms a valid description into another that is at

least as general, and at least as reduced, as the original description. The task of

formulating valid transformations is extremely awkward if one starts from a given

reduction preorder, and then attempts to define transformations that preserve the

preorder, as well as the validity and generality of descriptions.

The strategy used in later chapters is to start from operations that preserve the

validity and generality of descriptions, and also improve the descriptions by some

criterion - or at least do not make them any worse. These operations can then

be used to generate a reduction preorder on the space of valid descriptions, and be

treated as valid transformations.

Definition 1.5 A reduction preorder is transformational (written as ≤redt) if it is

generated by the operations and rules of inference of a description space. A descrip-

tion space is transformational if its reduction preorder is transformational.

A set of generality and validity preserving operations on a set of descriptions

becomes a set of valid transformations when the reducing preorder used is the trans-

formational reducing preorder induced by the operations. Then it becomes easy to

7

identify elements that are minimal in the preorder: an element 'I' is minimal in < fedt

if and only if there is no transformation t such that t(W) _< redt W and 'I' redt t(W).

The concept of principled induction may now be formulated.

Definition 1.6 'I' is a principled inductive hypothesis from background knowledge

r and observations A if

1. IQ is an inductive hypothesis from r and A by Definition 1.1 (e.g., W is in the

description space for Lx).

2. 'I' is minimal in the transformational reduction preorder for the description

space.

The following definition gives a general procedure for obtaining principled inductive

hypotheses.

Definition 1.7 Given observations i, background knowledge r, a transformational

description space for L with operations and rules of inference that are valid trans-

formations, and a transformational reduction preorder ≤redt defined by the valid

transformations, '] is obtained by principled induction if:

1. To is some arbitrary valid description (an inductive hypothesis by Defini-

tion 1.1).

2. I' is obtained from T o by application of valid transformations, and W is minimal

in <redt.

In other words, principled induction is the process of selecting an arbitrary valid

description of the observations, and applying valid transformations until a minimal

element in the preorder is obtained. The intent of stipulating that the initial valid

description be selected arbitrarily is to allow for the use of an easily obtained valid

8

description. In practical terms, principled induction is the process of producing,

inexpensively, an accurate working hypothesis, and then improving that hypothesis

by small, well defined steps, until no further simplification is possible.

1.2 Some induction algorithms

As part of an introduction to principled induction, it is useful to survey some well

known algorithms that induce concept descriptions from vectors of attribute values.

These algorithms are described in some detail, and the descriptions are enriched

with simple examples. The reader who is already familiar with these algorithms will

benefit from the portions of the discussion that analyze them in terms of whether

they can be characterized as forms of principled induction. The time complexity of

two of the algorithms is also examined, as these measures will be used for comparisons

in later chapters.

1.2.1 Version space

The version space learning algorithm, due to Mitchell (1978), is based on a reflexive,

antisymmetric partial order on the space of all possible descriptions in a language.

This ordering is indeed a generality ordering, in the sense of Definition 1.3. The

entire relation can be represented as a graph, called the version space graph.

Example 1.1 Given a domain in which entities are described by the features color

(one of {blue, red}) and size (one of {small, large}), the version space graph of

concept definitions in the domain is as shown in Figure 1.1. An arrow from node

v1 to node v2 indicates that v1 is more general than v2. Thus, the top element in

the graph, (*, *), which represents a description in which neither of the features is

9

(blue,*) (red,*) (*,small) (*,large)

(blue,large) (blue,small) (red, large) (red,small)

Figure 1.1. The version space of concepts in color and size.

instantiated, is more general than any other description. The four minimal elements

in the relation are the descriptions with both features instantiated. As long as

nothing is known about the concept to be learned (e.g., no examples have been

made available), any node in the version space graph is a possible description of the

concept.

For the purpose of learning concept descriptions, the version space V is not

represented explicitly, but rather by two boundary sets of nodes:

1. The most general boundary set: G = {g -i v E V, v 54 g A v ≥ g}.

2. The most specific boundary set: S = {st— v E V,v =A s As >g v}.

The algorithm uses positive and negative examples of the concept to be learned

(the target concept) to specialize the G set and to generalize the S set. The examples

are presented incrementally, and the boundary sets are modified to create a new

version space, whose nodes constitute the set of possible concept definitions that are

complete and consistent with respect to the examples that have been presented. If

and when the boundary sets meet, G = S = {v}, and v is the concept description.

The G set is initialized to the most general element in the graph, and the S set

is initialized to the first positive example. With every additional positive example

10

e, G is updated by discarding any elements that are no more general than e. The

specific boundary set S is updated to the least general elements in the graph that

are more general than e. Positive examples are used to ensure that the S set is as

general as possible.

If the example e is negative, any elements in S that are more general than e must

be dropped, and G must be replaced by the set of least general graph nodes that are

not more general than e. This ensures that the G set is only as specific as necessary

to avoid covering negative examples, so that all of the possible definitions in the new

version space are consistent with respect to the available observations.

Example 1.2 Consider the task of learning the concept "blue" in the descrip-

tion space depicted in Figure 1.1. Let the positive examples be (blue,large) and

(blue,small), and let there be a single negative example (red,small). The boundary

sets are initialized to G = {(*, *)} and S = {(blue,large)}. Let the next example

be the negative one, (red,small). The current S set does not contain any elements

that are more general than (red,small), so what remains is to replace G by the set

of least general nodes that are not more general than the example. The single el-

ement of the current G is more general than (red,small), so the set is replaced by

{(blue,*),(*,large)}. At this point the G and S sets define a version space with three

nodes, or possible concept descriptions: { (blue, large), (blue,*),(*, large) }. The second
positive example, (blue,small) is not covered by (*,large), so the latter node must be

dropped from the G set, resulting in G = {(blue,*)}. The only element in the S set is

not more general than (blue,small), so S is updated to {(blue,*)}. The boundary sets

have met, and the learned concept is "blue, of any size", which may be interpreted

as "blue".

/

11

It is easy to show that this algorithm learns concept descriptions by principled

induction. The goal of the transformation process is to reduce the size of the set of

possible concept descriptions, such that a single possible description remains. The

initial guess To is obtained at little cost by creating an S set with an arbitrary

positive example as its only member. The updatings of the boundary sets preserve

the validity of the possible concept descriptions in the new version space - that is

precisely their nature. Generality is preserved by updating the S set with nodes that

are more general than the ones they replace.

The updating operations induce a preorder on the valid version spaces. This

preorder may be thought of as one of tightness: if an example triggers any change at

all in the version space, the updated version space will have a G set that is at most

as general as the previous G set, and - as discussed in the previous paragraph -

an S set that is at least as general as the previous one.

It could be argued that since the learning algorithm is strictly incremental, in the

sense that it maintains consistency and generality with respect to one example at a

time, a given state of the version space cannot be judged to be a valid description of

all the examples. For example, the initial version space, defined on the basis of the

first positive example, is not necessarily consistent with respect to future negative

examples.

However, consider the version space after k examples have been processed. To

perform principled induction from those k examples, it is sufficient to select the

current version space as TO. Since no valid transformations - or steps of the

algorithm - can be performed without additional examples, the current version

space is minimal in the preorder, and is the result of the principled induction task.

The previous, incremental processing of the lc examples guarantees that the readily

12

available initial guess is in fact minimal in the preorder.

1.2.2 Learning Boolean functions

The task of simplifying a Boolean function is the same as learning a concept descrip-

tion from a set of examples made up of bit vectors for which the function is known

to have value "1". While this is only a restricted form of the problem of inducing

decision rules, the Quine-McCluskey simplification method (McCluskey, 1956; Quine,

1955; Quine, 1952) is a clear example of principled induction and should be examined

in this survey as well.

The input to the algorithm is a set of N positive examples v defined in binary

attributes X = {x1,. . . , x}. The output is a set of vectors, each of which is defined

in some subset of X. The set is interpreted as a disjunction of conjunctive clauses.

In dealing with binary attributes whose values may be "0" or "1", it is customary

to represent r = 1 by x and x = 0 by . Thus the output set {a 1ff2, r3} is interpreted

as the description "x1 takes the value one and x2 takes the value 0, or x3 takes the

value 1." Each element v in the output set is interpreted as a conjunctive decision

rule of the form v = 1. For example, x1ff2 is interpreted as

(XI =1)A(x2=0)=1.

Initially, the algorithm looks for all pairs of examples that differ on exactly one

attribute x2. For every such pair (vi, v2), a new example v' is generated, such that v'

is defined in x1,. . . , x_1, ... , x: v' is of length ii - 1, and is equal to both v1

and v2 on every x, j 54 i. The examples v1 and v2 are marked as "used" to indicate

that they have participated in the generation of a new vector; this does not preclude

them from appearing in other pairs. The process is repeated with the all the new

vectors of length n - 1, n - 2,... until no pairs of vectors of the same length can

13

be found that differ on exactly one attribute. Notice that vectors of length n - 1

or less may be defined on entirely different attributes, and may therefore not be

comparable. The output is the set of vectors that remain unmarked.

Xl X2 Xi+X2

100 0
201 1
310 1
411 1

Table 1.1. A table for the Boolean function "or" W.

Example 1.3 The Boolean function "or" is defined in Table 1.1. The positive ex-

amples are numbers 2 (ir2), 3 (xir2), and 4 (x1x2). Examples 2 and 3 differ on

both attributes, so they may not be paired to generate a simplified vector. On the

other hand, 2 and 4 differ on the value of x1; they are be used to generate a vector x2,

and then marked as used. The same is true of 3 and'4, which generate x1. The two

vectors of length one are defined on different attributes, so no further simplification

is possible. Both vectors are unmarked, so they appear in the output set {x1, x2},

interpreted as two decision rules: If attribute ri has value 1, the Boolean function

"or" has value 1; else if x2 has value 1, the function has value 1.

It must be noted that the output of this algorithm is not optimal. All the algo-

rithm guarantees is that every conjunction is prime: if any attribute were dropped,

the conjunction would cover some case defined in the original m attributes that was

not included in the original set of positive examples. In order to truly optimize the

output, it is necessary to identify and remove any redundant conjunctions - that is,

conjunctions that only cover examples which are also covered by other examples. The

14

removal of redundant conjunctions, and hence the optimization of Boolean function

definitions, is NP-Complete (Wegener, 1987).

In order to understand why this simplification algorithm is an example of prin-

cipled induction, one must note that the reduction of two vectors that differ on one

attribute to a shorter vector without that attribute preserves the generality and con-

sistency of the entire set of unmarked vectors - the potential output. The new

vector is in fact more widely applicable than either of the two original ones, and

it is consistent because the eliminated attribute is binary. The reduction operation

induces a reducing transformation preorder on the valid sets of unmarked vectors,

and constitutes a valid transformation with respect to that preorder.

1.2.3 Top-down induction of decision trees

Concept definitions can be represented as decision trees, where every internal node

in the tree represents a query about the value of a particular attribute, and every leaf

represents a class or concept name. The decision tree of Figure 1.2 is a representation

of the Boolean function "or" described in Table 1.1.

The classical approach to inducing decision trees is to build them from the top

down, using local criteria to select the test attribute at every new node (Breiman,

Friedman, Olshen & Stone, 1984; Quinlan, 1986b).

Figure 1.2: A decision tree representation of the "or" function, described in Table 1.1.

Given a set S of entities that belong to different classes, one would like to select as

15

the first attribute - the root of the decision tree - one that divides S into subsets

Si,. . . , S,, such that the subsets are more homogeneous than S. More explicitly,

suppose that the most frequent class among the N entities of S is c, of which there

are k cases. Then the frequency of c in S is . Let Ci be the most frequent class in

each S. One would like the average frequency of the cis to be higher than *; this

means that the subsets are "closer" to containing only elements of a single class. The

process is repeated on every S, until the resulting subsets are perfectly homogeneous.

The crux of this method is the selection of an adequate attribute on which to split

the set of examples. While the choice of an attribute is irrelevant to the correctness

of the tree representation of the concepts, or classes, contained in S, there are choices

that will produce more compact representations.

In order to select a test that will lead to a simpler representation, the attributes

that are available to partition S are rated on their impurity (Breiman et al., 1984).

An impurity function i(S) assigns a nonnegative value to a set of examples and a

possible test attribute a. This function must take on its maximum value when every

class that is present in S occurs with the same frequency, and its minimum value

when only one class occurs in S.

In order to rate an attribute a € A, where A is the set of attributes available for

partitioning 5, a is used to partition the examples into S1,. . . , S,, and the impurity

of every Siis calculated. These impurities are weighted by the sizes of the subsets

and averaged. The attribute that is selected is the one that minimizes the weighted

average of the impurity measures.

One of the impurity functions, proposed by Breiman et al (1984) is

k

I(S) = —Ep(ck) log(p(ck))

where c1,. . . , ek are the classes that occur in S. This is the entropy function defined

16

by Shannon (Shannon & Weaver, 1948); it is used with 2 as the logarithmic base in

the tree induction systems ID3 (Quinlan, 1986b) and C4.5 (Quinlan, 1990b).

Example 1.4 In this example, the ID3 algorithm is used to induce a tree from

the data of Table 1.1. Partitioning on x1 would result in subsets {1,2} and {3,4},

corresponding to the examples with values 0 and 1, respectively, on x1. The first

subset has one example of class 1 and one of class 0; the entropy of the set is

—(0.5 10g2(0.5) + 0-5 - 1og2(0.5)) = —(-0.5 - 0.5) = 1.

The second subset has two examples of class 1, so its entropy is 0.

Partitioning by x2 would produce two subsets with the same entropies, so the choice

is irrelevant. Let us select x1; the subset 13,4} requires no further partitioning, since

both entities belong to class 1. A leaf node is created and labeled with that class.

The subset {1, 2} still requires partitioning. The only remaining attribute is X2, and

x2

0

0 1

Figure 1.3. The tree induced top-down from Table 1.1.

splitting on this feature produces two singleton subsets, obviously with entropy 0.

The induced tree is shown in Figure 1.3.

The top-down approach is clearly not principled induction. There is no initial

guess as such; the unfinished tree does not qualify as a valid description of S. The

tree is "grown" by specialization, rather than by generality preserving simplification.

It is true that the finished tree could be used as the initial valid description of a

17

principled induction process; however, as discussed below, the cost of producing this

initial guess is far from negligible.

To analyze the cost of this approach to tree induction, consider a set S of training

examples, described by the set of attributes A. In order to select some a E A to

partition 5, the set must be partitioned by every a, and the impurities of the resulting

subsets must be measured. Therefore, every member of S must be examined on the

value of every attribute at a cost of ISI IAI. That is in effect the cost of constructing

every level of the tree; since the number of levels is bounded by the number of

attributes, the time complexity of the entire process is 0(lI• IAI2). Moreover, the

average running time of the algorithm can be expected to approximate this upper

bound.

Trees induced by this method are not guaranteed to be optimal because test at-

tributes are selected by minimizing the average heterogeneity of the subsets resulting

from a partition, which is a purely local criterion. True optimization would require

that these selections be made by examining the finished decision trees that would

arise from the various selections of test attributes for the current node of the tree.

1.2.4 Statistical induction of decision rules

PRISM (Cendrowska, 1987) is an algorithm that adapts the statistical approach of

ID3 to induce sets of decisions rules. Like the Quine-McCluskey algorithm, PRISM

produces a disjunction of conjunctive decision rules. PRISM, however, is capable of

learning from examples described by n-ary attributes.

A more significant difference between the Quine-McCluskey algorithm and PRISM

is that the latter grows rules by specialization; this disqualifies it from being a prin-

cipled induction algorithm.

18

Decision rules are created by finding tests, or attribute-value pairs, of the form

(attribute = value). Cendrowska treats these pairs as discrete messages in an infor-

mation system. The information, in bits, contributed by such a pair (abbreviated as

(a = x)) to the classification of an entity as a member of class e, is defined by

I(cl(a = x)) = 1og2(= rI
P(c)

The interpretation of the fraction in the right hand side is: "the probability that the

class is c after it is known that the entity has value x on feature a, divided by the

probability that the entity belonged to class c before the value of its feature a was

known." Rules are grown by adding to them attribute-value pairs that maximize the

information function.

In order to build a set of rules from training examples from classes c1,. . . ,

PRISM does the following, for each c.

