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THE IMPORTANCE OF BEING PROLACTIN

More than 300 different biological functions have been ascribed to prolactin (PRL)
in vertebrates. They comprise six areas of biological regulation: water and electrolyte
balance, growth and development, endocrinology and metabolism, brain and behavior,
reproduction, immunoregulation and protection (for review see !). PRL influences these
processes via the regulation of gene expression in various tissues. The multitude of
processes regulated in different tissues suggests differential modes of action in indi-
vidual target cells, but many of these mechanisms remain undefined. PRL may affect
gene expression directly, for example through transcriptional control, or may do so by
indirect mechanisms involving other cellular processes such as regulation of mRNA
stability, protein synthesis or secondary modifications of proteins.

The direct regulation of PRL-dependent gene promoter elements has been studied
in detail. PRL-activated transcription factors and PRL-responsive elements in target
gene promoters have been defined in the areas of endocrine regulation of metabolism
(liver bile transport and PRL-receptor gene regulation in insulin producing cells),
immunoregulation and protection (T lymphocyte proliferation), growth and develop-
ment (adipocyte differentiation) and reproduction (development of the mammary gland
and function of the ovarian corpus luteum) (Table 19-1).

THE SPECIFICITY OF RESPONSE

The specificity of response that is generated in the PRL signaling system is a
combination of sequential component protein-protein interactions. These interactions
include the tissue specific recognition of PRL by the extracellular domain of the prolac-
tin receptor (PRL-R). The receptor couples to a non-covalently associated cytoplasmic
tyrosine kinase of the JAK (Janus kinase) family, which when activated, leads to specific
transcription factor activation and to target gene transcription or repression. PRL may
under certain circumstances activate different pathways within the cell.
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Table 19-1. Genes Regulated by PRL

FUNCTION OF PRL AND REGULATORY FACTORS
TARGET GENE INDUCED IDENTIFIED
Endocrinology and Metabolism
Hepatic sodium-dependent bile acid Stat5
cotransporter gene
PRL-R gene in insulin-producing cells Stat5
Immunoregulation and protection
IRF-1 in Nb2 cells Statl, CBP and Stat5
Growth and Differentiation
Adipocyte differentiation, aP2 gene Stat5

Reproduction
Pigeon crop sac gene, Annexin Icp35 Statl-like
Milk protein genes:
P-casein Stat5, GR. YY1. and PTP1D

p-lactoglobulin, «-lactalbumin and Stat5
whey acidic protein

Ovary specific genes 20aHSD, p27, Stat5
a2-macroglobulin and 33-HSD

The production of PRL occurs primarily in, but is not restricted to, the anterior
pituitary gland. It can also be produced in other tissues and act in an autocrine or
paracrine fashion (for review see 2). This leads to PRL responses that are not under the
strict control of circulating hormone. Autocrine and paracrine PRL production may
contribute to the pathological growth of breast tumor cells 3-3 (for review see 6) or
fibromuscular myometrial tumors 7.

The PRL-R is a single transmembrane receptor that is expressed as two isoforms, a
short and a long form. These isoforms are expressed in a variety of tissues, and at
different developmental stages (for review see ! and references therein). Through its
receptor, PRL is capable of activating a variety of signaling pathways including the
JAK/Stat, (signal transducers and activators of transcription) pathway (for review see
%), the mitogen activated protein kinase (MAPK) pathway %13 including
Shc/Sos/Grb2/Ras/Raf 14-16, as well as Sre, Fyn, and phosphatidylinositol 3-kinase 17-19,
and the focal adhesion kinase pathway 2°. Each PRL-activated signal cascade activates
specific transcription factors, which in the case of the Stats are present in a latent form
in the cytoplasm and are activated without further requirement of gene expression. In
the case of MAPK, their activation requires protein synthesis.

The transcription factors relay the specificity of response by binding to specific
DNA response elements or combinations of elements in the promoter regions of a
restricted subset of target genes. Specific complexes of transcription factors, coactivators
or corepressors and the genes that they regulate, might ultimately be responsible for the
pleiotropic tissue-specific and cell-differentiation-state specific actions of PRL.
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TRANSGENIC MICE WITH DISRUPTED PRL OR PRL-R GENES

Many different physiological effects of PRL have been described, though it is
unclear as to which are directly influenced. The advent of homologous gene recombina-
tion in embryonic stem cells and the inactivation of the PRL gene or the PRL-R gene
provided the opportunity to distinguish between effects absolutely dependent upon
PRL signaling and effects in which PRL plays an accessory or subordinate role. These
studies complement earlier attempts in which PRL ablation was the starting point, achieved
either through chemical inhibition of PRL secretion or by the use of mutant dwarf mice
strains. The effectual ablation of tissue-specific hormone production in these studies
was difficult to measure. Complications with the use of transgenic mice also arose due to
the transfer of maternal PRL during nursing in the PRL null mice, and there was a wider
effect of disrupted lactogenic hormone signaling in the PRL-R null mice. There are
different forms of the PRL-R expressed in cells, which may be of functional significance.
It is generally thought that the phenotypes described for the PRL-R null mice are due to
the loss of the long form of the receptor, thus limiting the capacity to study the effects
of the other receptor isoforms. While transgenic systems are not without their draw-
backs, they do provide an opportunity to study the direct effects of the lack of PRL
signaling.

