Metamouse on trial: confessions of a wanton turtle

David L. Maulsby and lan H. Witten

Department of Computer Science
University of Calgary
Canada T2N 1N4

email: maulsby@cpsc.ucalgary.ca, ian@cpsc.ucalgary.ca

Abstract

We conducted a usability study of Metamouse, a demonstra-
tional interface to a graphics editor that infers complex con-
straints in a procedural paradigm using graphical construc-
tion. Aspects of its inference mechanism and metaphor were
tested by having a variety of users perform standard tasks
with and without its assistance. We found that people learn
to use static rather than dynamic constructions, and the sys-
tem fails to learn some task decompositions. In particular,
its rules for inferring iteration over a set of objects are both
inadequate and inadequately disclosed by the metaphor. To
address the problem, we propose an explicit representation
of sets and generalization over multiple examples.

Keywords: demonstrational interfaces, user testing

and we were particularly keen to expose mismatches
between user’s expectations of what Metamouse should be
able to learn and what it could actually do. We were not
disappointed!—the study revealed a host of shortcomings
and provided a wealth of information that will be used in the
design of future versions.

1. Introduction

Metamouse is a demonstrational interface to a simple draw-
ing program [11,13]. The user specifies a procedure by per-
forming an example execution trace, manipulating graphics
primitives as both data and tools to express constraints. The
system generalizes the user’s action sequence, identifying
key features of individual steps and disregarding coincidental
events. It creates a program with variables, loops and
branches, which it uses to predict upcoming actions,
thereby reducing the tedium of repetitive and precise graphi-
cal editing. It uses default reasoning about graphical con-
straints to make initial generalizations, and enables the user
to correct these either by rejecting predictions or by editing
iconic tacks which it displays after each action.

This paper reports a user study which was designed to reveal
shortcomings in the Metamouse system and provide infor-
mation about the expectations of typical users that could be
used to improve the design of future programming-by-
example systems. One of the challenges of user interfaces
that employ inference is to equip users with a suitable
metaphor on which they can base their model of the system,

2. Metamouse: PBE in a graphical domain

2.1. Metamouse’s computational model

A demonstrational interface can be characterized by the
model of end-user computation it represents. Most research
has focussed on procedural constructs {1,6,7,8,9,10,16,17,
21], although some researchers have adopted declarative
approaches [4,17,18,19]. Metamouse was intended to bridge
the gap by representing simple constraints declaratively
(touches) and more complex ones procedurally (graphical
constructions). Sets or categories of objects defined by us-
age are also constructed procedurally, by evaluating selector
functions at each step of an iteration. These functions dis-
tinguish pattern matching from object re-use, enabling
Metamouse to learn multi-stage edits that both break and re-
store constraints among objects. In contrast, Noddy (1] and
EAGER [6] select only by pattern matching. Peridot [17] and
ETAR (8] iterate over user-declared sets. In the user trials we
wanted to find out whether people could proceduralize con-
straints, and whether our selector functions were adequate to
model object usage. A subtle point here is that selector
functions influence the way a procedure can be structured,
by limiting the formation of loops.

2.2, Metamouse’s metaphor

No interface that uses inference can be reliable unless the
user understands its bias—that is, the range of alternatives it
considers—well enough to predict its responses [15]. When
the bias is simple or nicely fits user expectations as guided
by a metaphor, experience of the system’s responses reveal
it soon enough. The effectiveness of metaphor was a crucial
issue in our user study.

Metamouse has a rather elaborate metaphor because its bias
excludes so much of what users might expect from a draw-
ing assistant. These limitations are explained in a one-page

Maulsby and Witten

informal description. Aspects of the metaphor were tested
previously with a questionnaire based on snapshot views of
Basil touching and manipulating objects [12].

Constraints

The metaphor explains that Basil is touch-sensitive but has
limited vision, since he crawls about the screen and there-
fore lacks a global view of its contents. Constructions help
him sense relations by feel. This bias is revealed by show-
ing a tack at every touch observed, black indicating con-
straint, white otherwise. The user can toggle these. The
questionnaire [12] established that people understood how
Basil distinguished situations according to touch relations.