1. Selects the attribute-value pair (a = x) that maximizes the information func-

tion, adding the pair as a test to the conjunctive rule for class c. It then

creates the subset of entities that meet this condition.

2. Repeats step 1 until the subset contains only members of class c, and then

removes the remaining subset from the original training set.

3. Repeats steps 1 and 2 until no entities of class ci remain in the training set.

As anticipated above, PRISM is not a principled induction algorithm. There is no

initial valid description; the final description is grown by progressive specialization

from an empty rule set, with no intermediate valid descriptions.

This algorithm is somewhat less efficient that top-down tree induction. For every

rule, every entity could be examined on every attribute with every test that is added

19

to the rule. Since a rule can be as long as the number of features, given a set of

attributes A, the cost of creating rule from examples S is ISI Al2. Furthermore, the

number of rules is bounded by number of examples, so the overall time complexity

is O(ISl2• lAI2). However, unlike with the tree induction method, this is in fact a

very pessimistic estimate, and the average time can be expected to be better.

1.2.5 Other algorithms

The algorithms described above exemplify some of the basic approaches to the in-

duction of descriptions from attribute vectors, and serve as positive and negative

examples of principled induction.

There are other effective induction algorithms worthy of mention. For example,

the program AQ11 succeeded in learning a set of rules for the diagnosis of plant

pathology, that performed better than rules generated by human experts from the

same recorded cases described in terms of feature values (Michalski & Chulausky,

1980). The system's basic method is not unlike that used in PRISM: decision rules

are augmented with conjuncts that cover many positive and few negative examples of

the target concept. The basic AQ11 algorithm has been extended in systems such as

AQ1S (Michalski, Mozetic, Hong & Lavrac, 1986) and Einstein (Webb, 1991); these

extensions enable the algorithm to cope with attributes whose values come from

continuous domains (as opposed to discrete attributes), and with partially corrupted

examples. INDUCT (Gaines, 1991) is an extension of PRISM that performs well on

corrupted data. However, like the basic methods that underlie them, these effective

algorithms fail to qualify as forms of principled induction.

20

1.3 Goals of this thesis

The goal of this thesis is to argue that the principled approach to induction presented

in this chapter provides a clear and effective representation of the problem of learning

concept descriptions from examples. The principled induction algorithms presented

in later chapters are not intended to provide solutions that are necessarily more

efficient or effective than those reviewed in the previous section, but rather to support

this claim.

It will be shown how differences in the preorders used for principled induction

affect the efficiency of the induction process and the quality of the results. These

differences highlight the tradeoff between the cost of the principled induction process

and the degree of optimization achieved.

Furthermore, experiments comparing the performance of principled induction

to the statistically based method of Section 1.2.3 shed some light on the value of

statistical criteria when induction is performed from corrupted data.

1.4 Overview of the chapters

Chapter 2 reviews an algebraic theory for the manipulation of decision trees and an

efficient algorithm for simplifying decision trees. Chapter 3 explains the application

of the tree reduction algorithm to the task of learning concept definitions by princi-

pled induction from vectors of feature values. It is shown in that chapter that the

original tree reduction algorithm fails to achieve the degree of simplification that

can be expected of statistical methods. A new preorder is defined on the terms of a

decision theory to support a modified tree reduction algorithm that achieves greater

simplification.

21

Chapter 4 discusses the application of these methods to the task of inducing con-

cept definitions from incomplete and noisy data, and examines the value of statistical

criteria when inducing decision trees in noisy domains. Some empirical results are

presented to support the effectiveness of the principled induction algorithm presented

in Chapter 3, and the extensions discussed in the current chapter.

Chapter 5 presents an algorithm for inducing compact definitions in the form of

prime decision rules, which are extracted by principled induction from a decision tree

representation of the training examples.

The last chapter summarizes the thesis and discusses its contribution.

Chapter 2

Algebraic decision theory

This chapter presents an algebraic formulation of decision trees, developed by

Cockett (1987a, 1987b, 1988). The formulation is used to define operations on

decision trees, which in turn generate a preorder on the trees. An algorithm is de-

fined, using those operations, to find minimal. elements in that preorder (Cockett

& Herrera, 1990). In Chapter 3 the algorithm will be used to perform principled

induction of decision trees.

2.1 Discrete decision theory

This section presents an algebraic theory that can be used to model decision processes

in which every atomic test is discrete: it has a predetermined, finite number of

outcomes.

Definition 2.1 A decision q is an operation, with an associated arity n ≥ 2 (written

as arity(q) = ii), that partitions a set S into n disjoint subsets:

q:S—+S+...+S,

that is, q partitions a set S into Si,. . . , S, such that

OSi=S
i=1

and for 1 ≤ i, j ≤ n, i 0 j implies that Sfl S = 0.

The following example shows how this definition of a decision models the atomic

component of a decision process.

22

23

Example 2.1 S = lei, e2, e3}, where each element is in turn a set of n expres-

sions (qj): q is a decision that appears exactly once in a given e, and 1 ≤

i ≤ ariy(q). These expressions simply associate the value j with decision q.

Let ariy(qi) = 2; the arities of q,. .. , qn may remain unspecified. Suppose that

ei = {(q11),(q23),. . . (qG5)}, e2 = {(qiG2),(q2'7),. . . ,(q,G3)}, and e3 =

{(qi 1), (q27), . . . , (q,4)}. It is useful to think of q as a gate with one input chan-

{el,e2, e3}

{e 1,e3} {e2}

Figure 2.1. The interpretation of decision q with arity two.

nel, and ariy(qi) output channels, each labeled with a number from {1,. . . , arity(qi)}

(see Figure 2.1). Decision q redirects each ej in a way that is determined by the

value associated with q in e.

In the following definition, decisions are composed to form terms, which are

expressions analogous to decision trees.

Definition 2.2 Given a set of decisions Q and a stock of variables x1, x2,. . . ,

a term defined in Q and the variables is an expression t formed as follows:

• If t is one of x1,x2,...,x,..., it is a term.

..% ,

24

• If ti,. . . , t, are terms, q is a decision in Q, and arity(q) = n, then q(t1 ... Its)

is a term. In such a term, tj,. . . , t, are the arguments or subtrees of q.

A term t also partitions a set into disjoint subsets, by the following rules:

• If t = q(iil ... (t,), then partition the set with q, redirecting the disjoint subsets

into the corresponding ts; that is, redirect the output from channel i into ti.

• If t = x, the partition is complete.

Intuitively, the variables in the term are possible outcomes of the decision or

classification process. For every variable that occurs in the term, there is a "bucket"

labeled with the variable name. As shown in Figure 2.2, elements of the set that are

redirected to a variable x are deposited in the bucket labeled "x". This corresponds

to our understanding of decision processes as represented by decision trees. Every

N
/ 1-1

Figure 2.2. The interpretation of a term in a decision theory.

internal node of the tree can be interpreted as a "gate" such as shown in Figure 2.1,

labeled with the corresponding decision. However, the graphical representation of

Figure 2.1 has been deliberately replaced by the standard graphical representation

25

of a decision tree. The arcs of the tree correspond to the channels, and its nodes

represent occurrences of the variables in the decision term. Although a variable x

may appear on several terminal nodes, all occurrences of x are linked to a common

bucket.

It must be noted that instead of discussing the classification of isolated events,

these definitions deal with the partition of sets of events into disjoint subsets: if

an event is deposited in a bucket labeled x, then it cannot also appear in a bucket

labeled y. Formally, to classify a single event, it is necessary to ask in which bucket

would the event be deposited if the entire set were partitioned with the, decision

expression. In practice, it is sufficient to trace the application of the decision term

to that particular element.

Example 2.2 Consider the problem of determining the appropriate dosage of a

medication on the basis of the patient's age group. If the patient is young, the

dose should be one tablet; if he is middle aged, it should be two tablets; and if he

is old, it should be one and a half tablets. This can be represented in a decision

theory D = (agegroup, {}) with variables {1, 2, 1.5}, where agegroup has domain

{ young, middleaged, old}; this domain is an ordered set, each of whose elements

corresponds to one of {1, . . . , arity(q)}. The appropriate term is agegroup(l21.5),

shown in Figure 2.3 If the query agegroup returns young, then the term is to be

agegroup

1 2 1.5

Figure 2.3. Decision tree corresponding to agegroup(1J2I1.5).

26

taken in its first argument, or subtree, which yields the variable term 1. Formally,

an event with the value young on test agegroup, is placed by the term into a subset

that contains the class of individuals for whom the dosage is one tablet.

Throughout this work the following will be used interchangeably: tree and term;

subtree and argument; decision and test; and variable, leaf, and terminal node.

The following definition completes the theoretical framework required to describe

discrete decision processes.

Definition 2.3 A decision theory D = (Q, E) is an algebraic theory with a set of

decisions Q and a set of identities E. The terms defined in Q and a stock of variables

are called the terms of D (written as terms(D)). The identities in E are of the form

ti = tj, where t, tj e terms (D).

In addition to any identities in E, every decision q in a decision theory must

satisfy the following identities:

D.1: Idempotence

q(xj ... x)=x.

D.2: Distribution

qi(xi I . . . xj_iq2(yil Ix) =

q2(qi(xi I. . . xj_iyj xj+i(. . . qi (x . . . Xi_lIYmIXi+lI . . . IXn)).

D.3: Repetition

q(xiI ... xj_i g(yi ... Iy)Ix+iI ... Ix.) = ... Ix.iIi4x+iI... Ix).

An additional identity was introduced by Chen and Ras (1985):

27

D.4: Transposition

qi(q2(xi,1J . . . I2(xm,iI Im,n))

= q2(ql(xl,1I ... Ixm,i)I ... qi(xi, .

D.1

D2

D3

D.4

x

x

x

/\

x

x

x

Figure 2.4. Identities D.1-4 as they apply to binary trees.

These identities, as they apply to binary trees, are illustrated in Figure 2.4.

Their semantics correspond closely to intuitions about decision processes.

The idempotence identity states that if every possible answer to a query results

28

in the same conclusion, then the conclusion may be safely drawn without reference

to the query. Using the buckets analogy, it is pointless to continue partitioning the

set if all of its elements are bound to end up in the same bucket. The repetition

identity states that if the same query is posed at two consecutive stages of a decision

process, then it may be assumed that the answer is equal both times - and that the

second occurrence of the query may be omitted. The buckets corresponding to the

variables of the second occurrence of the repeated decision that are removed by the

elimination of repetition are going to have no contribution from those occurrences

of the variables. The two remaining identities, D.2 and D.4, specify how changes in

the ordering of two decisions affect the structure of the process, given that the order

in which the decisions are taken must not affect the contents of the buckets.

Cockett (1987b) showed that D.i-3 constitute a set of axiom schemes for the

terms of a decision theory D(Q, E): if every q E Q satisfies these identities, then so

does every term in the decision theory. It was also shown, in the same work, that

D.4 can be derived from D.2 and D.3, and that D.3 can be obtained from D.1 and

D.4. Hence D.1, D.2, and D.4 also constitute a set of axiom schemes.

The identities D.1-4 can be rewritten as a set of equations that express their

applicability to composite terms. Some additional notation is required: If W is a

composite term with variables (from left to right) x1, x2,. . . , x,, the term will also

be denoted by W(xilx2l ... Jx).

DW.1: Idempotence for terms

W(xl ... IX) =x.

29

DW.2: Distribution for terms

Ixi_itT'V2(yil . . . IYm)IXi+1I . . . Jx,) =

T4'2(T'V1(xij IXi_ilYil2i+il Ian)I IT4Ti(xil IXi_1IYmIXi+1I lx)).

DW.3: Repeat reduction for terms

T4T(xiI Ixi_iIT'V(yil • II • • • Ii)I • 1x+11 Ix)

=W(x1J ... lx.1,1l ... jx +1 f...Ix).

DW.4: Transposition for terms

1471(T'V2(xi,iI • I"2(Xm,iI . !xm,n))

= T'V2 (WI (xi,iI Im,1)I . . . T'Vi(Xi,nI I'in,n)).

Giving the equations DW.1 and DW.3 a direction in the obvious simplification

direction results in rewriting rules which allow the definition of various special forms

for decision trees.

Definition 2.4 A term t is idempotence reduced if there is no decision that can be

eliminated using DW.1. Any tree can be transformed into an idempotence reduced

form (id(t)) by successive applications of DW.1.

Definition 2.5 A term t is repeat reduced if there is no decision that can be elimi-

nated using DW.3. Any tree can be transformed into a repeat reduced form (rp(t))

by successive applications of DW.3.

30

Definition 2.6 A term t is simply reduced if it is put in repeat reduced form, and

the result is then put in idempotence reduced form (id(rp(t))).

Equations DW. 1-4 also allow us to define several equivalence relations between

terms of a decision theory.

Definition 2.7 Terms t, and t2 in the same decision theory are structurally equiv-

alent (t t2) if one is an identical copy of the other.

Definition 2.8 Terms t, and t2 in the same decision theory are decision equivalent

(t1 —D t2) if one can be obtained from the other by some sequence of applications of

DW.1,3,4 (or DW.1,2,4).

Definition 2.9 Terms t, and t2 in the same decision theory are transpose equivalent

(ti = T t2) if one can be obtained from the other by DW.4.

22 The reasonable preorder on terms

The equations defined in the previous section can be used to generate a preorder on

the terms of a decision theory. This is a reduction preorder in the sense mentioned

in Chapter 1.

Definition 2.10 The reasonable preorder, <,, on the terms of a decision theory is

the least preorder 1 that is

Monotonic: If t, ≤ t2, q(. .. ItIl ...) ≤ q(... I2I .. .

Idempotent reducing: t ≤,. q(t ... it).

'As mentioned in Chapter 1, a preorder is a relation that is reflexive and transitive, but not
necessarily antisymmetric. A least preorder can be formed by computing the transitive and reflexive
closure of a relation.

31

Repeat reducing:

q(xij • • Ix) ≤r

Transposition invariant:

qi(q2(xiij... xi n) ... q2(xmi... Xmn))

≤r q2(qi(xii . . . lXmi) . . . q1(x1 X n)).

If a < b and b ≤ a are in a preorder, a and b are preorder equivalent. Cockett

(1987a) showed that two terms of a decision theory are preorder equivalent if and

only if they are transpose equivalent. If they are transpose equivalent, then they

are preorder equivalent by the definition of ≤r. If they are preorder equivalent,

they must be transpose equivalent, because the other inequalities that define ≤r are

asymmetric.

This can be seen as idempotence and repeat reduction shorten the average path

length in the term, and only transposition preserves it. If the preorder is interpreted

'as an ordering on the cost of the terms of a decision theory, then transposition

equivalence partitions the terms into cost classes.

The following definition provides an additional characterization of minimal ele-

ments in the reasonable preorder.

Definition 2.11 A term t is irreducible if every t' such that ' =—T t is simply reduced.

It is not difficult to see that a term is irreducible if and only if it is minimal

in the reasonable preorder. If every transpose of t is simply reduced, it means

that idempotence and repeat reduction cannot be applied to any t' that is preorder

32

equivalent to t; since the reasonable preorder is a transitive closure, this implies that

there is no term that is strictly smaller than t in the preorder.

However, Definition 2.11 is more useful in a practical sense, as it provides a

procedural characterization of minimal elements. This is the characterization used

later to formulate an algorithm to find a minimal element in the reasonable preorder.

Example 2.3 The tree of Figure 2.5(i) is irreducible, since it is simply reduced,

and so is its only transpose, shown in Figure 2.5(u). On the other hand, the tree of

(i) (ii)

Figure 2.5. (1) An irreducible tree, and (ii) its only transpose.

Figure 2.6(i) is simply reduced, but not irreducible, since its transpose (Figure 2.6(u))

is not simply reduced. The transpose can be idempotence reduced to b(112).

(i) (ii)

Figure 2.6: (i) A simply reduced tree that is not irreducible, and (ii) a transpose
that is not simply reduced.

33

The relationship between the minimality and the cost of elements in the reason-

able preordèr deserves further examination. Taking an arbitrary term and descending

from it in the preorder is not guaranteed to yield a minimal element that is optimal

with respect to a predetermined criterion. This is so because the preorder is a par-

tial ordering. The following discussion describes the connection between optimization

criteria and the reasonable preorder.

Definition 2.12 A reasonable criterion is a real cost function of the form

cost terms(D) }+

that preserves the reasonable preorder.

