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ABSTRACT

‘The problem of minimizing a quadratic performance index subject
to an energy-type constraint on.the control vector is considered in this
thesis. The control vector is restricted to be discrete in time. The
problem is formulated as a minimization problem in a Hilbert space and
the existence and‘uniquenesshof the optimal control vector is shdwn.

A necessary and sufficienf condition for optimality is derived
which is used to yield an equation whose solution gives the optimal
" control vector. It is shown that if the optimal control vector lies on
“the boundary of the constrained regién, then the Lagrange multiplier
must be determined in order to solve the corresponding optimality
‘ équation: An algorithm Based'on Newton's method is presented for the
- calculation of the Lagrange multiplier, and the convergence of the
algorithm is proved.

‘The:conVergence of the objective function, corresponding to the
optimal discrete control vector, to the same objective function when
the control vector is not restricted to be discrete in time, is Shown.
Fprtherﬁore, a qohditién is derived which, when satisfied, assures that
the optimal discrete‘control vector will converge to the nondiscrete
) opfimal control vector as the number of the sampling. periods tends to
infinity.

Two. examples are présentqd to show the application of the

theoretical results, and numerical solutions are given.-
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1. INTRODUCTION

1.1 GENERAL

In physical situations, one‘often encounters systems whose
pafameters are distriboted in both space and time. The dynamic behavior
of these systems is governed by partial differential equations, integral
equations, integrodifferentielrequations and sometimes -by more general
- functional equations. The name distributed parameter is used for these
systems so as to‘aifferentiate them from others whose behavior can be
' described'by,ordinary differential equations. Usually, the name lumped
'pérameter'ie ueed for these latter systems.

In general, the problem of optimal control arises from attempt-
ing to minimize @max1mlze) a certain functional of the state and of the
controlllng actlon.r Constralnts usually exist due to practical limita-
fions eﬁd this 1eads to‘reetrictions‘ontehe state as well as on the
:controlllng fUnctlons. | |

In attemptlng to fbrmulate these problems one has to make the
._formulatlon broad enough SO as to 1nc1ude many physical systems. On the
other hand, one has to narrow the 1nvest1gat10ns since a general formu-

,latlon leads to resultS.whlch:are usually difficult to apply.

1.2 THESIS OBJECTIVES AND OUTLINE ”

The main purpose of this the51s is to 1nvest1gate the problem
of m1n1m1z1ng a quadratlc perfornwnce 1ndex under an energy type con-
straint on the control vector. A.problem similar to that of Welgand is
,treated subject, however, to the add1t10nal constralnt that the control
vector is discrete in time.’ ThlS restriction is 1ntroduced due to the

trend of using on-line digital computers to control industrial processes.
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We also study the convergence of the optimal discrete problem to the
-nondiscrete optimal one asrthe nunber of the sampling periods tends to
.infinity. Apart from 1ts theoretical beneflt which establishes a link
between the discrete and the nondiscrete problem, thls study prov1des us
with a tcol by which we can approximate a distributed parameter system
mith‘measurahle inputs by a corresponding discrete one whose solution is
much easier to.obtain
| The main outline of the thesis is:

- Chapter 2 contalns a review of the work done in the f1e1d of
*optimal control of distributed parameter systems which is significant to
the work reported in this the51s. “ 7

In Chapter 3 the performance index is introduced and the problem
" is formulated;as a mlnlmlzatlon_problem in Hilbert space. The necessary
;and sufficieht conditionrfor‘optimality is derived and the existence and
,'uhidueness of the Optimal“control vector are shown.

‘Chapter 4 is concerned with . soiving the optimality equation
ualng Newton s method The convergence properties of 'the optimal dis-
‘crete problem are also 1nvest1gated

. In Chapter 5 two examples are glven to demonstrate the appllca-
“ tien of the theory. Computer results are also presented
| N Chapter 6 draws conclusions concernlng the -results obtalned

throughout the the51s and glves suggestlons for further research.
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2. REVIEW

2.1 OPTIMAL CONTROL OF DISTRIBUTED PARAMETER SYSTEMS
| Butkovskii and Lernerz‘ were among the first to consider the
optimal control of distributed parameter systems. They posed a general
problem for first and second order partial differential equations which
have both functional and. amplitude type constraints on the controlling
functions and a pei"fomance index in the form of a general functional.
In a later paper Butkovskii® developed a maximum principle for
a &istribu!;ed paramete'f syétem whose motion is described by a nonlinear
‘integral relationship. He used an objective function in the form of a
general functional. Using Ponti'yagin's maximum principle, he obtained
an J’Jﬂpli(:it form for the optimal éontrol function which involves the
solﬁt‘ion of a nonlinear integral eqﬁation. The solution of such an
equation is not easy in general. |

. 4,5,6

In subsequent papers, Butkovskii developed a géneralized

maximum principle for distributed parameter systems which can be put in
the form of a set of integralrequations. Again the solution is in an
implicit form which is difficult to use.

7

. Butkovskii’ considered a linear system with distributed param-

eters of the form
: t :
. Qx,t) = f K(x,t-t)u(t)dr, 7 X e [0,s] and t ¢ [0,T]
‘ ) _
where Q represents the system state and u represents the control

function. He posed for this sysfem the following problem:

Find a control function u(t) , lut)| < L for which the relation
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. T ‘
* : ,
Q ) = J Kx,t-t)u(r)dr
‘ )

‘is satlsfled where- Q (x) is. given and the final time T 1s to be -
mlmmlzed He solved thlS problem by using results concerning the L-
problem of moments due to Krem.8 In subsequent papers,9 »10,11
Butkovskiir applied his resultsél to solve the optimal control problems
of a weve equation and also _ofr a vibrafing string. |

“ Egorov12 exarniﬁed ‘ce‘rt‘ain questions in the theory of. controlled
thermal processes which are conrgected w"ith the choice of a control that
is in’some sense optimal. He treated the minimal time problem and a
problem with a quadratic cos“‘c, with an amplitude constraint on the con-
trolling' function in b'oth cases. Moreover, he studied the existence -

13 treated the

and un1queness of the optlmal control Later on, Egorov
,problem of optimal control of systems described by a second order para-
bolic equatlon and he deduced a maximum pr1nc1p1e as a necessary

. condition for optnmall‘_cy. .Bl}tkOVSkllr and Egorov14 gave a survey paper
containing most of the Soviet work in the field of optimal control of

7 distrirbuted“ paremeter systems.

| . - A general discussion qnv.the»prpperties as well as the optimal
control preblem of distributed parameter systems was presented by Wang

and Tung. 15

They discussed (a) the mathematical description’ of distri-
buted parameter systems, (b) the controllability and observability of
these sij:éms, (c) the fonnula’tior'y ‘of optimum confrol problems and the
derivation of a maximum priheiple for a particular class of systenms,
and (d) the problem associated with appro>;imating distributed parameter
systems i)y 'dis'cretizatio,n. A more detailed ‘and'comple.te discussion of

distributed parameter systems was presented by Wang.16
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Wangl?

considered the optimal control problem associated with a
diffusion system with a free boundary. This arises physically from
attempting to control the rate of solidification of a liquid. He formu-
lated the control proBlem as an infinite dimensional mathematical
programming problem (linear), and then approximated it by a correspond-
ing finite dimensional one. He also established the convergence of the
approximation.