Direction

Because the graphical world is spatially ordered, Metamouse
infers directional constraints on movement and on the order
of selecting objects. The bias includes five direction terms
(up, down, left, right, any). Other paths can be expressed by
construction (combining a basic direction with a touch con-
straint). When selecting objects in order, the region searched
is the half-plane beyond the point at which the previous ob-
ject was selected. The questionnaire [12] showed that people
assumed search would occur in a cone rather than a half-
plane, unless a line was shown to sweep across the region.
Thus in our user manual we explained that search is like
sweeping with a wide broom.

Object selection

An object is assigned to variable V in action A, if it meets
two conditions: first, it must satisfy all touch relations in A
that include V; and second, it must satisfy the “selector
function” associated with V, which tests usage criteria such
as “the object has not been assigned to this variable previ-
ously,” and ordering of selection, as in “the next object
found when searching along direction (right)”. Three selector
functions distinguish between searching the display list ver-
sus creating or re-using an object. The selector is deduced
from a single example (by checking for previous occur-
rences of the given object); this deduction may be incorrect,
as when re-selecting an object to initiate a second iteration
over the display list.

During the pilot study we tested a “doctrine” [3] that ex-
plained variables and selector functions, but users did not
benefit from this information and complained it was too
much to absorb, so we reverted to the one-page manual.

Flow of control

Metamouse is described as an apprentice, watching what the
user does until he thinks he knows what to do next, where-
upon he starts predicting. Sequential flow of control seems
a natural way for users to demonstrate complex tasks. One
bad aspect of our design is that selector functions influence
flow control; when re-use is inferred instead of search, the
system fails to form a loop. Users must organize a task so
that it iterates only once over a set of objects. We did not
state this in our manual, but should have.

page?2

2.3. Metamouse’s use of examples

Metamouse’s learning ability is by no means general, but is
based on analyzing a single example as in explanation-based
learning in a weak theory domain [14]. With two minor ex-
ceptions (concerning direction and input versus constant lo-
cation) it does not generalize from multiple examples, but
rather stores mismatches as alternatives, in the manner of
exemplar-based learning [2]. This finesses the problem of
deciding whether to generalize or create a conditional branch,
at the cost of occasionally misclassifying a situation.
Metamouse would tend to make more mistakes than a true
exemplar-based system because it uses the first match ob-
tained by testing in recency order, rather than the best match
according to a similarity measure.

2.4. Recent changes to Metamouse

Inference in the absence of touch constraints

Earlier versions of the system prompted the user for an ex-
planation whenever an action resulted in no touch con-
straints. The response options were that position or distance
was a constant or input, or that the user forgot to make a
construction. In the current version we replaced this with a
more “elegant” approach. By default the system infers a
constant distance moved (as certain commercial drawing
programs do) but reminds the user that Basil likes construc-
tions, and lets the user to adjust an object after it is moved.
From multiple examples the system infers whether position
or distance are constant or input.

A new algorithm for constructing procedures

Previously reported versions of Metamouse used a leaming
algorithm that learned a state machine which, by virtue of
its manner of construction, was equivalent to production
rules whose context comprises one previous action. Since
fixed length context cannot capture state, contexts were of -
ten too general so that Basil made bad predictions, for in-
stance whenever the first iteration of a loop differs from the
rest, which happens often. On the other hand, using a large
context would preclude many good predictions. We therefore
installed a new algorithm that specializes a rule’s context
only when the user rejects its prediction. The restricted con-
text must cover all previous firings of the rule; otherwise,
the algorithm extends the context of the user’s corrective ac-
tion instead. When predicting, contexts are tested in length-
order, so that the most specific is tried first.

Promoting constraints based on object re-use

One weakness inherent in identifying constraints from a
single action according to a weak domain theory is that a
touch ignored as coincidental may introduce an object for
later use. The first implementation of Metamouse failed to
re-use such objects. To remedy this, the new rule for infer-
ring re-use checks coincidental touches, and reclassifies
them as constraints if they introduce the object of interest.

Checking for future conflicts when binding variables

It may happen that some variable V in the current action

Maulsby and Witten

becomes bound to object Q, and that some future step in-
cludes relation touch(V : W), where W is bound to Q al-
ready. This problem may sound arcane but can occur when-
ever a tool of type T is used on a set of objects of type T.
For instance, in our pilot study (prior to this change), one
subject used a box to separate other boxes. Inevitably, Basil
chose that tool as the next box to edit (which the user ac-
cepted), then tried to move it to the opposite side of itself,
whereupon the program promptly crashed.

