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ABSTRACT 

EVOLUTION OF PERTURBATIONS OF SOME NON-LINEAR DISPERSIVE 

WAVETRAINS 

In Part I we study the effect of perturbations on two non-linear 

dispersive wave systems. First the Benjamin-Feir instability of 

capillary-gravity surface waves on a liquid layer of arbitrary but 

uniform depth h is considered. Explicit conditions in terms of two 

dimensionless parameters kh and rk2/g, where k is the wave number, r the 

surface tension coefficient per unit density and g the acceleration of 

gravity, are derived for the possible growth of sidebands. The automated 

computer algebra system MACS'YNA is used to facilitate the analysis which 

involves heavy algebra. We then give a lagrangian for capillary-gravity 

waves and investigate the stability of the waves to slow modulations 

using the averaged lagrangian method of Whitham. The result of this 

analysis is compared with the Fourier mode analysis of the sidebands. 

Secondly we study the evolution of slowly varying solitary wave solutions 

of the perturbed Renormalised Long Wave equation. It is shown that the 

tail of the solitary wave decays exponentially unlike in the 

Korteweg de Vries case, where the tail is oscillatory. 

In Part II we consider some general aspects of the flow of a class 
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of non-Newtonian fluids called micropolar fluids which models 

rheologically complex liquids such as suspensions and polymers. Under 

fairly general conditions of smoothness and boundedness on the flow 

variables we prove that the coupled nonlinear partial differential 

equations governing the flow of such fluids admit at most one solution in 

two general cases: (i) Flow in a bounded region, which could be time 

dependent; (ii) Flow past a finite solid body in an unbounded region. 

This is accomplished using the method of energy integrals. We also show 

how explicit fundamental solutions could be constructed for the 

linearised unsteady equations of motion. This lends, to an integral 

representation of flow variables, which at least yields to an asymptotic 

analysis in terms of small parameters in specific situations. In the 

final chapter we consider the flow of mioropolar fluids in meandering 

channels, a model which could be of relevance in biological modelling. 
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I 

PART I. EVOLUTION OF PERTURBATIONS OF SOME NON-LINEAR DISPERSIVE WAVE 

TRAINS 

The equations of mathematical physics modelling natural phenomena 

are at best approximations to reality. This is partly because we isolate 

the phenomenon under study from its surroundings when building models. In 

nature interferences from various sources are inevitably present which we 

usually ignore as "noise". Thus it is interesting and necessary to 

enquire how our exact models behave under perturbations. 

In the first part of this thesis we study the effect of 

perturbations on two non-linear dispersive wave systems. The first is 

the system of complete surface wave equations, including the effect of 

gravity and surface tension. The second system is a model for long 

non-linear dispersive waves known as the Renormalised Long Wave (PLW) 

equation. 

In typical situations the perturbing effects could arise from an 

imperfect wavemaker in an experimental tank or due to inhomogenieties in 

the medium. There have been several studies addressed to the question of 

stability of surface waves in the presence of perturbations. In a 

classic work Benjamin and Feir (1967) and Benjamin (1967) have 

demonstrated the instability of small amplitude waves on a liquid surface 

in the presence of "noise". They have found that if the wave number and 

frequency of the perturbing "noise" lies within a certain range, the main 

wavetrain could suffer an unbounded amplification of amplitude, thus 

leading to instability. This result complements the work of Whitham 
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(1967) who investigated the stability of wave trains undergoing gradual 

modulation, as, for example, in a slowly varying medium. This latter 

analysis also indicates instability, agreeing with the results of 

Benjamin in their regions of overlap. 

In Chapter 1 we attempt to extend the analysis of Benjamin and 

Whitham to take into account the effect of surface tension on the wave 

trains. First we carry out a linear perturbation analysis on the 

non-linear surface wave equations, taking into consideration capillary 

effects. This results in a stability diagram depending in a somewhat 

subtle manner on two dimensionless parameters rk2/g and kh, where r is 

the surface tension coefficient, k is the wavenumber, g is the 

acceleration of gravity and h is the liquid depth. Next we give a 

lagrangian for capillary-gravity waves and use it to investigate the slow 

modulation of wave trains using Whitham's averaged lagrangian approach. 

In Chapter 2 we study the evolution of solitary wave solution of the 

RLW equation 

ut x xxt +6uu -u =0 

under the effect of a perturbation: 

ut x +6uu -uxxt u. 

There has been extensive work in recent years on the perturbed 

Korteweg de Vries (KdV) equation 

u + 6 u u +u = €Ü 
t x cx 

(see Karpman (1979) , Griinshaw (1979, 1981)) using perturbations on the 

inverse scattering method and series expansion techniques. This is in 

line with the exhaustive studies done on the KdV equation which has 
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certain desirable properties like possessing an infinite number of 

conservation laws and N-soliton solutions. However the alternative 

equation with u replaced by -u is an equally valid model for long 

non-linear dispersive waves (see Benjamin et al. (1972)). It has not 

been studied as widely as the KdV equation because it does not possess 

the tenicet! properties of the KdV equation mentioned above. We will thus 

investigate the qualitative differences in the evolution of the RLW 

equation under perturbations compared with the KdV equation. It will be 

shown that the tail of the solitary wave evolves differently in the two 

cases. In the analysis we utilise a matched asymptotic expansion 

technique similar to that of Smyth (1984). 
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CHAPTER I 

INSTABILITY OF CAPILLARY-GRAVITY WAVES ON A UNIFORM 

LIQUID LAYER * 

1.1 Introduction 

It has been known for a long time that the complete set of 

non-linear water wave equations do admit waves of permanent form. For 

periodic waves on deep water Levi-Civita (1925) proved the convergence of 

the power series in wave amplitude (whose leading terms were obtained by 

Stokes (1847) as approximate solution to the non-linear problem) if the 

ratio of wave amplitude to wavelength is sufficiently small. Soon Struik 

(1926) extended the proof to waves on water of arbitrary depth. In a 

significant later advance on the subject Krasovskii (1960, 1961) proved 

the existence of permanent periodic waves subject only to the restriction 

that their maximum slope is less than the limiting value of 30 degrees. 

The striking fact that has come out in recent years is that this state of 

dynamic equilibrium of waves of unchanging form is in fact unstable to 

perturbations. 

In an early analysis Whithain (1965) showed that the equations 

governing the slow modulations of water waves are of elliptic type and 

* Contents of this chapter have been accepted for publication in Wave 

Motion. Also presented at the Tenth U.S. National Congress of Applied 

Mechanics held in Austin, Texas, June 1986. 
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hence unstable. Later using a Lagrangian discovered by Luke (1967) which 

generates the water wave equations, Whithain (1967) introduced the 

averaged Lagrangian technique for slow modulations which has since proved 

extremely useful in analysing the wave properties including the question 

of modulational stability. On the other hand in two classic papers 

Benjamin and Feir (1967) and Benjamin (1967) demonstrated, theoretically 

and experimentally, the instability of small amplitude surface waves to 

modulations in the form of sidebands. In his analysis Benjamin employs a 

perturbation scheme on the Fourier modes resulting from a Stokes-wave 

expansion consistent with the assumption of small amplitude waves. The 

results of Whitham and Benjamin are complementary in the sense that the 

first deals with very gradual but not necessarily small perturbations 

whereas the second deals with very small perturbations. The significant 

result that comes out of these investigations is that Stokes waves of 

wavenumber k on a water layer of uniform depth h are unstable if 

kh > 1.363.. and stable otherwise. 

These investigations however ignore the presence of such factors as 

surface tension, viscous dissipation and the effect of incumbent air 

pressure. The inclusion of any of these effects renders the calculations 

involved extremely difficult, if not intractable. Recently the effect of 

surface tension on the development of Benjamin-Feir type instability in 

deep water waves has been studied by Barakat (1984). The effect of 

surface tension is expected to play a more profound role in the stability 

of waves on water of arbitrary depth and our study addresses this 

question. We first use the Fourier mode analysis to investigate the 
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sideband instability of capillary-gravity waves on a liquid layer of 

arbitrary uniform depth. Then we give a new Lagrangian from which the 

complete set of water wave equations with surface tension could be 

derived, and use this Lagrangian to investigate the stability of the 

waves to slow modulation. The differences in the results of these two 

types of analyses are then discussed. 

