
THE UNIVERSITY OF CALGARY

ClusTex: Using Clustering Techniques for Information Extraction from

HTML Pages containing Semi-Structured Data

by

Fatima Ashraf

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

October, 2005

© Fatima Ashraf 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "ClusTex: Using Clustering Techniques

for Information Extraction from HTML pages containing Semi-Structured Data"

submitted by Fatima Ashraf in partial fulfillment of the requirements for the degree

of MASTER OF SCIENCE.

O&)' //o5
Date

Departfiient of Computer Science

H

Supervisor, Dr. Reda Alhajj
Department of Computer Science

Dr. Svetlana Yanushkevich
Department of Electrical and Com-
puter Engineering

Acknowledgements

I really thought this day wouldn't come, but here it is.

First of all, I want to acknowledge the support my supervisor Dr. Reda Alhajj

has provided me these past two years.

I thank Dr. Erkan Korkmaz for his support during the early stages of this work.

I also want to thank all my friends at the ADSA lab for camaraderie only few

could offer.

A big thank you to the ladies in ICT-602, especially Jenny Cook, who I have

bugged a lot lately.

On the family front:

First and foremost, I want to thank Irfan, my husband, for his unrelenting support

in all ways possible. If it weren't for you, I would have given up a long time ago.

I must take this opportunity to express my heartfelt gratitude to my parents-

in-law, who came a long way from Pakistan to take care of my son just so I could

concentrate on my studies.

My fifteen month old son Ahmed must also be given due credit. The completion

of my degree would not have been possible had he not started sleeping nights at the

right time.

Last but not the least, I want to express gratitude to my wonderful family: my

parents, my brother, my sister-in-law, and my two wonderful nephews. You all

inspire me every day.

111

Table of Contents

Approval Page ii

Acknowledgements iii

Table of Contents iv

1 Introduction 1
1.1 Motivation and Hypothesis 1
1.2 Methodology 3
1.3 Contribution 4
1,4 Organization of Thesis 4

2 Background Information 6
2.1 Information Extraction 6

2.1.1 What is Information Extraction? 6
2.1.2 Types of text for extraction 7
2.1.3 Information Extraction vs. Information Retrieval 8
2.1.4 Web Documents 8
2.1.5 Wrappers and Wrapper Generation 9
2.1.6 Desirable Features in a Wrapper 11

2.2 Clustering 13
2.2.1 What is Clustering? 13
2.2.2 Formal Definition and Notations 13
2.2.3 Clustering Versus Classification 15
2.2.4 Clustering Techniques 17

3 Related Work 21
3.1 Systems dealing with HTML pages 21
3.2 Systems solving IE as a classification problem 23

4 ClusTex: The Idea and its Implementation 27
4.1 Problem Statement 27
4.2 Assumptions 28
4.3 ClusTex - The Basic Idea 29

4.3.1 Implementation 31
4.4 Stages of Extraction 31

iv

4.4.1 Stage 1: Data Preparation - Extracting Tokens and Assigning
Attributes 31

4.4.2 Stage 2: Clustering 35
4.4.3 Stage 3: Discovery of Extraction Rules 36
4.4.4 Stage 4: Refinement 42

5 Experimental Results 45
5.1 The Testing Environment 45
5.2 The Data sets 45
5.3 Evaluation Criteria 47
5.4 Experiments and Results 48

5.4.1 University of Calgary web page 48
5.4.2 New York University web page 52
5.4.3 Duke University web page 55
5.4.4 Columbia University web page 60
5.4.5 Cell Phone Sales on Buy.com 64
5.4.6 1999 Marathon Schedule from The Running Page 68
5.4.7 US Marathon Listings from MarathonGuide.com 73

5.5 Discussion 77

6 Conclusions and Future Work 82
6.1 Advantages of ClusTex and Differences from Existing Approaches 82
6.2 Limitations and Possibilities for Future Work 83

Bibliography 86

v

List of Tables

4.1 Types of Attributes in the Course Listings Domain 33
4.2 Example 1: Resulting clusters 40
4.3 Example 1: Array containing valid patterns 41

5.1 University of Calgary: Cluster-wise Distribution of Tokens 50
5.2 University of Calgary: Post-Refinement Cluster-wise Distribution of

Tokens 50
5.3 University of Calgary: Cluster-wise Results 51
5.4 New York University: Cluster-wise Distribution of Tokens 53
5.5 New York University: Post-Refinement Cluster-wise Distribution of

Tokens 54
5.6 New York University: Cluster-wise Results 54
5.7 Duke University: Cluster-wise Distribution of Tokens 56
5.8 Duke University: Post-Refinement Cluster-wise Distribution of Tokens 57
5.9 Duke University: Cluster-wise Results 59
5.10 Columbia University: Cluster-wise Distribution of Tokens 61
5.11 Columbia University: Post-Refinement Cluster-wise Distribution of

Tokens 63
5.12 Columbia University: Cluster-wise Results 63
5.13 Cell Phone Listings: Cluster-wise Distribution of Tokens 66
5.14 Cell Phone Listings: Post-Refinement Cluster-wise Distribution of To-

kens 67
5.15 Cell Phone Sales: Cluster-wise Results 67
5.16 1999 Marathon Listings: Cluster-wise Distribution of Tokens 69
5.17 1999 Marathon Listings: Post-Refinement Cluster-wise Distribution

of Tokens 71
5.18 The Running Page Listings: Cluster-wise Results 72
5.19 MarathonGuide.com Listings: Cluster-wise Distribution of Tokens . . 73
5.20 MarathonGuide.com Listings: Post-Refinement Cluster-wise Distrib-

ution of Tokens 76
5.21 MarathonGuide.com Listings: Cluster-wise Results 77
5.22 Overall Extraction Results from all Web Pages 78

vi

List of Figures

2.1 Data Clustering [22] 14
2.2 Hierarchy of Classification Techniques [23] 16

4.1 Overview of the proposed system 30
4.2 Algorithm ParseHTML: Parses HTML documents and tokenizes text 34
4.3 Algorithm RulExt: Extracts the Extraction Rule - PAT 38
4.4 Algorithm Refine: Refines clusters and outputs result 43

5.1 Web Page with Course Information from University of Calgary . . 49
5.2 Patterns discovered in the University of Calgary Input using Cluster

numbers 50
5.3 Web Page showing Course Information from New York University . 52
5.4 Patterns discovered in the New York University Input using Cluster

numbers 53
5.5 Web Page showing Course Information from Duke University 56
5.6 Patterns discovered in the Duke University Input using Cluster numbers 57
5.7 Web Page showing Course Information from Columbia University . . 61
5.8 Patterns discovered in the Columbia University Input using Cluster

numbers 62
5.9 Web Page showing Cell Phones listings from Buy.com 65
5.10 Patterns discovered in the Buy.com Input using Cluster numbers . 66
5.11 Web Page showing Marathon Listings from The Running Page 69
5.12 Patterns discovered in the Running Page Input using Cluster numbers 70
5.13 Web Page showing Marathon Listings from MarathonGuide.com . . . 74
5.14 Patterns discovered in the MarathonGuide.com Input using Cluster

numbers 75

vii

Abbreviations

IE
HTML
XML
IR
X
N
Xi

d
Xjd

C

fij
P05
SGML
ParseHTML
RulExt
Refine
htmlAttributes

combiAttributes

ch
input-file
char-array
num..char
Tok
num_tok

PS
PT
size-of-PT
PT-Array
siz&ofTEST
locTEST
occ_count
PAT
k

Information Extraction
Hypertext Markup Language
eXtensible Markup Language
Information Retrieval
Data set
Number of data instances in X
A single data instance
Number of attributes or scalar components of x
The d 1 scalar component of x
Cluster
The number of clusters found in a data set X
The fractional degree of membership of an instance xi to cluster C
Part of speech
Standard Generalized Markup Language
Algorithm implemented to parse and tokenize HTML document
Algorithm implemented to discover the extraction rule
Algorithm implemented to refine raw clusters
Attributes of data instances (or text tokens) derived from
the HTML tags surrounding each token
Attributes of the token derived from orthographic information
and utilizing domain knowledge
A character from the input file
The HTML document from which IE is intended
Array containing all characters from the input file
Number of all characters in char-array
Array containing all strings, tags and text, from the input file
Number of strings in Tok
Size of a pattern
A pattern that has size PS when completed
The size of PT during and after assembly
Array containing all valid patterns
The size of TEST during and after assembly
The location of the first member of TEST in the token listing
The number of occurrences of a pattern PT
The desired extraction rule
The size of PAT

viii

Abbreviations (continue)

P Precision - The percentage of correct values in the extraction
information

R Recall - The percentage prediction of all possible correct values
in the input file

F The F-value - Geometric average of P and R with parameter
as the weight of R over P

Fl The F-value where ,6 is equal to one.

ix

Chapter 1

Introduction

1.1 Motivation and Hypothesis

"We're drowning in words", writes Kushmerick [25], referring to the terabytes of

information that is available on the Web today. According to a 2005 study [18],

there are 11.5 billion pages on the "indexable web" 1, and it is not just text that

these pages contain. There are also images, and listings of various kinds. It is not

hard to imagine, then, how the cliche information overload was born.

It must be realized that the information on the Web is dynamic: it changes

and increases continuously, so much so that the Web has been termed "the largest

knowledge base" [8] in history to be developed and made accessible to the public. One

must also remember the "hidden web" which is made up of documents generated by

user queries to web databases. This leads us to the following questions. How much of

this information is actually exploitable by us? Is it even remotely humanly possible

to manually peruse through these billions of pages to extract the information that

one is interested in?

Currently, there are two ways of accessing this information: through manual

browsing (i.e. following links to go from one web page to the other), and keyword

searching. Both these techniques are problematic. Manual browsing involves a lot

of human time and involvement; given the sheer amount of information on the Web,

1lndexable web is that part of the World Wide Web which is considered for indexing by major
search engines such as Google, MSN, and Yahoo!

1

2

it is akin to finding the proverbial needle in the haystack. Keyword searching seems

more promising at first since it takes care of part of the task, i.e., relevant documents

are retrieved by the search engine. However, on the down side, one still has to go

through these documents and glean relevant information manually. This involves the

field of information extraction.

Information extraction (IE) has been defined as the process of automatically

"identifying a set of pre-defined relevant items" from documents [15]. These relevant

items are extracted and may be used to populate a database so that a user may

query this database at a later time to access the information of interest. In other

words, given a document or a set of documents and an IE system, one aims to be

able to extract all information of interest from it as automatically as possible.

IE promises to be a sizeable augmentation to the search engines available today.

When a user does a keyword search on an engine, a large number of documents may

result whiáh might be very time consuming to sift through. An IE system can extract

precisely the information a user wants from this set of documents, and provide the

user with exactly the information that is required without the level of involvement

that this task requires currently.

In the last few years, there has been a lot of pioneering effort in the field of

IE. Researchers have worked on extracting information from various kinds of text,

employing different strategies for the actual extraction. Recently, machine learning

techniques have been used to learn extraction rules in the IE process. Specifically, a

few feature-based systems have been developed that view IE as a text classification

problem, such as SRV [16], BIEN [35], and ELIE [15]. These systems deal with

IE from documents containing semi-structured text and use a complex feature set.

3

These systems extract the information semi-automatically since they are based on

supervised learning. There is a need to automate this process further to minimize

the level of human involvement.

In this thesis, the issue of automating the IE process by introducing clustering

techniques is addressed, and a system called ClusTex is proposed. This approach

concentrates on pages containing listings that are usually hand-coded in the Hyper-

Text Markup Language (HTML). This may be structured or semi-structured data.

If we consider a specific domain such as Computer Science course listings, the ex-

amples of such data would be information related to courses such as course codes,

course titles, instructors' names and so on. Generally, however, one may think of

this data as any information related to the instances reported in the listings.

One may question the validity of this research direction since XML is fast becom-

ing the standard for machine-readable web documents. However, there is still the

presence of legacy data [8] to consider: in addition to the documents currently being

written in HTML, there are also many HTML web documents present from the pre-

XML era from which we would like to extract information and populate databases

automatically.

1.2 Methodology

In this thesis, IE is viewed as a clustering problem, i.e., given some information, we

want to automatically infer the natural clusters in it rather than setting up classes

first and then deciding if a particular item falls in a specific class. This is achieved

by using clustering techniques to first separate raw data into applicable clusters

4

using information provided by a feature set defined for every text string or token in

the page. These clusters are further refined by using patterns to cull out irrelevant

information and re-classify tokens that were incorrectly clustered in the earlier step.

The system ClusTex implements these ideas.

Clustering is accomplished using AutoClass [5, 19] which implements probabilistic

clustering. This system has been developed at NASA.

1.3 Contribution

The contribution of this thesis is to simplify the automation of IE from HTML

web pages containing semi-structured data by using clustering techniques. To the

best of my knowledge, clustering has not been previously used to extract data from

documents. The feature set used in this system is much simpler than the one used by

the existing systems described in the literature. Furthermore, ClusTex requires very

little pre-processing as compared to the existing approaches mentioned above, but

gives comparable results. Three algorithms are proposed for file parsing, extraction

rule estimation, and cluster refinement, respectively.

1.4 Organization of Thesis

The balance of this thesis is organized as follows. Following this Introduction, Chap-

ter 2 (Background Information) defines some basic terms and acts as a primer on IE

and clustering. In the first half of the chapter, the concept of IE is explained. Differ-

ent types of text from which IE takes place are explored, and a simple introduction

to wrappers and wrapper generation is presented. The second half of Chapter 2 goes

5

over the concept of clustering, how clustering and classification differ, and various

commonly used clustering techniques.

Chapter 3 (Related Work) briefly describes relevant research in the IE area.

This work is classified into two groups. The first group includes research work that

concentrate on IE from HTML documents. The second group includes work that

considers IE as a text classification problem.

Chapter 4 proposes ClusTex, a novel approach for IE that uses clustering to ex-

tract information from semi-structured data in HTML pages. The assumptions are

stated after the problem definition. The proposed process consists of four stages:

data preparation, clustering, estimation of the extraction rule, and refinement. Each

stage is described in the chapter. A simplistic example is used to explain the ap-

proach.

Chapter 5 contains the results of test runs on web documents. In this chapter,

the various characteristics of the testing environment and definitions of the evalu-

ation metrics, specifically, precision, recall, and the Fl value are stated. Details of

experiments on seven web pages are presented, and results are compared with those

reported in relevant works.

Chapter 6 concludes this thesis. The advantages and disadvantages of this ap-

proach and its differences from other existing methods are discussed. Future research

directions are also suggested.