When binding a variable, the constraint solver now checks
all references to it in reachable future actions for possible
conflict. The solver checks current bindings only, so if the
conflicting variable is in fact rebound by some intervening
action our solver will nonetheless reject the proposed value.
Although this conservative approach will fail to select some
valid objects, the alternative is to anticipate entire future
computations, which seems infeasible.

3. Experimental design

The goal of the user study was to discover whether people
could put Metamouse’s programming-by-example to effec-
tive use in practice, and to identify shortcomings in its de-
sign and implementation.

We collected both quantitative and qualitative data.
Quantitative data were: first, time to perform tasks with and
without Basil’s help, to determine whether Metamouse im-
proves user productivity; second, scores on a post-test of
user’s understanding of Basil’s behavior, to assess the ease
with which the metaphor is learned; and third, ratings on an
“ease-of-use” questionnaire. Qualitative data were: first,
video traces of what people actually did to solve editing
problems with Metamouse; second, user protocols while at
work, indicating their insights into how to use the system;
and third, user comments (during and after the session) re-
garding usability and specific problems they encountered.

In the event, we found the qualitative data most useful, and
opted to end the trials after 4 pilot and 3 experimental sub-
jects, since we found that the anecdotal evidence for the need
to upgrade Metamouse was quite overwhelming by then.

3.1. Hypotheses and questions

Regarding object selection

We expected that users who did not initially decompose
tasks in a way compatible with Basil’s selector functions
would not learn to do so. The results confirmed this hy-
pothesis; moreover, nearly every subject used the incompat-
ible decomposition.

Regarding the use of construction

We expected that users would create appropriate construction
tools after reading the one-page manual and observing that
Basil does not perform correctly without them. The results
indicate that this hypothesis should be refined; users readily
adopted “static,” declarative constructions for spatial rela-
tions but had no insight into using “dynamic,” procedural
ones like a sweepline for expressing intrinsic properties

page3

(such as height). Moreover, users invented constructions for
alignment, but had to think hard before inventing a tool for
spacing.

Regarding directional scanning

Can users understand and exploit Basil’s notion of scanning
along an axis for the next object? We found that users
would process a set of objects in order along a major axis,
but often they would begin with an item in the middle of
the set. They were not consciously teaching Basil to scan
across the set. Moreover they did not transfer the notion of
scanning to other applications like sorting by height.

Regarding inference of intrinsic properties

Would users expect Basil to infer intrinsic properties like
object height? None of the pilot or experimental subjects
believed Basil knew about height. All were puzzled when
asked to teach him how to sort by height, because they be-
lieved they were supposed to find some way of expressing
height in terms of touch. Several users said they would pre-
fer a more direct way of instructing Basil with commands.

Regarding eager prediction

Would users prefer that Basil wait for several examples?
None of the users complained about Basil’s eagerness, and
there were surprisingly few complaints about his mistakes.
We suppose this was because they were more concerned
with the trouble they had inventing suitable constructions.
Most complaints concerned Basil’s inability to learn from
the techniques that users actually tried.

3.2. Conditions

‘We designed a quasi-controlled experiment [5]. The experi-
mental conditions were as follows. All subjects read the
same user manual and performed the same tasks in the same
order on identical data. Subjects were chosen non-randomly
from three distinct professional groups. Each task was per-
formed with and without Basil. For the quantitative part of
the study we intended that use of Basil would be the
independent variable, task performance time the dependent.

As noted earlier, the “user manual” for Metamouse is a one-
page informal description of Basil. In the pilot we tested a
complete Metamouse doctrine as well, with a view to mak-
ing the amount of instruction an experimental variable. The
pilot subjects, however, found the doctrine too deep, so we
decided to test with a minimum of explanation.

A facilitator (who was not familiar with the system’s inter-
nal workings) was on hand to help subjects learn the tasks
and how to operate the drawing program. The facilitator did
not advise subjects on how to teach Basil.