Sakatwa18 treated the .problem of optimal control of a distributed
parameter system goverr:led 'b'y a heat conduction equation. His objective
was to minimize the deiriatioh of the temperatﬁre distribution from an
assigned distribution at a given time subject to an amplitude constraint
on the controlling function. Using calculus of variations he obtained
a Fredholm integral equation of the first kind as a necessary condition
for the optimal control. |

9 treated the more general problem of the optimal con-

Sakawa1
trol of a one-dimensional linear stationary distributed parameter
system controlled by boundary functions which act at both ends of the

one-dimensional space. He minimized an objective function of the form

1« 2 2 T ,
1w = [ @-aen e 3 |
o - S i=1 o
where q(x,t) is given by
- N . Zr t
qx,t) = q (x,t) + I J g; (x,t-1)u, (1)dt
: ¥ i=1 /. |
: 0
~where
% ‘ ‘ - '
q (x) = the desired final temperature distribution
q(x,T) = the actual final tfanq)erature distribution

i

T = the final time of the process



~6-

Uy (t) and u, (t) = the boﬁndary control functions

| cy and c, = positive constanté which' act as weighting factors.
Using functional analysis he reduced the problem to the minimization of
a QUadratic functional in a Hilbert space. By using the variational
method for the unconstrained case, he obtained a Fredholm integral

- equation of the second kind as a necessary and sufficient condition.

In the case of ‘cbnstraint_s of the form,

a; < u;(8) < by i=1,2

and by using fhe ,Kuhn-Tﬁcker theorem for nonlinear progrémhg, he
obtained a system of nonlinear integrai equations of a fom.sinlilar to
the integral equation of the Hanmerstein t}pe. Under suitable assump-
tions, he solved this equatién using successive approximation.

Axélbapdzo presented a solution for the unconstrained optimiza-
tion problem of diStfibute& systemS wherein the control ac"grion and
control ‘are related by a bounded linear 'operator. He used function
space ‘techniques to prove the existence and uniqueness and to derive
neéessary ‘and sufficient conditions for the optimél control for a‘
quadratic performancé index. Axelband?l developed an approximate
technique for the optimal control of linear distribui:ed parameter sys-
tems with an amplitude constraint dn fhg control function. He
considered a performance index of the iﬁtegral squared error type and
derived an algorithm for the computation of the optimal control func-
- tion by a ﬁonlinear 'pngrmmning:procedure.

22 used dynamic programming to obtain the

* Kim and Erzberger
optimum feedback boundary control function for a distributed parameter

system which is described by the n-dimensional wave equation. They



.
considered a qpadratic performancé index for an unconstrained control
function. The functional equation for the optimurﬁ controller, analo-
gous to the matrix Riccati equation obtained by Kalman for lumped
parameter systems, was shown to be a nonlinear partial integrodifferen-
tial equation. They showed that, for a certain type of weighting factor
in the quadratic error index: , the nonlinear functional equations can be
soived by using the method of separation of variables.
‘ Weigand1 in ‘his papér considered the problem of obtaining the
optimé.l control functions, subject to an energy-type constraint,' which
minimize a performance index of a quadratic type for the control of
linear distributed parameter systems. He formulated the problem as a
minimization problem in Hilbert space and derived the necessary and
sufficient condition for optimality using both functional analysis and
variational methods. He obtained the éptimal control function by
solving the Fredholm inteéral' equation with syrmnétric kernel and gave
an explicit form for the optimal control function in terms of eigen-
-function expansions. - |

Vidyasa.ga‘r23 solved the same problem of Weigand for one-
dimensional distributed parameter systems. He used the Kuhn-Tucker
theorem of nonlinear programming 1n dériving a necessary and sufficient
cohdition for optimality. In fact, he obtained almost the same results
as Weigand, but using a different approach.

Goldwyn24 et al showed the applicability of the Laplace trans-
" formation for the determination of the time optimal control of a
linear diffusion process with amplitude constraint on the control.
They used a method which can' be interpréted as requi’.x;ing a control

whose transform, in combination with the initial condition, places
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zeros at the poles of the open loop transfer function to derive the
optimal control function on the aésumption that it is bang bang.

For distributed parameter systems described by parabolic equa-
. tion, Gal'chuk25 studied the possibilii:y of translating the system to
a stationary regime subject to an amplitude constraint on the control
‘f'unction. He showed that this problem is equivalent to a certain
problem of moment and gave conditions for the attainability of
stationary sfates. |

26

Balakrishnan™" treated the problem of minimizing the distance

||Lu - x||

where. L is a compact linear operator mapping the Hilbert space Lg[o,T]
into the Euclidean space Rn, X is a given element in Rn, and u is the
control vector and is restricted to belong to a closéd convex subset
of Lg[o,T]. Without using the finite dimensionability of Rn, he
showed the existence and uniqueness of the optimal controi. He pre-
sented an algorithm based on the éteepest descent method to compute
the optimal controi vector. However, his algorithm is not practical
from a computational point of view.

~ An almost exhaustive and commented i)ibliography prior to the

27

end of 1969 was given by Robinson. Also, an excellent survey on the

optimal control ’of distributed parameter systems was presented by
Lions.28 |

- All the aforementioned results.for distributed parameter sys-
tems gave solutions in terms‘ofr control functions which are not

discrete. As far as the éuthor knows, .only the following papers

treated the problem of 6ptimum distributed parameter systems whose
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control function is discrete in time.

Lorchirachoonkul and Pi,érrezg‘ considered the problem of
minimizing, at certain discrete points on the spatial domain, the
deviation'between a desired response and the actual system response of
a linear distributed parameter:system subject to constraints on both
control and state function. Using a d:iscréter control function, they
ar’educe‘d the problem to a linear programming problem whose solution can
easily be obttained. |

Matsumoto and Kito?’0

studied the problem of designing an
optimal feedback controller based on a quadratic perfonnance ‘index for
a distributed system describedrby a partial differential equation of
the parabolic type with spatially concentrated controls. They assumed
the presence of an on-line digital con@uter and they considered the
control function to be discrete with respect to time. Using dynainic
programming, they obtained the optimal control as a function of the
system state. |

1 treated the unconstrained problem of

Hassan and Solberg3
optimal control of a distributed paraineter system with a quadratic cost
functional. They restricted their ¢ontrol function to be discrete in
time and used the technique of dynamic programming to derive an
-expression for feedback control in terms of an auxiliary épaﬁal
dependent variable. They showed that this variable satisfied a Riccati
type functional equatinn with an unknown finél value. Using an
orthogonal series expansion, they transformed this equation to a
recursive algebraic equation 'in the coefficients of the expansion.

They demonstrated the applicability of the method by an example of an

automatic regulator for the flux pattern in a slab nuclear reactor.
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3. OPTIMAL CONTROL OF LINEAR DISTRIBUTED PARAMEIER SYSTEMS
WITH A QUADRATIC CONSTRAINT

3.1 INTRODUCTION

In this chapter we present the optimal control problem which f
consists of minimizing a quadratic performance index under an energy-
type constraint for linear distributed parameter systems. We restrict
the control function to be discrete in time. This problem is formulated‘
as a minimization problem in a finite dimensional Euclidean space.
Using a necessary and sufficient condition from fuﬁctional analysis, we -

arrive at an equation whose solution gives the optimal control function.

3.2 FORMULATION OF THE PROBLEM
Consider a linear distributed parameter system. The system
. states are assumed to be désqribed by state functions which can be

expressed as
t : |
aGt) = [ Kot mulmd + B 9,0 (3.2.1) |
) X

where q(x,t) is an n-dimensional vecfor representing‘thg state of the
system, X is an m-dimensional spatial coordinate, xeQ, where Q is a
simply connected Opeﬁ subset. of an m-dimensional Euclidean space, 9§
~ denotes its boundary and t is time tO <t<gT). u(t) is an r-dimen-
sional control vectof which could be either a boundary control vector
or a spatially concentrategl control vector. Moreover, it could be a
mixture of both types. q, (x) is an n-dimensional vector representing
the initial state of the—system, H(x,t) and K(x,t,T) are (mn) and
(nxr) matrix linear operators respectively whose elements are known

functions which are .determin'ed corresponding to given partial
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differential equations and initial and boundary conditions.
The following control problem is posed. Find the control vector

u(t) of minimal norm which minimizes the objective function

n 2

1@ = I [ lay0eD - gy @1 & (3.2.2)

i=1} Y
Li'nder: the constraint ‘
T .

