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ABSTRACT 

This thesis extends the paper by Enns and Ferenstein ( 1988), 

a one stream problem, to a two stream problem. 

The game consists of two players who observe two Poisson 

streams of offers. Each of the two players observing these offers 

wishes to select exactly one offer in the time interval [ O,T]. The 

game is structured in such a way that the players have different 

priorities for different streams when it comes to making their first 

selection. The winner of the game is the person who has the larger 

offer by the end of time T. 

The offers are independent and identically distributed random 

variables from some known continuous distribution. On their arrival, 

the offers are observed sequentially. Furthermore, at each 

observation, a decision as to whether to accept or reject the offer 

must be made. Once accepted, an offer cannot be discarded; once 

rejected, an offer cannot be recalled later in the game. 

The optimal strategies and the winning probabilities for both 

the players have been derived for this priorized decision scheme. The 

moment generating function of the fraction of the time of the first 

offer acceptance has been obtained. Asymptotic results are also 

available for all cases ( including that for the asymptotic mean and 

variance of the fraction of the time of the first offer acceptance). 
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CHAPTER I 

INTRODUCTION 

1.1 SEQUENTIAL ANALYSIS  

Although quite a number of people had been working 

simultaneously in the field of sequential methods since the Second 

World War, it was Abraham Wald who was generally regarded as the 

pioneer in that field. 

In 1944, when John von Neumann and Oskar Morgenstern published 

their much celebrated book, ' Theory of Games and Economic Behaviour', 

little was known about the relation between the theory of games and 

the statistical theory of Neyman and Pearson. It took the genius of 

Wald to see the connection between the theory of games and the 

statistical theory of Neyman and Pearson and to come to the conclusion 

that the statistical theory was a game consisting of two players, 

namely the Statistician and Nature. The words theory of games' here 

refer to at least two decision makers with conflicting ( or partially 

conflicting) interests who try to simultaneously choose their actions 

from their respective action spaces so as to maximize their payoffs. 

With his series of papers from 1945, Wald bridged the gap 

between the two fields. Darling ( 1974) recounted how Wald, in his 

paper in 1945, was the first to define and study the important notion 

of a stopping time of a sequence of random variables. Ferguson ( 1967) 

remarked that Wald's theory of statistical decisions generalized and 

simplified the Neyman-Pearson statistical theory by making it a 

special case of the decision theory problem. 

-1-
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What is a stopping time? According to Darling, a stopping time 

is roughly a rule that utilizes only the present data and the data 

anterior to it to determine if one has to stop observing a sequence of 

random variables. We will look at optimal stopping rules and times 

later in this chapter. 

Wald's outstanding research resulted in the classic ' Statistical 

Decision Functions' in 1950. Ironically, it was also in 1950 when the 

unfortunate Wald met with a fatal plane accident. 

Following Wald's death, a prodigious amount of research on the 

general sequential decision theory was done by many people. As 

Ferguson ( 1974) remarked, the only two notably outstanding 

contributions which stood out amongst all this avalanche of work were 

a. 'Theory of Games and Statistical Decisions', a book 

published by David Blackwell and M.A. Girshick in 1954, 

in which sequential decision theory was popularized and 

vastly applied, and 

b. LeCam's paper in 1955 in which Wald's theory was extended 

and put into a modern mathematical framework. 

1.2 OPTIMAL STOPPING PROBLEMS  

To cover all that has been done in Sequential Decision Theory 

(let alone Sequential Analysis) would require a whole encyclopedia. 

Since this paper falls into a category of sequential decision theory 

problems called optimal stopping problems, we will devote our time 

discussing optimal stopping problems. 
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What is an optimal stopping problem? Chow, Robbins and Siegmund 

(1971) defined an optimal stopping problem as summarized below: 

The random variables y1, y2,..., having a known joint 

distribution, are observed sequentially. The observation 

process, which must be stopped, yields a reward of x (where 

x is a known function of y1,..., y) when the observation is 

stopped at stage n. The problem is to find the stopping rules 

that maximize the average reward. 

They further remarked that optimal stopping in general had rapidly 

developed as a part of probability theory with particular but not 

exclusive application to statistics. These optimal stopping problems 

are usually practical problems which are colourful in nature. 

The secretary problem (also known as the beauty contest problem, 

the dowry problem and the marriage problem), is an example of an 

optimal stopping problem that has a long history in the theory of 

probability. This well-known stopping problem has a large literature 

that dates back to Cayley ( 1875). Since the time a version of the 

secretary problem appeared in the article by Gardner ( 1960), the 

problem has been extended and generalized in many directions that 

culminated in a field of its own. This field is now known as 

probability-optimization. A review of the secretary problem and its 

extensions is given by Freeman ( 1983). Another interesting account of 

the secretary problem, a historical one, is given by Ferguson ( 1988). 
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Before looking at the extent to which we have extended the 

secretary problem, we will first define the problem. To do this, we 

will borrow the definition from Ferguson ( 1988) and restate it. He 

defined the secretary problem in its simplest form to have the 

following features. 

a. There is only one secretarial p6sition available. 

b. The number of applicants, N, is known. 

C. The applicants are interviewed sequentially in a 

random order. 

d. All applicants can be ranked from the best to the 

worst without any ties. Further, the decision to 

accept or reject an applicant must be based solely 

on the relative ranks of the applicants interviewed. 

e. An applicant once rejected cannot be recalled later. 

f. The employer is satisfied with nothing but the very best. 

The payoff is 1 if the best of the N applicants is 

chosen and 0 otherwise. 

Enns and Ferenstein ( 1985) disguised the standard secretary 

problem as a two-person zero sum game that was couched in terms of 

horsebets. Since the game comprised two players, they were not 

strictly interested in getting the largest of the N observations. 

Assuming that the N observations were identically and independently 

distributed and that they all came from the same continuous 

distribution function F, Enns and Ferenstein solved the 
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problem of finding the players' winning probabilities when F was 

known and alternatively unknown. In 1988, they extended this paper by 

adding the following ingredients: 

a. The problem was now posed in 'a continuous time setting. 

b. The number of observations that arrived by the end of time 

T was a random variable with range { l,2,3,...}. 

C. If neither of the players ends up with an offer by the 

end of time T, then both players lose the game. This 

condition no longer makes the game a zero sum game. 

With these assumptions, they obtained results similar to those in 

their paper in 1985. 

The present paper extends their 1988 paper by setting the problem 

in a scenario where there are two streams of offers instead of one. 

The problem here, thus, differs from the standard secretary problem in 

the following ways: 

a. the problem is posed in a continuous time setting, 

b. the number of observations that arrive in the time 

interval [ O,T] is a random variable, and 

C. since we are dealing with two players, we are only 

interested in getting the larger of the two observations. 

With this brief history, we will now proceed with the problem 

proper. 
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1.3 STATEMENT OF THE PROBLEM 

There are two Poisson streams of offers ( Stream 1 and Stream 2) 

that arrive in two sequences with known rates A1 and A2, respectively. 

Two players, player 1 and player 2, observing these offers wish to each 

make exactly one selection from the offers that arrive in the time 

interval [ O,T]. A reward of 1 is given to the player with the larger 

offer and a reward of 0 to the player who does not hold the larger 

offer or who has not made any selection by the end of time T. 

All the offers arriving via stream i (for i = 1, 2) are first 

presented to player i. As each offer is presented, player i has to 

decide whether to accept or reject the offer. If player i accepts 

the offer, he stays out of the game and waits for either the other 

player to make a selection or for time T to elapse (whichever is 

earlier). With player i out of the game, the other player has to now 

wait for an offer that is larger than the one accepted by player 1, if 

such an offer arrives by time T. 

Alternatively, if player i rejects the offer, the other player 

is then presented with the same offer which he must now decide to 

either accept or reject. Should the other player accept the offer, 

player i would then have to wait for a larger offer to arrive by time 

T in order, to win the game. But if the other player rejects the 

offer, the whole process is repeated with the next observation. 