Chapter 2

Background Information

This chapter presents a primer on the major topics which form the basis of my

proposed approach. In the first section, information extraction, its definition, and

some other relevant concepts such as various types of text that can be extracted,

wrappers and wrapper generation are discussed. In the second section, the basic

ideas behind clustering and various clustering techniques are presented.

2.1 Information Extraction

2.1.1 What is Information Extraction?

Information extraction (IE) has been defined by Glickman et al. [17] as "a process

that takes unseen texts as input and produces fixed-format data as output". In other

words, the goal of IE is to transform text into a structured format so as to reduce

the information in a document to a tabular structure [10].

IE helps us format documents containing bits of structured text along with irrele-

vant material into a "database-like representation" [32]. One can use this information

for analysis at a later stage through techniques such as data mining for discovery of

patterns in the data.

LB is useful for all kinds of documents from which we would want to extract data

including web documents. An IE system enables users to gather all the relevant

information that maybe strewn about in various sources and integrate it into one

6

7

structured form.

2.1.2 Types of text for extraction

Information extraction can be performed on free, structured, or semi-structured text.

These terms are defined as follows.

Three Text

This is usually natural language text [36], for example, news articles and research

paper abstracts. One would want to extract the important information from these

sources. This is most commonly done using natural language processing (NLP) tech-

niques, and the extraction rules are based on patterns involving syntactic relations

between words or semantic classes of words.

Structured Text

Structured text is defined [10] as textual information in a database or a document

following a predefined and strict format. Usually the information can be easily

extracted using the format description if the format is known. Otherwise the format

must be learned.

Semi-structured Text

It is the intermediate point between free text and structured tuples of data [36]. It

maybe ungrammatical and does not follow any rigid format. It is often telegraphic

in style, i.e., uses abbreviations of words. NLP techniques cannot be used very

successfully to extract data from these documents because those are better suited

for grammatical text. On the other hand, some researchers have tried to use machine

8

learning techniques for IE from semi-structured data. In the next chapter, I present

the relevant research in this area.

2.1.3 Information Extraction vs. Information Retrieval

One commonly reads the terms information extraction and information retrieval (IR)

mentioned in the same breath. This can make one wonder if the two concepts are

the same. In principle, IE is different from IR both in aims and objectives and the

methods used to achieve those aims [11, 10].

The objective of IR is to select a subset from a larger collection of documents

based on a query. In contrast, the goal of IE is to extract relevant information from

documents.

Despite the two technologies being inverses of each other, it should be realized

that they are complementary, and, can be combined to form powerful information

integration systems [4, 14]. An example of the complementary nature of IE and

IR is a work done by Hu et al. [21] in which the titles extracted from web docu-

ments are used in picking relevant documents during the retrieval stage. The needed

information is then extracted from the retrieved documents.

2.1.4 Web Documents

Since the advent of the Web and Internet, researchers have shown an interest in

the vast information source that the Web is. The terabytes of information available

on the Web maybe in the form of free, structured, or semi-structured documents.

Researchers have different opinions on what information to categorize as structured

and what to categorize as semi-structured. However, Eikvil [10] gives a better cate-

9

gorization of types of web pages, which is as follows.

• A web page is structured if each attribute in a tuple can be correctly extracted

based on some uniform syntactic clues, such as delimiters or the orders of

attributes.

• A web page is semi-structured if it contains tuples with missing attributes,

attributes with multiple values, variant attribute presentations, and exceptions.

• A web page is free text if linguistic knowledge is required to extract the at-

tributes correctly.

Usually machine generated web pages are structured and human generated web

pages have less of a structure. However, there are always exceptions.

2.1.5 Wrappers and Wrapper Generation

According to a recent study [18], there are billions of documents available on the

Web. These documents can be found either by manual browsing or keyword searching

using a search engine. However, as was mentioned earlier, these techniques are time-

consuming, inconvenient, and too dependent on human users. Furthermore, there

is also an increase of information in the so-called "hidden web". This is the name

given to web pages generated dynamically from databases based on user requests.

These pages cannot be reached through search engines, and require certain tools to

extract information from them. Wrappers fulfill this need.

Wrappers [10] are programs or procedures designed for extracting content of a

particular source and delivering the content of interest in a self-descriptive represen-

10

tation. In other words, a wrapper is a software component that converts data and

queries from one model to another.

An ideal wrapper for an information source on the Internet accepts queries from

users about the content of the source, pulls out relevant pages from this source, gets

the requested information, and returns the result. Formally, it is a "function from a

page to the set of tuples it contains" [24].

Laender et al. [28] states the problem of generating a wrapper for Web data

extraction in the following words.

Given a web page S containing a set of implicit objects, determine a

mapping W that populate a data repository R with the objects in S.

The mapping W must also be capable of recognizing and extracting data

from any other page 5' similar to S.

Thus, a wrapper is a program that executes the mapping W. Wrappers maybe

hand generated or made through the semi-automatic or automatic approach.

Manually generated wrappers

For obvious reasons, manually generated wrappers are time-consuming because they

require manually encoded dictionaries of vocabulary. These also require domain-

specific extraction rules and patterns which are not easily portable. Writing one

requires a deep understanding of the domain on the part of the developer. Similarly,

new sources appear frequently and the format of existing sources may change. Thus,

to keep up with these challenges, it is imperative that technology aids the construc-

tion of wrappers. According to Laender et al. [28], tools like Minerva, TSIMMIS,

and Web-OQL are used for generating wrappers manually.

11

Semi-automatically generated wrappers

For semi-automatic wrapper generation, the developer uses support tools to help

design the wrapper. For instance, the user could show the system an example of

the information to be extracted using a graphical interface. This approach has many

advantages. It is less tedious, requires lesser domain knowledge for the developer than

for manually generated wrappers, and is less error prone also. However, the system

needs to be shown the information to be extracted for every new site because the

system cannot induce the structure of the site itself. Tools based on NLP, wrapper

induction, and modeling are usually semi-automatic [28]. Examples are SRV [16]

and J3IEN [35].

Automatically generated wrappers

Automatic wrapper generation uses machine learning algorithms. However, it is not

completely automatic either. These systems need a little intervention from human

experts during the training phase where the system is fed training examples. The

eventual accuracy of the wrapper generation system depends on the number and

quality of these examples. Examples of systems generating wrappers automatically

are RoadRunner [8] and WO [28].

2.1.6 Desirable Features in a Wrapper

According to Laender et al. [28], an IE system should possess a few desirable features.

These features are as follows.

1. Degree of Automation : An important feature of a data extraction system is

its degree of automation: the amount of work a user has to do while generating

12

a wrapper for data extraction.

2. Support of objects with a complex structure: Most of the data available on the

Internet has a complex structure. This structure is usually vague and presents

degrees of variation that are typical of semi-structured data. In other instances,

web data maybe organized in hierarchies with multiple nesting levels. Thus,

it is imperative that a good data extraction system be able to deal with these

complex objects.

3. Page contents Page content maybe of two kinds: semi-structured data and

semi-structured text. Pages of the first kind feature data items implicitly for-

matted to be recognized individually. According to Hong and Clark [20], this

is fielded data unconstrained by a global schema. Pages of the second kind

have free text from which data items can be inferred. It needs to be decided

whether a data extraction system will deal with either or both these types.

4. Availability of a Graphical User Interface: This is one of the most important

features of a data extraction system. Traditionally this has been accomplished

by writing code using some general-purpose language.

5. XML output: Since XML is fast becoming a standard for data representation

and exchange on the Internet, thus an important feature for a data extraction

system would be the ability to provide its output in XML. XWrap [29] and

Lixto [7] are two such systems that extract information from HTML pages and

convert it into XML.

6. Support for non-HTML sources : Not all data on the Internet is available in

13

HTML files. For example, there is a lot of data in text files. It is very important

for a data extraction system to be able to handle such data sources.

7. Resilience and adaptiveness: To deal with the constantly changing structural

and presentation features of web pages, a wrapper needs to be resilient. A

wrapper built for pages of a specific web source on a given application domain

should be able to work properly with pages from another source in the same

application domain, i.e., a wrapper should be adaptive.

2.2 Clustering

2.2.1 What is Clustering?

Clustering is a partitioning of a data set into subsets or clusters. Each cluster

contains data that are similar to the data in the same cluster and dissimilar to those

in the other clusters. In other words, clustering divides data into groups of similar

items [22].

According to Berkhin [1], "from a machine learning perspective clusters corre-

spond to hidden patterns, the search for clusters is unsupervised learning, and the

resulting system represents a data concept".

Clustering for data mining works best on large data sets with numerous attributes

of various types. An example of clustering [22] is shown in Figure 2.1. Figure 2.1(a)

shows the input data and the cluster output is shown in Figure 2.1(b).

2.2.2 Formal Definition and Notations

Jain et al. [22] defines clustering and related concepts as follows.

14

Y Y

x
x

x

Z

(a)

4 4
4 4 5

5 4455

333 4

4 3 4

4 4
4 444

22

22

55

6 7

6 7

6 7

5 7

x (b) x

Figure 2.1: Data Clustering [22]

15

A data set X containing N data points (hitherto referred to as data instances) is

denoted X = {x1,.. . ,XN}.

A data instance is usually represented by a multidimensional vector of dimension

d such that xi = (x 1, . . . , xci). The d scalar components of x1 are called its attributes.

The data set X is viewed as an N x d matrix by the clustering algorithm.

Clustering aims to assign the N data instances to a finite system of 1 clusters

such that X = C1 . . . C. Hard clustering techniques assign each data instance to

exactly one cluster. Fuzzy clustering techniques, on the other hand, give to each

data instance xi a fractional degree of membership, fjj, to each cluster C.

2.2.3 Clustering Versus Classification

Classification and clustering are very similar terms and, in certain cases, are used

interchangeably. However, there are key differences between the two techniques

which should be pointed out. The two vary greatly in terms of the methodology

they use.

Classification is the partition of the data set into subsets which have been already

defined. In case of supervised classification, the data analyst has already labeled

or classified some examples. These examples are then used to deduce the class

properties. When an unlabeled example is encountered, these class properties are

used to classify this new example into one of the already existing classes.

On the other hand, clustering partitions the data instances, which are a collection

of unlabeled or unclassified examples, into clusters. This is done by a clustering

algorithm which uses information provided solely by the data instances.

Thus, classification is usually taken to mean supervised classification, while clus-

16

tering is unsupervised classification [22]. According to Liu [30], the biggest disad-

vantage of supervised classification methods is that they are limited in their capacity

to test hypotheses. They can help or reject the hypothesis but are unable to un-

cover any unexpected information and do not lead to a new hypothesis. In contrast,

unsupervised methods are able to mine through the data and reveal unexpected

results.

Clustering is considered to be a special case of classification. Jain et al. [23]

suggests a "tree of classification problems" as shown in Figure 2.2. Each node of the

tree shows different types of classification problems.

Classification

/\
Non-exclusive
(Overlapping)

Exclusive

Extriiisic
(Supervised)

/\
Intrinsic

(Unsupervised)

Hierarchical

/\
Partitiojial

Figure 2.2: Hierarchy of Classification Techniques [23]

The terms in Figure 2.2 are defined by Jain et al. [23] as follows. Exclusive classi-

fication partitions data so that each instance belongs to one class only. Non-exclusive

classification lets instances belong to several classes. Extrinsic classification uses cat-

17

egory labels in addition to the data itself to classify items, and thus, is supervised.

Intrinsic classification uses only unlabeled data and is also called unsupervised learn-

ing (i.e., clustering). The terms hierarchical and partitional are described in detail

as follows.

2.2.4 Clustering Techniques

Berkhin [1] categorizes the various clustering techniques as follows.

Hierarchical Clustering

Hierarchical clustering transforms the data instances into a "sequence of nested par-

titions" [23], which can be visualized as a tree of clusters known as a dendogram.

Once a data instance is assigned to a cluster, it cannot be moved.

Hierarchical clustering algorithms are usually categorized as follows [22].

1. Agglomerative algorithms use bottom-up clustering, i.e., they begin with each

data instance in singleton clusters, and merge clusters until a stopping condi-

tion is fulfilled.

2. Divisive algorithms use top-down clustering, starting with all data instances in

a single cluster, and successively splitting the cluster into smaller ones until a

stopping condition is fulfilled.

Hierarchical clustering methods aid in constructing taxonomies, and for this rea-

son, are generally used in biological, social and behavioral research [23].

18

Partitional Methods

As opposed to hierarchical methods, partitional methods help in discovering natural

groups in the data by generating a single partition [23]. Partitional methods "learn"

clusters directly as opposed to hierarchical methods which "grow" clusters slowly.

Berkhin [1] suggests the following types of partitional methods.

1. Partitioning relocation methods find clusters by assigning the instances to clus-

ters first and then iteratively relocating them between clusters.

2. Density-based partitioning methods "identify clusters as areas highly populated

with data".

Partitioning Relocation Methods

Partitioning relocation methods have an edge over hierarchical clustering because

there is no restriction on the reassignment of an already-assigned data instance to

another cluster if it improves the clustering [37]. Checking all possible permutations

of data assignment to clusters is infeasible, so greedy heuristics are used for iteratively

reassigning data instances between clusters. Berkhin [1] suggests the following types

of partitioning relocation methods.

1. Probabilistic methods: These methods identify the clusters with certain mod-

els with parameters that are unknown and tht need to be found. Hence, the

data is assumed to be an independently drawn sample from "a mixture model

of several distributions". An example of this method is the algorithm Auto-

Class [5, 19] that I also use in this thesis. It is based on a mixture model as

well and covers various distributions such as Bernoulli, Poisson, Gaussian, and

Log-normal distributions. More detail about AutoClass follows in Chapter 4.

19

2. K-Means methods: These are a popular tool used in the scientific and the

industrial communities. The name arises from the fact that, in this approach,

each cluster C is represented by the mean or weighted average c of its members

instances. The sum of differences between data instances of a cluster and their

mean is used as an objective function. Thus, this approach does not work well

with categorical data, However, it is well-suited to numerical data.

3. K-Medoids methods: In these methods, a cluster is represented by one of its

member instances, called the medoid. After the selection of medoids, clusters

are presented as subsets of data instances close to a particular medoid. The

objective function is defined as a dissimilarity measure between a cluster mem-

ber and its respective medoid. Unlike the K-means methods, the K-medoid

methods deal well with both categorical and numerical data. Furthermore,

outliers do not affect the medoids so these have an "embedded resistance"

against outliers [1].

