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Chapter 1 

Introduction 

1.1 Motivation and Hypothesis 

"We're drowning in words", writes Kushmerick [25], referring to the terabytes of 

information that is available on the Web today. According to a 2005 study [18], 

there are 11.5 billion pages on the "indexable web" 1, and it is not just text that 

these pages contain. There are also images, and listings of various kinds. It is not 

hard to imagine, then, how the cliche information overload was born. 

It must be realized that the information on the Web is dynamic: it changes 

and increases continuously, so much so that the Web has been termed "the largest 

knowledge base" [8] in history to be developed and made accessible to the public. One 

must also remember the "hidden web" which is made up of documents generated by 

user queries to web databases. This leads us to the following questions. How much of 

this information is actually exploitable by us? Is it even remotely humanly possible 

to manually peruse through these billions of pages to extract the information that 

one is interested in? 

Currently, there are two ways of accessing this information: through manual 

browsing (i.e. following links to go from one web page to the other), and keyword 

searching. Both these techniques are problematic. Manual browsing involves a lot 

of human time and involvement; given the sheer amount of information on the Web, 

1lndexable web is that part of the World Wide Web which is considered for indexing by major 
search engines such as Google, MSN, and Yahoo! 

1 
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it is akin to finding the proverbial needle in the haystack. Keyword searching seems 

more promising at first since it takes care of part of the task, i.e., relevant documents 

are retrieved by the search engine. However, on the down side, one still has to go 

through these documents and glean relevant information manually. This involves the 

field of information extraction. 

Information extraction (IE) has been defined as the process of automatically 

"identifying a set of pre-defined relevant items" from documents [15]. These relevant 

items are extracted and may be used to populate a database so that a user may 

query this database at a later time to access the information of interest. In other 

words, given a document or a set of documents and an IE system, one aims to be 

able to extract all information of interest from it as automatically as possible. 

IE promises to be a sizeable augmentation to the search engines available today. 

When a user does a keyword search on an engine, a large number of documents may 

result whiáh might be very time consuming to sift through. An IE system can extract 

precisely the information a user wants from this set of documents, and provide the 

user with exactly the information that is required without the level of involvement 

that this task requires currently. 

In the last few years, there has been a lot of pioneering effort in the field of 

IE. Researchers have worked on extracting information from various kinds of text, 

employing different strategies for the actual extraction. Recently, machine learning 

techniques have been used to learn extraction rules in the IE process. Specifically, a 

few feature-based systems have been developed that view IE as a text classification 

problem, such as SRV [16], BIEN [35], and ELIE [15]. These systems deal with 

IE from documents containing semi-structured text and use a complex feature set. 



3 

These systems extract the information semi-automatically since they are based on 

supervised learning. There is a need to automate this process further to minimize 

the level of human involvement. 

In this thesis, the issue of automating the IE process by introducing clustering 

techniques is addressed, and a system called ClusTex is proposed. This approach 

concentrates on pages containing listings that are usually hand-coded in the Hyper-

Text Markup Language (HTML). This may be structured or semi-structured data. 

If we consider a specific domain such as Computer Science course listings, the ex-

amples of such data would be information related to courses such as course codes, 

course titles, instructors' names and so on. Generally, however, one may think of 

this data as any information related to the instances reported in the listings. 

One may question the validity of this research direction since XML is fast becom-

ing the standard for machine-readable web documents. However, there is still the 

presence of legacy data [8] to consider: in addition to the documents currently being 

written in HTML, there are also many HTML web documents present from the pre-

XML era from which we would like to extract information and populate databases 

automatically. 

1.2 Methodology 

In this thesis, IE is viewed as a clustering problem, i.e., given some information, we 

want to automatically infer the natural clusters in it rather than setting up classes 

first and then deciding if a particular item falls in a specific class. This is achieved 

by using clustering techniques to first separate raw data into applicable clusters 
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using information provided by a feature set defined for every text string or token in 

the page. These clusters are further refined by using patterns to cull out irrelevant 

information and re-classify tokens that were incorrectly clustered in the earlier step. 

The system ClusTex implements these ideas. 

Clustering is accomplished using AutoClass [5, 19] which implements probabilistic 

clustering. This system has been developed at NASA. 

1.3 Contribution 

The contribution of this thesis is to simplify the automation of IE from HTML 

web pages containing semi-structured data by using clustering techniques. To the 

best of my knowledge, clustering has not been previously used to extract data from 

documents. The feature set used in this system is much simpler than the one used by 

the existing systems described in the literature. Furthermore, ClusTex requires very 

little pre-processing as compared to the existing approaches mentioned above, but 

gives comparable results. Three algorithms are proposed for file parsing, extraction 

rule estimation, and cluster refinement, respectively. 

1.4 Organization of Thesis 

The balance of this thesis is organized as follows. Following this Introduction, Chap-

ter 2 (Background Information) defines some basic terms and acts as a primer on IE 

and clustering. In the first half of the chapter, the concept of IE is explained. Differ-

ent types of text from which IE takes place are explored, and a simple introduction 

to wrappers and wrapper generation is presented. The second half of Chapter 2 goes 
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over the concept of clustering, how clustering and classification differ, and various 

commonly used clustering techniques. 

Chapter 3 (Related Work) briefly describes relevant research in the IE area. 

This work is classified into two groups. The first group includes research work that 

concentrate on IE from HTML documents. The second group includes work that 

considers IE as a text classification problem. 

Chapter 4 proposes ClusTex, a novel approach for IE that uses clustering to ex-

tract information from semi-structured data in HTML pages. The assumptions are 

stated after the problem definition. The proposed process consists of four stages: 

data preparation, clustering, estimation of the extraction rule, and refinement. Each 

stage is described in the chapter. A simplistic example is used to explain the ap-

proach. 

Chapter 5 contains the results of test runs on web documents. In this chapter, 

the various characteristics of the testing environment and definitions of the evalu-

ation metrics, specifically, precision, recall, and the Fl value are stated. Details of 

experiments on seven web pages are presented, and results are compared with those 

reported in relevant works. 

Chapter 6 concludes this thesis. The advantages and disadvantages of this ap-

proach and its differences from other existing methods are discussed. Future research 

directions are also suggested. 



Chapter 2 

Background Information 

This chapter presents a primer on the major topics which form the basis of my 

proposed approach. In the first section, information extraction, its definition, and 

some other relevant concepts such as various types of text that can be extracted, 

wrappers and wrapper generation are discussed. In the second section, the basic 

ideas behind clustering and various clustering techniques are presented. 

2.1 Information Extraction 

2.1.1 What is Information Extraction? 

Information extraction (IE) has been defined by Glickman et al. [17] as "a process 

that takes unseen texts as input and produces fixed-format data as output". In other 

words, the goal of IE is to transform text into a structured format so as to reduce 

the information in a document to a tabular structure [10]. 

IE helps us format documents containing bits of structured text along with irrele-

vant material into a "database-like representation" [32]. One can use this information 

for analysis at a later stage through techniques such as data mining for discovery of 

patterns in the data. 

LB is useful for all kinds of documents from which we would want to extract data 

including web documents. An IE system enables users to gather all the relevant 

information that maybe strewn about in various sources and integrate it into one 

6 
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structured form. 

2.1.2 Types of text for extraction 

Information extraction can be performed on free, structured, or semi-structured text. 

These terms are defined as follows. 

Three Text 

This is usually natural language text [36], for example, news articles and research 

paper abstracts. One would want to extract the important information from these 

sources. This is most commonly done using natural language processing (NLP) tech-

niques, and the extraction rules are based on patterns involving syntactic relations 

between words or semantic classes of words. 

Structured Text 

Structured text is defined [10] as textual information in a database or a document 

following a predefined and strict format. Usually the information can be easily 

extracted using the format description if the format is known. Otherwise the format 

must be learned. 

Semi-structured Text 

It is the intermediate point between free text and structured tuples of data [36]. It 

maybe ungrammatical and does not follow any rigid format. It is often telegraphic 

in style, i.e., uses abbreviations of words. NLP techniques cannot be used very 

successfully to extract data from these documents because those are better suited 

for grammatical text. On the other hand, some researchers have tried to use machine 
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learning techniques for IE from semi-structured data. In the next chapter, I present 

the relevant research in this area. 

2.1.3 Information Extraction vs. Information Retrieval 

One commonly reads the terms information extraction and information retrieval (IR) 

mentioned in the same breath. This can make one wonder if the two concepts are 

the same. In principle, IE is different from IR both in aims and objectives and the 

methods used to achieve those aims [11, 10]. 

The objective of IR is to select a subset from a larger collection of documents 

based on a query. In contrast, the goal of IE is to extract relevant information from 

documents. 

Despite the two technologies being inverses of each other, it should be realized 

that they are complementary, and, can be combined to form powerful information 

integration systems [4, 14]. An example of the complementary nature of IE and 

IR is a work done by Hu et al. [21] in which the titles extracted from web docu-

ments are used in picking relevant documents during the retrieval stage. The needed 

information is then extracted from the retrieved documents. 

2.1.4 Web Documents 

Since the advent of the Web and Internet, researchers have shown an interest in 

the vast information source that the Web is. The terabytes of information available 

on the Web maybe in the form of free, structured, or semi-structured documents. 

Researchers have different opinions on what information to categorize as structured 

and what to categorize as semi-structured. However, Eikvil [10] gives a better cate-
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gorization of types of web pages, which is as follows. 

• A web page is structured if each attribute in a tuple can be correctly extracted 

based on some uniform syntactic clues, such as delimiters or the orders of 

attributes. 

• A web page is semi-structured if it contains tuples with missing attributes, 

attributes with multiple values, variant attribute presentations, and exceptions. 

• A web page is free text if linguistic knowledge is required to extract the at-

tributes correctly. 

Usually machine generated web pages are structured and human generated web 

pages have less of a structure. However, there are always exceptions. 

2.1.5 Wrappers and Wrapper Generation 

According to a recent study [18], there are billions of documents available on the 

Web. These documents can be found either by manual browsing or keyword searching 

using a search engine. However, as was mentioned earlier, these techniques are time-

consuming, inconvenient, and too dependent on human users. Furthermore, there 

is also an increase of information in the so-called "hidden web". This is the name 

given to web pages generated dynamically from databases based on user requests. 

These pages cannot be reached through search engines, and require certain tools to 

extract information from them. Wrappers fulfill this need. 

Wrappers [10] are programs or procedures designed for extracting content of a 

particular source and delivering the content of interest in a self-descriptive represen-
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tation. In other words, a wrapper is a software component that converts data and 

queries from one model to another. 

An ideal wrapper for an information source on the Internet accepts queries from 

users about the content of the source, pulls out relevant pages from this source, gets 

the requested information, and returns the result. Formally, it is a "function from a 

page to the set of tuples it contains" [24]. 

Laender et al. [28] states the problem of generating a wrapper for Web data 

extraction in the following words. 

Given a web page S containing a set of implicit objects, determine a 

mapping W that populate a data repository R with the objects in S. 

The mapping W must also be capable of recognizing and extracting data 

from any other page 5' similar to S. 

Thus, a wrapper is a program that executes the mapping W. Wrappers maybe 

hand generated or made through the semi-automatic or automatic approach. 

Manually generated wrappers 

For obvious reasons, manually generated wrappers are time-consuming because they 

require manually encoded dictionaries of vocabulary. These also require domain-

specific extraction rules and patterns which are not easily portable. Writing one 

requires a deep understanding of the domain on the part of the developer. Similarly, 

new sources appear frequently and the format of existing sources may change. Thus, 

to keep up with these challenges, it is imperative that technology aids the construc-

tion of wrappers. According to Laender et al. [28], tools like Minerva, TSIMMIS, 

and Web-OQL are used for generating wrappers manually. 
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Semi-automatically generated wrappers 

For semi-automatic wrapper generation, the developer uses support tools to help 

design the wrapper. For instance, the user could show the system an example of 

the information to be extracted using a graphical interface. This approach has many 

advantages. It is less tedious, requires lesser domain knowledge for the developer than 

for manually generated wrappers, and is less error prone also. However, the system 

needs to be shown the information to be extracted for every new site because the 

system cannot induce the structure of the site itself. Tools based on NLP, wrapper 

induction, and modeling are usually semi-automatic [28]. Examples are SRV [16] 

and J3IEN [35]. 

Automatically generated wrappers 

Automatic wrapper generation uses machine learning algorithms. However, it is not 

completely automatic either. These systems need a little intervention from human 

experts during the training phase where the system is fed training examples. The 

eventual accuracy of the wrapper generation system depends on the number and 

quality of these examples. Examples of systems generating wrappers automatically 

are RoadRunner [8] and WO [28]. 

2.1.6 Desirable Features in a Wrapper 

According to Laender et al. [28], an IE system should possess a few desirable features. 

These features are as follows. 

1. Degree of Automation : An important feature of a data extraction system is 

its degree of automation: the amount of work a user has to do while generating 
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a wrapper for data extraction. 

2. Support of objects with a complex structure: Most of the data available on the 

Internet has a complex structure. This structure is usually vague and presents 

degrees of variation that are typical of semi-structured data. In other instances, 

web data maybe organized in hierarchies with multiple nesting levels. Thus, 

it is imperative that a good data extraction system be able to deal with these 

complex objects. 