By nature of the game, there is a possibility that neither player 

will have accepted any offer in the time interval [ 0,T]. If this 

prevails, then both players receive rewards of 0. 
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A further condition on the offers is that once an offer is 

accepted, it cannot be discarded and once rejected, it cannot be 

recalled later in the game. Also, since both players want to maximize 

their average rewards and the payoff is either a 0 or 1, we will 

have, to find the optimal strategies that maximize the winning 

probabilities such that maximum average rewards are yielded. 

In Chapter II, we first define the players' winning probabilities 

and their respective admissable game strategies. We then find the 

expressions for these winning probabilities which are functions of the 

time T-t where T-t € [O,T] and t is the residual time for any 

given set of admissable strategies. In Chapter III, optimal strategies 

that maximise the winning probabilities are obtained. In Chapter IV, 

under the constraint that the probability that player 1 wins is less 

than a half, the players' winning probabilities are obtained when the 

game strategies are optimal. Under the constraint that the probability 

that player 1 wins is at least a half, the players' winning 

probabilities have been obtained in Chapter V using the optimal game 

strategies. Chapter VI discusses the distribution of the time of the 

first offer acceptance. The moment generating function of the fraction 

of the time of the first offer acceptance has also been obtained in 

this chapter. We conclude by finding'the asymptotic winning 

probabilities and obtaining the asymptotic expressions for the moment 

generating function, the mean and the variance of the fraction of the 

time of the first offer acceptance in Chapter VII. Results similar to 

those of Enns and Ferenstein ( 1988) have also been obtained when A1 

and A2 0. 
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1.4 PREVIOUS WORK AND POSSIBLE EXTENSIONS  

Elving ( 1967) considered the same model of observations where 

a player chooses his optimal stopping time in order to maximize his 

mean reward. This paper was discussed in detail by Chow, Robbins and 

Siegmund ( 1971). Elving's work was also extended by Stadje ( 1986) who 

considered the case of a player choosing k optimal stopping times 

(where k ≥ 1). 

Presinan and Sonin ( 1972) considered the classical secretary 

problem in a discrete time setting with the assumption that the number 

of secretaries that arrived in the time interval [ O,T] was a random 

variable from a known distribution. Cowan and Zabczyk ( 1978) 

considered a similar stopping time problem in the continuous time 

setting where a player was presented with a sequence of offers that 

arrived at random via a Poisson process with a known rate. The problem 

there was for the player to maximize his probability of picking the 

best offer. Bruss ( 1987) considered the same problem with one 

important distinction, i.e. the offers arrived via a Poisson process 

with an unknown rate A. He even considered the case when the rate of 

the Poisson process was an inhomogeneous intensity function A(t) which 

was either supposed to be known or known up to some multiplicative 

constant. 

Irle ( 1980), Abdel-Hamid, Bather and Trustrum ( 1982), Petrucelli 

(1983) and others had also studied alternative approaches to best-

choice problems with an unknown number of offers under the assumption 

that the distribution of the number of offers was known. 
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Enns and Ferenstein ( 1985), as mentioned earlier, considered a 

similar two-person game where the maximum number of offers was known 

and specified. An alternative approach to the same problem was 

considered by Enns, Ferenstein and Sheahan (1986). A generalization of 

this game, for the case of many players and general rewards (which 

depended on the players' decisions and sample information), was also 

considered by Enns and Ferenstein ( 1987). 

Possible extensions of this paper could be obtained by making the 

following considerations. 

a. If none of the players has accepted any offer in the time 

interval [ O,T], the last offer from stream i would be 

given to player i ( for i = 1, 2) at the end of time T. 

This will, of course, guarantee a winner. 

b. The rates of the Poisson processes are random variables 

with either a fully or partially known distribution which 

depend on the number of offers observed. Thus, we have to 

revise A. everytime an offer is observed from stream i. 



CHAPTER II 

GAME FORMULATION 

2.1 INTRODUCTION 

Two players, player 1 and player 2, must make a decision to 

either accept or reject an offer with no possibility of recall at 

each offer presented. The offers arrive in a sequence as a Poisson 

process in two different streams (Streams 1 and 2). We will assume 

that the offers in Stream i arrive at a rate A.. 
1 

Further, an offer arriving via stream i [ for i = 1,2] is first 

presented to player i for a possible selection. If he selects the 

offer, then he stays out of the game and waits for either the other 

player to make a selection or time T to elapse [whichever is 

earlier]. Alternatively, if player i rejects the offer, the other 

player is then presented with the same offer for a possible selection. 

If this offer is accepted by the other player, he then stays out of the 

game and waits for either player i to make his selection or time T 

to elapse (whichever is earlier). But if this offer is rejected by the 

other player, the whole process is repeated with the next offer. The 

player with a larger offer at the end of the game will be declared a 



winner tin which case he gets a payoff of 1]. If neither of the 

players has made any selection by the end of time T, they both lose 

[in which case they both get payoffs of 0]. Also, we will assume that 

all these offers are independent and identically distributed ( i.i.d.) 

random variables from a uniform distribution on the interval [ 0,1] 

since i.i.d. offers from any continuous distribution can be easily 

transformed to the U[0,l] case without a loss of generality. 

The strategy derived here is the optimal sequence of decisions 

that maximize a player's winning probability until an offer is first 

accepted by either player. Once an offer is accepted, the obvious 

strategy of the remaining player is to pick the first available offer 

greater than the one that has already been accepted by the other 

player, if such an offer arrives by time T. 

2.2 DEFINITIONS AND DIFFERENTIAL EQUATIONS  

Let T-t be the time elapsed ( i.e. t is the residual time). 

p(T-t) = P[player i wins Ifirst accepted offer is 

in time (T-t,T)]. 

4..(x,T-t) = P[player i accepts offer x at time 

T-tloffer is from stream j and no offer 

has been previously selected]. 
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g(x,T-t) = P[player making the first choice x at time 

T-t eventually wins], 

and 

A1 = 1, 

A2 =$ 6 [0,11 

where i,j = 1,2. 

By considering the possible events that occur in time (T-t, 

T-t+.d(T-t)), we have the following equations: 

For Player 1: 

p1(Tt) = [1 - (1+/3)4(T-t)] p1(T-t+d(T-t)) 

+ 4(T-t) - j (•llg+('-•1021( 1-9)+(l-•ll)(1---•21)p,(T-t+,d(t-t))]dxI 

to I 

l I'  + fid(T-t) [ 22 (l-g)+(1- 22) 12g+(1-4 22 ) ( 1- 12 )p1(T-t+1(T-t)) ]dxj 

+ 0(1(T-t)). 

As ii(T-t) - p 0, we have that 

(2.2.1) j1(T-t) = 
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0 

- ji (•22(1-g)+('-•22)•12g+('-•12)(1-•22)pl]dx a P 
to t 

where p dp(s) = for all s. 
ds 

For Player 2: 

Similarly, for player 2 we have that 

(2.2.2) 2(T-t) = (l+I3)p2 

- to I-j 1 (•11(1-g)+('-•11)•21g+('-•ll)(1-•2l)p2 1dxI 

ti (•22g+( '-•22 )•12 (1-g)+(' -•22 )( '-•12 )p2ldx 

to 

where the arguments of p.,, 4. j and g have been suppressed for the 

sake of clarity and brevity. 

Since g(x,T-t) = P{player making the first choice x at time T-t 

eventually wins], 
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we may rewrite g(x,T-t) as follows: 

CO 

g(x,T-t) = Z P[all remaining offers are xIRr] P[Rr] 
rO 

where R is the number of remaining offers. 

Thus, for Poisson arrivals we have that 

r e_(l)t(l i )1' tr 
g(x,T-t) = Z x   

r0 

= e_( 1 )t e 1 )t 

or equivalently, 

(2.2.3) g(x,T-t) = e (11 t. 

Further, since player i has control of strategies 

and i2' he wishes to maximize his probability of winning, that 

is, to maximize pi(0) for i = 1,2. Therefore, letting 

p.(t; = pi(t) where the optimal strategies 

ll'l2'21 and 22 constitute an equilibrium solution with 

respect to the mean rewards p1'(0) and p2(0), we have that 
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p1(O; ≥ p 10; 

P2(0; ? 20; 

where we have used the notation 

to represent any game 

strategy with 0 ≤ (x, T-t) 1 [for i,j = 1,2]. 