Density-Based Partitioning Methods

According to Jain et al. [23], clusters can be imagined as regions of data instance

space in which instances are dense, i.e., occur frequently. Areas in which instances oc-

cur sparsely separate these regions of high density. Thus, the problem of finding clus-

ters is reduced to finding regions of high density in the instance space. Berkhin [1],

on the other hand, defines a cluster as a "connected dense component". Clusters can

grow wherever density leads. A cluster is not limited to a specific shape, and can

acquire any arbitrary shape.

20

Other Clustering Techniques

In recent years, many other techniques have been developed for clustering data of

various kinds. These include grid-based techniques, co-occurrence of categorical

data, constraint-based clustering (such as evolutionary methods), clustering of high-

dimensional data, and scalability and VLDB (Very Large DataBase) extensions. It

is out of the scope of this treatise to go into the details of these methods. One can

refer to an excellent overview of these techniques in Berkhin N.

Chapter 3

Related Work

The field of IE has seen active research in the last decade. Many researchers have

worked on finding efficient IE strategies for semi-structured information from web

pages. In this chapter relevant work is briefly reviewed.

In Section 3.1, I discuss approaches that work on HTML pages exclusively. In

Section 3.2, I review systems that view IE as a text classification problem and work

on general text files that may or may not be coded in HTML.

3.1 Systems dealing with HTML pages

Since a lot of web data is found in HTML pages, there has been much effort in IE

from such pages. This section reviews some work in the area of IE from HTML

pages.

Buttler et al. [2] model a web document as a "tag tree" in which the internal nodes

are HTML or XML tags and the text forms the leaf nodes. The extraction process

requires fetching a web document, cleaning it up using a syntactic normalization

algorithm, and then locating "objects of interest" in this web page. This is done by

first locating the minimal object-rich subtree (i.e., the smallest subtree that contains

all objects of interest). To separate objects from each other and other information

in the page, the correct object separator tag is discovered using heuristics. Using

this separator tag, the objects of interest are discovered. Finally, the set of objects

21

22

is refined to eliminate irrelevant objects.

Crescenzi et at. [9] present a system to automatically extract data from large

data-intensive web sites 1. Their "data grabber" explores a large web site and in-

fers a model for it, describing it as a directed graph with nodes describing classes

of structurally similar pages and arcs representing links between these pages. Af-

ter pinpointing classes of interest, a library of wrappers can be generated, one per

class with the help of an external wrapper generator and appropriate data can be

extracted.

It is simple for a human to find a table of interest in an HTML document,

parse it and then determine its meaning, but having an algorithm accomplish these

tasks is much harder. Embley et at. [13] propose an approach to automatically

extract information from HTML tables. Tables of interest are located in a web

page and information extracted from them in a step-wise manner. As the first

step, an extraction ontology is formulated. An extraction ontology is a "conceptual-

model instance" that serves as a wrapper for a narrow domain of interest [12] . A

table is located based on recognizing expected attribute names and values from the

ontology. Then attribute-value pairs are formed and adjusted so that they are more

meaningful. In the fourth step, the extraction patterns are analyzed to refine the

extracted information further. Finally, given the input from the earlier four steps, a

mapping can be inferred from the source to the target.

Another relevant approach is the RoadRunner [8]. It extracts information from

data-intensive websites in which pages are automatically generated by scripts that

'These are the sites in which data is scattered in a large number of structurally similar HTML
documents.

23

fetch data from a back-end database management system. These pages are presented

in a structured format representing tuples from the database. RoadRunner compares

two of these similarly organized pages to infer their common structure and a wrapper.

This wrapper is used to extract information from all similar pages. RoadRunner does

not assume any a-priori knowledge about the structure or the contents of an HTML

page. The advantage of this approach is that it is automatic, and can deal with

nested objects. However, the disadvantage is that it requires two pages to be able

to infer the structure. If this same information was on one page, RoadRunner would

not be able to extract the data from it. Furthermore, it cannot extract from web

sites in which attributes appear in various orders.

Labsky et at. [27, 26] attempts IE from web product catalogues using Hidden

Markov Models (HMMs) as a step towards building a domain-specific "semantic

search engine" which can answer queries about different product attributes, such

as names, prices, etc. In this approach, each token from a document is assigned a

semantic tag by an HMM tagger. The advantage of this approach is that it extracts

images as well as text. However, it requires manually annotating training examples.

3.2 Systems solving JE as a classification problem

Many researchers have solved IE as a text classification problem. This section reviews

some important work in this domain.

The Sequence Rules with Validation (SRV) [16] is a top-down relational algorithm

for information extraction from semi-structured pages. Generally IE involves multi-

ple sub-tasks including, but not limited to, syntactic and semantic preprocessing and

24

slot-filling. SRV considers only the slot-filling aspect and views IE as a classification

problem where all possible tokens from the text are considered as possible slot fillers.

Input to SRV is a set of documents with field instances already labeled for extraction

and a set of features defined over tokens present in the pages. The output is a set

of extraction rules. SRV is comprised of three classifiers of tokens, the first being a

look-up table containing all correct slot-fillers found in the training set. The second

classifier calculates the probability of being a correct slot-filler for each token. The

third classifier makes use of constraints obtained by rule induction over predicates

like token length, capitalization, and semantic and relational features.

Peshkin et al. [35] also view IE as a text classification problem and use Dynamic

Bayesian Networks to automatically extract information from semi-structured doc-

uments. The authors show how to combine various aspects of a language in one

probabilistic model to build a robust IE system. The first step in the extraction is

tokenization, the token being the smallest part of text which is treated as an entity

in later steps. The features used for each token are its lemma (i.e. the root word

for an inflected form), Part-Of-Speech information, capitalization and length, and

semantic and orthographic features.

Eliassi-Rad et al. [11] describe intelligent agents that retrieve documents from the

Web and extract relevant information from these documents. Their system called

Wisconsin Adaptive Web Agent (WAWA) is able to build an intelligent agent for

information retrieval and extraction after interacting with the user and the Internet.

The system has two sub-systems, one for information retrieval and the other for

information extraction.

The system WHISK [36] is able to handle structured, semi-structured, and free

25

text documents. It uses supervised learning to learn extraction rules from hand-

tagged training examples. The human expert is presented with examples that fall

near decision boundaries rather than any arbitrary examples. Thus the learning of

rules and the tagging of training examples is alternated to minimize the amount of

human involvement while at the same time maximizing its benefits. WHISK repeats

this process to further refine the rules as new examples are encountered.

Kushmeric et al. [15] propose the ELIE algorithm. This approach also treats

IE as a classification problem. Each token is described by a set of features including

the token itself, the part-of-speech of the token, the values associated with the token

in a gazetteer, and orthographic information. Furthermore, relational information

is encoded as additional features, and thus, simulates relational learning. ELIE

classifies tokens in two phases, Li and L2. In Li, ELIE learns start and end of

instances to be extracted from the set of training examples labeled either as a positive

or negative example of a start or end tag. Two classifiers are used for this purpose,

one for start tags and the other for end tags. During Li, some instances might be

partially extracted, i.e., either the start or the end of the fragment might be extracted

but not both. During the L2 phase, the system is trained to find the end given the

beginning, or the beginning given the end.

The system Pinocchio [6] uses hybrid relational learning techniques for IE and

has shown promising results. The input to the system is a collection of texts that

have been preprocessed with a POS tagger. Pinocchio produces as output the text

augmented with SGML tags which point out the locations from which information

has been extracted, and a summary of the text content in the shape of a set of

templates. The system uses a sequential covering algorithm. A unique property of

26

Pinocchio is that it does not attempt to learn the extraction rule for an entire slot.

On the contrary, it recognizes the left delimiters separately from the right ones. The

process of TE is three-fold. In the first phase, the best rule pool is induced using

a bottom-up approach. In the second phase, more extraction rules are refined and

added to the best rule pool to increase the recall. The final phase sees the correction

rules being learned. This system can also be used to learn multiple extraction slots.

All these systems show comparable performance. However, their drawback is the

annotation of training examples and user involvement even after the training phase.

Thus, in this thesis, ClusTex is presented which does not require training examples.

The next chapter describes the ClusTex model and its implementation in detail.

Chapter 4

ClusTex: The Idea and its Implementation

This chapter proposes a novel approach, ClusTex, that involves clustering to perform

IE from HTML documents. IE has been traditionally viewed as a text classification

problem. However, this thesis views it as a clustering problem. This chapter begins

with the problem statement and assumptions. After that, the process that this

approach uses is explained, i.e., starting from data preparation to clustering and the

estimation of an extraction rule, and finally refinement of these clusters.

4.1 Problem Statement

As stated earlier, there are billions of documents on the Web from which we want

to automatically extract information. There are various kinds of documents avail-

able: HTML files, XML files, various types of text documents, etc. In this thesis I

concentrate on those HTML documents on the Web that contain a listing of some

sort. This is semi-structured data because this information does not always follow

the same format and may contain missing or multiple tuple values. Thus, formally,

this model is used to solve the following problem:

Given a web page in HTML format containing a listing of semi-structured data,

extract the information contained in the listing and consolidate the information per-

taining to each individual listing.

27

28

4.2 Assumptions

To solve this problem, we first need to specify what sort of web pages this approach

works on. In this section, I specify the requirements that a web page should fulfill

for this approach to work. Generally, these requirement are on the type of the web

page and the format of values that need to be extracted. Specifically, the web page

containing the listings must fulfill the following criteria.

1. The web page must be written in HTML.

2. The document must be "well-formed" [2], i.e., it should show the following

characteristics:

• Text which is not a tag should not have either opening or closing brackets

or ">"). Conversely, there should be no tags without opening and

closing brackets.

• All tags that usually occur in pairs, such as <title> and <\title>, must

have matching starting and ending tags.

• All nesting tags should be nested properly such as, <td><\b><\td>.

However, if the document has imperfect structure, it may be easy to fix using

a utility such as HTML Tidy.

3. All strings of text representing the tuple values must be separated by HTML

tags.

4. If the information is listed in 'a table, the majority of values listed in each col-

umn must be in a similar format. For example, in the Computer Science course

29

listings domain, course codes usually have the same format for all courses, i.e.,

capital letters followed by numbers.

5. The values in different columns should have different formats so that they may

be recognized that distinct from each other by the clustering algoritm.

6. The values should follow the same pattern in the page.

4.3 ClusTex - The Basic Idea

ClusTex is devised to perform IE from HTML documents containing semi-structured

data using a clustering technique. It is a four-fold process which starts with data

preparation. The data is then clustered, an extraction rule is estimated and clusters

are refined using this rule. Finally, the data instances discovered in the data are

reported.

Figure 4.1 shows an overview of this system. For three of the four stages, new

algorithms are developed. These are as follows.

1. Algorithm: ParseHTML -. To parse the HTML document and tokenize data

2. Algorithm: RulExt - To discover the extraction rule

3. Algorithm: Refine - To refine clusters and format final output

These algorithms are explained further in the next few sections. The clustering

uses AutoClass [5, 19]. In the interest of completeness, details about AutoClass

follow in the section on clustering.

30

UPTJT E

OUTPUT _!;:-+

HTML page

Algorithm ParseHThtL

Data Set

Clustering with AutoClass

Raw Clusters

Algorithm RulExt

PAT extracted

Algorithm Refine

Refined Clusters

Figure 4.1: Overview of the proposed system

31

4.3.1 Implementation

ClusTex is implemented using Perl. Arrays were used to store text tokens and

patterns. Each algorithm described above saved its output to a file, which was used

by the next algorithm as its input.

4.4 Stages of Extraction

ClusTex has four stages of extraction as illustrated in Figure 4.1. In this section,

these four stages are described.

1. Data preparation: In the first stage, data is prepared for clustering through

tokenization and assignment of attribute values.

2. Clustering: In the second stage, the data tokens are separated into clusters

based on their similarity to each other.

3. Estimation of the Extraction Rule: The third stage consists of the esti-

mation of an extraction rule.

4. Refinement: The clusters are refined using the extraction rule in the fourth

and final stage.

4.4.1 Stage 1: Data Preparation - Extracting Tokens and Assigning At-

tributes

As the first step in the process, the web document is parsed to extract all strings of

text occurring between two HTML tags (hitherto known as tokens) and HTML tags

that occur within the periphery of each token. These tokens are the instances of data

32

which are "represented as ordered vectors of attribute values" [5]. Each attribute

is the measurement of some property common to all data instances. For example,

an attribute can be the presence or absence of an HTML tag in a token's range.

These are the htmlAttributes. A second kind of attribute is defined on the format

of a token, such as the presence or absence of an exclusively numeric token, or the

presence or absence of punctuation, etc. These are termed orthographic features.

Instead of having simplistic attributes of the second kind (specified above), we

can have a combination of these simplistic attributes to suit our needs and the nature

of the items in a particular domain. These are the combiAttributes.

Taking the example of the Computer Science course listings domain, we see that

various course attributes usually have a predictable format. Course codes usually

have more than one capital letters followed by more than one numbers. So an

attribute can be defined as whether a string does or does not start with one or

more capital letters followed by more than one number. Course titles are generally

comprised of more than eight letters and do not contain numbers. The attribute

defined to account for this can be defined as the presence or absence in a string of

the following properties:

• a length greater than eight

• starting with a capital letter followed by a mix of upper and lower case letters

• not containing any numbers

If a token has all these properties, a "1" will be assigned to this attribute, otherwise,

a "0" will be assigned instead.

33

Table 4.1: Types of Attributes in the Course Listings Domain
htmlAttributes CombiAttributes

IsTitle IsCCode
IsBR IsCTit1e
IsA IsProfName

IsInTable IsGrade
IsTD IsLocation

Table 4.1 gives some examples of these htmlAttributes and combiAttributes.

The algorithm ParseHTML is used at this stage (see Figure 4.2 for an abstract

view of this algorithm). The following discussion gives a brief overview of how this

algorithm works.

The input to ParseHTML is the web page that we want to extract information

from, while the output is a .db2 file ready for clustering. ParseHTML reads all

characters from the input file. Then it parses through the characters one by one. If

a character is "<", it signifies that this is the beginning of a tag. Thus, the algorithm

starts saving this character and the ones after it as an HTML tag. When a ">" is

encountered, it signifies the end of the tag. At this point, the completed tag is saved

into an array of tokens, Tok, and ParseHTML starts building a new text string (as

opposed to a tag). All characters until the next "<" are saved as a string, and then it

starts building a tag again. Once all tags and text are saved, ClusTex goes through

this array once again. If a token from this array is a tag, it is checked against a list

of tags. For each tag in that list, if there is a match, its presence is marked as a "1",

otherwise its absence is marked by a "1". This generates HTMLattributes for the

next text token in line. If the token is not a tag, the orthographic features are checked

and combined to form CombiAtributes for the token. This process is repeated for

34

Algorithm: ParseHTHL

Input: HTML file
Output: File containing tokenized text and assigned attributes for each

token

Begin
Jhile input file is not empty

Read character ch from input file
Save into char array
nu char = location of last character in char array

for 10 to nuni char
Read oh at char array[i]

If (eh='<') / This must be the start of an HTML tag
Start making a string for HTML tag

Else if (ch'>') /* This must be the end of a tag

Complete and save tag in array Tok
nunitok=location of last token in Tok
Hake an empty string to store text token.

