Wojciech Glinkowski ^{1,2,3} Maciej Kornacki ⁴

Remote analysis of digitized x-ray image for bone injuries and other pathology

> ¹Chair and Departament of Orthopedics and Traumatology of Locomotor System, Medical University, Warsaw
> ²Center of Excelence ,,TeleOrto"
> ³ Department of Anatomy, Center of Biostructure Research, Medical University, Warsaw
> ⁴SAS Institute European Headquarters, Heidelberg, Germany

The purpose of the study was to evaluate the usfulness of new method (RODIA System) to monitor mineralization of the fracture gap on digitalized x-ray, osteolysis or loosening around orthopedic implants or other bone pathology.

 Collection of radiographs of various orthopedic pathologies was digitized for further analysis.

 Image Evaluation Module and Fracture Healing Monitor Modules of Relative Optical Density Image Analysis (RODIA) System were utilized for images evaluation.

Quantitative analysis of images

Problem

Methods allowing quantitative evaluation are required for Evidence Based Medicine and statistical evaluation of collected data for specialties largely utilizing images

(i.e. orthopedics and orthopedic trauma)

Requirements

Valuable method should:

- predict end point of fracture healing
- point out suitable time for hardware removal
- determine affeted extremity loading possibilities
- predict early healing disturbancies
- allow to evaluate various factors influence on fracture healing
- allow statistical analysis
- allow to create models of fracture healing
- collect clinical and scientific data

Available quantitative methods

- •Clinical scaling surgeons hands
- •Biomechanical (strain test –applicable for particular locations)
- •Radiologic (expert's evaluation) scaling (pts)
- •Acustic & vibratonal (i.e. Ultrasonometry)
- •DEXA scanning no software available
- •Relative Optical Digital Image Analysis with or without digital radiography (RODIA, RODIA for DXA scan)
- •Computed Tomography including quantitative evaluation (CT, QCT, pQCT)
- •Magnetic resonance imaging (possible for no hardware)

Quantitative fracture healing assessment

Densitometric evaluation of X-ray

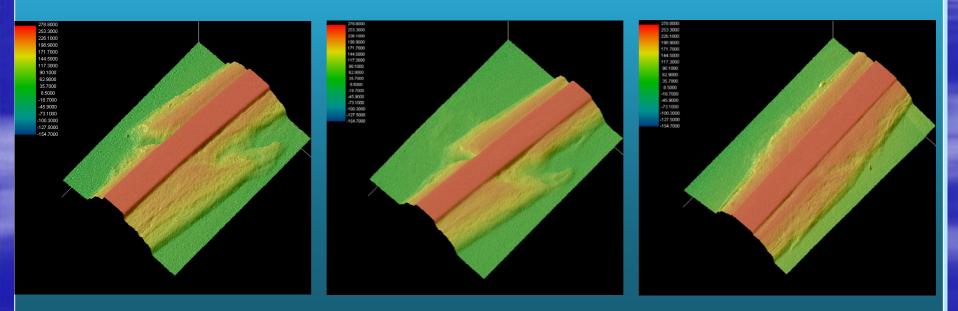
Laser densitometry – early study

laser densitometer

UltroScan XL Pharmacia LKB

Pseudo 3 D visualisation plot

ImagePro+ 4.1 (Media Cybernetics) function "Surface Plot".


Female M.L. 28

- Fracture 09. 2000
- IM nailing elsewhere
- No healing till 2002
- One month after BMP -7 implantation
- 8 weeks after implantation