CHAPTER III 

OPTIMAL STRATEGIES 

3.1 INTRODUCTION 

Since p1(T) = 0 (for i = 1,2) and player i wishes to 

maximize p.(0), it is intuitively reasonable to claim that the optimal 

strategies must cause the function p.(T-t) to descend as steeply as 

possible. This means that 1(T-t) must be as small as possible which 

also implies that the terms under the integrals in both (2.2.1) and 

(2.2.2) must be as large as possible. Because player 1 has control of 

and 12' and player 2 has control of 21 and 22' we have the 

following strategies. 

3.2 OPTIMAL STRATEGIES FOR STREAM 1  

By (2.2.2), player 2 would wish to maximize 

(l- 41l) c21g + (1-cll)(l---42l) p2 

which leads us to the optimal strategy 
11 

(3.2.1) 
= fl 

to 

if g(x,T-t) ≥ p2 (T-t) 

otherwise. 

- 16 - 
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Since player 2 is not given the first opportunity to make a 

selection when the offers arrive via stream 1, he will only be 

presented with the offers that have been rejected by player 1. Thus, 

he will act conservatively by selecting an offer only if it gives him 

a winning probability at least as large as his optimal winning 

probability [ i.e. g(x, T-t) ? p2(T-t)J. Hence, the optimal strategy 

given in ( 3.2.1) is intuitively reasonable. 

By similar consideration of ( 2.2.1), player 1 would wish to 

maximize 

+ (l-411 )[ 21 (1-g) + (1 42 1) 

from which we get the optimal strategy, 

if g 2l( 1 + (. 21) pl 

otherwise. 

Splitting •ll into 2 cases with respect to ( 3.2.1), we have that 

i) If g≥p2, 21 

ll = 1 
10 otherwise. 

f1 if g≥l-g, 
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If g<p2, 21° 

if g ≥ p1 

otherwise 

which is impossible, because p1 ?: p2 is implied by A1 A2. 

Thus, we may rewrite 11 as 

if g(x,T-t) max[1-g(x,T-t), p2(T-t)] 

otherwise. 

Further, since p2(T-t) < ., 411 (x,T-t) becomes 

(3.2.2) 

fi if g(x,T-t) ?: 

10 otherwise. 

Since player 1 is given the first opportunity to make a selection 

when the offers arrive via stream 1, he will tend to be choosy. Also, 

since 1) 

- 

offer which gives him a winning probability of at least 

[i.e. g(x, T-t) ≥ I]-

it is not surprising that player 1 will only select an 

1 
2 
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3.3 OPTIMAL STRATEGIES FOR STREAM 2 

Similarly by ( 2.2.1), player 1 would wish to maximize 

(l-  22)12g + (l-412 )(l-- 22) p1 

This would then give rise to the following optimal strategy: 

(3.3.1) = 

p if g(x,T-t) ≥ p1(T-t) 

to otherwise. 

Since player 1 is not given the first opportunity to make a 

selection when the offers arrive via stream 2, he will only be 

presented with the offers that have been rejected by player 2. Thus, 

he will act conservatively by selecting any offer which gives him a 

winning probability that is at least as large as his optimal winning 

probability [ i.e. g(x, T-t) ≥ p1(T-t)]. Hence, the optimal strategy 

given in ( 3.3.1) is intuitively reasonable. 

By ( 2.2.2), player 2 would wish to maximize 

22g + (l-422)12(l-g) + (l_422)(1_l2) P2 

This leads us to 
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fi 
22 10 

if 

otherwise. 

+ (l_4i12) P2 

Splitting 22 into 2 cases with respect to ( 3.3.1), we have that 

i) If gap1, 121 

.11 

10 22 

If g<p1,4 12 =0 

- f22'1) - 10 

if gal-g 

if 

e 

otherwise. 

g a 

otherwise. 

Thus, by ( i) and ( ii), we have that 

a) If p1(T-t) < 

(3.3.2) '122 (x,T-t) 
51 

10 
if g(x,T-t) or p2(T-t) ≤ g(x,T-t) < p1(T-t) 

1 
b) If p1(T-t) >- 

otherwise. 

f1 if g(x,T-t) a (T-t) 

(3.3.3) 422 (x,Tt) = 

[0 otherwise. 
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Although player 2 is given the first opportunity to make a 

selection when the offers arrive via stream 2, he will act 

conservatively because 
P 2 -  1. When p1(T-t) < , it is not 

surprising that player 2 accepts an offer of g(x, T-t) ≥: 1. However, 

the interesting part about player 2's optimal strategy is that he does 

not accept any offer when p1(T-t) S g(x, T-t) < 1 but would instead 

accept an offer when p2 (T-t) g(x, T-t) < p1(T-t). This is 

reasonable because by not selecting an offer when p1(T-t) g(x, T-t) 

< ., player 2 forces upon player 1 to select an offer that gives player 

1 a winning probability of less than a . Furthermore, since player 1 

does not accept any offer when g(x, T-t) < p1(T-t), player 2 will use 

this to his advantage by selecting an offer even when g(x, T-t) < 

p1(T-t) as long as it is larger than his optimal winning probability 

[i.e. he selects an offer when p2(T-t) ≤ g(x, T-t) < p1(T-t)]. This 

explains ( 3.3.2). 

Also, since the winning probabilities increase over time and 

Pi ≥ p2, there may be a time when the winning probability of player 1 

reaches a half. Once p1(T-t) = 1 and if neither of the players has 

made any selection by this time, player 2 will be more conservative and 

pick any offer which gives him a winning probability that is at least 

as large as his optimal winning probability [ i.e. g(x, T-t) ≥ p2(T-t)}. 

This is sensible because player 1 will only accept an offer from stream 

2 if g(x, T-t) ≥ p1(T-t) and also, since p1(T-t) ≥ , player 1 will 
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actually be accepting an offer which gives him a winning probability 

that is at least as large as half. Hence, the optimal strategy in 

(3.3.3) is intuitively reasonable. 

3.4 A FORMAL PROOF FOR THE OPTIMAL STRATEGIES  

We will now present a formal proof to show that the strategies 

given by ( 3.2.1), (3.2.2), ( 3.3.1), (3.3.2) and ( 3.3.3) are optimal in 

the class of all the admissable strategies ll' l2' 21' 22 where 

T-t) [ for i,j = 1,2] are continuous functions of T-t E [0,T] 

for nearly all x E [0,1]. 

Using the facts that 

11g + (1-411) [ 21 (l-g)+(1-421 )p 1] max[g, 21 (l-g)+(l- 21 )p 1] 

and 

(1_422) ll2g + (l-4l2)(l-422 )P l = (l_422) max[g, p1], 

and the intuitive result p1 2: p2 [because of the priorities and the 

fact A2 ≤ A1], we will first prove that 

are the optimal strategies for player 1. 

Rewriting ( 2.2.1), we have that 

T-t) and T-t) 

(3.4.1) j, 1(T-t) = f(T-t, p1(T-t)) with 0 ≤ T-t ≤ T and p1(T) = 0, 
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where we have used the representation 

f(T-t, y) = (l+)y - ji max[g, 421(l-g)+ ('-421 )y] dx 

- 18  ji + (1_2) max[g,Y]} dx. 

0 

Letting 0 41 (x T-t) 1 [ for i,j = 1,2] be continuous 

functions in T-t e [ 0,T] for nearly all x E [0,1] and p1(T-t) be 

the solution to ( 2.2.1) that corresponds to the game strategy 

1l' l2' 2l' 22' we have that 

= (1+ );l - J 
0 

dx 

1 J{ 22 1_•1_ 22 2g+(1- 12) 1}} dx 

max[g, 21(1g) + (l2l) Pil 

1 

- J { 22 (l_g)•(l_ 22) max[g, 1i} 

0 

dx 

dx. 
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Thus, it follows that 

(3.4.2) p1(T-t) ≥ f(T-t, p1(T-t)) with 0 ≤ T-t ≤ T and p1(T) = 0. 

Using the fact that f is a continuous function and comparing 

(3.4.1) with ( 3.4.2), we can use a variation of the differential 

inequality in Flett page 97, ex.4j to conclude that p1(T-t) ≥ p1(T-t) 

where 0 T-t T. 