Else
Save oh in tag or text string.

If oh at char _array[i+1] is '<'

Save text string in array Tokens
nunitok=looation of last token in Tok

For j0 to nuni_tok
If token at Tok[j] is a tag

Check token against list of tags and assign 0 for
absence and 1 for presence for the next text token in

designated place in array Table
Else if token at Tok[j] is not a tag i.e. is text

Check orthographic information and assign 0 or 1 for
cjonbiAttributas

Save token at Table[j] [0]
Output Table into filenanie.db2

End ParseHTML

Figure 4.2: Algorithm ParseHTML: Parses HTML documents and tokenizes text

35

each token from the page. Finally, the tokens are listed with their attributes in the

output file, ready to be clustered.

4.4.2 Stage 2: Clustering

A listings web page may have many kinds of tokens, but all of them might not

be related to the listings themselves. For example, there may be an introductory

paragraph, or contact information with a telephone number and an address at the

end of the page which is unrelated to the listing itself. Furthermore, if a listing

consists of multiple pages, these pages usually follow the same format with a side

bar constantly displaying some standard links. We want to separate this information

from the listing itself which we are interested in extracting.

A clustering software such as AutoClass aids us in attaining such an end. A good

clustering separates all tokens from a page into different clusters, similar tokens

falling into the same cluster: If the attributes are assigned correctly, most tokens

describing the same thing will fall in one cluster, while most irrelevant tokens will

fall in other clusters. Taking the example of the course listings domain, most course

codes should fall in one cluster, most course titles will fall in another, and similarly

for all the other values for each course attribute.

Clustering Model used by AutoClass

AutoClass [5, 19] is an example of the partitioning relocation clustering method

that was discussed in Chapter 2. AutoClass, as an approach to unsupervised clas-

sification (clustering), is based on the classical mixture model and uses a Bayesian

method which involves the discovery of optimal classes or clusters given the data and

36

prior expectations. Instead of generating class descriptions from labeled examples,

AutoClass deals with the problem of discovery of "natural" clusters in the data.

AutoClass works on data which can be represented as an ordered vector of at-

tribute values. Attributes represent measurements of properties common to all data

instances. These measurements can be discrete values (such as "true" or "false"),

integer values, or real numbers. AutoClass does not deal with relational data, i.e.

attributes which relate one data instance to another.

4.4.3 Stage 3: Discovery of Extraction Rules

Although clustering separates most of the information to be extracted, some tokens

might fall in clusters where they do not belong due to their different format. For

example, a concise course title such as UNIX might fall in the cluster for course

codes, a professor's name might fall into the cluster for course titles, etc. Thus, after

the tokens have been clustered, the clusters need to be refined.

We also need to find the order of these extracted values, i.e., the course code,

title, and professor's name that belong together. In other words, we need to discover

the extraction rules to answer this question: Which token fills which slot?

I use patterns of cluster numbers to represent extraction rules. The term patterns

is taken to mean various concepts in the literature. I define this and other relevant

terms below to tie them to the specific context of this thesis.

Definition 1: Pattern: A pattern of size n is a sequence of n numbers.

Definition 2: Invalid Pattern: A pattern is considered invalid if a number occurs

more than once in it.

Definition 3: Valid Pattern: A pattern is considered valid if all numbers in it

37

occur once only.

My contention is that since the listing is semi-structured data, i.e., most courses

have the same attributes listed, and these values are usually in a similar format, the

tokens should follow a certain sequence in the document. If the tokens themselves

are replaced by the number of the cluster in which they occur, we are left with a

list of cluster numbers in the order of the occurrence of tokens. We then look for

a pattern that recurs many times in this list of cluster numbers. The algorithm

that has been developed to achieve this end is RulExt and an abstract view of this

algorithm is shown in Figure 4.3. The following paragraphs give a brief overview of

this algorithm.

The input for RulExt is a file containing the cluster numbers of tokens in the

order of occurrence of the tokens. RulExt outputs PAT, the estimated extraction

rule which tells ClusTex how to related different tokens to each other.

RulExt starts with a higher than expected pattern size, Pg. Until there are more

numbers in the input file, ClusTex makes a pattern PT of size PS by reading cluster

numbers one by one from the input file. If a cluster number occurs more than once

in the pattern, it is rendered invalid. The first number in PT is then discarded and

the next number from the file is added to PT. If PT is valid, it is saved into an array

of patterns, PTarray, if it is not already there. The next step is to find matches

for PT in the rest of the data list. RulExt makes a TEST pattern from Ps cluster

numbers occurring after the occurrence of PT, and compares PT to TEST. If they

match, TEST is deleted and is assembled again from P5 numbers occurring after

the earlier pattern that was designated TEST. If, however, there is a mismatch,

not only is TEST deleted, but the first character in PT is also deleted and the first

38

Algorithm: RulExt
Input: File containing cluster number listing for tokens

Output: PAT - estimated extraction rule
Begin

PT="", TEST"
For i.=PS to 1 /* P.S is higher than expected size for PAT

while input file is not empty
Read character oh from input file
While size of PT < PS

Add oh to PT
If PT is invalid

Delete first oh in PT

Else if PT is valid
Save PT into PT array if not already there

While (size of PT = PS)
While (size _of_TEST < PS)

Add oh to TEST

If (size _of_TEST = PS)
If (PT == TEST)

Empty TEST
Save leo TEST in PT array
Update oco count in PT array

Else
Empty TEST

Delete first oh in PT

If (nun valid_patterns > 0.5 * nuni_total_patterns)
Output PT array
Exit for loop

If (one PT in PT_array with highest occurrence)
Output PT as PAT

Else If (there is a tie for highest occurrence)
Use heuristics to break tie and output PAT

Else

Output the first PT with highest occurrence as PAT

End RulExt

Figure 4.3: Algorithm RulExt: Extracts the Extraction Rule - PAT

39

number after the earlier PT from the file is read in to rebuild PT, and the process

is repeated to match a new TEST pattern with PT.

After all patterns of size PS have been accounted for, the number of valid and

invalid patterns are counted. If more than half of total patterns are valid, then P

is confirmed as the size for the extraction rule, PAT. If valid patterns form half or

less than half of the total patterns, Ps is decreased by one, and the algorithm looks

for patterns of lower size until the number of valid patterns exceeds the number of

invalid patterns.

The next step is to find which valid pattern is PAT. RulExt goes through PTarray,

the list of valid patterns. If there is one pattern that occurs the most times, this is

taken to be PAT. If there is a tie, a rule of thumb is used to break the tie. This rule

of thumb is that an identifying characteristic of an instance should occur towards its

beginning. For example, in the case of a course entity, we expect the course code

to occur towards the beginning of a course listing. If the rule of thumb is unable to

break the tie, then RulExt picks the first most prolific item as PAT.

The first phase of RulExt in which patterns are formed from the data is best

explained by a simple example. The estimation of PAT is discussed in further detail

in the two subsequent sections.

Example

.This example shows the extraction of PAT from a very short course listing from the

Computer Science domain. Suppose the listing (strings only, in order of occurrence)

is as follows:

1. CPSC2O3

40

2. Introduction to Computer Science

3. CPSC457

4. Operating Systems

After parsing and clustering, we should get the clusters shown in Table 4.2.

Table 4.2: Example 1: Resulting clusters
Cluster Number Member Member

Cluster 0 CPSC2O3 CPSC457
Cluster 1 Introduction to Computer Science Operating Systems

If we replace the tokens by the number of the cluster in which they occur, we get

the following listing:

In this listing, we see three patterns of size 2: 01, 10 and 01. Note that trying

to find patterns of size 3 would lead to two patterns being extracted, 010 and 101,

both of which are invalid.

41

Finding the Optimal Extraction Rule

Rom domain knowledge, we have a general idea about how many tokens occur in

one listing. For instance, eight tokens is the highest number seen in all of the course

listings pages examined. Let this number be called Pg. We start the search with

expected pattern size of PS + 1. and try to find patterns of this size in the list of

cluster numbers.

The idea is that all necessary parts of the listing must occur in separate clusters.

Thus, in the case of a correct extraction rule, PAT should contain only one occurrence

of a particular cluster number. If there are two or more occurrences of a cluster

number, that signifies that either a token is incorrectly clustered, or the pattern

contains tokens from different entities in the listing. As was previously stated, two

or more occurrences of a cluster number in a pattern render it invalid. In the ongoing

example, such a count is shown in Table 4.3. '

Table 4.3: Example 1: Array containing valid patterns
Pattern Total occurrences Last occurrence 1st occurrence 2nd occurrence

01 2 3 1
10 1 2 2

3

If the number of invalid patterns is close to 100% of all patterns, and very few

valid patterns are revealed, it is assumed that we are working with the wrong pattern

size. The pattern size PS is decreased by one and the process is repeated until the

number of valid patterns exceeds the number of invalid patterns.

In all cases, we find that the most frequently occurring valid pattern is the desired

extraction rule PAT, i.e., the correct order of occurrence in the document. For each

such search of patterns of size k, the details of all valid patterns, the number of

42

occurrences, and the point of each occurrence are documented.

Tie for PAT

In case there is a tie between two patterns for PAT, the extraction rule to be esti-

mated, a heuristic, or rule of thumb, is used to decide on the optimal pattern. More

specifically, from the domain knowledge, we have certain expectations about order of

occurrence of different types of tokens, i.e., we expect the identifying characteristic

of an instance or the primary key to occur at the beginning of the instance. Thus,

in the case of course listings, it is expected that the course code will occur close

to the beginning of a pattern or rule. For example, if there is a tie between two

patterns, P1 and P2, and P1 contains the number of the cluster containing mostly

course codes towards its beginning, and P2 contains the same information towards

its end, we can deduce that P1 is probably the correct extraction rule.

This heuristic is very effective in domains where we can expect certain tokens to

occur towards the start of PAT. This is evident in Chapter 5 in which the results of

my experiments are presented. It is seen that in the one web page where the start

of the pattern cannot be anticipated, we have to resolve the tie by picking the first

pattern with the highest number of occurrences.

4.4.4 Stage 4: Refinement

After deciding on PAT of size k (and in the process, the desired clusters), we need

to cull out irrelevant information from these clusters, and also reassign tokens that

had been incorrectly classified earlier to the right cluster. This reassignment only

takes place for patterns that differ from PAT by no more than 1og2k (rounded down)

43

digits. This value is determined by trial and error. No distinction is made between

valid or invalid patterns when it comes to reassignment.

The algorithm Refine is developed to re-assign tokens correctly in three phases.

Figure 4.4 shows the pseudocode for this algorithm. An overview of the three phases

of the algorithm, Refine, is described next.

Algorithm: Refinement
Input: File containing cluster number listing for tokens, PAT
Output: Text file containing refined output
Begin

From start of input file to l occurrence of PAT
Check all patterns with PAT
If (difference < logk char)

Change cluster numbers for mismatches

From 1 occurrence of PAT to last occurrence of PAT
If (difference in location of 2 PAT occurrences>PAT SIZE)

Compare patterns between those 2 occurrences with PAT
If (difference < log,k char)

Change cluster numbers for mismatches

From last occurrence of PAT to end of input file

Check all patterns with PAT
If (difference < logk char)

Change cluster numbers for mismatches

Delete cluster numbers not appearing in PAT
Read Token text from array TOK and combine with cluster numbers
Reconstruct data instances by printing all tokens in one pattern

in one line
End Refinement

Figure 4.4: Algorithm Refine: Refines clusters and outputs result

1. The first phase starts from the beginning of the cluster number listing and

ends at the first occurrence of PAT. In all mismatching patterns that fit the

above criterion, the mismatching digits are changed to match digits from PAT.

In essence, the incorrectly clustered token is taken out of the original cluster

and reassigned to the correct one.

44

2. In the second phase, the incorrectly clustered tokens occurring within the bulk

of the listings are refined. The interval between each occurrence of PAT is

checked for mismatched tokens. If the interval between two occurrences is k

(where k is the size of PAT), it tells us that two occurrences of PAT occurred

side by side. If it is more than twice k, it tells us that there might be another

pattern or patterns between the two occurrences that may be candidates for re-

assignment. Thus, the same process from phase 1 is repeated for each interval

between two occurrences of PAT where the interval is greater than twice k,

and incorrectly clustered tokens are reassigned.

3. In the third phase, the patterns occurring after the last occurrence of PAT are

checked in the above way and tokens are re-assigned to different clusters if the

need arises.

After the refinement is complete, all clusters that do not figure in PAT are deleted.

Data instances are recreated from the tokens using clusters and PAT, and are re-

ported.

Chapter 5

Experimental Results

In this chapter, the experimental results are reported. The first section describes the

testing environment. The next section presents the data sets on which ClusTex was

tested. The third section presents details of experiments on each of the data sets.

In the fourth section, results are discussed and compared with those reported in the

literature.

5.1 The Testing Environment

To gauge the performance and efficiency of the proposed approach, experiments were

conducted on computers with the following features:

• Architecture: 200 MHz Sun U1traSPARC-II

• Main Memory: 256 MB RAM

• Operating System: Solaris 8

5.2 The Data sets

ClusTex is designed to work on web pages containing semi-structured data listings,

and is not restricted to any particular domain. However, to test my approach, the

following three domains were selected:

1. Computer Science course listings from University web sites

45

46

2. Cell phone sales listings

3. Marathon Listings

Experiments are primarily reported on course listings web pages. However, one

experiment on a cell phone sales web page and two experiments on marathon listing

web pages are also shown. ClusTex was tested on the following web pages.

1. Computer Science course listings from University of Calgary, Canada

2. Computer Science course listings from New York University, U.S.A.

3. Computer Science course listings from Duke University, U.S.A.

4. Computer Science course listings from Columbia University, U.S.A.

5. Buy.com Cell Phone Sales web page

6. The Running Page - 1999 Marathon Schedule

7. MarathonGuide.com - US Marathons Races Directory and Schedule

These web pages are chosen because they meet the minimum requirement for

being processed by this approach. These pages were written in HTML, and displayed

semi-structured data, while the features of the data instances were displayed in the

same order, there were also some missing features and some multi-valued features in

addition to information irrelevant to the listings.

