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ABSTRACT 

The problem of minimizing a quadratic performance index subject 

to an energy-type constraint onthe control vector is considered in this 

thesis. The control vector is restricted to be discrete in time. The 

problem is formulated as a minimization problem in a Hubert space and 

the existence and uniqueness of the optimal control vector is shown. 

A necessary and sufficient condition for optimality is derived 

which is used to yield an equation whose solution gives the optimal 

control vector. It is shown that if the optimal control vector lies on 

the boundary of the constrained region, then the Lagrange multiplier 

must be determined in order to solve the corresponding optimality 

equation. An algorithm basedon Newton's method is presented for the 

calculation of the Lagrange multiplier, and the convergence of the 

algorithm is proved. 

The convergence of the objective function, corresponding to the 

optimal discrete control vector, to the same objective function when 

the control vector is not restricted to be discrete in time, is shown 

Furthermore, a condition is derived which, when satisfied, assures that 

the optimal discrete control vector will converge to the nondiscrete 

optimal control vector as the number of the sampling, periods tends to 

infinity. 

Two examples are presented to show the application of the 

theoretical results, and numerical solutions are given. 
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1. INTRODUCTION 

1.1 GENERAL - 

In physical situations, one often encounters systems whose 

parameters are distributed in both space and time. The dynamic behavior 

of these systems is governed by partial differential equations, integral 

equations, integrodifferential equations and sometimes by more general 

functional equations. The name distributed parameter is used for these 

systems so as to differentiate them from others whose behavior can be 

described by ordinary differential equations. Usually, the name lumped 

parameter is used for these latter systems. 

In general, the problem 'of optimal control arises from attempt-

ing to minimize (maximize) a certain functional of the state and of the 

controlling action. Constraints usually exist due to practical limita-

tions and this leads to restrictions on the state as well as on the 

controlling functions.. 

In attempting to formulate these problems one has to make the 

., formulation broad enough so as to include many physical systems. On the 

other hand, one has to narrow the' investigations, S incê a general formu-

• lation leads to results which -are usually difficult to apply. 

1.2 THESIS OBJECTIVES AND OUrLINE 

The main purpose 'of this thesis is to investigate the problem 

of minimizing a' quadratic performance index under an energy type con-

straint on the control vector. A problem similar to that of Weigand1 is 

treated subject, hôwe\rer,: to the additional constraint that the control 

vector is discrete 'iii time.' This restriction is introduced due to the 

trend of using on-line digital 'computers to control industrial processes. 
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We also study the convergence of the optimal discrete problem to the 

nondiscrete optimal one as the number of the sampling periods tends to 

infinity. Apart from its theoretical benefit which establishes a link 

between the discrete and the nondiscrete problem, this study provides us 

with a tool by which we can approximate a distributed parameter system 

with measurable inputs by a corresponding discrete one whose solution is 

much easier to obtain. 

The main outline of the thesis is: 

Chapter 2 contains a review of the work done in the field of 

'optimal control of distributed parameter systems which is significant to 

the work rèpórted in this thesis . 

In Chapter 3 the performance index is introduced and the problem 

is formulated, as 'a minimization .problem in filbert space. The necessary 

• and sufficient condition for optimality is derived and the existence and 

uniqueness of the optimal control vector are shown. 

Chapter 4 is concerned with solving the optimality equation 

using Newton's method, The convergence properties of 'the optimal dis-

crete problem are also investigated. 

In Chapter 5 two' examples are given to demonstrate the applica-

tion of the theory. Computer results are also presented. 

Chapter 6 draws conçlus ions' concerning the results obtained 

throughout-the thesis and gives suggestions for further research. 
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2. REVIEW 

2.1 OPTIMAL CONTROL OF DISFRIBUTBD PARAMETER SYSTEMS 

Butkovskii and Lerner  were among the first to consider the 

optimal control of distributed parameter systems. They posed a general 

problem for first and second order partial differential equations which 

have both functional and amplitude type constraints on the controlling 

functions and a performance index in the form of a general functional. 

In a later paper Butkovskii3 developed a maximum principle for 

a distributed parameter system whose motion is described by a nonlinear 

integral relationship. He used an objective function in the form of a 

general functional. • Using Pontryagin' s maximum principle, he obtained 

an implicit form for the optimal control function which involves the 

solution of a nonlinear integral equation. The solution of such an 

equation is not easy in general. 

• In subsequent papers ,4,5 6 Butkovskii developed a generalized 

maximum principle for distributed parameter systems which can be put in 

the form of a set of integral equations. Again the solution is in an 

implicit form which is difficult to use. 

• Butkovskii7 considered a linear system with distributed param-

eters of the form 

K()Ud x c (O,s] and t [O,T] Q(x,t) = J  

where Q represents the system state and u represents the control 

function. He posed for this system the following problem: 

Find a control function u(t), Ju(t) L for which the relation 



Q*(x) = ! xtTT)dT 

* 
is satisfied, where Q (x) is given and the final time T is to be 

minimized. He solved this problem by using results concerning the L-

problem of moments due to Krein. 8 In subsequent papers, 9,10,11 

Butkovskii applied his results  to solve the optimal control problems 

of a wave equation and also of a vibrating string. 

Egorov12 examined certain questions in the theory of. controlled 

thermal processes, which are connected with the choice of a control that 

is in.some sense optimal. He treated the minimal time problem and a 

problem with a quadratic cost. with an amplitude constraint on the con-

trolling function in both cases. Moreover, he studied the existence - 

and uniqueness of the optimal control. Later--on, Egorov13 treated the 

problem of optimal control of systems described by a second order para-
bolic equation and he deduced a maximum principle as a necessary 

condition: for optimality. Butkovskii aiid Egorov14 gave a survey paper 

containing most of 'the Soviet work in the field of optimal control of 

distributed parameter systems.  

,A general discussion on the properties as well as the optimal 

control problem of distributed parameter systems was' presented by Wang 

and Tung. 15 They discussed (a) the mathematical description of distri-

buted parameter systems, (b) the controllability and observability of 

these systems, (c) 'the fornulation of optimum control problems and the 

derivation of a maximum principle for a particular class- of systems, 

and (d) the problem associated with approximating distributed parameter 

systems by discretization. A more detailed and complete discussion of 

distributed parameter systems was presented by Wang.16 
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Wang17 considered the optimal control problem associated with a 

diffusion system with a free boundary. This arises physically from 

attempting to control the rate of solidification of a liquid. He formu-

lated the control problem as an infinite dimensional mathematical 

programming problem (linear), and then approximated it by a correspond-

ing finite dimensional one. He also established the convergence of the 

approximation. 

Saicawa18 treated the problem of optimal control of a distributed 

parameter system governed by a heat conduction equation. His objective 

was to minimize the deviation of the temperature distribution from an 

assigned distribution at a given time subject to an amplitude constraint 

on the controlling function. Using calculus of variations he obtained 

a Fredhoi.m integral equation of the first kind as a necessary condition 

for, the optimal control. 

Sakawa19 treated the more general problem of the optimal con-

trol of a one-dimensional linear stationary distributed parameter 

system controlled by , boundary functions which act at both ends of the 

one-dimensional space. , He minimized an objective function of the form 

1 * 2 2 (T 2 
1(u) = [q (x)-q(x,T)] dx +' E c1 u1(t)dt 

f 
0 i=1 

where qx,t) is given by 

2 
q(x,t) = q0(x,t) + E I g1(x,t_T)u(T)dT 

P4 

where 

q * (x) = the desired final temperature distribution 

q (x ,T) = the actual final temperature distribution 

T = the final time of the process 



U1 (t) aid u2 (t) = the boundary control functions 

and c2 = positive constants which act as weighting factors. 