To prove that a cost criterion is reasonable, it is sufficient to show that if t1

is obtained from t2 by idempotence or repeat reduction, or transposition, or by

monotonic composition, then cost(ti) ≤ co.st(t2). Since the reasonable preorder is a

transitive closure, this proves that if any ti ≤, t2, then cost(ti) Cost(t2)-

It is therefore easy to construct a proof that, for example, the height of a tree

(height(t)) or its uniform size 2 (u.size(t)) are reasonable cost criteria. By the same

token, it can be shown that the number of nodes is a reasonable cost criterion for

binary terms. This is not true of arbitrary terms; the term

q (q2(xi Ix2Ix3) Iq2(x4lxslx6))

has a total of nine nodes. Its only transpose,

q2(ql(x1 Ix4) jqi (x 21 x 5) Ii (x 3I x e)

2The number of leaves minus one.

34

has ten. Thus, the transposition of trees, which is treated in the preorder as "neutral"

in terms of cost, can in fact disrupt a cost criterion that might at first hand appear

to be reasonable.

The proof technique described above can also be used to show, with little ef-

fort, that linear combinations of reasonable cost criteria (with positive coefficients)

and powers (greater than one) of reasonable cost criteria are also reasonable. Fur-

thermore, there is a proof that any expected testing cost (e.g., an assignment of a

positive cost to every decision in a tree, and a branching probability to every arc) is

reasonable (Cockett & Herrera, 1990).

Although a minimal element of the reasonable preorder cannot be guaranteed to

be optimal with respect to a predetermined reasonable cost criterion, it can be shown

that every irreducible term is optimal with respect to some reasonable cost criterion.

In particular, every irreducible term is optimal with respect to some expected testing

cost (Cockett & Herrera, 1990).

23 Tree reduction to an irreducible form

If a repeat reduced term is not irreducible, then there must exist some transpose

equivalent term that is not idempotence reduced. Hence the problem of transforming

a repeat reduced term into an irreducible form is that of finding transposes that are

not simply reduced, performing idempotence reduction,, and repeating this process

until the resulting term is irreducible.

2.3.1 The strategy for finding irreducibles

The method last discussed for finding irreducibles is impractical, given the large num-

ber of transposes a term may have. The worst case for the number of transposes of a

35

binary tree composed from decisions Q is given by the recurrence

R(IQt) = IQI R(IQI - 1)2, where R(0) = 1 (Cockett, 1987b).

To obtain a more efficient method, the problem must be viewed from a different

perspective. It follows from Definition 2.11 that if a term t is not irreducible, then

there exists a decision in t that can be transposed to the level above the leaves such

that idempotence reduction will be applicable. Conversely, to show that the term is

irreducible, it is sufficient to show that there is no such decision in I. The following

definitions will allow the formalization of this intuition.

Definition 2.13 A decision that occurs on every path from the root to a leaf of a

term t is semi-essential in I.

While it is clear that any conclusion to be reached using a given tree will probe

every decision that occurs semi-essentially, this does not imply that the decision

cannot be eliminated from some of the paths by idempotence reduction.

Definition 2.14 A term t is semi-essentially simple when its only semi-essential

decision is its root decision. It is said to be factored by q if the subtree at every

occurrence of q is semi-essentially simple.

If a tree t is factored by q, then no occurrence of q in t can be transposed to a

lower level. These definitions allow the formulation of the following proposition,

from (Cockett, 1987a).

Proposition 2.1 A term t is irreducible if and only if for every decision q in t, t

factored by q cannot be idempotence reduced.

To understand why this proposition is true, it is useful to examine how the result

could be applied to the problem of finding an irreducible form of a term.

36

Consider a simpler version of the problem: Let t = q(ti ... Its) be such that

t1,. . . , t, are known to be irreducible. By the proposition, to test t for irreducibility

(or transform it into an irreducible), it is sufficient to factor t by its root decision q

and test for idempotence.

In order to factor t, it is necessary to transpose q as far down the tree as possible.

The problem becomes that of finding those decisions in t with which q may be legally

transposed. The solution is provided by the following result from (Cockett, 1987a).

Lemma 2.2 (Pulling up lemma) A decision q is semi-essential in t if and only if

there is a term t' with q at the root, such that ' t.

The factoring of t by its root decision q can be performed in the following manner.

Find some decision q' 54 q that is semi-essential in t. If there is none, then t is already

factored by q. Otherwise, build t' = q'(. . .), t' -T t (called pulling up q' in t). The

existence of t' is guaranteed by Lemma 2.2. Repeat the process for every subtree in

' that has q at the root.

The correctness of this process - and of Proposition 2.1 - hinges on the as-

sumption that the order of pulling up does not affect the result. In other words, it

is important to know that when factoring a term by its root decision q, the choice of

semi-essential q' to be pulled up to the root does not in any way affect the presence

(or absence) of idempotence when factoring by q is completed. The irrelevance of

the order in which semi-essentials are pulled up is shown in the following lemma

(Cockett, 1987a).

Lemma 2.3 If t T i2 and both terms are factored by q, then

tj = W(q(ziizi2j ... Iz1n)I ... q(zmi zm2 ... Izmn)Irm+il ... Izt)

= V(q(yii yi2 Iq(yiIy2I... Iy)Iy+iI ... lyt)

37

(where W and V are composite expressions) then m = p and t = s, and there is a

permutation ir such that

W(xi,x2,... ,Xn) =T V(X ir(1) ,X ir(2),.. . ,X ir(n)), Z,. = T Yir(i)r, Zj = T Zir(j).

Proof As tj = T t2, the decision qo at the root of tj is semi-essential in i2. Since

2 is factored by q, qo must always occur before q in V. By Lemma 2.2, it may be

moved to the root of t2 by transposition, yielding t. The same argument can be

applied to the subtrees of qo in t - which shows that W =T V given 7r - and to

the arguments of q.

2.3.2 The reduction algorithm

This section presents the algorithm for transforming a repeat reduced term into

an irreducible, followed by a complexity analysis, as given by Cockett and Herrera

(1990). As hinted in the previous discussion, algorithm is recursive: to reduce a term

t = q(tit2 ... It), first reduce t1,t2,. . . ,t, to ... ,t. Since the ts are irre-

ducible, the only way to (possibly) achieve idempotence reduction in q(tjj...

is by manipulating q to the level above the leaves.

Algorithm 2.1

reduce(t)

if t = q(it2j... It) then

. .,t) i— map reduce over

- factor(q(tt... I))

return (idp-reduce(t'))

else %flsa leaf %

return()

(t1,t2,. .

38

The routine idp-reduce (not given here) is one that applies idempotence re-

duction in the tree wherever possible. When idempotence reduction returns a leaf,

this result must be considered for reduction higher up in the tree. The following

algorithm is the one that factors a term by its root decision.

39

Algorithm 2.2

fact or(t)

if t = q(tit2 ... It,) then

SE - semi-es sent ials(t) - {q}

if SE = {} then return(t)

else %qoESE%

qo(t'1 .. . It') - pull-up(qo,t)

(r1,. . . , r) i- map factor over (, . . . , t)
return(qo(r1

else %tisa leaf %

return(t)

As discussed above, the factoring is achieved by finding a decision that is semi-

essential in the term (other than the root decision), pulling it up, and repeating the

process recursively for the siibtrees of the resulting tree.

To find the semi-essentials of a term t, one need only add the root decision of t

to the intersection of the semi-essentials of t's arguments.

Algorithm 2.3

semi-essentials(t)

if t = q(ti22...I t.) then return({q} U fl=1 semi-essentials())

else return({}) % t is a leaf %

Once the semi-essentials have been found, one of them, qo, must be pulled up to

the root of the term. This is done by creating a term t' = qo(t - . . I) and repeat

reducing it. Since t is repeat reduced, the only decision with repeated occurrences in

t' is qo. The repeat reduction can be performed with branch- reduce (qo, r, i'), where

40

the branch reduction leaves t' unchanged, except that every occurrence of qo in t' is

replaced by qo's r z argument.

Algorithm 2.4

pull -up (q, t)

for i = 1 . . . arity(q)

ti - branch- reduce (q, i, t)

return(q(t1 . . .

Algorithm 2.5

branch- reduce (q, r, t)

if t = qo(tilt2l... Itn) then

if qo = q then return(tr)

else for i = 1.. .n

4— branch-reduce(q, r, t)

return(qo(t ... Ii)

else return(t) % t is a leaf %

The complexity of reduction is analyzed in detail by Cockett and Herrera (1990).

The relevant results are summarized here.

semi-essentials The number of semi-essentials in a term is bounded by its min-

imum height (the length of the shortest path from the root to a leaf). The

work at each node consists of intersecting the semi-essentials returned by the

subtrees. The cost of intersecting two sorted lists is of the order of the sum of

the lists; the work at term t = q(ti... I1) is bounded by

2 Eminheight(tj).

41

The sum of this work over the entire term is bounded by k1 usize(t), where

usize(t) is the uniform size of t.

pull-up The cost of pulling up a term is that of performing branch reductions, and

this is bounded by k2 usize(t), the size of the tree.

factor The work required to factor a tree by its root decision is to pull up semi-

essentials until the root is at the level above the leaves. This requires applying

pull-up at every level of the tree; the complexity is O(usize(t) height(t)).

idp-reduce The cost of performing recursive idempotence reduction on a tree is

that of traversing the entire tree, plus the comparisons required to check leaves

for equality. The latter summand is smaller than the number of leaves. Idem-

potence reduction is O(usize(t)).

reduce Finally, the complexity of reducing the entire tree is O(usize(t) . height2(t)).

This is the cost of of factoring every subtree in the tree.

2.4 Summary

A algebraic formulation of discrete decision theory provides the foundation for defin-

ing operations to manipulate decision trees. These operations can are used to define

a preorder on decision trees, and are then composed to obtain an efficient algorithm

for finding minimal elements in the preorder, or irreducible.s. Given a repeat reduced

input tree, this algorithm returns a tree that is decision equivalent to the input, and

guaranteed to be no more costly than the input by the criteria used to define the

preorder.

42

Furthermore, the trees returned by the reduction algorithm are optimal with re-

spect to some reasonable cost criterion. The fact that the optimization criterion

cannot be given as a parameter is what distinguishes this algorithm from true opti-

mization.

Chapter 3

Principled induction of decision trees

This chapter shows how the tree reduction algorithm of Chapter 2 can be used to

perform principled induction of decision trees.

The first section defines the algorithms required to obtain an initial valid descrip-

tion of a set of training examples, which is then reduced to a tree description that is

minimal in the reasonable preorder. The complexity of this algorithm is compared

to that of the top-down tree induction methods reviewed in Section 1.2, and the

algorithm is shown to be a form of principled induction.

In the second section, a larger reasonable preorder is defined that supports a tree

reduction algorithm which outputs more compact decision trees than Algorithm 2.1.

The third section compares the performance of the two reduction algorithms on

two simple examples.

3.1 The basic principled induction algorithm

At this stage of the presentation, it is assumed that the training examples from

which the tree is induced constitute a complete set; every possible configuration of

vectors attainable with the given attributes is present in the set. Furthermore, all

of the examples are assumed to be given in full and correct form; each example is

defined on all of its features, and without errors. These assumptions will be relaxed

in Chapter 4, where the method is extended to enable principled induction from

incomplete or noisy training sets.

43

44

3.1.1 Generating an initial valid description

The first step in performing principled induction of a decision tree from a set of

examples is to generate, at low cost, an initial valid description to be used as a

starting point for the descent in the preorder.

Given a set of training examples e E S, e = (el, 62,. .. , e,, e+), described

by discrete attributes Q = {al, a2,.. . , a,}, and uniquely classified by a value of

5 E {S, 52,.. . , Sk}, where the elements of S are variable. The following algorithm

is used to build a tree that represents the structure of S.

Algorithm 3.1

build-tree(Q)

if Q = {} then return ("leaf")

else

Randomly select some ai E Q, with arity k

Q'—Q—{a}

ti,. . . , tk - map build-tree over Q',. . . , Q'

return(ai(iil... Itk))

% Ic copies of Q' %

Algorithm 3.1 builds a skeletal tree, with its leaf labels undefined, by randomly

selecting a test attribute from those that are still available. The implementation of

this algorithm used to generate the examples throughout this thesis actually defines

an arbitrary order on the attributes, such that build-tree produces a tree in which

only a given attribute appears at each level, and the attribute appears at only one

level. On average, this method of building the tree can be expected to produce

much the same final results (after reduction) as a truly random selection of the test

attributes.

45

The values of the variables that must appear at the leaves of build-tree(Q) are

set by applying Algorithm 3.2 for every example e E S.

Algorithm 3.2

ins ert- event (e, t)

if t ="leaf" then return(e+1)

else

p 4- ej

4— insert-even-t(e,t)

return(a(ti I . . . Ii—i I Ip+1 I Itarity(ai)))

% the outcome S associated with e %

% t = a(t1t2 .. . Iarity(aj)) %
% the value of e on attribute a %

The assumption that S is a complete training set guarantees that all of the

leaves will be labeled with a variable, and the assumption that it is noise-free guar-

antees that every e E S can be inserted, and that no two events that are equal on

(e', e2.. .. , e,) may differ on the class indicator e+i.

Applying Algorithms 3.1 and 3.2 to a set of training examples S defined in

discrete-valued features Q results in a decision tree that is a trivial but valid de-

scription of the classes in S.

3.1.2 Reducing the valid description

The initial valid description can be input to the reduction algorithm (Algorithm 2.1)

to produce a reduced valid description of the examples; the entire process is a form

of principled induction. To show that this is the case, it is sufficient to note the

following:

• The identities D.1 (Idempotence), D.3 (Repetition), and D.4 (Transposi-

tion), taken as operators on valid descriptions, preserve generality. D.4 merely

46

changes the order in which feature values are tested to determine a classifica-

tion; this does not affect the breadth of applicability. D.3 prevents repeated

tests of the same attribute,' so this does not affect the breadth of applicability

either. When D.1 is applied in the reducing direction (the use made in defining

the reasonable preorder, and in the reduction algorithm), it functions as a gen-

eralization operator. The meaning of the tree q(xj... Ix) is "all of the events

described by attribute q belong to class x, regardless of the value of q." The

term can be idempotence reduced to x, which means "all of the events in the

space belong to class x." Since the first statement is provable from the first,

by the definition of generalization (Definition 1.3), idempotence reduction is a

generalization operator.

• These identities constitute, therefore, a set of valid transformations with re-

spect to the reasonable preorder.

• The reduction algorithm uses only these valid transformations to produce a

tree that is irreducible, or minimal in the reasonable preorder.

3.1.3 Time and space complexity

As discussed in Chapter 2, the time complexity of reducing a term t is

O(u.size(t) . height2(t)). Assuming that the training set S is complete,

ISI ≤ BIQI, where Q is the set of decisions on which the elements of S are defined, and

B = max{arity(q)q E Q}. Since the initial tree is only as high as the number of

of attributes that describe the examples in S, height(t) ≤ IQI• Building the original

decision tree is 0 (ISI• IQI) hence the complexity of principled induction of decision

trees is 0((BIQI - 1) . IQI2).

47

This time complexity is somewhat lower than O(SI IQI2) that of the top-down

method employed by ID3 and C4.5 (see Section 1.2.3). In practice, the recursive

reduction process usually decreases u.size(t) dramatically by the time t must be

factored by its root decision.

The space complexity is the same as that of ID3; in the worst case, ID3 can

grow a full tree. However, since the algebraic method must grow the full tree before

proceeding to prune it, the algorithms presented above could be impractical for

inducing from training sets described by a large number of attributes, each with a

high arity.

This problem can be avoided with a minor modification. The reader will recall

that the reduction process is recursive; the subtrees are reduced, and only then is the

tree factored by the root decision, when appropriate. It is therefore possible to build

the tree from the bottom up, turning the subtrees into irreducibles before creating

the parent tree. The additional cost is in the greater number of traversals of S, but

this does not affect the complexity of the reduction process.

3.1.4 The sparseness of the reasonable preorder

The principled induction method described above can produce decision trees that

are disconcertingly large. This is because the reasonable preorder is sparse, and the

descent through this preorder can often lead to one of the larger minimal elements.