3. Page contents Page content maybe of two kinds: semi-structured data and 

semi-structured text. Pages of the first kind feature data items implicitly for-

matted to be recognized individually. According to Hong and Clark [20], this 

is fielded data unconstrained by a global schema. Pages of the second kind 

have free text from which data items can be inferred. It needs to be decided 

whether a data extraction system will deal with either or both these types. 

4. Availability of a Graphical User Interface: This is one of the most important 

features of a data extraction system. Traditionally this has been accomplished 

by writing code using some general-purpose language. 

5. XML output: Since XML is fast becoming a standard for data representation 

and exchange on the Internet, thus an important feature for a data extraction 

system would be the ability to provide its output in XML. XWrap [29] and 

Lixto [7] are two such systems that extract information from HTML pages and 

convert it into XML. 

6. Support for non-HTML sources : Not all data on the Internet is available in 



13 

HTML files. For example, there is a lot of data in text files. It is very important 

for a data extraction system to be able to handle such data sources. 

7. Resilience and adaptiveness: To deal with the constantly changing structural 

and presentation features of web pages, a wrapper needs to be resilient. A 

wrapper built for pages of a specific web source on a given application domain 

should be able to work properly with pages from another source in the same 

application domain, i.e., a wrapper should be adaptive. 

2.2 Clustering 

2.2.1 What is Clustering? 

Clustering is a partitioning of a data set into subsets or clusters. Each cluster 

contains data that are similar to the data in the same cluster and dissimilar to those 

in the other clusters. In other words, clustering divides data into groups of similar 

items [22]. 

According to Berkhin [1], "from a machine learning perspective clusters corre-

spond to hidden patterns, the search for clusters is unsupervised learning, and the 

resulting system represents a data concept". 

Clustering for data mining works best on large data sets with numerous attributes 

of various types. An example of clustering [22] is shown in Figure 2.1. Figure 2.1(a) 

shows the input data and the cluster output is shown in Figure 2.1(b). 

2.2.2 Formal Definition and Notations 

Jain et al. [22] defines clustering and related concepts as follows. 
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Figure 2.1: Data Clustering [22] 
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A data set X containing N data points (hitherto referred to as data instances) is 

denoted X = {x1,.. . ,XN}. 

A data instance is usually represented by a multidimensional vector of dimension 

d such that xi = (x 1, . . . , xci). The d scalar components of x1 are called its attributes. 

The data set X is viewed as an N x d matrix by the clustering algorithm. 

Clustering aims to assign the N data instances to a finite system of 1 clusters 

such that X = C1 . . . C. Hard clustering techniques assign each data instance to 

exactly one cluster. Fuzzy clustering techniques, on the other hand, give to each 

data instance xi a fractional degree of membership, fjj, to each cluster C. 

2.2.3 Clustering Versus Classification 

Classification and clustering are very similar terms and, in certain cases, are used 

interchangeably. However, there are key differences between the two techniques 

which should be pointed out. The two vary greatly in terms of the methodology 

they use. 

Classification is the partition of the data set into subsets which have been already 

defined. In case of supervised classification, the data analyst has already labeled 

or classified some examples. These examples are then used to deduce the class 

properties. When an unlabeled example is encountered, these class properties are 

used to classify this new example into one of the already existing classes. 

On the other hand, clustering partitions the data instances, which are a collection 

of unlabeled or unclassified examples, into clusters. This is done by a clustering 

algorithm which uses information provided solely by the data instances. 

Thus, classification is usually taken to mean supervised classification, while clus-
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tering is unsupervised classification [22]. According to Liu [30], the biggest disad-

vantage of supervised classification methods is that they are limited in their capacity 

to test hypotheses. They can help or reject the hypothesis but are unable to un-

cover any unexpected information and do not lead to a new hypothesis. In contrast, 

unsupervised methods are able to mine through the data and reveal unexpected 

results. 

Clustering is considered to be a special case of classification. Jain et al. [23] 

suggests a "tree of classification problems" as shown in Figure 2.2. Each node of the 

tree shows different types of classification problems. 

Classification 

/\ 
Non-exclusive 
(Overlapping) 

Exclusive 

Extriiisic 
(Supervised) 

/\  
Intrinsic 

(Unsupervised) 

Hierarchical 

/\ 
Partitiojial 

Figure 2.2: Hierarchy of Classification Techniques [23] 

The terms in Figure 2.2 are defined by Jain et al. [23] as follows. Exclusive classi-

fication partitions data so that each instance belongs to one class only. Non-exclusive 

classification lets instances belong to several classes. Extrinsic classification uses cat-
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egory labels in addition to the data itself to classify items, and thus, is supervised. 

Intrinsic classification uses only unlabeled data and is also called unsupervised learn-

ing (i.e., clustering). The terms hierarchical and partitional are described in detail 

as follows. 

2.2.4 Clustering Techniques 

Berkhin [1] categorizes the various clustering techniques as follows. 

Hierarchical Clustering 

Hierarchical clustering transforms the data instances into a "sequence of nested par-

titions" [23], which can be visualized as a tree of clusters known as a dendogram. 

Once a data instance is assigned to a cluster, it cannot be moved. 

Hierarchical clustering algorithms are usually categorized as follows [22]. 

1. Agglomerative algorithms use bottom-up clustering, i.e., they begin with each 

data instance in singleton clusters, and merge clusters until a stopping condi-

tion is fulfilled. 

2. Divisive algorithms use top-down clustering, starting with all data instances in 

a single cluster, and successively splitting the cluster into smaller ones until a 

stopping condition is fulfilled. 

Hierarchical clustering methods aid in constructing taxonomies, and for this rea-

son, are generally used in biological, social and behavioral research [23]. 
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Partitional Methods 

As opposed to hierarchical methods, partitional methods help in discovering natural 

groups in the data by generating a single partition [23]. Partitional methods "learn" 

clusters directly as opposed to hierarchical methods which "grow" clusters slowly. 

Berkhin [1] suggests the following types of partitional methods. 

1. Partitioning relocation methods find clusters by assigning the instances to clus-

ters first and then iteratively relocating them between clusters. 

2. Density-based partitioning methods "identify clusters as areas highly populated 

with data". 

Partitioning Relocation Methods 

Partitioning relocation methods have an edge over hierarchical clustering because 

there is no restriction on the reassignment of an already-assigned data instance to 

another cluster if it improves the clustering [37]. Checking all possible permutations 

of data assignment to clusters is infeasible, so greedy heuristics are used for iteratively 

reassigning data instances between clusters. Berkhin [1] suggests the following types 

of partitioning relocation methods. 

1. Probabilistic methods: These methods identify the clusters with certain mod-

els with parameters that are unknown and tht need to be found. Hence, the 

data is assumed to be an independently drawn sample from "a mixture model 

of several distributions". An example of this method is the algorithm Auto-

Class [5, 19] that I also use in this thesis. It is based on a mixture model as 

well and covers various distributions such as Bernoulli, Poisson, Gaussian, and 

Log-normal distributions. More detail about AutoClass follows in Chapter 4. 
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2. K-Means methods: These are a popular tool used in the scientific and the 

industrial communities. The name arises from the fact that, in this approach, 

each cluster C is represented by the mean or weighted average c of its members 

instances. The sum of differences between data instances of a cluster and their 

mean is used as an objective function. Thus, this approach does not work well 

with categorical data, However, it is well-suited to numerical data. 

3. K-Medoids methods: In these methods, a cluster is represented by one of its 

member instances, called the medoid. After the selection of medoids, clusters 

are presented as subsets of data instances close to a particular medoid. The 

objective function is defined as a dissimilarity measure between a cluster mem-

ber and its respective medoid. Unlike the K-means methods, the K-medoid 

methods deal well with both categorical and numerical data. Furthermore, 

outliers do not affect the medoids so these have an "embedded resistance" 

against outliers [1]. 

Density-Based Partitioning Methods 

According to Jain et al. [23], clusters can be imagined as regions of data instance 

space in which instances are dense, i.e., occur frequently. Areas in which instances oc-

cur sparsely separate these regions of high density. Thus, the problem of finding clus-

ters is reduced to finding regions of high density in the instance space. Berkhin [1], 

on the other hand, defines a cluster as a "connected dense component". Clusters can 

grow wherever density leads. A cluster is not limited to a specific shape, and can 

acquire any arbitrary shape. 
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Other Clustering Techniques 

In recent years, many other techniques have been developed for clustering data of 

various kinds. These include grid-based techniques, co-occurrence of categorical 

data, constraint-based clustering (such as evolutionary methods), clustering of high-

dimensional data, and scalability and VLDB (Very Large DataBase) extensions. It 

is out of the scope of this treatise to go into the details of these methods. One can 

refer to an excellent overview of these techniques in Berkhin N. 



Chapter 3 

Related Work 

The field of IE has seen active research in the last decade. Many researchers have 

worked on finding efficient IE strategies for semi-structured information from web 

pages. In this chapter relevant work is briefly reviewed. 

In Section 3.1, I discuss approaches that work on HTML pages exclusively. In 

Section 3.2, I review systems that view IE as a text classification problem and work 

on general text files that may or may not be coded in HTML. 

3.1 Systems dealing with HTML pages 

Since a lot of web data is found in HTML pages, there has been much effort in IE 

from such pages. This section reviews some work in the area of IE from HTML 

pages. 

Buttler et al. [2] model a web document as a "tag tree" in which the internal nodes 

are HTML or XML tags and the text forms the leaf nodes. The extraction process 

requires fetching a web document, cleaning it up using a syntactic normalization 

algorithm, and then locating "objects of interest" in this web page. This is done by 

first locating the minimal object-rich subtree (i.e., the smallest subtree that contains 

all objects of interest). To separate objects from each other and other information 

in the page, the correct object separator tag is discovered using heuristics. Using 

this separator tag, the objects of interest are discovered. Finally, the set of objects 
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is refined to eliminate irrelevant objects. 

Crescenzi et at. [9] present a system to automatically extract data from large 

data-intensive web sites 1. Their "data grabber" explores a large web site and in-

fers a model for it, describing it as a directed graph with nodes describing classes 

of structurally similar pages and arcs representing links between these pages. Af-

ter pinpointing classes of interest, a library of wrappers can be generated, one per 

class with the help of an external wrapper generator and appropriate data can be 

extracted. 

It is simple for a human to find a table of interest in an HTML document, 

parse it and then determine its meaning, but having an algorithm accomplish these 

tasks is much harder. Embley et at. [13] propose an approach to automatically 

extract information from HTML tables. Tables of interest are located in a web 

page and information extracted from them in a step-wise manner. As the first 

step, an extraction ontology is formulated. An extraction ontology is a "conceptual-

model instance" that serves as a wrapper for a narrow domain of interest [12] . A 

table is located based on recognizing expected attribute names and values from the 

ontology. Then attribute-value pairs are formed and adjusted so that they are more 

meaningful. In the fourth step, the extraction patterns are analyzed to refine the 

extracted information further. Finally, given the input from the earlier four steps, a 

mapping can be inferred from the source to the target. 

Another relevant approach is the RoadRunner [8]. It extracts information from 

data-intensive websites in which pages are automatically generated by scripts that 

'These are the sites in which data is scattered in a large number of structurally similar HTML 
documents. 
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fetch data from a back-end database management system. These pages are presented 

in a structured format representing tuples from the database. RoadRunner compares 

two of these similarly organized pages to infer their common structure and a wrapper. 

This wrapper is used to extract information from all similar pages. RoadRunner does 

not assume any a-priori knowledge about the structure or the contents of an HTML 

page. The advantage of this approach is that it is automatic, and can deal with 

nested objects. However, the disadvantage is that it requires two pages to be able 

to infer the structure. If this same information was on one page, RoadRunner would 

not be able to extract the data from it. Furthermore, it cannot extract from web 

sites in which attributes appear in various orders. 

Labsky et at. [27, 26] attempts IE from web product catalogues using Hidden 

Markov Models (HMMs) as a step towards building a domain-specific "semantic 

search engine" which can answer queries about different product attributes, such 

as names, prices, etc. In this approach, each token from a document is assigned a 

semantic tag by an HMM tagger. The advantage of this approach is that it extracts 

images as well as text. However, it requires manually annotating training examples. 

3.2 Systems solving JE as a classification problem 

Many researchers have solved IE as a text classification problem. This section reviews 

some important work in this domain. 

The Sequence Rules with Validation (SRV) [16] is a top-down relational algorithm 

for information extraction from semi-structured pages. Generally IE involves multi-

ple sub-tasks including, but not limited to, syntactic and semantic preprocessing and 
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slot-filling. SRV considers only the slot-filling aspect and views IE as a classification 

problem where all possible tokens from the text are considered as possible slot fillers. 

Input to SRV is a set of documents with field instances already labeled for extraction 

and a set of features defined over tokens present in the pages. The output is a set 

of extraction rules. SRV is comprised of three classifiers of tokens, the first being a 

look-up table containing all correct slot-fillers found in the training set. The second 

classifier calculates the probability of being a correct slot-filler for each token. The 

third classifier makes use of constraints obtained by rule induction over predicates 

like token length, capitalization, and semantic and relational features. 