Using functional analysis he reduced the problem to the minimization of 

a quadratic functional in a Hubert space. By using the variational 

method for the unconstrained case, he obtained a Fredhoim integral 

equation of the second kind as a necessary and sufficient condition. 

In the case of constraints of the form, 

a u(t) b i = 1,2 

and by using the Kuhn—Tucker theorem 'for nonlinear programming, he 

obtained a system of nonlinear integral equations of a form similar to 

the integral equation of the Hammerstein type. Under suitable assulnp-

tions, he solved this equation using successive approximation. 

Axèlband2° presented a solution for the unconstrained optimiza-

tion problem of distributed systems wherein the control action and 

control are related by a bounded linear operator. He used function 

space techniques to prove the existence and uniqueness Iand to derive 

necessary and sufficient conditions for 'the optimal control for a 

quadratic performance index. Axelband21 developed an approximate 

technique for the optimal control of linear distributed parameter sys-

tems with an amplitude constraint on the control function. He 

considered a performance index of the integral squared error type and 

derived an algorithm for the computation of the optimal control func-

tion by a nonlinear programming. procedure. 

Kim. and Brzberger22 used dynamic programming to obtain the 

optimum feedback boundary control function for a- ,distributed parameter 

system which is described by. the n-dimensional wave equation. They 
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considered a quadratic performance index for an unconstrained control 

function. The functional equation for the optimum controller, analo-

gous to the matrix Riccati equation obtained by Kalman for lumped 

parameter systems, was shown to be a nonlinear partial integrodifferen-

tial equation. They showed that, for a certain type of weighting factor 

in the quadratic error index, the nonlinear functional equations can be 

solved by using the method of separation of variables. 

Weigand' in his paper considered the problem of obtaining the 

optimal control functions, subject to an energy-type constraint, which 

minimize a performance index of a quadratic type for the control of 

linear distributed parameter systems. He formulated the problem as a 

minimization problem in Hubert space and derived the necessary and 

sufficient condition for optimality using both functional analysis and 

variational methods. He obtained the optimal control function by 

solving the Fredholin integral' equation with symmetric kernel and gave 

an explicit form for the optimal control function in terms of eigen-

function expansions. 

Vidyasagar23 solved the same problem of Weigand for one-

dimensional distributed parameter systems. He used the Kuhn-Tucker 

theorem of nonlinear programming in deriving a necessary and sufficient 

condition for optimality. In fact, he obtained almost the same results 

as Weigand, but using a different approach. 

Goldwyn 24 et al showed the applicability of the Laplace trans-

formation for the determination of the time optimal control of a 

linear diffusion process with amplitude constraint on the control. 

They used a method which can be interpreted as requiring a control 

whose transform, in combination with the initial condition, places 
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zeros at the poles of the open loop transfer function to derive the 

optimal control function on the assumption that it is bang bang. 

For distributed parameter systems described by parabolic equa-

tion, Gal'chuk25 studied the possibility of translating the system to 

a stationary regime subject to an amplitude constraint on the control 

function. He showed that this problem is equivalent to a certain 

problem of moment and gave conditions for the attainability of 

stationary states. 

Balakrishnan26 treated the problem of minimizing the distance 

IlLu - xli 

where L is a compact linear operator mapping the Hubert space L[o,T] 

into the Euclidean space R", x is a given element in Rn, and u is the 

control vector and is restricted to belong to a closed convex subset 

of L[o,T]. Without using the finite dimensionability of R'1, he 

showed the existence and uniqueness of the optimal control. He pre-

sented an algorithm based on the steepest descent method to compute 

the optimal control vector. However, his algorithm is not practical 

from a computational point of view. 

An almost exhaustive and commented bibliography prior to the 

end of 1969 was given by Robinson. 27 Also, an excellent survey on the 

optimal control of distributed parameter systems was presented by 

Lions. 28 

All the aforementioned resultsfor distributed parameter sys-

tems gave solutions in terms of control functions which are not 

discrete. As far as the author knows, only the following papers 

treated the problem of optimum distributed parameter systems whose 
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control function is discrete in time. 

LorchirachOonkul and Pierre 29 considered the problem of 

minimizing, at certain discrete points on the spatial domain, the 

deviation between a desired response and the actual system response of 

a linear distributed parameter system subject to constraints on both 

control and state function. Using a discrete control function, they 

reduced the problem to a linear programming problem whose solution can 

easily be obtained. 

Matsumoto and Kito30 studied the problem of designing an 

optimal feedback controller based on a quadratic performance index for 

a distributed system described by a partial differential equation of 

the parabolic type with spatially concentrated controls. They ass.mied 

the presence of an on-line digital computer and they considered the 

control function to be discrete with' respect to time. Using dynamic 

programming, they obtained the optimal control as a function of the 

system state. 

Hassan and Solberg31 treated the unconstrained problem of 

optimal control of a distributed parameter system with a quadratic cost 

functional. They restricted their control function to be discrete in 

time and used the technique of dynamic programming to derive an 

expression for feedback control in terms of an auxiliary spatial 

dependent variable. They showed that this variable satisfied a Riccati 

type functional equation with an unknown final value. Using an 

orthogonal series expansion, they transformed this equation to a 

recursive algebraic equation in ,the coefficients of the expansion. 

They demonstrated the applicability' of the method by an example of an 

automatic regulator for the flux pattern in a slab nuclear reactor. 
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3. OPTIMAL CONTI)L OF LINEAR DISTRIBUTED PARNvIETBR SYSTEMS 

WITH A QUADRATIC CONSTRAINT 

3.1 INTRODUCTION 

In this chapter we present the optimal control problem which 

consists of minimizing a quadratic performance index under an energy-

type constraint for linear distributed parameter systems. We restrict 

the cortrol function to be discrete in time. This problem is formulated 

as a minimization problem in a finite dimensional Euclidean space. 

Using a necessary and sufficient condition from functional analysis, we 

arrive at an equation whose solution gives the optimal control function. 

3.2 FORMULATION OF THE PROBLEM 

Consider a linear distributed parameter system. The system 

states are assumed to be described by state functions which can be 

expressed as 

AX) t) = fK(x,t,T)!I(Tjd-r (x + H,t)q0 (x) (3.2.1) 

where a(x,t) is an n-dimensional vector representing the state of the 

system, x is an m-dimersional spatial coordinate, xE2, where 92 is a 

simply connected open subset of an rn-dimensional Euclidean space, aQ 

denotes its boundary and t is time (0 < t < T). u(t) is an r-dimen-

sional control vector which could be either a boundary control vector 

or a spatially concentrated control vector. Moreover, it could be a 

mixture of both types. q0 (x) is an n-dimensional vector representing 

the initial state of the system, H(x,t) and K(x,t,T) are (mm) and 

(nxr) matrix linear operators respectively whose elements are known 

functions which are determined corresponding to given partial 



-11-

differential equations and initial and boundary conditions. 

The following control problem is posed. Find the control vector 

u(t) of minimal norm which minimizes the objective function 

fl( 2 
1(u) = E [q.(x,T) - q (x)] dx 

1=1' 1 

under the constraint 

r T 
E f - u1'(t)dt < E 
iL 0 

(3.2.2) 

(3.2.3) 

where T is the final ti.iue and q(x) is an n-dimensional vector repre-

senting a prescribed spatial distribution function of the states. 

