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Abstract

A physical scale model of a vertical tabular conductor (6.3E4 S/m) placed in a conductive
(9.93 S/m) and resistive (air) host was surveyed by a moving-source (1.5-cm diameter
transmitter), and a fixed-source (1-m square transmitter) device. Nine transmitter
frequencies and five target depths were used for both devices. Argand diagrams of
conductive host data showed unexpected second dispersions for both devices. These
dispersions began at 40 and 4 kHz for the moving- and fixed-source devices respectively.
The ratio of the target’s conductive host response to its free-space response was as great
as 6.0 for the fixed-source, and 1.3 for the moving-source system. Contrary to published
results, these ratios decreased with depth for the fixed-source transmitter. Differences in
transmitter size and geometry and the conductivity contrast between the host and target

are thought to be the cause of the unexpected and unpredicted behavior.
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Chapter 1

1 __Introduction

Electromagnetic prospecting devices are classified by the type of source or by the type of
data they record. Sources can be either moving or fixed, and the data can be collected in
either the time- or frequency-domain. Comparison of surveys performed over the same
target using different electromagnetic prospecting methods shows that geological
interpretations and calculations of electromagnetic properties often depend on the device
used (Macnae and Walker, 1981; Pitcher, 1985; Duckworth and O'Neill, 1992). Why
different devices should result in different interpretations of the same target is a question
that has received very little attention in the literature. To understand this apparent
inconsistency, the responses of two commonly used frequency-domain devices to the
same target were compared using physical scale modeling. The horizontal coplanar
moving-source system and a Turam-type fixed-source device were compared. The rest of

this discussion will be limited to frequency-domain systems.

Physical scale modeling provides a means of simulating large-scale electromagnetic
systems exactly in a laboratory setting. The act of scaling the linear dimensions of a
system requires that the frequencies and electromagnetic parameters be scaled as well.
Sinclair (1948) and Spies (1976) have derived the relationships between model and full-
scale electromagnetic parameters. The condition for equivalence in the present study,
was that the dimensionless product of conductivity, o, magnetic permeability, p, angular
frequency of the transmitter, ©, and a squared dimension of length, L’ be the same for
both systems. Algebraically, the equivalence condition for two systems (denoted by the

subscripts 1 and 2) is expressed as

o oL} = oyun0,L. Equation I-1



In this study, the moving-source system was the horizontal coplanar coil system where
one coil was a source, the other a receiver. The fixed-source system was a large, square,
horizontal loop that was coplanar with a small horizontal coil receiver. The target was a
vertical tabular conductor immersed in either a free-space or conductive host. The
conductive host was modeled by a brine solution that was several orders of magnitude
less conductive than the target. The transmitter and receiver coils were placed in air at a
height ¢ above the surface of the host. The air layer between the coils and the host
represents a resistive overburden. By varying the depth, D, of the target and the
frequency of the source field, different full-scale conditions were modeled according to

Equation 1-1. A diagram of the target system is shown in Figure I-1.

Ground Level

Resistive Overburden C. t
Host (Resistive or Conductive) D
Cw Target
(o) . >0 H

Figure 1-1: The host was either resistive or conductive with a resistive overburden of
thickness t. The target was tabular buried to a depth D under the surface of the host.
The conductivity of the target was several orders of magnitude larger than that of the

conductive host.
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Interpretations made from data from early inductive devices assumed that the effects due
to a resistive host could be ignored. In reality, there are significant changes in the target's
response when the effects of even slightly conductive hosts and overburdens are present.
To improve the understanding of these situations, Lowrie and West (1965) used physical
scale model studies to determine the effects of a conductive overburden on the response
of a honzontal coplanar loop device. Their results showed that when the free-space
assumption was used, targets beneath (but not in contact with) a conductive overburden

appeared to be deeper, and better conductors than they really were.

Physical scale modeling of the effects of a conducting host on moving-source systems
was also performed by Guptasarma and Maru (1971), Gaur et al. (1972), and Verma and
Gaur, (1975). These authors demonstrated that a target in a conductive host responded
more strongly, and possibly with a differently shaped profile, than the same target in free-
space. It was found that the conductive host also caused a change in the phase of the
anomaly. Attenuations due to the electromagnetic fields passing through the host were
observed, but the effect was usually small relative to the anomaly enhancements. The
anomaly enhancements were attributed to induced currents in the host taking the path of
least resistance through the more conductive target. This tendency for host currents to

‘channel’ through the target was termed 'current gathering'.

Hanneson and West (1984) used numerical models of moving-source systems in
conductive host environments to investigate the effect of increasing host conductivity.
They found that both current gathering and attenuation effects were always present, but
that the current gathering effects dominated over attenuation when the host conductivity
was low. The initial result of an increase in host conductivity was a slight counter
clockwise phase rotation of the anomaly accompanied by a slight enhancement of the
anomaly amplitude. Further increases resulted in clockwise phase rotations and larger
amplitude enhancements. Amplitude attenuation was noted at the highest conductivities

considered, while the phase rotations continued in the clockwise direction.



Lajoie and West (1976) studied fixed-source devices in conductive host environments
using numerical models. They predicted phase rotation and attenuation due to the host
overlying the target, as well as current gathering related anomaly enhancements due to
the conductive host surrounding the target. Physical scale modeling results indicate that
the enhancement due to current gathering might be larger than predicted by the numerical
models (Duckworth and O'Neill, 1989). However, the theoretical model assumed a thin
conductor (‘thin' means that only the product of conductivity and thickness is necessary to
classify the conductor), and the targets used in the physical scale model study did not

necessarily behave as thin conductors.

Each of the studies mentioned above has been dedicated to a single type of device.
Lowrie and West (1965), Guptasarma and Maru (1971), and Hanneson and West (1984)
focused on the horizontal coplanar moving-source device. Gaur et al. (1972), and Verma
and Gaur (1975) compared different coil configurations of moving-source devices.
Lajoie and West (1976), and Duckworth and O'Neill (1989) focused on the fixed-source
device, and Duckworth and O'Neill (1992) compared two methods of operation for a
fixed-source device. Very few direct comparisons of moving-source and fixed-source
devices have been published. This purpose of this study was to investigate the relative
effects that a conductive host environment has on the results of moving-source and fixed-

source frequency-domain electromagnetic prospecting devices.

Chapter 7 was included to document an unsuccessful attempt to reproduce published
results for a conductive sphere in free-space when surveyed by a vertical coaxial moving-

source system.
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Chapter 2

2__Relevant Flectromagnetic Theory

In this section, the theory related to electromagnetic physical scale modeling is presented.
The equivalence condition for electromagnetic physical scale modeling is derived from
Maxwell’s equations, the theoretical definition of ‘skin depth’ is provided, and brief
discussion of electromagnetic induction as it applies to geophysical systems is also

included.

2.1 Scaling Theory

There are two types of physical scale modeling, geometrical, and absolute. Geometric
models simulate the spatial manifestations, but not the power levels, of the
elecromagnetic fields and may be used when the properties to be studied can be
expressed in a dimensionless form. The amplitudes of the electric and magnetic fields do
not need to be scaled for geometric models. Absolute models are used when the
quantities to be measured are not dimensionless, so the amplitudes of the fields must be
scaled as well as the dimensions, time, and electromagnetic properties of the model
materials. The theory of absolute and geometric physical scale modeling was presented
by Sinclair (1948), who derived the theory and discussed the limitations imposed on
physical scale modeling due to the finite selection of modeling materials. Ward (1967),
and Frischknecht (1988), generalized this theory for systems where displacement currents
may be neglected, and showed that in such cases the condition for geometric modeling
was satisfied if a quantity called the induction number was invariant with a change of
scale between two systems. Ward and Frischknecht defined the induction number as the
dimensionless product of cuwL?, where o, p, and L are the conductivity, magnetic
permeability, and a significant, though arbitrary, linear dimension of the system under
consideration, and © is the angular frequency of the primary field. The theory of



electromagnetic physical scale modeling which follows is based on the work of Sinclair,
Ward, and Frischknecht.

If System 1 is a full-scale system consisting of materials that are linear (i.e. constant in
time) in conductivity, magnetic permeability, and electric permittivity, then Maxwell’s
equations (Equations 2-1 to 2-4) describe the behavior of the electromagnetic fields

within the system. It is assumed that there are no isolated charges within the system.

Maxwell’s Equations for Svstem 1:

V. xE, =-4 oH, Equation 2-1
atl
V.xH, =0,E, +¢ o, Equation 2-2
or,
Vi-H,=0 Equation 2-3
Vi-E =0 Equation 2-4

In the above equations, E; and H, are the electric and magnetic field vectors, and &, p1,
and ¢, are the conductivity, magnetic permeability, and electric permittivity of a given
matenal, and V, is the gradient operator in terms of the Cartesian coordinates of System
1. The aim of physical scale modeling is to model the full-scale system (System 1) with a
smaller version (System 2) in such a way that the two systems are electromagnetically
identical. If the linear dimensions, times, and electromagnetic vectors of Systems 1 and 2
are scaled by way of the following equations, then it is possible to calculate scaling
factors, p, ¢, a, and b for System 2 that will make the two systems electromagnetically
identical (Sinclair, 1948).



X = px; Equation 2-5
Y1 =Py, Equation 2-6
4 =Pz Equation 2-7
L=qt, Equation 2-8
E, =aE, Equation 2-9
H, =6H, Equation 2-10

To determine the relationships between the electromagnetic parameters and frequencies
of Systems 1 and 2, Equations 2-11 and 2-12 (Maxwell’s equations for System 2) must be

written in terms of E;, H;, #1, and the Cartesian coordinates of System 1.

Maxwell’s Equations for System 2:

V.xE, =-u, oH, Equation 2-11
T "o,
V,xH, =0.E, + & 66& Equation 2-12
2 22 T E
v.-H, =0 Equation 2-13
V. E, =0 Equation 2-14

It is shown in Appendix A thatV, xV = pV x V , and thatéV/ét, =¢q 8V/ér, , so that
substitution of Equations 2-5 to 2-10 into Equations 2-11 and 2-12 will produce the

following equations for System 2 in terms of E; and H;:



Py xE =-u, qoH, Equation 2-15
a b o

EV; xH, =0, lEl +&, 99E, Egquation 2-16
b “a “a o

Comparison of Equations 2-15 and 2-16 with Equations 2-1 and 2-2, provides the
constraints that must be placed on the conductivity, magnetic permeability, and electric

permittivity for electromagnetic equivalence of the two systems as follows:

o, = —abﬁa, Equation 2-17
bp Equation 2-18
My = —— 44 quation 2-
aq
& = 251 Equation 2-19
* = bg

It 1s important to note that Equations 2-17, 2-18, and 2-19 must hold for all materials in
the system. Sinclair (1948) notes that air in the full-scale system, is most effectively
modeled by air in the model, so that for these regions, u;=u,, and €,=¢,. Since Equations
2-18 and 2-19 must hold for all regions in the model, the constants of proportionality
which relate the full-scale and model magnetic permeabilities and electric permittivities
to one another must be unity. These conditions are expressed in Equations 2-20 and 2-

21.

bp _ 1 Equation 2-20
aq



P Equarion 2-21
bq

Equations 2-20 and 2-21 require that

a_ 1 Equation 2-22

and

£ Equation 2-23
qg

so that the conditions for electromagnetic equivalence become:

O, = po, Equation 2-24
Hr = 4 Equation 2-25
& =4 Equation 2-26

The electrical parameters of the model materials are related to the full-scale parameters
by Equations 2-17 through 2-19 for a general system, or Equations 2-24 through 2-26 for
a system where air is modeled by air. For a geometric model, the amplitudes of the
electric and magnetic fields do not need to be scaled, so a specific value for a does not
need to be used, provided Equation 2-22 is satisfied. In this study, all the data are in the

form of percentages, so a geometric model is sufficient.

Frischknecht (1988) further simplified these conditions by neglecting displacement
currents, and therefore any conditions relating to electric permittivity. Under these

conditions, the relationship between model and full-scale conductivity is given by
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Equation 2-27

By substituting relationships from Equations 2-5 to 2-10 in to Equation 2-27, and letting
L. represent a dimension of length in System n, Equation 2-27 may be written in

induction number form as

_/Ly
T )

2 2

o, 1;’:' =0, f” Equation 2-28

(w)ovan L = (4o L

Where the magnetic permeability has been re-introduced as a formality, though for most
modeling materials that are suitable for physical scale modeling, p=p,=u,, and the

magnetic permeabilities will cancel.

The condition given by Equation 2-28 is all that is required for equivalence using
geometric modeling provided that everywhere u=y,, and ®, is low enough that
displacement currents may be neglected. If quantities that are not dimensionless (e.g.
impedance) are to be studied, scaling relationships for voltages, currents, and current

densities must also be considered (Frischknecht, 1988; Spies, 1976).

It is noteworthy that Equation 2-28 may also be derived by scaling the skin depths’ of the

materials in the same way that other model lengths are scaled (see Appendix B).

! The skin depth of a material is calculated from the following formula and has dimensions of
length: & = \/2/ ou® , where o is conductivity, u is magnetic permeability, and @ is the angular

frequency of the impinging field. A derivation and discussion of the physical significance of the skin depth
will be presented in Section 2.2.
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Bosschart (1964) defined a thin conductor as one for which the conductance
(conductivity-thickness product) was all that needed to be scaled for electromagnetic
equivalence. Therefore, for thin conductors, the equivalence condition for geometric

modeling becomes

(a:]; )a}sz = (0'11; )a)l['l . Equation 2-29

where T and T are the thicknesses of the conductors. This implies that only the product
of conductivity and thickness can be determined from the response of a thin conductor.
There are limits beyond which targets with identical conductances will not produce
identical responses. and in these cases it may be possible to determine the conductivity
and thickness independently (Hedstrém and Parasnis, 1958). In practice, Bosschart’s thin
conductor definition will be met if there is a linear vanation of the in-phase to quadrature

ratio with response parameter (see Section 2.3).