Peshkin et al. [35] also view IE as a text classification problem and use Dynamic 

Bayesian Networks to automatically extract information from semi-structured doc-

uments. The authors show how to combine various aspects of a language in one 

probabilistic model to build a robust IE system. The first step in the extraction is 

tokenization, the token being the smallest part of text which is treated as an entity 

in later steps. The features used for each token are its lemma (i.e. the root word 

for an inflected form), Part-Of-Speech information, capitalization and length, and 

semantic and orthographic features. 

Eliassi-Rad et al. [11] describe intelligent agents that retrieve documents from the 

Web and extract relevant information from these documents. Their system called 

Wisconsin Adaptive Web Agent (WAWA) is able to build an intelligent agent for 

information retrieval and extraction after interacting with the user and the Internet. 

The system has two sub-systems, one for information retrieval and the other for 

information extraction. 

The system WHISK [36] is able to handle structured, semi-structured, and free 



25 

text documents. It uses supervised learning to learn extraction rules from hand-

tagged training examples. The human expert is presented with examples that fall 

near decision boundaries rather than any arbitrary examples. Thus the learning of 

rules and the tagging of training examples is alternated to minimize the amount of 

human involvement while at the same time maximizing its benefits. WHISK repeats 

this process to further refine the rules as new examples are encountered. 

Kushmeric et al. [15] propose the ELIE algorithm. This approach also treats 

IE as a classification problem. Each token is described by a set of features including 

the token itself, the part-of-speech of the token, the values associated with the token 

in a gazetteer, and orthographic information. Furthermore, relational information 

is encoded as additional features, and thus, simulates relational learning. ELIE 

classifies tokens in two phases, Li and L2. In Li, ELIE learns start and end of 

instances to be extracted from the set of training examples labeled either as a positive 

or negative example of a start or end tag. Two classifiers are used for this purpose, 

one for start tags and the other for end tags. During Li, some instances might be 

partially extracted, i.e., either the start or the end of the fragment might be extracted 

but not both. During the L2 phase, the system is trained to find the end given the 

beginning, or the beginning given the end. 

The system Pinocchio [6] uses hybrid relational learning techniques for IE and 

has shown promising results. The input to the system is a collection of texts that 

have been preprocessed with a POS tagger. Pinocchio produces as output the text 

augmented with SGML tags which point out the locations from which information 

has been extracted, and a summary of the text content in the shape of a set of 

templates. The system uses a sequential covering algorithm. A unique property of 
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Pinocchio is that it does not attempt to learn the extraction rule for an entire slot. 

On the contrary, it recognizes the left delimiters separately from the right ones. The 

process of TE is three-fold. In the first phase, the best rule pool is induced using 

a bottom-up approach. In the second phase, more extraction rules are refined and 

added to the best rule pool to increase the recall. The final phase sees the correction 

rules being learned. This system can also be used to learn multiple extraction slots. 

All these systems show comparable performance. However, their drawback is the 

annotation of training examples and user involvement even after the training phase. 

Thus, in this thesis, ClusTex is presented which does not require training examples. 

The next chapter describes the ClusTex model and its implementation in detail. 



Chapter 4 

ClusTex: The Idea and its Implementation 

This chapter proposes a novel approach, ClusTex, that involves clustering to perform 

IE from HTML documents. IE has been traditionally viewed as a text classification 

problem. However, this thesis views it as a clustering problem. This chapter begins 

with the problem statement and assumptions. After that, the process that this 

approach uses is explained, i.e., starting from data preparation to clustering and the 

estimation of an extraction rule, and finally refinement of these clusters. 

4.1 Problem Statement 

As stated earlier, there are billions of documents on the Web from which we want 

to automatically extract information. There are various kinds of documents avail-

able: HTML files, XML files, various types of text documents, etc. In this thesis I 

concentrate on those HTML documents on the Web that contain a listing of some 

sort. This is semi-structured data because this information does not always follow 

the same format and may contain missing or multiple tuple values. Thus, formally, 

this model is used to solve the following problem: 

Given a web page in HTML format containing a listing of semi-structured data, 

extract the information contained in the listing and consolidate the information per-

taining to each individual listing. 
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4.2 Assumptions 

To solve this problem, we first need to specify what sort of web pages this approach 

works on. In this section, I specify the requirements that a web page should fulfill 

for this approach to work. Generally, these requirement are on the type of the web 

page and the format of values that need to be extracted. Specifically, the web page 

containing the listings must fulfill the following criteria. 

1. The web page must be written in HTML. 

2. The document must be "well-formed" [2], i.e., it should show the following 

characteristics: 

• Text which is not a tag should not have either opening or closing brackets 

or ">"). Conversely, there should be no tags without opening and 

closing brackets. 

• All tags that usually occur in pairs, such as <title> and <\title>, must 

have matching starting and ending tags. 

• All nesting tags should be nested properly such as, <td><b><\b><\td>. 

However, if the document has imperfect structure, it may be easy to fix using 

a utility such as HTML Tidy. 

3. All strings of text representing the tuple values must be separated by HTML 

tags. 

4. If the information is listed in 'a table, the majority of values listed in each col-

umn must be in a similar format. For example, in the Computer Science course 
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listings domain, course codes usually have the same format for all courses, i.e., 

capital letters followed by numbers. 

5. The values in different columns should have different formats so that they may 

be recognized that distinct from each other by the clustering algoritm. 

6. The values should follow the same pattern in the page. 

4.3 ClusTex - The Basic Idea 

ClusTex is devised to perform IE from HTML documents containing semi-structured 

data using a clustering technique. It is a four-fold process which starts with data 

preparation. The data is then clustered, an extraction rule is estimated and clusters 

are refined using this rule. Finally, the data instances discovered in the data are 

reported. 

Figure 4.1 shows an overview of this system. For three of the four stages, new 

algorithms are developed. These are as follows. 

1. Algorithm: ParseHTML -. To parse the HTML document and tokenize data 

2. Algorithm: RulExt - To discover the extraction rule 

3. Algorithm: Refine - To refine clusters and format final output 

These algorithms are explained further in the next few sections. The clustering 

uses AutoClass [5, 19]. In the interest of completeness, details about AutoClass 

follow in the section on clustering. 
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Raw Clusters 

Algorithm RulExt 

PAT extracted 

Algorithm Refine 

Refined Clusters 

Figure 4.1: Overview of the proposed system 
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4.3.1 Implementation 

ClusTex is implemented using Perl. Arrays were used to store text tokens and 

patterns. Each algorithm described above saved its output to a file, which was used 

by the next algorithm as its input. 

4.4 Stages of Extraction 

ClusTex has four stages of extraction as illustrated in Figure 4.1. In this section, 

these four stages are described. 

1. Data preparation: In the first stage, data is prepared for clustering through 

tokenization and assignment of attribute values. 

2. Clustering: In the second stage, the data tokens are separated into clusters 

based on their similarity to each other. 

3. Estimation of the Extraction Rule: The third stage consists of the esti-

mation of an extraction rule. 

4. Refinement: The clusters are refined using the extraction rule in the fourth 

and final stage. 

4.4.1 Stage 1: Data Preparation - Extracting Tokens and Assigning At-

tributes 

As the first step in the process, the web document is parsed to extract all strings of 

text occurring between two HTML tags (hitherto known as tokens) and HTML tags 

that occur within the periphery of each token. These tokens are the instances of data 
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which are "represented as ordered vectors of attribute values" [5]. Each attribute 

is the measurement of some property common to all data instances. For example, 

an attribute can be the presence or absence of an HTML tag in a token's range. 

These are the htmlAttributes. A second kind of attribute is defined on the format 

of a token, such as the presence or absence of an exclusively numeric token, or the 

presence or absence of punctuation, etc. These are termed orthographic features. 

Instead of having simplistic attributes of the second kind (specified above), we 

can have a combination of these simplistic attributes to suit our needs and the nature 

of the items in a particular domain. These are the combiAttributes. 

Taking the example of the Computer Science course listings domain, we see that 

various course attributes usually have a predictable format. Course codes usually 

have more than one capital letters followed by more than one numbers. So an 

attribute can be defined as whether a string does or does not start with one or 

more capital letters followed by more than one number. Course titles are generally 

comprised of more than eight letters and do not contain numbers. The attribute 

defined to account for this can be defined as the presence or absence in a string of 

the following properties: 

• a length greater than eight 

• starting with a capital letter followed by a mix of upper and lower case letters 

• not containing any numbers 

If a token has all these properties, a "1" will be assigned to this attribute, otherwise, 

a "0" will be assigned instead. 
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Table 4.1: Types of Attributes in the Course Listings Domain 
htmlAttributes CombiAttributes 

IsTitle IsCCode 
IsBR IsCTit1e 
IsA IsProfName 

IsInTable IsGrade 
IsTD IsLocation 

Table 4.1 gives some examples of these htmlAttributes and combiAttributes. 

The algorithm ParseHTML is used at this stage (see Figure 4.2 for an abstract 

view of this algorithm). The following discussion gives a brief overview of how this 

algorithm works. 

The input to ParseHTML is the web page that we want to extract information 

from, while the output is a .db2 file ready for clustering. ParseHTML reads all 

characters from the input file. Then it parses through the characters one by one. If 

a character is "<", it signifies that this is the beginning of a tag. Thus, the algorithm 

starts saving this character and the ones after it as an HTML tag. When a ">" is 

encountered, it signifies the end of the tag. At this point, the completed tag is saved 

into an array of tokens, Tok, and ParseHTML starts building a new text string (as 

opposed to a tag). All characters until the next "<" are saved as a string, and then it 

starts building a tag again. Once all tags and text are saved, ClusTex goes through 

this array once again. If a token from this array is a tag, it is checked against a list 

of tags. For each tag in that list, if there is a match, its presence is marked as a "1", 

otherwise its absence is marked by a "1". This generates HTMLattributes for the 

next text token in line. If the token is not a tag, the orthographic features are checked 

and combined to form CombiAtributes for the token. This process is repeated for 
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Algorithm: ParseHTHL 

Input: HTML file 
Output: File containing tokenized text and assigned attributes for each 

token 

Begin 
Jhile input file is not empty 

Read character ch from input file 
Save into char array 
nu char = location of last character in char array 

for 10 to nuni char 
Read oh at char array[i] 

If (eh='<') / This must be the start of an HTML tag 
Start making a string for HTML tag 

Else if (ch'>') /* This must be the end of a tag 

Complete and save tag in array Tok 
nunitok=location of last token in Tok 
Hake an empty string to store text token. 

Else 
Save oh in tag or text string. 

If oh at char _array[i+1] is '<' 

Save text string in array Tokens 
nunitok=looation of last token in Tok 

For j0 to nuni_tok 
If token at Tok[j] is a tag 

Check token against list of tags and assign 0 for 
absence and 1 for presence for the next text token in 

designated place in array Table 
Else if token at Tok[j] is not a tag i.e. is text 

Check orthographic information and assign 0 or 1 for 
cjonbiAttributas 

Save token at Table[j] [0] 
Output Table into filenanie.db2 

End ParseHTML 

Figure 4.2: Algorithm ParseHTML: Parses HTML documents and tokenizes text 
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each token from the page. Finally, the tokens are listed with their attributes in the 

output file, ready to be clustered. 

4.4.2 Stage 2: Clustering 

A listings web page may have many kinds of tokens, but all of them might not 

be related to the listings themselves. For example, there may be an introductory 

paragraph, or contact information with a telephone number and an address at the 

end of the page which is unrelated to the listing itself. Furthermore, if a listing 

consists of multiple pages, these pages usually follow the same format with a side 

bar constantly displaying some standard links. We want to separate this information 

from the listing itself which we are interested in extracting. 

A clustering software such as AutoClass aids us in attaining such an end. A good 

clustering separates all tokens from a page into different clusters, similar tokens 

falling into the same cluster: If the attributes are assigned correctly, most tokens 

describing the same thing will fall in one cluster, while most irrelevant tokens will 

fall in other clusters. Taking the example of the course listings domain, most course 

codes should fall in one cluster, most course titles will fall in another, and similarly 

for all the other values for each course attribute. 

Clustering Model used by AutoClass 

AutoClass [5, 19] is an example of the partitioning relocation clustering method 

that was discussed in Chapter 2. AutoClass, as an approach to unsupervised clas-

sification (clustering), is based on the classical mixture model and uses a Bayesian 

method which involves the discovery of optimal classes or clusters given the data and 
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prior expectations. Instead of generating class descriptions from labeled examples, 

AutoClass deals with the problem of discovery of "natural" clusters in the data. 

AutoClass works on data which can be represented as an ordered vector of at-

tribute values. Attributes represent measurements of properties common to all data 

instances. These measurements can be discrete values (such as "true" or "false"), 

integer values, or real numbers. AutoClass does not deal with relational data, i.e. 

attributes which relate one data instance to another. 

4.4.3 Stage 3: Discovery of Extraction Rules 

Although clustering separates most of the information to be extracted, some tokens 

might fall in clusters where they do not belong due to their different format. For 

example, a concise course title such as UNIX might fall in the cluster for course 

codes, a professor's name might fall into the cluster for course titles, etc. Thus, after 

the tokens have been clustered, the clusters need to be refined. 