Let L'() denote the real Hubert space of n-dimensional 

functions square integrable over Q and L[o,T] represents a real 

Hilbert space of r-dimensional functions square integrable over 

Co ,T). Define the inner product of two vectors p and in L (c2) by 

= J '(x)a(x)dx. (3.2.4) 

Similarly, denote the inner product of two vectors u and v in L[o,T] 

by 
= fT U, (t)v(t)dt 

0. 

where ' denotes the transpose of a vector or a matrix. 

Define a transformation A from L[o ,T] into L') by 

K(xT,T)ü(T)dt. 

It-is clear that A is a linear operator. Let us define an (rxr ) 

square matrix G(x,t,t) by 

(3.2.5) 
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G(x,t,T) = K'(x,T,t) K(x,T,'t). (3.2.7) 

Furthermore, define another (rxr) square matrix ' (t , T) as 

Ass iming that 

TT 

i,=1 f f 

= G(x,t,'r)dx 

< 

(3.2.8) 

(3.2.9) 

It can be shown. that A is a completely continuous operator (see appendix). 

Let us also, assume that I-I'is a linear operator with range in L'(cO. 

• We will assume that the control vector u(t) is a discrete 

function of time. Assuming that the number of sampling periods is N, 

the sampling period TN is given by 

N = TIN 

and, hence,u(t) will be defined as 

U  = u, 

(3.2.10) 

, t <(AL)T , 9.. =•0,l,.. . ,N-i (3.2.11) 

Substituting (3.2.11) into (3.2. fl yields 

fT K(x,T,T)u(t)'dt + .H(x,T)q(x) 
N-i c9..+l)TN 

= E • K(x,T,t)u ,d'r'+ H(x,T)q0 (x) 

JTN 
N-i • 

E K ()19., +H(x,T)qo (.) (3.2.12). _ 

where Kx), P. = 0+11,.,.. ,N-1 is an nxr) spatial matrix given by 
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(2..+1) TN 

K. (x) = J K(x,T,T)dT 

- £.TN 

= O,l,....,N-1 (3.2.13) 

The energy constraint (3.2.3) will reduce to 

rN-i 
Z Eu4NE/T 

i=l 9.,=o 
(3.2.14) 

where u1 denotes the ith component of the vector u(t) during the 

interval [9TN, (2+i)TN]. Let us define .an nxs) spatial matrix B, where 

s = rN, as 

KN1] 

Also define an s-dimensional column vector u by 

U0 

U1 

(3.2.15) 

(3.2.16) 

where u, is' defined 'in (3.2.11,), so the (9.r+i)th component of u equals 

U. . Taking (3.2.16) into consideration, (3.2.12) and (3.2.14) reduce 

to 

x,T) = Bx)u + H(x,T)q0 (x) ., •' ' (.2.17) 

S ., 

u'.NE/T. 
1=1 1 

(3.2.18) 

Let us define the norm ,of an element h in the s-dimensional Euclidean 

space by 
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(3.2.19) 

Then B defines a compact linear operator from R5 into L (ca) whose range 

is finite dimensional. Define a*(x) as 

=q. -  H(x,T)q0 (x). (3.2.20) 

• It is dear that j(x) c L'(c), and the problem reduces to finding a 

control. vector u c RS with minimum norm which minimizes 

subject to the constraint 

= _.a*(.) II 2 (3.2.21) 

(3.2.22) 

3.3 EXISTENCE AND UNIQUENESS OF THE OPTIMAL CONTROL VECTOR 

Theorem 1. 'A closed convex subset of a Hubert space contains' a 

unique element of minimal norm. 

Proof. For proof . reference 40. p 24:3• 

Let C denote the closed sphere of radius NE/T in Rs; then we 

can state the following theorem: 

Theorem 2. There exists a unique element u of minimal norm . in C 

such that 

inf H 
ue.  

* * * 

a 1.1 - a II. 

Proof. Let {unl be a sequence of elements in C such that 
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liii Un al 
n+co - 

lnf 11B u  a* II. 
ucC 

Since C is a bounded closed subset of RS, i.e ., compact, this implies 

that there exists a convergent ,subsequence {u} whose limit v c C. 
Jlk 

Therefore, we have 

* * 

II!-alI =inf II!-aII. 
uC 

Now, consider the set D =, {ucCIB u B vi. This is a closed convex set 
* 

and therefore, by theorem 1, it must contain a unique element u with 

minimum norm, This completes the proof. 

Let B* be the adjoint operator of B, and let v be any element in 

RS and a be any element in L().' ThenB* is defined as 

(  

=> = J ' (x)(x)d 
* 

Since B is bounded, it follows that B B is .a bounded linear 

S . 5 S * 
transformation defined on R , mapping R into R and, similarly, B B 

is a bounded linear transformation mapping L'(2) into itself. It is 

worth noting that both B B and B B are compact operators. This follows 
* 

directly from the fact that B is compact and B is continuous (ref. 32, 
* 

p-. -2 90). Furthermore, B B is an (sxs) positive semidefinite Hermitian 

matrix which is given by 
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j * 1 B, 
B B =  (x)B(x)dx. 

92 

(3.3.2) 

* 
Since the matrix B B is positive semidefmite Hermitian, there-

fore the eigenvaluesofB*B are real and non-negative. Let 

.1 = 1,2, 'p < s; X1   > A, be the nonzero eigenvalues 

of B*B and let the z1 be the corresponding orthonormalized eigenvectors. 

Hence, if ze R , then BBz can be written as 

* p 
il A(Z,Z1)Z. 

3.4 NECESSARY AND SUFFICIENF CONDITIONS FOR OPTIMAL CONrRoL33 

(3.3.3) 

Theorem I. Let z be a vector in a Hubert space H and, let W be a con-

vex subset of H. If there exists a y0 £ W such that 

I'll -Y0II < tL - JI. Vc W (3.4. 1) 

A.-necessary  and sufficient condition for y0 to satisfy (3.4.1) is that 

C! - y0, x. - y0) . 0 

Proof. 

V y c W (3.4.2) 

Necessity: Suppose y0 is a minimizing vector, i.e., it satisfies con-

dition (3.4.1) and we want to show that (3.4.2) holds VycW. Suppose 

that (3.4.2) is false, i.e., there exists a vector y1cW such that 

(z- YO, y1- YO) =c>0. 

Consider the vectors y. = (1-a)y.0 + ay1, 0 < a < 1. Since W is a con-

vex set, it follows that each ycW. Also, 
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liz = I I (1-a) + 11 2 

= (l-cz)2IIz-y0112 + 2a(1-a) (.a-y0.-y 2 2 
l..-y1I I 

= (l-a)2IlZy0If2 + 2a(1-a){(z-y0,z-y0) + (-y0 ,y0-y1)} 

+ a2 z-y1 2 

= Il-y0ll2 +a2ClI-y1Il2- I-y0Ii2} - 2a(l-cz)(z-y0 ,y1-y0). 

Choose a sufficiently small such that 

I I-y1l 12 

=> 

- I l -yI 12 2a(1-a) (z-y0,y1-y0) < 0 

I1YaIl <II.iIl. 

This contradicts the minimizing property of y0. Hence, no such y1 can 

exist. 