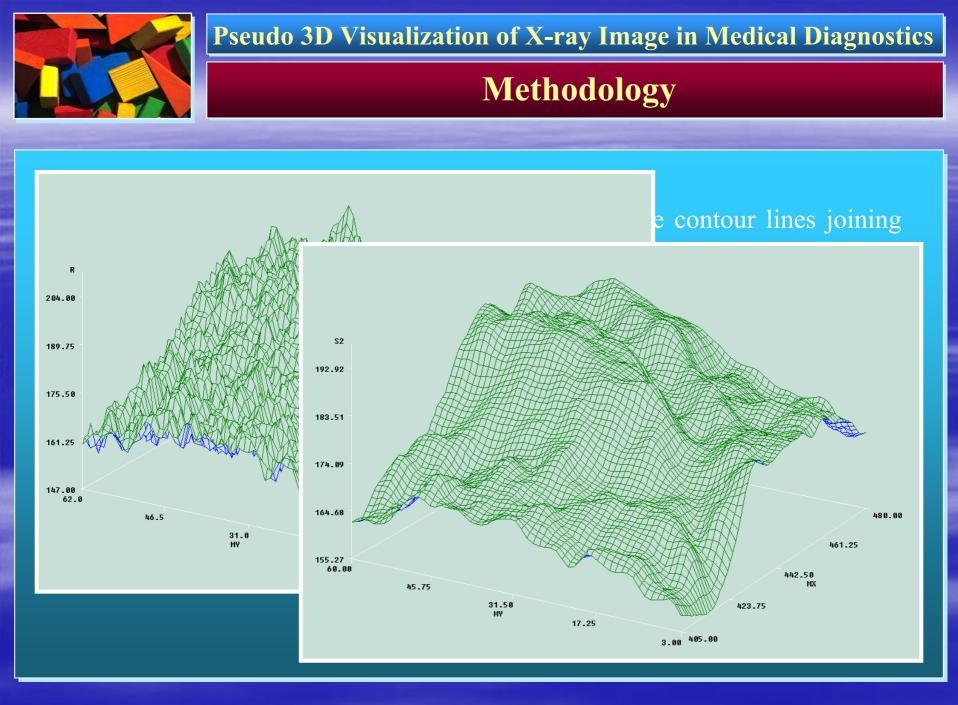
Female M.L. 28

Pseudo 3D computer enhanced healing progress evaluation (Image Pro+)

Introduction

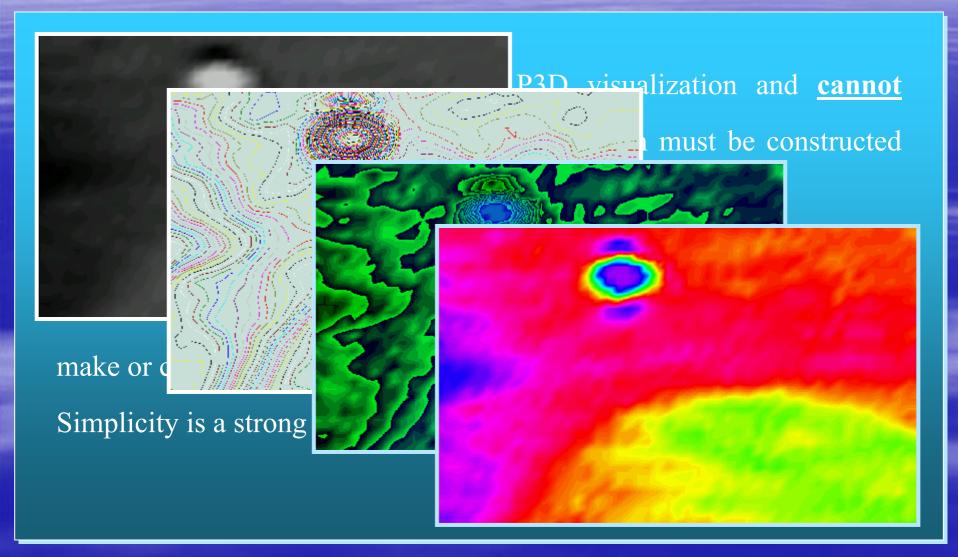
In spite of technological progress in medical imaging classical

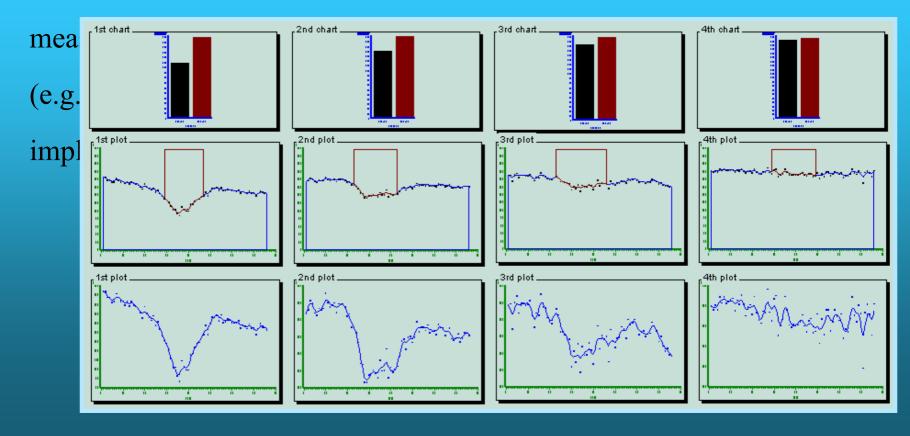
X-ray is still a prima Differentiation of pixel be recognized as a su molecules. Therefore cross-sections of invest some information abo recover this informatio be defined as pseudo 3