We also need to find the order of these extracted values, i.e., the course code, 

title, and professor's name that belong together. In other words, we need to discover 

the extraction rules to answer this question: Which token fills which slot? 

I use patterns of cluster numbers to represent extraction rules. The term patterns 

is taken to mean various concepts in the literature. I define this and other relevant 

terms below to tie them to the specific context of this thesis. 

Definition 1: Pattern: A pattern of size n is a sequence of n numbers. 

Definition 2: Invalid Pattern: A pattern is considered invalid if a number occurs 

more than once in it. 

Definition 3: Valid Pattern: A pattern is considered valid if all numbers in it 
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occur once only. 

My contention is that since the listing is semi-structured data, i.e., most courses 

have the same attributes listed, and these values are usually in a similar format, the 

tokens should follow a certain sequence in the document. If the tokens themselves 

are replaced by the number of the cluster in which they occur, we are left with a 

list of cluster numbers in the order of the occurrence of tokens. We then look for 

a pattern that recurs many times in this list of cluster numbers. The algorithm 

that has been developed to achieve this end is RulExt and an abstract view of this 

algorithm is shown in Figure 4.3. The following paragraphs give a brief overview of 

this algorithm. 

The input for RulExt is a file containing the cluster numbers of tokens in the 

order of occurrence of the tokens. RulExt outputs PAT, the estimated extraction 

rule which tells ClusTex how to related different tokens to each other. 

RulExt starts with a higher than expected pattern size, Pg. Until there are more 

numbers in the input file, ClusTex makes a pattern PT of size PS by reading cluster 

numbers one by one from the input file. If a cluster number occurs more than once 

in the pattern, it is rendered invalid. The first number in PT is then discarded and 

the next number from the file is added to PT. If PT is valid, it is saved into an array 

of patterns, PTarray, if it is not already there. The next step is to find matches 

for PT in the rest of the data list. RulExt makes a TEST pattern from Ps cluster 

numbers occurring after the occurrence of PT, and compares PT to TEST. If they 

match, TEST is deleted and is assembled again from P5 numbers occurring after 

the earlier pattern that was designated TEST. If, however, there is a mismatch, 

not only is TEST deleted, but the first character in PT is also deleted and the first 
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Algorithm: RulExt 
Input: File containing cluster number listing for tokens 

Output: PAT - estimated extraction rule 
Begin 

PT="", TEST" 
For i.=PS to 1 /* P.S is higher than expected size for PAT 

while input file is not empty 
Read character oh from input file 
While size of PT < PS 

Add oh to PT 
If PT is invalid 

Delete first oh in PT 

Else if PT is valid 
Save PT into PT array if not already there 

While (size of PT = PS) 
While (size _of_TEST < PS) 

Add oh to TEST 

If (size _of_TEST = PS) 
If (PT == TEST) 

Empty TEST 
Save leo TEST in PT array 
Update oco count in PT array 

Else 
Empty TEST 

Delete first oh in PT 

If (nun valid_patterns > 0.5 * nuni_total_patterns) 
Output PT array 
Exit for loop 

If (one PT in PT_array with highest occurrence) 
Output PT as PAT 

Else If (there is a tie for highest occurrence) 
Use heuristics to break tie and output PAT 

Else 

Output the first PT with highest occurrence as PAT 

End RulExt 

Figure 4.3: Algorithm RulExt: Extracts the Extraction Rule - PAT 
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number after the earlier PT from the file is read in to rebuild PT, and the process 

is repeated to match a new TEST pattern with PT. 

After all patterns of size PS have been accounted for, the number of valid and 

invalid patterns are counted. If more than half of total patterns are valid, then P 

is confirmed as the size for the extraction rule, PAT. If valid patterns form half or 

less than half of the total patterns, Ps is decreased by one, and the algorithm looks 

for patterns of lower size until the number of valid patterns exceeds the number of 

invalid patterns. 

The next step is to find which valid pattern is PAT. RulExt goes through PTarray, 

the list of valid patterns. If there is one pattern that occurs the most times, this is 

taken to be PAT. If there is a tie, a rule of thumb is used to break the tie. This rule 

of thumb is that an identifying characteristic of an instance should occur towards its 

beginning. For example, in the case of a course entity, we expect the course code 

to occur towards the beginning of a course listing. If the rule of thumb is unable to 

break the tie, then RulExt picks the first most prolific item as PAT. 

The first phase of RulExt in which patterns are formed from the data is best 

explained by a simple example. The estimation of PAT is discussed in further detail 

in the two subsequent sections. 

Example 

.This example shows the extraction of PAT from a very short course listing from the 

Computer Science domain. Suppose the listing (strings only, in order of occurrence) 

is as follows: 

1. CPSC2O3 
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2. Introduction to Computer Science 

3. CPSC457 

4. Operating Systems 

After parsing and clustering, we should get the clusters shown in Table 4.2. 

Table 4.2: Example 1: Resulting clusters 
Cluster Number Member Member 

Cluster 0 CPSC2O3 CPSC457 
Cluster 1 Introduction to Computer Science Operating Systems 

If we replace the tokens by the number of the cluster in which they occur, we get 

the following listing: 

In this listing, we see three patterns of size 2: 01, 10 and 01. Note that trying 

to find patterns of size 3 would lead to two patterns being extracted, 010 and 101, 

both of which are invalid. 
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Finding the Optimal Extraction Rule 

Rom domain knowledge, we have a general idea about how many tokens occur in 

one listing. For instance, eight tokens is the highest number seen in all of the course 

listings pages examined. Let this number be called Pg. We start the search with 

expected pattern size of PS + 1. and try to find patterns of this size in the list of 

cluster numbers. 

The idea is that all necessary parts of the listing must occur in separate clusters. 

Thus, in the case of a correct extraction rule, PAT should contain only one occurrence 

of a particular cluster number. If there are two or more occurrences of a cluster 

number, that signifies that either a token is incorrectly clustered, or the pattern 

contains tokens from different entities in the listing. As was previously stated, two 

or more occurrences of a cluster number in a pattern render it invalid. In the ongoing 

example, such a count is shown in Table 4.3. ' 

Table 4.3: Example 1: Array containing valid patterns 
Pattern Total occurrences Last occurrence 1st occurrence 2nd occurrence 

01 2 3 1 
10 1 2 2 

3 

If the number of invalid patterns is close to 100% of all patterns, and very few 

valid patterns are revealed, it is assumed that we are working with the wrong pattern 

size. The pattern size PS is decreased by one and the process is repeated until the 

number of valid patterns exceeds the number of invalid patterns. 

In all cases, we find that the most frequently occurring valid pattern is the desired 

extraction rule PAT, i.e., the correct order of occurrence in the document. For each 

such search of patterns of size k, the details of all valid patterns, the number of 
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occurrences, and the point of each occurrence are documented. 

Tie for PAT 

In case there is a tie between two patterns for PAT, the extraction rule to be esti-

mated, a heuristic, or rule of thumb, is used to decide on the optimal pattern. More 

specifically, from the domain knowledge, we have certain expectations about order of 

occurrence of different types of tokens, i.e., we expect the identifying characteristic 

of an instance or the primary key to occur at the beginning of the instance. Thus, 

in the case of course listings, it is expected that the course code will occur close 

to the beginning of a pattern or rule. For example, if there is a tie between two 

patterns, P1 and P2, and P1 contains the number of the cluster containing mostly 

course codes towards its beginning, and P2 contains the same information towards 

its end, we can deduce that P1 is probably the correct extraction rule. 

This heuristic is very effective in domains where we can expect certain tokens to 

occur towards the start of PAT. This is evident in Chapter 5 in which the results of 

my experiments are presented. It is seen that in the one web page where the start 

of the pattern cannot be anticipated, we have to resolve the tie by picking the first 

pattern with the highest number of occurrences. 

4.4.4 Stage 4: Refinement 

After deciding on PAT of size k (and in the process, the desired clusters), we need 

to cull out irrelevant information from these clusters, and also reassign tokens that 

had been incorrectly classified earlier to the right cluster. This reassignment only 

takes place for patterns that differ from PAT by no more than 1og2k (rounded down) 
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digits. This value is determined by trial and error. No distinction is made between 

valid or invalid patterns when it comes to reassignment. 

The algorithm Refine is developed to re-assign tokens correctly in three phases. 

Figure 4.4 shows the pseudocode for this algorithm. An overview of the three phases 

of the algorithm, Refine, is described next. 

Algorithm: Refinement 
Input: File containing cluster number listing for tokens, PAT 
Output: Text file containing refined output 
Begin 

From start of input file to l occurrence of PAT 
Check all patterns with PAT 
If (difference < logk char) 

Change cluster numbers for mismatches 

From 1 occurrence of PAT to last occurrence of PAT 
If (difference in location of 2 PAT occurrences>PAT SIZE) 

Compare patterns between those 2 occurrences with PAT 
If (difference < log,k char) 

Change cluster numbers for mismatches 

From last occurrence of PAT to end of input file 

Check all patterns with PAT 
If (difference < logk char) 

Change cluster numbers for mismatches 

Delete cluster numbers not appearing in PAT 
Read Token text from array TOK and combine with cluster numbers 
Reconstruct data instances by printing all tokens in one pattern 

in one line 
End Refinement 

Figure 4.4: Algorithm Refine: Refines clusters and outputs result 

1. The first phase starts from the beginning of the cluster number listing and 

ends at the first occurrence of PAT. In all mismatching patterns that fit the 

above criterion, the mismatching digits are changed to match digits from PAT. 

In essence, the incorrectly clustered token is taken out of the original cluster 

and reassigned to the correct one. 
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2. In the second phase, the incorrectly clustered tokens occurring within the bulk 

of the listings are refined. The interval between each occurrence of PAT is 

checked for mismatched tokens. If the interval between two occurrences is k 

(where k is the size of PAT), it tells us that two occurrences of PAT occurred 

side by side. If it is more than twice k, it tells us that there might be another 

pattern or patterns between the two occurrences that may be candidates for re-

assignment. Thus, the same process from phase 1 is repeated for each interval 

between two occurrences of PAT where the interval is greater than twice k, 

and incorrectly clustered tokens are reassigned. 

3. In the third phase, the patterns occurring after the last occurrence of PAT are 

checked in the above way and tokens are re-assigned to different clusters if the 

need arises. 

After the refinement is complete, all clusters that do not figure in PAT are deleted. 

Data instances are recreated from the tokens using clusters and PAT, and are re-

ported. 



Chapter 5 

Experimental Results 

In this chapter, the experimental results are reported. The first section describes the 

testing environment. The next section presents the data sets on which ClusTex was 

tested. The third section presents details of experiments on each of the data sets. 

In the fourth section, results are discussed and compared with those reported in the 

literature. 

5.1 The Testing Environment 

To gauge the performance and efficiency of the proposed approach, experiments were 

conducted on computers with the following features: 

• Architecture: 200 MHz Sun U1traSPARC-II 

• Main Memory: 256 MB RAM 

• Operating System: Solaris 8 

5.2 The Data sets 

ClusTex is designed to work on web pages containing semi-structured data listings, 

and is not restricted to any particular domain. However, to test my approach, the 

following three domains were selected: 

1. Computer Science course listings from University web sites 

45 
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2. Cell phone sales listings 

3. Marathon Listings 

Experiments are primarily reported on course listings web pages. However, one 

experiment on a cell phone sales web page and two experiments on marathon listing 

web pages are also shown. ClusTex was tested on the following web pages. 

1. Computer Science course listings from University of Calgary, Canada 

2. Computer Science course listings from New York University, U.S.A. 

3. Computer Science course listings from Duke University, U.S.A. 

4. Computer Science course listings from Columbia University, U.S.A. 

5. Buy.com Cell Phone Sales web page 

6. The Running Page - 1999 Marathon Schedule 

7. MarathonGuide.com - US Marathons Races Directory and Schedule 

These web pages are chosen because they meet the minimum requirement for 

being processed by this approach. These pages were written in HTML, and displayed 

semi-structured data, while the features of the data instances were displayed in the 

same order, there were also some missing features and some multi-valued features in 

addition to information irrelevant to the listings. 

Another reason to choose these pages was that they exhibited differences in the 

format and content of the presented information as well. For example, in the course 

listings domain, the page from University of Calgary had data instances with two 
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attributes, and the data was in an HTML table. The page from New York University 

had data instances with three attributes, and the data was in an HTML table as 

well. The page from Duke University had data instances with two, and in some cases 

three, attributes but the data was not in a table. Finally, the Columbia University 

data had eight attributes and the data was presented in an HTML table. 

As mentioned earlier, the approach is tested on one web page from the domain 

of cell phone sales listings. Most of the information presented in this page was 

structured. The data in this page was presented in an HTML table and had a 

maximum of three attributes per instance. 

Two pages were tested from the marathon listings domain. Both of these pages 

were also presented in tables. However, the page from the web site "The Running 

Page" had many missing data tokens and tokens belonging to the same category 

have varying formats. In addition, many tokens belonging to different categories 

had similar formats. These characteristics helped highlight the limitations of the 

system. 

For the course of these experiments, all tokens were considered both as separate 

entities and as part of a single data instance. Results are reported for both scenarios. 