I 2 ,
5 J ui(t)dt < B (3.2.3)
i=1 ) | |

where T is the final time and. q d(x) is an n—dlmensmnal vector repre-
senting a prescrlbed spatial dlstrlbutlon functlon of the states.

Let Lz‘(Q) denote‘the real Hilbert space of n-dimensional
functions square integraBle over Q and Lr[o T] represents a real
Hilbert space of r- d1men510na1 functlons square integrable over

; (o,1). Defme the inner product of two vectors p and q in L2 (9) by

- g = J P g)dx . - (3.2.9)
Similarly, denote the inmer product of’i two -vectors u and v in .LIZ‘[O,T]
: - s T . : ‘
w,v) =>f u (t)v(t)dt (3.2.5)
o -

where  denotes the transpose of a vector or a matrix.

Define a transformation A from Lg[o;T] into LIZI(Q) by

. - T - )
Au = I K(x,T,)u(t)dr. o (3.2.6)
o ' | -

It.is clear that A is a linear operator. Let us define an (bfr)

square matrix G(x,t,T) .‘by
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G(x,t,7) = K (x,T,t) K(x,T,7). (3.2.7)

Furthermore, define another (rxr) square matrix @(t,t) as.

B(t,T) = J G(x,t,T)dx . (3.2.8)
| 0 |

Assuming that

s

1]

‘1,31J

‘It can be shown that A is a completely continuous operator (see appendix).

O“——\

o, (t,0)%dtdt < @, (3.2.9) -

" Let us also assume that H-'is a linear operator with range in‘erl(Q) .
We will assume that the control vector u(t) is a discrete
function of t:ime Assummg that the number of sampling perlods is N

‘the sampling perlod TN is glven by

Ty = TN C(3.2.10)
: and, hence ,.”‘y_.(t) will be defined as-
ST, 2= 0,1, N1 (3.2.11)

E(t) = E’Q' ’ R'TN‘

Substituting (3.2.11) into (3.2.1) yields

4D = | KGx,T, () + HOuT)a, )
| ;1 ' fm)'r |
= I : K(x T T)u dt + H(x T)q x)
=0
, 2Ty
= 250 _Igg(zg)y_z +£I_F3c;aT)go(§) (3-2-1?) ,

‘where Kﬂ'(gc'_) y 4= 0.,1,‘. «osN-1 is an (nxr) spatial matrix given by'
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(R+1)Ty
Kz()_c_) = J K(x,T,t)dt L2 =0,1,...,N-1 (3.2.13)

iy

The énergy constraint (3.2.3) will reduce to
r N-1 2

r z uy < NE/T - (3.2.14)
i=1l #&=0 %

where u, denotes the ith component - of ‘the vector u(t) during the
. ) 2’ R -
interval [R,TN,(2.+1)TN]. Let us define an (nxs) spatial matrix B, where

s = TN, as

B = [K, K ..... Ky.1! | (3.2.15)

Also define an s-dimensional column vector u by

e
il

(3.2.16)

v

where % is  defined in (3.2.11), so the (#r+i)th component of u equals

di . Taking ‘(3.2.16) into consideration, (3.2.12) and (3.2.14) reduce

R
1;0
@D = Bu + Hx,Dq,x) - (3.217)
| R =
CEoup € NE/T. S (3.2.18)

Ci=l
Let us define the nomm -of an element }_1_1n the s-dimensional Euclidean

- space by -
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1
2'

Ll = ( 21 h? - (3.2.19)

"I'hen B deflnes a compact linear: operator from R® into LB (Q) whose range

is finite dimensional. Define Sl (x) as
¢ = qq® - Hx,MDq, ). ' (3.2.20)

*
"It is clear that g (X) ¢ Lg(sz) , and the problem reduces to finding a

control vector u e RS with minimum norm which minimizes
D 2 o ‘
IWw = |B@u - g @] : (3.2.21)
Subj ect to the constraint

llull'2 NE/T o . (3.2.22)

3.3 EXISTENCE AND UNIQUENESS OF THE OPTIMAL CONTROL VECTOR
Theorem 1. A closed 'cem‘rex subset of a Hilbert space cohtains*’ a
unique element of mlnlmal norm.
Proof. For proof see. reference 40, p 243

.Let C denote the closed sphere of radius NE/T in R then we
4 can state the follow:mg theorem ‘ o
Theorem 2. 'Ther,e exists a unique el‘emen‘tg* of minime.i nemi.in o}
such that | | -

} : * %
meBu-gll HBu -q|].
uaC

‘Proof. Let ‘{un} be a sequence of elements in C such that
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" L L% . ‘ *
lim [[Bu -q || =inf [[Bu-gq|].
nrw —_— - 1_1_@(3 ‘

Since C is a bounded closed subset of R?, i.e., compact, this implies
that there exists a convergent subsequence {u, } whose limit v e C.

 Therefore, we have

. &% C *
[IBv-q || =dnf |[Bu-q]||.
, ' ueC

v}. This is a closed convex set

Now, :éon‘sriderl the set D = {_g_eC]l%_ u=B
gnd therefore, by theorem 1, it rﬁust contain a unique element 1_1* with

' mlmmum norm. This cbmplétes the proof.

Let _12* be the adjoint opératof of B, and let v be any element in

*
R® and' q be any element in LIZI(Q) . Then B is defined as

@ v, = (z,?;*&)
@B - | v'B Wadx
- v [ B et
. Q
' N * ' ) ‘
- B | B wawa 330
Q

Since B is bémded, it follows that _1_3_*13_ is .a bounded linear
transformation defined on R, mapping R® into R® and, sixnilarly, B _B_*
is a bounded linear transformation mapping szl(sz) into itself. It isr
worth noting that both _]_3_*_]_3_ and B 13_* are compact operators. This follows
directly from the fact that B is compact and §* is continuous (ref. 32,
pP. 2'90).7 Furthermore, g*_l}_ is an (sxs) positive semidefinite Hermitian

matrix which is given by
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CE R e T (3.5.2)
Q

: : *
Since the matrix B B is positive semidefinite Hermitian, there-
fore the eigenvalues of B B are real and non-negative. Let {Ai},

i = 1,2,.....,p < S} xl > >‘2 2 eeeen > Ap, be the nonzero eigenvalues

%
of B B and let the z; be the corresponding orthonormalized eigenvectors.

= |
Hence, if z ¢ Rs, then B B z can be written as

(3.3.3)

‘3.4 NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONI‘ROL?33

Theorem 1. Let z be a vector in a Hilbert space H and let W be a con-

vex subset of H. If there exists a Yo € W such that
lz-yoll < llz-yll  VyeWw @41
A necessary' and sufficient coﬁdition for 2’_ o to satisfy (3.4.1) is that
(- Yo L= Yg) €0 VyeW (3.4.2)

Proof.

Necessity: Suppose Yo is a minimizing vector, i.e., it satisfies con-
dition (3.4.1) and we want to show that (3.4.2) holds VyeW. Suppose
that (3.4.2) is false; i.e., there exists a vector yieW such that

(Z- Yy Y-V =€>0.

Consider the vectors Yy = (1-0:))7.0 * ooy, 0<agl. Since Wis a con-

vex set, it follows that each Y eW. Also,
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]

1z -y, 17 = @ @yy + syl

~ 2 2
- |27, 12 + 20(1-0) (Zygozyy) * ol zoyy ]|

]

-0 |2y 12 + 20(ad {2y ,2y) *+ (27 yy))

2 12
+ o] |2y, ]

22 2 2 |
eyl 12+ el lzy |12 - Uyl 12 - 2o @y ¥,

Choose o sufficiently small such that

- ' 2 '
o2 zyy 112 - Hzeyg 123 - 20(-0) @y ooy o) < O

2
|l
| Nzl < Lzl
This contradicts the minimizing property of Yo Hence, no such y; can
exist. |

- Sufficiency: Suppose that VoW and Yo satisfies (3.4.2). Hence, for
an); yeW such that y # y o® We have

- Nzyl1? = Nzygyl1®

eyl 1? + 2y me D) + Hygxl 1 >l |17

vhich implies ﬁhét Yo is a minimizing vector Q.E.i).