At the frequencies that were used in this study, the target could not always be considered
‘thin’, but the deviation from the thin conductor approximation does not affect the results
since the purpose was to compare the responses of moving-source systems to fixed-
source systems over the same target. The target may stop responding as a thin conductor
at different frequencies for each device because the geometry of the transmitted fields is
different. Deviations from a ‘thin’ target have to be considered if the final anomaly index
diagrams (Figures 5-2, 5-4, 5-7 and 5-8) are to be used for interpreting field data. Tables
2-1 and 2-2 give the skin depths for the modeling materials, graphite and brine, used to
simulate the target and host respectively. The frequencies shown are those used in the
physical model studies. In general, the shorter the skin depth with respect to the
dimensions of the body, the more effect an electromagnetic field will have on that body.

The theoretical derivation of the skin depth is given in the next section.



Table 2-1: Skin depths for graphite at model frequencies (conductivity of the graphite:
6.3E+04 S/m, thickness of the target: 1.45 cm)

Frequency Skin Depth
(kH2) (m)
1 6.34E-02
2 4.48E-02
4 3.17E-02
10 2.01E-02
20 1.42E-02
40 1.00E-02
100 6.34E-03
200 4.48E-03
400 3.17E-03
Table 2-2: Skin Depths for brine at model frequencies (conductivity of the brine: 9.93
S/m)
Frequency Skin Depth
(kHz) (m)
1 5.05
2 3.57
4 2.53
10 1.60
20 1.13
40 0.80
100 0.51
200 0.36
400 0.25

2.2 Skin Depth

The skin depth of a material is defined as the depth at which the amplitude of a plane
electromagnetic wave incident upon the planar surface of a conductive medium is
attenuated by a factor of 1/e. The following discussion of skin depth is based on the
presentations by Lorrain, Corson, and Lorrain (1988), Grant and West (1965), and Keller

(1988).



The amplitude of a harmonically oscillating plane wave is described in phasor notation

= ilex-kz)
F=F_e Equation 2-30

where Fp4, is the maximum amplitude of the wave, © is the angular frequency of the
wave, ¢ is time, k is the wave number, and z is the axis of propagation. The wave number

is defined as 2nt/A where A is the wavelength of the wave.
For a plane electromagnetic wave in a conducting medium, the wave number is complex

k=f-ia Equation 2-31

and Equation 2-30 becomes

F=F ei(u—(ﬁ—ia):)
max

= F e =™ #)

Equation 2-32

The term ¢'“ causes attenuation of the amplitude with distance z. By definition, the skin
depth is the depth at which the amplitude has been attenuated by I/e, so 6=z when az=1,

or

s=a. Equation 2-33

To represent a in terms of frequency, conductivity, magnetic permeability, and electric
permittivity, it is necessary to derive the electromagnetic wave equation from Maxwell’s

equations.

Equation 2-1 relates the curl of the E vector to the time derivative of the H vector, and
Equation 2-2 relates the curl of the H vector to the E vector and its time derivative.

Using the vector relationship



14

Vx(Vx A)= V(V -A)-V-VA Equation 2-34
=V(V-A)-VA

(for rectangular coordinates), where
VA= V4 +I V4 +i V4, Equation 2-35

and i, is the unit vector in the nth direction. Equations 2-1 to 2-4 yield the following

equations:

Vx(VxE):V(V-E)—VzE-—-Vx{-—,ua—a-H-J
/1

v(0)-VE = _/,i(v xH)=- pg(aE + a‘i—E]
ot ot ot
VE - cr,a?—IE - .s;u—a.],5 =
or ot~
and Equation 2-36

V(VxH):V(VH)—V2H=VX[OE+€%]
C

V(O)—VZH =oVxE +€§(Vx E)

—V2H=o{—paﬂ)+ o'fl
ot ot:

Equation 2-37

If we consider only sinusoidally varying fields of the form

(Eor H)=(E, or H, )™~ Equation 2-38



where E, and H,, are amplitudes of the fields at 7 = 0, then the time derivative becomes
6£(E or H)=—ia(E or H) Equation 2-39
r

and Equations 2-36 and 2-37 may be written as

V’E = (i CUD —~ EUQD” )‘: Equation 2-40
and
V'H= (i ouw — U’ }I Equation 2-4]

For Equation 2-30 to be a solution for E or H above, then the wave number &, is
determined by calculating V>F and comparing the result to Equation 2-40 or 2-41. The

Cartesian components of V°F are

(v*F), = ;;_ F et —g Equation 2-42 a)

(v*F), = & e 20 b
oy

and

(O°F). = 2 Fre ) = () °

<

where the x and y components become zero because the wave is traveling in the =z

direction only. By comparison, the square of the wave number is found to be

k* = guawr —icuw. Equation 2-43
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At this point it is convenient to make some assumptions about the relative magnitudes of
the real and imaginary terms in Equation 2-43. In free-space, the conductivity is zero and

the wave number is completely real (= 0) and given by

k =\ euw Equation 2-44

Substitution of a real wave number into Equation 2-32 eliminates the attenuation term, so
electromagnetic waves traveling in free-space experience no attenuation. In a conductor

at low frequencies (frequencies having periods much longer than the relaxation time (/o)
of the atoms) the imaginary term of Equation 2-43 dominates and the wave number is the

complex function

2

e [a;aw)% _ ( a;ua))}é Equation 2-45
2 2

=f-ia

In terms of the conductivity, magnetic permeability, and frequency, the skin depth

(Equation 2-33) becomes

2 Equation 2-46

5=

1

a oUD
With attenuation comes phase rotation. Next it will be shown that the phase rotation at
one skin depth is equal to (1/27) radians.

The spatial wavelength of the uniform planar field is related to the B-term as follows:

Since € is a periodic function,
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-l _ =il 25)
e =e ™ Equation 2-47

— e'i&:

By definition, the wavelength, A, equals the difference between z; and z;, so

F + 2= fE, Equation 2-48
. 2z
A=z, -z =—

V4

Since % is the distance over which the phase rotates by 27, and, in this case, &= £, then
the phase rotation at one skin depth will be &4 = 1/(2n) radians.

2.3 A Simple Model of Electromagnetic Induction

A simple model that demonstrates the important characteristics of electromagnetic
induction is shown in Figure 2-1. The model consists of two horizontal coplanar
conductive loops that represent the transmitter and the receiver, and a third, vertical
conducting loop that represents the target conductor. The following discussion is based
on the presentation by Grant and West (1965). The transmitter, receiver, and target
properties will be denoted by the subscripts Tx, Rx, and Trg respectively. The transmitter
and target loops are closed circuits around which current can flow, and the receiver is an
open circuit that does not permit current to flow. The transmitter generates a changing
magnetic field (the primary field) that causes electric potentials (emfs) in the target and
receiver circuits. The emf induced in the target causes current to flow in the target, which
in turn generates a secondary magnetic field. The resultant emf due to the transmitter and
the target is measured at the receiver circuit. R and L give the resistance and self-
inductance of the target respectively. Mj; gives the mutual inductance between any two
coils, where i/ and ;j are two of the three circuit labels. For any pair of circuits, Mj; is
dependent only on the geometry of the two circuits, and Mj; = Mj;. In general, this is true

for any pair of components of an inductively coupled system.
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Tx RX

—

Trg

Figure 2-1: The three circuit model for electromagnetic induction. The transmitter, Tx,
and target Trg, are closed single coils. The receiver, Rx, is an open single coil. The

target has a self-inductance L, and a resistance R.

If the current in the transmitter is [ =L_e, then by Faraday's law, the emfs induced in

the receiver and target circuits due to the current in the transmitter circuit are given by

(Primary) _ . iax
2.5 = —taM 1, ged1x o€ Equation 2-49
and

’ — . fax
£Trg == wMTx TrgITx oe

Equation 2-50

The target circuit also experiences an emf due to its resistivity and self-inductance which

is given by
Ere =—(R+icL )l e Equation 2-51

The total emf in the target circuit must be zero because it is a closed circuit, this gives

Equation 2-52.
Sy =1y T 1 Equation 2-52
. fax . 73 4
= -’aMTx TrgITx oe’ _(R +ld’)1‘rrgoe‘ .
=0
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The above equation can be solved for the target current that is required in order to

calculate the secondary fields at the receiver:

oMyl e (R—ial) Equation 2-53
(R+ia) (R—ial)
Moire | i@L(R-icl) jax
== B 3 p3 ITxoe
L | (R*+0’L?)

The secondary emf due to the target at the receiver is given by

(Secondary) _ _ - iax _
€re =—ieM g L1 €™ Equation 2-54

Secondary fields are usually normalized to the primary field, so that the electromagnetic

response has the form

(Secondary) —_ fax . _
Ere _ {@M 1 gL 115 0€ Equation 2-55

) T _ oM v

Txo

Substitution of the expression for the target current (Equation 2-53) results in



glSecondary) _ Moy Meya, -i(a’L/RXI—i(mL/R)) Equation 2-56
AP My o L 1 +(mL/R )‘
Mo, 1Mo ey (& +ia
ML | 1+a°

where

a=@%.

Tx TrgMTrg Rx

M'I‘xR.xL

Equation 2-56 has two distinct parts, the first part, is only dependent on

the geometry and the size of the three loops (or components of an inductively coupled

a’ +ia . :
system). The second part, Tia 1s called the response function. The response
+a”

function is dependent on the frequency of the transmitter and on the electromagnetic
parameters of the target. The parameter « is called the response parameter. The
behavior of the response function is of interest because it contains the information about
the electromagnetic properties of the target. Figure 2-2 shows a plot of the response

function. In the limit as @ goes to zero (the resistive limit), the response function

£(S¢mndary )

becomes iz, so that ?R‘mis completely imaginary. As « goes to infinity (the
Rx

(Secondary)
inductive limit), the response function asymptotes to 1, and —R‘m 1s purely real. The
Epp 0

real to imaginary ratio for the three-circuit model is equal to @, which is a measure of the
ratio of the self-inductance and resistance of the target. Because « is directly
proportional to the frequency, there is a linear relationship between the real to imaginary
ratio and frequency. Bosschart (1964) used this relationship as a practical definition of

‘thin' conductor behavior.



Response Function for the Simple Induction Mcdel
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Figure 2-2: The in-phase and quadrature components of the response function of the

simple induction model.

The real and imaginary components of a response are also referred to as the in-phase and
quadrature components of the response. The latter terminology will be used throughout

this thesis.

The phase of the target circuit's response is

imaginary component J Equation 2-57

phase = arctan
real component

= arctan(-l—)
a

As a goes to zero the phase goes to 90 degrees and as & goes to infinity, the phase goes

to 180 degrees. It is important to note that the in-phase (real) and quadrature (imaginary)
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currents in this example were confined to the same location in space since the target was
modeled as a two dimensional loop. This is not necessarily true for three-dimensional
conductors. There are two complications that arise from having in-phase and quadrature
currents in different locations. The first is that for dipping targets, the in-phase and
quadrature anomalies may be laterally displaced from one another so that the complex
number that is assigned to such an anomaly may be due to an in-phase response at one
location and a quadrature response at another location. The second complication is due
to the different distances between the receiver and the source of the in-phase and
quadrature currents. The fields from the nearer current will decay at a greater rate than
those from the farther current so that only an apparent in-phase to quadrature ratio can be
measured at the receiver. This also implies that measured phases are not the true phases
of the target current. For this study, all amplitudes, phases, and complex components

were derived using right-hand-triangle trigonometry as shown on Figure 2-3

A

‘Quadrature component;

'In-phase component

Phase \ |
Y i
il ’l—»
Real or In-Phase Axis

imaginary or Quadrature Axis

]

Figure 2-3: Definition of amplitude, phase, and complex components (in-phase and

quadrature) as used in the present study.



Chapter 3

3 Physical Scale Modeling Facility and Procedures

The goal of this thesis was to compare the responses of the moving-source device to
those of the fixed-source device over the same target. The target system consisted of a
vertical tabular conductor (graphite, dimensions 1.5 x 20 x 98.5 cm, conductivity
6.3E10+4 S/m), in a host material. The host material was either free-space (air) or
conductive (brine solution, dimensions 6 x 3 x 1.2 m, conductivity 9.93 S/m). For each
system-host pair, sinusoidal signals of nine different frequencies (f =1, 2, 4, 10, 20, 40,
100, 200, and 400 kHz), and five different target depths (D = 1, 2, 3, 4, and 5 cm) were

used to obtain a suite of anomalies representing different electromagnetic systems.

3.1 Data Acquisition

A Hewlett Packard 3325A function generator controlled the transmitter signal and a 400
MHz Tektronix TDS 430A two channel digitizing oscilloscope was used to record the
pre-amplified receiver signals. The horizontal and vertical location of the transmitter and
receiver coils was controlled by a set of motorized beams and supports. A Quick BASIC
program on a personal computer controlled the whole system. The program allowed the
operator to select the survey type, operating frequency, and survey parameters. The
program prompted the operator to select one of four survey types. For this study only
two surveys were considered, a finite-separation moving-source system (the horizontal
coplanar system), and the conventional fixed-source survey where the receiver traverse
was perpendicular to the front edge of the transmitter. The other systems that could be
modeled were a coincident coil moving-source device and a fixed-source device where
the receiver traverse was parallel to the front edge of the transmitter. The operator
controlled the transmitter frequency, the number of points for the oscilloscope to store

(record length), and the number of readings for the oscilloscope to average together for
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each stored point. The program provided a number of possible record lengths, and
assigned (rather than calculated) a waveform sampling rate. The waveform-sampling rate
was chosen so that there were an integral number of waveforms per record. After the
data were transferred back to the computer, the oscilloscope record was broken into
waveform-length sections that were summed together and divided by the number of
waveforms in the sum. The result was one average waveform from which the in-phase
and quadrature components of the anomaly could be obtained. For this study, nine
frequencies in the range 1 kHz to 400 kHz were used and the sampling rates and number

of waveforms per record are summarized in Table 3-1.