Two non-comparable minimal elements may approximate the desired optimization

criterion in vastly different degrees, and yet one is "just as irreducible" as the other.

48

The following example illustrates this phenomenon, and provides the motivation

for enlarging the reasonable preorder to allow for fewer of those less satisfactory

irreducibles.

abcSabcS
11132113
11232122
12132213
12212221

Table 3.1. A complete training set for classification on 5.

Example 3.1 Consider the complete training set of Table 3.1, described by the

3 33 13 23 1

Figure 3.1. An initial tree description of the data in Table 3.1.

binary attributes fa, b,c}, each belonging to a class from S = {1,2,3}. Figure 3.1

shows an initial valid description of the examples. Applying the reduction algorithm

yields the tree in Figure 3.2. Now consider the tree shown in Figure 3.3, which is a

more compact solution to the induction problem than that of Figure 3.2. Decision

a, which is at the root of the tree in Figure 3.2, has been eliminated from all but two

of the paths.

It is somewhat disconcerting that the irreducible of Figure 3.2 should be optimal in

any sense. In particular, the statement that there exists a reasonable cost criterion

on which it is better than the smaller tree of Figure 3.3 provokes disbelief. Yet it is

49

3 3

3 1 2 1

Figure 3.2. Irreducible tree for the data of Table 3.1.

3

3 2

Figure 3.3. A more compact tree for the data of Table 3.1.

quite simple to define an expected testing cost criterion such that the larger tree has

a lower cost. Let the testing costs of a, b, and c be 1, 1, and 5, respectively. For the

Figure 3.4: An initial valid description for which the reduction algorithm produces
the tree of Figure 3.3.

sake of simplicity, assume that all branching probabilities in both trees are . The

expected testing cost of the first tree is

cost(ti) = cost(a) + (cos(b) + cost(c)) + (cost(c) + cost(b)) = 5.5.

For the smaller tree, the cost is

cost(t2) = cost(c) + .(co.st(b) + jcos(a)) = 5.75.

50

It is interesting to note that if the initial valid description had been the tree of

Figure 3.4, the reduction algorithm would have produced the irreducible of Figure 3.3.

However, the trees of Figures 3.1 and 3.3 are not related in the reasonable preorder.

The goal of the next section is to enlarge the reasonable preorder such that initial

valid descriptions will be more likely to be related to the smaller minimals in the

preorder.

3.2 Enlarging the reasonable preorder

Enlarging the minimal preorder is not in itself a difficult task. However, care must

be taken to ensure that it does not become too large. An excessively large preorder

could make the cost of any algorithm that traverses it to find a minimal element

prohibitive. In particular, as discussed in Section 1.1.2, searching through a total

preorder to find a minimal, or optimal element, is an NP-Complete problem.

The strategy used to define the enlarged preorder is to examine the basic tree re-

duction algorithm for a relatively inexpensive way of restricting the halting condition,

such that more valid descriptions will be accessible from any given initial descrip-

tion. That investigation provides the motivation for a new identity on the terms

of a decision theory, which is added to the generating conditions of the reasonable

preorder to produce an enlarged preorder.

The reduction algorithm is then modified to return minimal elements in the new

preorder.

3.2.1 The significance of semi-essentials in tree reduction

The recursive strategy of the reduction algorithm is as follows: to reduce a term

t = q(tiIt2... It), first reduce (t1,t2,. . .,t) to . .,t3, then attempt to fac-

51

tor t' = q(t'1 t ... t) by q and search for possible idempotence reductions. The

rationale is that since (t, t,. . . , t) are irreducible, only factoring by q can yield

further idempotence reductions in t'.

The precondition for factoring by q is that there be some decision qo 54 q that is

semi-essential in i'. The role of qo is to replace q at the root of the tree. If no such

decision can be found, the tree is returned as an irreducible. The tree of Figure 3.2

was returned as an irreducible because when the time came to factor it by its root

decision a, no semi-essentials could be found below that could replace a at the root.

It is relevant to investigate the properties of semi-essential decisions that enable the

basic reduction algorithm to output irreducible trees, and to inquire whether there

exist other decisions in the tree that possess those properties.

Algorithm 2.2 (factor) factors a tree t = q(...) by its root decision by finding

a qo that is semi-essential in t and creating a tree t' = qo(t . .. t). It then proceeds

to repeat reduce t'; since the arguments of the tree are already repeat reduced, the

only decision that may be repeated in t' is qo. Hence the repeat reduction can be

accomplished by applying branch-reduce to the arguments of the root decision,

each of which is t. This procedure leaves t unchanged, except for the subterms with

qo at the root; these are replaced by their rtI argument. The factoring is completed

by applying factor recursively to the arguments of t'.

The following example illustrates how pulling up a non semi-essential decision in

an irreducible term with no semi-essentials other than its root decision leads to the

loss of irreducibility.

Example 3.2 Consider the decision tree of Figure 3.5, with both of a's arguments

irreducible, and no semi-essentials other than a. This tree is already factored by

its root decision, and therefore irreducible. Pulling up decision d yields the tree of

2 3 4 5 6 7

52

8

Figure 3.5. A tree that is factored by its root decision.

3 4 3 4

Figure 3.6. The tree of Figure 3.5 with decision d pulled up.

Figure 3.6. Note that the structure a(blc) appears in both subtrees. It may be substi-

tuted by a composite structure W, which results in the tree of Figure 3.7. Figure 3.8

shows the result of transposing d and W, using equation DW.4 (transposition for

terms). It is easy to verify that the last tree is not irreducible: transposing d and e

would make it possible to eliminate d by idempotence reduction.

It is not really necessary to perform the last transposition to find idempotence.

The fact that the tree is not irreducible may be inferred from the structural equiva-

lence of its arguments.

Lemma 3.1 If a decision tree is of the form t = q(to ... Ito), that is, all i arguments

of the root decision are structurally equivalent, then t is not irreducible. In particular,

factoring t by its root decision q causes idempotence at the leaves; the root decision

53

3 4 3 4

Figure 3.7. The tree of Figure 3.6, represented using composite term W.

2 5 67 8

3 43 4

Figure 3.8. The tree of Figure 3.7 after transposition of d and W.

is redundant and can be eliminated from the tree altogether.

Proof By induction on the height of the tree.

What Example 3.2 shows is that semi-essential decisions are important in the

reduction algorithm because pulling up a decision that is not semi-essential in a

term - prompted by the fact that the term has no semi-essentials other than its

root decision - leads to the loss of irreducibility. This is formalized in the following

lemma.

Lemma 3.2 Let t = q(t1 ... It) be a repeat reduced term such that every ti is

irreducible, and the only semi-essential decision in t is q. .If a non-semiessential

decision qo that occurs in t is pulled up to the root of t, the resulting t' is not

54

irreducible. In particular, factoring ' by qo makes some occurrence of qo idempotent.

Proof Select an arbitrary path P in t, and let r = qj(rir2 ... jr,,) be the lowest

subtree along P such that qo appears in some but not all of the n arguments - such

a path exists, because otherwise qo would be semi-essential in t. Let t1 = qo(t . . .

the result of pulling up qo in t. Subtree r occurs at the same height in every argument

of qo in t. Let t2 = rpt(ti), the result of repeat reducing t1; let ri be some subtree

of r in which qo does not occur. The repeat reduction leaves ri undisturbed in every

copy of i. This ri appears in identical form, and in the same position, in t2. Note

that the structure of t2's subtrees is identical from their root (q) down to qj. This

structure can be replaced by a composite structure W; assuming that arity(qo) =

this results in the term

qo(T'V(si,i ... I3i,i_ilril8i,i+iI IT'V(si,iI ... I8k,i_llril8k,i+1I... I3h,m))

in which the i' argument of every occurrence of W is r. Transposing qo and W

results in a term with W at the root; its i1L subtree is of the form qo(rj ... IrO.

By Lemma 3.1, qo can be eliminated from this subtree. This implies that t2 is not

irreducible, as factoring by qo produces idempotence.

The result is discouraging in principle, since it appears to rule out non semi-

essential decisions as potential replacement roots that will allow the factoring of a

tree by its root decision. However, by isolating the property of semi-essentials that

makes them suitable candidates for being pulled up to the root, it in fact it provides

a valuable clue for finding decisions that are not semi-essentials, yet might be pulled

up without leading to a loss of irreducibility.

55

3.2.2 Whiskers

The question that arises is whether there exist decisions that are not semi-essential,

yet pulling them up in a tree and refactoring does not produce idempotence. To

show that such decisions do indeed exist, it is necessary to isolate a special type of

decision tree, the whisker.

Definition 3.1 A whisker is a term of the form w = q(t1t2 ...I t,,), where each

argument oft is either ti = x or of the form ti = qi(rjirj2 ... Irim), and there exists

some j, 1 < j ≤ m, such that for every ti 54 x, rij = x. A whisker has three important

components, as follows: q is called the whisker root, q1 is called the whisker decision,

and x is called the whisker variable.

Example 3.3 The term of Figure 3.9 is a whisker with j = 2, root a, decision b,

and variable x. The subtrees y and z may or may not be variables. If they are, the

whisker is called shallow.

x

Figure 3.9. A sample whisker.

The following is an important operation on whiskers.

(i)

56

Definition 3.2 A whisker rearrangement (wr) is the operation composed of

1. distributing the root of a whisker past its variables, and

2. applying idempotence reduction.

The result of a whisker rearrangement is also a whisker.

Example 3.4 To rearrange the whisker of Figure 3.9, distribute b over a (Fig-

ure 3.10(i)) and apply idempotence reduction (Figure 3.10(u)). In general, if

is a whisker, then wr(wr(w)) = w.

X

Figure 3.10: The whisker of Figure 3.9 after (i) distribution, and (ii) idempotence
reduction.

Weak transposition

It is now possible to define a new identity for terms of a decision theory.

D.5: Weak transposition for whiskers

w = wr(w).

57

The validity of weak transposition follows from the definition of a whisker re-

arrangement in terms of distribution and idempotence reduction. Throughout the

rest of this discussion, weak transposition and whisker rearrangement will be used

interchangeably.

The effect of weak transposition

The effect of rearranging a whisker is that the whisker decision and whisker root

exchange positions in the tree, making the former whisker decision semi-essential.

A shallow whisker is factored by its root, and delayed by its decision. The formal

definition of a tree that is delayed by a decision was given by Cockett (1987a).

Definition 3.3 A term t is decision delayed by q if t is simply reduced and at each

leaf either the last decision is q or q does not occur at all on the path to that leaf.

Another interpretation of weak transposition is that it transforms a shallow

whisker w into another shallow whisker w' that is factored by the whisker decision

of w and delayed by the whisker root of w.

The distinction between factoring and delaying a term by a decision is significant.

Factoring a tree t by a decision q only allows transposing q with other decisions in

t. In order to delay t by q, it is necessary to apply whisker rearrangement; note that

distribution alone will not do, since a delayed tree must be simply reduced. Delaying

t by q implies that q will be pushed as far down the tree as possible by transposition

and whisker rearrangement.

It is important to point out that whether a tree is factored or delayed by q does

not affect the possibilities of iderñpotently eliminating q. A tree can be delayed by

q only if factoring it by q would not produce idempotence.

58

Weak transposition can be used jointly with the transposition identity to define

an equivalence relation for terms of a decision theory.

Definition 3.4 The terms t1 and t2 are whisker equivalent (t1 = t2) if one can be

obtained from the other by some sequence of transpositions and whisker rearrange-

ments.

3.2.3 The weak reasonable preorder

Weak transposition can be used to enlarge the reasonable preorder.

Definition 3.5 The weak reasonable preorder . on the terms of a decision the-

ory is defined like the reasonable preorder of Definition 2.10, with the additional

stipulation that it be weak transposition invariant:

wr(w) ≤.. W

The preorder ≤vjr is a proper superset of the reasonable preorder; it includes pairs

of terms that are weak transposes, which are not in the reasonable preorder. Since

the weak reasonable preorder is also a least preorder (e.g., a transitive and reflexive

closure), it also includes pairs of terms that are whisker equivalent.

While it is easy to show that ≤wr preserves the height of the tree, just as ≤r

does, the weak reasonable preorder preserves the uniform size of binary trees only.

Example 3.5 Consider the shallow whisker

q1(xi q2(xiJx2x3))

with arity(qi) = 2 and arity(q2) = 3. Applying weak transposition produces

q2(xilqi (xix2)jqi (xi Jx3)).

59

The weak transposition increases the uniform size from 3 to 4, because a decision

was distributed in front of another with lower arity.

This is somewhat discouraging, because it implies that descending in the weak

reasonable preorder might actually increase the unifoFm size of the original term.

However, this increase is bound not to be all that significant, for two reasons. If

either x2 or x3 in the last example were equal to x1, the weak transposition would

not change the uniform size of the tree. The second reason is that arbitrary whisker

rearrangements in a term can be expected to distribute a decision in front of another

with higher arity, as often as in front of one with lower, arity.

The following is a procedural characterization of the minimal elements in the

weak reasonable preorder; it is analogous to the definition of irreducible trees (Defi-

nition 2.11).

Definition 3.6 A term t is said to be whisker reduced if every term that is whisker

equivalent to it is simply reduced.

From this definition it follows that every whisker reduced tree is also irreducible;

the converse is not true.

3.2.4 The strategy for finding whisker reduced terms

It is possible now to return to the task of characterizing the decisions that can be

pulled up to the root of a tree, such that refactoring by them does not produce

idempotence.

Definition 3.7 A decision q that occurs in term t is a suitable root for t if it can be

made semi-essential in i by any sequence of whisker rearrangements.

60

It follows from this definition that any decision which is semi-essential in a term

is also a suitable root for it.

The following lemma shows that suitable roots may be pulled up to the root of

a tree that needs to be factored by its root decision without any deleterious effects.

In order to ensure that this is the case, the pulling up is followed immediately by

idempotence reduction of the entire tree.

Lemma 3.3 Let t = qo(jI ... It,,,), with every t1 irreducible. If q is a suitable root

for t, q 0 qo, pulling up q to the root of t, idempotence reducing the resulting tree,

and refactoring it by q will not produce any idempotence at the leaves.

Proof If q is semi-essential in t, the result is given by the fact that t1,... , are

irreducible, and factoring by q would just give transposes of the ts, which are also

irreducible.

If q is not semi-essential in t, consider the lowest subtree r = q1(ri I ... Irs) in t such

that q appears in some but not every r. Since q is not semi-essential, at least one

such subtree must exist in t. Recall that pulling up q to the root of i initially results

in a term t' = q(i ... It), where the ith copy of t is branch reduced by q and i.

Refactoring by q will produce idempotence if in all copies of t, the rs on which q

does not appear are left intact by the idempotence reduction (see Lemma 3.2).

Since q is a suitable root for t, by definition it is possible to whisker rearrange q to

the root of r. For this to be true, q must appear as the whisker decision on one of

a chain of whiskers along the non-terminal rs, of which r itself is highest in t. All

of these whiskers must have the same whisker variable. In fact, every r2 in which

q does not occur must be a terminal with the whisker variable as its label. When

pull-up(q, t) is idempotence reduced, in the copy of t such that i corresponds to

the argument number of the whisker variable with q at its root, the entire chain of

61

whiskers will collapse. In particular, the idempotence reduction will also eliminate

the ts in which q did not occur.

This result can be used to prove the whisker-equivalence analog for the pulling

up lemma (Lemma 2.2).

Lemma 3.4 Decision q is a suitable root for t if and only if there exists a term i'

with q as its root decision, such that t' w t.

Proof If q is a suitable root for t, let t1 be t with q made semi-essential by whisker

rearrangement. By Lemma 2.2, there exists a 2' with q at the root that is transpose

equivalent to t1. It follows that t' is also whisker equivalent to 2. Now let 2 be whisker

equivalent to some 2' with q as its root decision, and assume that q is not a suitable

root for t. Then q is not semi-essential in 2, since being semi-essential implies being

a suitable root. By Lemma 2.2, in order to obtain 2 from 2', q must at some point

become semi-essential. Since transposition cannot affect semi-essentiality, and the

only other available operation is whisker rearrangement, it must be possible to make

q semi-essential in t by, whisker rearrangement only. By the definition of a suitable

root, this contradicts the assumption that q is not a suitable root for 2.