The phenotype of the mice carrying disrupted PRL or PRL-R genes demonstrated
that PRL plays a significant role in mammary development 21-23, fertility 22-2¢, male
neuroendocrinology and reproduction 2* maternal behavior 25, and bone formation 26,
but not in hematopoiesis 22. The lack of such a phenotype in transgenic mice does not
rule out a function for PRL in the hematopoietic system, but it may imply an accessory
or redundant role.

Mice with disrupted PRL or PRL-R genes were severely impeded in mammary devel-
opment and fertility 223, These mice were not able to lactate due to a block in the
development of the mammary gland 2223, Females were sterile due to lack of embryonic
implantation in the uterine wall 23, Adult PRL knockout mice lacked terminal or lateral
lobulation of the mammary gland ductal system 22, and corroborating these observa-
tions, PRL-R knockout mice lacked alveoli 23, Transplants of mammary epithelia from
PRL-R null into the fat pads of wild type mice demonstrated that the PRL-R was critical
for lobuloalveolar development during pregnancy, and indirectly required for ductal
growth and side branching 2!. This process also requires the progesterone receptor
2127 Both PRL and progesterone are required for lobuloalveolar development during
pregnancy and both hormones are known to cooperate in the activation of Stat5 respon-
sive genes. PRL and progesterone signals have been reported to synergise on the
p-casein promoter 282, StatS deficient mice have phenotypic alterations in the mam-
mary gland and reproductive tissues 30-33 similar to the PRL and the PRL-R null mice.
Together this illustrates an integrated picture which emphasizes the central role of the
JAK/Stat pathway in PRL signaling, but one where PRL also functions in concert with
other hormones or growth factors to result in complete mammary organogenesis and
reproductive function.

Mice with targeted disruptions of other PRL signaling components are also avail-
able for study, including the receptor associated tyrosine kinase JAK2 3435, the Stat
molecules, (for review see ), coactivators 37.3% and target genes such as interferon
regulatory factor-1 (IRF-1) (for review see 3%). The comparison of the phenotypes ob-
served in these mice will help to construct a comprehensive picture of the in vivo
actions of PRL.
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MEDIATORS OF PRL RESPONSE — TRANSCRIPTION FACTORS

Although PRL influences many cellular actions, few transcription factors have
been identified as direct mediators of PRL action. Using cell culture systems and
transgenic mice techniques, it has been determined that the most important transcrip-
tion factors are the Stats. Others, however, might also be involved. In Nb2 cells the
transcription factor Spl (specificity protein 1) is newly synthesized and activated by
PRL %0, This may play a role in the induction of cyclin D3 4142, but the mechanisms of
upregulation and activation are not fully defined and are dependent upon protein syn-
thesis. The PRL-R also activates the mitogen activated protein kinase (MAPK) path-
way, but it does not play a role, for example, in the induction B-casein, a known PRL-
regulated gene *3. The Stats are directly activated by a PRL-dependent pathway.

SIGNAL TRANSDUCERS AND ACTIVATORS OF
TRANSCRIPTION (STAT)

There are 7 different mammalian genes encoding members of the Stat family (STATI,
STAT2, STAT3, STAT4, STATSA, STATSB, STAT6) (for review see #4:45). PRL can only
activate a subset of these proteins in cell culture, including Statl, Stat3, Stat5a and
Stat5b 46-50,

The Stat proteins share a com-
mon domain structure (Figure 19-1a),
representing distinct functional prop-
erties. The amino-terminal region is 4
important for protein-protein interac-
tions, especially tetramerization 31.52,
as well as nuclear translocation and
deactivation 3, The DNA binding
domains of Statl and Stat3b, a car-
boxyl-truncated variant of Stat3, have
beeHn recently analyzed by crystal-
lography 3455, Structural analysis in-
dicated that the specificity of bind- B
ing is determined by dimers of Stat
molecules, which might be influenced
by tetramerisation with a second Stat
dimer or by other DNA-binding pro-
teins recognising adjacent response
elements.