The set g(C_)—‘consisting of all elements of the form B u, ueC, is
convex. Therefore, we can apply the necessary and sufficient condition
of the previous theorem to ou"r probiem, i.e., for 9_* to be an optimal

: *
control vector, it is necessary and sufficient that u satisfies

* . x__
@ -Bu,Buu)) <0 ueC  (3.4.3)
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We have two cases:
*
a) u. belongs to the interior of the set C, i.e.

%2
u; < ET/N. . (3.4.4)

I MW®

i=1
Let {ei}, i=1,....,s8, be the set of orthogonal unit vectors in

R®. Choose ¢ sufficiently small such that the set of vectors {Vi}’

. } ) - % ‘ ‘ - . -._.

i=1,....,s, where V; =n ot oee, belong to C. Putting u=v; 1n

-

(3.4.3), we get

X *
(@ -Bu,eB 1)50 i=1,2,...,s
* * .
=> e(@ -Bu, B ei) <0 i=1,2,...,s
% % ® % - .
=> eBgq -BBu, i) <0 i=1,2,...,s (3.4.5)

Since e can take positive as well as negative values, it follows from

(3.4.5) that

* & x. % ‘ -
(Bq -BBu,e)=0 . i=12,...,5 (3.4.6)

" The set {ei}? 'is complete in R® and hence it follows from (3.4.6) that

- i=1
K * *
Bgq -BBu =0
or B T * % : . Co
. ' BBu . : (3.4.7)

]
|
BT

B * ' ' .
b) 'u belongs to the boundary of the set C, i.e.,
- . S , *2 ' -
Iou o= EN/T. , (3.4.8)
i=1 , :

In this case u is the solution of a finite dimensional optimi-

zation problem under equality constraint. Hence, we can use the
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, *
Lagrange multiplier method to find the optimal control vector u . Our
problem, in this case, is: to minimize

*

IW=(Bu-9g,Bi-q)
*_ o a s X % _
= wWBBw - 2@m,Bg) +(q,q) (3.4.9)
“u‘nder’the equality constr_aint
(u,u) = EN/T. (3.4.10)

Let A be the Lagrange multiplier, where A > 0, then
| & k % * %
Iw,A) = W,BBw -2@w,Bq) + (@,4) *+r(w,w. (3.4.11)
. ) * . . ) .
A necessary condition for u to be a minimizing vector is that

4 =0 (3.4.12)

Using this ﬁetessary condition into equation (3.4.11), we get

® 0% % % o ®
BBu -Bgq *+iru =0 (3.4.13)
| 7 ‘ 7‘ * X % % o
=> (B B+>\£)_1£ =§g : (3.4.14)

% B ,
where u ‘has to satisfy the equation
% '* . ’ '
( ,u) = EN/T. , (3.4.15)

‘%
Let us now show that u , which is the solution of equations
(3. 4.14‘) -and (73.4.1'5)“, does in fact satisfy our necessary and sufficient

“condition for optimality, (3.4.3). We have
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* ® * % % x % . &
(Bq -BBu, (uu))

o
1]
|
e
o)
5
e
\
A
1]

% % '
Au,u-u). (3.4.16)

Since A > 0', in orde’f to show that (3.4.16) satisfies (3.4.3), it is

‘ % %
enough to show that (u, u ~ u) < 0 VueC. But, we have

2 .
1wl < [l ] < '] = @' vuec .
' (3.4.17)

| | 2

%
The second inequality follows from the assumption that [|u || = EN/T.
Therefore (3.4.17) implies that

* % %
u,u) < @,

. 7 ' £ *
= o | (u,u-u)<0. - (3.4.18)

This completes the proof.
We can summarize the results of this section as follows:
1) Find the solution of equation (3.4.7) with minimal norm.
2) If the‘ norm of the solution' of (3.4.7) satisfies (3.4.4), then the
optimal control vector has been determined. |
3) If the solution of (3.74.7) does not éétisfy (3.4.4), then the
optimal control‘vector can be obtained from the solution of (3.4.14)

and (3.4.15).
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4. SOLUTION OF THE OPTIMALITY EQUATIONS AND TWO CONVERGENCE PROPERTIES
OF THE DISCRETE PROBLEM

4.1 INTRODUCTION

The solution of the optimality equations (3.4.7) and (3.4.14)
ﬁhich resulted from the applicatioo of the necessary and sufficient
condition is presented in this chapter.r An algorithm will be given,
‘baeedAon Newton's method, for deternﬁning the Lagrange multiplier A of
'equation (3.4.14), for the case when the control vector lies on the
 boundary of the constrainr region. Toe convergence of the algorithm
will be proved Moreover, we are g01ng to show that the objective
function of the discrete case will converge to the objective fUnctlon
of the nondiscrete one. Furthermore we will show that if the linear
bounded transformatlon A A is p051t1ve definite, then.we have the |
stronger result of the convergence of the optimal discrete control

funotions to the nondiScrete_optimal control functions.

4.2 SOLUTION OF THE EQUATIONS OF OPTIMALITY
 We now proceed to find the optimal control vector u . Consider
- first case a) where |
CPBu-pd. (4.2.1)
This equation possesses a unique.solution if and only if the homogeneous
equarion | ' |

‘gg =0 C (4.2.2)

~has only the trivial solution. In this case the unique soluticn of

(4.2.1) is given by



u = (BB) Bgq . | (4.2.3)

In other u}ords, (4.2.1) possesses a unique solution if and only if §_*§_
is positive definitg. | 7

 On the other hand, suppose (4.2.2) has a nontrivial solution.
Then (4.2.1) possesses a solution only for these vectors .li*ﬂ.* which
‘belong to the set NL(§*§) . To ‘show that this condition is satisfied,
let v be any nontrivial solution of (4.2.2). Therefore, v satisfies

the equation

%
BBy=0
%
= 0=(_.’.].3..I§._)=(__V_: _]_3___)
- By =0
Thereforé, 7
‘ k& ‘ *
v,Bq) =@y, q)=0. (4.2.4)

X% L &
Equation (4.2.4) implies that B q eN (B B), and hence (4.2.1) always
possesses a solution. .
Since the transformation B B is self adjoint, therefore, we

h have the following direct sum decomposition of the Euclidean space R®,
3 S . * ®
R =N@BB @ REB.

. : : %
This means.that if leRS, then v = y+z, where yeN(B B) and geR(_B_*_li) and
y and | z are defined uniquely. Fﬁrthemore, since y is orthogonal to z,

we have

2 2 ‘ 2
vl = gl o+ 1zl



-23-
Suppose that u is a solution of équation (4.2.1); therefoi‘e, u = u tu,,
where qu(_]i*_fi) and uZeR(E*_I_S_) . 'Substitﬁting for u into equation -(-45 1)
we get—. B

% % % %
*+BBuy=BBu =Bgq.

- o— — — f—

ﬁerefore, u, is also a solution of (4.2.1) and since we are looking for
a solution ;ith minimum norm, and from the fact that
Hy_l |2 = | lul |2 + ||u2| |2, so the optimal control vector g* has to
belong to R-E_li*g) . 'I‘h-1.s means that the optimal control vector has to be
of the foﬁn |

u = I o Z.. (4.2.5)

% % : *
Let us express B q in terms of the eigenvectors of B B

kxS * %
Bgq = B (B g ,2;)7;
S *
= $ (g, B zl)‘zi
1= -— e
. ,
= 3t {(q,B zi)z1 (4.2.6)
l= — — .