By similarly constructing p2 (T-t) which is a solution of 

(2.2.2) that corresponds to the game strategy l2 2l' V22 )' we 

can show that 

p2(Tt) > p2(T-t) for 0 ≤ T-t ≤ T. 

Thus, we have that 

p.(T-t) ≥ p(T_t) for I = 1,2 and 0 S T-t ≤ T 

from which it follows that 

p.(0) ≥ p.(0) for i = 1,2. 13 



CHAPTER IV 

THE WINNING PROBABILITIES WHEN p1(T-t) < AND THE 

TIME WHEN p1(T--t) = 

4.1 INTRODUCTION 

Since we have a different optimal strategy when p1(T-t) < y as 

opposed to p1(T-t) ≥ , the problem of finding the winning 

probabilities pi(0) [ for I = 1,2] can be done by breaking the problem 

down into two parts. 

In the first part (Chapter IV), we will use p(T) = 0 as the 

initial conditions to solve ( 2.2.1) and ( 2.2.2) in order to determine 

the residual time t such that p1(T_t*) = 0.5. In Chapter V, we will 

use the known values of t * and p(T-t *) as initial conditions to 

solve (2.2.1) and ( 2.2.2) so as to determine p1(0) [for i = 1,2]. 

Here we have assumed that T is at least as large as t which 

implies that p1(0) ≥ 0.5. 

4.2 THE TIME ZONES 

Our goal in this chapter is to find a residual time t such 

that p1(T_t*) = 0.5. We will achieve this by solving ( 2.2.1).and 

(2.2.2) with the initial conditions p(T) = 0 [ for i =1)2] in 4 time 

zones which are defined by the optimal strategies ( 3.2.1), ( 3.2.2), 

(3.3.1) and (3.3.2). Before we define the times which constitute these 

time zones, we will first rewrite the optimal strategies (3.2.1), 

(3.2.2), (3.3.1) and (3.3.2). 
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With the combination of ( 2.2.3), (3.2.1) may be rewritten as 

follows: 

11 if x ≥ max [ 0, 1+a n p2(T-t)] 

(4.2.1) 

0 otherwise, 

where a - 1  
(1+/3)t 

(3.2,2), ( 3.3.1) and ( 3.3.2), via similar combination of ( 2.2.3), may 

be rewritten as follows: 

(4.2.2) c11 (x,T-t) --

(4.2.3)  12 (x,T-t) 

and 

11 
10 

if xmax [0, l-an2] 

otherwise, 

if x ≥ max [ 0, l+cx gn p1(T—t)] 

otherwise, 

if x ≥ max [0,1-a.n2] or x € [1+an p2,l+anp 1) 

(4.2.4) 422 (x,T-t) = 

to otherwise, 

where p1(T-t) < 
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With these, we can now define the times T-t T-t and 

where 0 < T_t i< T-t < T-t < T, as follows: 

11 (x,T-t) = 22 (x,T-t) = 1 for all x if T-t ≤ T-t ≤ T 

= 1 for all x if T-t ≤ T-t S T, and 

= 1 for all x if T-t1 T-t S T. 

Writing down the expressions for the times T-t T-t and T-t, we 

have that 

(4.2.5) t n23 1+16 = 

(4.2.6) p1(T-t) = e , and 

(4.2.7) P2(Tt) = e 

since p1(T-t) and p2 (T-t) are both monotone. 

We will make a further assumption that T is large enough so 

that T-t T-t and T-ti will all be well defined positive 

quantities. 
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4.3 THE WINNING PROBABILITIES FOR THE TIME ZONES 

Since we have a constraint for p1(T-t) { i.e we want to find a 

t such that p1(T_t*) = 0.5], it will be easier for us to solve 

(2.2.1) first. We will start by solving ( 2.2.1) in the time zone 

T-t < T-t T. Using the fact that p1(T-t) is a continuous solution, 

we will then work backwards to determine t, such that p1(T_t*) = 0.5. 

Once t has been established, we can proceed to determine p2(T-t ) 

which is just a by-product. 

Case i: For the time zone T-t S T-t S T, with the aid of (4.2.1), 

(4.2.2), (4.2.3) and (4.2.4), one can rewrite ( 2.2.1) as 

1 

pi(Tt) = (l+48)p1 - /3 - a(l-/3) + cx(l-/3) e a 

Using the initial condition p1(T) = 0, the above linear differential 

equation leads us to the following solution: 

(4.3.1) 

(4.3.2) 

p1(T-t) = ib [l_e l+/3)t] + l-/3 e 1)t J(T-t,T), 

where we define 

e(1+ t_l 
J(a,b) =   d(T-t), 

f 

a 

where O≤a≤b≤T. 
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Case ii: For the time zone T-t ≤ T-t S T-t, combining (4.2.1), 

(4.2.2), (4.2.3) and (4.2.4) with ( 2.2.1), one can rewrite (2.2.1) as 

follows: 

1 

1(T-t) = ( l+8)p1 + cx(.n 2)(l-/3) - 1 - cx e a ( l-/3). 

Using the fact that p1(T-t) is a continuous solution and 

equating the solution of the above ordinary differential equation with 

(4.3.1) at time T-t, we have that 

1 (n2)(1-/3) e1)t 
(4.3.3) p1(Tt) = - J(T-t, T-t) 

+ e1t (1-48)(l- n2) I 1en2ll 
l+/3 ( fl t) 1r'Ji 

+ e  - 2 + (1-a) J(T_t,T)}. 

Case iii: For the time zone T-t S T-t ≤ T-t, one can similarly 

rewrite (2.2.1) as 

(4.3.4) p1 (T-t) = - (l+)(l-pl) + a[(n2)(1_)_(l+) ea+fl(2p1_n 
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Because (4.3.4) is a non-linear differential equation, we will 

deal with (4.3.4) later and solve it numerically. 

Case iv: For the time zone 0 T-t ≤ T-t1, one can rewrite (2.2.1) as 

(4.3.5) 1(Tt) = a[(l+)((.en p2)-p2-p 1 np2)+$(2p1-n P1)+(.n2)(l_)]. 

Since (4.3.5) is another non-linear differential equation, we 

will deal with it later and solve it numerically as well. Furthermore, 

since j1(T-t) depends on both p1 and p2, to solve (4.3.5) 

numerically [using the Runge-Kutta method], we will need an expression 

for P2(T-t). Thus, combining (4.2.1), (4.2.2), (4.2.3) and (4.2.4) 

with (2.2.2), one can rewrite (2.2.2) for the same time zone [ 0 ≤ T-t ≤ 

T-ti) as follows: 

(4.3.6) 2(T-t) a[(14-/3) p2(1-en p2 )-( n 2)(l-/3)+/3(-2p1+n P1)]. 

Before we proceed to find t, we will first find an alternative 

expression for p1(T-t1). This can be done via p(T-t), where we 

define 

p(T-t) = p1(T-t) + p2(T-t) 

P[someone wins Ifirst offer is accepted 

in time (T-t,T)] 

≤ 1 [ as both players may lose the game]. 
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Thus, by ( 2.2.1) and (2.2.2), we have that 

(4.3.7) j(T-t) = (1+/3) p 

f1 J + (1 11 1 21) 1 dxI 

TO 

-  16 [22+( 1 22)12 + (1 l2)( 1_22) pl dxIti 

O 

For the time zone T-t T-t T, with the aid of (4.2.1), 

(4.2.2), (4.2.3) and (4.2.4), we can rewrite (4.3.7) as follows: 

(T-t) = (1+48)p - (l+$). 

Using the initial condition p(T) = 0, the above differential 

equation leads us to the following solution: 

(4.3.8) p(T-t) = 1 - e 1 )t 

At time T-t1, (4.3.8) becomes 
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-(1+I3)t 
p(T-t) = 1 - e 

or equivalently, the probability that someone wins at time 

-(l+18) t1 
T-ti, is 1 - e 

At this stage, it is interesting to note that the probability of 

no one winning at time T-t is given by player 2's winning probability. 