Before formulating the algorithm for finding whisker reduced trees, it remains to

prove a result analogous to Proposition 2.1

Proposition 3.5 A term 2 is whisker reduced if and only if for every decision q in

2, delaying 2 by q cannot be idempotence reduced.

It has already been shown that pulling up a decision q that is a suitable root for

2 = qo(. . .), and idempotence reducing, preserves the irreducibility of the tree up to

delaying by qo (recall that pulling up suitable roots, as opposed to semi-essentials,

causes the tree to be delayed, as opposed to just factored, by qo).

62

Once again, the validity of the proposition hinges on the irrelevance of the order

in which decisions are pulled up.

Lemma 3.6 If i t2 and in both terms q has been pushed as down as close to the

leaves as possible using transposition and whisker rearrangement, then both terms

are delayed by q, then

tj = W(q(zij zi2 jq(z. 11Z. 21 krnn)krn+il ... Izt)

= V(q(yiiyi2 ... Iq(yPiIyP I... Iyt)

(where W and V are composite expressions) then n= p and t = s, and there is a

permutation ir such that

W(xi,x2,.. . ,Xn) = ,j, V(Xir(1),Xir(2),. . . ,X ir(n)) Z,. w Yir(i)r, Z Z,(j).

Proof As t1 =w t2, the decision qo at the root of t1 is a suitable root for t2

(Lemma 3.4). Since t2 is delayed by q, qo must always occur before q in V. By

Lemma 3.4, it may be moved to the root of t2 by transposition and whisker re-

arrangement, yielding t. The same argument can be applied recursively to the

arguments of qo in t. This restructuring determines the permutation ir, and shows

that W V. The same process can be applied to the arguments of q.

This result proves Proposition 2.1.

3.2.5 Whisker reduction

Only minor modifications are required to convert the algorithm for finding an irre-

ducible into one for finding a whisker reduced term. The definition of these changes

is followed by an analysis of their impact on the time complexity of the original

algorithm.

63

The whisker reduction algorithm

First the pulling up algorithm is modified to accommodate non semi-essential suitable

roots. Recall that it is necessary to idempotence reduce the tree following the pull-up.

Algorithm 3.3 Whisker-branch-reduce is obtained by composing idp-reduce

and branch-reduce.

The most significant change is in the selection of the candidate decisions for

pulling up. For the sake of efficiency it is convenient to separate semi-essential and

non semi-essential decisions, and to express the algorithm as a query: it is known

that q is not semi-essential in t; is it a suitable root for t?

Algorithm 3.4

suitable-root?(q, t)

return(2i E {1,. . . , arity(q)} suit able-root-branch?(q, t, i))

suitable-root-branch?(q, t, r)

if t is variable return(false)

else ifq=qo %tqo(til...Itn) %

else

if Vi {1,. ..,n},i is non-terminal then

return(A..1 suit able-root-branch? (q, ti, r))

else

return (reduce (whisker-branch-- reduce (q, t1, r) =

= whisker-branch-reduce(q, t, r) = x))

Recall that in order for a non semiessential decision to be a suitable root for t,

pulling up q to the root of t must result in a tree from which q cannot be eliminated

by delaying and idempotence reduction. This requires that in one of the copies of t

64

appearing as arguments of q, some path on which q does not appear be pruned at

the bottom, so that refactoring by q will not yield a subterm with q at the root and

all arguments structurally equivalent.

The query posed by suit able-root-branch?(q, t, r) is whether whisker branch

reducing t by q on its rth argument will cause the elimination of at least one of the

subterms that would otherwise appear as structurally equivalent arguments of q (see

proof of Lemma 3.3).

Let us examine the non trivial cases of this algorithm for correctness. If the term

is of the form t = qo(til... It)., with every ti non terminal, the algorithm returns the

conjunction of the query for the arguments: if q can be made semi-essential in each

of the subtrees, then it can be made semi-essential in the parent tree. If some of the

arguments are terminal, then in order for q to be a suitable root with branch r, all

of the leaf children of t must be equal to, say x, and whisker branch reducing every

non terminal argument with r must yield x. This is the condition for the terminal

children of t to be "cleaned up" by idempotence reduction.

The following algorithm returns the semi-essentials of a i, if any, or a singleton

set containing one suitable root of t. If none can be found, the algorithm returns the

empty set.

65

Algorithm 3.5

suitable-roots(t)

SE - semi-essentials(t) %t = q(...)%

if SE 0 {q} then return(SE - {q})

else

D - decisions(t) - {q}

for each q E D

if suit able-root?(q, t) then

return({q})

return({})

The following two algorithms complete the procedural definition of whisker re-

duction.

Algorithm 3.6 Whisker-delay is obtained by substituting the algorithms

whisker-branch-reduce for branch-reduce and suitable-roots for

semi-essentials in factor (Algorithm 2.2).

Algorithm 3.7 Whisker-reduce is obtained by substituting whisker-delay for

factor in reduce (Algorithm 2.1).

The complexity of whisker reduction

The following proposition analyzes the time complexity of whisker reduction.

Proposition 3.7 The time complexity of whisker-reduce applied to full normal

trees is O(IBI . (IBI1Q1 - 1)1. JQI3) where B is the maximum arity of any q E Q.

Proof The only truly different algorithms are whisker-branch-reduce and

suitable-roots.

66

• The additional work done by whisker-branch-reduce over branch-reduce

is checking for idempotence. Both the branch reduction and the checks for

idempotence are bounded by the size of the tree, so this algorithm does not

change the complexity.

• In the basic reduction algorithm, the work is dominated by the intersections

required to compute the semi-essentials of a tree. The cost of finding a suitable

root is that of finding the semi-essentials, plus checking whether each decision is

a suitable root. The cost of suitable-root-branch? is bounded by k.usize();

applying this for every branch of each decision is

0 (IB i.height(t).usize(t)). This bound replaces 0(u.size(t)) in the complexity

analysis of Chapter 2, yielding 0(1111 . usize(t) . height3(t)). Substituting IQI

for height(t) and (IBl1Q1 - 1) for usize(t) gives the desired result.

The order of whisker reduction is larger than that of standard reduction by a

factor of IBI . IQI. The form of the algorithm guarantees that this additional cost
will not be incurred unless no semi-essentials can be found. The effectiveness of this

modification is evident in the small examples presented in the following section.

3.3 Some empirical results

This section presents three sample applications of whisker-reduce, all on complete

training sets. First, Example 3.1 is recomputed using whisker-reduce instead of

the basic reduction algorithm.

Example 3.6 When whisker-reduce is applied to the tree of Figure 3.1, the root's

right subtree is reduced exactly as before, to c(31b(211)) (Figure 3.2). The left subtree

is first reduced to b(3Ic(311)). The basic reduction algorithm can do no more with this

3 1 2

67

1

Figure 3.11: The term of Figure 3.1 after its arguments have been whisker reduced.

subtree, since it has no semi-essentials other than the root b. But whisker-reduce

attempts to delay by b, finds suitable root c, and pulls it up, resulting in the tree

of Figure 3.11. This tree has suitable root c (which is also a semi-essential); pulling

up c and factoring by a, followed by idempotence reduction at the leaves, yields

c(31 (b (a (312))I1)), the term of Figure 3.3.

#abcdS #abcdö #abcdS
1 1 1 1 1 3 9 2 1 1 1 3 17 3 1 1 1 3
2 1 1 1 2 2 10 2 1 1 2 2 18 3 1 1 2 3
3 1 1 2 1 3 11 2 1 2 1 3 19 3 1 2 1 3
4 1 1 2 2 1 12 2 1 2 2 1 20 3 1 2 2 1
5 1 2 1 1 3 13 2 2 1 1 3 21 3 2 1 1 3
6 1 2 1 2 2 14 2 2 1 2 2 22 3 2 1 2 2
7 1 2 2 1 3 15 2 2 2 1 3 23 3 2 2 1 3
8 1 2 2 2 1 16 2 2 2 2 3 24 3 2 2 2 3

a: 1=young
b: 1=myope
C: 1=not astigmatic
d: 1=reduced tear production 2=normal tear production
5: 1=fit hard contact lenses 2=soft contact lenses 3=no contact lenses

2=pre-presbyopic
2=hypermetrope
2=astigmatic

3=presbyopic

Table 3.2. Data set on the prescription of' contact lenses.

Example 3.7 Table 3.2 contains a data set for the prescription of contact lenses,

taken from (Cendrowska, 1987). The columns labeled a, b, c, and d contain the

68

3 1 2 2 3 3

Figure 3.12: Tree obtained from the data of Table 3.2 by both ID3 and whisker
reduction of an initial description.

2 13 2 3 13 2

Figure 3.13. Tree for the contact lens data, using the basic reduction algorithm.

values of attributes, and the columns labeled S contain the recommendations in the

cases described by the attributes. Figure 3.12 shows the decision tree induced from

the data by ID3 as reported by Cendrowska (1987). Building an initial tree with 24

leaves and applying whisker-reduce results in a tree that is structurally equivalent

to that of Figure 3.12. The basic reduction algorithm returns a much larger tree,

shown in Figure 3.13.

69

3.4 Summary

This chapter described the application of the tree reduction method of Chapter 2

to the principled induction of decision trees from complete sets of examples given

as vectors of feature values. The analysis of tree reduction's time complexity was

reexamined under the light of this application to show that it is somewhat better

than that of the statistical method used in ID3 and C4.5.

It was shown that the sparseness of the reasonable preorder can result in rela-

tively large minimal elements. The weak reasonable preorder, a superset of of the

reasonable preorder, was defined to enable greater reduction in the size of the trees.

The complexity of the algorithm that produces whisker reduced trees - trees

that are minimal in the weak reasonable preorder - was shown to be greater than

that of the algorithm for irreducibles by a factor that is linear in the number of

features and the maximum number of categories of any of those features. The form

of the algorithm is such that the additional cost is incurred only when the less costly

technique of the original reduction algorithm has proven fruitless.

Empirical results obtained from small sets of training examples were presented to

illustrate the improvement obtained in the results by exploring the larger preorder.

The examples highlight the tradeoff between the size of the preorder - the cost

of finding minimal elements in that preorder - and the degree of simplification

achieved. This tradeoff serves to validate the claim that principled induction is a

clear representation of the problem of learning concept descriptions from examples.

Chapter 4

Induction from imperfect data

Induction tasks are rarely performed on perfect data such as were used in the previous

chapter to demonstrate the principled induction of decision trees.

One frequent form of imperfection is the incompleteness of training data. In

domains defined by sets of discrete features this translates into training examples

that do not cover the entire space defined by the attributes.

Another type of imperfection is noise, which can be divided into inconsistencies

and undefined attribute values. Inconsistencies appear in the form of examples with

equal values on all attributes but different class descriptions, or, in the case of data

sets that are also incomplete, in the form of full descriptions of examples which have

not in fact been observed.

This chapter extends the methods of Chapter 3 to enable principled induction

from imperfect data. The extended methods are shown empirically to produce re-

sults that are satisfactory in terms of their compactness and predictive accuracy.

These results compare well with those obtained using the tree induction system C4.5

(Quinlan, 1990b), and validate the claim that the principled approach to inducing

decision trees is an effective one. However, a new dimension is defined to rate de-

cision trees induced from noisy data. It is shown that trees built top-down with

statistical techniques are are better suited for later pruning using statistical criteria.

70

71

4.1 Incomplete training sets

The reduction of decision trees constructed from incomplete training data is compli-

cated by the occurrence of leaves that lack a class label. Such a situation is illustrated

in the following example.

Example 4.1 Consider the training examples

{(a = 1,b = 1, class = = 2,b = 1, class = t); (a = 2,b = 2, class =

where tests a and b have arity two and the possible classes are t and f. These events

can be represented by the decision tree of Figure 4.1. The second leaf from the left

f

Figure 4.1. Decision tree representing the data from Example 4.1.

does not have a class label, since the tree was constructed from three distinct training

events from a space of size four. This tree is irreducible, since it is idempotence

reduced (the idempotence operator cannot be applied anywhere in the tree), and the

same is true of its only transpose, obtained by transposing decisions a and b. Yet

the simpler term b(tlf) is also a valid description of the examples.

The goal of this section is to introduce a new operator that further enlarges the

weak reasonable preorder to allow the simplification of trees with unlabeled leaves.

The formal treatment of decision trees with unlabeled leaves is based on the

theoretical framework developed by Herrera (1988).

72

4.1.1 Functional identities

The discussion in previous chapters dealt exclusively with decision theories of the

form D = (Q, {}), that is, without any identities beyond those preserved by all terms

of any decision theory.

Decision theories may contain additional identities of the form tj = t2. A special

type of identity, called functional identity, is useful in characterizing trees formed

from incomplete training data.

Definition 4.1 Let a term t in a decision theory D = (Q, E), and a decision q that

does not occur in t; let arity(q) = n, and let the distinct variables {x1,.. . , x,} be

the possible outcomes of q. The identity

is called a function on q.

Unlabeled leaves in a decision tree such as that of Figure 4.1 are called unreachable

leaves. It is convenient to label every such leaf in a tree with a unique variable. Then

a decision problem defined by a set of examples with class attribute 5 E f 81,

can be expressed by the functional identity

where t is the decision tree formed to describe the examples.

Example 4.2 Labeling the unreachable leaf of the tree in Figure 4.1 with the unique

variable x yields the term

a(b(tlx)Ib(tlf)).

73

The decision problem can then be expressed by the functional identity

a(b(tlx)Ib(tlf)) = class(tlf),

which can in turn be rewritten as

class ::> a(b(tl?)Ib(tlf)).

The latter representation is obtained by replacing every variable that is not among

the outcomes of class with the symbol "?". This symbol indicates that the leaf is

unreachable, and therefore irrelevant to the decision problem.

Functional identities provide a useful representation for induction problems in

general, and particularly for induction from incomplete training data.

4.1.2 Migration

In order to take advantage of the functional identity representation, it is necessary

to present a rule that operates on terms with unreachable leaves, also introduced by

Herrera (1988).

Definition 4.2 A deduction node in a term t is an identity at a leaf of t of the form

x => t', read "x entails t'." A deduction node can be treated as a leaf in the sense

that its antecedent is a valid leaf label. The deduction node x = x is equivalent to

a leaf x.

The migration rule illustrates how deduction nodes might be formed.

D.6: Migration.

t+il ... Ix => t))

- (x q(t1 I . . . Iti_i ?It1+j I . . . It)).

74

Migration is very,, similar to idempotence reduction. However, whereas idempotence is

defined as an identity (of which only the simplifying direction is used in the reduction

algorithms), the direction in which migration is applied is enforced. The major

difference between them is that the condition for the application of migration is

weaker. Migration does not require that all leaves (or deduction node antecedents)

be equal; it is sufficient that all reachable leaves be equal. From the viewpoint of

induction, this makes migration a more powerful simplification operator, for it makes

"convenient" assumptions about unseen events. The assumption is that if an unseen

configuration of feature values that appears in the tree as an unreachable leaf were

in fact a possible event, its value on the class attribute would be such that it would

enable idempotence reduction. Since the tree has been built without evidence to the

contrary, application of migration yields a consistent - and hence valid - induced

description. A second difference between idempotence reduction and migration is

that instead of producing a leaf, as the former does, the latter operator produces a

deduction node whose conclusion is the tree from which the antecedent was reduced.

Substituting migration for idempotence reduction in the generating conditions

for the reasonable preorder produces a larger preorder that includes pairs of trees

with unreachable leaves. The following example shows the effect of applying Algo-

rithm 2.1, with migration substituted for idempotence reduction.

Example 4.3 Replacing idempotence reduction with migration in Algorithm 2.1

(reduce), and applying the modified algorithm to the tree of Figure 4.1 yields the

decision tree of Figure 4.2. The entailed tree is the one that "hangs" from variable

t.

Substituting migration for idempotence reduction in the generating conditions

for the weak reasonable preorder produces a further enlargement. The algorithmic

75

t ?

Figure 4.2. Irreducible form of the tree in Figure 4.1, using the migration operator.

interpretation of the interaction between migration and weak transposition is ob-

tained by modifying Algorithm 3.3 (whisker-branch-reduce): if the target tree

is a deduction node, then instead of returning the antecedent, or leaf value, apply

the function to the conclusion tree. The following example illustrates the sort of

reduction afforded by this modification.