Pseudo 3D Visualization of X-ray Image in Medical Diagnostics

Methodology

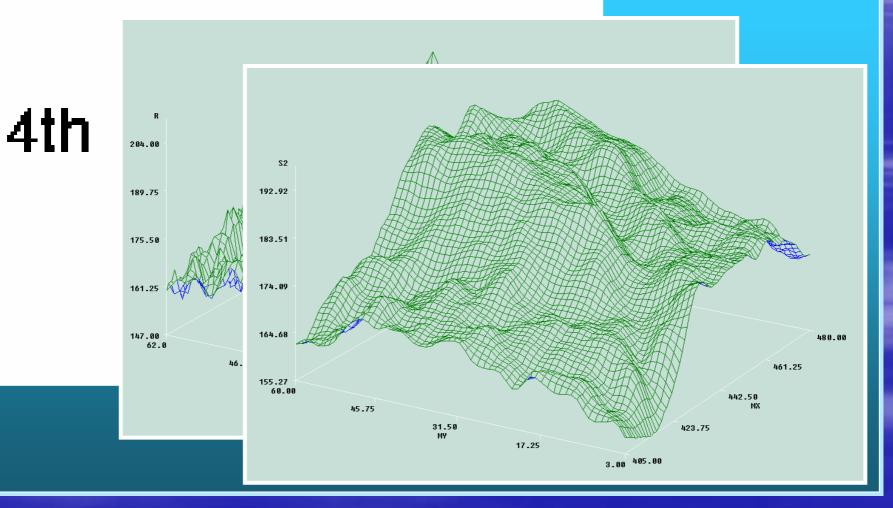
	Rodia - version B.1											
The simplest	r VIEWTABLE: work.at											- 🗆 ×
		MY	X430	X431	X432	X433	X434	X435	X436	X437	X438	X439 🔺
	1	0	166	169	166	170	168	170	169	169	176	
	2	1	167	166	167	169	169	173	170	170	174	
For image digitized u	3	2	169	166	171	168	170	172	171	172	173	
TOT IMAGE UIGHIZEU U	4	3	172	169	170	167	169	168	170	172	172	
e e	<u> </u>	4	172	173	169	167	172	167	170	172	172	
	6	5	170	172	172	169	171	168	170	172	175	
	7	6	168	168	172	170	170	169	171	170	175	
The matrix of optical	8	7	169	169	167	171	170	175	172	170	169	
The matrix of option	-	8	171	172	170	176	174	176	175	173	169	
	10	9	169	172	173	176	175	172	176	173	175	
	11	10	170	173	174	172	176	176	179	179	181	
by integers stored into	12	11	173	171	176	173	176	179	181	181	181	
	13	12	174	170	176	177	178	178	182	177	182	
	14	13	174	176	172	176	175	179	179	179	182	
	15	14	172	174	173	173	175	176	173	178	178	178
	16	15	171	169	176	173	176	173	174	173	175	
Then the matrix con	17	16	171	170	172	176	177	175	180	174	177	179
	18	17	171	173	172	174	177	177	179	176	180	
	19	18	171	172	176	170	177	177	178	180	184	182
	20	19	172	172	173	171	178	176	181	184	186	186
of nivola The ODV	21	20	173	175	174	177	177	177	180	178	183	182
of pixels. The ODV	22	21	179	177	181	181	178	180	176	176	177	178
	23	22	180	176	179	179	179	179	176	178	174	178
	24	23	175	174	176	177	181	180	182	181	183	184
	25	24	176	177	177	177	180	181	185	183	189	186
Two other dimension	26	25	177	178	179	176	181	183	184	184	184	182
	27	26	175	178	177	176	178	178	178	179	181	179
	28	27	177	177	177	176	174	176	175	180	181	183
	29	28	177	174	176	174	175	176	179	181	181	184
	30	29	173	170	176	175	178	178	180	178	181	182
	31	30	174	173	178	177	182	180	182	180	182	182
	32	31	172	174	174	177	182	180	182	180	183	181
	33	32	172	174	175	177	177	180	177	176	181	178
	34	33	173	175	179	179	175	177	175	175	178	
	35	24	170	178	175	177	170	176	170	170	100	107
	_											


NOTE: Table has been opened in browse mode.