3.3. Tasks

We asked our users to perform six tasks at least three times
each: first, without Basil’s help, then with Basil, and finally
without him again. We measured the time to complete each
run, The times for the second and third runs were compared,
so that practice effects would bias against Metamouse rather
than for it.

Maulsby and Witten

Users were allowed more than one practice run without
Basil, so that they would understand the task, and more than
one trial with Basil—perforce because the program often
crashed!

The first two tasks were quite simple and solvable without
construction tools, so that users would get a feel for work-
ing with a predictive interface. The middle two were rather
difficult, since they involved spacing and sorting. The last
two were easier and were based on alignment.

Task 1: Squeeze and align

In Task 1, the user edits three clusters of three boxes each,
as shown in Figure 1. The user is supposed to squeeze the
middle box and drag the rightmost one till all three are
aligned along their bottom edge.

E[EED:,E[L dbdh Ik

Figure 1. Before (left) and after Task 1.

No constructions are required for this task. Under ideal con-
ditions Basil can predict all edits to the second and third
clusters after the user repeats a selection.

Task 2: Pancaker

This is a variant of the previous task, in which the third
box must be moved up and then squeezed so that all three
boxes are the same height, as shown in Figure 2. To illus-
trate the *“generality” of Basil’s constraint inference, the
third box must be “unsqueezed” since it is too thin.

ENINS

Figure 2. Before (left) and after Task 2.

No constructions are required for this task, either. Under
ideal conditions Basil can predict all edits to the second and
third clusters.

Task 3: Picket fence

The user moves six boxes so that they are spaced evenly and
remain aligned at the bottom, as shown in Figure 3.

For this task Basil needs a construction for spacing. Ideally
Basil could predict edits on the last four or five boxes
(depending on whether or not the first is left where it is).

0 00dg)\ 0o0olo

Figure 3. Before (left) and after Task 3.

page4

Task 4: Sort by height

The user sorts six boxes so that they increase in height
from left to right, as shown in Figure 4. The boxes must
remain aligned and evenly spaced, as in Task 3.

Uno0olo) ooood

Figure 4. Before (left) and after Task 4.

In addition to a construction for spacing, this task requires
that the user select objects in height order (either direction).
Two examples may be required before Basil generalizes the
heading to upwards (eg. moving to the tallest box could be
mostly rightwards, and to the next tallest, leftwards).
Ideally, Basil could sort five of the six boxes.

Constructions and performance for the spacing/alignment
subtask are as for Task 3, but for Basil to predict these ac-
tions, they must be interleaved with sorting, since the sys-
tem cannot infer two loops over the same set of objects.

Task 5: Stairway

The user is given five boxes scattered about the display, to
be aligned at their lower-right corners along some arbitrary
axis, as shown in Figure 5.

(- =
— .
- -

— -
-]

Figure 5. Before (left) and after Task 5.

This task requires a line construction for the alignment axis.
Boxes can be selected in any order, but if the user skips a
box, Basil will not predict it until some user action has
caused him to generalize the search path to “any direction.”

Task 6: The dreaded org chart

Given a set of boxes all connected by tie-lines to one other
box, the user is supposed to move them into alignment at
the right, and reconnect the tie-lines, as shown in Figure 6.

A guideline is used as in Task 5. For Basil to predict editing
the tie-lines, the user’s procedure must form a single loop
(drag-box, drag-tie-line)*, as in Task 4.

Figure 6. Before (left) and after Task 6.

Maulsby and Witten

3.4. Subjects

We wanted a pool of subjects that represented different
classes of potential Metamouse users: drafting profession-
als, who we presumed would find constructions quite natu-
ral; graphic designers, who would be accustomed to a very
subtle geometry measured by eye; non-graphic computer
users (like secretaries) for whom the techniques would be
completely novel; and computer programmers, who would
have algorithmic insights.

In the event, we performed a small study with one graphic
designer, three programmers and three geologists. The
geologists enabled a stringent trial, since they had little
experience with drawing programs and their years of work in
contour mapping biased them strongly towards using visual
inspection as opposed to constructions. They had no trouble
aligning and spacing objects almost perfectly by eye.

page S

cerned basic facts about the interface, such as whether mov-
ing the cursor onto a tack causes the objects it connects to
be highlighted (true). The other five cover the knowledge of
Basil’s bias that users would need to understand his behav-
ior. Table 1 shows how users’ beliefs matched the facts.