Y o . = 3 a.B'B Y e (4.2.7)
C Q. zZ. = O '-Z.-a el
i=1 " = T i PR

i=1,...,p (4.2.8)

Therefore, the optimal control vector u is given by



el g, (4.2.9)

Case b)
In this case the optimal control vector is obtained through the

solution of the following two equations for A > 0
- (BB+2aJu=3Bg (4.2.10)
(u,u) = EN/T. : (4.2.11)

* : : ‘
“Since A > 0 and B B is positive semidefinite, therefore -\ does not
: ‘ ‘ ’ * % '
belong to the spectrum of B B, i.e.; the inverse of (B B+Al) does exist
. ‘
and hence u is given by

* % "1 & &
u =(BB+2I) Bgq (4.2.12)

e —

. ,
where A is to be chosen such that u satisfies (4.2.11). Substituting

(4.2.12) into (4.2.11), we get

% 1 asx & -1 & &
(@' Fd,EBD Ba) = BT
or ax % "2 aa ' |
' ®'q,BBAI) B'q) = EN/T. (4.2.13)

Define a functional f mapping the onen set (0,=) into R by
£ - (_B_*g*,(_j_B_*E+A;[_)—Z§_*g*) - EN/T. | (4.2.14)
The problem of finding the optimal control vecton in this case
turns out to be the problem of finding A which solves the equation
£f(2) = 0. To find Xy Wthh satlsfles :E(A) = 0, we are going to use

"Newton"‘s method. In order to prove the convergence of Newton's method
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We need to show that £(A) is a strictly convex function and we need the
followmg theorems and lemmas to prove this result.

Let R(A) denote the .resolvent operator of B B, i.e.,
R(A) = (E _1§_+Al) , where -)\ep‘(g B), and p(_l_3_ B) denotes the resolvent set
of the operator ;1_3_*]_3_“ It is clear that R()) is a positive definite

operator mapping K onto itself.
Lemma 1. R(A) - R(u) = (-IRMRA). (4.2.15)

' Proof. From the definition of R(d) and R(u), we have

G-V = EBuD) - @BaD)
- B"BD RO)-RG)] @ BAD
= RO - RG = (-MRGIR().

A_s a consequence of the above lemma, we have:
Corollé;'y: R(u) and R(A) commute.

E .Thebrem 1. Suppose'A BeL (X,X) and that A and B commute. Then A > 0
Vand B0 implies that AB > 0.

Proof. For proof see reference 32, p 415.
Lemma 2. Suppose AeLO(,X)' then A > 0 and AL exists <= A>0.

Proof. (=>) Suppose false i.e., there exists zX, z # 0 such that

(z,Az) = 0. Let B'denote the square root of A, i.e., B2

= A; then B
exists smce A > 0 and B is self adJomt Moreover, BeL X,X) and we
have

= (2,A7) = (2,B%2) = (Bz,B2)

=> BZ'=0 => Bz = Az = 0.
*Reference 32, p 422.
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'Sincg A-l exists, therefore z = 0, contradicting our hypothesis and,
hence, no.such x exists. |
(<=) follows trivially. ﬂ
As a result of fhe‘last theorem and 1émma, we have the following

result.
Corollary: Suppose A and B e L(X,X) and that A and B commute. Then

A > 0and B > 0 implies that AB > 0.

Theorem 2. Let g be a differentiable. functional on. an open set rcrt. A
‘ ‘ .
necessary and sufficient condition that g be strictly convex on T is

that for each 1 and Z,) € T

‘(V‘g('Zz)‘.- Vg(zl)’ Zg " 21) > 0.

- Proof.” For proof see reference 35, p 87.-

" ‘Theorem 3. The funétional f defined by (4.2.14) which maps the'set

(0,«) into R1 is one to one and strictly convex.
Proof. f is one to one. To show this; suppose false, i.e., there

exists A,u > 0 and A Fu suCh'that fQ) = f =

0= £0)-£Q0)

®qRORWIED

(-0 @'q ROORGM) ROVRGWIBG )+ (4.2.16)

But, since R{A)‘> 0, R() > 0, and both R(A) and R(ﬁ) commute, it fol-

1ow§ from the corollary of 1¢mma-2 thath{A)R(u)[R(k)+R(u)] >0 =>
| X ‘ * % _
(B g ,RARM) [RA)*RW)IBq) > 0. (4.2.17)

*For definition, see reference 35, p 56.7
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Using the result of (4.2.17) in (4.2.16), we deduce that u - A = 0. -

This contradicts our hypothesis and thus establishes that f is one to

one.

To show that f is strictly convex, consider
X k3 * &
vE() = -2(Bgq ,RT(WB q).

Therefore,

n

[VEG-VEQ) 1)) = ~2@-N) B g RO G- WIB G )

2N Bq, R -ROD TR ()+RARA)RZ(A)1B'g )

o 2 % % 2 2 * %
2-2)°@B q L,RM@RMIR"(W)+R@RMAI+R"(A)1B q )

" which implies that f is strictly convex.
If we denote the solution of equations (4.2.10) or (4.2.12) by

u" and the. solution of equation (4.2.1) by g?, we can have the following

result.,

Lemma 3. g} > g? as A > 0._aFurthérmore, g} +0 as A >,

Proof. Let us express the solution of (4.2.10) in terms of the eigen-

* L ‘
vectors of B B; therefore, the expression of 5} will take the form

Substituting into (4.2.10) we get



* S _ P *
(BB + AD) _)E a;z; = 2 (q ,B z:)z.

i=1 - i=1 g
> g A:#\)z. + ; A g ( ®
= o: (A +\)z. 0.z, = q »B
i=1 T e T =1
*
(ﬂ, ’Ezi)
R 1= 12,0000
. i
=> ai=
0 i=p+l,...,s
Therefore,
&
A P (ﬂ ,_1_3_ z’i) ,
R DI |

Since the expression of g? is given by
*
I;: q ,B z;)

i=1 M

A
z,iy

(4.2.18)

(4.2.19)

it is clear that g} > g? as A > 0. Moreover, it follows from (4.2.19)

that E% +0as A >,

Theorem 4. The equation £(A) = thas a solution and this solution is

‘ unique.
Proof. Let us write the expression of £(A) as

£0) = @,u) - EN/T.

‘ . ‘ 2
From lemma 3 we know that E} > g? as A + 0, and since ||u°|| > EN/T,

2
therefore, if A is sufficiently small => ||g?|| > EN/T, i.e.,

£(A) > 0 for sufficiéntly small A.

Also, we have

VEQ) = -2(B'q RSB ) < 0.
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Therefore, the function .f (A) is monotonically decreasing. Moreover,
rsince g)‘ +0as A+® => f(A) +~ -EN/T as A ~ «» . From the above
results and since f is one to one, it follows that there exists a unique

solution A, 0 < A < =, for £(A) = 0.