Table 3-1: Integral number of waveforms for a 15000-point oscilloscope record

Frequency Number of Points Per Number of Waveforms Per
(kHz) Waveform Record
1 500 30
2 500 30
4 250 60
10 500 30
20 500 30
40 250 60
100 500 30
200 500 30
400 250 60

The resultant waveforms from the receiver that were acquired by the oscilloscope were
transferred to the program where the in-phase and quadrature responses of the target-
system were calculated by Fourier decomposition. This was accomplished by choosing a
set of angles from 0° to 360° that were assigned to each point on the waveform. The in-
phase component was then just the product of the cosine of the corresponding angle and
the corresponding point on the waveform. The quadrature component was given by the

product of the sine of the corresponding angle and corresponding pointon the waveform.
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This process separated the waveform into two components that were ninety degrees out

of phase with one another, the in-phase and quadrature components.

For the moving-source system, the primary field is constant at the receiver because the
transmitter-receiver separation was constant. This allowed for the primary field to be
automatically subtracted from the measured resultant field leaving the secondary field.
This was done after the data were collected, by subtracting the in-phase primary field
reference signal from the resultant in-phase components. Moving-source data files
included the in-phase and quadrature secondary field responses as well as the primary in-
phase reference. The secondary field components were expressed as a percentage of the

reference signal.

The fixed-source data files contained the raw amplitude and phase measurements of the
resultant field. It was not possible to convert the fixed-source data from resultant to
secondary fields as the survey progressed because, unlike the moving-source system, the
primary field was not constant throughout the survey. For the fixed-source surveys, a
reference signal was not required (instead a separate primary field file was recorded) and

the amplitude and phase were calculated from the in-phase and quadrature values via

Amplitude = J (in - Phase)’ + (Quadrature)l Equation 3-1

and

Phase = arcmn(m) Equation 3-2
In — Phase

A description of the moving- and fixed-source data processing procedures can be found

in Chapter 4.

More detailed information about this modeling facility may be found in the following
Masters theses: Bays (1982), Cummins (1986), and O’Neill (1989).
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3.2 System Stability Testing

To test the stability of the electronics system, the fixed-source system’s receiver was set
at 51.5 cm from the transmitter and five sets of 200 amplitude and phase reading were
taken. Two sets of tests were performed, one at 400 kHz and one at 1 kHz. The time for
200 readings was about 20 minutes at 400 kHz, and about 30 minutes at 1 kHz. The 1
and 400 kHz tests were performed on different days, and were started as soon as possible
after the system was turned on. The start and finish times of each 200-point data set were
recorded to provide an estimate of the stabilization time required. The change in
response with time was attributed to the warming up of the electronic equipment. Plots
of the amplitude and phase as a function of time are provided in Figures 3-1 to 3-4 (note
the different vertical scales). The system drift was defined as the difference between the
first and last amplitude of a straight line fit through the 200-point data set, expressed as a
percentage of the first amplitude on the line. Tables 3-2 to 3-5 summarize the results, but
it is worth noting that even if no warm-up time was allowed, the system drift over the
course of a 200 point survey could be confined to less than 2% of the recorded amplitude.
Since all the data in this study were collected after the system had warmed-up for an
hour, the effect of a system drift was less than 0.2% of the recorded amplitude. This error
was further reduced because the anomaly occurred over approximately one third of the
survey. Errors related to system drift were negligible when compared to the magnitudes

of the anomalies for both moving- and fixed-source data sets.

The phase data for these tests is shown in Figures 3-2 and 3-4. The phase was observed
to be sporadic for 400 kHz until 90 minutes after the system was turned on. At 1 kHz,
the phase was more consistent with time. Neither frequency showed the theoretically
expected zero-phase, though the phases for both frequencies were less than one degree.
In a true free-space, all that the receiver should measure is the primary field and since the

primary field is the phase reference, all measured phases should, theoretically, be zero.
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These phases were measured in the lab rather than a true free-space, so non-zero phase

readings may be due to materials in the floor, or other laboratory equipment.

Free-Space Amplitude versus Time at 400 kHz
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Figure 3-1 : Free-space amplitude versus time at 400 kHz. The decrease in the linear
interpolated line from the start to finish is expressed as a percentage of the first point in

the window.



Free-Space Phases versus Time at 400 kHz
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Figure 3-2: Free-space phases versus time at 400 kHz. The solid lines indicate the

average value of the phase for each time window. Each time window is labeled with the

numerical average.
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Free-Space Amplitude versus Time at 1 kHz
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Figure 3-3: Free-space amplitude versus time at 1 kHz. The decrease in the linear

interpolated line from the start to the finish is expressed as a percentage of the first point
in the window.
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Free-Space Phases versus Time at 1 kHz
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Figure 3-4: Free-space phases versus time at 1 kHz. The solid lines indicate the average
value of the phase for each time window. Each time window is labeled with the

numerical average.



Table 3-2: Amplitude stability tests at 400 kHz in free-space.
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Time Window

Decrease in amplitude

(minutes)’ (%)
4-24 0.9962
Data is not available due to operator error
48-69 0.1248
71-91 0.0523
92-114 0.0333 |

Table 3-3: Amplitude stability test at 1 kHz in free-space.

Time Window

Decrease in amplitude

(minutes)” (%)

3-36 1.6179

38-71 0.2834

72-105 0.1127

108-141 0.0420

! 142-176 0.0212

Table 3-4: Phase stability tests at 400 kHz in free-space.
Time Window Average Phase

(minutes)’ (Degrees/Standard Deviation)
4-24 0.5573/0.0680
Data is not available due to operator error.
48-69 0.4277/0.1000
71-91 0.4934/0.0754
92-114 0.4194/0.0460
Table 3-3: Phase stability tests at 1 kHz in free-space
Time Window Average Phase
(minutes)” (Degrees/Standard Deviation)
3-36 0.6617/0.0736
38-71 0.7428/0.0571
72-105 0.7510/0.0614
108-141 0.7524/0.0602
142-176 0.7912%/

" the system was tumned on at zero minutes

** a straight line was fit through each of the 200 point data sets and the percentage indicates the drop in

amplitude from the start of the line to the end of the line with respect to the first point on the line.




3.3 Target Positioning

Accurate positioning of the target, transmitter, and receiver is very important. Free-space
models were easier to build than models involving the conductive host because in free-
space, it was possible to get close enough to the system to make measurements to within
a tenth of a millimeter. To position the free-space target it was clamped to a wooden
support and a ruler was taped to the top of the target. The coils were brought close to this
ruler and the height of the target support was adjusted. A level was used to ensure the

target was horizontal along its length and width, also ensuring the target was vertical.

Errors in target positioning were larger when the target was immersed in the brine
solution because the measurements had to be made at a distance of 1.5 m. In the
conductive host environment the depth to target errors were minimized by using a
measuring stick that rested on the target support platform near the side of the tank (Figure
3-5). The measuring stick was held upright by a loose loop attached to a horizontal beam
that allowed it to slide up and down freely. To obtain the zero depth position, the target
was lowered until the top of the target was even with the surface of the water, and a mark
was made on the measuring stick at the point where it rested against the horizontal beam.
Prior to this, the target was leveled by adjusting a set of four screws on the corners of the
target platform using the surface of the tank as a reference. The desired depths were
measured and marked on the stick so that they could be used to lower the target to the
proper depth. This method of target depth placement relied on accurate measurements of

the height of the water in the tank.
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Figure 3-5: The measuring stick apparatus used to set the target depth in the conductive
host. The reference marks were spaced I cm apart starting at 0 cm. The 0 cm position
corresponded to the top of the target being level with the surface of the host. Target

depth was set by lining a reference mark up with the top of the stationary crossbeam.

3.4 Preparation of the Brine Solution

The tank of brine had a large surface area, and each day enough water evaporated to
lower the tank level by one or two millimeters. A hose was used to fill the tank up to a
level that was marked on a small stick hanging from the fixed transmitter. The water
level was difficult to measure because there was a meniscus around the measuring device
of about one-millimeter. Adjustments of the water level were also complicated by the
fact that the water expanded as it warmed to room temperature. An accurate
measurement of the water level was important because water level differences of less

than one millimeter were shown to affect the recorded data®. Most of this effect was

* A survey done at the end of one day was repeated early the next without the water level being adjusted.
The difference between the two resultant field profiles clearly indicated the target’s location. This
mndicated that a small difference in the volume of the conductive host could have measurable effects on the
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likely due to the difference the water level made on the height of the coils above it, but
some of the effect may have been due to the change in conductivity because of the

change in concentration of the brine.

The addition of fresh water and the tendency of the brine to concentrate at the bottom of
the tank meant that the solution had to be mixed thoroughly each day. This was
accomplished by attaching a trolling motor to the side of the tank. For consistency, the
tank was stirred for 10 minutes at a high setting and then let to sit for an hour before

measurements were taken.

3.5 Measuring the Conductivity of the Brine Solution

The conductivity of the brine solution was measured with a conductivity cell. The cell
consisted of a small rectangular plastic tank with graphite electrodes at either end. These
electrodes provided laminar current flow through any material placed in the tank. The
tank was partially filled with the solution so that the cross-sectional area of the brine
conductor was 4.1 x 8.1 cm. Non-polarizing electrodes were used to measure the
potential between two points in the solution. Two different potential electrode
separations were used, 19.7 cm and 10.0 cm. Graphite current electrodes at either end of
the tank supplied a current. For currents of 51.59 mA, and 51.56 mA respectively, the
measured voltages were 0.3067 V and 0.1569 V. If there is laminar flow through a
material of constant cross-section, and the potential across a certain length of the
materials measured, then the conductivity of the material is given by the following

equation

response of the target, otherwise the aforementioned surveys should have been identical and their
difference would have been uniformly zero.
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length(meters) . current(Amperes)
cross —sectionalarea(meters’)  potential(Volts)

conductivity(Siemens/meter) =

Using the above equation the conductivities were calculated to be 9.98 S/m and 9.90 S/m,
for an average tank conductivity of 9.93 S/m. These values were in excellent agreement

with earlier work (Duckworth and O’Neill, 1989)

3.6 Modeling Procedures

For the purposes of this study, the height of the transmitter and receiver above the host
remained constant at 1.8 cm for both devices. The height of the small coils was measured
from an annular ring marked around the coil’s copper shield to the surface of the host,
and the height of the fixed loop transmitter was measured from the windings to the
surface (Figure 3-6).

3.6.1 Moving-Source Surveys

Figure 3-7 is a diagram of the model moving-source system. The transmitter and receiver
were 1.5-cm diameter multi-turn ferrite-cored coils shielded from capacitative effects by
a grounded copper shield. The coils were mounted on a rigid support that allowed the
coil separations and orientations to be set manually. The coil separation was set to 20 cm
from centre to centre for all surveys. Figure 3-8 is a diagram of a model moving-source
survey. The model was placed in a central location along a 1-m long traverse. The
resultant field at the receiver was measured at 200 stations with a station spacing of 0.5
cm. The measurement was allocated to the point midway between the transmitter and the

receiver.
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Moving-Source

Transmitter Receiver
A —
Overburden (air) ;t = Height = 1.8 cm
- ) A
Host (air or brine) D = Depth = 1,2,3.4, or 5 cm
Target
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Over\burden (air)
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Host (air or brine) ’ D = Depth = 1,2,3,4, or 5cm
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Figure 3-6: Height measurements. The height of the small coils was measured from an

annular ring marked around the coil’s copper shield to the surface of the host, and the

height of the fixed loop transmitter was measured from the wire windings to the surface

as shown.
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Figure 3-7: The model moving-source system consists of 1.5 cm diameter multi-turn

ferrite-cored coils shielded from capacitative effects by a grounded copper shield.
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Figure 3-8: A model moving-source survey. The model was placed in a central location
along a 1-m long traverse. The resultant field at the receiver was measured at 200
stations with a station spacing of 0.5 cm. The measurement was allocated to the point

midway between the transmitter and the receiver (point ‘o’ on the diagram).
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3.6.2 Fixed-Source Surveys

The model fixed-source system is shown in Figure 3-9. For this system, the same
receiver was used as for the moving-source system, and the transmitter was a horizontal
loop 1-m square. The larger transmitter was necessary because the small moving-source
was not powerful enough to excite the target at the distances required. Also shown in
Figure 3-9 is a diagram of a model fixed-source survey. The target was always placed in
the same location, parallel to, and 60 cm away from, the front edge of the transmitter.
The receiver sampled the fields along a line perpendicular to the front edge of the
transmitter. The vertical components of the resultant fields (primary plus secondary)

were measured at 200 stations, 0.5 cm apart, starting at 19 cm from the transmitter.
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Figure 3-9: The model fixed-source system and survey. The same target and receiver

were used here as for the moving-source device. The target was placed 60 cm from the
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front edge of the transmitter. The survey was 1 m long starting 19 cm from the front edge

of the transmitter. The vertical field was sampled at two hundred stations 0.5 cm apart.
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Chapter 4

4 __Data Processing

This section describes the procedures used in assigning in-phase and quadrature anomaly

values to the moving- and fixed-source data.

4.1 Moving-source Data

Figure 4-1 shows typical in-phase and quadrature moving-source profiles, and the
associated anomalies, for a tabular conductor in free-space (Figure 4-1a) and in a
conductive host environment (Figure 4-1b). Figure 4-1a and 4-1b are for the target at a
depth of D =1 cm, and a transmitter frequency of /=20 kHz. For moving-source
systems the primary field is constant for each reading and deviations from the constant
primary field are due to external sources. In free-space, the profiles tend towards zero
percent as the distance from the target increases. When a conductive host is present, the
response has a finite non-zero value, which appears as a baseline shift for all profiles
taken with the host in place. The baseline shifts due to the conductive host were
measured in the absence of the target. In this study, moving-source anomalies were
defined as the vertical magnitude (measured in percent) from the baseline to the data

point directly over the target as shown by the vertical lines on Figure 4-1.