Further, by (4.2.7) we have that 

-(l+48)t1 
e 

We now have an alternative expression for pi(T-tl), namely, 

(4.3.9) 1 - 2 e 

4.4 DETERMINATION OF THE RESIDUAL TIME SUCH THAT p1(T_t*) = 0.5 

With the necessary equations being established, we can now 

proceed to find t such that p1(T_t*) = 0.5. We will start by 

proving the claim T_t* < T-t < T-t < T. 

PROOF: 

Since T-t < T-t < T [by definition], it suffices to just show 

that p1(T-t) < 0.5, as this would mean that T_t* < T-t. 
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By our definition, we have that 

T-t < T-t 

-(l+48)t 
or e < e 

Equivalently, with the aid of ( 4.2.5) and (4.2.6), 

- 1 
p1(T-t) < e [ ] - 

Thus, we have that p1(T-t) < , which implies that 

T_t* < T-t < T-t < T (Q.E.D.). 

Now that we know T_t* < T-t, it remains for us to check whether 

T_t* < T-ti. To be able to check this, we first have to solve for t 

and then check if P1(T-t) < 0.5 [ in which case 0 < T_t* < T-tJ or 

if p1(T-t) > 0.5 fin which case T-tj < T_t* < T-t]. 

To determine the value of tj, we first need to know t and 

p1(T-t) as these will be used as initial conditions when solving 

(4.3.4) for t1. Hence, we first have to determine t, then 

followed by t1, and finally pi(T-ti). At time T-t, 

(4.3.3) becomes 
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(4.4.1) 
1 ( n2)(l-13) e  

p1(T-t) = . - 1+J J(T-t, T-t) 

(1-$)(1-n2) {( n t) - 

+ e  1+/3  gn 

+ e  A - 2 + (1-13) J(T_tT)}. 
1+/3 

Equating (4.2.6) with (4.4.1), it follows that 

(4.4.2) e - 1 (n2)(1-13) e  J(T-t, T-t) 
1+13 1+13 

+ e 2 (113)(12) [(en t) - n fn2fl 
1+13 

-(1+8)t 
e  [ 

• 1+13 - 2 + ( 1-13) J(T_tT)]. 

Before we solve (4.4.2) for t, we first have to evaluate the 

integral (4.3.2). By (4.3.2), we have that 

J(a,b) = d(T-t) 

e(1+13) ( T-u)1 

T-u 
du 
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r 
= ; (l+46)X'(T_a)  -  

r.r! r.r l 
r1 r1 

It thus follows that 

(4.4.3) J(a,b) = F(T-a) - F(T-b), 

00 

where we define F(u) = Z   

(l+/3)r r 

r.r! 
r1 

Combining (4,2.5) and (4.4.3) with (4.4.2), we have the following 

equation: 

(l+/3) t 
1 e ( n2)(l_/3)[F(t) - F11- fn21 jj + (l_/3)(l_n2){n t - en[JJ 

rn21 
+ (1-48) F1.I-J 3 = °. 

Hence, for any given value of /3, the above equation may be 

solved [using Newton's method recursively] for t. 

With /3 and the corresponding value of t known, one can 

compute p1(T-t) using (4.2.6). With the computation of the initial 

condition t and p1(T-t), we can now recursively solve (4.3.4) for 

ts 
1• 

To do this, we first apply the Runge-Kutta method [see Burden and 

Faires ( 1985)] to solve (4.3.4) at some arbitrary time T-t1 and 
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obtain the solution of p1(T-t 1).Then we will check whether this 

solution agrees with (4.3.9) when T-t = T-t1. Alternating 

recursively between the Runge-Kutta method and a variation of the 

Bisection method would enable us to arrive at a t such that p1(T-t) 

[the solution of ( 4.3.4) at time T-tj agrees with (4.3.9) when 

T-ti = T-t. One can thus compute t1[=t]. Once t1 has been 

computed, we can determine p1(T-tl) and p2(T-t) via (4.3.9) and 

(4.2.7) respectively. [See Appendix A.] 

To compute t, we proceed as follows: 

(i) If P1(T_t) > 0.5, we will solve (4.3.4) again [using (4.2.6) as 

the initial condition] numerically via the Runge-Kutta method at 

some arbitrary time Tt* and check if p1(T_t*) 0.5. As 

before, alternating recursively between the Runge-Kutta method 

and a variation of the Bisection method, we will eventually 

arrive at a t such that p1(T_t*) = 0.5. 

(ii) If p1(T-t) < 0.5, we will use the known values of (4.3.9) and 

(4.2.7) as initial conditions to simultaneously solve (4.3.5) and 

(4.3.6). As before, we will alternate recursively between the 

Runge-Kutta method and a variation of the Bisection method to 

finally arrive at a t such that p1(T_t*) = 0.5. 
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(iii) The final but trivial alternative is when p1(T-t1) = 0.5. This 

simply means that t = t. [See, Appendix A.] 

The following can be observed from Appendix A: 

a. When 8 E (0, 0.1815), t < t. 

b. When /3 = 0.1815, t = ti. 

C. When /3 E (0.1815, 1], t > t. 

With t and p1(T_t*) [= 0.5] determined, we then find 

p2(T_t*) as follows: 

if t t [or equivalently T_t T_t*], then p2(Tt*) is 

obtained by subtracting p1(T_t*) from (4.3.8) at time T_t*. Thus, 

we have that 

(4.4.4) p2(T_t*) = 0.5 - e_(1+1t*. 

Alternatively, if t > t1, then p2(T_t*) is the solution of 

the non-linear differential equation (4.3.6) at time Tt* which is 

obtained as a by-product when solving (4.3.5) and (4.3.6) 

simultaneously for t. [See Appendix A.] 



CHAPTER V 

THE WINNING PROBABILITIES WHEN p1(T-t) ≥ 

5.1 INTRODUCTION 

In this chapter, we will start with the known values of t and 

p(T_t*) [ for i = 1,2] and then work backwards to determine the 

winning probabilities p.(0). Thus, we will be interested in ( 2.2.1) 

and ( 2.2.2) for the time interval 0 T-t T_t* only. 

5.2 THE TIME ZONES  

To find the winning probabilities ( 0) [for i = 1,2], we will 

use t, p1(T_t*) and p2(T_t*) as the initial conditions and then 

solve ( 2.2.1) and ( 2.2.2) for the time interval 0 ≤ T-t ≤ T_t*. Since 

we have a different optimal strategy [with (3.3.3) replacing (3.3.2) 

because p1(T-t) ≥ ], the set of optimal strategies (3.2.1), (3.2.2), 

(3.3.1) and ( 3.3.3) will define 4 new time zones which are in no way 

related to the 4 time zones we had when p1(T-t) < . Before we define 

the times which constitute these 4 new time zones, we will rewrite the 

optimal strategies ( 3.2.1), ( 3.2.2), ( 3.3.1) and (3.3.3). 

The optimal strategies ( 3.2.1), ( 3.2.2), ( 3.3.1) and ( 3.3.3) when 

combined with ( 2.2.3) will yield (5.2.1), (5.2.2), (5.2.3) and (5.2.4) 

respectively. Thus we have that 
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(5.2.1) 

(5.2.2) 

(5.2.3) 

and 

(5,2.4) 

2 1(x, 

11 (x, 

T-t) 

T-t) 

T-t) 

.11 

to 

Ji 
to 

if x ≥ max[ 0, 1+a kn p2(Tt)] 

otherwise, 

if x ≥ max[0, 1-a en 2] 

otherwise, 

51 if x 2: max[0, 1+a en p1(T-t)] 

to otherwise, 

51 if x 2: inax[0, 1+a p2(T-t)] 
'22 < T-t) = 

10 otherwise, 
1 

where p1(T-t) 2: 

Since these time zones have no relation with those when 

p1(T-t) < , we have decided to call the times which constitute these 

time zones by different names (namely T-t1, T-t2 and T-t3), so as not 

to create confusion. With these, we can now define the times T-t1, 

T-t2 and T-t3, where 0 < T-t1 < T-t2 < T-t3 < T, as follows: 

and 

= 1 for all x if T-t3 ≤ T-t ≤ T, 

411 (x,T-t) = 1 for all x if T-t2 T-t ≤ T, 

22 (x,T-t) = 1 for all x if T-t1 ≤ T-t ≤ T. 