Sufficiency: Suppose that y0cW and yo satisfies (3.4.2). Hence, for 

any cW such that y ?.o' we have 

I L.-xi 12 = I L.-y00-xi 12 V 

V = I I -y I 12 + 2 + I I iI 12 > I I I 

which implies that y0 is a minimizing vector Q.E.D. 

12 

V The set B(C) consisting of all elements of the form B U, ucC, is 

convex. Therefore, we can apply the necessary and sufficient condition 
* V 

of. the previous theorem to our problem, i.e ., for u to be an optimal 
V * 

control vector, it is necessary and sufficient that u satisfies 

* * * 
V (  -Bu,B(u-u))O ucC (3.4.3) 
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We have two cases: 
* 

a) ii belongs to the interior of the set C, i.e. 

S *2 
E u. < ET/N. 

i=l ' 

(3.4.4) 

Let {e1}, i = 1,.... ,s, be the set of orthogonal unit vectors in 

RS. Choose c sufficiently small such that the set of vectors 

I = l,...,s, where v = + ce1, belong to C. 

(3.4.3), we get 

Putting u = v1 in 

- Bu*, cBe1) 0 1 = 

- Bu*, Be1) 0 I = 

- B*Bu*, ej) 0 i = l,2,...,s (3.4.5) 

Since c can take positive as well as negative values, it follows from 

(3. 4. 5) that 

B*B u e1) = 0 ± = l,2,...,s (3.46) 

The set { e1 }5 is complete in RS and hence it follows from (3.4.6) that 
- 1=1 

or 

• **• * * 

a -! B u =2. 
* * ** 

.BB u =!a• 
* 

b) u belongs to the boundary of the set C, i.e., 

s 2 
E u. = EN/T. 

3.4.7) 

(3.4.8) 

* 
In this case u is the solution of a finite dimensional optimi-

zation problem under equality constraint. Hence, we can use the 
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Lagrange multiplier method to find the optimal control vector u . Our 

problem, in this case, is to minimize 

* * 

'Q& = (!a - a B ti - a) 
* ** * * 

= '.!.1& - 2(u,Ba) + @. )q) (3.4.9) 

under the equality constraint 

= EN/T. (3.4.10) 

Let A be the Lagrange multiplier, where A > 0, then 

* ** * * 

= (u,BB) 2(u,Ba) + (9 ,a) + A(u,u). (3.4.11) 

A necessary condition for u * to be 'a minimizing vector is that 

dl 
a 

u=u 

Using this necessary condition into eq.tion (3.4.11), we get 

BBu - Ba+Xu = 

* * ** 

(BB+AI)u =a 

where u* has to satisfy the equation 

(3.4.12) 

(3.4.13) 

(3.4.14) 

** 
(u ,u) = EN/T. (3.4.15) 

Let us now show that U , which is the solution of equations 

(3.4.14) and (3.4.15), does in fact satisfy our necessary and sufficient 

condition for optimality, (3.4 •3) .. We have 
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* 

B(u-u)) = (B a - B B u, (u-u)) 

= X *) (3.4.16) 

Since X > 0, in order, to show that (3.4.16) satisfies (3.4.3), it is 

enough to show that (u*, u - u*) - 0 VuC. But, we have 

* *  2 * 

II II II- II!! II 
* * 

= (u 'u ) VucC 

(3.4.17) 
2 

The second inequality follows from the assumption that I I II = EN/T. 

Therefore (3.4.17) implies that 

=> 

* 
(U ,u) , (u ,u) 

* * 

(u', u -  !a) < 0. (3.4.18) 

This completes the proof. 

We can sumnarize the ,results of this section as follows: 

1) Find the solution of equation (3.4.7) with minimal norm. 

2) If the norm of the solution of (3.4.7) satisfies (3.4.4), then the 

optimal control vector has been determined. 

3) If the solution of (3.4.7) does not satisfy (3.4.4), then the 

optimal control vector can-be obtained from the solution of (3.4.14) 

and (3.4.15). 



-21-

4. SOLUFION OF THE OPTIMALITY EQUATIONS AND TWO CONVERGENCE PROPERTIES 

OF THE DISCRETE PROBLEM 

4.1 INTRODUCTION 

The solution of the optimality equations (3.4.7) and (3.4.14) 

which resulted from the application of the necessary and sufficient 

condition is presented in this chapter. An algorithm will be given, 

based on Newton's method, for determining the Lagrange multiplier x of 

equation (3.4.14), for the case when the control vector lies on the 

boundary of the constraint region. The convergence of the algorithm 

will be proved. Moreover, we are going to show that the objective 

function of the discrete case will converge to the objective function 

of the nondiscrete one. Furthermore, we will show that if the linear 
* 

bounded transformation A A is positive definite, then we have the 

stronger result of the convergence of the optimal discrete control 

functions to the nondiscrete optimal. control functions. 

4.2 SOLUTION OF THE EQUATIONS OF OPTIMALITY 

We now proceed to find the optimal control vector u. Consider 

first case a) where 

(4.2. 1) 

This equation possesses: a unique solution if and only if the homogeneous 

equation 
* 

5B B u= (4.2 .2) 

has only the trivial solution, in this: case the unique solutiOn of 

(4.2.1) is given by 
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* * 

u (B B) Ba. (4.2.3) 

In other words, (4.2.1) possesses a unique solution if and only if B*B 

is positive definite. 

On the other hand, suppose (4.2.2) has a nontrivial solution. 
** 

Then (4.2.1) possesses a solution only for these vectors Ba which 

belong to the set N (B B). To show that this condition is satisfied, 

let vbe any nontrivial solution of (4.2.2). Therefore, v satisfies 

the equation 

* 
BBv=O 

0 = (y, B*!!) = LB ! . :y) 

B v = O 

Therefore, 

B**) = c1, a) = 0. (4.2.4) 

Equation (4.2.4) implies that B*a*CNL(B*B), and hence (4.2.1) always 

possesses a solutiOn. 

Since the transformation E*B is self ad j oint, therefore, we 

have the following direct sun decomposition of the Euclidean space 

* * 
=N(BB) ® R(BB). 

' * * 
This means th s at if then V +z, where N(BB) and zcR(BB) and 

and z are defined uniquely. Furthermore, since y is orthogonal to z, 

we have 

2 2 2 
I,I!l I = I Ii I + I I.J I 
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Suppose that u is a solution of equation (4.2.1); therefore, u = 

where u1eN(BB) and u2cR(BB). Substituting for u into equation (4.2.1) 

we get 

Therefore, u2 is also a solution of (4.2.1) and since we are looking for 

a solution with minimum norm, and from the fact that 

I II 12 = 1 Iu1I 12 + I Iu2I 12, so the optimal control vector u has to 
_* 

belong to R(B B). This means that the optimal control vector has to be 

of the form 
* p 

U = E c. Z.. 

* 

Let us express B a in terms of the eigenvectors of B B 
** S ** 

( a ,Zj)Zj 

P.  