1.2 Benjamin - Feir Analysis 

Our analysis of the sideband instability follows closely that of 

Benjamin (1967) and we retain many of his notations for easy reference. 

The main difficulty in the analysis is the excessive algebra involved. 

Even the task of deriving Stokes-wave solutions for capillary-gravity 

waves up to second order terms in ka (where a is the amplitude, small but 

finite) is formidable. We have been able to utilise the capabilities of 

the algebraic manipulation system MACSYMA (1983) to handle the algebra in 

our investigation. 

First we briefly recall the Benjamin-Feir analysis. The primary 

wavetrain is assumed to have amplitude a, wavenumber k, and fundamental 

frequency w. Let us call the argument of the fundamental mode , where 

= kx - tt. Also present would be the higher harmonics with arguments 

2 , 3,... each travelling with phase velocity w/k but with decreasing 

amplitudes which can generally be assumed to be O(knan) for the nth 

harmonic. We now introduce two perturbing wavetrains with frequencies 

and w2 and wavenumbers k1 and k2 which differ slightly from the frequency 

and wavenumber of the fundamental mode of the primary wavetrain: 
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= k(1+k), k2 = k(1-k) 

=  ', w2 

where w and it are small compared to unity. 

The amplitudes of the sidebands, 6 and 6 2' are assumed to be small 

compared to a, and slowly varying functions of time. The arguments of 

the sidebands are 

. =k 3.. 1 x-.t-., 
1 1  

i = 1,2 (1.2) 

where i are unknown slowly varying functions of time. 

The sidebands and the various modes in the primary wavetrain interact 

nonlinearly giving rise to product terms. Consider for instance the 

following typical interactions between the sidebands and the second 

harmonics of the primary wavetrain: 

(k 2 2 a sin2)(s1 cos 1) = 1/2 

(k 2 2 a s1n2)(62 cos.  2) = 1/2 

k2a2€1{sin( 2+9)+sin(2+ 1)} (1.3) 

k2a2E.2{sin( 1+O)±sin(24+ 2 )}. (1.4) 

Ignoring the second term on the right of (1.3) and (1.4) we observe that 

if 9 tends to a constant, then the pair of interactions becomes mutually 

resonant, with each sideband mode suffering a synchronous forcing effect 

proportional to the amplitude of the other. In this way the sidebands 

could grow in time, with the resultant distortion of the primary 
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wavetrain. The main task of the Fourier mode analysis is to show that 

the condition that 0 tends to a constant in time is possible. 
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1.3 Capillary-Gravity Stokes Waves 

Y 

y 

Figure 1.1 Coordinate system for surface waves 

In this section we derive the Stokes-wave solution for periodic 

capillary-gravity waves in water of arbitrary uniform depth h As shown 

in Figure 1 • 1, we take the x-axis horizontally on the water surface, the 

y-axis vertically up, with the origin at the undisturbed water surface. 

We denote the surface by 

Y = 17(x,t). (1.5) 

Considering water as irrotational and inviscid, the velocity potential 

•(x,y,t) satisfies (suffix denotes partial derivative) 

• 'cc +# yy =0, t>0, (1.6) 

throughout the liquid, subject to the no-slip condition at the bottom 
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cT = 0, y = -h. 

On the free surface, the kinematic condition is 

'it + 17xox - = 0, 

(1.7) 

on y = q(x,t) (1.8) 

and the constant-pressure condition gives 

1 2 2 2-3/2 
+ ( x + y ) - r.? o( (1+z x ) + gq 0 on y q(x,t). (1.9) 

In (1.9) r denotes surface tension per unit density. See Whithain (1974) 

for a derivation of these equations. 

We now look for small amplitude periodic wavetrain solutions for 

(1.5)-(1.9) in the form .. q(x-ct), i' = o(x-ct,y), where c is a constant 

phase velocity. To facilitate the analysis we introduce the 

nondimensional groups 

p = rk2/g, H = kh. (1.10) 

Then by successive approximation the following Stokes-wave solution is 

found up to O(k 2 2 a ) terms: 

ka24 + a cos + ka2P cos 2 (1.11) 

a cosh(ky+H) sin + wa2Q cos(2ky+2H)sin 2s (1.12) 
ksinhH 
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where 

=kx - wt, 

and 

4 - (1+p)csch(2H) 

- (1 - 2 sirili2H)sinh(2H) + sinh(4H)  2 

4 sinhH {2w cosh(2H) - gk(1+4p)sinh(2H)} 0 

(1 - 2 sinh 2 H)w + g(1+4p)sinh(2H) 

4 sixth 2 H {2w 2 cosh(2H) - gk(1+4p)sinh(2H)} 

gk(1+p) tanh H. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

If the expansion is carried to the next term of order k3a3, one 

finds that the solution involves terms of the type sin which is 

unbounded in . Following Stokes, this secularity is suppressed by 

expanding w in a power series 

+ k2a2w2 (k) + O(k3a3 ). (1.18) 

In this manner we find that the dispersion relation up to O(k 2 2 a ) terms 

is 

2 2 +k2a2D2) b) 

where 

(1.19) 
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D2 = 2Q cosh2H + P csch(2}1) + 2d csch(2H) + 1. (1 .20) 

The perturbation solution breaks down when the denominators in 

(1.15) and (1.16) vanish; this occurs when 

(1+4p)sinh(2H) = 2(1+p)tanh(H)cosh(2H) . (1.21) 

This breakdown is associated with second harmonic resonance and solutions 

valid at and near the critical wave numbers can be constructed using 

modified scales similar to the PLK method (see (Barakat and 

Houston( 1968)). In this thesis we confine ourselves to nonsingular wave 

numbers where the solutions (1.11)-(1.12) are valid. 

1.4  Perturbation Analysis  

As is usual in similar situations, the perturbation scheme proceeds 

by introducing a small disturbance and investigating its asymptotic 

behaviour in time. Thus we set 

+ 6 

-7 171 + 4' 

(1.22) 

(1.23) 

where 45,, q1 are the main wave solutions given by (1.11) and (1.12), e is 

a small parameter whose square can be ignored and A, q are perturbations 

whose nature is to be determined. 

To derive governing equations for 0 and q we substitute (1.22) and 
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(1.23) into (1.8) and. (1.9) and reduce the resulting equations evaluated 

at to equations evaluated at y = 0 using a Taylor series about 

y = 0. This results in the following two equations: 

17t -  + •qix 0 - 1 'P yy +17 lx 17 'P c 

+q(-' -i +q ' 

lyy 1 lyyy lx lyx 

1 2-
- 7 1710 yyy 

+ 'x1x + 17ii)} 0 

27 -r17 + t + {x (0 1x +q j.4•jyx + yiy + + 

1 2-
+ yy 7iiy + qloyt + . q1 0  

c ly 1 + + 17 1 ii)17} = 0 

(1.24) 

(1.25) 

where all the quantities are evaluated at y = 0. Note that (1.24) and 

(1.25) are linear equations in 'i' and. 17. We now substitute the 

expressions (1.11) and (1.12) for z7, and .0, into (1.24) and (1.25) and 

retain terms up to 0(a2 ). In this way we obtain the following two linear 

equations governing the perturbations c and z: 
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Y=O + a [_k{+coth( H) }sin + {-o yy +q x coth (H) }Cos• I 

+ a2[{kx[Qsn11(3H)csch(H)_Q + y]  - 

1 

Y=O 

- PkO yy}cos(2) 

+ {k2 w,? (2Q-2Qsinh( 3H)csch(H)-1) - - 2Pk2 }sin(2) 

1 
m Yy j =0 (1.26) 

- rq +gq + alwo Sjn4+ J7 Oxcoth(H) + ;}cos1 

+ a2 {m - [. Qsith(41I)csch2 (H) - 2Qcoth(H) + .. coth(H)} 

+ . w }sin(2) + {Q 2 [7 coth(H) - sinh(4H)csch2 (H)] 

+ .[' Q cosh(4H)csch2 (H) + j. Q csch2 (H)(1-2cosh(H)) + 

+ 1 xy coth(H) + 1 tyy + kP}cos( 2 ) + kw27 coth(H) 

+ . k + 1 wo  coth(H) + 1 + k Iy=O 0 
2 xy tyy ty 

(1.27) 

The next step in the analysis is the introduction of the right form 
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of perturbing wavetrains. These wavetrains q and 4s are assumed to 

consist of two sideband modes together with the product of their 

interaction with the main wavetrain. Following Benjamin we take 

-. - -p 

ii = + 112 

where each q (1 = 1,2) has the following form 

11.= €.00s . + ka6. 1A cos(+i)+Bjcos(_j)} + O(k2a26.) 
1 1 1 41 (1.28) 

where . is given by (1.2). Among the neglected terms of O(k2a26.) in 

(1 .28)p terms with arguments (2+.) are non-resonant and can be 

neglected while terms with argument are important, but can be 

merged in to the terms of the present expansion, as seen by (1.3) and 

(1.4). It is further assumed tha  si, 7i t are slowly varying functions of 

time with 

6 1 . O(k 2 a 2 6 1 .), i 1 . O(tk 2 a 2 ) 

It will also be necessary to assume that A1, B1 are 0(1). 