Writing down the expressions for the times T-t1, T-t2 and 

T-t3, we have that 
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(5.2.5) 

(5.2.6) 

(5.2.7) 

p1(T-t3) = e 

t2 = n2 , and 

p2 (T-t1) = e 

since p1(T-t) and p2 (T-t) are both monotone. 

We will assume, as before, that P is large enough so that 

T-t1, T-t2 and T-t3 are all well defined positive quantities. 

5.3 THE WINNING PROBABILITIES FOR THE TIME ZONES 

Before we use the initial values t, p1(T_t*) [= 0.5] and 

p2(T_t*) to solve (2.2.1) and ( 2.2.2) for the time interval 

0 T-t T - t so as to obtain p1(0) [for i = 1,2], we will first 

have to determine the zone in which the time T_t* [ or equivalently, 

the residual time t*] lies. In order to do this, we will use the 

boundary condition p1(T) = 0 and solve (2.2.1) first in the time zone 

T-t3 T-t T. Using the fact that p1(T-t) is a continuous solution, 

we will then work backwards to determine the zone which contains the 

* 
time T-t 

Case i: For the time zone T-t2 ≤ T-t ≤ T, with the aid of (5.2.1), 

(5.2.2), (5.2.3) and (5.2.4), one can rewrite ( 2.2.1) as 
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1 

p1(T-t) = (1+/3)p1 - $ - a ( 1-/3) + a ( 1-$) e a 

Using the initial condition p1(T) = 0, the above differential 

equation leads us to the following solution: 

f3 I - e 1+tl + l-$ J(T-t,T), (5.3.1) p1(T-t) 

where J(a,b) was defined in (4.3.2). 

Case ii: For the time zone T-t1 < T-t T-t2, combining (5.2.1), 

(5.2.2), (5.2.3) and (5.2.4) with ( 2.2.1), one can rewrite ( 2.2.1) as 

follows: 

1 

1(T-t) = ( 1+$)p1 - (1+$) + a($ + n2) - a e a ( 1+f3). 

Using the fact that p1(T-t) is a continuous solution and 

equating the solution of the above differential equation with (5.3.1) 

at time T-t2, we have that 

1 - +PZri+,a 112I e 1)t J(T-t, T-t2) + (5.3.2) p1(T-t)  J 

11n21 i 1+48 j [tnt - nt2] e1+48)t 

e 1+48)t 1 1 (1+$)t2 
[e + 6 - (1-48) J(T-t2, T)J}. 
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Case iii: For the time zone 0 ≤ T-t T-t1, one can similarly rewrite 

(2.2.1) as 

(5.3.3) j1(T-t) = a[(1+/3)((n p2) -p1(n p2) - p2) + (/3+n2)]. 

We will consider the above non-linear differential equation later 

in this chapter. 

An alternative expression for p1(T-t 1) will now be obtained by 

considering 

p(T-t) = p1(T-t) + p2(T-t) S 1. 

This would now lead us to a differential equation j(T-t) which 

is identical to ( 4.3.7). 

Using the initial condition p(T) = 0, for the time zone 

T-t1 T-t ≤ T we would have 

(5.3.4) p(T-t) = 1 - e 1+1t 

At time T-t1, it follows that 

(5.3.5) p1(T-t1) = 1 - 2e 

Now that we have established the necessary groundwork, we will 

proceed to find the zone in which T_t* lies. 
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5.4 DETERMINATION OF THE TIME ZONE WHICH CONTAINS THE TIME T_t* 

As before, we will start by proving the claim 

T_t* < T-t2 < T-t3 < T. 

PROOF: Since T-t2 < T-t3 < T [by definition], it suffices to just 

show that T_t* < T-t2 or equivalently t > t2. 

By (5.2.6), it follows that 

2 1+/3 

n 2 

< inf t = 1.0597. [See Appendix A.] 
4eE[0, 1] 

Thus, we have that 

T_t* < T-t2 < T-t3 < T (Q.E.D.). a 

Now that we have established the claim that T_t* < T-t2, it just 

remains for us to check if T_t* < T-t1. Inorder to do this, we have 

to find t1 and then compare t1 with t [which has been tabulated 

in Appendix A]. 

To find t1, we just have to equate (5.3.2) at time T-t1 with 

(5.3.5). This then leads us to the following: 
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r l+.8 
+n2I -( l-i-48)tp1(T-t) = 1 -  j e 1 J(T-t 1, T-t2) + 

f1- n2) -( l+48)t 1 - 

1 1+48 j [nt 1 -- nt2] e 

-(1-f48)t1 1 1 (1+48)t2 
e {e + 48 - ( 1-48) J(T-t2, T)]} 11+A 

1- 2e 

Further simplification leads us to the following equation: 

l (5.4.1) (46+n2) I F(t 1) - F 1n2 1.-JJ - l- n2) { nt fn2 1 - 

n21 
- (1-48) f = 0. 

48 

Thus, for any given value of 48, (5.4.1) can be recursively 

solved for t1 using the Newton's method. With the obtained value of 

t1, one can easily check whether t1 < t [ in which case T-t1 > 

T_t*]. [See Appendix B]. 

The following can be easily observed from Appendix B: 

a. When ,8 E (0,0.1821), t < t1. 

b. When /3 = 0.1821, t t1. 

C. When /3 € (0.1821, 1), tK > t1. 
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5.5 THE WINNING PROBABILITIES FOR THE TIME INTERVAL 0 ≤ T-t ≤ T_t* 

Using the known values of t, p1(T_t*) [= 0.5] and 92(T._t*) as 

initial conditions, we will solve ( 2.2.1) and (2.2.2) in 2 time zones 

[namely 0 ≤ T-t < T-t1 and T-t1 ≤ T-t ≤ T_t*1 when T-t1 < T_t* 

and in 1 time zone [namely 0 ≤ T-t ≤ T_t*] when T_t* < T-t1. 

Thus, the problem can now be split into the following 2 cases: 

CASE A: 0 ≤ /3 < 0.1821, in which case T-t2 > Tt* > T-t1 

and 

CASE B: 0.1821 ≤ /3 ≤ 1, in which case 0 < T_t* S T-t1. 

5.5.1 CASE A: 0 ≤ /3 < 0.1821 [where T-t1 < T_t* < T-t2] 

Case A.l: For the time zone T-t1 ≤ T-t ≤ T_t*, ( 2.2.1) with the 

aid of (5.2.1), (5.2.2), (5.2.3) and (5.2.4) can be rewritten as 

1 

1(T-t) = (1+/3)p1 - (1+/3) + c(/3+n2) - a(1+$) e a 

Using the initial condition p1(T_t*) = 0.5, the above 

differential equation has the following solution: 

(5.5.1.1) p1(T-t) = 1 - e 1 )t 11i3+n21 U i+ j J(T-t, T_t*) - 

11-n21 
(t I l+/3 j nt - nt *) 1 + e 
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With the known value of t1 [obtained by solving (5.4.1)] and 

t, one can solve (5.5.1.1) to obtain p1(T-t 1). [See Appendix B.] 

Case A.2: For the time zone 0 ≤ T-t ≤ T-t1, ( 2.2.1) will be 

identical to ( 5.3.3), 

i.e. 

1(T-t) = a [( l+3)((n p2) - p1(n p2) - p2) + (6+n2)]. 

Since the above differential equation depends on both p1 and 

we will rewrite ( 2.2.2) as follows for the same time zone (0 ≤ T-t 

≤ T-t1) in order to obtain j2 (T-t): 

2(T-t) = a[(1+/3) p2(1-en p2) - (/3+n2)] 

or equivalently, 

p2(T-t 1) 

f dp 
(5.5.1.2) j n2-f-fi1  - £nt - £nt1. 

On I'p2....j e_I l+$ J 

Although we can solve (5.5.1.2) numerically, we will instead 

consider it asymptotically since we are interested in p.(0). [See 

Chapter VII] 
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p2 (T-t1) can be easily found via p(T-t1), by making the 

following consideration, 

i.e. 

p(T-t) = p1(T-t) + p2(T-t). 

At time T_t*, p (T_t*) = p1 (T_t*) + p2 (T t*) 

m(/3) [where m($) is a value that 

depends on /3J. 