This table provides some insight into the problems that
users encountered with Basil. The manual convinced them
that spatial relations other than touch are ignored, but they
have not realized that touch can be used to identify structure,
and they are unsure whether intrinsic properties are sensed.
The users were also unclear about the status of program

4. Observations

We collected task timings, video traces, user profile ques-
tionnaires, post-session knowledge tests and user evalua-
tions of the system. Space permits (and sample size justi-
fies) reporting only the strongest trends in these data.

4.1, Data
The timings

Due to program crashes, complete task timings were ob-
tained with only five of the seven subjects for tasks 1, 2,
and S. Tasks 1 and 2 took longer with Basil (an average of
56 seconds) than without (44 seconds). This result can be
discounted for two reasons. First, subjects had not yet be-
come accustomed to Basil’s prompts and sometimes waited
for him to perform the next action rather than respond to the
previous one. Second, the facilitator neglected to emphasize
that objects should be aligned precisely, hence users did
rather slapdash work when performing the tasks by them-
selves. In contrast, they were quite deliberate when teaching
Basil, placing objects precisely, despite being told that Basil
infers exact vertex-to-vertex touch from near misses.

Task 5 took an average of 74 seconds with Basil as opposed
to 66 seconds without. In this case there are no excuses.
When doing the task manually, most subjects aligned by
eye and thereby saved time at the expense of some preci-
sion. When teaching, several people used constructions that
reduced Basil’s ability to predict. The time they spent creat-
ing these and pondering his failures reduced productivity.

Despite the timings, subjects reported in the user evaluation
that these same tasks were accomplished faster using Basil.
This may be due to the fact that Basil does single actions
instantaneously on a SPARCstation 2.

The user comprehension post-test

After completing the tasks, each user was asked eight ques-
tions about the operation of Metamouse, which could be
answered true, false or don’t know. Three questions con-

bugs after they made corrections.

Question states that... Correct | Incorrect| No
belief | belief |opinion

Relations other than touch are 6 1 —

ignored

Intrinsic properties (e.g. size) 2 3 2

are ignored

Structured objects are recog- 2 — 5

nized by touch

Rejected actions are retained at | 2 3 2

low priority

The larger component of a 4 1 2

direction vector is chosen

Totals 16 8 11

Table 1. Count of users true/false beliefs about Basil.

The questionnaire

The subjects answered a dozen questions on the usability of
Metamouse. All considered it helpful on tasks 1, 2, 5 and 6,
and a definite hindrance on 3 and 4, which they found diffi-
cult or impossible to teach. Subjects were split on the issue
of eager prediction; about half of them would have preferred
to invite Basil to start predicting.

Tasks 1& 2

The first two tasks, involving no constructions, presented
no difficulty to the users. Although they had no prior expo-
sure to the interface, all but one responded without help
from the facilitator to Basil’s prompt for approval of his
first prediction, apparently because he squeaks. Basil does
not squeak on subsequent predictions; some users waited
several seconds for him to continue before clicking “OK”.

Task 3

When doing Task 3 without Basil’s help, all subjects esti-
mated the spacing by eye. On their first attempt to teach the
turtle, two of the pilot subjects (programmers) used a box
as a spacer and a line drawn through the base of all boxes to
keep them level. This second tool precluded the system’s

Maulsby and Witten

making any predictions. One of the geologists also antici-
pated the need for construction, but remarked “If you're go-
ing to have to make him a tool to move it, it’s just as easy
to move it yourself.” After three attempts to teach Basil
without one, she announced “Oh, I could draw a line!” and
drew a spacer. Unlike the programmers, she recognized that
it would maintain alignment.

Of the remaining four users, two indicated after a failed at-
tempt to teach Basil that they would need some sort of tool.
After long pauses to think, one of them drew a line through
all boxes, as shown in Figure 7, and was disappointed that
Basil did not start predicting. Apparently the user was able
to express his mental focus on a horizontal relationship,
though unable to specify it.

Figure 7. Tool intended to focus on horizontal spacing.

Task 4

When doing task 4 without Basil, subjects compared
heights by eye, though one moved some boxes next to one
another when doing so.