The Src-homology 2 (SH2) do-
main is a multi-functional domain in-
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tains the essential tyrosine residue  scription. N (amino), TA (transactivation domain),
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which must be phosphorylated by a JAK kinase and is required for Stat DNA binding
(Figure 19-1b) 59, and various serine residues which when phosphorylated may contrib-
ute towards full activation 0-62 or stable dimer formation 63. Serine phosphorylation
may have no effect upon the stability of DNA binding of Statl or Stat3 64, The carboxyl
terminus of Stat5 may also contain sequences responsible for proteasome-dependent
deactivation 5. The transactivation domain is located in the most carboxyl region of the
protein, and its deletion results in a molecule that acts as a dominant negative of tran-
scription. This region also makes protein-protein contacts.

Stats are activated by phosphorylation on their critical tyrosine residue by the
receptor-associated JAK after receptor/ligand interaction. The activated Stat molecules
dimerise via their SH2 domains, and are transported to the nucleus by an as of yet poorly
defined mechanism. Stats bind specifically to palindromic promoter elements in the
DNA, gamma interferon-activated sequences (GAS), TTCNNNGAA. The palindromic
sequence in the Stat6 recognition site is separated by four nucleotides (reviewed in
45.66.67)  Stats also bind to IFNa-stimulated sites where the consensus is
AGTTTCNNTTTCNC/T 8, Stats can bind to DNA as dimers or tetramers, and tet-
rameric Stat5 appears to be essential for the activation of certain genes 2,69,

STATI

Stat] is mainly responsive to IFNa (in conjunction with Stat2) 68.70.71 and IFNy (for
review see 3045.68). There are two splice variants of the same gene, Statla and Statlb.
Statla is the full length variant with 750 amino acids, and the naturally occurring splice
site variant, Statlb, lacks the last 38 amino acids and is unable to mediate the IFNy
response 72. Statl homodimers help mediate PRL stimulation of the IRF-1 gene in Nb2
cells 7376, Studies using Statl null mice have confirmed that Stat| plays a major role in
responding to IFN-dependent signals 77.78,

STAT3

Stat3 has been implicated in cell growth, suppression of apoptosis and cell mobility
(for review see ¢). While it has been shown to be activated by PRL 4748 it has not yet
been correlated to PRL-dependent gene transcription. Stat3 is a potential oncogene 79.
Itis essential for embryonic development #; it plays a role in the interleukin-6 mediated
growth arrest and differentiation of myeloid cells 8182, and plays an essential role in
mammary gland involution 3. Stat 3 34 can be alternatively spliced to yield three forms,
a long and two short forms #5.86, The long form and one of the short forms are
transactivating 3, and the other short form functions in a dominant negative fashion %,
For the most part, the role of these Stat3 isoforms in PRL signaling remains to be fully
elucidated.

STATS

Stat5a was originally identified as mammary gland factor (MGF), mediating PRL
signals in mammary epithelial cells, regulating the B-casein gene promoter #6.59 (for
review see 47). StatSa and Stat5b are the products of two separate genes 38 with 96%
amino acid sequence similarity. A truncated StatSa molecule designed to consist of only
the first 750 of a total of 794 amino acids acts as a dominant negative variant of the wild
type molecule in the induction of transcription 8%, even though it contains the essential
tyrosine residue (Y694) responsible for Stat5 activation. The truncated molecule is acti-
vated by cytokine-induced tyrosine phosphorylation and is translocated to the nucleus
where it is competent to bind DNA but is believed to inhibit transcription because it
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lacks a transactivation domain. It is also misregulated with regard to deactivation by
phosphatases. It has a much longer activated life span than the wild-type molecules 89,
This truncated protein is similar to variants found naturally 489091, The origin of these
short forms lies either in alternative splicing or proteolysis 92-94,

The transactivation domain also contains multiple sites of serine phosphorylation,
which have been shown to be regulated by PRL in the case of Stat5h and to be consti-
tutive for Stat5a ?5. The role of these phosphorylation events has yet to be determined.
Transgenic animal models have shown that both Stat5 genes to differing degrees are
critical for mediating effects of PRL in the mammary gland and ovary. They play different
biological roles in the immune system and differ in their responses to growth hormone
(for review see 39),

STATS TRANSGENIC MICE

Targeted gene disruptions of Stat5a 3233, Stat5b 3° and both Stat5a/5b 3! in mice
have confirmed that these molecules are the major transducers of PRL signals. The
phenotypes observed in these mice are quite similar to those found in mice in which the
PRL or the PRL-R genes have been inactivated and corroborate the important role for
PRL and the PRL-R in mammopoiesis and reproduction 2!-23,

Stat5 deficient mice demonstrated that StatSa is essential for the development of
the mammary gland development and lactogenesis. Although Stat5b has a similar pat-
tern of expression in the mammary gland 28, it is not able to fully compensate for the
absence of Stat5a 3233, Stat5a null mice suffer from an inability to lactate due to lack of
terminal differentiation of the mammary epithelial cells. Stat5b null mice have relatively
normal alveolar development 3!, but have reproductive abnormalities 303!, Female
Stat5a/5b null mice are infertile 3.