Example 4.4 Starting from the partially reduced tree of Figure 4.2, b is pulled

(ii)

Figure 4.3. Use of the modified branch reduction on the tree of Figure 4.2.

up using the modified version of whisker-branch-reduce. Figure 4.3(i) shows the

result of the first step, prior to migration. Figure 4.3(u) shows the final result after

migration. After the entire tree has been reduced, the deduction nodes may be

replaced by their antecedents; in this case, the result is b(tlf).

76

In the rest of the discussion, it may be assumed that the reduction and whisker

reduction algorithms are used with the migration operator wherever applicable.

Use of the migration operator in whisker reduction enables the induction of com-

pact and accurate representations from incomplete data.

Example 4.5 In Example 3.7, the decision tree of Figure 3.12 was induced from the

complete space of 24 sample contact lens prescriptions. Gaines (1991) identified 14

of those cases 1 as being critical to induce the correct rules for the problem. Using

the methods described in this section, these critical cases yield the same decision

tree as the complete training set.

4.1,3 Generating trees from incomplete data

If the training examples cover only a small portion of the space defined by the set of

attributes, it is wasteful to generate a full tree, as this increases the running time of

reduction. The alternative is to expand the tree, as required, with each new example

that is inserted. This method can be used with two different strategies. The first is

to split leaves only when the new event would create an inconsistency (lazy strategy),

and the second is to create a full branch corresponding to each event (full branch

strategy).

It is clear that the lazy strategy creates smaller trees, while the other creates

more unreachable leaves. These unreachable leaves can be used to advantage by the

whisker reduction algorithm to accomplish greater simplification. The reader may

assume, for the rest of the discussion, that all decisions trees are built by generating

a full branch for every event, unless the proper branch already exists.

'The cases are numbers 1-4, 6, 8, 10, 12, 13, 16, 18, 20, 22 and 24 in Table 3.2

77

4.1.4 An experiment on a large data set

The whisker reduction algorithm was compared to standard reduction, and to C4.5

on a large incomplete set. The "551" chess endgame data due to Quinlan (1987)

consists of 551 chess board positions described by 39 binary attributes - all of

whose values are correct - and classified as "safe" or "unsafe" positions for one

of the players. This set is interesting because it is sizable, yet covers a very small

portion of the space defined by the attributes. The set was randomly partitioned

15 times into learning and testing portions of roughly equal sizes. On each occasion

the entire learning portion was used to induce a decision tree using each of the three

methods, and each of the trees was used to classify the test data. The results of these

tests are reported in Table 4.1, which summarize average tree sizes (in nodes) and

successful classification rates on the unseen events. The trees produced by whisker

Method Nodes Hit rate
C4.5 93.9 86.6%
Whisker reduction 102.9 85.9%
Standard reduction 573.7 71.1%

Table 4.1. Comparative results on 551 chess endgame data.

reduction were on average about nine percent larger than those produced by C4.5.

The predictive accuracy of C4.5 trees on the unseen data was somewhat better.

These results also show the magnitude of the advantage of whisker reduction over

standard reduction, in both size and predictive accuracy. It must be noted that

approximately 45% of the errors produced by the trees that had been reduced by the

standard method were due to "unknown" classifications, that is, by events that were

classified by unreachable leaves. The whisker reduced trees had only a negligible

number of unreachable leaves; on average, less than one half of one percent of the

78

test data could not be classified.

4.2 Noise

The presence of incorrect descriptions in the data set is likely to give rise to trees

that classify unseen events with high error rates. Furthermore, noisy descriptions

force tree building algorithms to discriminate among events when, were the noise not

present, no discrimination would be required. This results in trees that are unduly

large and complex (Quinlan, 1987; Quinlan, 1986a). Events that are not defined

on all of their attributes are of questionable value for the induction process, yet

discarding them could result in the loss of valuable information, and might indeed

prevent any induction if this defect is highly frequent in a given data set.

This section examines the methods used in ID3 and C4.5 to deal with these prob-

lems, and incorporates some of them to principled induction by whisker reduction.

4.2.1 Incorrect descriptions

The reader will recall that ID3 and C4.5 build decision trees top-down, and the

decision to be made at a given node is determined by a statistical criterion. The main

stopping criterion is that the set of events at the node be entirely homogeneous. An

additional stopping criterion, used to prevent tree complexity that is due to noise, is

to collapse subtrees into terminal nodes when this does not lead to an increase in the

absolute number of errors with respect to the training events from which the subtree

was constructed (Quinlan, 1990b). In fact, this particular criterion constitutes a form

of pruning, since the subtrees mu'st be generated so that their absolute error can be

79

computed to evaluate the convenience of discarding them 2• Lastly, when the current

node is the last on a branch that already includes the entire set of attributes, there

are obviously no decisions left on which to branch. This occurs when the attribute

set is insufficient to express differences among classes, or when some of the event

descriptions have been corrupted.

Use of the last stopping criterion gives rise to nodes that must necessarily be

leaves, yet have no unique class label. The classification errors can be reduced by

labeling such leaves with the most frequent class in the subset of the training events

being processed at the node (Breiman et al., 1984; Quinlan, 1986a). It is important

to note that the value of this labeling criterion rests heavily on the assumption that

the class distribution of the training events is highly representative of the population

from which they are drawn.

This labeling criterion was adopted to resolve inconsistencies at the leaves of the

trees built before the reduction process, and experiments were performed to compare

the results, in terms of tree size and predictive accuracy, to those of C4.5. As these

experiments were aimed at comparing principled induction by whisker reduction to

the basic top-down method, C4.5 was forced to report the fully grown trees, unpruned

with the absolute error criterion described above. These experiments were performed

on the two following noisy data sets:

Digits This domain was presented by Breiman et al (1984). It consists of 3000

events described by seven binary attributes, each of which represents the status

of an LED, as used to represent the digits 0-9. Every feature value of each

event has been inverted with probability 0.1.

'This stopping criterion, used in C4.5, replaces the x2 significance testing used by ID3 (Quinlan,
1986a; Quinlan, 1986b) to verify the selected branch attribute's relevance to the classification.

80

Disjunction The 600 events are described by nine binary attributes. Events that

satisfy the propositional formula

(aoAa1 Aa2)V(a3Aa4Aas)V(a6Aa7Aas)

are classified as members of class Y with probability 0.9 and as members of N

with probability 0.1. Other events are classified as members of Y or N with

the respective probabilities 0.1 and 0.9.

Method Nodes Hit rate
C4.5 190.2 72.7%
Whisker reduction 116.3 72.3%

Table 4.2. Comparative results on the Digits data.

Each of the sets was partitioned randomly 15 times to produce learning and test

files of approximately equal sizes. With each partition, the entire learning set was

used by C4.5 and whisker reduction to produce a decision tree. The average tree

Method Nodes Hit rate
C4.5 168.1 77.1%
Whisker reduction 173.8 75.0%

Table 4.3. Comparative results on the Disjunction data.

sizes and successful classification rates on the corresponding test sets are reported in

Tables 4.2 and 4.3.

C4.5 trees obtained better predictive accuracy than whisker reduction in both

cases; on the Disjunction data the difference was 2.1%, and on the Digits data,

0.4%. On the Digits data whisker reduction produced trees that were considerably

81

smaller than C4.5's, whereas on the Disjunction data, C4.5 induced trees than were

on average approximately three percent smaller than those produced by whisker

reduction.

These results indicate that the principled induction method using whisker reduc-

tion produces trees that are comparable in compactness and predictive accuracy to

those built top-down using statistical criteria.

4.2.2 Reduction of complexity due to noise

Quinlan (1987, 1992) devised pessimistic pruning methods to further reduce tree

complexity due to noisy examples. These methods are based on making a pessimistic

estimate of the error rate to be expected when the tree is used to classify unseen

events. Then the tree is replaced with a leaf labeled with the most frequent class in

the tree. If the error caused by this replacement with respect to the events used to

form the original tree is less than the pessimistic estimate, then the replacement is

made permanent.

It will be shown that trees built top-down by C4.5, using the average entropy of

the subsets resulting from a partition as the criterion for selecting a test attribute,

are particularly well suited for pessimistic pruning. The trees resulting from pruning

C4.5 trees are much more compact and have better predictive accuracy than trees

pruned from whisker reduced trees. It will also be shown that in spite of this im-

proved prunability, applying a combination of pessimistic pruning and the structural

manipulation technique used in tree reduction can result in further improvement in

the compactness of pruned C4.5 trees.

82

Pessimistic pruning

What follows is a description of the latest pessimistic pruning method due to Quinlan

(1992), a version of which is used by C4.5.

Consider a terminal node t formed from N events, J of which are misclassified.

The number of errors can be treated as a random variable with binomial distribution'.

The probability p that a random unseen event will be misclassified by t can be

bounded from above by po with certainty level 1 - a, where po is found by solving

J

a = C(".p. (1 —po .

The notation used will be Po = (J, N).

For a general tree t', the upper bound p0 can be determined by averaging the

upper bounds of it subtrees, weighted by the number of events Ni from which each

subtree t1 was generated. This P0 can be treated as a pessimistic estimate of the

probability of error of when t' is used to classify unseen events.

To estimate the quality of the leaf obtained by pruning t' to a leaf labeled

BestClass(t'), the upper bound p, of the probability of error is computed with

N, the total number of events from which t' was generated, and J, the number of

those events that do not belong to BestClass(t'). The tree is pruned to a leaf if

P1 <P0.

This procedure is applied to a tree from the bottom up, as shown in the following

example.

Example 4.6 In order to allow application of the pessimistic pruning algorithm,

every leaf of the tree must have, in addition to a class label, a count of the events

'Quinlan cautioned that the statistical underpinnings of this method "should be taken with a
large grain of salt," and indicated that the method's merit lies in the quality of its results.

83

of each class covered by that leaf. Such a tree is shown in Figure 4.4(i), where the

notation (A.B) indicates that the leaf covers A events of class B.

To apply pessimistic pruning to this tree, we start with the left subtree, with test b

at its root. The confidence limit used throughout the rest of this discussion will be

a = 0.25. The error probabilities for the subtree's three terminal nodes, from left to

right, are B0.25 (0, 80) = 0.0172, Bo.25(0, 50) = 0.0273, and B0.25 (0, 1) = 0.7500. In

a

3 1 3
(100.3) (130.1) (100.3)

1 1 2 (1.2).
(80.1) (50.1) (1.2)

Figure 4.4. An example of pessimistic pruning (Example 4.6).

all cases J = 0, since none of the leaves misclassify any of the training events. The

error probability for the subtree with b at the root is the weighted sum of these three

values:

80 0.0172+ 50 0.0104+ 0.7500 = 0.0266.
131 131 131

If the subtree were to be replaced by a leaf labeled "1", the leaf would misclas-

sify one out of 131 training events, so the error probability would be given by

B0.25 (1, 131) = 0.0204, which is lower than the average probability of the subtrees.

As a result, the tree is pruned to that of Figure 4.4(u).

The probability of error in the new tree is

131 100
0.0204+ .j- .Bo.25 (0, 100) = 0.0176.

84

No further changes are made because pruning the tree to a leaf would give a higher

error probability (B0.25 (100, 231) = 0.4616).

The results of applying pessimistic pruning to the trees generated from the Digits

and Disjunction and shown in Tables 4.4 and 4.5, which also incorporate the sum-

maries in Tables 4.2 and 4.3. The prefix "P-" in the method names indicates that

the trees were pessimistically pruned. On both data sets the pruned C4.5 trees were

Method Nodes Hit rate
C4.5 190.2 72.7%
P-C4.5 63.0 72.6%
Whisker reduction 116.3 72.3%
P-Whisker reduction 96.6 72.4%

Table 4.4. Comparative results on the Digits data after pessimistic pruning.

considerably smaller and had better classification rates on the unseen data. This

seems puzzling, considering that both methods were applied to trees of similar size

and predictive accuracy. To explain this phenomenon it is necessary to reexamine

Method Nodes Hit rate
C4.5 168.1 77.1%
P-C4.5 45.5 81.8%
Whisker reduction 173.8 75.0%
P-Whisker reduction 70.0 76.5%

Table 4.5. Comparative results on the Disjunction data after pessimistic pruning.

the ways in which the respective methods build the trees prior to pruning. The

method presented in this work builds trees by random selection of test attributes

and then reduces them by structural manipulation; C4.5 carefully selects every at-

85

tribute from the root down to minimize the heterogeneity of the resulting partitions

of the training set.

Here lies the advantage of the statistical method which results in improved prun-

ability. Sets with low impurity values are those that require little information to

discriminate among their elements. These are typically sets in which some class is

strongly represented, and others appear with low frequency. This characterization,

albeit approximate, is also true of sets whose corresponding statistically built deci-

sion trees are configured propitiously for pessimistic pruning. This is illustrated in

the following example.

Example 4.7 Figure 4.5 shows two transpose equivalent trees that correspond to

a training sets consisting of 100 events of class 1, 100 events of class 3, one event

1 2 1 3 4 3 1 3 2 4 1 3
(50.1) (1.2) (50.1) (50.3) (1.4) (50.3) (50.1) (50.3) (1.2) (1.4) (50.1) (50.3)

(i)

Figure 4.5: Two transpose equivalent trees: (i) Prunable tree built to minimize
entropy; (ii) The only transpose, which cannot be pruned.

of class 2, and one event of class 4. To calculate the average entropy of the subsets

obtained by partitioning on attribute a, it is sufficient to calculate the entropy of

the subset in the left subtree of Figure 4.5(i) (the entropy of the subset in the right

subtree is the same), given by

100 100 1 1
—ior log21f + loT log2fI = 0.0803.

86

Likewise, to calculate the average entropy of the subsets obtained by partitioning

on b, it is sufficient to calculate the entropy of the subset in the leftmost subtree of

Figure 4.5(u):
50 50

-2 1092100 100 =1.

Since partitioning on a gives a lower average entropy on the resulting subsets, C4.5

would select this test to be at the root of a tree induced from the 202 events. Let us

now analyze the prunability of each of these trees. The error probability of the left

subtree of Figure 4.5(i) is

50 B-

.25 (0, 50) + B 50 0,25 (o, 1) + 101 B0.25 (o, 50) = 0.0344.

Replacing this subtree with a leaf labeled "1" would produce one error out of 101

events, so the leaf's error probability is given by B0.25(1, 101) = 0.0264. Since this

error probability is lower, the left subtree would be pruned to a leaf. The same

calculations are valid for the right subtree; hence the tree of Figure 4.5(i) would be

pruned to a(113). No further pruning of this tree is possible, as there is no dominant

class. The same is true of the tree in 4.5(u); clearly, no pessimistic pruning is possible,

either at the subtrees or at the root.

The greater pruning achieved on C4.5 trees is explained by the fact that these

trees are suited for pruning - which is not necessarily the case with the trees pro-

duced by whisker reduction. The superior predictive accuracy of pruned C4.5 trees

is explained by the fact that pessimistic pruning works on the tree from the bottom

up, thus increasing the likelihood of eliminating decisions in the lower portion of the

tree - the decisions that were delayed because of their relatively low discriminating

power.

87

The fact that C4.5 trees are well suited for later pruning does not mean, however,

that their configuration enables every possible application of pessimistic pruning.

Substituting a pessimistic pruning routine for migration in whisker reduction makes

it possible to utilize the restructuring power of the tree reduction algorithm to search

for further applications of pessimistic pruning.

Algorithm 4.1 Algorithm dynamic-prune is obtained by substituting a pessimistic

pruning routine for migration in Algorithm 3.7 (whisker-reduce).

A new experiment of 15 trials, as before, was performed on the Disjunction data

to test Algorithm 4.1. Each time, the full tree induced by C4.5 was pruned directly

(P-C4.5), and the pruned version was further pruned dynamically (DynamicPrune-

P-C4.5), using the modified reduction algorithm. This algorithm was also applied

directly to the unpruned tree induced by C4.5 (DynamicPrune-C4.5). The aver-

age results are reported in Table 4.6. Comparison of the results from P-C4.5 and

Method Nodes Hit rate
P-C4.5 46.6 82.8%
DynamicPrune-C4.5 50.3 82.7%
DynamicP rune- P-C4.5 21.8 81.3%

Table 4.6: Pessimistic pruning and dynamic pruning results on the Disjunction data

DynamicPrune-C4.5 confirm that the C4.5 trees are better suited for pruning. Al-

though DynamicPrune-C4.5 evaluated a greater number of pruning opportunities,

these opportunities were evidently not the most propitious, since it produced larger

trees, with slightly lower classification accuracy. On the other hand, DynamicPrune-

P-04.5 attempted dynamic pruning only after all of the convenient pruning opportu-

nities present in the original tree had been processed, and then reshaped the tree in

88

an attempt to make further improvements. This resulted in a more than 50% reduc-

tion in size, with a loss of one and a half percentage points in classification accuracy.