The perturbing velocity potential is such that 

0 

y= -h. 

(1.29) 

(1.30) 

(1.31) 
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We thus assume that 

cosh k.(y+h) i ( L + M )sin + N cos 
- k. sinh(k h) 1 j Ii ii ii I ii 

+ wa e JC   cosh (k+k.) (y+h) 

1 1 sinhl(k+k 1 .)hl sin(+.) + 

coshl(k_k1)(y+h)I sIn(_) } D  :1. h l , (1 1,2). (1.32) 
.  sinhl(k-k.) 

Here, too, the coefficients Li! M1, Ni! C, D1, whose nature is unknown, 

will be taken to be 0(1). 

We now proceed to determine the equations governing the coefficients 

in i7i and oi . Towards this end equations (1.28) and (1.32) for q, 45 i 

are substituted in (1.26) and (1.27) and all terms are reduced to simple 

harmonic components. The process is quite laborious and the excellent 

abilities of MACSYMA were amply used. The resulting equations are 

supposed to hold over a continuous and unbounded range of x. Thus they 

must be satisfied by each set of components out of the boundary 

conditions, thus leading to independent equations for the coefficients 

A., B.1 , etc. 
1  

Separating components with arguments - and we obtain the 

following 8 linear equations for A1, B1, C1 and Di (1 1,2): 
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= .. (k+k.)csch(H)csch(kh){(+t.1) 

(sinh((k+k.)h)+sinh((k_.k.)h))} i 1,2 (1.33) 

k[+r(k+ki)2JA_t.(w+wj)coth((k+k)h)c = .. csch(H)csch(kh) 

+W 2  (i 1,2) (1.34) 

.j. csch(H)osch(kh){(+±) 

sinh((k+k..)sinh((k_k.)h)} (1 1,2) (1.35) 

k[+rk(k_k) 2]B1_w(w_ j)coth((k_kj)h)D1 = osch(H)osoh(k1h) 

I = 1,2. (1.36) 

Before proceeding further it is necessary to consider the ratio of 

wave number and frequency perturbations, k' and t.' respectively. For 

this purpose we note that to a first approximation the sidebands may be 

expected to satisfy the linear dispersion relation at wave number k. 

Noting that k', w, are assumed to be much smaller than k and w, we have, 

to a first approximation, 

  - group velocity at wave number k 
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d [(gk+rk 3)tanh(kh)] 
Ell  

1  or 11+3p + 2H csoh(2H)} A, say. (1.37) FT -. 

The expression (1.37) has been obtained by omitting O(k 2 2 a ) terms. 

The approximate solutions of (1.33)-(1.36) are now readily obtained, 

in the limit w.i - , k. -, 

i 

A. = 2P 
1 

A coth(H)+ .j. H osoh2 (H) 

1 Hcoth(H) 'A 2 ' 

2Q siiih(2H), 

D1,2 = ± H 

(1.38) 

(1.39) 

I = 1,2 1(1.40) 

csch2 (H) + coth2 (H) 

H coth(H) - 

(1.41) 

Next we separate components at wave numbers k from (1.26) and (1.27) 

with (1.28) and (1.32) substituted in. Taking approximations to 

O(t.k2a2a.) and. O( 2ka26.) terms, we obtain the pair of equations (1.42) 

and (1.45): 

6. Fw.(1-L.)+;.(1-M.)lsin . + . (1-N. )cos . 

1[i 1 1 iJ 1 1 1 1 
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- 1 It2 2{ 
- a €. R sin . i + (5 i 6 +5 6 )S sin(.+9)] i 1,2 (1.42) 

1 1 12 21 

where 

R = 7Z  + (2i+A+B)coth(H) + 2C coth(2H) - IDI/H 

S = + (P+B)coth(H) + 2Q cosh(2H) - IDI/H 

and A, B, C, D are given by (1.38)-(1.41) and 0 = 11 + 12 

S. [.'(k.+rk)tanh(k.h) - .L. - (1+M.)1 Cos '. 

Is. +.(1+N.)sin(.) 1 7.wk 2 a 2 Ucos 
1 1 1 

(1.43) 

(1 .44) 

+ (6 i1 6 1 2 +5. 2 1 1 6 )V cos(4 .+0)] (1.45) 

where 

U - + (2i+A+B) tanh( H) - 20 csch ( 2H) + IDI/H 

V - + (P+B)tanh(H) - 2Q + IDI/H 

(1.46) 

(1 47) 

One observes that the forms of these equations are similar to those of 

Benjamin (1967) (except for a change of sign in front of ID I which is 

probably a misprint in that paper) into which they reduce if surface 
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tension is made zero. 

Once again we require that the separate simple harmonic components 

satisfy (1.42) and (1.45) independently. Hence upon equating 

coefficients of cos . and sin in these equations we obtain 

.k2a2{(5j162+6j261)S sin o} 

.( i+.) - k2a2{(5i162+a.2€1 )V sin o} 

Adding these two equations, we have 

11 wk  22 x sin 9]I5 6+6 61 
1112 121J 

where 

X (S-V) = 1 + (P+B)csch(2H) + 2Q cosh 2 (H) - IDI/il 

(1.48) 

(1.49) 

(1.50) 

(1.51) 

To obtain equations governing Ô we separate sin ' components from (1.42) 

and cos components from (1.45) and get, respectively, 

6. 11]. (I-L i )+; i (I-M i)] . 

= k2a2 {6 i H + (6 i I € +6 € )S Cos 9] (1 1,2) 12 21 
(1.52) 
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- 1 k2 214 U+(s 6 +5 6 )V cos (1 1,2). a. 112 121 

Subtracting (1.53) from (1.52) results in 

1 1F(gk +rk3)tanh(k h)-w2 1 2 2r1 
1[ii 

1. 

5. 4 +5 i 6 1 11 2 2 
+6 6+5 6 XcosO] 

ii 1 12 2 

Adding the two equations contained in (1.54) gives 

+ '{(k2+rk)tanii(k2h)_}} 
1 f 1 1 1 1 

22 

+ tk2a2 [(R-U) + 61+62 x cos 0] 
12 

Let 

(1.53) 

(1.54) 

(1.55) 

f(k1) [(k.+rk)tanh(k.h)]"2 (1.56) 

then recalling (1.1), we have, to a second approximation, 

= f2 (k) + 121 + 1 ( ')2 (f2) - 2(1± 1)2 

2 1 1(wt) 2" 2- '2 '2 
=f(k)±2(kk)ff '2 (f) + 2ww -() 

(f 
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where 

f2 (k) 2 '2 -(.) -(t)w) Y(k) 

it 

- 1 
2 

1(f)  

The primes in (1.58) denote k-derivatives. 

Using this expression and noting that 

we get from (1.55) 

. (R-U)-D2 

22 
61+62 

k2a2X{1 + 26162 
"I '2 

Cos  -w 0Y. 