This value m(/3) can be computed via Appendix A where both 

p1(T_t*) and p2(T_t*) have been tabulated for different values of 

Using the optimal strategies (5.2.1), (5.2.2), (5.2.3) and 

(5.2.4), we can rewrite (4.3.7) for the time zone T-t1 ≤ T-t ≤ T-t 

as follows: 

* 

(T-t) = (1+$)p - (l+8). 

This ordinary differential equation has the following solution: 

* 
p(T-t) = 1 + fm() - 1] e(1(t -t 

where we have used the initial condition 

p(T_t*) = m(8). 

18. 

Thus, p2 (T-t1) can be obtained by subtracting (5.5.1.1) from 

p(T-t) and setting t = t1. It is also obvious that as T increases, 

both the winning probabilities p1(T-t 1) and p2 (T-t 1) will increase. 
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In the time zone 0 ≤ T-t < T-t1 (4.3.7) becomes 
-  

p(T-t) - t 

(n p2 1 

and the probability that someone wins may be expressed as 

(5.5.1.3) n[l-p(0)] = gn(l-p(T-t1)] +j 

0 

T-t 
1 gn  p2(T-t) 

t d(T-t). 

We will consider (5.5.1.3) further in Chapter VII. 

5.5.2 CASE B: 0.1821 ≤ 8 1 [where 0 < T_t* < T-t1} 

For the time zone 0 ≤ T-t ≤ T_t*, ( 2.2.1) can be rewritten as 

(5.3.3), that is, 

1(Tt) = a[(l+8)((n p2) - p1(n p2) - p2) + (18+n2)). 

Since this differential equation depends on both p1 and p2, we 

will again need an expression for p2(T-t). Rewriting ( 2.2.2) for the 

time zone 0 ≤ T-t ≤ T_t*, we have that 

2(T-t) = a{(l+8) 2 ( 1-n p2) - (j3-i-n2)] 

or equivalently, 
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(5.5.2.1) 
d p2 

e 

- nt - nt*. 

where we have used the known values of t and p2(T_t*) as the 

initial condition. 

As stated earlier, since we are interested in p.(0), we will 

consider (5.5.2.1) asymptotically in Chapter VII. 

For this same time zone, we can rewrite (4.3.7) as follows: 

(n P2)(1-P) 
(T-t)  t 

Thus, the probability that someone wins may be expressed as 

(5.5.2.2) n[l-p(0)] = gn(I-p(T-t*)] + J n p2(T-t) d(T-t). 
0 

T_t* 

We will again, as before, consider (5.5.2.2) in Chapter VII. 



CHAPTER VI  

THE TIME OF THE FIRST ACCEPTANCE 

6.1 THE DISTRIBUTION OF T-r  

Let T-r be the time when an offer is first accepted by either 

player 1 or 2. Further, let g(T-r) be the density of T-r. Thus, we 

will have that 

co 

g(T-r) = Z g(T-r) 
n1 

th offer arriving in time 

where [g(T-r)) (T-r) = P [(T_F, T-r+(T-r)) is the firsti. 
.to be accepted 

It is seen that when 0 ≤ T-r < T-t1, an offer is only accepted 

when x (T-r) = 1 + (1+A)  Alternatively, when T-t1 -< T-r ≤ 

T, the first offer is readily accepted. 

For the time interval 0 ≤ T-r < T-t1, one can show that 

FT (T-y) d(T-) 

g(T-r) = (1+)' [ i- (T-r)] 

T-r 

1.0 

n-i 

J 

(n-i)! 
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T-r 

(6.1.1) g(T-r) = (l+8) [ 1-(T-r)] exp (1+j3) [(T-y)-1]d(T--y) 

0 

Similarly, for the time interval T-t1 ≤ T-r ≤ T, we have 

j T-t 1 

g(T-r) = (l+8)' 10 (n-l)! exp[-(l+/)(T-r)]. 

(T-y) d(T-y) 

n-i 

or equivalently, 

(l+)JT-t1 (T-y)d(T-y) 
(6.1.2) g(T-r) e- (l+/3)(T-r) e 0 

T-r 
6.2 THE MOMENTS OF 

T 

To determine E(T-r) and Var (T-r), we could first find an 

expression for the moment generating function (m.g.f.) of the time of 

the first offer acceptance [ i.e. E(eT_T))J. But, since we are 

interested in these moments asymptotically, we will instead find an 

expression for the m.g.f. of the fraction of the time of the first 

offer acceptance. 
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Furthermore, since g(T-r) is a defective density function, we 

will define the conditional m.g.f. 

N T) M{z,  T-r --} = E(e 

and also since 

p(0) = p(someone wins) 

an offer is accepted) 

= p(an offer is accepted), 

we can rewrite M[z, !L} with the aid of (6.1.1) and (6.1.2) as 

follows: 

T-r 
T 

+ 

L—) = 1.T [T-,r 

I T-t 1 

0 

IT 
T-t1 

g(T-r) d(T-r) 

rT 

IT-r 

e (l+/3){l-(T-r)]e d(Tr) 

T-t1 

(1+$)J (T-y)d(T-y) 

e FT-1  (1+A)e -( 1+,8)(T-r) 0 e d(T-r). 

After some simplification, we have that 
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M{z, !i} = 1 

TP-r 

T-t 
I — 1 TT-1 z 

21 e  

(l+fl)J [(T-y)-1]d(T-y) 

0 

(1+/3)J (T-y)d(T-y) 

0 

(1 -f-/3)T [z_( 14-8)T}l 
z-( 1+$)T e J. 

I 
1. 

  e 

1T-t1 

z IT 

We will consider ( 6.2.1) asymptotically in the next chapter. 

d(T-r) 



CHAPTER VII 

ASYMPTOTIC RESULTS 

In this chapter, we will derive results for p1(0), p2(0), 

E [e I]$ E {J and Var as T 00. 
T  T ) 

7.1 THE ASYMPTOTIC PROBABILITIES  

Asymptotically, (5.5.1.2) and (5.5.2.1) yield the same result 

regardless of their initial conditions. We can similarly conclude 

that (5.5.1.3) and (5.5.2.2) will asymptotically yield the same result. 

Thus, it will suffice to just consider (5.5.1.2) and (5.5.1.3) for 

alternatively (5.5.2.1) and (5.5.2.2)] asymptotically. 

From (5.5.1.3), one can observe that as T - p 

T_tl gn p2(T-t) 

j  

0 

d(T-t) -. -  00 

It thus follows from the left hand side of (5.5.1.3) that 

Lim p(0) 1. This means that we definitely have a winner, but in an 
T-.°° 

asymptotic sense. Thus, if Lim p2(0) = u, it follows that 
T-,°° 

Lim p1(0) = 1-u. 
T-+-

 54 - 
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Careful observation of (5.5.1.2) tells us that when T-t = 0 and 

T -. , the right hand side of (5.5.1.2) diverges. This means that the 

denominator of the integrand in (5.5.1.2) must vanish. Thus, we have 

that 

[n2+/31 
U - ___ 

l+/3 J 
(uj 

where we have used the notation Lim p1(0) = 1-u 
T.co 

and Lim p2 (0) u 
T-s 

or equivalently, 

(7.1.1) 

f3+n2 

[JUe1I/3 = 1. 

For a given value of /3, we can solve (7.1.1) using Newton's 

method to obtain the value of u. Once u has been found, we can then 

compute the asymptotic probability of player 1 winning. [See Appendix 

B and C.] From Appendix B, we can also observe that when /3 = 0, our 

asymptotic probabilities agree with the results in Enns and Ferenstein 

(1988). 

7.2 THE ASYMPTOTIC MOMENTS 

First, we will show that the asymptotic expression for M{z, 

co r r+l 
is 1 + eZ ( 1) Z  , following which we will show that 

r0 r!(r+l-nu) 
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ITTI 
the asymptotic values of 

[2(1 '-  n u) 1 (2 - n u)' - (1 

and Var (TTTI are ( 1 - n u) 1 and 

- .n u) 2] respectively. 