The optimal tree built from a complete set of noise-free Disjunction examples would

have 19 nodes, and its best classification accuracy on unseen examples, corrupted

with the probabilities discussed before, would be 90.0%

It is important to note that Algorithm 4.1 lacks the theoretical foundation of

the original reduction algorithm. The basic algorithm guarantees that after a tree's

branches have been reduced, any further improvement can only be produced by

factoring the root decision to the roots and (perhaps) eliminating it. Pessimistic

pruning is a much deeper reduction operator that idempotence reduction, and there

is no guarantee that the best possible pruning can be achieved when the root decision

reaches the level above the leaves. Optimal pruning might in fact occur with the

original root decision somewhere between the root and the leaves. This indicates

that dynamic application of pessimistic pruning is a more complex problem than

dynamic application of migration. While evidence was given here that dynamic

pessimistic pruning can be expected to improve decision trees, work remains to be

done to determine how a good order of pruning is to be selected during the tree

restructuring process.

4.2.3 Undefined values

Training examples with undefined values on some of their attributes pose a special

problem, since it is not immediately evident where they fit in a decision tree, or how

the information they contain can be used to facilitate the induction task. While it

is tempting to discard such examples, the loss of the information they contain can

be expected to hinder the induction task. This was found to be the case through

89

empirical studies reported by Quinlan (1989).

In the same studies it was found that good performance could be achieved by

assigning a fraction of each case with an undefined value on test a to each of the sub-

sets created by partitioning on a. This method, used in C4.5, assigns the fractional

values on the basis of the relative frequencies of the known values of a in the set.

A similar approach was taken to insert events with unknown attribute values into

trees to be used as initial valid descriptions. Prior to insertion, each event is assigned

a weight w = 1. When inserting an event whose value on a is undefined into a subtree

a(til... Its), the event is redirected into each ti with weight f. This insertion method

generates a great deal of unreliable information at the leaves, particularly since no

consideration is given to the relative frequencies of values on a. However, this was

solved effectively by treating any leaf as unreachable (or "unknown") until the most

frequent class it covers appears in a proportion that is at least as large as its frequency

in the entire training set. This allows the "?" decision at the leaf to be migrated

until a clear mode emerges at the leaf. Once such a mode appears, the leaf label is

bound to the most frequent class, and the leaf becomes reachable.

Method Nodes Hit rate
C4.5 120.5 71.7%

Whisker reduction 117.5 72.6%

Table 4.7: Results on the Digits data, with each attribute value deleted with proba-
bility 0.5.

Tables 4.7 and 4.8 show the average results obtained on 15 trials involving the

partition of the Digits and Disjunction data into roughly equal parts, for learning

and testing, where every attribute value of each event selected for the learning set

was deleted with probability 0.5. The results reported for C4.5 corresponded to trees

90

Method Nodes Hit rate
C4.5 68.5 73.9%
Whisker reduction 36.7 74.7%

Table 4.8: Results on the Disjunction data, with each attribute value deleted with
probability 0.5.

after the absolute error pruning mentioned in Section 4.2.1 - not to be confused

with pessimistic pruning, which was not used at all. Whisker reduction performed.

better on both data sets, particularly in terms of tree size.

4.3 Summary

In this chapter it was shown how the whisker reduction algorithm can be used ef-

fectively to induce decision trees from incomplete and noisy data. Empirical results

obtained using large, noisy data sets indicate that principled induction by whisker

reduction produces trees that are comparable in compactness and predictive accu-

racy to those built by C4.5 using statistical criteria. These results validate the claim

that principled induction is an effective representation of the problem of learning

concept descriptions from examples.

An important observation arising from the experimental use of pessimistic prun-

ing jointly with tree reduction is that statistically built trees are better suited for

pruning than those simplified by whisker reduction.

This suggests a topic for further research: improving the dynamic pruning algo-

rithm. The structural manipulation technique can be used to advantage as a way to

find good pruning opportunities. Although the cost of applying such an algorithm

to unreduced trees (e.g., before whisker reduction) would probably be prohibitive,

91

the cost of dynamically pruning C4.5 trees that have already been pessimistically

pruned is likely to be absorbed by the cost of all previous processing.

Chapter 5

Principled induction of decision rules

Decision trees have often been rated as inadequate for use in expert systems because

they lack the explanatory value often required of concept definitions and are ill-suited

for performing backward chaining (Cendrowska, 1987; Quinlan, 1987).

This has motivated methods for transforming decision trees into sets of decision

rules (Quinlan, 1987), and for inducing decision rules directly from data using statisti-

cal methods much like those underlying ID3 and CART, as proposed by Cendrowska

(1987).

The difference between tree representations and rule sets is that whereas the

former have a built in control strategy, decision rules must be complemented by some

external control strategy (e.g., order of application) (Cockett & Herrera, 1986).

This suggests that decision trees and rule sets are not directly comparable. A

decision tree may in fact be abstracted as a pair (F, D), where D is an intensional

description of the space from which the tree was generated, and P is a body of

procedural knowledge pertaining to the use of D.

Under this definition the problem of transforming decision trees into sets of de-

cision rules is that of extracting the descriptive knowledge from the tree. A good

solution to this problem can also be expected to provide a method for inducing

decision rules via a tree representation created from a training set (e.g., using Algo-

rithms 3.1 and 3.2). This extraction process is the topic of the present chapter. The

first section characterizes good decision rules as rules that are prime. The second

presents a principled induction algorithm for extracting prime decision rules from

92

93

ID3 PRISM
(d = 2) A (c = 2) A (b = 1)
(d=2)A(c=2)A(b=2)A(a= 1)

(c = 2) A (d = 2) A (b = 1)
(a= l)A(c=2)A(d=2)

8=2
ID3 PRISM

(d=2)A(c=1)A(b=1)A(a=1)
(d=2)A(c=l)A(b=1)A(a=2)

(d=2)A(c=l)A(b=2)

(c=1)A(d=2)A(a=1)
(c=1)A(d=2)A(a=2)
(c=l)A(d=2)A(b=2)

8=3
ID3 PRISM

(d=1)
(d=2)A(c= l)A(b= l)A(a= 3)
(d=2)A(c=2)A(b=2)A(a=2)

(d=2)A(c=2)A(b=2)A(a=3)

(d=1)
(a=3)A(b= l)A(c= 1)
(b=2)A(c=2)A(a=2)

(b=2)A(c=2)A(a=3)

Table 5.1: Rules generated by ID3 and PRISM for each class 8 in the data of Ta-
ble 3.2.

decision trees.

5.1 Good decision rules

Quinlan (1987) approached the problem of extracting rules from decision trees by

treating every path from the root to a leaf as a distinct decision rule, which could

later be pruned using statistical criteria.

Table 5.1 shows the decision rules extracted trivially from the tree of Figure 3.12,

and those induced directly by PRISM (Cendrowska, 1987) from the data of Table 3.2

(Example 3:7).

Cendrowska pointed out that the PRISM rule set is better because several of its

elements contain fewer antecedents than there are tests on the paths of the deci-

sion tree. In fact, her algorithm is based on the observation that the goals of rule

94

generation differ from those of decision tree generation. Tests that are required to

provide adequate control of the decision process in a tree may not be relevant to

the classification of members of a particular class. A "correct" rule is "one which

references all the relevant attributes and no irrelevant ones" (Cendrowska, 1987).

This statement points toward the desirability of rule sets that contain only ele-

ments that are prime.

Definition 5.1 A decision rule r, subsumes 1 r2 if

1. Both rules have the same conclusion, and

2. The decision-outcome pairs in r1

pairs in r2.

constitute a subset of the decision-outcome

Definition 5.2 A decision rule r in a rule set R that is complete and consistent with

respect to instances S is said to be prime if there is no other rule r' that properly

subsumes r, and can replace r in R such that the rule set remains consistent.

In order for a rule set to be optimal, it is also necessary that it contain no

redundant rules. The rule extraction method presented in the next section fails to

meet the second requirement. It is this shortcoming that makes it computationally

feasible.

5.2 Extraction of prime decision rules from trees

A very general description of an algorithm for extracting prime rules from decision

trees is given in (Herrera, 1988). This algorithm examines every path in the tree sep-

arately, attempting to identify test-outcome pairs that can be pruned away without

'This definition was adapted from one by Genesereth and Nilsson (1987).

95

losing consistency. This section presents in detail a principled induction algorithm

that performs the task by sweeping the tree from the bottom up.

5.2.1 The extraction algorithm

The algorithm for extracting prime rules is based on the observation that if at a

given tree t, some of the rules generated from the paths of one of t's subtrees are

subsumed by some rule generated from each of the remaining subtrees, then it is

unnecessary to augment those subsumed rules (set SR in Algorithm 5.1) with the

test at the root of t.

Example 5.1 In the tree of Figure 5.1, the right subtree b(112) has trivial rules

{(b=1)='1;(b=2)2}

and the left subtree, 1, has the singleton rule set = 1. The trivial rule set for the

entire tree is

{(a= 1) l;(a=2)A(b= 1) = 1;(a=2)A(b=2) =2}.

The rule (a = 1) A (b = 1) 1 is not prime, because replacing it with (b =

2

Figure 5.1. A shallow whisker.

1) 1 leaves the set consistent. To see why this is the case, observe that although

(b = 1) = 1, a rule generated for the right subtree, covers events in both subtrees,

96

it is still consistent because the events in the left subtree all belong to class 1. In

general, the corresponding test-outcome pair corresponding to decision a may be

omitted from (a = 1) A (b = 1) = 1 because this rule is subsumed by some rule in

the rule set of each sibling tree, namely, = 1.

The algorithm traverses the tree bottom up, searching for paths that can be reduced

to primeness by "pruning" specific tests, as discussed in the previous example. This

is the simplification step used in the algorithm. All other rules - those that are not

included in SR - are treated as they normally would be during trivial extraction

of rules from a tree. If the test at the root of t is a, then rules generated from the

th subtree of t - from left to right - are augmented with the antecedent conjunct

(a=i).

97

Formal presentation of the algorithm

Algorithm 5.1 Given as input a repeat reduced decision tree t that is complete

and consistent with respect to a bag of training examples S, this algorithm re-

turns a set of prime rules R that is also complete and consistent with respect to S.

extract-prime-rules(t)

if t is a leaf labeled with outcome x then

return({ =t x})

else %t is a tree with test a at its root and subtrees t1,. . . ,

(R1,. . . , Rj) - map extract-prime--rules over (t1, . . . , t,)

SR4—{}

for i=1, ... ,k

for every r E R1

if every R, j 0 i, contains a rule r' that subsumes r

then SR - SR U {r}

for i=1,...,lc

Rj — R— SR

R U1 UrERj(2 = i) A

return(R U SR)

Example 5.2 Figure 5.2 shows the rules generated by Algorithm 5.1 for a portion

of the tree in Figure 3.12. Terminal nodes return singleton sets; the only rule is

one without antecedents and with the conclusion associated with the leaf. What

is noteworthy in this example is that the rule set for node ni contains the rule

(a = 1) =. 3; the antecedent (b = 2) has been omitted because the rising rule

(a = 1) =. 3 is subsumed by the rule from n2, 1.

98

{(b=1)=>1; (a=1)=>1; (a=2) A (b=2)=>3; (a=3) A (b=2)=>3 I

b

{=>1

{=>1}

((a=1)=> 1; (a=2)=>3; (a=3)=>3)
a

{=>3} {=>3}

n5 n6

3 3

Figure 5.2: The rules generated at each node for a portion of the tree in Figure 3.12.

If this procedure is applied to the entire tree of Figure 3.12, the resulting rules

are the same as those generated by PRISM and shown in Table 5.1.

Proposition 5.1 Given a decision tree t that is complete and consistent with respect

to training examples S, algorithm 2.1 generates a set of rules R such that R is

complete and consistent with respect to S, and every rule in R is prime with respect

to S.

Proof Consider the base step. If t is a leaf labeled x, the algorithm returns the rule

set R = { = x}. R is complete because a rule without antecedents can classify any

instance. It is consistent, because the generating tree was constructed exclusively

from examples in class x - and that is the only class that R is able to classify. The

rule is prime because there cannot exist any rule that properly subsumes a rule with

no antecedents.

If the tree is not a leaf, then let a be the test at its root, and let ii,. . . , tk be its

subtrees, which return rule sets R1,.. . , Rk. The inductive hypothesis is that these

99

rule sets are complete and consistent, and that their elements are prime, with respect

to the examples covered by t1, . . . , tj. The inductive step is shown by contradiction,

separately for each of the three properties. As a notational convention, S will denote

the portion of S used to build a tree t that is complete and consistent with respect

to S.

Completeness Suppose that R is inconsistent with respect to S; then there exists

an example e E St that does not fire any of the rules in R. Let e be in Sti, and

let r E Rj be one of the rules fired by e - by the inductive hypothesis there

must be such a rule. If r was in SR, then it also appears unchanged in II, and

that contradicts the assumption. Otherwise r appears in R with an additional

antecedent (a = i). But since e e St,, this example must also fire the rule
(a = i) A r, which also contradicts the assumption.

Consistency If R is inconsistent, then then must be some example e E St that is

misclassified by some rule r E R. If r contains antecedent (a = i), then e is

covered by ti and fires the rule in Ri from which r was generated. That rule

must also misclassify e, in contradiction with the inductive hypothesis. If r

does not contain antecedent (a = i), it must have been in SR. Therefore every

subtree returned a rule that subsumes it, and every such rule must also be fired

by 5, again in contradiction with the inductive hypothesis.

Primeness Suppose that there exists a rule r0 E R that is not prime with respect

to S. Then there exists some rule r1 that properly subsumes r0, such that r1

is prime, and if r0 is replaced by r1 in R, the rule set remains consistent with

respect to S.

First suppose that r0 was not in SR when R was constructed. Then r0 contains

an antecedent (a = i), and Ri contains a rule r that is equal to r0 but for

100

the lack of antecedent (a = i). In other words, ro = (a = i) A r, and by the

inductive hypothesis, r is a prime rule in set R.

Consider the relationship between r1 and r. If r1 contains antecedent (a = i),

then r1 = (a = i) A r, and r', must properly subsume r. The assumption that

r1 can replace r0 in R implies that r can replace r in R, but this contradicts

the inductive hypothesis that all rules in R2 are prime.

This argument is valid even if r1 does not include an antecedent (a = i), as

long as r1 properly subsumes r.

Consider the case r1 = r. For r1 to be prime in R - that is, consistent with

respect to S - it must either contain an antecedent (a = i), where a is the

test at the root of t, or it must be subsumed by some rule in every R5. We

assumed that the first condition does not hold; therefore the second condition

must hold, and r1 is subsumed by some rule in every R. But r1 = r, implying

that r0 = r, and this contradicts our assumption that r0 was not in SR and

must therefore have an antecedent (a = i).

Suppose now that r0 was in SR because it is subsumed by some rule in every

R1. Then r0 is present in some R. However, the fact that r1 subsumes r0 and

can replace it in R implies that the replacement is also valid in R, and this

contradicts the inductive hypothesis that r0 is prime in R1.

Rule extraction as principled induction

Before showing that this is a principled induction algorithm, it is necessary to point

out that the intermediate valid descriptions are hybrid in their structure. The initial

description is a decision tree, and the result is a set of decision rules. During the

extraction process, the valid transformations are decision trees with rule sets at the

leaves. If one were to use an instance of this hybrid structure for classification, the

101

a b c d 8 # a b c d 5
1 1 1 1 1 x0 9 2 1 1 1 x3
2 1 1 1 2 x0 10 2 1 1 2 x3
3 1 1 2 1 x0 11 2 1 2 1 x4
4 1 1 2 2 xo 12 2 1 2 2 x4
5 1 2 1 1 x1 13 2 2 1 1 x3
6 1 2 1 2 x1 14 2 2 1 2 x3
7 1 2 2 1 X2 15 2 2 2 1 x4
8 1 2 2 2 x0 16 2 2 2 2 XO

Table 5.2. Training examples used to build the tree of Figure 5.3.

tree classification procedure would be followed until a leaf is reached. Then the

classification would be completed using the decision rules at that leaf.