This expression is crucial to the whole stability issue. If only 

dispersive effects were present, we will have, if °g is the group 

velocity at wave number k, 

ae ae ' 2 '' '2 f (k)f (k)  +cg (kk)f (k)w 2  2 
[f (k)J 

(1.57) 

(1.58) 

(1 .69) 

(1.60) 

(1.61) 

where f(k) is the dispersion relation = f(k). Thus the property 

o - constant cannot be realised unless there are effects counteracting 

the dispersion. This is precisely the first term on the right of (1.60) 

which represents the nonlinear effects balancing the dispersive effects 
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given by the second term. 

1.4. Instability Criteria 

Integrating (1 .50) we find 

t 
6.(0)cosh{.wk2a2X J sine dt}+ 
1 1 0 

+ [5i,6 2(0)+6i2 6 1 (0)]sinh{..wk2a2 fo t sine dt'! (1.62) 
3 

so that if 0 = constant (A 0,7r), as t -, co, s (t) -, co, so that the 

sideband instability can be achieved. To obtain precise criteria for 

instability we need to uncouple the differential equations for 61 and 62. 

This is achieved as follows: 

Defining T = t.k2a2t, we have from (1.60), 

'2 

d IX 
1122 

(Cos 0 - k  2 216162 sin 0 + 2 161+62 
a 

and from (1.50), 

2 2 
d6 1 d€9 

dT - dT - X 6162 sin 0 

Using (1.63) in (1.64), we get 

X sin 8 cos 8 (1.63) 

(1.64) 
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1 dl 0 12y 6 
aT r'62 COS 8 + [i - k2aj 1 2} = 

or 

6162 coS 0 + ae 2 = constant = a, 

say, where 

a1-

From (1.64), we have 

2 
ka 

- constant = 2ax(1-p), p being a constant. 

From (1.64), upon using (1.66) and (1.68), we get 

C61] X2{(1_c 2)4 + 2acp - 2} 

(1.65) 

(1.66) 

(1.67) 

(1.68) 

(1.69) 
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The stability analysis based on the differential equation (1.69) for 

the sideband amplitude is similar to that in Benjamin (1967). For 

completeness we reproduce the main arguments. 

Let 

Q = (1-a2) e. 14 + 2ccp 4 - 02. (1.70) 

Since s is must be real, the solution 4 of (1.69) is restricted to the 
range of positive values over which Q > 0, and a positive root of 

2 
represents an extremurn of €. The two roots of Q may be written as 

A= -- 
2 2 2 1/2 

cqia B - a(1-a +a .p  
2 

1-cx fl-a I 

We now have the following three oases. 

i) -1 < a < 1, The case of instability 

Q 

In this case only one root, A+B, is positive and any value of 4 
greater than this makes Q > 0, so that unbounded growth of 4 with T is 
possible. 

Writing Q as 

1 Q 2 (1-a ) < (62 1 - A) 2 - B 2 

we obtain from (1.69), upon integration, 

4(T) 

(1a2)hh12 T lxi = j' {(ii - A) 2 

4o 
ci? 

(1.72) 
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(T) 

= [ (?-A cOsh_1 t B }} (1.73) 

If we denote the initial value of the expression on the right of (1.73) 

by (la2)"2 r JXJ , we have 

A + B cosh { (1-a2)1t2 lxi (T+r)}. (1.74) 

Thus e .. exp(1/2 (1-a2 )'12 lxi T) for large T and we have instability. 

ii) a = -1, Marginal Instability 

In this case the right side of (1.69) becomes a linear function of 

4, and the resulting equation is easily solved: 

4 = -1/2 pa { a2 + (T+r) 2 x2 } (1.75) 

Thus 4 ... T IXI for large times. This linear growth may be classed as an 

instability. 

iii) a < -1, Stability 

. 2 1/2 i Putting (1- 2 1/2 1 a ) = (a -1) n (1.74), we have, in this case, 

4 = A + B cos { (a2_1) 1/2  (T+r) } (1.76) 
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Thus 6 varies between A±B and hence is bounded. 

It should be noted that the present conclusions apply to 6 2 as well. 

Hence we have shown that there is instability if -1 ≤ a < 1. Going back 

to the original definition of a in (1.67), we find that the Stokes waves 

are stable to sideband perturbations if 

X/Y < 0 (1.77) 

If X/Y > 0, then the sidebands can grow unbounded so long as the 

perturbation frequency w' satisfies 

o < w,2 2k2a2X/Y (1.78) 

This instability criterion is similar to that derived by Benjamin (1967) 

for gravity waves. In that ease Y is always positive, and the stability 

depends on the sign of X. It was found that X > 0 for kh > 1.363... and 

negative otherwise. Thus gravity waves are stable to sideband 

perturbations if kh < 1.363.... 

In the present case for capillary-gravity waves the stability 

criterion is not so simple because of the nature of X and Y. In figure 

1.2 we have plotted the instability regions in terms of the two 

dimensionless parameters rk2/g and kh. A discussion of the results, in 

comparison with the results of the averaged Lagrangian approach given in 

the next sections, may be found at the end of the chapter. 
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1.6 The Averaged Lagrangian method. 

In the following sections we will investigate the stability of 

capillary-gravity waves to slow modulations using the averaged Lagrangian 

technique. This technique was initiated by Whithain (1967) and has been 

later justified rigorously using a perturbation scheme by Luke (1967). 

We first briefly recall the averaged lagrangian method (Whitham, 

1974). Suppose there exists a variational principle 

6J = 6ff L(t,#,)dt dx = 0 (1.79) 

for a function (x, t). The principle implies that the integral J Eq'] over 

any finite region 'R should be stationary to small changes of as 

follows: Let i'(x,t) and (x,t)+h(x,t) be, two "neighbouring" functions, 

where h is "small". The norm of h in which the "smallness" is measured 

is 

ithil = max$hl + maxlhtl + maxlh.I (1.80) 

Both 0 and h are taken to be continuously differentiable. Supposing that 

L has bounded continuous second derivatives, we obtain, by a Taylor 

expansion 

J['b+h]-J[i'] = if [Lot h + L O,j  h xj + Loh] , Lh ]xit + o(Iih2ii) (1.81) 

R 
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ao 
where 0, denotes . The expression linear in h is aJ{,hJ, the first 

J 

variation. The variational principle (1.79) requires that aJ[,h] = 0 

for all admissible h. Choosing h to be a function that vanishes on the 

boundary of R, we get, on integration by parts, from (1.81) 

aJ[,h] = ff [- a L  L, + L 'h dxdt . (1.82) it— j j - 

This implies that 

R 

8L 
45t a 
t -LO a  (1.83) 

by the continuity argument. (If (1.83) were not zero, say positive at 

some point, then it would be positive in a small neighbourhood about that 

point, and choosing h to. be positive in this neighbourhood and zero 

elsewhere, one could violate the requirement that (1.82) should vanish). 

The argument extends naturally if L involves second or higher order 

derivatives in 0. The general variational equation is 

P  
- ax, _ L , - L + atax L 

t j t,j 

+ ___ L + axaax  L 1 - •. = 0 . (1.84) 
at 
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Our interest is in slowly varying wavetrains in which 

a cos(O+17) (1.85) 

where a, e, q are slowly varying functions. The statement slowly varying 

implies that the amplitude a , wave number k and frequency w 

are functions of x and t, but varies over distance and time scales large 

enough compared to the wavelength and period so that their derivatives 

can be neglected to a first approximation. This idea enables us to 

define an averaged Lagrangian. We substitute (1.85) into the expression 

for the Lagrangian L, neglect the derivatives of a, z, w, k as being 

small and average over a period. This results in a function, the 

averaged Lagrangian, e( ,k,a). As an illustration consider the 

Lagrangian 

T - 1 1 2j2 
J2_2 t _2vx. 

1 

corresponding to the Klein-Gordon equation 

tt - a2v2i' + p2i = 0 

Substituting (1.85) into (1.87) and averaging, one gets 

1 

(1.86) 

(1 .87) 

(1.88) 
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The "averaged variational principle" postulates that 

6jJ(_9t9xa)dt dx = 0 (1.89) 

for the functions 9 (x, t), a(x, t). 