4,3 NEWION'S METHOD
- In this section we will give an iterative scheme based on
Newtph's method -for computing A which is the solution of the equation
£(A) = 0.
Let A o be chosen such that £(A o) > 0. This can easily be done
if we choose A sufficiently small as seen from theorem 4. Choose A a
inductively such that - |
Antl = Ay -"f(xn)/Vf(An). (4.3.1)
Before proving the convergence .of the sequence {\ n} we need the
fbllwihg theorem. |
'Ifheo:reml‘ 5. Let g be a differentiable fﬁnctional on an open convex set
rc rR% g is strictly convex on I' if and only if for each Zys 29 €T
1
glzy) - g(zy) > Vg (z9) (z5729) . (4.3.2)
Proof. ‘For Ap‘rc‘)of see reference ‘35.
We have all the necessary information we need to prove the
convergence of Newton's method. | |
Theorem 6. The sequence {A_} defined by equation (4.3.1) is a

monotonically increasing convergent sequence. Furthermore, A, T A as

n - », wvhere A satisfies the:eqﬁation f(A) = 0.
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‘Proof. The proof that {An} is monotonically increasing will be by
induction. Assume that f(kn) > 0 and since Vf(kn) < 0, it follows from
(4.3.1) that An+1 > An. In ofder for this to héld for all n we have to
show that f(Anfl) > 0. From (4.3.2), we Eave

£f(A, +1) > £ ) + VE(A )(lnfl n) - (4.3.3)

Since from (4.3.1) th@ right hand side bf (4.3.3) is equal to zero, it

Afollows_that f(xn+1

sequence. Since £(A ) >0 and f decreases monotonlcally with A, this

) > 0 = {3} is a monotonically increasing

1mp11es that the sequence {A }is bounded from above by A which

satisfies £fQ) = => the sequence {An}‘converges.
| Furthermore, from the convergence of {An} it follows that
£() : ' : ‘
'VETiij‘ + 0 as n + ». But since Vf(kn)‘is bounded , f(kn) + 0 as

n + « and this completes the proof.

4.4 SOME CONVERGENCE PROPERTIES OF THE DISCRETE PROBLEM |

The approxlmatlon of a contlnuous optimal control prdblem by a
discfete one for lumped parameter systems was not considered until
recently. Both Budak éf 130 and Cullun®’ treated this problem and
showed, under certain reasonable assumptions, that the solution of the
- discrete optimization problem cbnverged to the solution of the continu-
ous optimal problem. Moreovér,‘Cullum in her paper showed that the two
point boundary value problem, encountered usually in the solution of
‘continuous optimal control problems can be overcome by ‘discretization.
B Thls is an important result, since the solutlon of discrete problems is
usually easier than that of contlnuous‘ones. |

In this section we are going to show that thg objective func-

tion of the discrete optimization problem will converge to the objective
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fmctioh of the nondiserete problem.. By the nondiscrete problem we
mean the minimizing of i:he objective function (3.2.2) under the con-
straint (3. 2. 3, ~where the control vector u(t) € LE[O,T] and u(t) is
not subject to any further constralnts

Let uN denote the oth.mal control vector of the dlscrete '

- ‘optnnlzatlon problem and u (t) denote the optimal control vector of

- the nondlscrete problem. Tt has been shown that u . exists. We will
‘ :_‘show that uN will tend to u as' N tends to 'infinity provided that the
, 11near bounded transformatlon A A is positive definite.
| .Let U denote the set of all elements in. LY [0 ,T1 which satisfies

(3.2. 3) Let U, denote the set of u (3.2.11) satisfying (3.2.18).

N
: *
Theorem 7. If IN = 1nf I(uN) then
uNeU -
ﬂ % | **’ .
“ lim IN I =I(u ).

Nooo

. Proof. Since the set of continuous' functions is dense in L-§[0,T] , We
can choose a vector of oontinuous f@ctions v(t). € U such that

' ||u -VH < § and hence’

W™ - 1w - ||1Au T n 'llAz-g*l'lzi
. - jnAu 'l - HAm*HHHAg**-g*H + | av-g'l|
cxme Il
NI T
gté/zf - - d:' ; .“ (44

where € = 2ks||Al].
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Since each coxrponéht v (f) , 1=1,...,r, of the vector v(t) is
continuous on [0,T], therefore each vy (t) is unlformly continuous on [0,T].
Henc:e given € > 0, there ensts 61 >0 such that |v, (tl) - vi(tz)l _< €15
Vt;, t, € [0,T] such that‘ltl- ol <8, i=1,2,000,r

| If we choose N sufficiently large such that Ty < 61, then we can
 be sure that the oscillation of any component vy (t) in aﬁy subinterval
[JI,T , (+1)T ], 2 =0,...,N-1, is less than €. Therefore, the piece-
wise constant vector uNCt,sl) , coinciding on each subinterval

,(£+1) N &= see+sN-1, with the value of v(t) on [&T ,(2+1)TN)
which is closest to zero, will approximate v(t) uniformly on [0,T] with
accuf_acy €q- Moreover, LxN(t,el) belongs ‘to UN by our choice. Also, if
we choose € < 8/ Tr, th;n v (t) -‘uN(t,el)H < ey Tr < 8. Following

a similar procedure to that used in deriving (4.4.1), we can show that
1) - I(x_li\l(t,'el))] < g/2. (4.4.2)
Conmining equations (4.4.1) and (4.4.2), we get
*x ' .
1) - Thylee)] < e
From this inequality and the fact that
1) € Tylte),
‘it follows that
*k | ,
I )< I(uN(t &) < I ) +e (4.4.3)

*
Since IN is the greatest lower bound of I(u) taken over all uNeUN, we

have the obvious inequality

Iy < I‘(EN(t,el)) . (4.4.4)
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Comblnlng equations (4.3.3) and (4.3. 4), we get

*
I(g) IN I(uN(t,el)) I(u )+e (4.4.5)
Since e can be chosen arbitrarily-small, it follows from (4.4.5) that

I I(_ ) as N » o,

N . ,
In the next theorem we are going to show that if the linear
boﬁhded transformation A.A is positive definite, then we will have the
_stronger result of the convérgeﬁqe of the optimal control ﬁector of the
disérete problém to the optimal control vector of the nondiscrete
problem. Hence, given any nondlscrete opt1m1zat10n problem of the
: quadrat1c form considered in this the51s with A.A > 0, we can obtain
an approx1mate solution to thlS optimization problem using discrete

inputs. Moreover,.the approximate solution can be made as close as we

wish to the exact solution.

' ok % Xk '
Theorem 8: If AA >0, thenu;+u asN-~> e,

‘ Pfqof. Consider the objective function corresponding to an optimal

s *
discrete vector I@%@. We have

L X %k %
Iuy) = (Aug-q Au-g )

*% & k k& Xk k- K k%
(Au-q +Aluy-u 1A g *Alyeu 1)

o & w% TR Kk k% k& A%

I )+ 2(Aluyru 1,Au -q) + (Tuyu LA A[u-u 1) (4.4.6)
T T *' - Ak R * A%

= (lugu LAA[ug-u 1) = I(y)-Iu )+2(q -Au Alug-u 1).(4.4.7)

Using the necessary and suffiéieﬁf-condition for optimality (3.4.2), it

: : & k% k k% :
can be seen that (q -Au Alug-u 1) 0. Substituting this last
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- inequality into (4.4.7j, we deduce that
ok R%. k% AR % *
(luyu LA Au-u 1) < I(u)-Iu )
< g, (4.4.8)

If N is chosen large enough, it is seen that (4.4.8) follows from
theorem 7. Also, since A A is linear bounded positive definite

- operator, then there exists two constants, ky andAkz, such that
| 2 . 2
kllull < @A AW <Xk|luf] . (4.4.9)

Substituting the left inequality of (4.4.9) into (4.4.8), we get

Tk k%

2.
,,‘klIIuN-l_l H <€

x wx 2 (4.4.10)

Henée,‘the theorem follows difectly‘from the inequality (4.4.10)
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5. APPLICATION OF THE THEORETICAL RESULTS
TO TWO SPECIFIC EXAMPLES

- 5.1 INTRODUCTION
| In the last two chapters we were concerned with obtaining a
necessary and sufficient condition for optimality from which we derive
an optimality equatioh‘whose solptidn yields the optimal control vector.
In this chapter we are gding'to apply the results obtained in
dﬁapters two and tﬁree to solve two examples. The first example con-
si§ts'of:minimizing the total energy of a vibrating string in a given
time subject to an energy constraint"oﬁ the control function. The
" second example.is concerned withAa’system described by a diffusion
‘equation and our objective is tO'atfain'a temﬁerature distribution along
r‘the slab which is as close as possible tora specified temperature |
distribution. Also, an energy type constraint is imposed on the con-

trOl'function.