Rewriting (6.2.1), we have that 

I T-r 
M1z, --- = L1 + L2 + 1, 

where L = e 

(1+48)j (T-y)d(T-y) 

0 

T-t1 

and L2 = 

J 
1 
  [T-t1 

P j [z- (l-f-/)T} 

z-(l+48)T e 

+  (1+8)T e [z_(1+6)TJl 

S 

IT-ri 
eZ 1J 

(l+)J [(T-y) -l]d(T-y) 

0 e 

T-r 

Now, we will show that Lim L1 0. 
T.co 

Due to the fact that we definitely have a winner in the 

asymptotic sense, 

d(T-r). 
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(1+$) (T-t1)+(nu)Jn   i [T_(_t1)]} J   Tt1 [ z-( 1+/3)T] 

e L1 e z-( 1+/3)T 

(1-z13)T [z-(1+/3)T]l 
+    

z-( 1+8)T e 

- in I  - T-t1] T-t1 [z_(1+)tiIl 
T I (1+3)  

= T z-(1+f3)T e + e 

J 
—p 0 [ as T - oo] 

Rewriting L2, we have that 

T-t IT-r 
zT 

L2  e 

0 

JT_T [ fl p2(T-y)1 

0 
e 

y' d(T-y) 

Letting n p2(T-y) in u + c(T-y), 

where c(T-y) = n p2(T-y) - n u, 

we have that 

d(T-r). 
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where J1(T-r) e i T J  T [T-(T-r)] d(T-r) 

0 

T-t Pp-r 
z lZ j T  U 

and J2(T-r) j e [T-(T_T) ]  

0 

T-T jc(T-y)-  

l-e 0 d(T-r). 

00 r r+l 
(-1) z  

With this, we will show that Lim J1(T-r) = eZ Z r!(r+l-nu) 
T-P r0 

and Lim J2(T-r) = 0. 
T.co 

By our definition of J1(T-r), we can show that 

f -ti. --Z [i_.rJ - nuJ1(T-r) eZ  T 11 -  LTI 
d(T-r) 

0 

CO 

r0 

r- nu 

r 
1) z 11-TJT_tl _ r r Lt1 

r! 

0 

CO Z 1 r r 
z  1r0 r!(r+l-nu) 

00 

r0 

d(T-r) 

T-t1 r+1- nu 
l (-1)r r z  1-

r!(r+l-nu) 5 

Jo,  rr+11 z (-l)z  
e I 

2: f — r0 r!(r+l_nu)j as T  
00 
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Now, we will show that Lim J2 (T-r) = 0. 
T-. 

T-T 

where 

T-t 1Z rT-TI 
T zl 

32(TT) = j e I_T_J  

0 

i_eU c(T-y) d(T-y) 

Letting 6 = - n u, J2(T-r) may be rewritten as 

T-t lZ fT-r 
1 -y T- T] 

J2(TT) = J e [1 - 

0 

0 ≤ J2 (TT) S 

0 

IT-ri 

. li_ T-r6 

JT_r  d(T-y) 

l-e 0 

f y 

c(T-y) d(T-y) 

1-e U 

Z 1 (T-r) 
Letting f(T-r) = lim e 

64O 

we see that when T -. , 

T-r 16 
T 

}d(T_T). 

d(T-r). 

d(T-r), 

j y 

c(T-y) d(T-y) 

l-e 0 1 
1' 



- 60 - 

f(0) = 0 and f(T-t1) = 0. 

Thus, it now remains for us to show that f(T-r) is either 

monotonically increasing or decreasing when (T-r) E [0, T-t1]. It can 

be seen that f'(T-r) > 0. Thus, we have that 

'v-f 
1-• 

Lim f(T-r) d(T--r) = 0 
T-° J 

0 

or equivalently, 

Lim j2(Ti) = 0. 
T-s° 

With this, one can now write the asymptotic expression for the 

m.g.f. of the fraction of the time of the first offer acceptance as 

follows: 

(7.2.1) 

I fT-rfl 
Lim M1z, T-rl Lim Ete lTi] 
T-+- I TJ T .0 I 

00 -l) rr+1 
=e Z 

r0 r!(r+1-nu) + 1 

Using ( 7.2.1), we can compute Lim ITT-) and Lim Var 

follows: 

as 
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00 r+l 
Lim M[z, T-rl d e f z (-l) 'z  

- 

T-. TJ = dz I r0 r!(r+1-nu) + ij 
z0 

(1 - n u) -1 , (which agrees with the result in 

Enns and Ferenstein ( 1988)). 

Furthermore, since 

Lim VarIL.1' d2 ILim M{z, T-rll 
T-s°° ITJ dz2 [T.co TJJ 

we can arrive at the result 

z0 

- [( 1 - n u) 1]2, 

Lim Var{!I.J = 2(1 - n u) 1 (2 - n u) 1 - (1 - n ur2. 



WINNING PROBABILITIES OF THE PLAYERS WHEN THE RESIDUAL 

TIMES ARE t, tj AND t 

APPENDIX A 

/3 t p1(T-t) ti 

I 
p1(T_t) p2(T-t) 

I 
t p1(T-t) p2(T_t*) 

0.0000 0.8039 0.4476 1.5288 0.5664 0.2168 1.0597 0.5000 0.1534 

0.0360 0.7928 0.4399 1.4439 0.5519 0.2241 1.0906 0.5000 0.1769 

0.0720 0.7816 0.4326 1.3671 0.5381 0.2310 1.1175 0.5000 0.1982 

0.1080 0.7706 0.4258 1.2974 0.5250 0.2375 1.1402 0.5000 0.2173 

0.1440 0.7596 0.4194 1.2338 0.5124 0.2438 1.1585 0.5000 0.2343 

0.1800 0.7488 0.4133 1.1757 0.5005 0.2498 1.1728 0.5000 0.2494 

0.1815 0.7483 0.4131 1.1733 0.5000 0.2500 1.1733 0.5000 0.2500 

0.1821 0.7482 0.4130 1.1725 0.4998 0.2501 1.1735 0.5000 0.2502 

0.1900 0.7458 0.4117 1.1604 0.4973 0.2514 1.1763 0.5000 0.2533 

0.3900 0.6886 0.3840 0.9164 0.4405 0.2798 1.3540 0.5000 0.3244 

0.5900 0.6371 0.3631 0.7530 0.3959 0.3020 1.8094 0.5000 0.3870 

0.7900 0.5915 0.3469 0.6377 0.3613 0.3194 2.1962 0.5000 0.4457 

09900 0.5512 0.3339 0.5529 0.3345 0.3328 2.3054 0.5000 0.4976 

1.0000 0.5493 0.3333 0.5493 0.3333 0.3333 00 0.5000 0.5000 



WINNING PROBABILITIES OF THE PLAYERS WHEN THE RESIDUAL 
TIMES ARE t1 AND Go 

APPENDIX B 

/3 
* 
t t1 p1(T-t 1) p2(T-t 1) 

1-u 
- Lim p1(0) 

u 
Lim p2 (0) 
T4-

0.0000 1.0597 1.5300 0.5669 0.2165 0.6724 0.3276 

0.0360 1.0906 1.4447 0.5523 0.2239 0.6628 0.3372 

0.0720 1.1175 1.3678 0.5384 0.2309 0.6535 0.3465 

0.1080 1.1402 1.2980 0.5252 0.2375 0.6446 0.3554 

0.1440 1.1585 1.2346 0.5126 0.2438 0.6361 0.3639 

0.1800 1.1728 1.1767 0.5007 0.2499 0.6279 0.3721 

0.1815 1.1733 1.1743 0.5002 0.2501 0.6276 0.3724 

0.1821 1.1735 1.1735 0.5000 0.2502 0.6274 0.3726 

0.1900 1.1763 1.1615 - - 0.6257 0.3743 

0.3900 1.3540 0.9198 - - 0.5858 0.4142 

0.5900 1.8094 0.7582 - - 0.5529 0.4471 

0.7900 2.1962 0.6433 - - 0.5250 0.4750 

0.9900 2.3054 0.5579 - - 0.5011 0.4989 

1.0000 00 0.5542 - - 0.5000 0.5000 
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ASYMPTOTIC WINNING PROBABILITIES OF BOTH PLAYERS FOR 
DIFFERENT VALUES OF 13 

APPENDIX C  

0.0 
I I I 1 

0.2 0.4 0.6 0.8 1.0 
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