Analysis of milk protein expression shows a decrease in «-lactalbumin in both
Stat5a null and Stat5b null mice. Whey acidic protein (WAP) is severely reduced in
Stat5a null mice, while expression of WAP in Stat5b null mice is initially less than wild-
type it eventually increases due to relatively unimpaired development of the mammary
gland. The expression of B-casein is slightly reduced in mice lacking either Stat5a or
Stat5b 3!. Stat5a and StatSb play redundant roles in milk protein expression.

Stat5a and Stat5b are transcription factors that are not limited to PRL-signal media-
tion, Stat5a/5b null mice also had defects in their responses to interleukin-2 (Stat5a/5h
null) %, granulocyte-macrophage colony stimulating factor (GM-CSF) (Stat5a and
Stat5a/5b nulls) 3197 interleukin-3 (Stat5a/5b null) 3!, disrupted growth hormone re-
sponses 309899 and stimuli for natural killer cell activation (Stat5b null) 100,

TRANSCRIPTIONAL COACTIVATORS
CBP/P300

Coactivators are proteins that act by bridging sequence specific binding factors to
the transcription preinitiation complex. They are involved in modifying the chromatin by
histone acetylation to make the promoter more accessible. CBP (CREB (cAMP response
element binding protein) binding protein) and p300 and are two functionally homolo-
gous proteins that possess histone acetylase activity 91192 and positively interact
with adenovirus E1A 193, CREB 194-106, several other transcription factors (for review
107.108) and nuclear receptors, including the glucocorticoid receptor (GR) 109.110,



Chapter 19. Transcription Factors, Cofactors and Target Genes
Mediating Prolactin Signals

387

CBP/p300 also act as coactivators of PRL-activated Stat5a and Stat5b. The
amino-terminus of CBP/p300 requires the tyrosine-phosphorylated Stat transactivation
domain for coactivation ''!. Many Stats use CBP/p300 as a coactivator in response to
non-PRL signals, including Stat6 12, Stat2 113.114_ Stat | 115116 and Stat3 !4, The
interaction of Stats and CBP/p300 appears to be a consistent mechanism of transcrip-
tional activation regardless of the activating signal.

THE GLUCOCORTICOID RECEPTOR

The GR is an important partner for Stat5 transactivation on the B-casein promoter in
response to lactogenic signaling (Figure 19-2) 117120, DNA binding of the GR in this
synergistic transcriptional activation with
Stat5 seems not to be required '19.120, and
their interaction is detectable in vivo in
mammary epithelial cells 12!. The interac-
tion of Stat5 and the GR results in en-
hanced transcription of the B-casein pro-
moter, when compared to the effect of Stat5
alone. Stat5 activation has a negative in-
fluence on promoters carrying glucocorti-
coid response elements, such as the mouse
mammary tumor virus LTR 29119 [ncreases

in CBP/p300 levels were shown to posi-
tively influence GR action on glucocorti-
coid responsive as well as Stat5 respon-
sive gene promoters. StatS-mediated re-
pression of GR action, however, was not
mediated through limiting levels of CBP/
p300 ', The GR pathway cross talks with

Figure 19-2. The Glucocorticoid receptor and
Stat5 synergise on responsive promoters. The tran-
scription activity of StatS and GR is synergistic on
Stat5 responsive promoters. P300, a coactivator
with histone acetylase activity, interacts with Stats
and also GR. We propose a model where Stat5
recruits the GR to a promoter region and both
Stat5 and the GR, in turn, recruit p300. The local

concentration of p300 is increased and might be
the ultimate regulator of the quantitative level of
the response.

the PRL signaling pathway through the
direct interaction of two ligand activated
transcription factors providing the poten-
tial for a greater variety of response.

CBP/p300 interacts with the GR to inhibit AP-1 activity 199110, This is achieved by
competition for limiting amounts of CBP/p300 in the cells, and this effect is seen also
with Statl inhibition of AP signaling in response to IFNy !15. This mechanism is also
used in the StatS-induced inhibition of the Statl-induced IRF-1 promoter. It had been
demonstrated that Stat5 inhibited IRF-1 promoter activation by competing for a nuclear
factor 122, which was later identified as CBP/p300 123. Therefore, it seems that CBP/p300
can produce negative effects on transcription, not as a direct result of its activity, but
due to its limiting cellular levels.