The variational equation for a gives 

and for 9, 

6 : £ =0 
a a 

69: 9 + a _( .)=0 
j . t ox o,J 

(1.90) 

(1.91) 

These equations, along with the consistency conditions for the existence 

of 0, may be rewritten in terms of w. , k, a as follows: 

a 0 (1.92) 

- =0 (1.93) 

a . ak Ok. 
J_ 0 

1  J 1_ 

Equations (1.92)-(1.94) govern slow modulations. The first of these, 

(1.92), is the dispersion relation. The second, (1.93), can be shown, 

after some manipulation, to be equivalent to the amplitude modulation 

equation 
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aa2 a 
- + - (c 2) 0 
at ax j 

j 

where c. is the group velocity, 

aw(k) 
ax 

C --
j 

(1.95) 

(1.96) 

The averaged Lagrangian approach is 'a powerful tool for the 

investigation of slowly varying wavetrains since it can be adopted, with 

very little modification, to treat varied situations like non-uniform 

media and non-linear wavetrains (Whitham (1974)). The main drawback, 

however, is the difficulty in finding the appropriate Lagrangian for the 

system under consideration. In the following we will give a Lagrangian 

for capillary-gravity waves and use it to investigate the slow modulation 

of the waves. 

1.7 Lagrangian for capillary-gravity waves  

Luke (1967) has shown that the waterwave equations without surface 

tension effects follows from the variational principle 

ojJ' L dxdt = 0 (1.97) 

where 

L = 
- r-Jt + (v) 2 + gy} dy (1.98) 

Here R is an arbitrary region in (x,t) space. 

We now show that the equations for capillary-gravity waves (1.6)-(1.9) 

follows from the variational principle (1.97) if L is given by 
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L - + 1 (2+2) + YJdY - rF(1+q2)112 - i] . (1.99) Lt 2 x   L 
-h 

For a small change &' in 0, we have, 

SS L dxdt J[ Th1646 t + (!# v&) ]dt}dxdt 

Na r-h6Ody f  + ax   i 50dy f r-ho x i 

- ff T-'h (OX jX j+Oyy)645dy••t 
R 

- ff  [(17t+Oxt7x-'Ay)501Y=i7 dxdt 
- 

R - ff1( x x h +oi y J )o1 -h - y dxdt . (1.100) L  

The first term in (1 .100) integrates out to the boundaries of R and 

vanishes if 60 is chosen to vanish on the boundaries of R. If (1.100) 

were to vanish for all such 60, it follows that 

. xx + 33T 0, -ho <y<q 

:7t + Ox17x - y =0, y 17 

45 h + =0, y= -h 
xx y 
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(1.101) is obtained by choosing 60 = 0 on y = q, y = -h and using the 

usual variational argument. Then a choice of 545 > 0 on y = q, &5 = 0 on 

y = -h gives (1.102) and a choice of 80 > 0 on y = -h, 5# = 0 on y = 

gives (1.103). 

For a variation 517 in q, 

off L dxdt - ff [Pt + . () 2 + gy] 517 clxdt 

- r ff [(I+t7.2 )-112 q 517 ]dxdt  0 (1.104) 

Again a choice of 617 that vanishes on the boundary of R gives, by the 

divergence theorem and the continuity argument, 

+ 1 (z+z) + gq - TZ7 cc (l+17 312 0 on y 17 . (1.105) 
t 2 x   x 

Thus we have shown that the complete set of water wave equations 

including surface tension (eqns. 1.6-1.9) can be derived from the 

Lagrangian (1.99) using the variational principle (1.97). 

1.8 The Averaged Lagrangian 

We now apply the variational principle to study periodic dispersive 

wavetrains. We take the following general form for a uniform periodic 

wavetrain: 
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px - it + (o,y), 0 = kx-t 

17= N(0) 

(1.106) 

(1.107) 

The phase function 0 may be normalised to have a period 2n. The linear 

term /3x-it must be allowed in P because it is only the derivatives of i 

that represent periodic physical quantities. p is the mean horizontal 

velocity. The meaning of i is less clear - it corresponds to absorbing 

the Bernoulli constant into the potential. 

In the lowest order modulation approximation the Lagrangian is found 

by substituting the periodic wavetrain (1.106) and (1.107) into (1.99). 

Thus we get 

(0) 
L {i+ 0(o) - (p2+k2 +2pk 0) - 

'0 

- - [(1+1t2N 1/2_i] 

12 
('Y -  p )N+(t-pk) 0dy - (1 22+ 2)dy 

- . gN2_r [(1+k2N) h/2_1]. (1.108) 

Since the exact forms of N( a) and ( a , y) are not known one could either 

use the long wave approximation of the Boussinesq or Korteweg-de Vries 

type, or alternatively use the near-linear Stokes wave expansion. We use 

the latter approach to complement the Fourier mode analysis in the 

previous sections. Thus we let 
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00 

N(e) = h + a cos e + a cos no 

n=2 
00 

A 

(e,y) n - cosh(nky)sin no. 
n 

n=1 

(1.109) 

The form of (f) ensures that it satisfies the Laplace equation. The 

Fourier coefficients A n n , a are assumed in advance to be O(a") for small 

amplitude a; this is justified from our experience of Stokes expansion. 

The procedure now is to substitute (1.109) and (1.110) into (1.100) 

to calculate L, keeping terms up to a4 to include the first nonlinear 

effects. Then the averaged Lagrangian is calculated: 

In order to proceed up to terms of order a 4 the Fourier coefficients A1, 

A2 and a2 will be required. These are obtained from the variational 

equations 

e =e 0. 
A1 A2 a2 

These calculations are necessarily tedious, comparable to the labour 

involved in deriving the Stokes wave solutions in the Fourier mode 

analysis. 
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Let h0 denote the undisturbed water height and choose the origin 

y = 0 at the bottom so that h0 = 0. Then the averaged Lagrajigian, after 

considerable labour, is obtained as 

. p2)h 1 - gh2 - 1 (g+pk2)a2 

+ 1 (-pk) 2 2 3 3 21 4 4 
a + 16T ujrka 

+ [ g + rk2] [T2u2 - 3-T2 U - 2T2_11 
2T 4T j 

2 xka 4 

where 

T = tanh(lth), 

U - (g+rk2)(3-T2)  

4T(T2(g+rk2)-3rk2] 

This expression is not uniformly valid. It becomes singular when the 

relation 

tanh2(kh).(g+rk2) = 3rk2 

is satisfied. This singularity is identical to that noted in (1.21) in 

the Stokes wave expansion. In the following we confine ourselves to 

nonsingular wave-numbers. 

It is convenient to express the averaged Lagrangian (1.113) in terms 

of the energy density of capillary-gravity waves. The energy density E 

is given by (see Lighthill(1978) for derivation of this) 
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l/2(g+rk2 )a2, 

the two terms making up the gravitational and capillary contribution 

respectively. 

Consistent with the slow modulation theory we assume that changes in 

4 i 'Y ' ,8, h are O(a 2 ). Thus in the coefficients of a n (1.113), h may be 

replaced by the undisturbed water depth h0. The resulting averaged 

Lagrangian, in terms of the energy density E is 

p2 )h - gh2 + { (w-pk) 2 - 11 

)kT 

k 2 E 2 .- 3U2 3-T2 
 2 rk2 +TU2 -U ° 

+ g+rk2 g+rk 

where T0 = tanh(kh0 ). 

The variational equation 0 gives the dispersion relation 

where 

(w-pk) 2 k 2 E 
- 1 - 4D 

(g+rk2)kr 2 g+rk2 

- 3U2 3-T 2T-1 

D -  2 rk2 + TU2 - u  - 
2 g+rk 2T0 4T 
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1.9 Dispersion relation and Stability analysis  

Using the averaged Lagrangian (1.116) one can derive various 

expressions for mass, momentum and energy conservation and induced mean 

flow (see Whitham (1974), sec. 16.7-16.10). In most of these expressions 

the changes effected by including surface tension can be easily found by 

noting that the linear disperson relation w 2 = gk tanh(kh) has been 

replaced by w 2 (gk+rk3 ) tanh (kh). However, the most important 

consequences of the second order terms in (1.117) is in the modulational 

stability of the Stokes wavetrain. We now investigate this aspect and 

compare the results with the Fourier mode approach. 