Pseudo 3D Visualization of X-ray Image in Medical Diagnostics

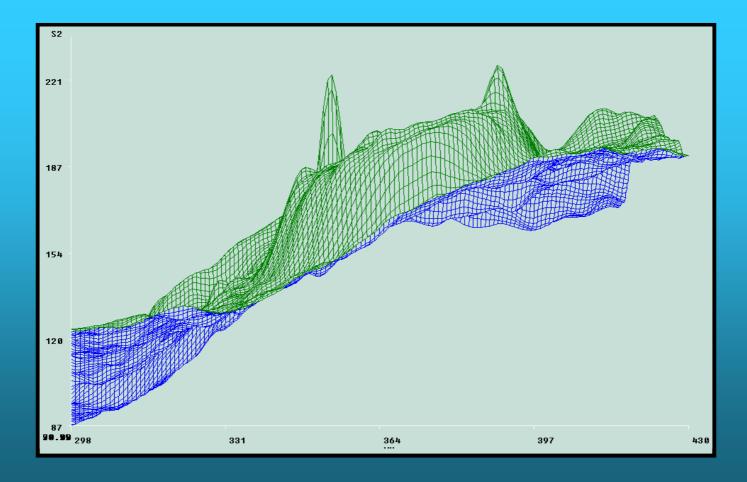
Methodology

Optical Density Matrix is good starting point for quantitative

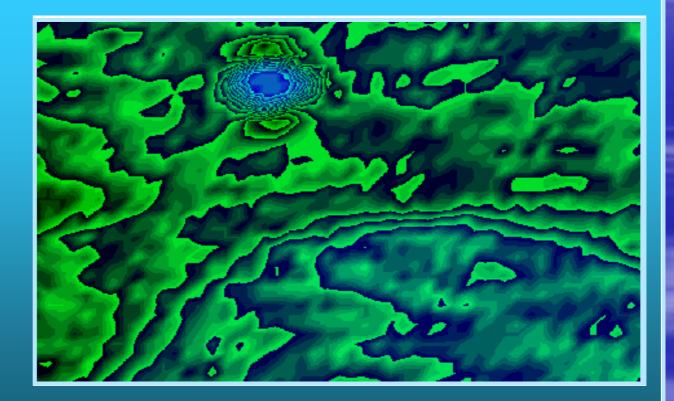

Methods incorporated to **<u>RODIA System</u>**.

- Data conversion: image -> matrix 2D
- Quantitative monitoring of fracture healing
- Plot of structure of isodensity lines
- Enlargement, GS to HLS exchange
- •P3D interpretation
- •P3D noise filtration
- •Three dimensional viewing of P3D graphics
- •Pattern identification
- •Calibrtion, linear and angular measurements

•Telemedicine friendly



P3D noise filtration for searching fracture line


Graphics rotation P3D

Pattern identification

- 1. GS enlargement
- 2. Stratal identification
- 3. HLS conversion
- 4. Pattern enhanced exposure of ,,quantum" ODV changes

RODIA - Methods enhancing diagnostic imaging

Calibration and linear measure

Calibration:

- To allow comparison of consecutive X-rays despite of scale or 3D rotation differences

Linear measurements:

- Direct accordingly to known object seen on image (size phantom)
- Indirect (%)
- Area
- Avg ODV of various ROI's
- Angular

Approach to data aquired from image - <u>RODIA System</u>®.

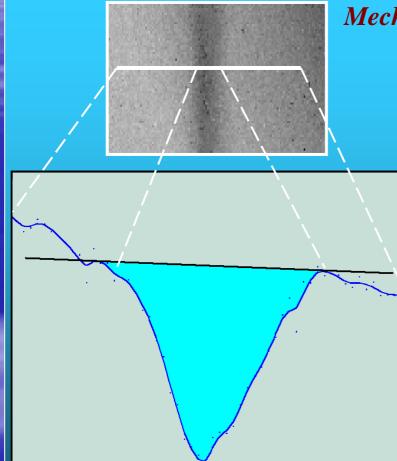
Nonrelative (direct):

- Standardization necassary
- Phantom calibration
- High quality requirements
- = calibrated results, values (g/cm² or g/cm³)

Relative:

- Entire image calibration
- Extremely lower quality requirements
- Minimal preparation
 - = calibrated results, values compartatively expressed (%), sufficient for monitoring

FHM module of <u>RODIA System</u>®.