'5.2 TRANSVERSE VIBRATION OF A STRING
~ Consider the‘transversé vibration of a string whose displacement

w(x,t) from the equilibrium positionAis‘given by

2 . 2 ) ‘
) w(; t) - . 28 w(x%gL 0 <x<2,te [0,T] (5.2.1)

ot X

p

with boundary conditions

Cw(0,8) =0 ;  w(,t) = £(B) (5.2.2)
and initial conditions
W0 =0, W (,0) = £0) (5.2.3)
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where o denotes the density of the string material, t denotes the ten-
sion and % denotes the length of the string. If we assume for

simplicity that 2 =7 and p = t = 1, then (5.2.1) will take the form

=W 0<x<28,0<txsT. (5.2.4)

W T W

Using the transformation of variable
v(x,t) = w(x,t) - %f(t) . (5.2.5)

and substituting the expression of v(x,t) from (5.2.5) into equation

(5.2.4), (5.2.2) and (5.2.3), we get

T Ve = Vg T ;—c-u(t) (5.2.6)
where | o |
| ut) = d—zf-gcl (5.2.7)
| at
with boundary conditions
V0,8 =0, vt =0 (5.2.8)

and initial conditions

v, (x,0) = w (x,0) - T £ (0)
' (5.2.9)
v, (c,0) = w (x,0) - £0)

ASsumi,ng-thaf £'(0) = 0, the initial conditions with respect to the

new variable v(x,t) will be

ve&,0 =0, v,x,0 =0.  (5.2.10)
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We are going to take u(t) as our control function, S

i.e., we

" are conti*olling the vib'ratiorﬁi pf Vj the String by applying a control func-

' -tién‘ i',n' the .form of an a;ccglération on the free end of the string.

Our aim i'sz to:mininii‘ze, the_ total enéxl"gy of the string which is given by
: - . 7

-%- [ CQW% + 'rwfc)dx

(o]

I (

i

o

%j @2 e (5.2.11)
. " C . . | o;
subject to the emergy .constraint’

J u?(t)dt < B \ (5.2.12)
A A

- where E is a given constant.

39 the solution of

Using the mefhod'of "seﬁara_tion of variables,
equa’qioh (5.2.6), w_ith'ze,r‘o ‘initiél and boundary conditions, is given by

«

vt =2 3 (3 [smme-onE@asingm). (65.2.19
T n=1 7 sinin{t-7) lultjdrssininxj. (o.s.

¢}

Therefore; the expression of wt(i;t) and wx(x,t) will take the form
= v X ety
| y{t(x,t) = vt(x,t) + ;T-f ()

- t
= v (x,t) ¢ %J u(t)dr
: .0

t © ... : o

= J ' {?._;. + -?T- z Lll—ll)-— sin(nx)cos [n(t-1) 1 u(r)dr
o n=1 : ]

| (5.2.14)

~and
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wsc(x,t) = v (x,t) + %Q_
t
=v_(x,t) + = [£f(0) +J (t-t)u(r)dr]
¢ o
® n
= f§0) +J {(t;r ) +-12;- % (_111) cos (nx)sin[n(t-t)Iu(r)dr.
=1
o
(5.2.15)
‘ vHénce'., at"‘the final time T, wt(x,T) ‘and wx(x,T) will be
T © ¢ ‘
wt(x',T) = j {% +-§— ' (-111) : sin(nx)cos’_[n(T—'c)]}u(r)dT - (5.2.16)
‘ n=1 I

,, 3 o
w, (x,1) = £0L . J{ % 3 CLY cos o sin[n(r-) 1 u(x)dr.
o

(5.2.17)
Comparing thlS problem with our original problem represented by

.equations (3.2.1) and (3.2.2), we can easily deduce that

q; &,T) T | 1o
q(x,T) =. , = J K(x,T,t)u(r)dr + (5.2.18)
- S?Z(X,T) | 0 R - féO!
where L _
Kl.l(x’T,T)
IS_(X’T‘,'f) =
—Kz]_ x,T ,T).-
and
Kn(X,T,T) = ;Tl— {x+2 z L——)—- sm(nx)cos[n(T )1}  (5.2.19)
K., (x,T jéi{m-)+2 i‘GDncsmmﬁn[ﬁ-n}
21Tt = T = 0 n(T-7)1}.

n=l-
(5.2.20)



The objective function I(u) can be ‘expressed as

[N}
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u

2
I = %—-2 [ [q; (x,T) - qq (X)] &x (5.2.21)
i=1 i
o .
where -
qd;(x) =0, ' i=1,2. (5.2.22)
i ‘ o
o : *
Using equation (3.2.20), the expression for q (x) is
F - -
qlcx) 0
g =] = (5.2.23)
a0 | |- 22
From (3.2.13) ,' the expression of Kz (x) is ‘given by
(z+1)T
Kz(x) = K(X T T)d‘l‘ 2 =0,1,...,N-1. (5.2.24)
T 2Ty

- Hence, performing the above integration yields

. © nT ]
-}-r- {x’I‘N + 4 21 —(—1-)7— s:m(nx)sln(——f-)cos[n(T - ZTH—l— N)]}
n= n

20+1 ®

: nT.
%-{TN(T - 5= N) + 4 >: L——l-)z——- cos(nx)sm(———l\l)sm[n(T 1TN)]}
- -
g =0,1,...,N-1. (5.2.25)

. % :
By denoting the square matrix.B B by C and taking into account

the definition of the matrix B B, as given by (3.3.2), and performing

the necessary muitiplication and'integré,_tion needed, it follows that an

elenpnt Cij

, 1,j = 1,...,N, of the matrix C can be expressed as
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T T 211 8 = 1 .20y
Cij =t @ - @ - A R
AT,, = . nT. .
- cos[n(i- J)TN]} - ——“—Ii pX 1-3- 51n —--I:I- {cos[n(T - %—TATN) +
n=1l n
cosin(T - 211, (5.2.26)

* *
Furthermore, it can be shown from the definition of B and q , equations
& % % %
(3.3.1) and (5.2.23) respectively, that an element ®Bq )i of Bg can

be expressed: as

(Bg) (O)T (T - 211 T) 4= 1,...,N(5.2.27)

- * ‘ -
Using (5.2.26) for calculating B B, formula (5.2.27) for calcu-

*x % o *
lating B q and (5.2.23) for calculating q , and taking £(0) = 0.2,

E = 0.2x107°

and T = 12, the following results were obtained for 10
sampling periods: |

Lagrange multipliér A =0.948
Objective function = 0. 432520074

The optimal dlscrete control vector is glven in Table 5.1.
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TABLE 5.1
OPTIMAL CONTROL VECTOR u

Sampling Period | Control Function u
o ' -2
1 -0.541x10
o - _2
2 ~0.396x10
o o .
3. -0.399x10
‘ § -2
4 ~0.401x10
5 . --0.568x10
6 |  0.926x107
‘ “ -2
7 0.405x10
8 0.399x10 ~ .
| -2
9 0.400x10
10 | o0.280x107

" The Lagrangermultiplier A wasrgalculated using Newton's method
and it took sixfite¥ations.to compute it with an accuracy of the order
of 1074, - |
" " The final diSplacementland-velocity of the string corresponding
to this‘opthnal control vector Qgre calculated aﬂd aré tabulate& in

Table 5.2.
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| _ TABLE 5.2

FINAL VELOCITY AND DISPLACEMENT OF THE STRING
x/zr 1 Displaéement Velocity

0o 0. . 0

0.1 | -0.279x107° 0.247x10"%
0.2 -0.144x1074 0.543x107%
0.5 | -0.352x10"* 0.818x10™%
0.4 | -0.381x1074 -0.172x10"3
0.5 | 0.161x10"° -0.131x10"2
0.6 10.752x10°7 -0.302x10"2
0.7 0.159x10"2 -0.530x10" 2
0.8 | 0.243x1072 -0.625x10"2
0.9- 0.316x107% -0.874x10"2
1.0 - | 0.316x1072 -0.874x10"2