For the free-space host, the data point directly over the target was the total anomaly since
the baseline was zero percent. The anomaly for the target in the conductive host was the
sum of the magnitude of the host response (with the target removed) and the magnirude
of the response directly over the target in the host. By convention, the measured in-phase
and quadrature components are expressed as a percentage of the free-space primary field.
Figure 4-2 shows the in-phase component of physical model data for the target at 1-cm

depth in a conductive host environment for the full range of model frequencies. The
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Figure 4-1: Examples of moving-source in-phase and quadrature profiles and anomalies
for =20 kHz, D=1 cm, and a coil separation of 20 cm. a) free-space data, b) conductive

host data.

flanks of the 400 kHz data cross over the lower frequency data. This indicates that there
was a problem with the in-phase component of the 400 kHz background data. It appeared
that the reference for the 400 kHz in-phase data was being reset before the survey began.
This effect was repeatable on the modeling system used in this study. Tests on another
modeling system that was controlled by a slightly different version of the Quick BASIC
program did not show the same effect so a software problem is suspected. No obvious
error was located, though there are several hundred lines of code in the program. The
background reading is used to remove the vertical baseline shift due to the primary field.
A better estimate of the 400 kHz host response was possible by extrapolation from the
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in-Phase Component Moving-Source Profiles of Target in Conduclive Host, Depth = 1cm
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Figure 4-2: In-Phase profiles collected over the target at 1-cm depth in the conductive
host. The flanks of the 400 kHz data overlapped the lower frequency data indicating a

problem with the free-space reference at that frequency.

lower frequency host responses. Applying the extrapolated 400 kHz background shift to
the data results in a vertical shift of the data, but since the baseline-to-peak magnitude
does not change with vertical shifts, applying this correction to the data does not affect
the magnitude or sign of the measured anomaly. However, it was the erroneous free-
space reference that caused the problem, so all 400 kHz movingsource data were
normalized to the wrong reference, the magnitude of the error caused by this is unknown.

The quadrature component profiles (Figure 4-3) did not have an unrealistic baseline shift.



Quadrature Component Moving-Source Profiles of Target in Conductive Host, Depth = 1cm
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Figure 4-3: Quadrature profiles collected over the target at 1-cm depth in the conductive
host. The flanks of the 400 kHz data initially overlap the lower frequency data, but

eventually rise above the lower frequency data at far offsets from the targer.

4.2 Fixed-source Data

Figures 4-4a and 4-4b provide an example of the fixed-source data acquired by the
modeling system for the target at a depth D =1 cm and a transmitter frequency of /= 20
kHz. The measured data included the resultant amplitude (Figure 4-4a) and phase



profiles (Figure 4-4b) measured over the host and target, as well as the primary®
amplitude and phase profiles measured over the host alone. The centre of the target was
located 41 cm along the traverse (or 60 cm from the transmitter). The in-phase and
quadrature components of the resultant and primary fields at each station were calculated
first. Then the in-phase and quadrature components of the primary field were subtracted
from the corresponding components of the resultant field. The difference, the secondary
field due to the target, was filtered to remove the high frequency (in a spatial sense) noise
from the data. The filter caused a slight shift in the lateral location of the target®.

Figure 4-4c shows the in-phase and quadrature component profiles of the secondary field
denved from Figures 4-4a and 4-4b. The in-phase and quadrature anomalies are defined
as the vertical distance between the maximum and minimum peaks (See Figure 4-5). An
automatic anomaly picking routine determined this vertical distance by subtracting the
minimum value from the maximum value. A positive anomaly was defined as one for
which the maximum occurred nearer to the transmitter than did the minimum (see, for
example, Figure 4-8g). If the minimum was closer to the transmitter than the maximum,
the anomaly was considered to be negative (see, for example, Figure 4-5). Prior to the
vector subtraction, the primary and resultant field amplitudes were normalized with
respect to the first point on the profile. By normalizing in this way it was assumed that
the secondary field due to the target was negligible at the first point of the survey. To test

whether this was a reasonable assumption, synthetic data were used.

* The “primary” field due to the host alone is not to be confused with the free-space primary field used for
normalization. The host-alone field is required so that the secondary fields from the target may be isolated.

* The lateral location of the target is interpreted to be directly below the inflection point on the secondary
field profiles.
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The synthetic resultant field was calculated by adding the vertical component of the field
due to a square loop transmitter (the primary field) to the vertical component of the field
due to a line current (an approximation to the secondary field). The line current
represented the current that flowed in the upper part of the target along its strike length.

The result of processing the synthetic data with the same technique that was used to

Fixed-Source Ampiitude Data: Target in Free-Space
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Figure 4-4: Fixed-source data for the target 41 cm from the first station (60 cm from the
transmitter), at a depth D=1 cm, with transmitter frequency f=20 kHz: a) resultant and
primary amplitudes, b) resultant and primary phase data, c) complex components of the
secondary field (the vector difference of the resultant and primary fields). Note: the

profiles were smoothed during processing. The smoothing caused a slight lateral shift in
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the data, which was ignored because only vertical magnitudes were important in the

present study.

process the model data is shown on Figure 4-5. The processed secondary field matched
the actual synthetic secondary well. The differences between the actual secondary field
and the processed secondary field were most obvious in the in-phase component profile,
with the largest differences being near the point that was used for the initial
normalization. In the region of interest, however, the agreement was excellent, which
indicates that the assumption had very little effect on the data. For this study the fixed-
source anomaly was defined as the difference between the maximum and minimum
values on the profile. The normalization with respect to the amplitude measured at the
first station was necessary in order to remove the effects of the primary field. Finally the
anomalies were expressed as a percentage of the normalized free-space primary field at

the target location®.

Figures 4-6 and 4-7 show the processed fixed-source model data for nine frequencies and
5 depth values in free-space. Figure 4-6 shows the in-phase component profiles
exhibiting typical line current behavior (for comparison, typical line current behavior is
shown in Figure 4-5). The automatic anomaly picking routine worked well in these
instances. Figure 4-7 shows the quadrature component profiles. As the frequency
increased, the well-defined maximum-minimum response became an asymmetrical
response with an ill defined maximum and a sharp minimum (Figure 4-8a to 4-8¢). This

suggested a transition from the response of a single line current to that of a pair of line

* The normalizations with respect to the first station amplitude were necessary for the conductive-host data
set because the free-space primary field and the conductive host data could not be collected with the same
voltage on the transmitter. This is because the conductive host absorbs the fields more effectively than air.
The voltage necessary to obtain a clean signal over the conductive host is so high that free-space signals
measured with the same transmitter voltage would saturate the pre-amplifier.
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currents of opposite polarity. Synthetic data for such a pair is shown on Figure 4-8.
Moving from profile a) to profile f) demonstrates the effect of increasing the horizontal
distance between two line currents (locations marked with xs) of equal but opposite
current magnitudes. The apparent rightward motion of the anomaly in Figure 4-8a — 4-8f
occurred because only the right-hand current was moved to increase the separation.
Profile g) is that of a single line current. If the separation were increased enough, two
separate anomalies would become apparent. If the second line current has a magnitude
less than the first, the result is an asymmetrical response (Figure 4-9). Comparison of
Figure 4-7a through 4-7¢ to the asymmetrical profile of Figure 4-9 suggests that this
paired type of current distribution was causing the change of the form of the anomaly.

No attempt was made to fit the measured data with these types of synthetic data.®

¢ Duckworth (1972, 1988) has shown that this type of curve fitting is quite accurate in determining the

location of a tabular conductor.
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Figure 4-5: Test of the normalization on the processing routine. Normalizing to the first
point on the profile causes deviation from the true secondary field in the in-phase
component near the first point, but excellent agreement throughout the range of interest.

The quadrature component is unaffected.
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in-Phase Component Fixed-Source Profiles
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Figure 4-6: Processed in-phase component of the fixed-source data showing typical line
current behavior. a) -i) represent data ar 400, 200, 100, 40, 20, 10, 4, 2, and 1 kHz

respectively.
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current pair type behavior. a) -i) represent data at 400, 200, 100, 40, 20, 10, 4, 2, and |
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Synthetic Data for Line Current Pairs
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Figure 4-8: Synthetic data for line current pairs of equal magnitude and opposite
direction. The right hand side line current was placed further to the right for each plot
from aj through f) and the last profile, g), shows just the left hand side line current. The

current locations are marked by xs.
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Synthetic Secondary Fields for a Thick Conductor
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Figure 4-9: Pair of line currents at the same depth. Lefi-hand side line current is in the
opposite direction, and twice as strong as the right hand side line current causing an

asymmetrical response. Line current locations are indicated by xs.

The automatic anomaly picking routine works by taking the difference between the local
maximum and minimum and assigns the anomaly a sign (positive or negative) based on
the relative horizontal location of the two peaks. When the response changed form from
a double to single peaked function, the anomalies had to be picked manually. To do this,
the lateral distance between the minimum and the zero crossing was determined (distance
x in Figure 4-9). The maximum value was assumed to be located an equal lateral
distance to the other side of the zero crossing (Figure 4-9). As shown on Figure 4-9, this

manual method does not guarantee that the location of the maximum will be correct. It
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was only used to provide an estimation of the location of the maximum. The maximum
value was difficult to determine even with this manual method because of the low signal
to noise ratio of the data (Figure 4-7a — 4-7d). Fitting synthetic data to the observed data
could be used to provide a more accurate determination of the maximum, but the low
signal to noise ratio would mean that there would be a range of solutions which would fit
the data. Each solution woulid have a different maximum value, and the errors would not

be reduced enough to warrant this time consuming process.
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5 Results

As discussed in Chapter 4, a target’s anomaly is expressed in terms of an in-phase and a
quadrature response. The in-phase and quadrature response pair is plotted as a point on
an Argand complex space diagram where the in-phase axis is horizontal and the
quadrature axis is vertical (Figure 5-1). The vector that represents the anomaly is drawn
from the origin to the plotted point. The amplitude of the anomaly is the length of the
vector, and the phase of the anomaly is the angle between the in-phase axis and the

vector.

For a specific target depth and transmitter frequency, the anomaly due to the target
located in a conductive host usually has a different amplitude and phase than the free-
space anomaly for the same target depth and transmitter frequency because the host
changes the strength, phase, and geometry of the secondary field radiated by the target.
To discuss and compare the effects of a conducting host on each of the electromagnetic
devices studied in this thesis, the amplitude enhancement ratio (AER) will have to be
defined. The amplitude enhancement ratio (AER) is the ratio of the total amplitude of the
conductive host anomaly (OC on Figure 5-1) to the total amplitude of the free-space
anomaly (OF on Figure 5-1). This gives the factor by which the free-space amplitude
must be multiplied to get the conductive host amplitude. An AER greater than one means
that enhancements occurred due to current gathered from the conductive host.
Attenuations are indicated by AERs less than one. In section 5-2 it was necessary to
investigate the AERs of the in-phase and quadrature components of the response
separately. For this purpose, the AER of the in-phase component is defined as rC/rF, and
the AER of the quadrature phase component is defined as iC/iF. Unless otherwise
specified, ‘AER’ will refer to the total amplitude ratio OC/OF.
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Figure 5-1: The in-phase and quadrature anomalies are plotted on the horizontal and
vertical axis of an Argand diagram. By convention, the axes are both negative. This
Jfigure shows examples of two such anomalies, one for the target in free-space and one for
the same target in the conductive host. The amplitude of the anomaly is the distance from
the origin to the plotted point (in-phase, quadrature), and the phase is the angle between

the horizontal and the vector.

It 1s important to note that even though moving- and fixed-source anomalies are
expressed as a percentage of a free-space primary field, there is no basis for direct

comparison of an anomaly measured by one device to an anomaly measured by the other



device. This is because the free-space primary field used to normalize the moving-source
data is the field that the receiver measures in the absence of the target and host at any
location, while for the fixed-source data, the field that is used for the normalization is
arbitrarily chosen. For this study, the free-space primary field that was used to normalize

the fixed-source data was the field that was measured on the surface at the target location.

Four data sets were collected for this thesis, two for each device (moving- and fixed-
source), one for each host (free-space and conductive). These data sets are presented on
Argand diagrams (Figures 5-2, 5-4, 5-7, and 5-8). These diagrams indicate the effect of
increasing both the target depth and response parameter (the response parameter as
defined below was varied by changing the transmitter frequency) of the system. Lines of
constant target depth are labeled with the dimensionless parameter gp where g is the
dimensionless ratio of depth to a significant length, L, and the subscript D indicates the
depth of the top of the target below the surface of the host in centimeters. L is defined as
the coil separation for the moving-source device (by convention), and the strike length of

target for the fixed-source device (after Lajoie and West, 1976).

Lines of constant response parameter are labeled a, where a=ctual, (o, t, and u are the

conductivity, thickness, and magnetic permeability of the target, @ is the angular
frequency of the transmitter signal), and the subscript f'is the frequency of the transmitter
signal in kilohertz. The subscripts D and f are only included to aid the comparison of the
moving-source to the fixed-source data Since @&moving-source) do€s NOt €qual @yyiced-source) and
ED(moving-source) 40€S NOt equal gpfired-source) €ven though the frequency f, and the depth D,
may be the same for both devices. Unless otherwise indicated, all the response
parameters were calculated using the manufacturer’s value for the conductivity of the

graphite target.



5.1 Moving-Source: Target in Free-Space

Figure 5-2 shows the free-space moving-source data that were collected in the present
study. For low response parameters the responses were mainly in the quadrature phase.
As the response parameter increased, the response of the target became mainly in-phase
(this is indicated by the clustering of responses near the in-phase axis on Figure 5-2).
This behavior is consistent with that of the simple induction model discussed in Section
2-3. The decrease in amplitude that caused the data to appear to curl under at the two
highest response parameters (@200, and aygp) Was not consistent with thin conductor
theory. It has not been determined whether this was caused by the target no longer
behaving as a thin conductor, or by an error (or errors) in the Quick BASIC program that
controls the modeling system (see Chapter 4.1). The skin depth of the graphite at 100,
200, and 400 kHz is 6.34, 4.48, and 3.17 mm respectively and the graphite is 1.45 cm
thick so it is reasonable to assume that the target will behave as a thick conductor at these

high frequencies.