5.3 Evaluation Criteria 

Researchers in the IE field commonly report their results by using metrics such as 

Precision, Recall, and the geometrical average of these two, the F value. 

In simple words, precision is the general correctness of the output. Buttler et al. 

[2] defines it as the percentage of correct extractions. Precision is formally defined 



48 

as follows. 

Precision (P) = Total number of correct values extracted 
Total number of values extracted 

P is a value between 0 and 1, 0 signifying all false positives and 1 signalling no false 

positives. 

Recall, simply stated, is the prediction of correct values. Buttler et al. [2] defines 

it as "the percentage of positive instances of the target concept that are correctly 

identified". It is formally defined as follows. 

Recall (R) = Number of correct values extracted  
Total number of possible correct values 

R is also a value between 0 and 1, where 0 means no correct values were predicted 

and 1 means all correct values were predicted. 

The F value is defined as follows. 

(i32+1)P*R 
F= 

/32P+R 

where ,8 is the weight of R over F, a value of ,8 = 1 means that recall and precision 

are weighted equally. Researchers usually report the Fl value where 6 is taken to 

be 1. 

These values are usually reported as percentages. To present my results and 

compare these with other reported in the literature, I use F, R and Fl as well. 

5.4 Experiments and Results 

5.4.1 University of Calgary web page 

The Computer Science course listings from the University of Calgary [33] contain 

course codes and their respective course titles. This information is presented in an 
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HTML table. A screen shot of this page is shown in Figure 5.1. 

Block Week Courses 

F Me  
£PScoo 

S05F05W06 

17jit lintroduction To Unix 

Top of Page 
200 Level Courses 

[CPSCD3 ]introduction To Computers I I X I X I 
[C SC 231 Introduction To Comsuter Science I X X 

[CPsC 233 Introduction To Computer Science II I X X I X I 
IInguiry-based Introduction To Computer Science I I X I I 

CPSC26 icomp Architect & Low-level Prog I I X I X I 
Top of Page 
300 Level Courses 

']Introduction To Computability 

Hardware/software Interface 

S05F05W06 

S05F05W06 

Ix lxi xl 
I Ixixi 

Information Structures I X 
Foundations Of Software En'ineerin 

Information Structures II 

X 
x 

fCPSC49• lProqramminq Paradigms 

Princiiles Of Software Enineerin xxx 
Top of Paqe 

Figure 5.1: Web Page with Course Information from University of Calgary 

After the tokenization of the input HTML file and the assignment of attribute 

values to each token, AutoClass was run on the data set and the result contained 

three clusters. Cluster 0 contained primarily course codes, Cluster 1 contained mostly 

course titles, and Cluster 2 contained some course names interspersed with some 

irrelevant text from the page (text from navigation bars, introductory paragraph, 

etc.). The cluster distribution of the tokens from this page is shown in Table 5.1. 

The patterns discovered when tokens were replaced by the number of the cluster 

in which they occurred, are shown in the screen shot in Figure 5.2. Attempts to find 
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Table 5.1: University of Calgary: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 223 
1 215 
2 56 

patterns of size greater than 2 led to all resulting patterns being invalid. 

We have 6 patterns of size 2 now 

0: 2 1 has occured 7 tines with first occurence at location: 6 

1: 1 2 has occured 12 tines with first occurence at location: 7 

2: 2 0 has occured 20 tines with first occurence at location: 15 

3: 0 1 has occured 208 tines with first occurence at location: 16 
4: 1 0 has occured 203 tines with first occurence at location: 17 

5: 0 2 has occured 15 times with first occurence at location: 20 

There were 28 invalid patterns also 

Figure 5.2: Patterns discovered in the University of Calgary. Input using Cluster 
numbers 

Since the pattern "0 1" occured most prolifically, it was taken to be PAT, the 

sequence of tokens that we are seeking. All patterns that differ by 10922 or one 

digit such as "0 2" and "2 1" or any invalid patterns were converted to match "0 

1" by reassigning the mismatched token to the correct cluster. After refinement, the 

contents of the clusters were as follows. 

Table 5.2: University of Calgary: Post-Refinement Cluster-wise Distribution of To-
kens 

Cluster Number of tokens 

0 225 
1 227 
2 33 

Since cluster 2 does not occur in PAT, it was discarded and the clusters 0 and 1 
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were reported. 

Results 

Looking at the cluster contents, it was seen that cluster 0 contained all course codes, 

and cluster 1 contained course titles. Referring back to the web page, it was confirmed 

that "0 1" was indeed the right pattern, as the information in the page was laid out 

with course codes followed by course titles. 

Table 5.3 shows us the cluster-wise results. In this and all subsequent results 

tables, TE denotes total number of tokens extracted, CE denotes the total number 

of correctly extracted tokens, and TO is the number of all possible correct tokens 

that could be extracted from this page. P is precision, R is recall, and Fl is the Fl 

value. 

Table 5.3: University of Calgary: Cluster-wise Results 
Cluster# Info Type TE CE TO P R Fl 

0 Course Codes 225 220 220 97.78% 100% 98.77% 
1 Course Titles 227 220 220 96.92% 100% 98.44% 

It is evident from the information shown in this table that we were able to achieve 

highly accurate results in this experiment. The 100% recall for both clusters shows 

that the system was able to extract all possible correct values from this web page. 

The slightly lower precision values signify that some false positives were extracted as 

well. Averaging the above values gives us P = 97.35%, R = 100%, and Fl = 98.48%. 

Rebuilding course entities using PAT, 227 output pairs were extracted. Since 

there were a total of 220 possible course entities in the page, seven of the extracted 

pairs were false positives. For the re-constructed courses entities, the following values 

were calculated: P = 96.92%, R = 100%, and Fl = 98.43%. Thus, once again, the 
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100% recall signifies that all the course code-course title pairs were extracted correctly 

while the lower precision values shows the existence of seven false positives as well. 

5.4.2 New York University web page 

The Computer Science course listings from New York University [40] contain course 

codes, their respective course titles, and the last names of faculty numbers teaching 

those courses. This information is presented in an HTML table. Figure 5.3 shows a 

screen shot of this page. 

Course List, Spring 2005 

Course Archive  
Graduate Schedule  
Undergraduate Schedule 

Lewis 

Siegel 

Schonberg 

Wright 

Pnuei 

Gottlieb 

Poelman 

Tomb erg 

Kedem 

Franchith 

Davis 

Gtishman 

G2 2.1144-001 C-PAC U (4 pts.) 

G2 2.1170-001 170-001 Fundamental Algorithms lecture 

G2 2.21  Programming Languages lecture 

G2 2,2112-001 12-001 Scientific Computing 

G2 2.2130-001 Compilers 

G2 2'2250-001 Operating Systems 

G2 2.2280-001 2280-001 User Interfaces 

G2 2.242  Numerical Methods U 

G2 2.2433-001 1 Database Systems 

G2 2.2440-001 Software Engineering 

G2 2.2560-001 2560-001 Artificial Intelligence 

G 22.2590-001 Natural Language Processing 

G22.2631-001 CANCELLED 
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After the clustering was performed by AutoClass, the results showed the existence 

of five clusters. Table 5.4 shows the number of tokens contained in each cluster. 

Table 5.4: New York University: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 
1 
2 
3 
4 

68 
60 
54 
23 
14 

Figure 5.4 shows the patterns of size 3 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. Attempts 

to find patterns of a size larger than 3 led to almost all patterns being invalid i.e. 

containing more than one occurrence of a cluster number. 

We have 12 patterns of size S now 
0: 4 1 0 
1: 1 0 3 
2: 0 3 1 
3: 3 1. 0 
4: 1 0 2 
5: 0 2 1 
6: 2 1 0 
7: 2 0 3 
8: 0 2 3 
9: 2 3 0 
10: 3 0 2 has occured 7 times with first occurence at location: 107 
11: 0 2 4 has occured 1 times with first occurence at location: 215 
There were 79 invalid patterns also. 

has 
has 
has 
has 
has 
has 
has 
has 
has 
has 

occured 
occured 
occured 
occured 
occured 
occured 
occured 
occured 
occured 
occured 

1 times with first occurence at location: 18 
8 times with first occurence at location: 19 
11 times with first occurence at location: 20 
11 times with first occurence at location: 21 
43 times with first occurence at location: 22 
39 times with first occurence at location: 23 
39 times with first occurence at location: 24 
3 times with first occurence at location: 54 
7 times with first occurence at location: 105 
7 times with first occurence at location: 106 

Figure 5.4: Patterns discovered in the New York University Input using Cluster 
numbers 

Pattern 4, "1 0 2" occured most prolifically and was taken to be PAT. All those 

patterns that differed from PAT by 10g23 or one (rounded down) digit, such as "10 3" 
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CPS lOOE - Program Design and Analysis II (and I) 

CPS 100- Program Design and Analysis II 

Second course for majors, minors, or those interested in studying data structures, algorithm analysis, 
object oriented programming 

CPS 102 - Discrete Math for Computer Science 

Mathematical notations, logic, and proof; linear and matrix algebra; graphs, digraphs, trees, 
representations, and algorithms; counting, permutations, combinations, discrete pzobahility, Maxhov 
models; advanced topics from algebraic structures, geometric structures, combinatorial optimization, 
rruither theory. Prerequistes: Math 31 and 32; Computer Science 6. 

CPS 104- Computer Organization and Programming 

CPS 106- Programming Languages (not offered at this time) 

CPS 100- SofIwars Design and Implementation 

CPS 109 - Program Design and Construction 

CPS 110- Introduction to Operating Systems 

CPS 114- Computer Networks and Distributed Systems 

Figure 5.5: Web Page showing Course Information from Duke University 

Table 5.7: Duke University: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 103 
1 91 
2 34 
3 31 
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any false positives. For cluster 1, two correct instructors' names were missed and, 

hence, led to a recall of 96.83%. The seven false positives lowered the precision 

to 92.65%. In cluster 2, no false positives were reported which leads to a perfect 

precision. However, the system failed to extract six course titles which lowered the 

recall. Counting all token extractions together gave us P = 97.55%, R = 95.51%, 

and Fl = 96.75%. 

Rebuilding course entities using PAT, 61 output tuples were extracted. There 

were a total of 68 possible course entities in the page. There were no false positives in 

this case. For the re-constructed course entities, the following values were calculated: 

P = 100%, R = 89.71%, and Fl = 94.57%. The lower recall shows the seven missed 

instructor-code-title tuples. 

5.4.3 Duke University web page 

Thd Computer Science course listings from Duke University [39] contain course codes 

and their respective course titles. This example is different from that of the Univer-

sity of Calgary in that the information is not presented in an HTML table. Figure 

5.5 shows a screen shot of this page. 

After the clustering was performed by AutoClass, the results showed the existence 

of four clusters. The following table shows the number of tokens contained in each 

cluster. 

Figure 5.6 shows the patterns of size 2 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. Attempts 

to find patterns of a size larger than 2 led to almost all patterns being invalid i.e. 

containing more than one occurrence of a cluster number. 



54 

and "3 0 2" or any invalid patterns were re-classified to match it. After refinement, 

the token distribution through the clusters is shown in Table 5.5. 

Table 5.5: New York University: Post-Refinement Cluster-wise Distribution of To-
kens 

Cluster Number of tokens 

0 68 
1 68 
2 61 
3 8 
4 13 

Clusters 3 and 4 do not occur in PAT and were discarded. Clusters 1, 0, and 2 

were reported. 

Results 

Looking at the cluster contents, it was seen that cluster 0 contained all course codes, 

cluster 1 contained names of faculty members, and cluster 2 contained course titles. 

Referring back to the web page, it was confirmed that "10 2" was correctly estimated 

to be PAT, as the information in the page was laid out with the faculty members' 

names followed by the codes and titles of courses that they were teaching. The 

results for each cluster are shown in Table 5.6. 

Table 5.6: New York University: Cluster-wise Results 
Cluster# Info Type TE CE TC P R Fl 

0 Course Codes 68 68 68 100% 100% 100% 
1 Instructors' Names 68 61 63 92.65% 96.83% 95.69% 
2 Course Titles 61 61 68 100% 89.7% 94.57% 

In this table, we see that for cluster 0 which contained mostly course codes, the 

system achieved the extraction of all possible correct course codes and did not report 
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We have L1 patterns of sire 2 now 

0: 0 2 has occured 9 times with first occurrence at 0 

1: 2 3 has occured 9 times with first occurrence at 2 

2: 3 2 has occured 9 times with first occurrence at 4 

3: 3 0 has occured 6 times with first occurrence at 34 

4: 0 3 has occured 5 times with first occurrence at 35 

5: 2 0 has occured 7 times with first occurrence at 43 

6: 2 1 has occured 3 times with first occurrence at 57 

7: 1 0 has occured 89 times with first occurrence at 58 

8: 0 1 has occured 88 times with first occurrence at 59 
9: 1 2 has occured 1 times with first occurrence at 118 

10: 1 3 has occured I times with first occurrence at 186 

There were 31 invalid patterns also. 