Data aquisition
Choice of ROI
Excision
Enlargement

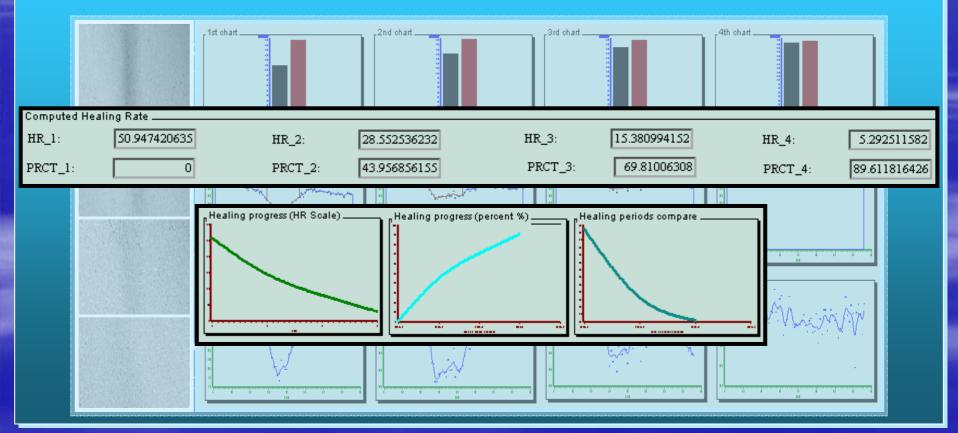
ROI Fragment of X-ray Ready for further analysis

FHM module of **RODIA System**®

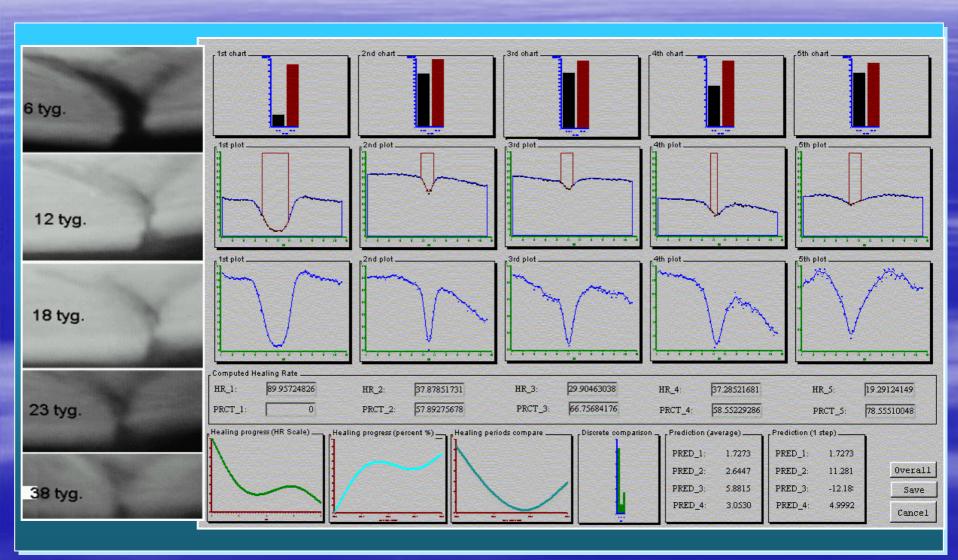
Mechanism of fracture gap ODV measurement

Steps of analysis:

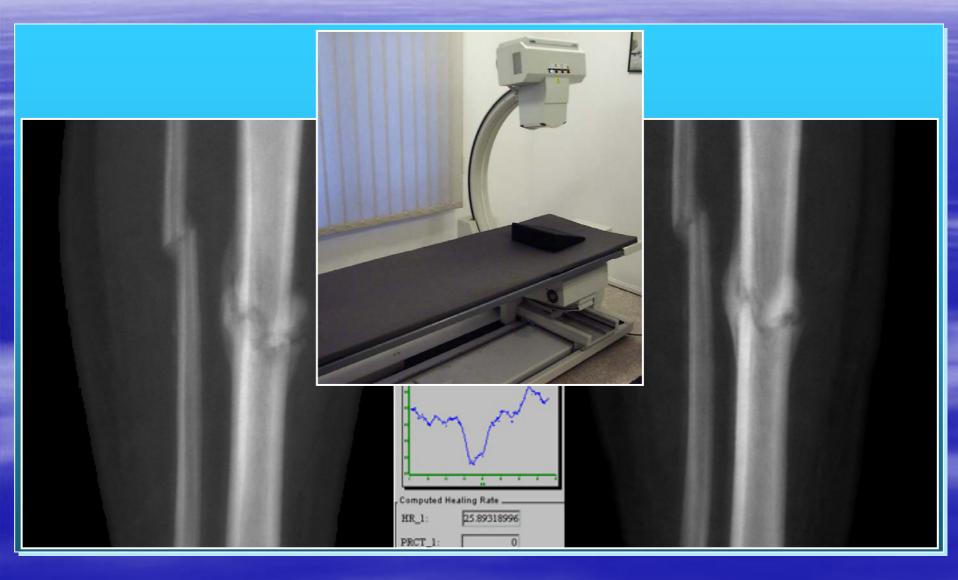
- 1. Choice of gap across ROI
- 2. Pseudo cut along *h value*
- 3. Pointing gap's edges
- 4. Calculation of gap's volume