Users anticipated that this task would be hard to teach, and
their methods when demonstrating for Basil were more
complicated than when doing the task for themselves.
Ironically, though all had selected boxes in order by height
when doing the task manually, most adopted complicated
shuffling procedures (sometimes resembling bubblesort)
when trying to teach the turtle.

¢ — A4 ™

100am | Usflo

™,

a. Wedge through all boxes b. Wedge, full height range

< N ™
1

N AN "

¢. Wedge and bounding box d. Result after sorting

Figure 8. Tools attempted for sorting by height.

One of the non-programmers, upon repeating task 4 after
doing 5 and 6, developed a wedge tool for sorting, shown in
Figure 8. No version of his tool would have enabled Basil
to predict the sort (due to inadequate selector functions), but
the user’s attempts to build it are interesting. The first ver-
sion (Figure 8a) clearly couldn’t work because it does not
cover the range of box heights. The user fixed this (8b) and
then adduced Basil’s failure to predict to the fact that the line
touched some boxes but not others. To correct this the user
drew a bounding box around all the rectangles (8c) and was
disappointed that Basil still failed to predict. This final ver-
sion also expressed the constraint (necessary for correctness)

page 6

that boxes move horizontally.

The user who initially rejected tool use in task 3 did the
same in task 4, remarking that “What you need is a program
you can tell to sort,” and did not discover tools for this task.

One user made a baseline on his third attempt to teach a
sort. Recalling that only touch matters, he made sure when
shuffling boxes that their temporary “holding” positions lay
directly underneath and touching other boxes.

Task5

When doing the task manually, most users aligned the
boxes by eye. One of the geologists drew a guideline at the
start, another aligned the first three boxes by eye and then
drew a line through them to help her with the last two, and
the third made a guideline after completing the task in order
to check his work!

When teaching Basil, six of seven users drew diagonal
guidelines, and indeed without hesitation on their first at-
tempt. Subjects preferred to draw their guideline so that it
touched at least one box (often the rightmost), rather than
draw in empty space. One person moved two boxes into
alignment and then drew the guideline along the diagonal
that they formed. Another made a tool out of two lines lead-
ing upwards and downwards from the corner of the right-
most box. All these reasonable tactics reduced the number
of predictions Basil could make.

One person used a sweepline to constrain boxes vertically.
Another drew horizontal lines from each box to the guide-
line in order to constrain the boxes to their vertical posi-
tion: in principle Basil should be able to learn this iteration
over boxes, but due to a bug the “draw-line” steps were not
matched and therefore no loop was predicted.

Task 6

When practicing task 6, one user made a guideline for him-
self; the rest aligned by eye. As in the previous task, all
users but one drew a guideline when teaching Basil, and
made it touch at least one box. One user moved the first
box, then drew a guideline through it.

Most users picked boxes in top to bottom order, except for
their first selection, typically the rightmost box. The one
who used a sweepline in task 5 did so again. Five of seven
users processed all boxes first, then all lines; a task decom-
position Basil cannot learn. Thinking aloud, one geologist
tried to explain the lack of predictions: “I probably wasn’t
supposed to move the lines that way... I wonder if it’s
confused because of the boxes rather than the lines.” The
graphic designer guessed that her procedure was to blame
and then used the correct (move-box, move-line)* method.

5. Discussion

5.1. Construction tool intuition

Nearly all users recognized the need for construction tools.
With few exceptions, users anticipated the need to construct

Maulsby and Witten

more complex relations such as arbitrary alignment; for ex-
ample, they were generally quite proficient in their use of
alignment tools for tasks 5 and 6. Since we did not vary the
order of tasks, we cannot say whether this was due to prac-
tice. The only evidence of practice effects is that the subject
who returned to task 4 after 5 and 6 was able to develop a
suitable construction.

Programmers used more and better tools in tasks 3 and 4,
but geologists used simpler, more effective tools in tasks 5
and 6. Generally, non-programmers gave simpler and better
explanations of tool failure; programmers tried to second-
guess the implementation (hopeless speculation!).

Dynamic vs static tools

Only one user (a programmer) created a moving tool (a
sweepline); all other tools expressed static spatial relation-
ships. Several subjects complained that the instructions re-
garding dynamic tools were impossible to understand. We
should like to further investigate differences between the use
of dynamic, procedural tools and static, declarative ones.