Another reason to choose these pages was that they exhibited differences in the

format and content of the presented information as well. For example, in the course

listings domain, the page from University of Calgary had data instances with two

47

attributes, and the data was in an HTML table. The page from New York University

had data instances with three attributes, and the data was in an HTML table as

well. The page from Duke University had data instances with two, and in some cases

three, attributes but the data was not in a table. Finally, the Columbia University

data had eight attributes and the data was presented in an HTML table.

As mentioned earlier, the approach is tested on one web page from the domain

of cell phone sales listings. Most of the information presented in this page was

structured. The data in this page was presented in an HTML table and had a

maximum of three attributes per instance.

Two pages were tested from the marathon listings domain. Both of these pages

were also presented in tables. However, the page from the web site "The Running

Page" had many missing data tokens and tokens belonging to the same category

have varying formats. In addition, many tokens belonging to different categories

had similar formats. These characteristics helped highlight the limitations of the

system.

For the course of these experiments, all tokens were considered both as separate

entities and as part of a single data instance. Results are reported for both scenarios.

5.3 Evaluation Criteria

Researchers in the IE field commonly report their results by using metrics such as

Precision, Recall, and the geometrical average of these two, the F value.

In simple words, precision is the general correctness of the output. Buttler et al.

[2] defines it as the percentage of correct extractions. Precision is formally defined

48

as follows.

Precision (P) = Total number of correct values extracted
Total number of values extracted

P is a value between 0 and 1, 0 signifying all false positives and 1 signalling no false

positives.

Recall, simply stated, is the prediction of correct values. Buttler et al. [2] defines

it as "the percentage of positive instances of the target concept that are correctly

identified". It is formally defined as follows.

Recall (R) = Number of correct values extracted
Total number of possible correct values

R is also a value between 0 and 1, where 0 means no correct values were predicted

and 1 means all correct values were predicted.

The F value is defined as follows.

(i32+1)P*R
F=

/32P+R

where ,8 is the weight of R over F, a value of ,8 = 1 means that recall and precision

are weighted equally. Researchers usually report the Fl value where 6 is taken to

be 1.

These values are usually reported as percentages. To present my results and

compare these with other reported in the literature, I use F, R and Fl as well.

5.4 Experiments and Results

5.4.1 University of Calgary web page

The Computer Science course listings from the University of Calgary [33] contain

course codes and their respective course titles. This information is presented in an

49

HTML table. A screen shot of this page is shown in Figure 5.1.

Block Week Courses

F Me
£PScoo

S05F05W06

17jit lintroduction To Unix

Top of Page
200 Level Courses

[CPSCD3]introduction To Computers I I X I X I
[C SC 231 Introduction To Comsuter Science I X X

[CPsC 233 Introduction To Computer Science II I X X I X I
IInguiry-based Introduction To Computer Science I I X I I

CPSC26 icomp Architect & Low-level Prog I I X I X I
Top of Page
300 Level Courses

']Introduction To Computability

Hardware/software Interface

S05F05W06

S05F05W06

Ix lxi xl
I Ixixi

Information Structures I X
Foundations Of Software En'ineerin

Information Structures II

X
x

fCPSC49• lProqramminq Paradigms

Princiiles Of Software Enineerin xxx
Top of Paqe

Figure 5.1: Web Page with Course Information from University of Calgary

After the tokenization of the input HTML file and the assignment of attribute

values to each token, AutoClass was run on the data set and the result contained

three clusters. Cluster 0 contained primarily course codes, Cluster 1 contained mostly

course titles, and Cluster 2 contained some course names interspersed with some

irrelevant text from the page (text from navigation bars, introductory paragraph,

etc.). The cluster distribution of the tokens from this page is shown in Table 5.1.

The patterns discovered when tokens were replaced by the number of the cluster

in which they occurred, are shown in the screen shot in Figure 5.2. Attempts to find

50

Table 5.1: University of Calgary: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 223
1 215
2 56

patterns of size greater than 2 led to all resulting patterns being invalid.

We have 6 patterns of size 2 now

0: 2 1 has occured 7 tines with first occurence at location: 6

1: 1 2 has occured 12 tines with first occurence at location: 7

2: 2 0 has occured 20 tines with first occurence at location: 15

3: 0 1 has occured 208 tines with first occurence at location: 16
4: 1 0 has occured 203 tines with first occurence at location: 17

5: 0 2 has occured 15 times with first occurence at location: 20

There were 28 invalid patterns also

Figure 5.2: Patterns discovered in the University of Calgary. Input using Cluster
numbers

Since the pattern "0 1" occured most prolifically, it was taken to be PAT, the

sequence of tokens that we are seeking. All patterns that differ by 10922 or one

digit such as "0 2" and "2 1" or any invalid patterns were converted to match "0

1" by reassigning the mismatched token to the correct cluster. After refinement, the

contents of the clusters were as follows.

Table 5.2: University of Calgary: Post-Refinement Cluster-wise Distribution of To-
kens

Cluster Number of tokens

0 225
1 227
2 33

Since cluster 2 does not occur in PAT, it was discarded and the clusters 0 and 1

51

were reported.

Results

Looking at the cluster contents, it was seen that cluster 0 contained all course codes,

and cluster 1 contained course titles. Referring back to the web page, it was confirmed

that "0 1" was indeed the right pattern, as the information in the page was laid out

with course codes followed by course titles.

Table 5.3 shows us the cluster-wise results. In this and all subsequent results

tables, TE denotes total number of tokens extracted, CE denotes the total number

of correctly extracted tokens, and TO is the number of all possible correct tokens

that could be extracted from this page. P is precision, R is recall, and Fl is the Fl

value.

Table 5.3: University of Calgary: Cluster-wise Results
Cluster# Info Type TE CE TO P R Fl

0 Course Codes 225 220 220 97.78% 100% 98.77%
1 Course Titles 227 220 220 96.92% 100% 98.44%

It is evident from the information shown in this table that we were able to achieve

highly accurate results in this experiment. The 100% recall for both clusters shows

that the system was able to extract all possible correct values from this web page.

The slightly lower precision values signify that some false positives were extracted as

well. Averaging the above values gives us P = 97.35%, R = 100%, and Fl = 98.48%.

Rebuilding course entities using PAT, 227 output pairs were extracted. Since

there were a total of 220 possible course entities in the page, seven of the extracted

pairs were false positives. For the re-constructed courses entities, the following values

were calculated: P = 96.92%, R = 100%, and Fl = 98.43%. Thus, once again, the

52

100% recall signifies that all the course code-course title pairs were extracted correctly

while the lower precision values shows the existence of seven false positives as well.

5.4.2 New York University web page

The Computer Science course listings from New York University [40] contain course

codes, their respective course titles, and the last names of faculty numbers teaching

those courses. This information is presented in an HTML table. Figure 5.3 shows a

screen shot of this page.

Course List, Spring 2005

Course Archive
Graduate Schedule
Undergraduate Schedule

Lewis

Siegel

Schonberg

Wright

Pnuei

Gottlieb

Poelman

Tomb erg

Kedem

Franchith

Davis

Gtishman

G2 2.1144-001 C-PAC U (4 pts.)

G2 2.1170-001 170-001 Fundamental Algorithms lecture

G2 2.21 Programming Languages lecture

G2 2,2112-001 12-001 Scientific Computing

G2 2.2130-001 Compilers

G2 2'2250-001 Operating Systems

G2 2.2280-001 2280-001 User Interfaces

G2 2.242 Numerical Methods U

G2 2.2433-001 1 Database Systems

G2 2.2440-001 Software Engineering

G2 2.2560-001 2560-001 Artificial Intelligence

G 22.2590-001 Natural Language Processing

G22.2631-001 CANCELLED

53

After the clustering was performed by AutoClass, the results showed the existence

of five clusters. Table 5.4 shows the number of tokens contained in each cluster.

Table 5.4: New York University: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0
1
2
3
4

68
60
54
23
14

Figure 5.4 shows the patterns of size 3 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. Attempts

to find patterns of a size larger than 3 led to almost all patterns being invalid i.e.

containing more than one occurrence of a cluster number.

We have 12 patterns of size S now
0: 4 1 0
1: 1 0 3
2: 0 3 1
3: 3 1. 0
4: 1 0 2
5: 0 2 1
6: 2 1 0
7: 2 0 3
8: 0 2 3
9: 2 3 0
10: 3 0 2 has occured 7 times with first occurence at location: 107
11: 0 2 4 has occured 1 times with first occurence at location: 215
There were 79 invalid patterns also.

has
has
has
has
has
has
has
has
has
has

occured
occured
occured
occured
occured
occured
occured
occured
occured
occured

1 times with first occurence at location: 18
8 times with first occurence at location: 19
11 times with first occurence at location: 20
11 times with first occurence at location: 21
43 times with first occurence at location: 22
39 times with first occurence at location: 23
39 times with first occurence at location: 24
3 times with first occurence at location: 54
7 times with first occurence at location: 105
7 times with first occurence at location: 106

Figure 5.4: Patterns discovered in the New York University Input using Cluster
numbers

Pattern 4, "1 0 2" occured most prolifically and was taken to be PAT. All those

patterns that differed from PAT by 10g23 or one (rounded down) digit, such as "10 3"

56

CPS lOOE - Program Design and Analysis II (and I)

CPS 100- Program Design and Analysis II

Second course for majors, minors, or those interested in studying data structures, algorithm analysis,
object oriented programming

CPS 102 - Discrete Math for Computer Science

Mathematical notations, logic, and proof; linear and matrix algebra; graphs, digraphs, trees,
representations, and algorithms; counting, permutations, combinations, discrete pzobahility, Maxhov
models; advanced topics from algebraic structures, geometric structures, combinatorial optimization,
rruither theory. Prerequistes: Math 31 and 32; Computer Science 6.

CPS 104- Computer Organization and Programming

CPS 106- Programming Languages (not offered at this time)

CPS 100- SofIwars Design and Implementation

CPS 109 - Program Design and Construction

CPS 110- Introduction to Operating Systems

CPS 114- Computer Networks and Distributed Systems

Figure 5.5: Web Page showing Course Information from Duke University

Table 5.7: Duke University: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 103
1 91
2 34
3 31

55

any false positives. For cluster 1, two correct instructors' names were missed and,

hence, led to a recall of 96.83%. The seven false positives lowered the precision

to 92.65%. In cluster 2, no false positives were reported which leads to a perfect

precision. However, the system failed to extract six course titles which lowered the

recall. Counting all token extractions together gave us P = 97.55%, R = 95.51%,

and Fl = 96.75%.

Rebuilding course entities using PAT, 61 output tuples were extracted. There

were a total of 68 possible course entities in the page. There were no false positives in

this case. For the re-constructed course entities, the following values were calculated:

P = 100%, R = 89.71%, and Fl = 94.57%. The lower recall shows the seven missed

instructor-code-title tuples.

5.4.3 Duke University web page

Thd Computer Science course listings from Duke University [39] contain course codes

and their respective course titles. This example is different from that of the Univer-

sity of Calgary in that the information is not presented in an HTML table. Figure

5.5 shows a screen shot of this page.

After the clustering was performed by AutoClass, the results showed the existence

of four clusters. The following table shows the number of tokens contained in each

cluster.

Figure 5.6 shows the patterns of size 2 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. Attempts

to find patterns of a size larger than 2 led to almost all patterns being invalid i.e.

containing more than one occurrence of a cluster number.

54

and "3 0 2" or any invalid patterns were re-classified to match it. After refinement,

the token distribution through the clusters is shown in Table 5.5.

Table 5.5: New York University: Post-Refinement Cluster-wise Distribution of To-
kens

Cluster Number of tokens

0 68
1 68
2 61
3 8
4 13

Clusters 3 and 4 do not occur in PAT and were discarded. Clusters 1, 0, and 2

were reported.

Results

Looking at the cluster contents, it was seen that cluster 0 contained all course codes,

cluster 1 contained names of faculty members, and cluster 2 contained course titles.

Referring back to the web page, it was confirmed that "10 2" was correctly estimated

to be PAT, as the information in the page was laid out with the faculty members'

names followed by the codes and titles of courses that they were teaching. The

results for each cluster are shown in Table 5.6.

Table 5.6: New York University: Cluster-wise Results
Cluster# Info Type TE CE TC P R Fl

0 Course Codes 68 68 68 100% 100% 100%
1 Instructors' Names 68 61 63 92.65% 96.83% 95.69%
2 Course Titles 61 61 68 100% 89.7% 94.57%

In this table, we see that for cluster 0 which contained mostly course codes, the

system achieved the extraction of all possible correct course codes and did not report

57

We have L1 patterns of sire 2 now

0: 0 2 has occured 9 times with first occurrence at 0

1: 2 3 has occured 9 times with first occurrence at 2

2: 3 2 has occured 9 times with first occurrence at 4

3: 3 0 has occured 6 times with first occurrence at 34

4: 0 3 has occured 5 times with first occurrence at 35

5: 2 0 has occured 7 times with first occurrence at 43

6: 2 1 has occured 3 times with first occurrence at 57

7: 1 0 has occured 89 times with first occurrence at 58

8: 0 1 has occured 88 times with first occurrence at 59
9: 1 2 has occured 1 times with first occurrence at 118

10: 1 3 has occured I times with first occurrence at 186

There were 31 invalid patterns also.

Figure 5.6: Patterns discovered in the Duke University Input using Cluster numbers

Pattern 7, "1 0" occured most prolifically and was designated to be PAT, the

pattern of tokens that we are looking for. All those patterns that differed from PAT

by 10922 or one digit, such as "3 0", "2 0", "1 2", and "1 3", or any invalid patterns

that fit the criteria, were re-classified to match it. The token distribution through

clusters after refinement is shown in Table 5.8.

Table 5.8: Duke University: Post-Refinement Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 105
1 94
2 31
3 29

Clusters 2 and 3 do not figure in PAT and were discarded. Clusters 1 and 0 were

reported.

Results

Looking at the cluster contents, it was seen that cluster 1 contained all course codes

and cluster 0 contained course titles.

58

This example brings to our attention one of the limitations of this approach.

Upon referring to the web page, it was noticed that the listing not only contained

the codes and titles for 93 courses, it also contained descriptions for 8 of these courses.

However, the system was unable to extract these descriptions. There are two reasons

for this.