TARGET GENES DIRECTLY REGULATED BY PROLACTIN

ENDOCRINOLOGY AND METABOLISMHEPATIC SODIUM-DEPENDENT
BILE ACID COTRANSPORTER GENE

The production and regulation of bile flow is an essential function of the liver, and
it had been shown that PRL upregulated hepatic bile salt transporter function during the
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post-partum period 124, Specifically, the sodium-dependent cotransport of taurocholate
was stimulated during a period which correlated with increases in levels of serum PRL
and Stat5a and Stat5b activation '25, The promoter region of the hepatic sodium-tauro-
cholate cotransporting polypeptide (ntcp) was analyzed, and it was found to contain
two GAS-like elements. Stat5 binds these elements in response to PRL and activation by
the long form of the PRL-R !25. In this manner PRL/Stat5 regulates bile flow in the liver.

PRL-R GENE REGULATION IN INSULIN-PRODUCING CELLS

The PRL-R has been shown to be upregulated in response to PRL, with different
splice-site variants produced from different initiation sites. In pancreatic cells, the PRL-R
is elevated during pregnancy and lactation 26 and an increase in mRNA for the long
form of the PRL-R, comprising sequences encoding exon 1A, was found to be due to
PRL-activated Stat5a and Stat5b 127, PRL was also found to increase the mRNA which
coded for the long form of the PRL-R which included exon 1C. This transcript was found
to be regulated independently of Stat activation '27. Splicing of the different exons is
believed to be tissue-specific. Positive feedback by PRL on the expression of its own
receptor would result in signal amplification.

IMMUNOREGULATION AND PROTECTION

INTERFERON REGULATORY FACTOR-1 — ACTIVATION BY STATI
AND CBP, REPRESSION BY STATSB

Interferon regulatory factor-1 (IRF-1) is a transcription factor with multiple roles in
various cells. It is believed to act as a tumor-suppressor gene, and plays roles in differ-
entiation, apoptosis, and proliferation (for review see 128). The disruption of its gene in
mice resulted in a lack of natural killer activity 2%, and its activity is critical for T and B
cell differentiation and macrophage function (for review see 128), IRF-1 was discovered
to be an immediate-early target gene of PRL 130-132 likely playing a role in PRL-induced
cell proliferation in Nb2 rat lymphoma cells. Even though several Stat proteins have
been found to be activated in Nb2 cells in response to PRL 8, it was discovered that
Statla was the major Stat factor responsible for the induction of the IRF-1 promoter 75.76,
Stat5a was found to be a minor component 73, and both of these Stats contributed to the
biphasic expression of this gene 7576, Reporter assays determined that while Stat]l was
responsible for the induction of the promoter, Stat5a and Stat5b inhibited this induction
in a manner independent of DNA binding, implying that Stat5 acted by competing for a
putative DNA-binding protein or a coactivator protein '22. This was confirmed and the
factor identified as CBP/p300 23,

IRF-1 is a multifunctional transcription factor which is also induced in nonpregnant
human endometrium in response to PRL during the secretory phase of the menstrual
cycle 133, likely by the activation of JAK2 and Statl and Stat5 '34. Although the target
genes of IRF-1 are unknown in this tissue, the temporal expression of IRF-1 points to a
role in the regulation of differentiation 33, This demonstrates that PRL can induce the
same gene via a Stat factor in two different tissues for two different purposes, i.e.
mitogenic and non-mitogenic functions.

Other growth related genes were also found to be induced by PRL in Nb2 cells as
the result of modulation of preexisting factors. These include ¢-myc, ornithine decar-
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boxylase, heat shock protein 70 homologue Nb29 and B-actin 135. Genes that may be
involved in the dependence of Nb2 cells upon PRL for growth were identified by differ-
ential display include elongation factor-2, a4-phosphoprotein and a Cdc5-like protein
13¢. Several other genes have been postulated to be regulated by PRL in Nb2 cells:
genes for fibroblast growth factor (FGF)-2, a novel FGF-responsive NonO/p54nrb-re-
lated mRNA 137, luteinizing hormone-releasing hormone (LHRH) and the LHRH-recep-
tor 138, T cell receptor-o. (TCRc) and TCRy 139, clone 15 which is similar to the nuclear
movement protein NUDC 140.141_ cyclin D2 142, cyclin D3 41, cyclin E, cdk2, cdks, E2F-1
143, and the apoptotic regulatory genes bcl-2, bax 4 and pim-1 145-147 have also been
shown to be responsive to PRL signaling in Nb2 cells. This indicates, as it does in other
cellular systems, that PRL potentially regulates many target genes with variable effects.