To determine whether the modeling system was giving reasonable results, a comparison
was made to earlier work by Nair et al. (1968). Figure 5-3 shows moving-source data
from the present study, as well as data from Nair et al. (1968). The relative position of
the arcs of constant depth to coil separation for each of the data sets is in agreement from
o2 to as00- The agreement is evidenced by the fact that the depth to separation ratio
increases as the distance from the origin decreases for the combined data-set. For low
response parameters (NVair I, a;, and Nair 2), there is little agreement as the resuits from
the present study have larger amplitudes than the Nair et al. data. The radial lines of the
data from the present study are labeled, as on Figure 5-2, by a; and the radial lines from
Nair et al. are labeled Nair n, where the n indicates the order (from left to right) in which
the radial lines occurred. The actual values of the response parameters are presented in
column 2 of Table 5-1 in the order that they occurred. It is clear from column 2 that the

response parameters of the two data sets are not consistent. Bold numbers in Table 5-1,



column 2, indicate the response parameters from the present study that are out of order

when compared to the Nair et al. data. This indicates the difficulties of obtaining

accurate values of the conductivity factor of the response parameter. The ayvalues in

Argand Diagram of Moving-Source Data for the Target in Free-Space
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Figure 5-2: Argand diagram for the target in free-space surveyed by the moving-source

device. The response parameter ayincreases along the arcs in a clockwise sense. The

depth to separation ratio increases towards the origin along the radial lines. As the

response parameter increases, the responses had a smaller quadrature component and a

larger in-phase component. The curling under for asgg, and augg is not consistent with

thin conductor theory.



column 2 of Table 5-1 were calculated based on the manufacturer’s value for the

conductivity of the graphite target (6.3x10° S/m, o,). Estimates of the conductivity of the

target were made for the ; to ayp data using the Nair et al. results. The average target

conductivity (based on data from the six lowest frequencies) was found to be 1.54x10°

Results from the present study and Results from Nair et al. (1968)
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Figure 5-3: Data from the present study and data from Nair et al. (1973). For a: to asgp

the arcs of constant depth to coil separation ratios are in relatively good agreement,

increasing towards the origin for the combined data-set. The actual values of the
response parameters are given in Table 5-1. Nair et al.’s results suggest the

manufacturer's value for the graphite conductivity of the present study was too low.
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S/m (o), resulting in the response parameters shown in Column 3 of Table 5-1. The bold
values for 1, 2, 4, and 10 kHz show response parameters which are out of order with
respect to the Nair et al. Data. This indicates that this average conductivity was not a

good estimate. The @20 and ayy conductivities that were included in the average were

Iable 5-1: Response Parameters from Figure 5-2 (as they appear from left 10 right)
calculated using o, the manufacturer’s value for the conductivity of the graphite, o, the
average value for the six lowest frequencies used in the present study estimated from
Nair’s data, and o, the average value for the four lowest frequencies used in the present

study estimated from Nair's data.

Response | o,tuol OptpoL Gctuol
Parameter | 6,=6.3x10° | 5,=1.54x10° | 6.=1.02x10’
Label S/m S/m S/m
Nair 1 1.6 1.6 1.6

ay 1.44 3.53 2.34
Nair 2 2.6 2.6 2.6

[ 2 2.89 7.08 4.67
Nair 3 33 3.3 3.3
Nair 4 7.9 7.9 7.9

s 5.77 14.10 9.34
Nair 5 10.5 10.5 10.5
Nair 6 15.8 15.8 15.8
o 14.4 35.3 234
Nair 7 31.6 31.6 31.6
Q20 28.9 70.5 46.7
Lo 57.7 141.0 93.4
Nair 8 316 316 316
100 144 353 234
200 289 705 467
QLa00 577 1410 934
Italics indicate Nair et al. results.

Bold indicates results from the present study that are out
of order with respect to Nair et al.
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difficult to estimate due to the lack of data between Nair 7 to Nair 8. If the conductivities
estimated by using Nair 7 and Nair 8 were not included, the average conductivity became
1.02x10° S/m (o) and the response parameters for this conductivity are shown in column
4 of Table 5-1. It appeared that the lower average conductivity (1.02x 10° S/m) was
more reasonable than the manufacturer’s value of 6.3x10* S/m. Without a direct
measurement of the graphite’s conductivity, it is not possible to say which response

parameters, Nair I to Nair 8, or «; through ayg, were more accurate.

5.2 Moving-Source: Target in a Conducting Host

Figure 5-4 shows both the free-space and the conductive host data on the same Argand
diagram. Because the target, the transmitter frequencies, and the target depths were the
same, the arand gp values did not change with the introduction of the conductive host. It
1s important to remember that responses presented in Figure 5-4 represent the response of
the target alone. The background response of the host has been removed. Comparison of
the two sets of data shows that the host had little effect on the data from «; to as. The
physics of the situation would suggest that any host with a finite conductivity should
affect the response of the target, though, for low frequency and low host conductivity, the
magnitude of the effect would be very small. The lack of any measurable effect on the
low response parameter data may be explained if the effect was too small for the system
to measure, or if experimental errors masked the host effects by causing errors of the
same magnitude but opposite sense to that of the host responses. Though the same coils,
target, target depths, and coil separations were used to obtain the conductive host data
and the free-space data, some errors arose because the target and coils had to be moved
between the free-space modeling apparatus and the conductive host apparatus. The
difficulties in making accurate position and depth measurements for the target in the
conductive host environment have been discussed previously in Section 3-3, and will not

be repeated here. However it was unavoidable that the depth of the target and the height
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of the coils were slightly different for the target in each host. These differences are
thought to be the cause of a repeated pattern seen on Figure 5-5 (maximum AER at 2 cm
or 3 cm, minimum AER at 4 cm). These errors would have been minimized if the

conductive host could have been introduced into the free-space system after the free-

Comparison of Moving-Source Data in Free-Space and over a Conductive Host
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Figure 5-4: Moving-source Argand diagrams for the target in a free-space and in a
conductive host. All the anomalies shown are due to the target. Primary and
background fields due to the host have been removed. The differences shown are due to
changes in the induction and conduction currents in the target due to the different hosts.

The second dispersion that begins at ayy was unexpected.
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space data had been collected. This wasn’t practical because several thousand liters of
brine were used to model the conductive host, so the target, transmitter, and receiver had
to be moved between the two systems. Though no investigation into the effect of small
changes in depth was performed, an estimate of the effect may be obtained by using a
linear interpolation between the points on the radial lines of Figure 5-4. Error bars of =
1% could easily be generated if the difference in the depth was actually +1 mm from
what it was supposed to be. It is possible that the depth discrepancies combined with coil

height discrepancies could have caused a height difference of about 1-mm.

Another possible source of error related to the repositioning of the model, and could have
been caused by the orientation of the transmitter and receiver coils. A leveling device
was used to orient the transmitter and receiver horizontally, but errors were inherent in
this method since determining when the coil was level relied on centering the air bubble
in the window of the leveling device. If the transmitter-target orientation had been
slightly different for the free-space system than it was for the conductive host system, the
induced fields would also have been different. Also, if the curvature of the resultant
electromagnetic field lines at the receiver is strong, a tilted receiver will measure fields
that are larger or smaller than the true vertical component that was desired. In summary,
height discrepancies, coil positioning errors, background value errors, and the large skin
depth of the host may have combined to cause the lack of host-related response at and

below 4 kHz.

From a0 to a2, the anomaly vectors for the target in the conductive host were rotated
counterclockwise with respect to the corresponding anomaly’ vectors for the target in

free-space. At these response parameters (a1 and ot20) there was little change in

7 For the same target at the same depth and with the same transmitter frequency, corresponding anomalies

were generated by the change of the host material.
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anomaly amplitude. From oo to oo the counterclockwise phase rotations became larger
and the anomalies due to the target in the conductive host had larger amplitudes than the

corresponding anomalies for the target in free-space.

The response parameter for a frequency of 40 kHz (c4) marks the transition between the
first dispersion® (a; to o) and the second dispersion (oo to aag0). Duckworth and
Krebes (1997) measured a double dispersion with earlier physical modeling but the
author is unaware of any other work that has shown a double dispersion. Duckworth and
Krebes postulate that a double dispersion may occur if the target and host conductivities
are such that the target response approaches its inductive limit as frequency increases
before the host response has been able to move away from its resistive limit. That the
host alone was responsible for the second dispersion was supported by the fact that the
onset of the second dispersion occurred at the same frequency for different target

conductors.’

Physical scale modeling results from Gaur and Verma (1973) showed the effects of
varying the depth of the target and the conductivity of the host. Direct and quantitative
comparisons can not be made between Gaur and Verma’s work and the results of the
present study because of the differences in the target response parameters, host response
parameters, and transmitter-receiver heights. In addition, Gaur and Verma’s
measurements and definitions of the anomaly were very different than those used in the
present study. In Gaur and Verma’s study, the primary field over the host was removed

before the target was surveyed, and the anomaly was expressed as a percentage of the

® A target’s dispersion is the locus of the tip of the anomaly vector as the response parameter is varied.

® The second dispersion is only obvious because the target is present, and in this sense, it is not solely

dependent on the host material.



field above the host. Even with these differences, there is good general agreement
between the two sets of data. Gaur and Verma described the expected decrease in the
target anomaly magnitude with depth in both a free-space and conducting host. They
found that the anomaly magnitude decreased faster in the free-space environment than in
the conductive host environment. Data from the present study support this observation.
The bar graph of Figure 5-5 shows the relationship between the AERs and target depth
and transmitter frequency (the horizontal line is at a ratio of one and indicates the free-
space response). When enhancement occurs (for response parameters from oo to ttago),
the AER tends to increase slightly with depth. Since the height of each bar in Figure 5-5
represents the ratio of the conductive host anomaly magnitude to the free-space host
anomaly magnitude, a slight increase of this ratio with depth would imply that the free-
space anomaly magnitudes were decreasing faster with depth than the corresponding
conductive host anomalies. For response parameters o; through aao, the host did not
significantly affect the amplitude of the response. Table 5-2 provides the measured

AERs for the moving-source system that are shown in Figure 5-5.

The increase in AER with depth may be explained physically by considering the
geometry of the induced and gathered (conducted) currents in the target. Induced
currents have the form of vortices while gathered currents tend to be more unidirectional.
The field due to unidirectional currents tends to decay less rapidly than the field due to
vortices because a vortex consists of circulating currents whose fields partially cancel one
another because the currents generating the fields are not unidirectional. The AER is a
ratio of the conductive host response to the free-space response. The conductive host
response is due to the contribution of induced currents and conduction currents, while the
free-space response can only be due to induced currents. Thus, the free-space response
can be expected to decay faster with depth than the conductive host response so the AER

would be expected to increase with depth.
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Figure 5-6 is a reproduction of the in-phase and quadrature AERs for the horizontal
coplanar coil configuration from Gaur and Verma’s paper. Gaur and Verma’s definition
of AER is the same as given at the beginning of this section except that they calculated
the AER for the in-phase and quadrature responses separately. Although in- phase and

Moving-Source Enhancement Ratios versus Frequency and Depth
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Figure 5-5: Amplitude enhancement ratios for the moving-source device. The horizontal
line indicates the free-space response at AER = 1. Enhancements and attenuations are
not significant for response parameters of a; through auo. There is a slight increase in
AER with depth for a;po, through aue indicating that the free-space anomaly magnitudes

decreased faster with depth than the conductive host magnitudes.
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quadrature AERs from the present study are also shown on Figure 5-6, quantitative
comparisons may not be made between the two sets of data because Gaur and Verma
used a different normalization, and considered different host and target response
parameters, and different geometries. The electromagnetic and survey parameters of

Gaur and Verma’s study are provided along with the same data for the present study in

Table 3-2: Measured AERs for the Moving-Source Device.

D=1cm |D=2cm {D=3c¢m [D=4cm |(D=35cm
f=1kHz 1.0029 0.9836 0.9933 0.9389 0.9911
f=2kHz 0.9857 0.9929 0.9821 0.9662 0.9880
f=4kHz 0.9851 0.9887 0.9813 0.9658 0.9673
f=10kHz 0.9934 0.9990 0.9951 0.9781 0.9802
f=20kHz 1.0043 1.0090 1.0044 0.9915 0.9924
f=40kHz 1.0259 1.0311 1.0245 1.0154 1.0182
f=100kH=z | 1.1088 1.1248 1.1243 1.1060 1.1308
f=200kHz | 1.2203 1.2370 1.2400 1.2293 1.2495
f=400kHz | 1.3101 1.3368 1.3386 1.3146 1.3297

the table on Figure 5-6. All the data on Figure 5-6 were collected at 100 kHz. Gaur and
Verma describe the variation of the quadrature AER with depth as oscillating. The
overall appearance of the data indicates an increase in quadrature AER with depth,
though there are ranges of depths for which AER decreased with depth. The quadrature
AERs of the present study showed either very little depth dependence for low response
parameters, or a decrease in quadrature AER with depth for high response parameters.
Coincidentally, the range of target depths used in the present study (indicated by the box
on Figure 5-6) lie within the range of depths that show either a plateau, or a decrease in
quadrature AER with depth. The character of the in-phase AER versus depth plots of the
present data is similar to that of Gaur and Verma, as both tend to increase with depth
when significant enhancement is present (i.e. if the in-phase AER is greater than one).

Gaur and Verma did not report a second dispersion in their data. The fact that the total
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AER increases with depth while the quadrature AER decreases with depth is a

consequence of the vector nature of the anomaly.

Resuits from Gaur and Verma. (1973} and the Present Study
18 .

* Author Nichols  Gaur and Verma .
. Target Conductivity 6.3E4 S/im 2.63E4 S/m
16— ' HostConductivity 9.93S/m 6.66 S/m -
Tx-Rx Height 1.8cm 17 cm
- Tx-Rx Separation 20cm 50 cm
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Figure 5-6: In-phase and quadrature amplitude enhancement ratios reproduced from
Gaur and Verma (1973), and results from the present study for the same frequency.
Experimental differences don 't allow for quantitative comparison (see the table on the
figure), but there is good qualitative agreement with regards to the change in the in-

phase and quadrature component AERs with depth.

Hanneson and West (1984) used numerical modeling to calculate the response of a thin
plate in a conducting half space. Their theoretical results did not predict a second
dispersion, possibly because their program could not handle high conductivity contrasts
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between the host and target. Hanneson and West’s numerical solutions were found to be
unstable for a,/ar>64, where o, and a, were the response parameters of the target and
host respectively. The o /ay ratio of the target and host used for the present study was
much higher than 64, at 460.