Figure 5.6: Patterns discovered in the Duke University Input using Cluster numbers 

Pattern 7, "1 0" occured most prolifically and was designated to be PAT, the 

pattern of tokens that we are looking for. All those patterns that differed from PAT 

by 10922 or one digit, such as "3 0", "2 0", "1 2", and "1 3", or any invalid patterns 

that fit the criteria, were re-classified to match it. The token distribution through 

clusters after refinement is shown in Table 5.8. 

Table 5.8: Duke University: Post-Refinement Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 105 
1 94 
2 31 
3 29 

Clusters 2 and 3 do not figure in PAT and were discarded. Clusters 1 and 0 were 

reported. 

Results 

Looking at the cluster contents, it was seen that cluster 1 contained all course codes 

and cluster 0 contained course titles. 
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This example brings to our attention one of the limitations of this approach. 

Upon referring to the web page, it was noticed that the listing not only contained 

the codes and titles for 93 courses, it also contained descriptions for 8 of these courses. 

However, the system was unable to extract these descriptions. There are two reasons 

for this. 

1. Some descriptions were discarded during the tokenization process. The reason 

for this is that AutoClass is unable to process tokens whose length is longer 

than 200 characters and is liable to segmentation faults. Hence, my system 

routinely discards tokens containing more than 200 characters to make sure 

the program runs smoothly on the data. Some of these descriptions contained 

more than 200 characters and were taken out of the data set to make sure 

that the program runs correctly on the rest of the data set. Under the usual 

circumstances, the performance of the system is not effected by this because 

long tokens are usually introductory sentences in the web page and do not offer 

much information. 

2. Another reason that the shorter descriptions were ignored for patterns is that 

they occurred very infrequently, as mentioned above. Therefore, AutoClass was 

not able to find a significant correlation between course descriptions, codes, and 

titles. 

If we ignore the matter of missed course descriptions, PAT matched the rest of 

the information, because, in the page, the information was laid out such that course 

codes were followed by course titles. The results for separate extracted clusters are 

given in Table 5.9. 
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Table 5.9: Duke University: Cluster-wise Results 
Cluster# Info Type TE CE TC P R Fl 

o Course Titles 105 93 93 88.57% 100% 93.94% 
1 Course Codes 94 92 93 97.87% 98.92% 98.4% 
- Course Descriptions 0 0 8 - 0% - 

The information in this table shows the results of the system when applied on a 

data set with certain limitations, i.e., not enough tokens reported together for the 

system to associate them with each other. In cluster 0, mostly course titles were 

reported with twelve false positives. However, all course titles available in the data 

set were correctly extracted in cluster 0. Thus, for this cluster, we had a perfect 

recall but lower precision since all of the output was not correct. In cluster 1, course 

codes were reported. There were two false positives, a fact that lowered the precision 

slightly. One course code present in the data set was missed resulting in a lowered 

recall for this particular cluster. Since course descriptions were not reported in the 

output, the third cluster is empty to show the cluster that should have contained 

descriptions. Since none were extracted, we have an undefined precision (division by 

0) and the recall is 0. 

For this example, two sets of results are presented for the case when we average 

results for all tokens extracted. If we consider the course descriptions to be part of 

the information that should have been extracted, we get P = 92.96%, R = 95.36%, 

and Fl = 94.14%. 

If, on the other hand, we decide that descriptions were not the factual information 

that we wanted to extract, we get P = 92.96%, R = 99.46%, and Fl = 96.1% 

instead. 
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Rebuilding course entities using PAT, 104 output pairs were extracted. Since 

there were a total of 93 possible course entities in the page, eleven of the extracted 

pairs were false positives. Out of the 93 correct pairs, a further 8 were considered 

incorrect because the description was not taken into account. For the re-constructed 

courses entities, the following values were calculated: P = 80.77%, R = 91.3%, and 

Fl = 85.72%. From these values we deduce that 80.77% of the extracted pairs were 

correct while the system was able to extract 91.3% of all possible correct tuples in 

the data set. 

It should be noted that I have been strict about declaring the correctness or 

incorrectness of extracted tuples. In many other existing approaches in the literature, 

correct and partially correct (take the example of the eight tuples with missing 

descriptions above) are both taken to mean correct. Here, partially correct tuples 

are considered incorrect. 

5.4.4 Columbia University web page 

The Computer Science course listings from Columbia University [38] contain course 

codes, their respective course titles, credit points, instructor's name, day and time 

when the course is taught, location and a reference number. This information is 

presented in an HTML table and is shown in Figure 5.7. 

After the clustering was performed by AutoClass, the results showed the existence 

of nine clusters. Table 5.10 shows the number of tokens contained in each cluster. 

Figure 5.8 shows the patterns of size 8 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. Attempts to 

find patterns of a size larger than 8 led to almost all patterns being invalid. 
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Spring 2004 Courses 

Course 
number 
[link to 

description] 
(Registrar 

Call 
Number) 

Course Title 
[link to course 

page] 
Points 

Instructor 
and TM 

Date 
(*) Time Location 

Exam date and time 

COMS 
Introduction To 
computers 3.0 

G. Whalen MW 5:40PM - 6:55PM   614 Schermerhorn Wlaol-1 
(83649) 

COMS 

Introduction To 
Computer 
Programming In 

(Note: Students 
must register for 
a Lab section 
COMS W11I3) 
fwebnaael 

3.0 

J. Parekh Tu 11:OOAM-12:1SPM 207 Math  
Bldg W1003-1 

(e7101) 

COMS  

Introduction To 
Computer 
Programming In 1 Prkh Ti  11 flflAM-12 • 1 SPM 207 Math  

Figure 5.7: Web Page showing Course Information from Columbia University 

Table 5.10: Columbia University: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 107 
1 62 
2 59 
3 57 
4 57 
5 57 
6 46 
7 44 
8 16 
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Ue have 9 patterns of sire 8 now 

0: 8 1 7 2 6 5 3 0 has occurred 1 times with first occurrence at location: 17 
1: 1 7 2 6 5 3 0 4 has occurred 32 times with first occurrence at location: 18 

2: 7 2 6 5 3 0 4 1 has occurred 32 times with first occurrence at location: 19 

3: 2 6 5 3 0 4 1 7 has occurred 28 times with first occurrence at location: 36 
4: 6 5 3 0 4 1 7 2 has occurred 29 times with first occurrence at location: 37 

5: 5 3 0 4 1 7 2 6 has occurred 30 tines with first occurrence at location: 38 

6: 3 0 4 1 7 2 6 5 has occurred 30 times with first occurrence at location: 39 

7: 0 4 1 7 2 6 5 3 has occurred 30 times with first occurrence at location: 40 

8: 4 1 7 2 6 5 3 0 has occurred 30 times with first occurrence at location: 41 

There were 88 invalid patterns also 

Figure 5.8: Patterns discovered in the Columbia University Input using Cluster 
numbers 

A tie was found between two patterns: "1 7 2 6 5 3 0 4" and "7 2 6 5 3 0 4 

1". The tie was broken using the heuristic that an identifying characteristic of an 

entity (in this case the course code which belongs to cluster 1) should occur towards 

the beginning of PAT. The former pattern was assumed to be PAT, the pattern of 

tokens that we are seeking. All those patterns that differ from PAT by up to 10928 or 

three digits, were re-classified to match it. The post-refinement cluster distribution 

is shown in table 5.11. 

Cluster 8 does not occur in PAT and was discarded. Clusters 0, 1, 2, 3, 4, 5, 6, 

and 7 were reported in the order "1 7 2 6 5 3 0 4". 

Results 

Looking at the cluster contents, it was seen that cluster 0 contained mostly locations, 

cluster 1 contained course codes, cluster 2 contained credit points, cluster 3 contained 

time slots, and cluster 4 contained reference numbers for courses. Furthermore, 

cluster 5 contained days of lectures, cluster 6 contained instructors' names, and 
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Table 5.11: Columbia University: Post-Refinement Cluster-wise Distribution of To-
kens 

Cluster Number of tokens 

0 
1 
2 
3 
4 
5 
6 
7 
8 

78 
62 
59 
57 
57 
57 
57 
62 
16 

cluster 7 contained course titles. Referring back to the web page, it was confirmed 

that "1 7 2 6 5 3 0 4" was the right pattern, as the information in the page was laid 

out with the course code followed by course title, credit points, instructor's name, 

day and time, location, and the reference number. Table 5.12 shows the results for 

each cluster separately. 

Table 5.12: Columbia University: Cluster-wise Results 
Cluster# Info Type TE CE TO P R Fl 

0 Locations 
1 Course Codes 
2 Credit Points 
3 Time 
4 Course Reference 
5 Days of the week 
6 Instructors' names 
7 Course Titles 

78 
62 
59 
57 
57 
57 
57 
62 

57 
62 
59 
5,7 
57 
57 
57 
59 

5,7 
64 
64 
57 
64 
57 
57 
64 

73.08% 
100% 
100% 
100% 
100% 
100% 
100% 
95.16% 

100% 
96.88% 
92.19% 
100% 
89.06% 
100% 
100% 
92.19% 

84.44% 
98.41% 
95,93% 
100% 
94.22% 
100% 
100% 
93.65% 

Cluster 0 shows the extraction of locations. The results show that all locations 

reported in the data set were correctly extracted with eleven false positives as well so 

that 73.08% of the reported tokens in cluster 0 were correctly identified as locations. 
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Cluster 1 shows the extraction of course codes where all tokens reported were cor-

rectly identified as codes. The system failed to extract 2 course codes which led to a 

lower recall. Cluster 2 shows that 92.19% of all correct credit points were extracted, 

and that all tokens in cluster 2 were correctly identified, i.e., no false positives were 

included. Cluster 3 shows the correct extraction of time slots. In cluster 4, all re-

ported tokens were correctly classified while 89.06% of all reference numbers were 

extracted. In clusters 5 and 6, all correct days of the week and instructors' names 

respectively were correctly identified with no false positives. Finally, in cluster 7, 

95.16% of reported tokens were correctly identified as titles, and the system failed to 

extract 7.81% of all possible correct titles. Averaging results for all tokens extracted, 

the cumulative results are P = 95.09%, R = 96.07%, and Fl = 95.597%. 

Rebuilding course entities using PAT, 62 output tuples were extracted. There 

were a total of 64 possible course entities in the page. There were five false positives. 

For the re-constructed courses entities, the following values were calculated: P = 

91.94%, R = 89.06%, and Fl = 90.48%. Thus, from these values, we understand 

that 91.94% of all extracted tuples were correct, while 89.06% of all possible correct 

tuples were extracted by the system. 

5.4.5 Cell Phone Sales on Buy.com 

I tested my approach on a cell phone sales domain as well, on a page from the web 

site buy.com [3]. This page contains phone listings with the manufacturer, the cell 

phone model, and the price listed for each phone. This information is presented in 

an HTML table and is shown in Figure 5.9. 

After the clustering was performed by AutoClass, the results showed the existence 
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OMPARE Manufacturer Promo Phone (click for Technology Price Add Phone 

• Samsung 
Smsuno. 

$59.99 IOI ADOPHONt 1730 Pocket 
PC (Verizon 

Wireless) 

• Samsung 

(Verizon 

Samsunq 
$549.99 ADDPHONE -9 O0 

Smarthone 
Wireless) 

• Audiovox 

(Verizon 

Audiovox 

$499,99 WADDPHONL k 
Pocket PC 

(Camera Phone) 
Wireless) 

• PalmOne 

M. PalmOne 

$3999 IN, ADDPHONE Tre050 

Phone) (Verizo 
Wireless) 

Figure 5.9: Web Page showing Cell Phones listings from Buy.corn 
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of three clusters. Table 5.13 shows the number of tokens contained in each cluster. 

Table 5.13: Cell Phone Listings: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

o 144 
1 126 
2 82 

Figure 5.10 shows the patterns of size 3 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. As in the 

previous experiments, all attempts to find patterns of a size larger than 3 led to all 

patterns being invalid i.e. containing more than one occurrence of a cluster number. 

We have 3 patterns of sire 3 now 
0: 1 0 2 has occured 76 tines with first occurence at location: 22 
1: 0 2 .1. has occured 76 times with first occurence at location: 23 

2: 2 1 0 has occured 76 times with first occurence at location: 24 
There were 123 invalid patterns also. 

Figure 5.10: Patterns discovered in the Buy.com Input using Cluster numbers 

A tie was found between three patterns: "1 0 2", "0 2 1" and "2 1 0". Since 

all cell phone sale sites use a different pattern of tokens, the system had to rely on 

the prolific occurrence of the pattern to discover PAT. When there was a tie and no 

heuristics were able to break this tie, "1 0 2" was chosen as PAT arbitrarily because 

it is the first most prolific pattern. All those patterns that differ from PAT by 10923 

or 1 (rounded down) digit were re-classified to match it. The post-refinement cluster 

distribution is shown in Table 5.14. 
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Table 5.14: Cell Phone Listings: Post-Refinement Cluster-wise Distribution of To-
kens 

Cluster Number of tokens 

0 136 
1 110 
2 106 

Results 

Looking at the cluster contents, it was seen that the results showed perfect recall. 

Cluster 0 contained mostly cell phone models, cluster 1 contained the manufacturers' 

names, and cluster 2 contained prices. Referring back to the web page, it was 

confirmed that "1 0 2" was the right pattern, as the information in the page was 

laid out with the manufacturers' names followed by the phone model and its price. 