GROWTH AND DIFFERENTIATION
ADIPOCYTE DIFFERENTIATION

PRL may enhance adipogenic conversion in NIH-3T3 cells 48 In an in vitro system
it was discovered that PRL enhanced the mRNA expression of PPARy (peroxisome
proliferator-activated receptor y) and C/EBPB (CCAAT enhancer-binding protein), two
transcription factors playing central roles in adipocyte differentiation. PRL was directly
responsible for induction of aP2, an adipocyte-specific gene '8, It was determined that
the PRL-induced expression of aP2 was due in part by the activation of Stat5. A role for
Stat5 in adipogenic differentiation was also suggested by the phenotype of the Stat5a/5b
null mice, which had a significant decrease in the size of the mammary gland fat pad 3!.

C/EBPB, while not recognized as a target gene of PRL in mammary tissue, is devel-
opmentally regulated in the mammary gland !4°. C/EBPP has been recognized for many
functions where PRL is important, and is essential for ductal and lobuloalveolar devel-
opment in the mammary gland 5015, important for regulation of the B-casein gene
promoter '2 and plays an essential role in ovarian granulosa cell differentiation in
response to luteinizing hormone '33. With regard to adipocytes, disruption of C/EBPa,
-p or -5, or combinations of these factors, results in defects in adipogenesis and adipocyte
differentiation 154155, PPARYy is a ligand-activated nuclear hormone receptor which
plays an important role in adipocyte differentiation, recently confirmed by observations
in transgenic mice 56158 (for review see !59). The role for PRL in the differentiation of
mammalian adipocytes is not well defined, though its receptor is also upregulated dur-
ing adipocyte differentiation 160,

REPRODUCTION
PIGEON CROP SAC GENES

The crop sac in birds is a food storage organ found before the stomach, and is also
known to produce a substance termed crop milk to feed the young 61, [ts epithelium
proliferates and differentiates in response to PRL, and several genes in the pigeon crop
are known to be PRL regulated '62. Annexin Icp35, also known as lipocortin 1 and
calpactin 11, is regulated by PRL 13, Analysis of the promoter region identified GAS-like
elements which bound a Statl-like protein 194, The role of lipocortin I in humans is not
well defined, though it may play a role in reproduction 165
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Milk Protein Genes

The best-described PRL/Stat5 target genes in the mammary gland are P-casein
46,166, B-lactoglobulin 167, and WAP 168 (for review see #169), Induction of these genes
is maximal in the presence of lactogenic hormones, and does not depend upon PRL
alone. It appears that induction of these milk protein genes requires the long form of the
PRL-R, or the intermediate Nb2 form 170, The short form of the PRL-R inhibits activation
of the B-casein gene promoter 7!,

Various mechanisms of cross talk may also occur, as noted on the B-casein gene
promoter with the involvement of PRL-induced protein kinase C alpha 172, and the
possible role of Ras in Stat5-mediated B-casein expression in T cells 173, The involve-
ment of the MAPK pathway, while a factor in PRL signaling, is not apparent in the PRL/
Stat5 induction of the B-casein gene in mammary epithelial cells 43. There are reports of
extracellular signal-regulated kinase (ERK) interaction with Stat5a 7%, and a possible
PRL-independent modulation of B-casein by ERK2 in Chinese hamster ovary cells 175,
Expression of the B-casein gene can be regarded as the result of interplay between
different signal transduction pathways.

The milk protein gene promoters can also be regulated by a variety of factors
unrelated to Stats. Studies of the B-casein gene promoter illustrate this point. A complex
variety of factors regulate its expression and are shared across rodents, ruminents and
humans 176, There are also both positive !77 and negative regulatory factors !78-181
involved in the regulation of B-casein gene, for example Yin-Yang-1 (YY) and protein
tyrosine phosphatase 1D (PTPID), also known as SHP-2.

SHP-2 is a cytoplasmic protein tyrosine phosphatase that associates with the
PRL-R/JAK2 complex '77. It is tyrosine phosphorylated upon signaling by PRL and
plays an essential positive role in transcription of the B-casein promoter in Nb2 cells. It
appears to interact with JAK2 independently of PRL stimulation, and relies upon JAK2
kinase activity for its PRL-induced activation. Its substrate is unknown, though its
phosphatase activity and SH2 domains are required for B-casein promoter activity 177,

There are DNA-binding factors contributing to negative regulation on the p-casein
promoter. The nuclear factor YY1 is a member of the GLI-Krueppel family of zinc-finger
containing proteins, and is ubiquitously expressed. It has been suggested that YY1
interacts with either coactivators (histone acetyltransferases) or repressors (histone
deacetylases) to either activate or repress transcription 32, YY1 interacts with an uni-
dentified DNA-binding protein to repress the B-casein promoter in the mammary epithe-
lial cell line HC11. While YY1 DNA-binding itself is not regulated by hormones, the
presence of Stat5a was able to decrease YY1 binding to the DNA and relieve repression
179.181 By decreasing YY1 binding to a nearby site on the DNA, Stat5a regulates tran-
scriptional control of the P-casein promoter by a mechanism independent of its own
transactivation. In this manner it appears that the B-casein promoter is regulated by a
relief of repression that is mediated by Stat5.