1. Some descriptions were discarded during the tokenization process. The reason

for this is that AutoClass is unable to process tokens whose length is longer

than 200 characters and is liable to segmentation faults. Hence, my system

routinely discards tokens containing more than 200 characters to make sure

the program runs smoothly on the data. Some of these descriptions contained

more than 200 characters and were taken out of the data set to make sure

that the program runs correctly on the rest of the data set. Under the usual

circumstances, the performance of the system is not effected by this because

long tokens are usually introductory sentences in the web page and do not offer

much information.

2. Another reason that the shorter descriptions were ignored for patterns is that

they occurred very infrequently, as mentioned above. Therefore, AutoClass was

not able to find a significant correlation between course descriptions, codes, and

titles.

If we ignore the matter of missed course descriptions, PAT matched the rest of

the information, because, in the page, the information was laid out such that course

codes were followed by course titles. The results for separate extracted clusters are

given in Table 5.9.

59

Table 5.9: Duke University: Cluster-wise Results
Cluster# Info Type TE CE TC P R Fl

o Course Titles 105 93 93 88.57% 100% 93.94%
1 Course Codes 94 92 93 97.87% 98.92% 98.4%
- Course Descriptions 0 0 8 - 0% -

The information in this table shows the results of the system when applied on a

data set with certain limitations, i.e., not enough tokens reported together for the

system to associate them with each other. In cluster 0, mostly course titles were

reported with twelve false positives. However, all course titles available in the data

set were correctly extracted in cluster 0. Thus, for this cluster, we had a perfect

recall but lower precision since all of the output was not correct. In cluster 1, course

codes were reported. There were two false positives, a fact that lowered the precision

slightly. One course code present in the data set was missed resulting in a lowered

recall for this particular cluster. Since course descriptions were not reported in the

output, the third cluster is empty to show the cluster that should have contained

descriptions. Since none were extracted, we have an undefined precision (division by

0) and the recall is 0.

For this example, two sets of results are presented for the case when we average

results for all tokens extracted. If we consider the course descriptions to be part of

the information that should have been extracted, we get P = 92.96%, R = 95.36%,

and Fl = 94.14%.

If, on the other hand, we decide that descriptions were not the factual information

that we wanted to extract, we get P = 92.96%, R = 99.46%, and Fl = 96.1%

instead.

60

Rebuilding course entities using PAT, 104 output pairs were extracted. Since

there were a total of 93 possible course entities in the page, eleven of the extracted

pairs were false positives. Out of the 93 correct pairs, a further 8 were considered

incorrect because the description was not taken into account. For the re-constructed

courses entities, the following values were calculated: P = 80.77%, R = 91.3%, and

Fl = 85.72%. From these values we deduce that 80.77% of the extracted pairs were

correct while the system was able to extract 91.3% of all possible correct tuples in

the data set.

It should be noted that I have been strict about declaring the correctness or

incorrectness of extracted tuples. In many other existing approaches in the literature,

correct and partially correct (take the example of the eight tuples with missing

descriptions above) are both taken to mean correct. Here, partially correct tuples

are considered incorrect.

5.4.4 Columbia University web page

The Computer Science course listings from Columbia University [38] contain course

codes, their respective course titles, credit points, instructor's name, day and time

when the course is taught, location and a reference number. This information is

presented in an HTML table and is shown in Figure 5.7.

After the clustering was performed by AutoClass, the results showed the existence

of nine clusters. Table 5.10 shows the number of tokens contained in each cluster.

Figure 5.8 shows the patterns of size 8 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. Attempts to

find patterns of a size larger than 8 led to almost all patterns being invalid.

61

Spring 2004 Courses

Course
number
[link to

description]
(Registrar

Call
Number)

Course Title
[link to course

page]
Points

Instructor
and TM

Date
(*) Time Location

Exam date and time

COMS
Introduction To
computers 3.0

G. Whalen MW 5:40PM - 6:55PM 614 Schermerhorn Wlaol-1
(83649)

COMS

Introduction To
Computer
Programming In

(Note: Students
must register for
a Lab section
COMS W11I3)
fwebnaael

3.0

J. Parekh Tu 11:OOAM-12:1SPM 207 Math
Bldg W1003-1

(e7101)

COMS

Introduction To
Computer
Programming In 1 Prkh Ti 11 flflAM-12 • 1 SPM 207 Math

Figure 5.7: Web Page showing Course Information from Columbia University

Table 5.10: Columbia University: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 107
1 62
2 59
3 57
4 57
5 57
6 46
7 44
8 16

62

Ue have 9 patterns of sire 8 now

0: 8 1 7 2 6 5 3 0 has occurred 1 times with first occurrence at location: 17
1: 1 7 2 6 5 3 0 4 has occurred 32 times with first occurrence at location: 18

2: 7 2 6 5 3 0 4 1 has occurred 32 times with first occurrence at location: 19

3: 2 6 5 3 0 4 1 7 has occurred 28 times with first occurrence at location: 36
4: 6 5 3 0 4 1 7 2 has occurred 29 times with first occurrence at location: 37

5: 5 3 0 4 1 7 2 6 has occurred 30 tines with first occurrence at location: 38

6: 3 0 4 1 7 2 6 5 has occurred 30 times with first occurrence at location: 39

7: 0 4 1 7 2 6 5 3 has occurred 30 times with first occurrence at location: 40

8: 4 1 7 2 6 5 3 0 has occurred 30 times with first occurrence at location: 41

There were 88 invalid patterns also

Figure 5.8: Patterns discovered in the Columbia University Input using Cluster
numbers

A tie was found between two patterns: "1 7 2 6 5 3 0 4" and "7 2 6 5 3 0 4

1". The tie was broken using the heuristic that an identifying characteristic of an

entity (in this case the course code which belongs to cluster 1) should occur towards

the beginning of PAT. The former pattern was assumed to be PAT, the pattern of

tokens that we are seeking. All those patterns that differ from PAT by up to 10928 or

three digits, were re-classified to match it. The post-refinement cluster distribution

is shown in table 5.11.

Cluster 8 does not occur in PAT and was discarded. Clusters 0, 1, 2, 3, 4, 5, 6,

and 7 were reported in the order "1 7 2 6 5 3 0 4".

Results

Looking at the cluster contents, it was seen that cluster 0 contained mostly locations,

cluster 1 contained course codes, cluster 2 contained credit points, cluster 3 contained

time slots, and cluster 4 contained reference numbers for courses. Furthermore,

cluster 5 contained days of lectures, cluster 6 contained instructors' names, and

63

Table 5.11: Columbia University: Post-Refinement Cluster-wise Distribution of To-
kens

Cluster Number of tokens

0
1
2
3
4
5
6
7
8

78
62
59
57
57
57
57
62
16

cluster 7 contained course titles. Referring back to the web page, it was confirmed

that "1 7 2 6 5 3 0 4" was the right pattern, as the information in the page was laid

out with the course code followed by course title, credit points, instructor's name,

day and time, location, and the reference number. Table 5.12 shows the results for

each cluster separately.

Table 5.12: Columbia University: Cluster-wise Results
Cluster# Info Type TE CE TO P R Fl

0 Locations
1 Course Codes
2 Credit Points
3 Time
4 Course Reference
5 Days of the week
6 Instructors' names
7 Course Titles

78
62
59
57
57
57
57
62

57
62
59
5,7
57
57
57
59

5,7
64
64
57
64
57
57
64

73.08%
100%
100%
100%
100%
100%
100%
95.16%

100%
96.88%
92.19%
100%
89.06%
100%
100%
92.19%

84.44%
98.41%
95,93%
100%
94.22%
100%
100%
93.65%

Cluster 0 shows the extraction of locations. The results show that all locations

reported in the data set were correctly extracted with eleven false positives as well so

that 73.08% of the reported tokens in cluster 0 were correctly identified as locations.

64

Cluster 1 shows the extraction of course codes where all tokens reported were cor-

rectly identified as codes. The system failed to extract 2 course codes which led to a

lower recall. Cluster 2 shows that 92.19% of all correct credit points were extracted,

and that all tokens in cluster 2 were correctly identified, i.e., no false positives were

included. Cluster 3 shows the correct extraction of time slots. In cluster 4, all re-

ported tokens were correctly classified while 89.06% of all reference numbers were

extracted. In clusters 5 and 6, all correct days of the week and instructors' names

respectively were correctly identified with no false positives. Finally, in cluster 7,

95.16% of reported tokens were correctly identified as titles, and the system failed to

extract 7.81% of all possible correct titles. Averaging results for all tokens extracted,

the cumulative results are P = 95.09%, R = 96.07%, and Fl = 95.597%.

Rebuilding course entities using PAT, 62 output tuples were extracted. There

were a total of 64 possible course entities in the page. There were five false positives.

For the re-constructed courses entities, the following values were calculated: P =

91.94%, R = 89.06%, and Fl = 90.48%. Thus, from these values, we understand

that 91.94% of all extracted tuples were correct, while 89.06% of all possible correct

tuples were extracted by the system.

5.4.5 Cell Phone Sales on Buy.com

I tested my approach on a cell phone sales domain as well, on a page from the web

site buy.com [3]. This page contains phone listings with the manufacturer, the cell

phone model, and the price listed for each phone. This information is presented in

an HTML table and is shown in Figure 5.9.

After the clustering was performed by AutoClass, the results showed the existence

65

OMPARE Manufacturer Promo Phone (click for Technology Price Add Phone

• Samsung
Smsuno.

$59.99 IOI ADOPHONt 1730 Pocket
PC (Verizon

Wireless)

• Samsung

(Verizon

Samsunq
$549.99 ADDPHONE -9 O0

Smarthone
Wireless)

• Audiovox

(Verizon

Audiovox

$499,99 WADDPHONL k
Pocket PC

(Camera Phone)
Wireless)

• PalmOne

M. PalmOne

$3999 IN, ADDPHONE Tre050

Phone) (Verizo
Wireless)

Figure 5.9: Web Page showing Cell Phones listings from Buy.corn

66

of three clusters. Table 5.13 shows the number of tokens contained in each cluster.

Table 5.13: Cell Phone Listings: Cluster-wise Distribution of Tokens
Cluster Number of tokens

o 144
1 126
2 82

Figure 5.10 shows the patterns of size 3 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. As in the

previous experiments, all attempts to find patterns of a size larger than 3 led to all

patterns being invalid i.e. containing more than one occurrence of a cluster number.

We have 3 patterns of sire 3 now
0: 1 0 2 has occured 76 tines with first occurence at location: 22
1: 0 2 .1. has occured 76 times with first occurence at location: 23

2: 2 1 0 has occured 76 times with first occurence at location: 24
There were 123 invalid patterns also.

Figure 5.10: Patterns discovered in the Buy.com Input using Cluster numbers

A tie was found between three patterns: "1 0 2", "0 2 1" and "2 1 0". Since

all cell phone sale sites use a different pattern of tokens, the system had to rely on

the prolific occurrence of the pattern to discover PAT. When there was a tie and no

heuristics were able to break this tie, "1 0 2" was chosen as PAT arbitrarily because

it is the first most prolific pattern. All those patterns that differ from PAT by 10923

or 1 (rounded down) digit were re-classified to match it. The post-refinement cluster

distribution is shown in Table 5.14.

67

Table 5.14: Cell Phone Listings: Post-Refinement Cluster-wise Distribution of To-
kens

Cluster Number of tokens

0 136
1 110
2 106

Results

Looking at the cluster contents, it was seen that the results showed perfect recall.

Cluster 0 contained mostly cell phone models, cluster 1 contained the manufacturers'

names, and cluster 2 contained prices. Referring back to the web page, it was

confirmed that "1 0 2" was the right pattern, as the information in the page was

laid out with the manufacturers' names followed by the phone model and its price.

Table 5.15 shows the results for each refined cluster separately.

Table 5.15: Cell Phone Sales: Cluster-wise Results
Cluster# Info Type TE CE TC P R Fl

0 Cell Phone Models 136 104 104 76.47% 100% 86.67%
1 Manufacturers' Names 110 104 104 94.55% 100% 97.19%
2 Prices 106 104 104 98.11% 100% 99.05%

Cluster 0 shows extraction of cell phone models. The results show that 76.47%

of all extracted tokens in cluster 0 were correct. The 100% recall shows that these

correctly extracted tokens were all the possible tokens that could be extracted. Clus-

ter 1 shows the extraction of manufacturers' names. According to the results, all

names reported in the data set were correctly extracted. These formed 94.55% of the

total tokens reported for this cluster. Cluster 2 shows the extraction of prices. Once

again, all prices reported in the data set were extracted along with two false posi-

tives which meant that 98.11% of the output for this cluster was correct. Averaging

68

results for all tokens extracted, the cumulative results are P = 89.71%, R = 100%,

and Fl = 94.30%.

Rebuilding phon6 entities using PAT, 110 output tuples were extracted. There

were a total of 104 possible phone entities in the page. There were six false positives.

For the re-constructed phone entities, the following values were calculated: P =

94.55%, R = 100%, and Fl = 97.19%. These values signify that out of all the

output tuples, 94.55% were correct. Furthermore, the system was able to extract all

possible correct tuples from the data set.

Although this seems like a good result, the correct PAT was extracted by chance

and, in this particular case, does not highlight the power of this system. However,

this example, like the earlier ones, showcases the suitability of clustering for a task

such as this.

5.4.6 1999 Marathon Schedule from The Running Page

The approach is tested on two marathon listings web pages as well. This page

from the website RunningPage.com [34] reports marathon listings containing the

marathon name, the place where it is run, a contact phone number, and finally a

date when it is scheduled. This information is presented in an HTML table and is

shown in Figure 5.11.

This example is primarily included to show the limitations of this system. Clus-

Tex depends on most of the tokens belonging to different categories to have different

formats. If this condition is not fulfilled, the results worsen quickly. In this web

page, the formats of marathon names and venues are similar in many cases. The

following analysis shows the impact of this similarity on the output.

69

Marathon des Sables 04-Apr-99

Bungay Suffolk UK Marathon 11-Apr-99

Taunton Marathon Taunton, MA 11-Apr-99

Belgrade Yugoslavia 381 11 648 266 OX-Apr-
99

Boston Massachusetts N/A 19-Apr-99

Fred's Marathon Fitchburg, Massachusetts N/A 19-Apr-99

Shell-Marathon (Hamburg) Hamburg, Germany N/A 25-Apr-99

London England N/A 18-Apr-99

Jersey Shore Marathon Long Branch, New Jersey 732-542-6090 25-Apr-99

Figure 5.11: Web Page showing Marathon Listings from The Running Page

After the clustering was performed by AutoClass, the results showed the existence

of eight clusters. Table 5.16 shows the number of tokens contained in each cluster.