5. Repetition of 1-4 along gap on ROI

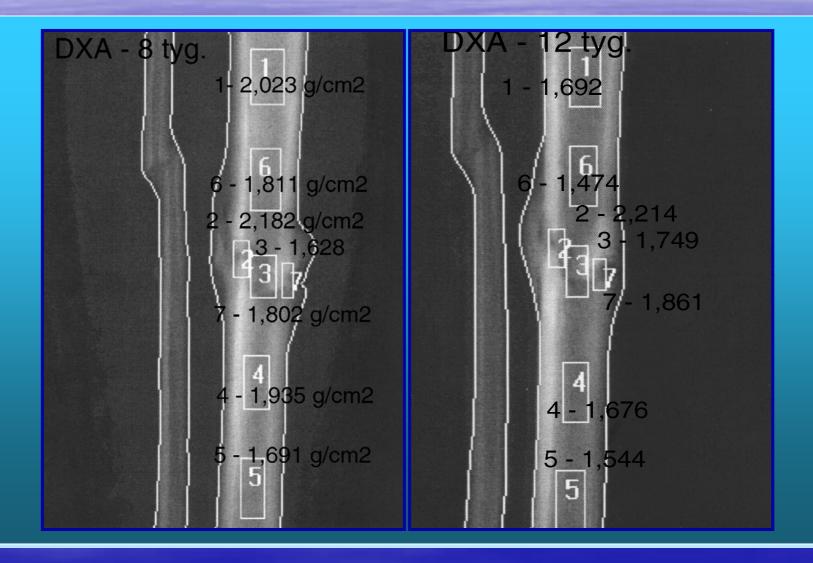
gap's volume calculated as integral


FHM module of <u>RODIA System</u>®

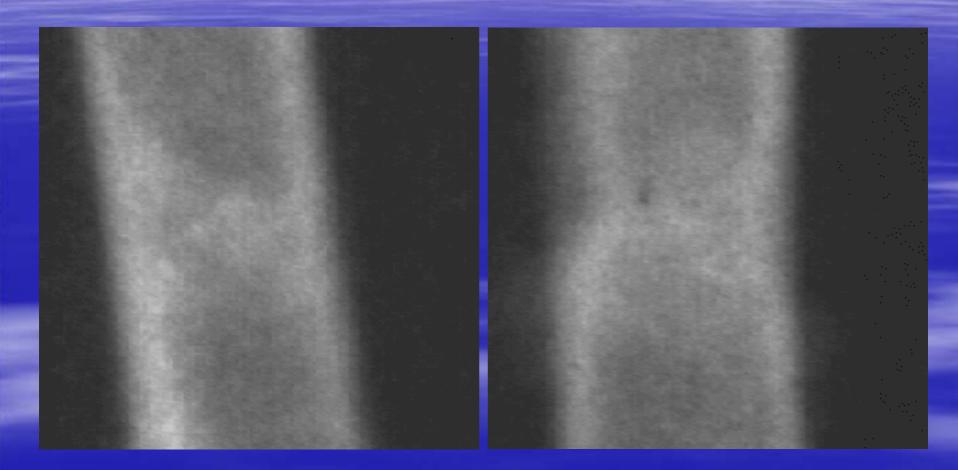
Monitoring of tibial fracture based on x-ray follow –up (4 weeks periods)