Milk protein gene promoters had initially been analyzed in cultured cell systems to
identify the presence and activity of PRL responsive elements and Stat binding sites, to
show that they are crucial for the observed gene regulation. The use of transgenic mice
has extended these observations to in vivo situations. What is also clear from transgenic
mouse models is that milk protein gene regulation is not the only essential function of
PRL in the mammary gland, and that PRL plays a significant role in the maturation and
differentiation of the ductal and lobuloalveolar system .
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Currently there is a lack of understanding as to which PRL regulated genes are
responsible for the mammary gland organogenesis that is disrupted in PRL-, PRL-R- and
Stat5-knock-out mice. One candidate may be the cyclin DI gene. Its disruption resulted
in developmental defects in the mammary gland 83 that resembled the ones observed in
PRL signaling deficient mice. Cyclin D1 has been identified as a Stat5 target gene in
hematopoietic cells '8 and was shown to be responsive to PRL in a human breast
cancer cell line T-47D 85, One can speculate that a disrupted PRL/JAK2/Stat5 pathway
results in the failure to properly induce cyclin DI in the mouse mammary gland.

GENES OF THE OVARY

The PRL-JAK/Stat pathway also plays a significant role in the ovaries, though
current data present a controversial view of many of PRL’s functions there. Activated
Stat5 has been detected in the ovaries in response to PRL 36, and there appears to be a
preference for the use of StatSb in the corpus luteum '$7 and for StatSa in the mammary
gland. The phenotypes of the Stat5 knockout mice indicated that Stat5 plays a signifi-
cant role in reproduction. Stat5b null mice required exogenous PRL to maintain preg-
nancy, presumably due to poor corpus luteum function 30 and Stat5a/b null mice seemed
to lack corpora lutea 3!. These phenotypes corroborate the idea that StatS activation is
essential for ovarian cell function.

While Stat5b null mice experience ovary-associated reproductive defects, only a
loss of both Stat5a and Stat5b lead to complete infertility due to defects in ovarian
function. These defects were primarily a result of loss of the corpus luteum and
misregulation of ovarian genes such as 20a-hydroxysteroid dehydrogenase (20HSD)
and p27 3. p27, a negative regulator of G1 cyclin-dependent kinases, is important for
ovarian function, possibly for the granulosa to luteal cell differentiation !88-190, [t was
absent in the corpus luteum of Stat5a/5b null mice. PRL negatively regulates the gene
encoding 20atHSD 191, Its protein normally functions in the metabolism of progesterone
to an inactive metabolite, and negative regulation of this gene would result in the
metabolism of progesterone which is required for maintenance of pregnancy. Expres-
sion of 20cHSD was increased in the corpus luteum of Stat5a/5b null mice in comparison
to wild-type mice. It would be expected to result in a shift to the inactive metabolite of
progesterone. Taken together this indicates that PRL regulates ovarian differentiation
and hormone biosynthesis by the regulation of different ovarian genes.

While it has been demonstrated that PRL is required for progesterone biosynthesis
in the corpus luteum, which is important for luteotrophism and the maintenance of
pregnancy, there is some evidence that PRL may also regulate luteolysis. This is accom-
plished through the down regulation of other enzymes involved in ovarian steroidogen-
esis. In the rat ovary Stat5 was shown to down regulate the type II 3b-hydroxysteroid
dehydrogenase/deltaS-delta4 isomerase (3B-HSD) gene 192193 which codes for an en-
zyme involved in the final enzymatic step in progesterone biosynthesis. In contrast to
this data, reporter assays demonstrated that PRL mediated the induction of the human
promoter of 3-HSD, also through the activation of Stat5 ', An interesting aspect of
the studies of PRL regulation of the corpus luteum is the demonstration that Stat5 can
play two apparently opposing roles in progesterone biosynthesis, which is a major role
of the corpus luteum. In the rat, PRL/Stat5S down-regulates expression of 3p-HSD to
produce a luteolytic effect, and in the human up-regulates the same gene to result in a
luteotrophic action of PRL. These opposing results may be a reflection of the different
roles of the corpus luteum in these two mammals, or possibly differences in experimental design.
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Stat5 may in fact play a much wider role in the ovaries. Stat$ is preferentially acti-
vated in differentiating granulosa/luteal cells of the rat ovary 87, which corresponds to
the time of a2-macroglobulin (¢2M) expression 187195197 g2M is a protease inhibitor
with roles in cellular defense and is a regulator of cytokine activity, (for review see 198).
Stat5b and to some extent Stat5a, appears to play a major role in the activation of the
2M promoter, by binding the interleukin-6 response element 187197 The interleukin-6
response element carries two GAS-like sequences which are capable of binding both
Stat3 and Stat5. Though Stat3 was present and active in ovarian tissue '87.195 it was not
responsive to PRL induction 187.19, At the time when a2M was expressed in the ovary
187, there was a high short-/long- PRL-R isoform expression ratio. This may indicate that
the short form of the receptor does not play an inhibitory role with StatSb in luteal cells
as it does with Stat5a and the milk protein genes in myoepithelial cells 171.199, The role of
a2M in the ovary is not well defined.