Table 5.16: 1999 Marathon Listings: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 49
1 45
2 33
3 24
4 21
5 15
6 7
7 2

Figure 5.12 shows the patterns of size 4 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. As in the

previous experiments, all attempts to find patterns of a size larger than 4 led to all

patterns being invalid.

70

We have 46 patterns of sire 4 now

0: 6 2 4 3 has occurred 1 times with

1: 2 4 3 0 has occurred 3 times with

2: 4 3 0 1 has occurred 3 times with

3: 3 0 1 2 has occurred 2 tines with
4: 1 2 0 5 has occurred I times with

5: 0 4 1 2 has occurred 1 times with

6: 4 1 2 0 has occurred 1 tines with

7: 1 2 0 4 has occurred I times with

8: 2 0 4 1 has occurred I times with

9: 4 1 0 5 has occurred I times with

10: 1 0 5 2 has occurred 1 times with first occurrence

11: 0 5 2 3 has occurred 3 times with first occurrence

12: 5 2 3 0 has occurred 3 times with first occurrence

13: 2 3 0 5 has occurred 4 times with first occurrence

14: 3 0 5 1 has occurred 4 times with first occurrence

15: 0 5 1 3 has occurred 4 times with first occurrence

16: 5 1 3 0 has occurred 4 times with first occurrence

17: 1 3 0 2 has occurred 4 times with first occurrence
18: 3 0 2 4 has occurred 4 times with first occurrence

19: 0 2 4 3 has occurred 2 times with first occurrence
20: 0 1 2 3 has occurred 2 times with first occurrence

21: 1 2 3 0 has occurred 2 times with first occurrence

22: 1 3 0 4 has occurred 3 times with first occurrence

23: 4 0 2 1 has occurred 1 times with first occurrence

24: 0 2 1 3 has occurred 4 times with first occurrence

25: 2 .1. 3 0 has occurred 4 times with first occurrence

26: 1 3 0 5 has occurred 2 times with first occurrence
27: 3 0 5 2 has occurred 3 times with first occurrence

28: 0 2 4 1 has occurred 1 times with first occurrence

29: 2 4 1 0 has occurred 1 times with first occurrence
30: 4 1 0 2 has occurred 1 times with first occurrence

31: 3 0 2 1 has occurred 2 times with first occurrence
32: 2 3 0 1 has occurred 2 times with first occurrence

33: 3 0 1 4 has occurred 2 times with first occurrence
34: 0 .1. 4 3 has occurred 1 times with first occurrence

35: 1 4 3 0 has occurred I times with first occurrence

36: 0 1 4 2 has occurred I times with first occurrence

37: 1 4 2 0 has occurred 1 times with first occurrence
38: 4 2 0 5 has occurred 1 times with first occurrence

39: 2 0 S 1 has occurred 1 times with first occurrence
40: 4 3 0 5 has occurred I times with first occurrence

41: 4 3 0 2 has occurred 2 times with first occurrence

42: 0 4 1 3 has occurred I times with first occurrence

43: 4 1 3 0 has occurred I times with first occurrence

44: 1 5 2 7 has occurred I tines with first occurrence

45: 5 2 7 6 has occurred I times with first occurrence

There were 74 invalid patterns also

first

first

first

first

first

first

first

first

first

first

occurrence

occurrence

occurrence

occurrence

occurrence

occurrence

occurrence

occurrence

occurrence

occurrence

at

at

at

at

at

at

at

at

at

at

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

at

at

at

at

at
at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at
at

at

at

at

at

at

at

at

at

at

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

location:
location:

location:

location:

location:

location:

location:

location:

location:

location:

location:

9
10

11
12

14

23

24

25
26

41

42

43

44

45

46

50

51

52

53

54

58
59

71

75

76

77

78

83

91

92

93

98

104

105
106

107

110

111

112

113

124

136

161

162

186

187

Figure 5.12: Patterns discovered in the Running Page Input using Cluster numbers

71

A tie was found between eight patterns. The tie was broken using the heuristic

that an identifying characteristic of an entity, in this case a marathon's name, close

to the beginning of a pattern. Consequently, the pattern "5 13 0" was picked. All

those patterns that differ from PAT by up to 10924 or two digits, were re-classified

to match it. The post-refinement cluster distribution is shown in Table 5.17.

Table 5.17: 1999 Marathon Listings: Post-Refinement Cluster-wise Distribution of
Tokens

Cluster Number of tokens

0 48
1 49
2 19
3 27
4 13
5 32
6 7
7 2

Clusters 2, 4, 6 and 7 were discarded because they do not appear in PAT.

Results

Looking at the cluster contents, we see that the missing values and varying formats

of the input test the limits of the data and reduce the precision and recall of the

output. Cluster 0 contained mostly dates, cluster 1 contained mostly race venues,

cluster 3 contained contact telephone numbers, and cluster 5 contained marathon

names. Referring back to the web page, it was confirmed that "5 1 3 0" was the

right pattern, as the information in the page was laid out with the marathons' names,

followed by the venues, contact telephones, and dates. Table 5.18 shows the results

for each refined cluster separately.

72

Table 5.18: The Running Page Listings: Cluster-wise Results
Cluster# Info Type TE CE TC P R Fl

0 Dates 48 47 47 97.92% 100% 98.95%
1 Venues 49 35 45 71.43% 100% 83.33%
3 Telephone Numbers 27 27 36 100% 75% 85.71%
5 Marathon Names 32 30 47 93.75% 63.83% 75.95%

Cluster 0 shows the extraction of dates. The results show that all dates in the

page were extracted correctly leading to a 100% recall. However, one false positive

was also reported decreasing the precision. Venues were extracted in cluster 1. Out

of all venues reported in the page, the system was able to extract 35 leading to

a recall of 83.33%. Cluster 1 also included 14 incorrectly clustered tokens that

could not be refined by the system. Cluster 3 contained mostly telephone numbers.

Although the system was able to correctly identify all actual telephone numbers, it

was unable to extract values referring to telephone numbers such as "N/A". Out of

36 tokens reported under the telephone number column, only 27 were extracted and

were reported as telephone numbers leading to 100% precision for cluster 3. Finally,

cluster 5 reported marathon names. Out of 47, only 30 were extracted in addition to

two false positives. Averaging results for all tokens extracted, the cumulative results

are P = 90.78%, R = 84.71%, and Fl = 85.99%.

From this example, it can be seen that it is necessary for tokens belonging to

different categories to have different formats. Many marathon names were not com-

pletely reported (for example, the word "Boston" was substituted for the complete

name "Boston Marathon") and ClusTex was unable to differentiate it from other

tokens. In comparison, all dates had a similar format and were extracted correctly.

Rebuilding marathon entities using PAT, 32 output tuples were extracted. There

73

were a total of 47 possible entities in the page. There were eight false positives.

For the re-constructed entities, the following values were calculated: P = 81.25%,

R = 55.32%, and Fl = 65.82%. These values signify that out of all the output

tuples, 81.25% were correct. Furthermore, owing to the similarly formatted tokens

from different categories, the system was able to extract only a little more than half

of all possible listings in the page.

5.4.7 US Marathon Listings from MarathonGuide.com

This page from MarathonGuide.com [31] contains marathon listings containing the

date of the race, marathon name, the city where it is run and finally the state. This

information is presented in an HTML table, and is shown in Figure 5.13.

After the clustering was performed by AutoClass, the results showed the existence

of seven clusters. Table 5.19 shows the number of tokens contained in each cluster.

Table 5.19: MarathonGuide.com Listings: Cluster-wise Distribution of Tokens
Cluster Number of tokens

0 132
1 115
2 76
3 66
4 42
5 36
6 3

Figure 5.14 shows the patterns of size 4 found in the output when the token text

was replaced by the number of the cluster in which the token occurred. As in the

previous experiments, all attempts to find patterns of a size larger than 4 led to all

patterns being invalid, i.e., containing more than one occurrence of a cluster number.

74

9/25/05 Adirondack Marathon 0 1313131313 Schroon Lake NY
9125/05 Nike Boulder Backraads Marathon 0 111 131313 Boulder CO

1313
9125/05 Clarence Demar Marathon 0 1313131313 Keene NH
9125/05 Community First Fox Cities Marathon 0 63 1313 Appleton WI

131313
9125/05 Dick Walter Subaru Lewis and Clark Marathon Bozeman MT

(M1)0 W 1313131313
9125/05 Mangelsens Omaha Marathon 0 IZ 1313131313 Omaha NE
9125/05 THE National Bank Quad Cities MarathortO,M Moline IL

13 1313
9/25/05 Scotiabank Toronto Waterfront Marathon 0 Toronto ON

October 2005
10/1/05 Road Runner Akron Marathon 011313 Akron OH
10/1/05 Auburn Marathon IAuburn CA
10/1/05 Big Sur Trail Marathon 0 131313 Big Sur CA
10/1/05 Leavenworth Okioberfast Marathon 0 Leavenworth WA
10/1/05 New Hampshire Marathon 0 in: 13131313 Bristol NH
10/1/05 St. George Marathon 0 E.11313 XI 1313 St. George UT
10/2/05 Odell Brewing Company and Cooparamith's Pub Fort Collins CO

and Brewing Easy Street Marathon 0 1] 131313

Figure 5.13: Web Page showing Marathon Listings from MarathonGuide.com

75

We have 29 patterns of sire 4 now
0: 0 5 1 2 has occurred 3 times with first occurrence at location: 11

1: 5 1 2 3 has occurred 2 tines with first occurrence at location: 12

2: 1 2 3 0 has occurred 42 times with first occurrence at location: 13

3: 2 3 0 1 has occurred 40 times with first occurrence at location: 14

4: 3 0 1 2 has occurred 37 times with first occurrence at location: 15

5: 0 1 2 3 has occurred 40 tines with first occurrence at location: 16
6: 3 0 1 4 has occurred 26 tines with first occurrence at location: 35

7: 0 1 4 5 has occurred 9 tines with first occurrence at location: 36
8: 1 4 5 0 has occurred 9 tines with first occurrence at location: 37

9: 4 5 0 1 has occurred 9 tines with first occurrence at location: 38

10: 5 0 1 2 has occurred 23 tines with first occurrence at location: 39

11: 0 1 2 5 has occurred 23 tines with first occurrence at location: 48

12: 1 2 5 0 has occurred 23 tines with first occurrence at location: 49
13: 2 5 0 1 has occurred 22 tines with first occurrence at location: 50

14: 5 0 1. 4 has occurred 9 times with first occurrence at location: 51

15: 0 3. 4 3 has occurred 23 times with first occurrence at location: 52
16: 1 4 3 0 has occurred 23 tines with first occurrence at location: 53

17: 4 3 0 1 has occurred 23 times with first occurrence at location: 54

.18: 4 0 1 2 has occurred 2 times with first occurrence at location: 63

19: 2 3 0 5 has occurred 2 times with first occurrence at location: 170

20: 3 0 5 1 has occurred 2 tines with first occurrence at location: 171

21: 0 1 2 4 has occurred 1 times with first occurrence at location: 413

22: 1 2 4 0 has occurred 1 times with first occurrence at location: 414

23: 2 4 0 1 has occurred 1 times with first occurrence at location: 415

24: 4 0 1 3 has occurred 1 tines with first occurrence at location: 416

25: 0 1 3 5 has occurred 1 times with first occurrence at location: 417

26: 1 3 5 0 has occurred 1 times with first occurrence at location: 418

27: 3 5 0 1 has occurred 1 times with first occurrence at location: 419

28: 5 1 2 0 has occurred 1 times with first occurrence at location: 450

There were 25 invalid patterns also

Figure 5.14: Patterns discovered in the MarathonGuide.com Input using Cluster
numbers

76

Pattern 2, "12 3 0" occurs most prolifically and is assumed to be PAT. All those

patterns that differ from PAT by up to 10924 or two digits or any invalid patterns

are re-classified to match it. After refinement, the token distribution through the

clusters is shown in Table 5.20.

Table 5.20: MarathonGuide.com Listings: Post-Refinement Cluster-wise Distribu-
tion of Tokens

Cluster Number of tokens

0 119
1 115
2 115
3 115
4 0
5 3
6 3

Since clusters 4, 5 and 6 do not figure in PAT, they were discarded.

Results

Looking at the cluster contents, we can see that cluster 0 contains mostly states,

cluster 1 contains dates, cluster 2 contains marathon names and cluster 3 contains

names of cities. Referring back to the web page, the sequence of tokens in PAT was

confirmed as c 2 3 0" since the information was laid out with the date followed by

marathon name, the city and state. Table 5.21 shows the results for each refined

cluster separately.

Cluster 0 shows extraction of states. The results show that 97.85% of all extracted

tokens in cluster 0 were correct. The 100% recall shows that these correctly extracted

tokens were all the possible tokens that could be extracted. Cluster 1 shows the

extraction of dates. According to the results, all names reported in the data set

77

Table 5.21: MarathonGuide.com Listings: Cluster-wise Results
Cluster# Info Type TE CE TC P R Fl

0 State 119 114 114 95.80% 100% 97.85%
1 Date 115 114 114 99.13% 100% 99.56%
2 Marathon Names 115 114 114 99.13% 100% 99.56%
3 City 115 114 114 99.13% 100% 99.56%

were correctly extracted. These formed 99.13% of the total tokens reported for this

cluster. Only one false positive was reported out of 115 tokens. Cluster 2 shows the

extraction of marathon names. Once again, all names reported in the data set were

extracted along with one false positive which meant that 99.13% of the output for

this cluster was correct. Cluster 3 was found to contain cities and shows the same

result as cluster 1 and 2. Averaging results for all tokens extracted, the cumulative

results are P = 98.298%, R = 100%, and Fl = 99.14%.

Rebuilding marathon entities using PAT, 115 output tuples were extracted. There

were a total of 114 possible marathon entities in the page. There was one, false posi-

tive. For the re-constructed marathon entities, the following values were calculated:

P = 99.13%, R = 100%, and Fl = 99.56%. These values signify that out of all the

output tuples, 99.13% were correct. Furthermore, the system was able to extract all

possible correct tuples from the data set.

5.5 Discussion

In this section, the results are discussed and compared with the results of other

approaches. Table 5.22 shows the overall results from all web pages tested.