= E (a , • z±)z. 
.i=l --

Substituting (4.2.6). and (4.2.5) into (4.2.1), we get 

p * p • p 

= i1 = 1=1 

(4.2.5) 

(4.2.6) 

(4.2.7) 

Since the z1' s are linearly independent, we deduce from (4.2 . 7) that 

i = l,...,p (4.2.8) 

* 
Therefore, the optimal control vector u is given by 
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* .p 

Case b) 

(4.2.9) 

In this case the optimal control vector is obtained through the 

solution of the following two equations for A > 0 

* ** 

( + XI)u ! a (4.2.10) 

(!,!:) = EN/T. (4.2.11) 

* 
Since A > 0 and B B is positive semidefinite, therefore -A does not 

* . S * 
belong to the spectrum of B B i , .e. the inverse of (B B+XI) does exist 

* 
and hence u is given by 

* * 
U = (B B+ XI) Bg (4.2.12) 

where A is to be chosen such that u satisfies (4.2.11). Substituting 

(4.2.12) into (4.2.11), we get 

or 

((p. B+XI) Ila (B B+XI) B• a) = EN/T 

** * -2 
( a (B+AI) a) = EN/T. 

Define a functional f mapping the open set (0,) into R by 

** * -2 
f(x) = (!a , (B B+XI) B. a) - EN/T. 

(4.2.13) 

(4.2.14) 

The problem of finding the optimal control vector in this case 

turns out to be the problem of finding A which solves the equation 

f(x) = 0. To find A, which satisfies f(x) = 0, we are going to use 

34 
Newton's method. In order to prove the convergence of Newton's method 
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we need to show that f(X) is a strictly convex function and we need the 

following theorems and lemmas to prove this result. 
* 

Let R(X) denote the resolvent operator of B B, i.e ., 

* 
R(X) = (B* B+XI) -1 , where -Asp(B * B), and p(BB) denotes the resolvent set 

of the operator BB. It is clear that R(x) is a positive definite 

operator mapping RS onto itself. 

Lemma 1. R(X) - R(ji)= (p-X)R(ii)R(X). (4.2.15) 

Proof. From the definition of R(A) and R(ii), we have 

=> 

= (B I) - ( *BD 

= (.*.+14..) (R(X)-R(u)J (B *BI) 

R(x) - R(ii) = (t-A)R(t)R(X). 

As a consequence of the aboye lemma, we have: 

Corollary: R(p) and R(X) commute... 

Theorem 1. Suppose A,BcL (X,X) and that A and B commute. Then A 0 

and B 0 implies that AB 0. 

Proof. For proof see reference 32,.., p 415. 

Lemma 2. Suppose AcL(X,X); then A > 0 and A 1 exists <=> A> 0. 

Proof. (=>) Suppose false, i.e., there exists ZcX, z 0 such that 

(z ,Az) = 0. Let B• denote the square root of A, i.e ., B = A; then B 

exists since A 0 and B is self adjoint Moreover, &L (X,X) and we 

have 

=> 

.0 =, (z,Az) = (z,B2z 

Bz = 0 

= (Bz,Bz) 

=> B2z=Az=0. 

*Reference 32, p 422. 
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Since A 1 exists, therefore z = 0, contradicting our hypothesis and, 

hence, no. such x exists. 

(<=) follows trivially. 

As a result of the last theorem and lemma, we have the following 

result. 

Corollary: Suppose A and B e L (X ,X) and that A and B commute. Then 

A > 0and B > 0 implies that AB > 0. 

Theorem 2. Let g be a differentiable- functional on. an open set rcR'1. A 

necessary and sufficient condition that g be strictly convex n r is 

that for each z1 and z.2 e r 

(Vg (z2)- Vg(z1), 12 - > 0. 

Proof.' For proof see reference 35,.p 87.' 

'Theorem 3. The functional £ defined by (4.2.14) which maps the set 

(0,-) into R1 is one to one and, strictly convex. 

Proof. £ is one to one. To show this, suppose false, i.e., there 

exists X,p > 0 and A ii such that f(X) = => 

** 2' 2 ** 
f(A)-f(p) (B 9, ,[R (A) -R'(li)]Ba) 

• . .** . ** 

.t-X)(Bg ,R(X)R.t)[R(A)+RL)1Ba). (4. 2.16) 

But, since R(A) > 0, R(u) > 0, and both R(X) and R(p) commute, it fol-

lows from the corollary of lemma-2 that R(A)R(t) (R(X)+R(i)] > 0 => 

** 

(Ba ,R(A)R(.i)[R(X)+R(ii)]Ba) >0. (4.2.17) 

*For definition, see reference '35, p 56. 
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Using the result of (4.2.17) in (4.2 . 16), we deduce that ji - = 0. 

This contradicts our hypothesis and thus establishes that f is one to 

one. 

To show that f is strictly convex, consider 

** 3 ** 
Vf(1.t) = -2(Ba ,R (.1)Ba). 

Therefore, 

** 3 3 ** 
(Vf() -Vf(X)](ii-X) = -2(i-X)(Ba ,[R(.i)-R (X)]Ba ) 

** 2 2 ** 
= -2Q-X)(Ba ,[R(p)-R(X)][R (ii)+RQi)R(A)+R (X) }B 

** ** 
= 2(p-X)2(B a ,R(.i)R(A) (R2(p)+R(i)R(X)+R2(X)]B a) 

whichimplies that £ is strictly convex. 

If we denote the solution of equations (4.2.10) or (4.2.12) by 

u X and the-solution of equation (4.2.1) by u°, we can have the following 

result. 

Lenua 3. u' u0 as A -- 0. Furthennore, u + 0 as A  

Proof. Let us express the solution of (4.2.10) in terms of the eigen-
* 

vectors of B B; therefore, the expression of uA will take the form 

A u = E c.z.. 
- i=l  

Substituting into (4.2.10) we get 
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* S p * 
(B B + XI) cjz1 = E g ,B z1)z1 

i=1, - i=1 

=> 

=> 

Therefore, 

p S P * 

E c.(X +X)z. + E c.Xz. = E (g ,Bz1)z 
1 1 1 i _1 i=p+1 1 _1 i=1 

± = 1,2,...,p 

= p+l,...,s 

A (L*B z.) 

3! i=1 .i 

Since the expression of U0 is given by 

= 1L  

(4. 2.18) 

(4.2.19) 

it is clear that uX U° as A + 0. Moreover, it follows from (4.2.19) 

that u' + 0 as A + oo. 

Theorem 4. The equation f(A) = O has a solution and this solution is 

unique. 

Proof. Let us write the expression of f(A) as 

f  = (uA,UX) - EN/T. 

2 
since I I ° I I > EN/T, 
2 

therefore, if A is sufficiently small => I I 3!A > EN/T, i.e., 

f(X) > 0 for sufficiently small X. 

Also, we have 

** 3 ** 
7f (X) = -2 (B )R(X)Ba) < 0. 



-29-

Therefore, the function f(A) is monotonically decreasing. Moreover, 

since uX - 0 as A - => f(A) + -BN/T as A + • From the above 

results and since f is one to one, it follows that there exists a unique 

solution A,O<X<cx, for f(A)=0. 

4.3 NEWTON'S METHOD 

In this section we will give an iterative scheme based on 

Newton's method for computing A which is the solution of the equation 

f(X) = 0. 

Let A0 be chosen such that f(A0) > 0. This can easily be done 

if we choose A0 sufficiently small as seen from theorem 4. Choose An 

inductively such that 

= A - Xn)/Vf(An) (4.3.1) 

Before proving the convergence. .of the sequence {A} we need the 

f'ollowing theorem. 

Theorem 5,. Let g be a differentiable functional on an open convex set 

r . Rn. g is strictly convex on r if and only if for each z,, z2 e r 

9(z ,) > Vg' (•) 

Proof. For proof see reference 35. 