Table 5.15 shows the results for each refined cluster separately. 

Table 5.15: Cell Phone Sales: Cluster-wise Results 
Cluster# Info Type TE CE TC P R Fl 

0 Cell Phone Models 136 104 104 76.47% 100% 86.67% 
1 Manufacturers' Names 110 104 104 94.55% 100% 97.19% 
2 Prices 106 104 104 98.11% 100% 99.05% 

Cluster 0 shows extraction of cell phone models. The results show that 76.47% 

of all extracted tokens in cluster 0 were correct. The 100% recall shows that these 

correctly extracted tokens were all the possible tokens that could be extracted. Clus-

ter 1 shows the extraction of manufacturers' names. According to the results, all 

names reported in the data set were correctly extracted. These formed 94.55% of the 

total tokens reported for this cluster. Cluster 2 shows the extraction of prices. Once 

again, all prices reported in the data set were extracted along with two false posi-

tives which meant that 98.11% of the output for this cluster was correct. Averaging 



68 

results for all tokens extracted, the cumulative results are P = 89.71%, R = 100%, 

and Fl = 94.30%. 

Rebuilding phon6 entities using PAT, 110 output tuples were extracted. There 

were a total of 104 possible phone entities in the page. There were six false positives. 

For the re-constructed phone entities, the following values were calculated: P = 

94.55%, R = 100%, and Fl = 97.19%. These values signify that out of all the 

output tuples, 94.55% were correct. Furthermore, the system was able to extract all 

possible correct tuples from the data set. 

Although this seems like a good result, the correct PAT was extracted by chance 

and, in this particular case, does not highlight the power of this system. However, 

this example, like the earlier ones, showcases the suitability of clustering for a task 

such as this. 

5.4.6 1999 Marathon Schedule from The Running Page 

The approach is tested on two marathon listings web pages as well. This page 

from the website RunningPage.com [34] reports marathon listings containing the 

marathon name, the place where it is run, a contact phone number, and finally a 

date when it is scheduled. This information is presented in an HTML table and is 

shown in Figure 5.11. 

This example is primarily included to show the limitations of this system. Clus-

Tex depends on most of the tokens belonging to different categories to have different 

formats. If this condition is not fulfilled, the results worsen quickly. In this web 

page, the formats of marathon names and venues are similar in many cases. The 

following analysis shows the impact of this similarity on the output. 
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Marathon des Sables 04-Apr-99 

Bungay Suffolk UK Marathon 11-Apr-99 

Taunton Marathon Taunton, MA 11-Apr-99 

Belgrade Yugoslavia 381 11 648 266 OX-Apr-
99 

Boston Massachusetts N/A 19-Apr-99 

Fred's Marathon Fitchburg, Massachusetts N/A 19-Apr-99 

Shell-Marathon (Hamburg) Hamburg, Germany N/A 25-Apr-99 

London England N/A 18-Apr-99 

Jersey Shore Marathon Long Branch, New Jersey 732-542-6090 25-Apr-99 

Figure 5.11: Web Page showing Marathon Listings from The Running Page 

After the clustering was performed by AutoClass, the results showed the existence 

of eight clusters. Table 5.16 shows the number of tokens contained in each cluster. 

Table 5.16: 1999 Marathon Listings: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 49 
1 45 
2 33 
3 24 
4 21 
5 15 
6 7 
7 2 

Figure 5.12 shows the patterns of size 4 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. As in the 

previous experiments, all attempts to find patterns of a size larger than 4 led to all 

patterns being invalid. 
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We have 46 patterns of sire 4 now 

0: 6 2 4 3 has occurred 1 times with 

1: 2 4 3 0 has occurred 3 times with 

2: 4 3 0 1 has occurred 3 times with 

3: 3 0 1 2 has occurred 2 tines with 
4: 1 2 0 5 has occurred I times with 

5: 0 4 1 2 has occurred 1 times with 

6: 4 1 2 0 has occurred 1 tines with 

7: 1 2 0 4 has occurred I times with 

8: 2 0 4 1 has occurred I times with 

9: 4 1 0 5 has occurred I times with 

10: 1 0 5 2 has occurred 1 times with first occurrence 

11: 0 5 2 3 has occurred 3 times with first occurrence 

12: 5 2 3 0 has occurred 3 times with first occurrence 

13: 2 3 0 5 has occurred 4 times with first occurrence 

14: 3 0 5 1 has occurred 4 times with first occurrence 

15: 0 5 1 3 has occurred 4 times with first occurrence 

16: 5 1 3 0 has occurred 4 times with first occurrence 

17: 1 3 0 2 has occurred 4 times with first occurrence 
18: 3 0 2 4 has occurred 4 times with first occurrence 

19: 0 2 4 3 has occurred 2 times with first occurrence 
20: 0 1 2 3 has occurred 2 times with first occurrence 

21: 1 2 3 0 has occurred 2 times with first occurrence 

22: 1 3 0 4 has occurred 3 times with first occurrence 

23: 4 0 2 1 has occurred 1 times with first occurrence 

24: 0 2 1 3 has occurred 4 times with first occurrence 

25: 2 .1. 3 0 has occurred 4 times with first occurrence 

26: 1 3 0 5 has occurred 2 times with first occurrence 
27: 3 0 5 2 has occurred 3 times with first occurrence 

28: 0 2 4 1 has occurred 1 times with first occurrence 

29: 2 4 1 0 has occurred 1 times with first occurrence 
30: 4 1 0 2 has occurred 1 times with first occurrence 

31: 3 0 2 1 has occurred 2 times with first occurrence 
32: 2 3 0 1 has occurred 2 times with first occurrence 

33: 3 0 1 4 has occurred 2 times with first occurrence 
34: 0 .1. 4 3 has occurred 1 times with first occurrence 

35: 1 4 3 0 has occurred I times with first occurrence 

36: 0 1 4 2 has occurred I times with first occurrence 

37: 1 4 2 0 has occurred 1 times with first occurrence 
38: 4 2 0 5 has occurred 1 times with first occurrence 

39: 2 0 S 1 has occurred 1 times with first occurrence 
40: 4 3 0 5 has occurred I times with first occurrence 

41: 4 3 0 2 has occurred 2 times with first occurrence 

42: 0 4 1 3 has occurred I times with first occurrence 

43: 4 1 3 0 has occurred I times with first occurrence 

44: 1 5 2 7 has occurred I tines with first occurrence 

45: 5 2 7 6 has occurred I times with first occurrence 

There were 74 invalid patterns also 
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Figure 5.12: Patterns discovered in the Running Page Input using Cluster numbers 
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A tie was found between eight patterns. The tie was broken using the heuristic 

that an identifying characteristic of an entity, in this case a marathon's name, close 

to the beginning of a pattern. Consequently, the pattern "5 13 0" was picked. All 

those patterns that differ from PAT by up to 10924 or two digits, were re-classified 

to match it. The post-refinement cluster distribution is shown in Table 5.17. 

Table 5.17: 1999 Marathon Listings: Post-Refinement Cluster-wise Distribution of 
Tokens 

Cluster Number of tokens 

0 48 
1 49 
2 19 
3 27 
4 13 
5 32 
6 7 
7 2 

Clusters 2, 4, 6 and 7 were discarded because they do not appear in PAT. 

Results 

Looking at the cluster contents, we see that the missing values and varying formats 

of the input test the limits of the data and reduce the precision and recall of the 

output. Cluster 0 contained mostly dates, cluster 1 contained mostly race venues, 

cluster 3 contained contact telephone numbers, and cluster 5 contained marathon 

names. Referring back to the web page, it was confirmed that "5 1 3 0" was the 

right pattern, as the information in the page was laid out with the marathons' names, 

followed by the venues, contact telephones, and dates. Table 5.18 shows the results 

for each refined cluster separately. 
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Table 5.18: The Running Page Listings: Cluster-wise Results 
Cluster# Info Type TE CE TC P R Fl 

0 Dates 48 47 47 97.92% 100% 98.95% 
1 Venues 49 35 45 71.43% 100% 83.33% 
3 Telephone Numbers 27 27 36 100% 75% 85.71% 
5 Marathon Names 32 30 47 93.75% 63.83% 75.95% 

Cluster 0 shows the extraction of dates. The results show that all dates in the 

page were extracted correctly leading to a 100% recall. However, one false positive 

was also reported decreasing the precision. Venues were extracted in cluster 1. Out 

of all venues reported in the page, the system was able to extract 35 leading to 

a recall of 83.33%. Cluster 1 also included 14 incorrectly clustered tokens that 

could not be refined by the system. Cluster 3 contained mostly telephone numbers. 

Although the system was able to correctly identify all actual telephone numbers, it 

was unable to extract values referring to telephone numbers such as "N/A". Out of 

36 tokens reported under the telephone number column, only 27 were extracted and 

were reported as telephone numbers leading to 100% precision for cluster 3. Finally, 

cluster 5 reported marathon names. Out of 47, only 30 were extracted in addition to 

two false positives. Averaging results for all tokens extracted, the cumulative results 

are P = 90.78%, R = 84.71%, and Fl = 85.99%. 

From this example, it can be seen that it is necessary for tokens belonging to 

different categories to have different formats. Many marathon names were not com-

pletely reported (for example, the word "Boston" was substituted for the complete 

name "Boston Marathon") and ClusTex was unable to differentiate it from other 

tokens. In comparison, all dates had a similar format and were extracted correctly. 

Rebuilding marathon entities using PAT, 32 output tuples were extracted. There 
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were a total of 47 possible entities in the page. There were eight false positives. 

For the re-constructed entities, the following values were calculated: P = 81.25%, 

R = 55.32%, and Fl = 65.82%. These values signify that out of all the output 

tuples, 81.25% were correct. Furthermore, owing to the similarly formatted tokens 

from different categories, the system was able to extract only a little more than half 

of all possible listings in the page. 

5.4.7 US Marathon Listings from MarathonGuide.com 

This page from MarathonGuide.com [31] contains marathon listings containing the 

date of the race, marathon name, the city where it is run and finally the state. This 

information is presented in an HTML table, and is shown in Figure 5.13. 

After the clustering was performed by AutoClass, the results showed the existence 

of seven clusters. Table 5.19 shows the number of tokens contained in each cluster. 

Table 5.19: MarathonGuide.com Listings: Cluster-wise Distribution of Tokens 
Cluster Number of tokens 

0 132 
1 115 
2 76 
3 66 
4 42 
5 36 
6 3 

Figure 5.14 shows the patterns of size 4 found in the output when the token text 

was replaced by the number of the cluster in which the token occurred. As in the 

previous experiments, all attempts to find patterns of a size larger than 4 led to all 

patterns being invalid, i.e., containing more than one occurrence of a cluster number. 
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9/25/05 Adirondack Marathon 0 1313131313 Schroon Lake NY 
9125/05 Nike Boulder Backraads Marathon 0 111 131313 Boulder CO 

1313 
9125/05 Clarence Demar Marathon 0 1313131313 Keene NH 
9125/05 Community First Fox Cities Marathon 0 63 1313 Appleton WI 

131313 
9125/05 Dick Walter Subaru Lewis and Clark Marathon Bozeman MT 

(M1)0 W 1313131313 
9125/05 Mangelsens Omaha Marathon 0 IZ 1313131313 Omaha NE 
9125/05 THE National Bank Quad Cities MarathortO,M Moline IL 

13 1313 
9/25/05 Scotiabank Toronto Waterfront Marathon 0 Toronto ON 

October 2005 
10/1/05 Road Runner Akron Marathon 011313 Akron OH 
10/1/05 Auburn Marathon IAuburn CA 
10/1/05 Big Sur Trail Marathon 0 131313 Big Sur CA 
10/1/05 Leavenworth Okioberfast Marathon 0 Leavenworth WA 
10/1/05 New Hampshire Marathon 0 in: 13131313 Bristol NH 
10/1/05 St. George Marathon 0 E.11313 XI 1313 St. George UT 
10/2/05 Odell Brewing Company and Cooparamith's Pub Fort Collins CO 

and Brewing Easy Street Marathon 0 1] 131313 

Figure 5.13: Web Page showing Marathon Listings from MarathonGuide.com 
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We have 29 patterns of sire 4 now 
0: 0 5 1 2 has occurred 3 times with first occurrence at location: 11 

1: 5 1 2 3 has occurred 2 tines with first occurrence at location: 12 

2: 1 2 3 0 has occurred 42 times with first occurrence at location: 13 

3: 2 3 0 1 has occurred 40 times with first occurrence at location: 14 

4: 3 0 1 2 has occurred 37 times with first occurrence at location: 15 

5: 0 1 2 3 has occurred 40 tines with first occurrence at location: 16 
6: 3 0 1 4 has occurred 26 tines with first occurrence at location: 35 

7: 0 1 4 5 has occurred 9 tines with first occurrence at location: 36 
8: 1 4 5 0 has occurred 9 tines with first occurrence at location: 37 

9: 4 5 0 1 has occurred 9 tines with first occurrence at location: 38 

10: 5 0 1 2 has occurred 23 tines with first occurrence at location: 39 

11: 0 1 2 5 has occurred 23 tines with first occurrence at location: 48 

12: 1 2 5 0 has occurred 23 tines with first occurrence at location: 49 
13: 2 5 0 1 has occurred 22 tines with first occurrence at location: 50 

14: 5 0 1. 4 has occurred 9 times with first occurrence at location: 51 

15: 0 3. 4 3 has occurred 23 times with first occurrence at location: 52 
16: 1 4 3 0 has occurred 23 tines with first occurrence at location: 53 

17: 4 3 0 1 has occurred 23 times with first occurrence at location: 54 

.18: 4 0 1 2 has occurred 2 times with first occurrence at location: 63 

19: 2 3 0 5 has occurred 2 times with first occurrence at location: 170 

20: 3 0 5 1 has occurred 2 tines with first occurrence at location: 171 

21: 0 1 2 4 has occurred 1 times with first occurrence at location: 413 

22: 1 2 4 0 has occurred 1 times with first occurrence at location: 414 

23: 2 4 0 1 has occurred 1 times with first occurrence at location: 415 

24: 4 0 1 3 has occurred 1 tines with first occurrence at location: 416 

25: 0 1 3 5 has occurred 1 times with first occurrence at location: 417 

26: 1 3 5 0 has occurred 1 times with first occurrence at location: 418 

27: 3 5 0 1 has occurred 1 times with first occurrence at location: 419 

28: 5 1 2 0 has occurred 1 times with first occurrence at location: 450 

There were 25 invalid patterns also 

Figure 5.14: Patterns discovered in the MarathonGuide.com Input using Cluster 
numbers 
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Pattern 2, "12 3 0" occurs most prolifically and is assumed to be PAT. All those 

patterns that differ from PAT by up to 10924 or two digits or any invalid patterns 

are re-classified to match it. After refinement, the token distribution through the 

clusters is shown in Table 5.20. 