Order and direction

Our study shows that users do not process a set of objects
in perfect order along some dimension, yet assume nonethe-
less that Basil will iterate in order over the entire set.

Alignment vs spacing

Users seemed to have better intuitions regarding construc-
tions for alignment than for spacing. For example, in task
3, one person tried to use a line through all boxes as a spac-
ing tool (Figure 7). While people could explain to them-
selves why Basil failed to notice a spatial relation, most
(especially programmers) expected him to observe some
simple relations like constant spacing or alignment along a
vertical or horizontal axis.

Intrinsic properties

Only one subject discovered a suitable tool (a declarative
one at that) for sorting boxes by height. Nearly all subjects
believed from the outset that Basil would not infer the selec-
tion of boxes in order by height, even though a minority
were certain that he does not observe such properties. We
agree with the user who suggested that more direct access to
properties would improve instruction.

5.2. Object selection

Although Basil’s users did learn quickly how to make some
useful constructions, they were punished for their efforts.
Often, though not always (which makes the problem
worse), Basil could not include previously encountered ob-
jects in an iteration. Set iteration in Metamouse is inferred
when a user action matches an existing action including the
“find-novel-object” selector function. If the user intends o
form a loop over objects previously encountered, the “re-
use-object” selector will be inferred instead. Once a loop is
formed, however, objects assigned previously to other vari-

page7

ables can be selected by find-novel-object. Thus if a guide-
line touches one or two boxes, Basil can iterate over the en-
tire set, including those two, once the user has selected
some box not encountered before. But a baseline drawn
through all objects, and ostensibly defining them as a
group, precludes iteration.

This problem has two other symptoms prevalent in our user
study. First, Basil cannot learn two iterations over the same
set of objects. The task decomposition users preferred for
task 4, (sort-boxes)* (space-boxes)*, was unlearnable.
Second, Basil cannot learn to iterate separately over each
dimension of a set of pairs of objects that touch one an-
other, like the (box, tie-line) pairs in task 6. Two ways of
decomposing edits over sets of structured objects were pre-
dicted in [22]: iterate over members of the set (editing all
substructures of one member before doing the next); or
iterate over each dimension of the set (process all
occurrences of each substructure in turn). Metamouse learns
the first decomposition only; with few exceptions, the users
in our study tried to teach the second.

5.3. One-shot learning

Our study reveals that although users expect the system to
learn from one example, Metamouse’s inability to general-
ize actions from multiple examples is a serious weakness.
Analyzing one example’s features is indeed useful for choos-
ing preferred features to match with subsequent examples,
but lacking the ability to update a generalization based on
further evidence, or choose the best match from several ex-
emplars, the system makes too many bad predictions and is
incapable of learning to discriminate situations that look the
same when analyzed in isolation.

5.4. Improving inference In Metamouse

The vast majority of Basil’s failures to predict in this study,
and the attendent frustration and confusion for subjects, can
be traced to the selector function find-novel-object. We pro-
pose two extensions to the system to remove this blockade.
First, selector functions should represent ways of grouping
objects into sets. Second, the system should be able to re-
tract one hypothesis and try another.

We propose selector functions for the following kinds of
sets: all objects (of a given graphic type) in the display list
(eg. all boxes); all objects touched by the same object si-
multaneously (eg. all boxes on a baseline); and all objects
assigned to a given variable throughout its history (eg. all
tie-lines encountered while iterating over a set of boxes).
Selection may be in spatial or temporal order.

When matching two actions, the system will choose a se-
lector that applies to both. If Basil fails to predict or
chooses the wrong object, the system will compare the of-
fending program step with the user’s corrective action and if
possible match them by altering the selector function.

Once we have implemented these changes we will test a
new group of users on the same tasks. Should the system
pass these trials, a study using more complex tasks would
be warranted.

Maulsby and Witten

6. Concluding remarks

The results of the user study indicate (a) that we have over-
committed to the procedural approach, (b) that more spatial
relations should be inferred without the need for construc-
tion, (c) that some means-end analysis of constructions may
(unfortunately!) be necessary, and (d) that sets of objects
should be represented explicitly and inferred from spatial re-
lations as well as iteration histories.