(4.3.2) 

We have all, the necessary information we need to prove the 

convergence of Newton's method. 

Theorem 6. The sequence {An} defined by equation (4.3.1) is a 

monotonically increasing convergent sequence. Furthermore, An t A as 

n + 00 , where A satisfies theequation f(X) = 0. 
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Proof. The proof that {A} is monotonically increasing will be by 

induction. Assume that f(A) > 0 and since Vf (An) < 0, it follows from 

(4.3.1) that n+l > An. In order for this to hold for all n we have to 

show that if 0n+l > 0. From (4.3.2), we have 

f(A) + Vf(A) n+lAn (4.3.3), 

Since from (4.3.1) the right hand side of (4.3.3) is equal to zero, it 

follows that f(X 1) > 0 => {X} is a monotonically increasing 

sequence. Since f(An) > 0 and f decreases monotonically with A, this 

implies that the sequence' {A} is bounded from above by A which 

satisfies f(A) = 0 => the sequence {} converges. 

Furthermore, from the convergence of {A} it follows that 
f(A •) 
vf(x) -)-0 as n +c°. But since Vf(X) is bounded, f(Xn) + 0 as 

n -•- oo and this completes the proof. 

4.4 SOME CONVERGENCE PROPERTIES OF THE DISCRETE PROBLEM 

The approximation of a continuous optimal' control problem by a 

discrete one for lumped parameter systems was not considered until 

36 
recently. Both Budak et al and Cullum37 treated this problem and 

showed, under certain reasonable assumptions, that the solution of the 

discrete optimization problem converged to the solution of the continu-

ous optimal problem. Moreover, Cullum in her paper showed that the two 

point boundary value problem, encountered usually in the solution of 

continuous optimal control problems, can be overcome by 'discretization. 

This is an important result, since the solution of discrete problems is 

usually easier than that of continuous ones. 

In this section we are going to show that the objective func-

tion of the discrete optimization problem will converge to the objective 
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function of the nondiscrete problem. By the nondiscrete problem we 

mean the minimizing of the objective function (3.2.2) under the con-

straint (3.2.3), where the control vector u(t) e L[O ,T] and u(t) is 

not subject to any further constraints. 

Let UN denote the optimal control vector of the discrete 

optimization problem and u (t) denote the optimal control vector of 
** 

the nondiscrete problem. It has been shown that u exists. We will 
** , 

siw that UN  will tend  to u as Ntendsto i nfinity provided that the 

linear bounded transformation A A is positive definite. 

:Let, U denote the set of all elements in L[O,T] which satisfies 

(3.2.3). Let UN denote the set of u (3.2.11) satisfying (3.2.18). 

Theorem 7. If I = inf. I(uN), then 
uNCUN - 

* * ** 

inn 'M = I I(u 

Proof. Since the set 'of continuous 'functions is dense in L[O,T], we 

can choose a vector of continuous functions v(t). U such that 
** 

I I -VII < ô and hence 

** 
I(u 

there e = 2kó I IAI I. 

** * 2 H 
= j.IIA -jI 'IIAa ii) 

IIA! *IIMIIA1a**_a*I 

** 
<kIIA(u-v)II 

+ IIAx.a*II 

<ki JAI l II **. !II  

< /2 (4.4.1) 
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Since each component v(t), I = 1,... ,r, of the vector v(t) is 

continuous on [0,T], therefore each v (t) is uniformly continuous on [0,T]. 

Hence given e 1 > 0, there exists 6 >0 such that Iv(ti) - v1 (t2) I < 
eV 

V t1, t2 c [0,T] such that It1-t21 < 6•, i = l,2,...,r. 

If we choose N sufficiently large such that TN < 6, then we can 

be sure that the oscillation of any component v1(t) in any subinterval 

['TN, (.+l)TN], £ = 0,...,N-1, is less than C], Therefore, the piece-

wise constant vector UN(t ,e1), coinciding on each subinterval 

[TN, (Q,+l)TN), 2. = 0,...,N-1, with the value of v(t) on [9TN, (2+l)TN) 

which is closest to zero, will approximate v(t) uniformly on [0,T] with 

accuracy c1. Moreover, i.(t, 1) belongs to 1L by our choice. Also, if 

we choose e < 6/ Tr, then 111(t) - uN(t,cl)I I < l Tr < 6. 'Following 

a' s indlar procedure to that used in deriving (4.4.1), we can show that 

lIC!) - I((t,e1))j < e/2. (4.4.2) 

Combining equations (44.1) and (4.4.2),, we get 

- I(UN(t,cl))I < e. 

From this inequality and the fact that 

** 

(3! ) ,< 

'it follows that 

** ** 

I(u ) . I (UN (t, el) ) IC ) + . (4 .4.3) 

Since 'IN is the greatest lower bound of 1(u) taken over all uNCUN, we 

have the obvious inequality 

* 

'N I(uN(t,cl)). (4.4.4) 
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Combining equations (4.3.3) and (4.3.4) , we get 

I(u**) . I(uN(t,el)) . I(u) + C (4.4.5) 

Since e can be chosen arbitrarily small, it follows from (4.4.5) that 

In the next theorem we are going to show that if the linear 

*  bounded transformation A A is positive definite, then we will have the 

stronger result of the convergence of the optimal control vector of the 

discrete problem to the optimal control vector of the nondiscrete 

problem. Hence, given any nondiscrete optimization problem of the 
* 

quadratic form considered in this thesis with AA > 0, we can obtain 

an approximate solution to this optimization problem using discrete 

inputs. Moreover,the approximate solution can be made as close as we 

wish to the exact solution. 

* * ** 
Theorem 8 If A A> 0, then UN + u as N + . 

Proof. Consider the objective function corresponding to an optimal 

discrete vector I We have 

• * * * * * 

I(UN) = (AUN- ,AuN-a) 

** * * ** ** *• * ** 

=(Au -a+A[u -u•;],Au -a +A[uN-u ]) 

** * ** ** * * ** * * ** 

= I(u ) + 2A[u -u ],Au -a) + ([N-H ],AA[UN-3a ]) (4.4.6) 

([uN u ] ,A A[UN-u •]) = 'N -I u ) +2 (q -Au ,A[UN-u 1) . (4.4.7) 

Using the necessary and sufficient condition for optimality (3.4.2), it 

* ** * •** 
can be seen that ( -Au )AEUN-u ]) O. Substituting this last 
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inequality into (4.4.7), we deduce that 

* ** * * ** * ** 

([UN_U ],AA(UN_u ]) < I(u)-ICU ) 

< c. (4.4.8) 

If N is chosen large enough, it is seen that (4.4.8) follows from 
* 

theorem 7. Also, since A A is linear bounded positive definite 

operator, then there exists two constants, k1 and k2, such that 

2 2 
k11 Ii I <. (u,A Au) < k (4.4.9) 

Substituting the leftinequality of (4.4.9) into (4.4.8), we get 

=> 

* 2, ** 

kllluN-u II <c 

* ** 2 
IL < £7k1. (4.4.10) 

Hence, the theorem follows directly from the inequality (4.4.10) 
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S. APPLICATION OF THE THEORETICAL RESULTS 

TO TWO SPECIFIC EXAMPLES 

5.1 INrRODUCI'ION 

In the last two chapters we were concerned with obtaining a 

necessary and sufficient condition for optimality from which we derive 

an optimality equation whose solution yields the optimal control vector. 