5.3 Fixed-Source: Target in Free-Space

Fixed-source device responses are more complicated than moving-source responses
because the primary field at the receiver varies along the traverse, and it must be removed
from the data in order to obtain the secondary field. In full scale field surveys, the
primary field cannot be measured, so it must be calculated to remove it from the
measured resultant field. The method used to remove the primary field will affect the size
and shape of the secondary field profile. Physical scale modeling does allow direct
measurement of the primary field so that a simple vector subtraction of the primary field
from the resultant field can be used to extract the secondary field in this case (see Section
4-2). Secondary field profiles obtained with the model system and processed in this way
had predictable shapes (similar to those of line currents) and had good signal to noise

ratios.

Aside from the variable primary field, several other factors can influence the response of
the fixed-source system to a target in free-space. Bosschart (1964) grouped the factors
into three categories: 1) factors that affected the geometry of the system with the
frequency and electromagnetic parameters held constant; 2) factors that affected the
response parameter of the target through varnations in frequency, and electromagnetic
parameters; and 3) factors related to the dimensions of the target, the transmitter, and to
the location of the traverse with respect to the target. Category 1 factors change the
shape of the anomaly, while category 2 and 3 factors alter the relative amplitudes of the
complex components of the anomalies. Category 2 factors alter the amplitude relations in
a way that is determined by the electromagnetic parameters alone, while category 3
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factors cause amplitude variations that could mislead an interpretation because they are
not related to the electromagnetic parameters of the target. Due to the large number of
variables, and limited modeling materials, there was no attempt made to reproduce

published results in the present study.

Lajoie and West (1976) used a numerical model to investigate the effect of a conductive
host on Turam'’-type fixed-source devices. They began by investigating the response of
a plate in the field of an alternating dipole source in free-space. In their model, they
varied the response parameter of the plate and found that the induced currents were
initially mainly in the quadrature phase, the currents then progressed to mainly in-phase
as the response parameter increased. This effect was also observed in the present study
as shown by Figure 5-7 even though the transmitter is now a large square loop. The
irregular behavior from ay to a4g0, and the lower amplitude of the 400 kHz data were not
expected based on the indications provided by the simple induction model of Section 2.3.
This unexpected behavior is likely due to the transition from thin to thick conductor
behavior as discussed in Section 4.2. The values of the response parameters «; through

og0 are provided in Table 5-3.

The lack of consistent thin conductor behavior means that Figure 5-7 will not be useful
for general interpretations even if the transmitter and target system in question is
expected to have a geometry similar to that used in the present study. The early onset of

thick conductor behavior means that the free-space anomalies of Figure 5-7 are mainly

'° The Turam device consists of a large transmitter, either a large rectangular loop or a grounded wire, and
a pair of receivers which measure the differences in amplitude and phase of the resultant signal along a
survey. The survey is usually at right angles to the near edge of the transmitter. The Turam-type device
discussed here differs from the proper Turam device in that only a single receiver is used to record the

fields along the survey.
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controlled by the dimensions and electromagnetic parameters of the graphite target.
Because of this, the anomaly index diagram presented in Figure 5-7 for the fixed-source
device in free-space should not be used for interpretation of data, unless the full scale

Argand Diagram for the Fixed-Source Device: Target in Free-Space
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Figure 5-7: Argand diagram for the target in free-space surveyed by the fixed-source
device. These responses are consistent with those of the simple induction model in that
as the response parameter increased the response had a smaller quadrature component
and a larger in-phase component. The irregularities that occur from ag to @so appear
to indicate that the target has begun to respond as a thick conductor as described in

Section 4-2.
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target-transmitter system have the same geometry and relative dimensions as those that

were used in this model study.

Table 5-3: Response parameters for the fixed-source target.

Frequency (kHz) | Response Parameter, as

1 7.105

2 14.21

4 28.42

10 71.05

20 142.1

40 284.2

100 7105

200 1421

400 2842

5.4 Fixed-Source: Target in a Conducting Host

Figure 5-8 shows both the free-space and conducting host anomalies of the present study
on the same Argand diagram. As with the moving-source data shown in Figure 5-4, the
fixed-source data showed a double dispersion. The second dispersion of the fixed-source
data began at a lower frequency (4 kHz (a) rather than 40 kHz (c40)) and the
enhancements were much larger than for the moving-source device (compare Figure 5-8

with Figure 5-4).

Lajoie and West (1976) used a numerical model to investigate the effect of a conducting
host on a target's fixed-source response. In their investigations they kept the target
response parameter constant and varied the host’s response parameter through its
conductivity. In the present study, the transmitter frequency was used to vary the

response parameters of the system while both the target and host conductivities were
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fixed, with the result that both the target and the host response parameters were affected.
This difference limits comparisons with the work of Lajoie and West to the variation of
the response versus depth. Their data reduction procedure, however, was identical to that
used in the present study. Lajoie and West employed only a single increase in target

depth in their numerical model. This showed that amplitude enhancements and phase

Comparison of Fixed-Source Data for the Target in Free-Space and in a Conductive Host
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Figure 5-8: Fixed-source Argand diagrams for the target in both a free-space and

conductive host. All the anomalies shown are due to the target alone. The primary and
background fields due to the host have been removed. The differences shown are due to
changes in the induction and conduction currents in the target due to the different hosts.

The second dispersion that begins at ay was unexpected.
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rotations increased with depth. Their conclusions to explain these results were that: 1) as
depth is increased, the half space currents are greater; 2) the conduction currents are
unidirectional, whereas the induction currents are vortices, so the amplitude of the
conduction current decreases as the inverse of the distance from the currents rather than
the inverse cube of the distance as for the vortex currents, and 3) as the distance to the
surface was increased, there was more regionally induced current to gather because there
was a greater volume of the host above the target from which to channel current. A direct
comparison of the enhancements from Lajoie and West's paper is not possible because
the target conductances and host conductivities used did not correspond to those of the

present study.

The amplitude enhancements versus depth observed in this study are shown on Figure 5-
9. Contrary to Lajoie and West's predictions (for which data were only presented for two
models of different depth), the enhancements in Figure 5-9 tend to decrease with depth.
This implies that the conductive host responses decreased faster with increased depth
than the free-space responses. Table 5-4 contains the measured AERs for the fixed-

source device.

The decrease in AER with depth may be explained physically by considering the
geometry of the induced and gathered currents in a manner similar to that used to explain
the increase in AER with depth for the moving-source device. The currents induced
directly into the conductor by the fixed-source are still assumed to have the form of
vortices, and the gathered currents are still assumed to be unidirectional. To argue that
the fixed-source AERs should decrease with depth, the conductive host response
(numerator) must decrease with depth faster than the free-space response (denominator).
This can be accomplished if there is sufficient attenuation of the primary and secondary
fields due to the conductive host. This implies that attenuations due to the host are not as
important to moving-source device responses as they are to fixed-source devices. This

seems reasonable since the fixed-source primary field must travel further through the host



than the moving-source primary field. This implies that the distance of the target from
the transmitter would also affect the AER.

Lajoie and West’s results were for two models where the target was buried to two
different depths. The depth to strike-length ratio was 0.1 for the shallow target, and 0.3
for the deeper target. For the sake of comparison, the depth to strike-length ratios used in
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Figure 5-9: Amplitude enhancement ratios for the fixed source device. The horizontal
line indicates the free-space response at AER = 1. Enhancements were apparent for all
response parameters. The decrease in AER with depth that was noticeable for high
response parameter data indicates that the conductive host response decreases faster

with depth than the free-space response.
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the present study were much smaller, in the range 0.023-0.056. Lajoie and West’s
transmitter was a rectangle with dimensions 1Lx2L, L being the strike length of the
target. The transmitter was oriented so that the long edge was parallel to the strike of the
target. The host conductivity was never greater than SE-3 S/m, which means the
resistivity was never less than 200 Qm. If the model of the present study was scaled by a
factor of 1:1000, and a full scale frequency of 500 Hz is assumed (after Lajoie and West)

Table 5-4: Measured AERs for the Fixed-Source Device

D=1lcm {D=2cm [(D=3c¢cm |[|D=4cm [D=5cm

f=1kHz 1.0926 1.1446 1.1199 1.1191 1.1184

f=2kHz 1.1434 1.1794 1.1890 1.1721 1.1574

f=4kHz 1.2045 1.2393 1.2412 1.2228 1.1963

f=10kHz 1.4104 1.4739 1.4619 1.4407 1.4302

f=20kHz 1.8772 1.9435 1.9286 1.9047 1.9182

f=40kHz 3.0777 3.1057 3.0769 2.9734 2.9414

f=100kHz | 4.8709 4.9845 4.8353 4.7025 4.6534

f=200kHz | 5.5445 5.3832 4.9309 5.0104 5.0039

f=400kHz | 6.2868 6.2316 6.0935 5.8488 5.6793

the full-scale host conductivity would be between 2x 10~ S/m and 8 S/m for 1 kHz and
400 kHz respectively. Their target conductance was varied from 7 to 1000 S (compared
to 913 S for the present study). The lower conductivity of the host matenal used in the
study by Lajoie and West may have reduced attenuations to a level where they did not
cause a decrease in AER with depth as was measured in the present study with the target

buried in a much more conductive host.
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Chapter 6

6 __Comparison of the Effect of a Conductive Host on Moving- and Fixed Source

Devices

The high conductivity contrast between the target and host caused the double dispersion
seen on both the moving- and fixed-source anomaly index diagrams. Earlier studies by
Duckworth and Krebes (1997) indicated that the magnitude and the frequency of onset of
the second dispersion was independent of the target. Because the second dispersion
occurred at different frequencies for the moving- and fixed-source devices, it is believed
that the size and shape of the transmitter may determine the character of the host
response. This is not surprising because the free-space target responses for each device
were also quite different. When the target was in free-space, the moving-source device
data behaved as those from a thin conductor until the frequency reached at least 100 kHz
(indicated by the form of the Argand diagram). It could not be determined whether or not
modeling system problems caused the deviation from thin conductor behavior (the
‘curling under’ of the responses on Figure 5-1) above 100 kHz. Thick conductor
behavior would be expected since the skin depth for graphite was much smaller than the
thickness at these frequencies, but errors in the reference measurement could also affect
the size of the anomaly. The form of the fixed-source anomalies began to change from
thin to thick conductor at a frequency as low as 20 kHz. Studies with different shaped
transmitters of equal cross sectional area, or similarly shaped targets of different size may

clarify whether the size or the shape of the transmitter is more important.

Published results indicate that both devices should have AERSs that increase with depth
(Gaur and Verma, 1973; Lajoie and West, 1976). The results of the present study are in
agreement with this for the moving-source device, but not for the fixed-source device.
By considering the numerator and denominator of the AER it was found that the decrease

in AER with depth for the fixed-source device could be explained if attenuations due to
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the conductive host were more mmportant for the fixed-source device than for the moving-
source device. This seemed reasonable because the fixed-source primary field has to
travel farther through the host than the moving-source primary field does. Lajoie and
West’s results were obtained by numerical modeling of a target in a host that had a
conductivity of 5x10~ S/m. The conductivity of the brine solution in the present study
was 9.93 S/m. When this is converted to the full scale value using a linear scale factor or
1:1000 and a full scale frequency of 500 Hz (as Lajoie and West), the range of full scale
host conductivities that this corresponds to is 2x107 S/m to 8 S/m for model frequencies
1 and 400 kHz respectively. It is believed that the higher conductivity host caused
greater attenuation of the measured fields, which in turn, caused the fixed-source AERs
to decrease, rather than increase, with depth. This implies that the behaviorof the AERs
may also depend on the distance of the target from the source for the fixed-source device.

The large enhancement of the fixed-source data was due to the fact that the fixed-source
transmitter was so much larger than the moving-source transmitter. The larger
transmitter was capable of inducing currents in a larger volume of the host. Since the
enhancement of the target response is related to the amount of conduction current that
passes through the target, a larger volume of current carrying host surrounding the target
will cause the enhancement to be stronger. It would be interesting to develop a numerical
method that could handle conductivity contrasts similar to those of the present study to

see if second dispersions develop.
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Chapter 7

7 _ Conductive Sphere in a Dipole Field

An attempt was made to model the response of a conductive sphere in free-space to a
vertical-coaxial coil (horizontal dipole) moving-source configuration. The goal was to
reproduce the results of Lodha and West (1976). Lodha and West used the theory that
was developed by Wait (1953) as it was presented in Grant and West (1965) to calculate
the profile that would have been observed on a traverse that passed directly over the
centre of the sphere. Best and Shammas (1979) had reproduced Lodha and West’s results
and extended them to include the response for traverses that did not pass directly over the
centre of the sphere. The goal of the present work was to write a program that could
model the free-space sphere and then extend that program to model the sphere under a
conductive overburden. This chapter describes the unsuccessful attempt of the author to

reproduce the published resuits of Lodha and West, and Best and Shammas.

7.1 Theory

In spherical coordinates, an arbitrary dipole moment vector may be expressed as the sum
of three orthogonal component vectors, one radial and two transverse. The following
expressions (Grant and West, 1965) describe the secondary fields emitted by the sphere

due to the presence of any of the component dipoles.

Secondary Field Components Due to a Radial Dipole

o 2n+1 X
H® = _?r_eiu 3 (x, +i¥, )2 n(n +1)P.(cos 9) Equation 7-1
v 4

n=l (""o )" .
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= 2n+l
HS = Ze oS (x, +i¥ )2 Pi(cos 9
g 4176 ;( n z n)(mr\.z n n (COS )

HP =0

Secondary Field Components Due to a Transverse Dipole in the same axial plane as the

receiver (@ —¢, =0).

An+l
a ad

HO =T g (x 4i¥, :
r 4ﬁe ;( ﬂ+l R)(rrcro-

x 2n+l
HY) = —%e""Z(Xn +iY, )_3_[an (cos .9)-ﬁcot P! (cos ..9):‘

o ("ro )n-v-l

nP'(cos 9) Equation 7-2

HY =0

Second. Field Components Due to a Transverse Dipole Perpendicular to the axial

plane of the receiver (p— ¢, = z/2).

sy — gg(s)
HrS)_HS =0 Equation 7-3

s) __ Mo iuv : a*™! n 1
HY) =——2e“% (X, +iY,) ——csc 9P (cos I)
4r . n+1

The function (X,+iY,) is called the response function and is given by
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[%—(’”’l)ﬂ]lnvz(ka)* wkal, (ka) Equation 7-4
{x, +ir =43

(& + ny)l,,,,z (ka)+ u,kal’,,, (ka)

2

The symbols are defined in Table 7-1.