Table 5.20: MarathonGuide.com Listings: Post-Refinement Cluster-wise Distribu-
tion of Tokens 

Cluster Number of tokens 

0 119 
1 115 
2 115 
3 115 
4 0 
5 3 
6 3 

Since clusters 4, 5 and 6 do not figure in PAT, they were discarded. 

Results 

Looking at the cluster contents, we can see that cluster 0 contains mostly states, 

cluster 1 contains dates, cluster 2 contains marathon names and cluster 3 contains 

names of cities. Referring back to the web page, the sequence of tokens in PAT was 

confirmed as c 2 3 0" since the information was laid out with the date followed by 

marathon name, the city and state. Table 5.21 shows the results for each refined 

cluster separately. 

Cluster 0 shows extraction of states. The results show that 97.85% of all extracted 

tokens in cluster 0 were correct. The 100% recall shows that these correctly extracted 

tokens were all the possible tokens that could be extracted. Cluster 1 shows the 

extraction of dates. According to the results, all names reported in the data set 
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Table 5.21: MarathonGuide.com Listings: Cluster-wise Results 
Cluster# Info Type TE CE TC P R Fl 

0 State 119 114 114 95.80% 100% 97.85% 
1 Date 115 114 114 99.13% 100% 99.56% 
2 Marathon Names 115 114 114 99.13% 100% 99.56% 
3 City 115 114 114 99.13% 100% 99.56% 

were correctly extracted. These formed 99.13% of the total tokens reported for this 

cluster. Only one false positive was reported out of 115 tokens. Cluster 2 shows the 

extraction of marathon names. Once again, all names reported in the data set were 

extracted along with one false positive which meant that 99.13% of the output for 

this cluster was correct. Cluster 3 was found to contain cities and shows the same 

result as cluster 1 and 2. Averaging results for all tokens extracted, the cumulative 

results are P = 98.298%, R = 100%, and Fl = 99.14%. 

Rebuilding marathon entities using PAT, 115 output tuples were extracted. There 

were a total of 114 possible marathon entities in the page. There was one, false posi-

tive. For the re-constructed marathon entities, the following values were calculated: 

P = 99.13%, R = 100%, and Fl = 99.56%. These values signify that out of all the 

output tuples, 99.13% were correct. Furthermore, the system was able to extract all 

possible correct tuples from the data set. 

5.5 Discussion 

In this section, the results are discussed and compared with the results of other 

approaches. Table 5.22 shows the overall results from all web pages tested. 

Thus, in summary, from the University of Calgary web page, all correct tu-
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Table 5.22: Overall Extraction Results from all Web Pages  
Web Page P R Fl 

University of Calgary 
New York University 
Duke University 

Columbia University 
]3uy.com Cell Phones 

1999 Marathon Schedule 
MarathonGuide.com US Listing 

96.92% 
100% 
80.77% 
91.94% 
94.55% 
81.25% 
99.13% 

100% 
89.71% 
91.3% 
89.06% 
100% 
55.32% 
100% 

98.43% 
94.57% 
85.72% 
90.48% 
97.19% 
65.82% 
99.56% 

ples were extracted with 3.08% of the output tuples being false positives. From 

the New York University web page, 89.71% of all correct tuples were extracted, 

all output being correct. From the Duke University web page, 91.33% correct tu-

ples were extracted while 19.33% of total output tuples were false positives. In the 

case of Columbia University web page, 89.06% of all correct tuples were extracted 

and 91.94% of all extracted tuples were correct. In the cell phone domain, from 

the Buy.com page, all correct tuples in that page were extracted. The output also 

included 5.45% false positives. In the marathon domain, from the listing in the Run-

ning Page, only about 55.32% of all marathon tuples were extracted and the output 

contained 18.75% false positives as well. From the MarathonGuide.com page, all 

marathon tuples were correctly extracted in addition to 0.77% false positives. 

This brings us to the discussion of how the page format would lead to a particular 

result. It appears that the best clusters are formed when the tokens belonging to a 

particular category follow the same format stringently. For example, in the University 

of Calgary web page, we see that the tokens belonging to each important category 

follow the same format, hence leading to a good clustering with very little or no need 

for refinement. On the other hand, as can be seen in the 1999 Marathon listing, 
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similar formats lead to an incorrect clustering which cannot be fixed by refinement. 

If the tokens of one kind differ from each other in format, then this would lead 

to an incorrect clustering of some tokens, and refinement needs to take place. Re-

finement is helped by tokens occurring in patterns. Thus, in the example of the 

Buy.com web page, we see that some prices were initially clustered incorrectly (be-

cause of failure in the format condition), but since all tokens follow a strict format, 

the refinement phase reassigned these tokens to the right cluster. 

It should also be mentioned here that refinement works only for inaccurately 

clustered tokens in tuples with less than log2k missing values. If there are any more 

missing values, then the system is unable to judge this as a pattern to be refined 

to match PAT. We see examples of this in the Columbia University and New York 

University web pages. Some tokens were incorrectly clustered, but since the tuple 

in which they occurred contained less than k - 1og2k values, refinement was not 

attempted. 

The Duke University example brings to our attention the fact that extraction 

would fail if too many values are missing because the system would be unable to 

judge the correct pattern. In this example, out of a total of 93 course entities, only 

8 contained course descriptions. Thus, there were 85 missing values in only one 

cluster. The system, due to the high number of missing values, was unable to detect 

the presence of a third attribute in the tuple. 

ClusTex has a different premise than other existing approaches and works on 

semi-structured data rather than text. Hence, it has been tested on domains which 

are different than the ones used for testing by researchers who proposed classification 

based approaches. However, Embley et al. [13] tested their approach on the cell 



80 

phone domain as well. For the cell phone sales page from Buy.com, they report 

P = 85.4%, R = 90.7%, and Fl. = 87.97%. Comparing this to my results of 

P = 94.55%, R = 100%, and Fl = 97.19%, it is evident that my approach works 

on this data set quite well, and in any case, better than Embley's approach. On 

the other hand, Embley et al. test their approach on the car sales domain as well. 

They are able to extract information from a table that contains data on only one 

car. ClusTex fails in such a situation. Because it is based on clustering, it requires 

a large data set of tokens with different formats to be able to separate tokens from 

different categories. 

Similarly, the works in which IE is seen as a text classification problem, usually 

test their approach on data sets such as the CMTJ seminar announcements corpus. 

This corpus contains a large number of documents, each containing one announce-

ment. If ClusTex were to be applied on such a corpus, it would fail because it is 

unable to extract information about one entity from a page. However, one could 

imagine combining all documents into one large document. In that case, ClusTex 

might have some chance of success. This has not been tried, and is a possible future 

research direction. 

ClusTex holds an edge over text classification systems in that they classify tokens 

from one page that contains one entity. They do not have to relate tokens belonging 

to the same entity with each other if there are other entities present as well. However, 

ClusTex achieves this by using patterns and shows good results. 

Thus, judging from the evaluation criteria cited in Table 5.22, we can see that 

ClusTex shows very high precision and recall, and consequently Fl, in the case of 

most listings tested. The lowest values are from tests on the 1999 marathon listings 
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and Duke University listings, and pin-point the limitations of the approach that 

should be addressed rather than hidden. 



Chapter 6 

Conclusions and Future Work 

In this thesis, ClusTex system which uses clustering techniques for IE from HTML 

web pages is developed. This chapter concludes this discussion by first presenting 

its advantages over and differences from other approaches. In the second section, 

the current limitations of this system are discussed and ideas for future work are 

explored. 

6.1 Advantages of ClusTex and Differences from Existing 

Approaches 

The most important point on which this approach differs from the others is that it 

uses clustering for data extraction, which is an unsupervised learning technique and 

does not require feedback from the user after domain features have been accounted 

for. All other similar works view IE as a text classification problems, and hence, use 

training examples and user feedback during the extraction process. 

An advantage of this approach, at least when it is used on simple data sets with 

tokens of varying formats, is that it has a much simpler feature set than those of 

other systems. It only has HTML, semantic and orthographic features combined to 

better represent a particular domain. Thus, it requires very little pre-processing as 

compared to other systems but still gives comparable results. 

If we decide to use ClusTex on an unknown domain, then only the HTML and 

82 



83 

orthographic features can be used to extract information, i.e., without any domain 

knowledge. In that case, after the information has been extracted, the user can 

match a cluster as a whole to its destination field in a database. 

Another advantage of ClusTex is that instead of classifying tokens individually 

as in other systems, we can extract all tokens in one go. 

6.2 Limitations and Possibilities for Future Work 

The approach presented in this thesis suffers from several limitations that should be 

considered in future research. In the following paragraphs I suggest several directions 

in which further work can prove beneficial. 

First of all, ClusTex requires that the web page be well-formed, i.e., have complete 

sets of start and end tags, and proper nestings etc. However, hand-coded pages with 

mistakes such as missing tags, especially in legacy data, are very common. On the 

bright side, this is easy to remedy with a utility such as HTML Tidy which can 

correct these mistakes and bring others to the attention of the user that it is unable 

to fix by itself. 

Another limitation of this approach is its reliability on patterns of tokens for 

discovery of extraction rules. This effectively limits the use of this system for semi-

structured data as opposed to semi-structured text in which tokens may occur with-

out any pattern. It would be interesting to see an alternate way to discover extraction 

rules that does not use patterns, and consequently, can extract from semi-structured 

text as well. 

Due to the very nature of clustering, ClusTex works only on data in which dif-
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ferent tokens making up the data instances are different from each other, but the 

value for any particular attribute always occurs in more or less the same format. 

However, in some cases, the simplistic attributes may fail to account for finer details 

or properties of tokens. In a future work, this could be dealt with by adding more 

kinds of attributes in the tokenization process, using a POS tagger and a gazetteer. 

Right now, this system has a simplistic feature set which is potent enough to deal 

with many domains, especially ones containing semi-structured data. Making the 

attribute set more complex will also allow the system to work on semi-structured 

texts. 

In this approach, during the refinement phase, tokens are only reassigned to other 

clusters in the pattern in which they occur differs from PAT by 1og2k digits. If the 

pattern differs from PAT more than this value, reassignment is not attempted. If 

there is a valid pattern with more than 1og2k values clustered incorrectly, it would 

not stand a chance of being rectified. A future work could deal with this problem 

possibly by striking a balance between a realistic limit for allowing re-assignment 

and getting better clustering results, which would decrease the need for refinement 

in the first place. 

Another major limitation of ClusTex is its inability to deal with tokens that are 

longer that 200 characters in length. This is actually a limitation of AutoClass, 

the software I use for clustering. To get around this challenge, future research could 

concentrate on either using another clustering software or implementing a specialized 

clustering component for this system. 

As we have seen in the testing phase, a case may arise when the system is unable 

to estimate an extraction rule based on heuristics and has to choose the first most 



85 

prolific pattern for the rule. It would be interesting to see how a user feedback 

component could be added to get around this problem. 

Existing systems based on text classification take the input pages one by one and 

classify the tokens into classes. This system requires all input to be on one page. 

In the future, one could attempt to make the system workable on many documents, 

each containing one instance, as suggested by Masterson and Kushmerick [32]. 

In its current state, the user has to supply all web pages individually to the 

system for extraction. An integration of this system with an information retrieval 

component resulting in an information integration system should be considered at a 

later stage. This would make the entire process truly automatic. 

In conclusion, this thesis reports the creation of a new and efficient approach for 

IE using probabilistic clustering which should prove beneficial for the purposes of 

IE. 
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