FHM module of <u>RODIA System</u>®

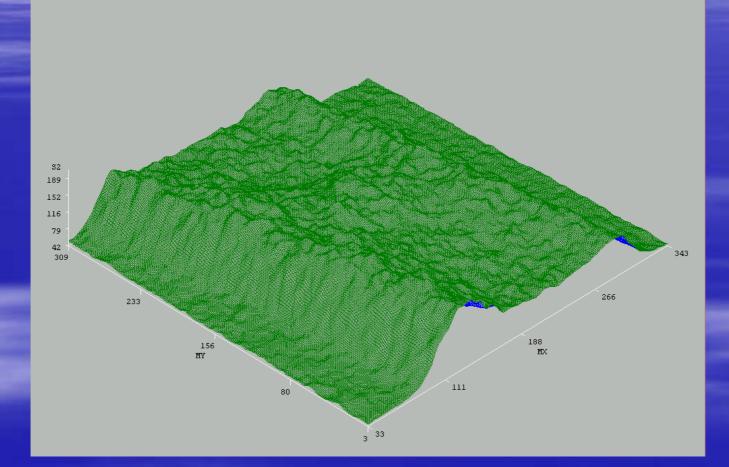


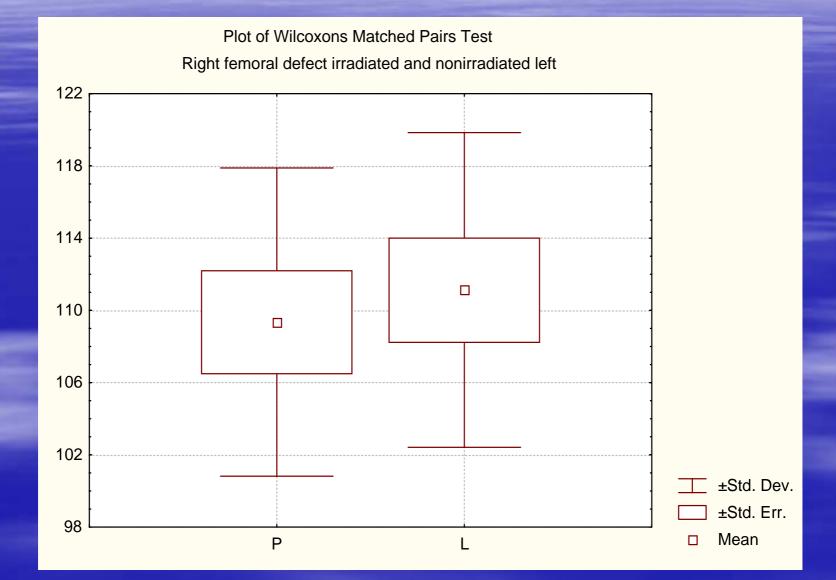
FHM module of **RODIA System®** - Applied to DXA scan image



DXA scan image custom analysis for fracture case

RODIA System Experimental research application


Digitized classic X-ray images of rats femora


Right - Laser irradiated

Left control

RODIA System - Pseudo 3-D evaluation

Measured optical density values available for statistical analysis

Search for subtle fracture line, assessment of the bone osteolysis around orthopedic implants, and progress of bone tumour retrospective avaluation were performed with RODIA System. Developed Relative Optical Density Image Analysis System (RODIA System) allows remote analyzing and measure digitized X-ray image to reliably enhance of image evaluation.

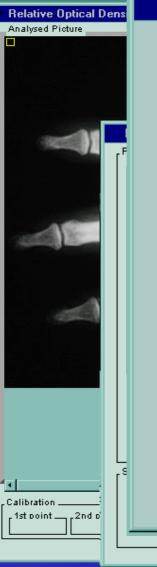
Reference

 [1] M. Kornacki, W. Glinkowski, Relative Optical Density Image Analysis (RODIA). Clinical application — preliminary report of FHM and IEE subsystems usage, Med. Sci. Monit. 4 (Suppl. 2) (1998) 136–139.

3 months after surgery

12 months after surgery

Periprosthetic Optical image density evaluation accordingly to zones described by Gruen (Relative measure and monitoring) Medial proximal femur resorption noted



RODIA System[®]

About RODIA System

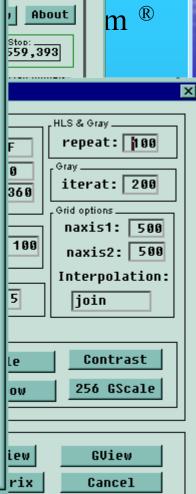
It 1 onl De⁻

RODIA System version Beta (1) Copyright Malsh Software 1997-1998

Programming: Maciek Kornacki Consultations: Marek Karwański, Adam Bartos, Wojciech Glinkowski

with cooperation of SAS Institute POLAND, Praski Hospital and Warsaw University Faculty of Biology

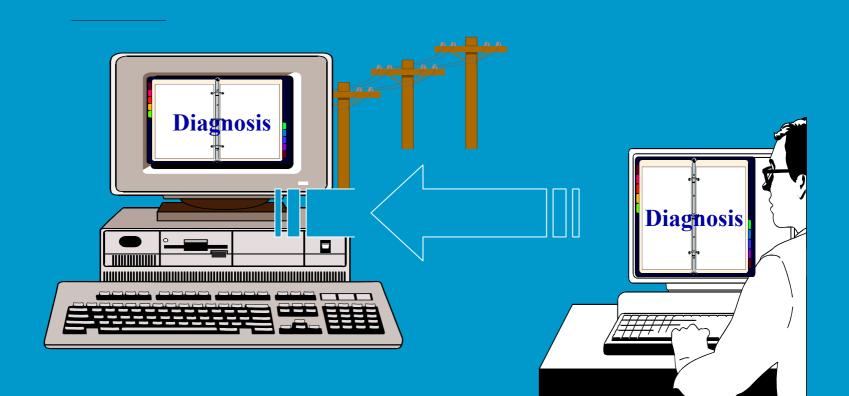
This program cannot be used for any commercial purposes and cannot be duplicated.