The field for an arbitrarily oriented dipole may be calculated by decomposing the
arbitrary dipole into its three spherical components, calculating the secondary fields due
to each of the component dipoles, and summing the corresponding fields. The field that
would be measured by a vertical coaxial receiver is then determined by the sum of the

parts of the component fields that pass perpendicularly through the receiver coil.

7.2 Modeling a Vertical Coaxial EM System

A vertical coil transmitter produces a horizontal dipole moment that can be decomposed
vectorally into three components in the spherical coordinate system, one radial
component, and two transverse components. In the case of geophysical surveys that pass
over the centre of the sphere, the horizontal dipole moment vector has only a radial
component and a transverse component in the plane of the survey line and centre of the

sphere.

The secondary fields generated by the radial and transverse components of the
transmitting dipole moment, measured at r, are given by Equations 7-1 and 7-2
respectively, where m,, and m 4 are the radial and transverse components of the total
dipole moment m. For the purposes of the program, the m has been set to one, because it

will be eliminated during normalization.

For the receiving coil, a vector sum of the secondary fields generated by the two
component dipoles m,, and m g is the total secondary field at the receiver location.

Because a planar coil will only respond to fields that pass through the plane of the coil at



Table 7-1: List of symbols used in this chapter.

Symbol Definition
a Radius of spherical conductor centred on the origin
B, Vanables for unknown functions
D Depth to centre of sphere
d Distance from the point directly over the centre of the sphere to
the point midway between the transmitter and the receiver
measured on the surface of the earth
E, Variables for unknown functions
f Transmitter field frequency
I,..(x) Modified Bessel function of the first kind evaluated at x
I, (x) First derivative of the modified Bessel function of the first kind
evaluated at x
K iouw
m, Radial component of magnetic dipole
mg Theta component of magnetic dipole
p Strength of the magnetic pole
P.(cos 9) Legendre polynomial of order n
P!(cos 8) Legendre polynomtal of first degree and order n
r Distance from origin to receiver
r, Radial distance from the origin to the transmitter
S Angle between the vector r and the horizontal
4 Angle measured from the x-axis in the x-y plane
U Magnetic permeability of the sphere
A Magnetic permeability of free-space
i Angle measured from the z-axis
) Frequency of the oscillating field

an oblique angle, each component of the secondary field must be reduced to the sum of

two orthogonal vectors, one in the plane of the receiving coil, and one perpendicular to it.

The vector sum of the perpendicular fields will be the signal measured by the receiver.

The modeling code was written as MATLAB script files.
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7.2.1 The Vertical Coaxial Modeling Code

The vertical coaxial coil modeling routine (VERTICALCOAXIAL) plots, and returns the
numerical values for the profiles that would be obtained from a vertical coaxial coil
survey that passes over the centre of a conducting sphere. The program requires seven
input parameters: the coil separation (§>0, meters), the radius of the sphere (a>0, meters),
the sphere conductivity (>0, Siemens/meter), the depth to the sphere (D>a, meters), a
vector of sampling points (4, meters), an operating frequency (f, Hertz), and the order of
the highest magnetic multipole to be considered (this is usually set to 20, though it was
found that 10 would often prove adequate). The vector of sampling points is entered with
reference to the point directly over the centre of the sphere, with negative distances to the
left and positive distances to the right. The survey is conducted along a line passing
directly above the centre of the sphere, though it is not necessary for the points to be
regularly spaced, or that the survey must extend to the point directly over the sphere. The

resulting profiles are normalized to the primary field measured at the receiver.

Unless otherwise indicated, the author wrote all MATLAB functions.

7.2.2 Structure of the Modeling Code

VERTICALCOAXIAL takes the aforementioned input parameters are returns the vectors
r, ro, & a & m, and mg Each element of the vectors corresponds to a different sampling
point; for example, if @=[-3 0 3], then the corresponding transmitter distances would be
given by r=[{r(d=-3) r(d=0) r(d=3)].

Once the survey geometry is calculated, the program calls the function FIELDS that
calculates the secondary fields due to each of the components of the dipole. The ith term
of the series for each of the sampling points is calculated simultaneously and stored in the
ith row of a matrix. Once there are as many terms as requested (i.e. » terms, where the

highest order multipole is n), the sum of each column is calculated. Since the columns
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represent a constant d value, this amounts to calculating the summations in Equations 7-1
and 7-2. Finally, the summations are multiplied by the appropriate coefficients to get the

component fields.

Each term in the summation requires the value of the response function for a given
multipole order. These complex numbers are calculated by a function called
RFGENERATOR, which stands for Response Function Generator. RFGENERATOR
takes the survey frequency, multipole order, sphere radius, conductivity, and magnetic
permeability as input, and returns the appropriate response function value. The response
function is calculated from Equation 7-4, which requires modified Bessel functions of the
first kind and their first derivatives. MATLAB has a Bessel function generator, as well
as a few differentiation routines, but these did not work well for the magnitudes of the
parameters required. The RFBESSEL function was written to calculate both of the
required Bessel Functions. The Bessel function is calculated from the standard series

solution

L,(x)=3 (/Y

pore k'F(k+l+n)

The first derivative of the Bessel function above was calculated from the above

expression to be

I,(x)= i b 2"%)“ -

& 2T (k+1+n)

This solution is acceptable for response parameters less than 1000.

Also necessary for the field calculations are the Legendre polynomials, P,(cos ), and
P,'(cos 9. MATLAB has a built in LEGENDRE function that originally had a bug in it
that would not allow it to work for Legendre polynomials of degree 4 (for this program



Legendre functions of every degree from 1 to 20 were necessary). This error was

corrected in a later version of MATLAB.

Once FIELDS returns the field values to VERTICALCOAXIAL, horizontal components
of the total radial and total transverse fields are calculated, and the fields are normalized
with respect to the primary field measured at the receiving coil,

P _ _ m
27253
where m=1.

VERTICALCOAXIAL then calls a plotting routine, VCPROFILE that plots the

normalized response profile.

7.2.3 Testing the Modeling Software

The profiles generated by the VERTICALCOAXIAL program were symmetric, and
demonstrated scale invariance as expected. Comparisons to published results proved

unsatisfactory.

The solid lines on Figure 7-1a to 7-1f are the results from VERTICALCOAXIAL. The
stars indicate the corresponding points from the published results from Lodha and West’s
Figures 4a, 4b, 4c, 5a, 5b and 5c (corresponding to Figures 7-1a to 7-1f). The
VERTICALCOAXIAL output only agreed with Figure 7-1a. It was noted that the
agreement would be better in Figures 7-1d to 7-1f if the VERTICALCOAXIAL results
were decreased by a factor of m. Since these fields had been normalized by dividing by

the primary field, 21? , it was thought that normalization by a factor of 2; — would

provide a better fit for Figures 7-1d to 7-1f, though this would ruin the agreement seen in
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Figure 7-1a. The effect of the -2-%;;- normalization is shown in Figure 7-2. The

agreement for Figures 7-2d to 7-2f is good, though it seems that the profiles are slightly
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Figure 7-1: VerticalCoaxial data are shown with lines, published results from Lodha and

West (1976) are shown as stars. Solid lines and stars are in-phase responses and dashed

lines and stars are quadrature phase responses. The normalization factor used was

275

L —— . Figure 7-1a shows good agreement, while Figures 7-1d to 7-1f appear to be too

large by a factor of = See Table 7-2 for the geometry and response parameters of each

figure.
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Figure 7-2: VerticalCoaxial data are shown with lines, published results from Lodha and
West (1976) are shown as stars. Solid lines and stars are in-phase responses and dashed

lines and stars are quadrature phase responses. The normalization factor used was

7;3 . Figures 7-2d to 7-2f are in good agreement with the published results, though the

VerticalCoaxial anomaly appears to be too thin. As expected, Figure 7-1a is no longer in
agreement with the published results. See Table 7-2 for the geometry and response

parameters of each figure.

thinner than the published results. Agreement between VERTICALCOAXIAL results
and the published data was never very good for Figure 7-1b or 7-1c, or 7-2b or 7-2c.
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Table 7-2: Geometry relations and response parameters for the sub-figures in Figures 7-
1, 7-2, and 7-3.

Sub-Figure of Depth to Depth to Response Radius to
Figures 7-1, to Separation Radius Parameter Separation
7-3 D/S D/a a/S
a 0.5 1.2 100 0.4
b 0.9 3.0 30 0.3
c 2.1 3.0 30 0.7
d 7 4 100 1.75
e 10 3.3 100 3
f 8 2.0 25 4

At this point it appeared that no single version of the program could reproduce all six
figures, even though the publications indicated that the same program generated them all.
Further attempts to debug the program lead to an investigation of the Legendre function.
Two definitions of the Legendre function were found. The first, from the Schaums
Mathematical Handbook (Speigel, 1993)

Br)= -V Z2 R (x)

the second, from MATLAB’s Legendre function code

P =1y (- P o)

The difference was a factor of —1 for the first order Legendre polynomial. When the first
order Legendre function was ‘corrected’ by multiplication by -1, the result was a much
better match for the last three figures (Figures 7-3d, 7-3e, and 7-3f), but there were large
discrepancies for the first three figures (Figures 7-3a, 7-3b, and 7-3c).

The author was unable to determine the cause of the discrepancies between the published
results and the output from the VERTICALCOAXIAL programs. The MATLAB
programs have been included in Appendix C.
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Figure 7-3: VerticalCoaxial data are shown with lines, published results from Lodha and
West (1976) are shown as stars. Solid lines and stars are in-phase responses and dashed

lines and stars are quadrature phase responses. The normalization factor used was

2—7-153— . and the MATLAB Legendre function has been ‘corrected’ by multiplication of the

Jirst order Legendre polynomials by -1. The Legendre function correction has improved
the agreement between the published results and the VerticalCoaxial output for Figures
7-3d to 7-3f, but lessened the agreement of Figures 7-3a to 7-3c. See Table 7-2 for the

geometry and response parameters of each figure.
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Appendix A

Using Equations 2-5 to 2-7, the definition of the curl of a vector in rectangular

coordinates, and the chain rule it will be shown that V, xV = pV x V.

The curl of a vector in the rectangular coordinates of the second system, denoted by a

subscript 2 is

ov_, A
) @2 mz - ozz sz - ax2 @;2 <

Equations 2-5 to 2-7 provide the following differential relationships

e _ &y &
Cx, Oy, Oz,

p

The chain rule applied to the first term on the right hand side of the curl equation

becomes

and it is noted that the unit vectors, by definition, are interchangeable.

94

Applying the chain rule to the remaining terms of the curl equation, and factoring out the

scale factor p shows that

V,xV = pV xV, asrequired.
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The next identity to be derived is -‘2—V = g— . This requires differentiating Equation 2-8

ot, ot

and applying the chain rule to g- .

]

Equation 2-8 provides the relationship g = i?i , SO by the chain rule,
ot

2

ov =_a.liﬁ— a_V asrequu‘ed
o, oo, o, '
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Appendix B

When an object is scaled, its relative dimensions (e.g. width to height ratio) remain the
same. Since the skin depth is also a length, then it follows that the ratio of a linear
dimension to the skin depth must also be constant upon scaling. Mathematically this is

expressed as

t~

1.k L2.k

S, O,

K -

where the subscript 1 or 2 denote the two systems, and the subscript k refers to the kth

object in either system.

Recall that the skin depth of a material with conductivity o, magnetic permeability «, in
the presence of an electromagnetic field oscillating with an angular frequency @ (and @

is low enough that displacement currents are negligible) is given by

5 —_— —%—
oU®D

so that the first equation becomes

L CuhhuPrix _ I O iz i D
t.k 2 - &2k 2

which simplifies to

2 2
L O s @y =Ly ) O ity @5

The last equation is identical to Equation 2-28, the scaling relationship.
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Appendix C

Vertical Coaxial

% VerticalCoaxial.m Written by Tricia Nichols 28/03/97.
%

% [HR,HI]=VerticalCoaxial(S,d.D,a,cond,mu.f,nmax);

%

% This program returns the total real and rotal imaginary secondary

% magnetic fields measured by a vertical loop receiver.

%

% This program requires the operator to define a linear survey that passes
% over the centre of the sphere. The input parameters are:

%

% S = coil separation in meters (can be very small, but not zero).

% d = points to be sampled along a line that passes over the centre of the
% sphere. d=0 corresponds to the point directly above the sphere.

%  The spacing of the points need not be regular.

% D = the vertical depth to the centre of the sphere in meters.

% a = the radius of the sphere in meters.

% cond = the conductivity of the sphere in (ohms*m)"-1.

% mu = the magnetic permeability of the sphere in H/m.

% f = the frequency of the survey in Hz.

% nmax = the highest excited multipole to be considered.

%*** The following is to be added in the future, as of April/97 only’’

% dipole moments in the horizontal orientation are considered.***

% MDD = magnetic dipole direction cosine, three component vector of the form
% MDD=[Cos(theta-x), Cos(Theta-y), Cos(Theta-z)], (z +ve upwards)
%  Examples: Vertical Dipole => MDD=[00 1]

% Horizontal Dipole Parallel to survey => MDD=[0 1 0]

% Horizontal Dipole Perpendicular to survey => MDD=[1 0 0]

Sunction [HR,HI] = VerticalCoaxial($,d,D,a,cond, mu,f,nmax)
% Geometry and survey information

r=sqrt(D"2+(d+8/2)."2); %position of receiver (m)
rnot=sqri(D"2+(d-S/2)."2); %aposition of inducing dipole (m)

" This was never done.
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angro=acos(D./rnot);

angr=acos(D./r);

theta=abs(angro-angr); % angle between r and rnot
alpha=pi-asin(D./rnot); % angle berween rnot and the horizontal

fork =1 : length(d)
if abs(d(k)) <= S8/2
theta(k)=angro(k)+angr(k); %angle between r and rnot (radians)
end
ifdk) <= 8/2
alpha(k) = asin(D/rot(k));
end
end

Mr=cos(alpha); % radial component of the transmitting dipole
Mt=sin(alpha); % transverse component of the transmitting dipole
%Mr=sin(alpha); Mt=cos(alpha);note="Trish Aug 6 /98’

Mp=1, % second transverse component of transmitting dipole

=cos(theta); % parameter for the LEGENDRE function
delta=alpha+theta;

% Calculate the components of the secondary fields generated by the component
% dipoles.