To show the convérgence of the objective function of the dis-
‘crete case to the objectivérfunction of the nondisérete one, the same
fexample‘has been solved for different sampling periods and the results

N

are given in Table 5.3.
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TABLE 5.3
VALUE OF OBJECTIVE FUNCTION
* FOR DIFFERENT NUMBER OF SAMPLING PERIODS

Number of
Sampling Periods Objective Function
s 1 o7sexo™
10  o.asx0™t
15 . 0.408x107%
20 - 0.371x107%
30  0.356x1074
40 0.350x10"%
50 - 0.345x107%

5.3 HEATING A SLAB OF METAL

‘In this seqtion'we consider the heating of a slab of metal whose
thickness is unity. We are going‘to control the femperature distribu-
tion along the slab by controlllng the temperature of the gas medium
adjacent to the surface of the slab The equation which describes the
" temperature distribution at any 1nstant of time is given by the diffu-

'sion equation

296t - 4Lt ¢ 0,11, x ¢ 10,10
X
(5.3.1)

with initial condition
q(x,0) =0 (5.3.2)

and boundary conditions
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3q(x,t) |

X

1

a{q(0,t) - u(t)} (5.3.3)
x=0

?ﬂa%-i‘l =0 (5.3.4)
d X=1

where
a = heat transfer coefficient, u(t) = temperature of gas medium and is

the control function and q(x,t) = temperature distribution of the metal

'

slab.
The objective is to minimize a quadratic performance index of
the form -
1 2
I(w) = J {q(x,T) - q4(x)} dx (5.3.5)
\ A ‘
subject to the constraint
T
[ v?(t)dt < E. (5.3.6)
)

Solving the diffusion equation’ (§.3.1) under the initial and

boundary conditions (5.3.2), (5.3.3) and (5.3.4) we get

T e cos(@x8y) -82(T-1)

e =2 | 3 e e u()de  (5.3.7)
. ° i=1 (E'+ ;Z—JCOSBi
. i

where Bi's'are:the roots of the transcendental equation ftanB = o.

Therefore, K(x,T,t) and QOCX) will be given by

® cos((14x)Bi) -BECT'T)

K(x,T,1) = 2 % e (5.3.8)
’ i=1 (_:_f. + %ﬁ)COSB-
o, 8 1
B3

and
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“q, () = 0. (5.3.9)
If we take qd(x) = da‘= constant, it follows from (3.2.20) that
&
q (x) = -q4. (5.3.10)

Also, it can be shown using (3.2.13) that

2 .
-BsT-
v e T cos((l-x)Bi) (2+1)B§TN -BgTN
Kz(x) =2 I 5 {e (1-e )}.(5.3.11)
i=1 B; :
i

(&-—- + 1 + a)cosBi

S ‘ .
Again, by denoting the matrix B B by C, the element Cij of the

- matrix C will be given by

2 2

-ZBQT cong
e el 820, (+))8LTy
S 2
=L ge
cosz(Bz)(l + o+ 2 ' (5.3.12)

. - .
Using equation (5.3.10)7and‘the definition of ‘B as given by

x % % %

(3.3.1), it can be shown that an element (Ba )j of the vector B q

will have the form

2 . .
* * o =) e-BiT o jB:%TN -BgTN
Baq )j = 2940 .Zl ‘ 5 {e 1-e )}
: 1= : B .
PR
j=1,...,N © (5.3.13)

Taking T = 0.4, « = 10, N'= 10, q; = 0.2 and E = 0.06, the following

results were obtained: Lagrahge multiplier = 0.456x107°.

The optimal
control vector corresponding to this Lagrange multiplier is given in

Table 5.4.
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 TABLE 5.4
OPTIMAL CONTROL VECTOR

Sampling Period Control Function u

.367
.397
426
.455
476
.481
447
.334

W 0o N3N T e N
o O o o o o o o o

.097

.194

—
(=]
o

Seven iterations were required to compute the Lagrange multi-

plier to an accuracy of the order of 1074

The final temperature
distribution along the slab correspondihg to the optimal control vector

was calculated and is given in Table 5.5.
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TABLE 5.5
FINAL TEMPERATURE DISTRIBUTION ALONG THE SLAB

X Temperature
0 0.188
0.1 0.199
0.2 0.201
0.3 0.202
0.4 0.202
0.5 0.201
0.6 | 0.197
0.7 0.193
0.8 0.189
0.9 0.186
1.0 0.185

The computations were performed on the IBM 360/50 digital
computer of the University of Calgary. |
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6. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

6.1 CONCLUSIONS

The optimal control of linear distributed parameter systems,
which are representable by a linear vector infegral equation, has been
discussed. The .problem of minimizing the mean squared-error between
specified desired final state functions and the actual state functions
at a prescribed final time, subject to an energy constraint on the
control actions, has been solved using a necessary and sufficient con-
dition ffom functional analysis. An algorithm, based on Newton's method,
has been derived to compute the Lagrangé multiplier A for the case
where the control vector lies on the boundary of the constrained region.
The computation needed for this algorithm is relatively small.

The convergence of the objective function correspon&ing to the
optimal discrete control vector to its corresponding optimal one when
the control vector is not restricted to be discrete in time has been
proved. Moreover, the convergence of the optimal discrete control
vector to the optimal measurable control vector has been established
for the case where the linear 5ounded‘transformation AfA is positive
definite. These convergence propérties‘are important, since in solving
the nondiscrete optimization problem corresponding to the same objeé-
tive function considered in this thesis, one faces the difficulty of
having to solve a vector Fredholm integral equation (see Wéigandl).

To obtain a numerical solution for the Fredholm integral equation, an
approihmation technique must be used. The convergence properties of the
discrete problem provide us with an alternative way of obtaining an

approximate solution for the nondiscrete problem, hamely, by solving the
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corresponding discrete problem. The solution of the later problem is

~relatively easy, since it only involves the solution of matrix equations.

6.2 SUGGESTIONS FOR FURTHER RESEARCH

The work .done in this thesis can be extended by restricting the
control vector to belong to a closed convex set. 'In this case, it will
not be possible to obtain an explicit equation whose solution yields the
optimal control vector. An approach for solving this problem could be
to tr} to use the nécessary and sufficient condition for optimality
(4.4.3) to derive an algorithm for computing the optimal control vector.

For partial differential equations, it is not always easy to
obtain an exact solution. Thus, ultimately we usually seek to obtain
some sort of an approximate‘solutibn. It would be interesting to
investigate the possibility of convergence of the optimality problem
corresponding to the approximate soiution to the same problem if we use
the exact solution instead. It is also worth determining under what
conditions will the optimal-control problem, with discrete control
vector and using the approximate solution of the partial differential
equation, converge t6 the same problem without any approximation or

restriction on the control vector to be discrete in time.
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APPENDIX
COMPLETE CONTINUITY OF THE OPERATOR A

‘We are going to show ;tha'“c A is a completely continuous trans-

- X ,
formation by showing that A A is completely continuous (ref. 32, p. 373).
From (3.2.6), the linear transformation A is defined by

T
Au-= J K(x,T,t)u(t)dr. (A.1)
) |

Applying. the adjoint operator’ of Aon (A.1) ,' we obtain
J {JK (x,T,t)K(x,T r)dx}u(r)d-r (A.2)
0

' From (3.2.7) and (3.2.8) it follows that
* . .
AAus= J_@(t,r)g(r)dt. A.3)

o.

- . . ) * o i - “
The complete continuity of A A follows directly from (A.3) and assump-

‘tion (3.2.9). For proof see Taylor (ref. 40, p77).