CONCLUSION

PRL can produce a variety of tissue-specific functional effects that depend in part
upon gene regulation and protein expression. Specificity of the genetic response is
generated at multiple levels including that of the source of PRL production, PRL-R
isoform expression, the choice of the signaling pathway and finally the distinct tran-
scription complex that is built up on sequence-specific promoters. Members of the Stat
family are the most well-defined PRL-signal transducing factors thus far identified that
act as a result of direct activation and are not dependent upon protein synthesis. Stat
members are generally thought to regulate promoters in a positive manner, but it has
also been shown that they can negatively regulate genes. The induction of gene pro-
moters may rely upon coactivators such as CBP/p300, or other transcription factors for
cross talk such as GR. It is possible that Stat negatively regulates promoters (such as
IRF-1 or 20aHSD) through interaction with a corepressor complex (for review see 200),

It also is important to recognize the synergistic actions of PRL with other factors
such as estrogen, growth hormone, glucocorticoids, insulin or progesterone, which
cooperate to achieve mitogenic or differentiative endpoints. All of these factors contrib-
ute towards the pleiotropic effects of PRL.

The family of hormones which was initially comprised of PRL, growth hormone and
placental lactogens is growing. PRL-related peptides are being described 20!, which
possibly are responsible for some of the actions previously attributed to PRL. These
peptides signal through a receptor independent of the PRL-R, and may or may not utilize
separate signaling pathways to achieve their biological purpose through defined target
genes.

While the role of PRL in the induction and maintenance of mammary tumors has
been well studied in model systems, its role in human breast cancer has been less clear.
Overexpression of the PRL-R alone was sufficient for the induction of mammary tumors
in mice 202, PRL has a proliferative effect on breast cancer cells, and also is known to
control angiogenesis, which makes it a potential therapeutic target (for review see 203),
Breast cancer cell lines and human breast tumors, in addition to normal mammary tissue,
produce PRL which may regulate growth in an autocrine or paracrine fashion. It is also
possible that PRL plays a cooperative role with other hormones required for
mammogenesis, including that of progesterone for the progression of breast cancer 204,

Progesterone is known to increase the level of PRL-R in the mammary gland 205, and
acts synergistically with PRL to activate gene targets. Progesterone, together with PRL,
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induces cell growth and its possible to see a pathological role if these actions were to
become misregulated. Cross-talk with Stats and MAPK pathways and the dependence
of breast cell lines on progesterone to respond to epidermal growth factor and PRL, has
led to the suggestion that progesterone may sensitize breast cells to the subsequent
and possibly synergistic actions of growth factors or cytokines. This may prime breast
cells with respect to the progression of breast cancer 204, The role of Stats in hematopoi-
etic malignancy implies that these mediators of PRL could play a role in the loss of
growth control or cellular transformation (for review see 206),

A role of PRL in balancing the ratio of survival versus apoptotic mediators has been
suggested for hematopoietic cells. PRL might have a dual role in the cell, to promote
survival as well as to promote apoptosis. PRL promotes cell survival by inducing factors
involved in growth and differentiation and possibly even anti-apoptotic factors such as
Bel-2 144.147.207 and pim-1 15-147_[ts role in the induction of apoptosis may depend on its
ability to affect the expression of pro-apoptotic factors such as bax '*4, Bcl-X is a potent
anti-apoptotic regulator. It is possible that cells which are terminally differentiated and
highly dependent upon Stat-mediated Bcl-X transcription die upon hormone withdrawal
for lack of apoptosis protection. The delicate balance of factors which promote survival
versus apoptosis plays a crucial role in determining cell viability. Misregulation of the
balance of PRL-regulated signal transduction pathways may contribute to the progres-
sion of cancer.
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