Thus, in summary, from the University of Calgary web page, all correct tu-

78

Table 5.22: Overall Extraction Results from all Web Pages
Web Page P R Fl

University of Calgary
New York University
Duke University

Columbia University
]3uy.com Cell Phones

1999 Marathon Schedule
MarathonGuide.com US Listing

96.92%
100%
80.77%
91.94%
94.55%
81.25%
99.13%

100%
89.71%
91.3%
89.06%
100%
55.32%
100%

98.43%
94.57%
85.72%
90.48%
97.19%
65.82%
99.56%

ples were extracted with 3.08% of the output tuples being false positives. From

the New York University web page, 89.71% of all correct tuples were extracted,

all output being correct. From the Duke University web page, 91.33% correct tu-

ples were extracted while 19.33% of total output tuples were false positives. In the

case of Columbia University web page, 89.06% of all correct tuples were extracted

and 91.94% of all extracted tuples were correct. In the cell phone domain, from

the Buy.com page, all correct tuples in that page were extracted. The output also

included 5.45% false positives. In the marathon domain, from the listing in the Run-

ning Page, only about 55.32% of all marathon tuples were extracted and the output

contained 18.75% false positives as well. From the MarathonGuide.com page, all

marathon tuples were correctly extracted in addition to 0.77% false positives.

This brings us to the discussion of how the page format would lead to a particular

result. It appears that the best clusters are formed when the tokens belonging to a

particular category follow the same format stringently. For example, in the University

of Calgary web page, we see that the tokens belonging to each important category

follow the same format, hence leading to a good clustering with very little or no need

for refinement. On the other hand, as can be seen in the 1999 Marathon listing,

79

similar formats lead to an incorrect clustering which cannot be fixed by refinement.

If the tokens of one kind differ from each other in format, then this would lead

to an incorrect clustering of some tokens, and refinement needs to take place. Re-

finement is helped by tokens occurring in patterns. Thus, in the example of the

Buy.com web page, we see that some prices were initially clustered incorrectly (be-

cause of failure in the format condition), but since all tokens follow a strict format,

the refinement phase reassigned these tokens to the right cluster.

It should also be mentioned here that refinement works only for inaccurately

clustered tokens in tuples with less than log2k missing values. If there are any more

missing values, then the system is unable to judge this as a pattern to be refined

to match PAT. We see examples of this in the Columbia University and New York

University web pages. Some tokens were incorrectly clustered, but since the tuple

in which they occurred contained less than k - 1og2k values, refinement was not

attempted.

The Duke University example brings to our attention the fact that extraction

would fail if too many values are missing because the system would be unable to

judge the correct pattern. In this example, out of a total of 93 course entities, only

8 contained course descriptions. Thus, there were 85 missing values in only one

cluster. The system, due to the high number of missing values, was unable to detect

the presence of a third attribute in the tuple.

ClusTex has a different premise than other existing approaches and works on

semi-structured data rather than text. Hence, it has been tested on domains which

are different than the ones used for testing by researchers who proposed classification

based approaches. However, Embley et al. [13] tested their approach on the cell

80

phone domain as well. For the cell phone sales page from Buy.com, they report

P = 85.4%, R = 90.7%, and Fl. = 87.97%. Comparing this to my results of

P = 94.55%, R = 100%, and Fl = 97.19%, it is evident that my approach works

on this data set quite well, and in any case, better than Embley's approach. On

the other hand, Embley et al. test their approach on the car sales domain as well.

They are able to extract information from a table that contains data on only one

car. ClusTex fails in such a situation. Because it is based on clustering, it requires

a large data set of tokens with different formats to be able to separate tokens from

different categories.

Similarly, the works in which IE is seen as a text classification problem, usually

test their approach on data sets such as the CMTJ seminar announcements corpus.

This corpus contains a large number of documents, each containing one announce-

ment. If ClusTex were to be applied on such a corpus, it would fail because it is

unable to extract information about one entity from a page. However, one could

imagine combining all documents into one large document. In that case, ClusTex

might have some chance of success. This has not been tried, and is a possible future

research direction.

ClusTex holds an edge over text classification systems in that they classify tokens

from one page that contains one entity. They do not have to relate tokens belonging

to the same entity with each other if there are other entities present as well. However,

ClusTex achieves this by using patterns and shows good results.

Thus, judging from the evaluation criteria cited in Table 5.22, we can see that

ClusTex shows very high precision and recall, and consequently Fl, in the case of

most listings tested. The lowest values are from tests on the 1999 marathon listings

81

and Duke University listings, and pin-point the limitations of the approach that

should be addressed rather than hidden.

Chapter 6

Conclusions and Future Work

In this thesis, ClusTex system which uses clustering techniques for IE from HTML

web pages is developed. This chapter concludes this discussion by first presenting

its advantages over and differences from other approaches. In the second section,

the current limitations of this system are discussed and ideas for future work are

explored.

6.1 Advantages of ClusTex and Differences from Existing

Approaches

The most important point on which this approach differs from the others is that it

uses clustering for data extraction, which is an unsupervised learning technique and

does not require feedback from the user after domain features have been accounted

for. All other similar works view IE as a text classification problems, and hence, use

training examples and user feedback during the extraction process.

An advantage of this approach, at least when it is used on simple data sets with

tokens of varying formats, is that it has a much simpler feature set than those of

other systems. It only has HTML, semantic and orthographic features combined to

better represent a particular domain. Thus, it requires very little pre-processing as

compared to other systems but still gives comparable results.

If we decide to use ClusTex on an unknown domain, then only the HTML and

82

83

orthographic features can be used to extract information, i.e., without any domain

knowledge. In that case, after the information has been extracted, the user can

match a cluster as a whole to its destination field in a database.

Another advantage of ClusTex is that instead of classifying tokens individually

as in other systems, we can extract all tokens in one go.

6.2 Limitations and Possibilities for Future Work

The approach presented in this thesis suffers from several limitations that should be

considered in future research. In the following paragraphs I suggest several directions

in which further work can prove beneficial.

First of all, ClusTex requires that the web page be well-formed, i.e., have complete

sets of start and end tags, and proper nestings etc. However, hand-coded pages with

mistakes such as missing tags, especially in legacy data, are very common. On the

bright side, this is easy to remedy with a utility such as HTML Tidy which can

correct these mistakes and bring others to the attention of the user that it is unable

to fix by itself.

Another limitation of this approach is its reliability on patterns of tokens for

discovery of extraction rules. This effectively limits the use of this system for semi-

structured data as opposed to semi-structured text in which tokens may occur with-

out any pattern. It would be interesting to see an alternate way to discover extraction

rules that does not use patterns, and consequently, can extract from semi-structured

text as well.

Due to the very nature of clustering, ClusTex works only on data in which dif-

84

ferent tokens making up the data instances are different from each other, but the

value for any particular attribute always occurs in more or less the same format.

However, in some cases, the simplistic attributes may fail to account for finer details

or properties of tokens. In a future work, this could be dealt with by adding more

kinds of attributes in the tokenization process, using a POS tagger and a gazetteer.

Right now, this system has a simplistic feature set which is potent enough to deal

with many domains, especially ones containing semi-structured data. Making the

attribute set more complex will also allow the system to work on semi-structured

texts.

In this approach, during the refinement phase, tokens are only reassigned to other

clusters in the pattern in which they occur differs from PAT by 1og2k digits. If the

pattern differs from PAT more than this value, reassignment is not attempted. If

there is a valid pattern with more than 1og2k values clustered incorrectly, it would

not stand a chance of being rectified. A future work could deal with this problem

possibly by striking a balance between a realistic limit for allowing re-assignment

and getting better clustering results, which would decrease the need for refinement

in the first place.

Another major limitation of ClusTex is its inability to deal with tokens that are

longer that 200 characters in length. This is actually a limitation of AutoClass,

the software I use for clustering. To get around this challenge, future research could

concentrate on either using another clustering software or implementing a specialized

clustering component for this system.

As we have seen in the testing phase, a case may arise when the system is unable

to estimate an extraction rule based on heuristics and has to choose the first most

85

prolific pattern for the rule. It would be interesting to see how a user feedback

component could be added to get around this problem.

Existing systems based on text classification take the input pages one by one and

classify the tokens into classes. This system requires all input to be on one page.

In the future, one could attempt to make the system workable on many documents,

each containing one instance, as suggested by Masterson and Kushmerick [32].

In its current state, the user has to supply all web pages individually to the

system for extraction. An integration of this system with an information retrieval

component resulting in an information integration system should be considered at a

later stage. This would make the entire process truly automatic.

In conclusion, this thesis reports the creation of a new and efficient approach for

IE using probabilistic clustering which should prove beneficial for the purposes of

IE.

Bibliography

[1] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,

Accrue Software, San Jose, CA, 2002.

[2] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction system

for the world wide web. In Proceedings of the 2001 International Conference on

Distrubuted Computing Systems (ICDCS'Ol), pages 361-370, Phoenix, Arizona,

May 2001.

[3] Buy.com. Cell phones and service plans. http: //www .buy.com/retail/

wireless/product . asp?sku=&loc=12435&a&z=90066&s=22&p1&w=1, 2005.

[4] Michael Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Know-

itnow: Fast, scalable information extraction from the web. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing, 2005.

[5] Peter Cheeseman and John Stutz. Bayesian classification (autoclass): Theory

and results. In Advances in Knowledge Discovery and Data Mining, pages 153-

180. 1996.

[6] Fabio Ciravegna. Learning to tag for information extraction from text. In

Workshop Machine Learning for Information Extraction, European Conference

on Artifical Intelligence ECCAI, August 2000.

[7] Fabio Ciravegna, Alexiei Dingli, David Guthrie, and Yorick Wilks. Integrating

information to bootstrap information extraction from web sites. In Proceedings

86

87

of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-08), Au-

gust 9-10, 2003, Acapulco, Mexico, 2003.

[8] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: To-

wards automatic data extraction from large web sites. In Proceedings of 27th

International Conference on Very Large Data Bases,. pages 109-118, 2001.

[9] Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, and Paolo Missier. An

automatic data grabber for large web sites. In VLDB, pages 1321-1324, 2004.

[10] Line Eikvil. Information extraction from world wide web - a survey. Technical

Report 945, Norweigan Computing Center, 1999.

[11] Tina Eliassi-Rad and Jude Shavlik. Intelligent exploration of the web, chapter

Intelligent Web agents that learn to retrieve and extract information, pages

255-274. Physica-Verlag Gmbll, Heidelberg, Germany, Germany, 2003.

[12] David W. Embley, Douglas M. Campbell, Y. S. Jiang, Stephen W. Liddle,

Yiu-Kai Ng, Dallan Quass, and Randy D. Smith. Conceptual-model-based

data extraction from multiple-record web pages. Data Knowledge Engineering,

31(3):227-251, 1999.

[13] David W. Embley, Cui Tao, and Stephen W. Liddle. Automating the extraction

of data from html tables with unknown structure. Data €4 Knowledge Engineer-

ing, 54(1):3-28, 2005.

[14] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria

Popescu, Tal Shaked, Stephen Soderland, Daniel Weld, and Alexander Yates.

88

Web-scale information extraction in knowitall (preliminary results). In Proceed-

ings International WWW Conference, 2004.

[15] Aidan Finn and Nicholas Kushmerick. Multi-level boundary classification for

information extraction. In Proceedings of the European Conference on Machine

Learning, Pisa, 2004.

[16] Dayne Freitag. Information extraction from HTML: Application of a general

machine learning approach. In Proceedings of the Fifteenth Conference on Ar-

tificial Intelligence AAAI-98, pages 517-523, 1998.

[17] 0. Glickman and R. Jones. Examining machine learning for adaptable end-

to-end information extraction systems. In Workshop on Machine Learning for

Information Extraction, AAAI, 1999.

[18] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages.

In WWW '05: Special interest tracks and posters of the 14th international con-

ference on World Wide Web, pages 902-903, New York, NY, USA, 2005. ACM

Press.

[19] Robin Hanson, John Stutz, and Peter Cheeseman. Bayesian classification the-

ory. Technical Report FIA9O -12-7-01, NASA, 1991.

[20] Theodore W. Hong and Keith L. Clark. Using grammatical inference to auto-

mate information extraction from the Web. Lecture Notes in Computer Science,

2168, 2001.

[21] Yunhua Hu, Guomao Xin, Ruihua Song, Guoping Hu, Shuming Shi, Yunbo

89

Cao, and Hang Li. Title extraction from bodies of html documents and its

application to web page retrieval. In A CM-.SIGIR '05, 2005.

[22] A.K. Jam, M.N. Murty, and P.J. FLYNN. Data clustering: A review. ACM

Computing Surveys, 31:264-323, 1999.

[23] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-

Hall, 1988.

[24] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information

extraction, 1997.

[25] Nicholas Kushmerick. Gleaning the web. IEEE Intelligent Systems, 14(2):20-

22)1999.

[26] Martin Labsky and Vojtech Svatek. Information extraction from web product

catalogues. Working Paper, 2004.

[27] Martin Labsky, Vojtech Svatek, Pavel Praks, and Ondrej Svab. Information

extraction from html product catalogues: Coupling quantitative and knowledge-

based approaches. In Dagstuhl Seminar on Machine Learning for the Semantic

Web, 2005.

[28] A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira. A brief survey of web

data extraction tools. In SIGMOD Record, volume 31, June 2002.

[29] Ling Liu, Wei Han, David Buttler, Calton Pu, and Wei Tang. An xml-based

wrapper generator for web information extraction. In Proceedings ACM SIC-

MOD International Conference on Management of Data, 1999.

90

[30] Yimin Liu. Multi-objective genetic algorithms based approach to clustering

and its application to microarray data analysis. Master's thesis, University of

Calgary, 2004.

[31] MarathonGuide.com. Us marathons races directory and schedule. http: //www.

marathonguide.com/races/races.cfm,2005.

[32] David Masterson and Nicholas Kushmerick. Information extraction from multi-

document threads. In Proceedings Workshop on Adaptive Text Extraction and

Mining, pages 34-41, 2003.

[33] University of Calgary. Computer science and software engineering courses.

http: //www. cpsc .ucalgary.ca/Undergrads/Courses,2005.

[34] The Running Page. 1999 marathon schedule. http : //www. runningpage. com/

races/marathon. htm, 2000.

[35] Leonid Peshkin and Avi Pfefer. Bayesian information extraction network. In

Proceedings of the Eighteenth International Joint Conf. on Artificial Intelligence,

2003.

[36] Stephen Soderland. Learning information extraction rules for semi-structured

and free text. Machine Learning, 34(1-3):233-272, 1999.

[37] R. H. Turi. Clustering-Based Colour Image Segmentation. PhD thesis, Monash

University, Australia, 2001.

[38] Columbia University. Computer science at columbia university - fall

2004 courses. (http://www.cs.columbia.edu/education/courses/list?

91

yearterm=20043), 2005.

[39] Duke University. Computer science courses. http: I/cs. duke . edu/students/

courses, 2005.

[40] New York University. Computer science course list. http: I/cs . nyu. edu/webl

Academic/courses, 2005.