In this chapter we are going to apply the results obtained in 

chapters two and three to solve two examples. The first example con-

sists of minimizing the total energy of a vibrating string in a given 

time subject to an energy constraint'on the control function. The 

second example is concerned with a system described by a diffusion 

equation and our objective is to attain a temperature distribution along 

the slab which is as close as possible to a specified temperature 

distribution. Also, an energy type constraint is imposed on the con-

tról function. 

5.2 TRANSVERSE VIBRATION OF.A STRING 

Consider the transverse vibration of a string whose displacement 

w(x,t) from the equilibrium position is given by 

2w(xt) T a 2 (L)  0 < x < k, t c [O,T] (5.2.1) 
at ax. 

with boundary conditions 

w(0,t) = 0 ; w(2,t) = f(t) (5.2.2) 

and initial conditions 

wt (x,0) = 0 , w(x,O) = 0) (5.2.3) 
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where p denotes the density of the string material, T denotes the ten-

sion and 2 denotes the length of the string. If we assume for 

simplicity that P. = it and p = T = l then (5.2.1) will take the form 

wtt = O<x<2,O<tT. (5.2.4) 

Using the transformation of variable 

v(x,t) = w(x,t) - . f  (5.2.5) 

and substituting the expression of v(x,t) from (5.2.5) into equation 

(5.2.4), (5.2.2) and (5.2.3), we get 

where 

= v - . U(t) 

u(t) = d2f(t) 

dt 

with boindary conditions 

v(O,t) = 0 , v(2,t) 0 

and initial conditions 

v(x,O) = wt (x,O) - ft (0) 

v(x,0) = w(x,0) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

Assuming that f'(0) = 0 , the initial conditions with respect to the 

new variable v(x,t) will be 

vt(x,0) = 0 v(x,O) = 0. (5.2.10) 
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We are going to take u(t) as our control function, 38 i.e., we 

are controlling the vibration of.the string by applying a control fimc-

tion in the form of an acceleration on the free end of the string. 

Our aim is to minimize the total energy of the string which is given by 

I (u) = f + TW 12 )dX 

0 

= 1t (w+ w)dx 
J  

subject to the energy .constiaint 

fu2 (t) dt < E 

(5.2.11) 

(5.2.12) 

where B is a given constant. 

Using the method of 'separation of variables , 39 the solution of 

equation (5.2.6), with zero initial and boundary conditions, is given by 

n t 

v(x,t) = a {(T1  f'sin[n(t-,r)1u(-r)drIsin(nx). (5.2.13) 
Trn=l n 

0 

Therefore, the expression of w(x,t) and w(x,t) will take the form 

x,t) = vt (x,t) + f' (t) , 

.'=vt(x,t) + XJu(T)dT 

CO 

= J {. + . Z1   sin(nx)cos [n(t-T)] }u('r)dt 

and 

5.2.14) 
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w(x,t) = v(x,t) + -7-

t 

= v(x,t) + [f(0) + J (t-T)u()dT] 

0 
t 

= f(0) { (tT) + E 1)  cos(nx)sin[n(t-T)]}u(T)dT. 
it it it n=1 fl 

0 
(5.2.15) 

wt(x,T 

w(x,T) 

Hence, at the final 'tine T, w, (x ,T) and w (x ,T) will be 

co 
T T  sin(flX)co,[n(T-T)] }u(t)dT 

- f(0) + (T-t) + . (l) 1 
' 

it it it n=1 fl 

0 

0 

cos (nx)sin[n(r-T) ] 

(5.2 .16) 

(5.2.17) 

Comparing this problem with our original problem represented by 

equations (3.2.1) and (3.2.2), we can easily deduce that 

where 

and 

fK(x,T,-r)u(T)d-r + 

K(x,T,T 

0 

f(0) 
it 

(5.2.18) 

I. l•fl 

x + 2 E   sin(rix)cos[n(T-t)]} (5.2.19) 
n=1 

I 00 

K21 (X,T,T) = . {(T-r) + 2 z '  cos (nx)sin[n(T-t)]}. 
it n=l' 
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(x) 

The objective function I (u) an be expressed as 

where 

1u) = 4 • f [qi(x,T) - qx))dx 
i=1 

0 

q •(x) = 0, 

(5.2.21) 

i = 1, 2. (5.2.22) 

* 
Using equation (3.2.20), the expression for a (x) is 

0 

(5.2.23) 

From (3.2.13), the expression of K,(x) is given by 

(R.+l)TN 

K(x) = J K(x,T,t)dt = O,1, ... ,N-1. (5.2.24) 

Hence, performing the above integration yields 

K(x) 

nT$ 2.+1 
+ 4 E. 1 : sin(nx)sin()cos(n(T7r N  2 TN)]) 

n=1 n 

CO  
1 {T (T 2+1 n nT ______ ___ 

it N 2 TN) + 4 cos(nx)sin(_2!)sin[n(T — 2  1—T  
n=1 n 

= 0,1,...,N-1. (5.2.25) 

By denoting the square matrix. B B by C and taking into account 
* 

the definition of the matrix B B, as given by (3.3.2), and performing 

the necessary multiplication and integration needed, it follows that an 

element C i,j = 1,...,N, of the matrix C can be expressed as 



-40-

2 2 
2 cii =—•J(T 21-1. ¶ - 2 TN) Cr - - 1 TN) + - {- sin2 nT (_2!) 

n=1 

4TNOOl nT 21-1 
Cos [n(i-j)TN]} — E -s- {cos(n(T - 2 TN) + 

n1 n 

cos(n(T - 2-1 TN)]1. (5.2.26) 

* * 

Furthermore, it can be shown from the definition of B and a equations 

(3.3.1) and (5.2.23) respectively, that an element (B*a*)j of Ba can 

be expressed, as 

(**) =  °) TN Cf - 2-1 TN) 1= l, ... ,N(5.2.27) 

Using (5.2. 26) for calculating B*B, formula (5.2.27) 

lating Ba and (5.2.23) for calculating a and taking f(0) 

E 0.2x10 3 and T = 12, the following results were obtained 

for calcu-

= 0. 2, 

for 10 

sampling periods: 

Lagrange multiplier A 0.948 

Objective function = O.432x10 4 

The optimal discrçte control vector is given in Table 5.1. 
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TABLE 5.1 

OPTIMAL CONTROL VECTOR u 

Sampling Period Control Function U 

2 

3. 

4 

•5. 

6 

'7 

8 

9. 

.10 

-0.541x10 2 

-0. 396x10 2 

-0. 399x10 2 

-0.40lx10 2 

-0.568x10 2 

0. 926xlO -3 

0. 405x10 2 

0.399x10 2 

0.400xl0 

0. 280x10 2 

The Lagrange multiplier x was calculated using Newton's method 

and it took six iterations to compute it with an accuracy of the order 

of 10. 

The final displacement and velocity of the string corresponding 

to this optimal control vector were calculated and are tabulated in 

Table 5.2. 



-42-

TABLE 5. 2. 