After some manipulation the dispersion relation (1.117) can be 

written as 

t.) + ! [ 2c00D2 
c g+rk2 

[2C0 - c0 (g+3rk2)/(g+rk2 )] 2 1 

kh0(gh0-C) ithc I 

where w 0 = [(g+rk2)kT0]"2, and c0, CO are the phase and group velocities 

respectively: 

CO = [(g+rk2)1(1T01112 

g+3rk2 

co Co[g2  + sinh(2kh  
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Let us now look at the characteristic velocity of the modulation 

equations, (1.92)-(1.94). First assume that the dispersion relation is, 

up to second order, 

= w0 (k) + w2 (k) a2 

Then the conservation law of the wave crests 

alt + - 

takes the form 

2 
<)k a 2 alt aa 
+(w37 W 0 +t 2 ax 2 a =0 

The amplitude modulation equation (1.95) becomes 

aa2 a 2 
+_(6a )=0 

(1.120) 

(1.12-1) 

where a prime denotes 

The coupled set of equations (1.120) and (1.121) may be expressed in the 

form 

AY x +IYt =0 

where 

and 

a 
Y = [ k 

A= 

2 
a 

W2 w6+a 2w 

1100 1= 
01 

(1.122) 

(1.123) 

(1.124) 
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The characteristic speeds V of (1.122) are found from the determinant 

A - V I j = 0 (1.125). 

which expands to give 

1/2 

V (w6 + a2/2)2 ± { (w. + a2' )2 -  w6 (w6  + a2 )+a20 2 ó'] 

(1.126) 

To the leading order in amplitude a we have 

V = W6 + a ( 2 ' (1.127) 

Thus in our case the characteristic velocities are 

V = C0 t ( *) 2 k2E/c0 )1/2 

where £72 is the coefficient of k2E/c0 in (1.118). 

It is remarkable that one can find all the stability characteristics 

just from the dispersion relation. In case t. 0(k)Q2 > 0 the 

characteristics are real, the system is hyperbolic and stable to 
it 

modulating perturbations. If t. 0 (k)cz2 < 0, on the other hand, the 

characteristics are imaginary and the system is elliptic. Thus small 

perturbations will grow in time and the wavetrain is unstable. 

1.10. Discussion of results  

The Fourier mode analysis gives a description of instabilities due 

to infinitesimally small perturbations, while the Lagrangian approach 

describes very gradual but not necessarily small modulations. Thus in 

some sense the two approaches complement each other in describing surface 

wave instabilities. It should be noted that the Fourier mode analysis is 

a linear perturbation analysis on the nonlinear water wave equations. 

In figure 1.2 we have plotted the dimensionless groups rk2/g versus 
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kh with the shaded regions indicating regions of instability given by the 

Fourier mode analysis. The result can be considered valid if ka is 

small, up to the first order in small quantities. The significant effect 

of surface tension is quite evident from the diagram. One observes that 

the neutral stability curve starting at kh = 1.363... for ,rk2/g = 0 tends 

to smaller values of kh as rk2/g increases. The branch (a) corresponds 

to Y = 0 and the branch (b) corresponds to (1.21). In both situations 

the perturbation scheme breaks down and modified scales need to be 

introduced. 

Figure 1.3 is a, stability diagram based on the averaged Lagrangian 

approach. The branch (a) corresponds to w6l = 0 which is identical with 

Y = 0 giving rise to branch (a) in figure 1.2. The branch (b) in both 

figures result from the singularity in the Stokes wave expansion given by 

(1.21). There appear two additional branches (e) and (d) in figure 1.3. 

(c) corresponds to gh0 = C2 , indicating the coincidence of group 

velocity C with the phase velocity of long waves, Jgh0 . In this 

situation s2 2 becomes singular and once again the perturbation scheme has 

to be modified. The branch (d) corresponds to s2 2 = 0. The branches (c) 

and (d) are absent in figure 1.2 because as shown by (1.60) and (1.58) 

the dispersive effects balancing nonlinearity is taken only up to the 

first order in the Fourier mode analysis. As seen from (1.118), the 

branches (c) and (d) in figure 1.3 arise from the second order dispersive 

effects. The stability diagram in figure 1.3 is similar to that of 

Kawahara (1975) who uses a multiple scale formalism to derive a nonlinear 

Schrodinger equation governing the self modulation of capillary-gravity 
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waves. It is interesting to note that if surface tension is not zero, 

there is always instability at some value of kh. 
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kh 

2.0 3.0 

-rk2/g 
4.0 1.0 50 

Figure 1.2. Stability diagram based on Fourier Mode Analysis. 
Shaded areas indicate instability. 
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kh 

1.0 2.0 3.0 

-r k2/g 
4.0 50 

Figure 1.3. Stability diagram based on the averaged Lagrangian. 
Shaded areas indicate instability. 
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CHAPTER II 

EVOLUTION OF PERTURBATIONS OF THE RENORMALISED 

LONG WAVE EQUATION * 

2.1 Introduction 

In recent years there has been considerable interest in the study of 

perturbed evolution equations. These equations govern physical phenomena 

such as wave propagation in a slowly varying medium, waves in a channel 

of varying cross section and solitary waves moving along a sloping beach. 

Karpman (1979) studied the perturbed KdV equation by using perturbations 

on the inverse scattering method, while Grimshaw (1979 ) 1981) and Johnson 

(1971) used series expansion to determine the evolution of the perturbed 

KdV equation. In the most recent work Smyth (1984) used two timing and 

matched asymptotic expansions to determine the evolution of the perturbed 

KdV equation 

u + 6uu + u xxx = (2.1) 

where 6 is a small parameter. He finds two distinct regions behind the 

slowly varying solitary wave: (i) a near tail which eventually breaks up 

* Contents of this chapter have been accepted for publication in the 

Journal of Mathematical Physics. Also presented at the Seventh Canadian 

Symposium on Fluid Dynamics held in Saokville, New Brunswick, June 1986. 
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into new solitary waves and which together with the soliton conserves the 

KdV mass, (ii) a far tail which makes no contribution, to O(€), to the 

mass conservation. 

Our aim in this chapter is to examine the evolution of solitary 

waves of the perturbed Renonnalised Long Wave (RLW) equation (or the BBM 

equation after Benjamin et al. (1972)) 

ut x +6uu -uxxt = su (2.2) 

using the asymptotic expansion techniques introduced by Smyth (1984). 

The RLW equation, with € = 0 in (2 .2), is an alternative model equation 

for long waves and derives from the Boussinesq equation following the 

same assumptions used to derive the KdV equation (in fact one can use 

U t a,_OUx in the dispersive correction term, remaining within the 

approximation for long waves, to obtain the RLW equation; here c is the 

wave velocity). Recent interest in the RLW equation comes from the 

numerical experiments showing the inelastic scattering properties of its 

solitary waves. In fact the RLW equation has only three non-trivial 

conservation laws depending smoothly on u and its derivatives whereas the 

KdV equation has an infinite number of conservation laws. However, in 

certain theoretical investigations, the RLW equation is superior as a 

model for long waves (see Benjamin et al. (1972) for a discussion of 

regularity properties of the RLW equation compared to the KdV equation 

for the same initial data). Since the perturbed evolution equations are 

crucial in many physical phenomena, it is worth investigating how a 

different model equation (in this case the RLW instead of KdV) affect the 
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system properties. In this note we have chosen the form €u on the right 

of (2.2) simply for the sake of brevity. One could, for example, 

consider instead -u if a small damping is present or -u xx in the 

presence of heat conduction. For all these latter cases, however, the 

analysis' is essentially the same. 

As in the case of the perturbed KdV equation it will be found that 

the slowly varying solitary wave solution of (2.2) does not conserve 

mass. It is then assumed that there is a 'near tail' region just behind 

the solitary wave caused by a mass flux from it. Behind the 'near tail' 

there will be another 'far tail' region governed by the linearised form 

of (2.2). The essential difference between the present analysis of the 

perturbed RLW equation and the perturbed KdV equation will be in the far 

tail region. The far tail will be found to be exponentially decaying as 

x -, —c'o while for the perturbed KdV it is oscillatory, given by an Airy 

function. 