RODIA System

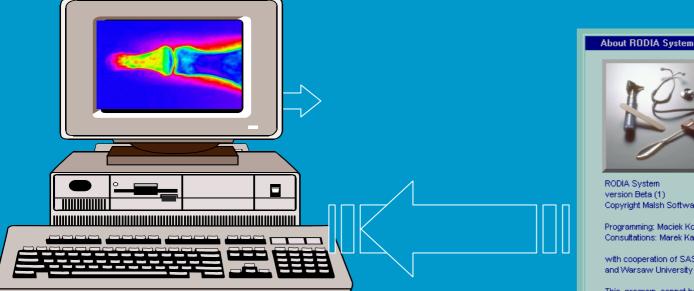
for Medical Imaging Purposes

Fracture Healing Monitor Image Enhancer Image Enlarger Noice Reductor OD Meter P3D Msualiser Region Calibrator

JA.


х

_ 🗆 ×



Classic teleconsultation

Future Prospect - TeleRODIA

For physician **TeleRODIA** may allow to operate from his own PC,

(Lower expenses of High Level PC)

RODIA System

X

IAI.

for Medical Imaging Purposes

Fracture Healing Monitor Image Enhancer Image Enlarger Noice Reductor OD Meter P3D Msualiser Region Calibrator

RODIA System version Beta (1) Copyright Malsh Software 1997-1998

Programming: Maciek Kornacki Consultations: Marek Karwański, Adam Bartos, Wojciech Glinkowski

with cooperation of SAS Institute POLAND, Praski Hospital and Warsaw University Faculty of Biology

This program cannot be used for any commercial purposes and cannot be duplicated.

OK

RODIA System ® - spectrum of applications

Orthopedics:

- fracture healing monitoring
- bone remodeling monitoring
- detection of "hair line" fractures
- **Orthopedic oncology:**
 - early detection of bone tumours
 - tumor size measurements
 - image homogenity evaluation
 - monitoring of tumor image changes in time
 - •Radiology:

• evaluation enhancement, image enlargement, etc. **Telemedicine**

• remote diagnosing and monitoring

Conclusions

Development of modern analytic tools may lead to improvement of further rationalization of medical treatment i.e. orthopedics.

Developed methods may enhance global and individual interpretation of results their monitoring and more detailed searching for factors influencing on outcomes.

Development of analytic tools may affect :

- prognosis, early prediction of disturbancies, effectivness of treatment
- scientific verification of results as seen on images
- statistical analysis and modeling
- documentation

Selected references

1. Glinkowski W., Jędral T., Kornacki M. i et al. Metoda badania ultradźwiękowego tkanki kostnej zbitej kości długich w zastosowaniu do parametrycznej oceny zrostu kostnego we wstępnych badaniach klinicznych Medycyna Sportowa 1997, 13; 11, 23-26 2. Cook J.E., Cunningham J.L. The assessment of fracture healing using dual X-ray absorptiometry: A feasibility study using phantoms. Phys Med. Biol 1995, 40; 119-136 3. Eyres K.S., Kannis J.A. Bone loss after tibial fracture evaluated by dual energy X-ray absorptiometry J Bone Joint Surg 1995, 77B; 473-478 4. Kornacki M., Glinkowski W. Możliwości rozszerzenia klasycznej radiologii o cyfrowe metody analizy obrazu na przykładzie zastosowań w ortopedii i traumatologii Acta Bio-Opt.Inform.Med. 1997, 3; 2-4, 155-159 5. K. Chen and L. Hollender **Digitizing of radiographs with a flatbed scanner** Journal of Dentistry 1995, Vol.23, No 4, pp. 205-208 6. Brugger U, Pasquili L. Rylander H i et al. Computer -assisted densitometric analysis in periodontal radiography. A methodological study J Clin Periodontol 1988, 15; 27-37 7. Kornacki M., Glinkowski W., Lammel P. i et al. Propozycja systemu ilościowej oceny utraty jakości kompresowanych danych medycznych Acta Bio-Opt.Inform.Med. 1997, 3,1; 51-54 8. Kornacki M., Glinkowski W.

RODIA system narzędzie wspomagające nowoczesną diagnostykę radiologiczną *Acta Bio-Opt.Inform.Med. 1997, 3; 2-4, 161-164*

Thank you for your kind attention