[Rr.Rt,Rp, TI1r,TIt,TIp, T2r,T2t, T2p] =
Fields(Mr,Mt, Mp,nmax,x,theta,a,cond, mu.f,r,rnot);

% Calculate the total field measured by a vertical receiver
HRtot=(real(Rr+TIr)). *cos(delta)+(real(Rt+Tlt)). *sin(delta);
Hltor=(imag(Rr+Tl1r)). *cos(delta)+(imag(Rt+Tlt)). *sin(delta);

% Normalize to primary field at a distance S from the receiver
Hprime=-1/(2*pi*S$"3),"”

HR=100*HRtot./Hprime;

HI=100*HItot./Hprime;

2 Figure 7-2 was produced by removing the factor zfrom Hprime.
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% plot the results
VCProfile

%THERE IS A PROBLEM WITH T1t BECAUSE IT'S NAN-this occured because theta

went
%to zero when S=0, and cotan in the Field code went to infinity- so S can
%be very small, but NOT zero! March 28/97

Fields

Yefunction [Rr.Rt,Rp,TI1r,T1t,Tip,T2r,T2t,T2p] =
Fields(mr,mt1,mt2,nmax,x,theta,a,cond,mu,f,r,rnot)

%

% This function calculates the radial and theta components of the secondary
% fields produced by radial and theta magnetic dipoles.

%

% Rr, Rt, Rp = the radial, theta, and psi fields due to a radial dipole
% Tlr, TIt, Tlp = the radial, theta and psi fields due to a theta dipole
%

% Written by Tricia Nichols 28 March 1997

%

Junction [Rr,Rt,Rp,T1r,TIt,Tlp, T2r. T2, T2p] =
Fields(mr,mtl,mt2 nmax,x,theta,a,cond,mu.f,r,rnot)

RCoeff=-mr/(4*pi);
TtCoeff=mt1/(4*pi);
TpCoeff=-mt2/(4*pi);
for n = | :nmax
clear pn;
pn=legendre(n,x);
Y%epn(l,:)"
%aclear tmp;
Y%tmp=pn(2,:)
%pn(2,:)=-tmp
rfm=RF Generator(n,a,cond,mu.f);
HRrtemp(n,:)=rfm*a™(2*n+1)*n*(n+1)*pn(1,:)./(r.*rnot).(n+2);

' This and the next three lines were used to produce Figure 7-3.
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HRuemp(n,:)=rfn*a™(2*n+1)*n*(+1)*pn(2,:)./(r.*rnot).n+2);

HTlrtemp(n,:)=rfn*a™2*n+1)*n*(+1)*pn(2,:)./(r. *rnot).(n+2);

HTlttemp(n,:)=(rfn*a™N(2*n+1)./(r.*rnot)."(n+2)). *...
(n~2.*pn(1,:)-(n/(n+1)). *cot(theta). *(+1).*pn(2,:));

HT2ptemp(n,:)=(rfn*a™(2*n+1)./(r.*rnot).\(n+2)).*...
(n.*csc(theta). *pn(2,:)/(n+1));

end
% r.theta, and psi components of the secondary fields

Rr=sum(HRrtemp).*RCoeff;
Rt=sum(HRttemp). *RCoeff
Rp=0;

TIr=sum(HTIrtemp). *TtCoeff;
TIt=sum(HTIttemp).*(-1). *TtCoeff;
Tlp=0;

T2r=0;
T2t=0;
I2p=sum(HT2ptemp). *TpCoeff;

Legendre (MATI.AB’s Code)

Jfunction plm = legendre(l,amu,tflag)

%LEGENDRE Associated Legendre function.

% P =LEGENDRE(N,X) computes the associated Legendre functions
% of degree N and order m = 0, 1, ..., N, evaluated for each element
% of X. N must be a scalar integer less than 256 and X must contain
% real values between -] <=X<=].

%

% IfXis a vector, P is an (N+1)-by-L matrix, where L = length(X).

% The P(m+1,i) entry corresponds to the associated Legendre function
% of degree N and order m evaluated at X(i).

%

% In general, the returned array has one more dimension than X.

% Each element P(m+1,ij,k,...) contains the associated Legendre

% function of degree N and order m evaluated at X{(i j k,...).

%

% The associated Legendre functions are defined as:

%



%
%
%
%
%
%
%
%
%
%
%
%

%

%

%

%
%
%

%

%

XXX

X

%
%
%
%
%
%
%
%
%
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Pinm:x) = (-1)"m * (1-x"2)\(m/2) * (d/dx)™m { P(n,x) },

where P(n,x) is the Legendre polynomial of degree n. Note that
the first row of P is the Legendre polynomial evaluated at X
(the M == 0 case).

SP = LEGENDRE(N X, 'sch’) computes the Schmidt semi-normalized
associated Legendre functions SP(n,m,;x). These functions are
related to the (un-normalized) associated Legendre functions
Pn,m;x) by:

SP(n,m;x) = sqrt( 2*(n-m)!/(n+m)! ) * P(n,m;x)

Examples:
1. legendre(2, 0.0:0.1:0.2) returns the matrix:

| x=0 x=0.1 x=0.2

|
m=0| -0.5000  -0.4850  -0.4400
m=1| 0 0.2985 0.5879
m=2| 3.0000 2.9700 2.8800

2. X=rand(2,4,5); N=2;
P = legendre(N.X),

50 that size(P) is 3x2x4x5 and
P(:,1,2,3) is the same as legendre(N,X(1,2,3)).
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%

% Note on Algorithm:

%

% LEGENDRE uses a three-term backward recursion relationship in M.
% This recursion is on a version of the Schmidt semi-normalized

% Associated Legendre functions SPc(n,m;x), which are complex

% spherical harmonics. These functions are related to the standard

% Abramowitz & Stegun functions P(n,m;x) by

%

% P(n,m;:x) = ((-1)"m)*sqrt((n+m)!/(n-m)! ) * SPc(n.mx)

%
% They are related to the Schmidt form given previously by:
%
% SP(n,m;x) = SPc(n,0;x);
% = ((-1)"m)*sqrt(2) * SPc(n,m;x), m > 0
if nargin < 3
tflag = unnorm’;
end;

% Check degree constraints
Imx = 256; % initialize Imx
if (prod(size(l)) > 1) | (1 >= Imx),
error(sprintf(’N must be a positive scalar < %d."Imx));

elseif | <=0
plm = ones(size(amu));
returm

end

% Convert amu to a row vector
siz = size(amu);
amu = amu(:)';

% Initialize parameters

nmx=2*Imx;

% The following three are parameters from Parker's Fortran code
tol = 0.100000001686238353e-15;

alogt = -0.368413619995117188e+02;

tstart = 0.999999993922529029e-08;

rootn=sqrt(0:nmx);
s=sqrt(1.0 - amu."2);
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plm = zeros(1+1,length(amu));
tim = zeros(1+3,length(amu));

% Calculate TWOCOT, separating out the amu = -1,+1 cases first
twocot = amu; % initialize dimensions of TWOCOT

kk = find(amu == -1);
if ~isempty(kk)
twocot(kk) = Inf;

end;

kk = find(amu == ]);
if ~isempty(kk)
twocot(kk) = -Inf:

end;

kk = find(s~=0);
if ~isempty(kk)
twocot(kk) = -2.0%amu(kk)./s(kk);

end;
% Small sine: prevent underflow By starting at m=ml-1<I

% First, replace s_copy = 0 with s_copy = NaN to avoid log(0) error messages.
% This is okay since we want nonzero s anyway.

scopy =s;

kk = find(s == 0),;

scopy(kk) = NaN;

ind = find(1*log(scopy) < alogt);

if ~isempty(ind)
% Approx solution of x*in(x)=y
v = 9.2-alogt./(I*s(ind));
w = 1./log(v);
ml=1+[*s(ind). *v. *w.*(1.0058+ w.*(3.819 - w*12.173));
ml=min(l+1, floor(ml)),

% column-by-column recursion
Jor k = 1: length(ml)
mml =mli(k);
col = ind(k),
tim(mmli:l+1,col)= zeros(size(mml:l+1))’;



% Start recursion with proper sign
tim(mmli,col) = sign(rem(mml,2)-0.5)*tstart;
if amu(col) < 0, tim(mm1,col)=sign(rem(1+1,2)-0.5)*tstart; end;

% Recur from ml to m=0, carrying normalizing
sumsq=tol;

Sfor m=mmli-2:-1:0,
tim(m+1,col)=((m+1)*rwocot(col) *tim(m+2,col)- ...
rootn(l+m+3)*room(l-m)* tim(m+3,col})/ ...
(rootn(l+m+2)*rootn(l-m+1)),
sumsq=tlm(m+1,col)"2 + sumsq;

end;

scale=1.0/sqrt(2*sumsq - tim(1,col}™2);

tim(1:mml+1,col)=scale*tim(l:mmlil+1,col);

end % FOR loop

end % small sine IF loop

% Zero out the columns that have been calculated above, saving S
tmps = s(ind);

s(ind) = zeros(size(ind));

nind = find(s);

% Regular recursion from m=i to 0
if ~isempty(nind)

% Produce normalization constant
c=1.0;
twol=2.0*;
Sor x=2.0: 2: twol
c=c - c/x;
end;

tim(l+1,nind)= sqrt(c) *(-s(nind)).";
tim(l,nind) = tim(1+1,nind). *twocot(nind). *1./sqrt(twol);

% Recur downwards to m=0
form=1-2:-1:0,
tim(m+1,nind)=((m+1)*twocot(nind). *tim(m+2,nind) ...
- rootn(l+m+3) *rootn(l-m).* ...
tim(m+3,nind))/(rootn(1+m+2)*rootn(l-m+1));
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end;
end % IF loop

% Calculate the Schmidt semi-normalized functions
s(ind) = tmps; % restore s

plm(1:1:)=tim(1:]:);

plm(l+1,:)=tim(+1,:);

% Polar argument (mu=+-1)

50 = find(s == 0);

if ~isempty(s0)
pim(1,s0)=amu(s0).N;

end

if stremp(tflag, ‘sch’)
% Calculate the standard Schmidt semi-normalized functions from these
%6 functions. For m = 1,...,l, multiply by (-1)"m*sqrt(2)
rowl! = plm(l,:);
plm = sqrt(2)*plm;
pim(l,:) =rowl; % restore first row
constl = ];
forr=2:1+1;
constl = -constl;
plm(r,;) = constl *pim(r,:);
end;

else
% Calculate the standard A&S functions (i.e., unnormlized case) from
% these functions by multiplying each row by: ((-1)"m)*sqrt((1+m)!/(i-m)!)
constl = 1;
forr=2:1+1
m=r-l;

% Find const for row r
const = exp(0.5 * (sum(log(2:1+m)) - sum(log(2:l-m)) ) );

pim(r,;) = const*plm(r,:);
end;

end;
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% Pack into output array
if length(siz) == 2 & min(siz) == 1
plm = reshape(plm,l+1,max(siz}); % Row or column vector case

else

plm = reshape(pim, [l+1 siz]);
end
RFGenerator

%function [rf] = RFGenerator(n,a,cond mu.f)

%

% This function computes the response function for the nth order multipole in a
% sphere of radius ‘a’ m, conductivity ‘cond’' (ohm*m)*-1, magnetic permeability
% ‘'mu' H/m, and survey frequency '’ Hz.

%

% The Bessel functions and their derivatives are calculated with RFBessel which
% uses a series solution approach. This method provides accurate response

% function values up to a response parameter of 1000.

%

% Written By Tricia Nichols

% 12 March 1997

%

Sfunction [rf] = RFGenerator(n,a,cond,mu.f)

munot=4*pi*10°(-7); Y%magnetic permeability of free-space
omega=2*pi*f; %vector of angular frequencies
ka=sqrt(i*cond*mu*omega)*a;

rp=abs(ka.”2); %response parameter vector

[bess, bessprim]=RFBessel(n+.5,ka);

rf=((munot/2-
(n+1)*mu)*bess+munot*ka. *bessprim)./((munot/2+n*mu) *bess+munot *ka. *bessprim),

RFBessel

% function [bess,bessprim] = RFBessel(n,x)
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%

% RF Bessel calculates the n'th order bessel function of a vector

% of numbers x, and stores the results in a vector, bess. The

% first derivative is also calculated and stored in a vector, besprim.

%

%Note: - n must be a positive integer.

% - the series solution is calculated with 30 of terms.
%

% Written By Tricia Nichols

% February 1997

%

Sunction [bess,bessprim] = RFBessel(n,x)

for k=0:30-1
templ(k+1,:)=((x/2)."(n+2*k}))/(gamma(k+1)*gamma(k+1+n));
temp2(k+1,:)=((n+2*%k)*(x/2).Nn+2*k-1))/(2*gamma(k+ 1) *gamma(k+1+n));
end

Jor k=1:length(x)
bess(k)=sum(templ(-,k));
bessprim(k)=sum(temp2(:,k));

end

VCProfile

% VCProfile.m

%

%This program plots the vertical coplanar profiles from the calculated
Y%fields of VerticalCoaxial.m

%Note the fields have been plotted such that they are POSITIVE values!
%Only the component of the field that is perpendicular to the vertical coil
Yoreceiver will contribute to the field measured there.

figure

plot(d./S,-HR),

hold

plotd./S, -HL'":');

legend('Real’,'Imaginary’)

title 'Normalized Vertical Coaxial Profile of a Conductive Sphere’
grid; ylabel 'Percent’

xlabel "Distance in Coil Separations’