2.2 The solitary wave 

We will assume that the solution of (2.2) consists of a main 

solitary wave with slowly varying parameters given by the expansion 

where 

u = u°(9,T) + £u'(6,T) +---

T = 

0 = x - 
6 

(2.3) 
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0T w0 (T) + €2 2(T) +•.• 

Substituting (2.3) in (2.2) the zeroth order equation is 

- 0u + 6u°u - 0. 

This Iias a solitary wave solution 

where 

U 0 —17 (T)sech2[ 9] 

(2.4) 

(2.5) 

(2.6) 

17(T) ..w0(T). (2.7) 

It is worth observing that the solitary wave speed depends linearly on 

the amplitude unlike the KdV soliton for which w0 (T) = 4(z7). 

One can show by simple conservation arguments that the solitary wave 

(2.6) does not conserve mass. For, the perturbed RLW equation (2.2) has 

energy conservation law 

00  
1 d r (u2+u2)dx' . f u2dx, aE 
2 Ii t)_oo J __co 

if u - 0 as x -, ± oo. 

Using (2.6) we have 

5 

(2.8) 
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or 

5 

q = e , where is a constant, (2.9) 

The equation (2.2) also has a mass conservation equation 

But using (2.9) we have 

d 00 00 
u dx = € L u dx. 

-00  

d f°° 10 a U dx 

(2.10) 

(2.11) 

00 

€ f u dx = 4€i. (2.12) 
-00 

Thus we see that the slowly varying solitary wave (2.6) conserves energy, 

but not mass. To make up for this it will be assumed that there is a 

tail region behind the solitary wave. 

We now take up a detailed formal asymptotic analysis of (2.2). 

First it will be shown that the expansion (2.3) is not uniformly valid as 

X -, —co. The 0(€) equation resulting from substituting (2.3) in (2.2) is 

° 1 1 01 0 0 0 
+ 6u   - •6 u9u - UT + UT u 

This has Rdjoint 

(2.13) 
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+ 6u°v0 - w0v0 = 0. 

Multiplying (2.13) by v, (2.14) by u° and adding, we get 

1 1 1] 01 1 W,)[(V + (u99v) 0 - (v0u9)9 + 6(u u v) 0 - t0(u v) 6 

(u0+ 0 0 UT + UTOo)V 

and integrating from —Go to oo w. r . t. 9, 

(2.14) 

(2.15) 

1 i 1 OO r 0 0 0 
- 0[uv-uv99 -u99v-u9v0I (u_UT+ UT0e)vdo• (2.16) 

.J—co '—oo 

We require that u1 -* 0 as 0 -* co and that u' is bounded as 9 - —Co. 

The bounded solutions of (2.14) are v = u° and v = 1. When v = u0, from 

(2.16) we have 

0O 

0 L(u° - u + u 90 )u° de 

Using (2.6) this gives 

as previously found. 

(2.17) 

(2.18) 
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Now consider the solution v = 1. If we assume that u' -, 0 as 9 -, -00 

we would have, from (2 .16), 

0 J(u° - U + u 99 )d9, (2.19) 

which would give an expression for q different from (2.18). We thus see 

that as e - —oo, u 1 does not tend to zero but tends to a constant value 

given by 

2q 1 00 
I (u0 0 0 _uT+uToo)de 
-00 

2 (2.20) 

M 1 Thus as 0 -+ —oo tends to a constant ., although u° -+ 0, and the 

expansion (2.3) is not uniformly valid. This will be rectified by 

matching the expansion (2.3) with an outer expansion. 

2.3 The near tail 

The outer expansion for the near tail region just behind the soliton 

is assumed to depend on the slow scales X = €x, T = 6t. Thus an 

expansion of the form 

u = 6V1(X,T) + €V2(X,T) +--- 2.21) 
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is considered. 

From the perturbed RLW equation (2.2) we have 

hence 

= vi 

V1(X,T) = A(X) eT 

(2.22) 

(2.23) 

where A(X) is to be determined by matching with the inner solution. The 

matching has to be done with a moving solitary wave which has a speed 

Hence we have, using (2.10), 

Integrating, we get 

= 2q (T) 

2q(T) = 2q0 e 
aT 

12 
€x-_q0 (e -1). 

Thus the solitary wave is at position X when 

T + 
•5_ I 1217o 

(2.24) 

(2.25) 

(2.26) 

(2.27) 



54 

since u1 -47 as 9 -' -00 the matching requires that 

when T is given by (2.27). 

Thus we see that 

A(X) - 

= A(X)e 

1 
6 

I  + 5XTZ 1 31  
I 

(2.28) 

(2.29) 

We notice that the near tail expansion cannot be valid for all times 

because of the exponential growth in time in (2.23). In the case of 

perturbed KdV equation the near tail breaks up eventually into new 

solitons and we expect the sane behaviour to take place here too. We do 

not go into the details of the breakup since it has to be determined 

numerically. It can be checked at this stage that the near tail together 

with the solitary wave conserves the RLW mass to O(s). 

2.4 The far tail  

Since the solitary wave started at x = 0 we expect that the near 

tail will extend from x = 0 till x = x5, the position of the solitary 

wave. The region x < 0 will be called a far tail and it will be assumed 

to have an expansion of the form 
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U = £U1(x,t,T) + EU2(x,t,T) +." . (2.30) 

Using this in (2.2), we get the first order equation 

(U 1)t - (Ui)t 0 

This has a similarity solution of the form 

U1= B(t,T)eX. 

(2.31). 

(2.32) 

The function B(t,T) may be determined by matching with the near tail 

solution at x = 0. Using (2.23) and (2.29) we find 

hence 

.eTB(t,T), 

1 (T+x) 
U1 -e (2.33) 

This far tail expression differs significantly from the KdV far tail 

found in Smyth (1984). There it is seen that 

x 

T (3t) 112 
e U1 . f Ai(s)ds (2.34) 
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where Ai is the Airy function. 

Figure 2.1 is a schematic diagram of the perturbed RLW solitary 

wave. Figure 2.2 shows the perturbed KdV solitary wave . We see that 

the significant difference occurs in the far tail - whereas the KdV far 

tail is oscillatory, the RLW far tail decays exponentially as x - —co • 

So far we have only examined 0(6) equations for the far tail. The 

long time evolution of the far tail is also undetermined at this stage. 

Nevertheless'one can make certain observations without going into greater 

detail. Using the expansion (2.30) at the second order we get, for the 

perturbed KdV equation 

(U 2) xx +(U 2)t +6U 1 (U 1)X +(Ul)T=Ul (2 .35) 

and for the RLW, 

- (U 2)t + (U2)t 6U1(U1) - (U1)Txx + (U 1)T U1. (2.36) 

Thus we see that the derivatives of U1 are involved at the second order. 

Because of the nature of the Airy function the expansion (2.30) leasIs to 

secularities at this order for the KdV equation. However, no such 

secularities arise for the RLW equation because of the exponential decay 

of the derivatives of (2.34) as x -. —oo. 
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Figure 2.1. Perturbed RLW solitary wave 

U 

SOLITARY 
WAVE 

NEAR TAIL 
FAR TAIL 

Figure 2.2. Perturbed KdV solitary wave 
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CHAPTER III 

INTRODUCTION TO MICROPOLAR FLUIDS 

3.1 Introduction 

The fundamental concepts of classical continuum mechanics have been 

known for over two hundred years, since the time of Euler. The classical 

picture of a continuous medium consists of a dense collection of point 

masses devoid of internal structure. The laws of motion and constitutive 

axioms are assumed to be valid for every part of the continuum. 

The limitations of such a view of the continuum are obvious. It 

does not, for example, do justice to the rheology of blood simply because 

it does not possess the mechanisms to characterize the kinematics and 

dynamics of cellular micromotions. Hence there is a need to extend the 

range of applicability of continuum mechanics to treat iheologica1ly 

complex fluids such as liquid crystals, polymeric fluids, blood and 

fluids containing certain additives. 