FINAL VELOCITY AND DISPLACFMEI"ff OF THE SFRING 

x/2 Displacement Velocity 

0, a 
0.1 -0.279x10 5 0.247x10 4 

0.2 .-O.l44x10 4 0.543x10 4 

0.3 -O.352xl0 4 O.818x10 4 

0.4 -O.381x10 4 -0.172x10 3 

0.5 0.161x10 3 -0.131x10 2 

06 0.752xl0 -0.302x10 2 

0.7 0.159x10 2 -0.530x10 2 

0.8 0.243x10 2 -0.625x10 2 

0.9: 0.316x10 2 -0.874x10 2 

1.0 0.316x10 2 -0.874x10 2 

To show the convergence of the objective function of the dis-

'crete case to the objective, function of the nondiscrete one, the same 

example has been solved for different sampling periods and the results 

are given in Table 5.Z. ', 
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TABLE 5.3 

VALUE OF OBJECTIVE FUNCTION 

FOR DIFFERENT NUMBER OF SAMPLING PERIODS 

Number of 
Sampling Periods Objective Function 

0.786xl0 

10 0.432xl0' 

15 0.408x10 4 

20 0.371x10 4 

30 0.356x10 4 

40 0.350x10 4 

50 0.345x10 4 

5.3 HEATING A SLAB OF METAL 

In this section we consider the heating of a slab of metal whose 

thickness is unity. We are going' to control the temperature distribu-

tion along the slab by controlling the temperature of the gas medium 

adjacent to , the surface of the slab. The equation which describes the 

temperature distribution at any instant of time is given by the diffu-

sion equation 

92q(x,t)  
x2 at 

with initial condition 

and boundary conditions 

t c [0,T], x c (0,1] 

(5.3.1) 

q(x,0) = 0 (5.3.2) 
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aq(x,t)  
ax 

aq(x,t)  
ax 

= a{q(O,t) - u(t)} 
x=0 

=0 
x=l 

where 

a = heat transfer coefficient, u(t) = temperature of gas medium and is 

the control function and q(x,t) = temperature distribution of the metal 

slab. 

The objective is to minimize a quadratic performance index of 

the form 
1 2 

1(u) = {q(x,T) - q(x)} dx 

subject to the constraint 

Tf u 2 (t)dt <  E. 

(5 3.5) 

(5.3.6) 

Solving the diffusion equation (. 3.1) under the initial and 

boundary conditions (5.3.2), (5.3.3) and (5.3.4) we get 

cos ((1-x)) -  (T-t) 
q(x,T) = 2 1   e u(t)dT (5.3.7) 

1 1+a 
+ 

where flj 'S are the roots of the transcendental equation Otan = a. 

Therefore, K(X,T,T) and q0 (x) will be given by 

CO cos((l-x).) 
K(x,T,t) = 2 E  1+a e 

+ --)cos 1 

Oi 

and 



-45-

q0 (x) = 0. (5.3.9) 

If we take q(X) = q d7  constant, it follows from (3.2.20) that 

(5.3.10) 

Also, it can be shown using (3.2.13) that 

OD e cos ((l-x)) 
K (x)=2 2 {e }. (5.3.11) 

'   
i=l . 

1 + a) Cos 

Again, by denoting the matrix B*B by C, the element C,j of the 

matrix C will be given by 

Co 

C..=2 E 

-2 2T 2 
e 

 2 (1 - 

2 

Cos 2;)(1 + a (5.3.12) 

* 

Using equation (5.3.10) and the definition ofB as given by 

(3.3.1), it can' be shown that an element (B*q*)j of the vector 

will have the form 

(q*) = 2q i1 -T •  {e00 )1 N(l 

1 (1+c+--) 

j= l,...,N (5.3.13) 

Taking T = 0.4, c = 10, N= 10, q = 0.2 and B = 0.06, the following 

results were obtained: Lagrange multiplier = 0.456x103. The optimal 

control vector corresponding to this Lagrange multiplier is given in 

Table 5.4. 
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TABLE 5.4 

OPT DIAL CONTROL VECTOR 

Sampling Period Control Function u 

1 0.367 

2 0.397 

3 0.426 

4 0.455 

5 0.476 

'6 0.481 

0.447 

8 0.334 

9 0.097 

10 0.194 

Seven iterations were required to compute the Lagrange multi-

plier to an accuracy of the order of 10. The final temperature 

distribution along the slab corresponding to the optimal control vector 

was calculated and is given in Table 5.5. 
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TABLE 5.5 

FINAL TEMPERATURE DISTRIBUTION ALONG THE SLAB 

x Temperature 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.188 

0.199 

0.201 

0.202 

0.202 

0.201 

0.197 

0,193 

0.189 

0.186 

0.185 

The computations were performed on the M 360/50 digital 

computer of the University of Calgary. 
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6. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 

6.1 CONCLUSIONS 

The optimal control of linear distributed parameter systems, 

which are representable by a linear vector integral equation, has been 

discussed. The .problem of minimizing the mean squared-error between 

specified desired final state functions and the actual state functions 

at a prescribed final time, subject to an energy constraint on the 

control actions, has been solved using a necessary and sufficient con-

dition from functional analysis. An algorithm, based on Newton's method, 

has been derived to compute the Lagrange multiplier A for the case 

where the control vector lies on the boundary of the constrained region. 

The computation needed for this algorithm is relatively small. 

The convergence of the objective function corresponding to the 

optimal discrete control vector to its corresponding optimal one when 

the control vector is not restricted to be discrete in time has been 

proved. Moreover, the convergence of the optimal discrete control 

vector to the optimal measurable control vector has been established 
* 

for the case where the linear bounded transformation A A is positive 

definite. These convergence properties are important, since in solving 

the nondiscrete optimization problem corresponding to the same objec-

tive function considered in this thesis, one faces the difficulty of 

having to solve a vector Fredholin integral equation (see Weigand1). 

To obtain a numerical solution for the Fredhoim integral equation, an 

approximation technique must be used. The convergence properties of the 

discrete problem provide us with an alternative way of obtaining an 

approximate solution for the nondiscrete problem, namely, by solving the 
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corresponding discrete problem. The solution of the later problem is 

relatively easy, since it only involves the solution of matrix equations. 

6.2 SUGGESTIONS FOR FURTHER RESEARCH 

The work done in this thesis can be extended by restricting the 

control vector to belong to a closed convex set. In this case, it will 

not be possible to obtain an explicit equation whose solution yields the 

optimal control vector. An approach for solving this problem could be 

to try to use the necessary and sufficient condition for optimality 

(4.4.3) to derive an algorithm for computing the optimal control vector. 

For partial differential equations, it is not always easy to 

obtain an exact solution. Thus, ultimately we usually seek to obtain 

some sort of an approximate solution. It would be interesting to 

investigate the possibility of convergence of the optimality problem 

corresponding to the approximate solution to the same problem if we use 

the exact solution instead. It is also worth determining under what 

conditions will the optimal control problem, with discrete control 

vector and using the approximate solution of the partial differential 

equation, converge to the same problem without any approximation or 

restriction on the control vector to be discrete in time. 
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APPENDIX 

COMPLETE CONTINUITY OF THE OPERATOR A 

We are going to show that A is a completely continuous trans-

formation by showing that A A is completely continuous (ref. 32, p.373). 

From (3.2.6), the linear transformation A is defined by 

T 

A u = f KQ•,T,T)u(-r)d 

Applying the adjOint operator' of A on (A.1), we obtain 

T 
* (.1,' 
AAu= J {JK (x,T,t)K(x,T,'r)dx}u(r)dT. 

0 92 

From (3.2.7) and (3.2.8) it follows that 

A*Au= f tt)u(T)dt 

(A'. 1) 

(A.2) 

(A.3) 

The complete continuity of A*A follows directly from (A. 3) and assnnp-

tion (3.2.9). For, proof see Taylor (ref. 40, 'p 77). 