Finally, a word about implementation. Metamouse is a
large and complex program. The current version consists of
11k lines of documented C++. The core of the learning sys-
tem comprises 1k lines, but its interface to the application
includes a constraint solver (2k lines) and code for accessing
state and history (3k lines). The combination of interactive
graphics, constraint manipulation, and inference makes it an
intricate and difficult program to work with. We observed
with regret that our users encountered many new bugs in the
system, which supposedly had been thoroughly tested. The
fact is that the metaphor encourages users to behave
creatively by discovering novel ways to teach and novel
constructions to “explain” aspects of what is taught, and the
system applies inferential methods to make, and execute,
generalizations about the behavior,

Constructing and debugging systems of this nature is
intrinsically difficult. This justifies extensive testing of
simulated systems before implementation.

Acknowledgements

This research is supported by Apple Computer Inc. and by
the Natural Sciences and Engineering Research Council of
Canada. Valerio Franceschin and David Astels wrote the
code. Donna Choquette ran the experiment.

References

1. P.M. Andreae. “Justified generalization: acquiring
procedures from examples.” PhD. Dept of EE & CS,
MIT. 1985.

2. R, Bareiss. Exemplar-based knowledge acquisition.
Academic Press. San Diego CA. 1989.

3. B. Bell, J. Reiman, C. Lewis. "Usability testing of a
graphical programming system: things we missed in a
programming walkthrough.” Proc CHI ’91. May 1991.

4. A. Borning. “Defining constraints graphically.” Proc.
CHI ’86. April 1986.

5. L. Cohen, L. Manion. Research Methods in Education,

3rd ed. Routledge. London. 1989.

6. A. Cypher. “EAGER: programming repetitive tasks by

example.” Proc. CHI *91, pp. 33-40. May 1991,

7. D.C. Halbert. “Programming by example.” Research
report OSD-T8402. Xerox PARC. Palo Alto. 1984.

8. R. Heise. “Demonstration instead of programming:
focussing attention in robot task acquisition.” MSc
thesis. Dept. of CS, U. of Calgary. 1989.

page 8

9 H. Lieberman. “An example based environment for
beginning programmers.” Artificial Intelligence and
Education, pp. 135-151. Ablex. Norwood NJ. 1987.

10. B.A. MacDonald, I.H. Witten. “Programming computer
controlled systems by non-experts.” Proc. SMC. 1987.

11. D.L. Maulsby, K.A. Kittlitz, LH. Witten. “Meta-
mouse: specifying graphical procedures by example.”
Proc. SIGGRAPH ’89, pp. 127-136. August 1989.

12. D.L. Maulsby, G.A. James, LH. Witten. “Evaluating
interaction in knowledge acquisition.” Proc. EKAW
'89, pp. 406-419. July 1989.

13. D.L. Maulsby, L.H. Witten, K.A. Kittlitz, V.G.
Franceschin. “Inferrring graphical procedures: the
compleat Metamouse.” Human Computer Interaction
(in press).

14. S. Minton,, J.G. Carbonell, et al. “Explanation-based
learning: a problem solving perspective,” in J.G. Car-
bonell, ed., Machine Learning: Paradigms and Methods,
pp. 63-118. MIT Press. Cambridge MA. 1990.

15. T.M. Mitchell “The need for biases in learning general-
izations,” in J.W, Shavlik, T.G. Dieterrich, eds.,
Readings in machine learning, pp. 184-191. Morgan
Kaufmann. Palo Alto CA. 1990.

16. Mo Dan Hua. “Text editing procedures from examples.”
MSc thesis. Dept. of CS, U. of Calgary. 1989.

17. B.A. Myers. Creating User Interfaces by
Demonstration. Academic Press. San Diego. 1988.

18. B.A. Myers. “Text formatting by demonstration.” Proc.
CHI '91. May 1991.

19. R. Nix. “Editing by example.” PhD. Computer
Science Department, Yale University. 1983.

20. F.P. Preparata, M.I. Shamos. Computational
Geometry. Springer-Verlag. New York. 198S.

21. J.T. Stasko. “Using direct manipulation to build
algorithm animations by demonstration.” Proc.CHI 91.
May 1991.

22. P.van Sommers. Drawing and Cognition. Cambridge
Univ. Press. Cambridge UK. 1984,