That the algorithm preserves generality and consistency follows directly from the

proof of Proposition 5.1. The algorithm determines a preorder on valid descriptions

by detecting and eliminating irrelevant conditions from the descriptions of particular

concepts or classes.

As anticipated above, the algorithm does not guarantee that the resulting out-

put will not contain redundant rules. The following example illustrates how Algo-

rithm 5.1 can return a rule set that contains redundant elements.

Example 5.3 The tree of Figure 5.3 is whisker reduced for the training data of

Table 5.2.1. The rules for class x0 are the following: The left subtree yields

(a = 1) A (b = 1) xo and (a = 1) A (c = 2) A (d = 2) = x0. Decision

is omitted from the latter rule because (c = 2) A (d = 2) x0 is subsumed by

= xo. The right subtree gives rule (b = 2) A (c = 2) A (d = 2) => x0, from which

a has been omitted because the rule is subsumed by (c = 2) A (d = 2) => xo.

Table 5.3 summarizes the events covered by each of these three rules. Rule 2 covers

only cases that are also covered by the other rules, and is therefore redundant in the

102

x X 1

x 2 X

4
X
4

x
0

Figure 5.3. A whisker reduced tree that yields one redundant rule.

Rule Examples
1 (a = 1) A (b = 1) = so {1,2,3,4}
2 (a = 1) A (c = 2) A (d = 2) xo {4,8}

3 (b=2)A(c=2)A(d=2)*xo {8,16}

Table 5.3. The rules for x0 and the examples covered by each.

rule set.

The example also provides insight into the form of a decision tree that yields

redundant rule sets by Algorithm 5.1. Both arguments of the root decision contain

the path (b = 2) A (c = 2) A (d = 2) => so. If the pruning were delayed to

the root decision, then it would be clear that one of the versions could be discarded.

But the version of the path from the left argument is pruned because at an earlier

stage it is subsumed by some other rule; hence equality is lost and neither rule may

be discarded.

To obtain irredundant rule sets using Algorithm 5.1, every rule in the output

must be checked for redundancy.

103

Time complexity of rule extraction

The following proposition analyzes the complexity of the rule extraction algorithm.

Proposition 5.2 Given a decision tree of height h and a maximum branch factor

of B, the time complexity of Algorithm 5.1 is O(h . B2'+1).

Proof Consider a full tree of height h and homogeneous branch factor B. The work

at a given node is dominated by the need to check each rule in every subset of rules

rising from one of B subtrees, for subsumption by the rules in the remaining subsets.

The cost of checking two rules with n and m antecedents for subsumption - assuming

that the antecedents are sorted by some ordering on the tests - is 2 . max(m, n).

If the node is the root of a subtree of height 1, this cost is bounded by 2 . 1. The

cost of processing the node contains the following factors: B, the number of rule

subsets rising from the subtrees; B'', the bound on the number of rules in every

subset that have to be checked for subsumption by other rules; B - 1, the remaining

subsets against which every rule must be checked; B' 1, the number of rules in every

other subset; and 2 . 1, the cost of a single subsumption check.

This product is equal to 2. 1 . B2'. The number of nodes in the tree that are roots of

subtrees of height 1 is B'_'. Hence the cost of processing the entire tree is bounded

by

2•B'.T, l.B'.
1<l<h

Using the identity for linear exponential sums,

(n_1).xTh+l_n.x 2+x

O<i<n (x - 1)2

and substituting h = n - 1, B = x, and 1 = i, we obtain the bound

' h.Bh+2 2.h.B2', 2-B . <
(B—i)2 B2-2•B -

which is O(h. B2'1).

104

Method Rules Tests Relative
time

PRISM 15 48 1.0
EXTRACT-1 15 46 0.6
EXTRACT-2 16 48 1.0
EXTRACT-3 15 46 1.7

Table 5.4. Results on the chess data described in Example 5.4.

If a tree is in full - every q E Q appears once - this bound translates to

0 (IQI .B2.'11). The complexity of PRISM was given in Section 1.2.4 as O(ISI2 •!Al2),

where S are the examples and A are the attributes on which they are defined. This

translates to O(B2I'.IQI2), which is somewhat larger if IQI > B. The actual running

times of the two algorithms on various examples were found not to differ significantly.

Comparative running times on a sample training set are given in Example 5.4.

Example 5.4 The King-Knight-King-Rook chess endgame problem was formulated

by Quinlan (1979). It describes chess board positions using four ternary and three

binary attributes; the possible outcomes are lost and safe for one of the players. The

set is of size 647, and hence almost complete; there is one combination of the seven

attributes that is not legal. PRISM and the prime rule extraction algorithm were

applied to the data, with the results reported in Table 5.4. The extraction algorithm

was applied in three different ways. EXTRACT-i denotes the extraction of prime

rules from the tree built trivially from the examples. EXTRACT-2 corresponds to

rule extraction from the whisker reduced tree for the data, and EXTRACT-3 is the

result of eliminating redundant rules from the output of EXTRACT-2. The Rules

column indicates the number of rules produced by each method, the Tests column

indicates the total number of tests in the rule set, and the last column indicates the

105

relative running times required to produce the results, with the time required by

PRISM taken as a base 2• Extraction of prime rules from an unreduced tree gave

the same number of rules as PRISM; in particular, both gave the same nine rules

with outcome safe. As for the rules with outcome lost, they, too, were equal, except

that two of the PRISM rules had one additional test each - the PRISM rule set was

not prime. EXTRACT-2 produced a rule set that contained that of EXTRACT-1,

and also included an additional rule with two tests rule and outcome safe. This is

significant because it gives further evidence that the whisker reduced description can

be mapped by Algorithm 5.1 .onto rule sets with redundant elements. EXTRACT-3

(EXTRACT-2 plus the removal of redundant rules if any) returned the same rule

set as EXTRACT-1. All three rule sets achieved perfect classification accuracy on

the data from which they were generated.

5.2.2 Extraction of prime rules from noisy data

Since the rule extraction algorithm is purely qualitative, its output is subject to the

same error rates the tree from it is generated. But as pointed out by Gaines (1991),

the statistical criterion used by PRISM to grow rules is not sufficient in itself to cope

with noise. INDUCT, Gaines' extension of PRISM, uses an additional quantitative

criterion to filter out tests selected by the basic PRISM algorithm which are likely

to have arisen by chance.

Another approach to inducing rules from noisy data is analogous to the testwise

pruning of Herrera's algorithm, mentioned earlier in this chapter. C4.5 turns every

path of a tree into a decision rule and rates the tests of each rule by their significance

to the identification of the class that is predicted by the rule. If any of the tests are

2For the purpose of this comparison, PRISM was implemented in the same language as the
reduction and rule extraction algorithms, Chez Scheme.

106

deemed to be individually insignificant, the least significant is pruned from the rule,

and the process is repeated until no test of a rule can be judged to be irrelevant

(Quinlan, 1987). This approach is very similar to the one used in INDUCT, since

the basic PRISM algorithm also selects rule antecedents in order of significance. The

major difference is that Quinlan's method works by gradual simplification.

Although the prime rule extraction algorithm could also be modified to use a

quantitative criterion for pruning, the method would be at a disadvantage with

respect to INDUCT and C4.5. Since the algorithm sweeps the tree from the bottom

up, attempting pruning at each node, there is no possibility to sort the tests by some

criterion prior to pruning.

5.3 Summary

The chapter presented an efficient principled induction algorithm that transforms an

initial valid description represented as an arbitrary decision tree into a set of prime

rules. Examples were shown which indicate that the degree to which the initial tree

has been simplified has no bearing on the likelihood of obtaining redundant rules.

Chapter 6

Conclusions

This chapter summarizes the contribution of this thesis and points to some research

topics arising from this work.

6.1 Summary and contribution

Principled induction from examples described by their values on a set of attributes

was defined as the process of defining a set of valid transformations that generate -

and therefore preserve - a reducing preorder on the set of valid descriptions, and

then applying these transformations to some arbitrary initial valid description until

a minimal element in the preorder is obtained. The goal of this thesis was to show

that principled induction affords a clear and effective representation of the problem

of learning concept descriptions from examples.

6.1.1 Clarity

To validate principled induction it was examined in the area of decision tree induction

using the algebraic theory of decision trees by Cockett (1987a, 1987b, 1988), and the

reasonable preorder generated by the manipulations provided by this theory. The

operations used to generate this partial preorder were composed to form an efficient

algorithm for finding minimal elements in the preorder (Cockett & Herrera, 1990).

It was shown that when used for principled induction this algorithm produced

trees that were considerably more complex than those produced by statistical top-

down tree building methods.

107

108

In order to improve the compactness of the trees obtained by principled induction,

the reasonable preorder was enlarged by adding a new generating identity, weak

transposition. The whisker reduction algorithm was formulated to obtain minimal

elements in this weak reasonable preorder. This algorithm was shown to yield results

comparable to those produced by statistical top-down tree induction methods.

This success shows the value of pure principled induction when tackling the com-

putationally intractable problem of optimizing inductive conclusions by restricting

the optimization to sparse preorders. Every operation that is added to the gener-

ators of the preorder brings with it an additional simplification capability, and an

additional computational cost, that are well defined.

6.1.2 Effectiveness

A number of sample data sets were presented, in Chapters 3 and 4, on which the

principled induction of decision trees produced results that were comparable in com-

pactness and predictive accuracy to those built top-down using statistical criteria.

Since both approaches give solutions that are not provably optimal, the compara-

tive advantages of each are problem specific. In Chapter 5 a principled induction

methods that produces prime decision rules from a decision tree representation of

the training examples was shown to be somewhat more efficient and effective than

an algorithm that grows rules using a statistical criterion.

6.2 Future work

The most immediate extension of the work presented in this thesis is the definition of

additional preorders for the principled induction of decision trees. This can be done

by identifying irrelevant tests which whisker reduction is not capable of elimination

109

from trees, and then defining operations that are capable of mapping the source tree

to the decision equivalent tree with the irrelevant test removed.

In this thesis, principled induction was defined and illustrated in the context of a

very restricted subset of inductive learning problems, in which examples are defined

by their values on discrete attributes. Work remains to be done to define principled

induction methods in more complex domains.

One such domain is that in which the feature values are continuous and are not

amenable to a single categorization; different subsets of the training examples may

be better described by different categorizations of the continuous domain. Another

type of inductive learning is one in which the target concept is a relation, to be

described in terms of other relations (Quinlan, 1990a). It is possible that these

problems can be be treated as instances of the discrete attributes problem, once

adequate categorizations of continuous values, or instantiations of logical predicates

have been defined. The problems could then be solved using the principled induction

methods described in this thesis.

In Chapter 4 it was shown that a variation of the principled induction method can

be used to further reduce the complexity of trees that had been grown and pruned

statistically. As indicated in the summary of that chapter, work remains to be done

to produce an efficient algorithm that takes full advantage of the structural manip-

ulations supplied by the algebraic decision theory of Chapter 2 and the extensions

introduced in this thesis to find good applications of statistical pruning operators.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification
and regression trees. Monterey, CA: Wadsworth & Brooks.

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. Interna-
tional Journal of Man-Machine Studies, 27, 349-370.

Chen, K. & Ras, Z. (1985). Homogeneous information trees. Fundamenta Informat-
icae, VIII(1), 123-149.

Cockett, J. R. B. (1987a). Decision expression optimization. Fundamenta Informal-
icae, X, 93-114.

Cockett, J. R. B. (1987b). Discrete decision theory: manipulations. Theoretical
Computer Science, 5.4, 215-236.

Cockett, J. R. B. (1988). Coalgebraic decision theory. Mathematical Problems in
Computation Theory, 21, 185-196.

Cockett, J. R. B. & Herrera, J. A. (1986). Prime rule-based methodologies give
indadequate control. In Proceedings of the ACM SIGART ISMIS, (pp. 441-
449)., Knoxville, TN.

Cockett, J. R. B. & Herrera, J. A. (1990). Decision tree reduction. Journal of the
Association for Computing Machinery, 37(4), 815-842.

Gaines, B. R. (1977). System identification, approximation and complexity. Inter-
national Journal of General Systems, 3, 145-174.

Gaines, B. R. (1991). The trade-off between knowledge and data in knowledge acqui-
sition. In Piatetsky-Shapiro, G. & Frawley, W. J. (Eds.), Knowledge Discovery
in Databases, (pp. 491-505)., Menlo Park, CA. AAAI Press.

Genesereth, M. R. & Nilsson, N. J. (1987). Logical foundations of Artificial Intelli-
gence, (pp. 161-162). Los Altos, CA: Morgan Kaufmann.

Herrera, J. A. (1988). Theoretical foundations and algorithms for the generation of
optimal decision trees. PhD dissertation, University of Tennessee, Knoxville.

Hyafil, L. & Rivest, R. L. (1976). Constructing optimal binary decision trees is
NP-Complete. Information Processing Letters, 5(1), 15-17.

110

111

McCluskey, E. (1956). Minimization of boolean functions. Bell Systems Technical
Journal, 35, 1417-1444.

Michalski, R. S. (1991). Toward a unified theory of learning: an outline of basic
ideas. Invited paper for the First World Conference on the Fundamentals of
Artificial Intelligence, Paris, July 1-5.

Michalski, R. S. & Chilausky, R. L. (1980). Knowledge acquisition by encoding
expert rules versus computer induction from examples: a case study involving
soybean pathology. International Journal of Man-Machine Studies, 12, 247-271.

Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose
incremental learning system AQ1S and its testing application to three medical
domains. In Proceedings of the Fifth National Conference on Artificial Intelli-
gence, volume 2, (pp. 1041-1045)., Los Altos, CA. Morgan Kaufmann.

Mitchell, T. M. (1978). Version spaces: an approach to concept learning. PhD
dissertation, Stanford University.

Niblett, T. (1988). A study of generalisation in logic programming. In Proceedings
of EWSL 88, (pp. 131-138)., London. Pitman.

Post, H. R. (1960). Simplicity in scientific theories. The British Journal for the
Philosophy of Science, 11, 32-41.

Quine, W. V. (1952). The problem of simplifying truth functions. American Math-
ematical Monthly, 59, 521-531.

Quine, W. V. (1955). A way to simplify truth functions. American Mathematical
Monthly, 62, 627-630.

Quinlan, J. R. (1979). Discovering rules from large collections of examples: a case
study. In Michie, D. (Ed.), Expert systems in the micro-electronic age, (pp.
168-201)., Edinburgh. Edinburgh University Press.

Quinlan, J. R. (1986a). The effect of noise on concept learning. In Kodratoff, Y.
& Michalski, R. (Eds.), Machine Learning:, An artificial intelligence approach,
volume 2, (pp. 148-166)., Los Altos, CA. Morgan Kaufmann.

Quinlan, J. R. (1986b). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-
Machine Studies, 27, 221-234.

112

Quinlan, J. R. (1989). Unknown attribute values in induction. In Proceedings of the
Sixth International Workshop on Machine Learning, (pp. 164-168)., Palo Alto,
CA. Morgan Kaufmann.

Quinlan, J. R. (1990a). Learning logical definitions from relations. Machine Learning,
5,239-266.

Quinlan, J. R. (1990b). Probabilistic decision trees. In Kodratoff, Y. & Michalski,
R. (Eds.), Machine Learning: An artificial intelligence approach, volume 3, (pp.
140-152)., San Mateo, CA. Morgan Kaufmann.

Quinlan, J. R. (1992). C.5: programs for empirical learning, (In press), (pp. 35-39).
Morgan Kaufmann.

Shannon, C. E. & Weaver, W. (1948). The Mathematical Theory of Communications.
Urbana: University of Illinois Press (Book published 1964).

Sober, E. (1975). Simplicity, chapter 1. Oxford: Clarendon Press.

Webb, G. I. (1991). Einstein - an interactive inductive knowledge acquisition tool.
In Proceedings of the Sixth Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, volume 2, (pp. 36.1-36.16).

Wegener, I. (1987). The complexity of Boolean functions, chapter 2. Great Britain:
Wiley & Sons.