In the last few decades there has been a reformulation of the 

classical continuum concepts to account for,, local structural aspects and 

micromotions. In this context a continuous medium is regarded as sets of 

structured particles possessing not only mass and velocity but also a 

substructure with which is associated a moment of inertia density and a 

microdeforination tensor. The presence of the microscopic elements in a 
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fluid gives rise to couple stresses arising from microelement 

interactions and to additional balance laws and constitutive relations. 

Investigations during the last two decades have produced several 

approaches to the microcontinuum theories of fluids which are called by 

various names as simple micro-fluids, simple deformable directed fluids, 

micropolar fluids, polar fluids, dipolar fluids, etc. Some of these 

theories are general in nature while others are specialised to certain 

types of material structure and deformations. 

Eringen (1964) initiated the study of general fluid microcontinua by 

considering the mechanics of fluids with defoimable microelements, which 

he called simple microfluids. His model assigns each continuum particle 

a substructure - that is, each material volume called a macrovolume 

contains miorovolume elements which can translate, rotate and deform 

independently of the motion of the macrovolume. However, each 

deformation of the macrovolume element can be expected to produce a 

subsequent deformation of the microvolume elements. The theory was based 

solely on the principles of continuum mechanics and not on molecular or 

statistical mechanics. Additional equations arise in the theory to 

account for the conservation of microinertia moments and balance of first 

stress moments. 

The linear constitutive theory of these simple microfluids leRlls to 

a system of nineteen partial differential equations in nineteen unknowns 

and involves twenty-two viscosity coefficients. Admittedly this theory 

is too complicated and the underlying mathematical problem is not reacUly 

amenable to the solution of non-trivial problems. Subsequently Eringen 
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(1966) considered a subclass of these fluids called micropolar fluids 

which simplifies but restricts the general theory. In this theory, 

characterised by seven equations in seven unknowns, rigid particles 

contained in a small volume element can rotate about the centroid of the 

volume element in an average sense described by the microrotation vector, 

in addition to the rigid body motion of the entire volume element. 

Physically it represents fluids consisting of rigid, randomly oriented 

microelements suspended in a viscous medium. 

The relative mathematical simplicity of the microcontinuum theory of 

micropolar fluids enabled it to be successfully applied in a variety of 

fluid mechanical problems. A review of various applications can be found 

in Ariinan et al. (1973) and in the recent book by Stokes (1984). It is 

worth pointing out that Kolpashohikov et al. (1983) have devised a way of 

experimentally measuring the micropolar material coefficients. 

Turk et al. (1973) have applied the theory to model blood flow in 

arteries, and have obtained excellent agreement with the experimental 

blood flow data of Bugliarello and Sevilla (1970). 

In this chapter we will briefly recall Eringen's theory of simple 

microfluids and the specialised micropolar fluids. In Chapter 4 we will 

prove two uniqueness theorems for the complete set of coupled non-linear 

partial differential equations governing the micropolar flow - one for 

flows inside a bounded region and the other for flows past a finite solid 

body. For this purpose we use some estimation techniques applied by 

Serrin (1959) and Dyer and Edmunds (1961) for classical viscous and 

Magnetohydrodynamic flows • In Chapter 5 we will explicitly construct the 
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time dependent fundamental solutions for the Stokes-linearised equations 

of micropolar fluid theory. In Chapter 6 we will give an application of 

the theory to the problem of flow in a meandering channel. 
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Figure 3. 1. Deformed and undeformed volume elements 
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3.2 Deformation and Microdeformation 

Let X' be a material point having rectangular coordinates 

(k = 1,2,3) of a body having volume V and surface S in the undisturbed 

state (refer to figure 3.1). After a deformation, this point will, at 

time t, occupy a position, say x', in the deformed body now occupying a 

region having volume r and surface A. The mappings 

x(X',t) 

X(x',t) J 
(3.1) 

are called the motions and inverse motions respectively. We assume that 

the mappings (3.1) possess continuous partial derivatives with respect to 

their arguments to any required order and that the Jacobian 

ax 

aX 
(3.2) 

does not vanish for any XL and t. This ensures the existence of a unique 

inverse. In the following a repeated index will indicate summation over 

(1,2,3) and a comma followed by a subscript e will indicate 

differentiation with respect to x€, and D/Dt will indicate material 

derivative. 
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Let X be the centre of mass of an arbitrary macroelement dV which is 

made up of microelements, a typical one of which is dv' with its centre 

of mass at X'. Let us agree to denote properties associated with the 

material point X' by primed capital letters and those associated with 

spatial point x by primed small letters. On deforming the macroelement, 

dV'+dS' centred at X' goes to dr'+dA'. Macroelements are composed of 

microelements and a simple averaging process is used to link up the 

properties of macroelements with those of microelements. For example if 

P, p are the average mass densities in dV and dr respectively and P', p' 

those in X', x', then 

fP, V , = PdV, f f3'dr' = pdr (3.3) 

dV dr 

and 

P1td\h1 pXdv. 
dv 

(3.4) 

We shall make the assumption of "microconservation of mass, 

P'dV' = p'dr' (3.5) 

which in turn implies "macroconservation" of 

PdV = pd-r. (3.6) 

Taking material derivative of (3.6), it follows that 
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(pdr) = 0, 

which is the spatial form of mass conservation. 

From Figure 3.1, 

Also, 

+ 

+ 

x(X,t) 

X(x,t) 

Multiplying (3.8) by P'ClV' and integrating over dV we get 

Recall that 

Hence 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

fdVP' XdV 0 . (3.12) 

= x(X',t) = x(X+Xô,t) = x(X,t) + LC6 . (3.13) 

x0(X,X6,t) 

If X(5 is an analytic function of X() we can write 

(3.14) 
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x(X,O,t) + 8XÔL 

ox0 
(3.15) 

But x0 (X,O,t) = 0, hence if IXf is assumed to be sufficiently small, 

then 

where 

OX0e 

)'Le - ax 6L 

In a similar manner the inverse micromotions are defined as 

Thus it follows that 

OXOL 
heL 

X€o 

hkl](Le = 6ke h)( = 8ML 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Under the assumption (3.16), the motion carries the centre of mass of dV 

into the centre of mass of dr. For, 

I p'x'dr' = I pI.(x+(Xi)drI 
dr dr 

= X fdr p 1dr' + XL f dr X6Lp dr' 
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x pdr. 

The motion and inverse motion of a material point in a microlement is 

thus described as 

= xe(Xt) + XLe(Xt)XOL 

XL = XL (x ,t) + heL(xt)X 

(3.20) 

(3.21) 

3.3 Velocity, Acceleration, Microrotation and Deformation Rate Tensors 

The velocity of a material point is 

dx' 
e  

vi - X i - 

e eat 

aXe 

with X, XL held fixed. This may be rewritten as 

where 

and 

V; 
m+ V X' 

e e e m 

V e(Xt) 

D 
'Le = 1YE Le 

We have used the fact that 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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X = Xt5hI••J (3.26) 

In (3.23), ye is the mean velocity at x while VmeXm is the "peculiar 

velocity" of microelements with respect to x. 

The acceleration of a material point is 

dvi 

a - x XLeXIJ!L 

From (3.24), 

'Le Ve + 

thus 

'Le Ve)(Lm + Zie)Ln 

ii )( +Z) 1) )( me LM mekmLlt 

Using this in (3.27), 

a ae + me)1LmX0L + me IuTi Lk OL 

Using (3.26) in (3.30) 

a' = a + (z +v v e e nemenxnon 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

The tensor u plays a very important role in this theory and is called 

the gyration or microrotation tensor. 
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3.4 Balance Laws  

The mechanical balance laws are obtained by applying an averaging 

process to a macroelement consisting of microelements. Let t,, f be 

the stress tensor and body force respectively at a point x' of the 

deformed microelement dr +dA. The momentum and moment of momentum 

balances of this microelement at x' take the form 

tke,k + p'(f - a) 0 (3.32) 

(3.33) 

To obtain the balance of moments for the arbitrary macroelement dr+dA 

with mass centre at x, we multiply (3.32) by an arbitrary function ct" (x') 

and integrate over the material volume r. Thus 

fr  e [fdr{'t1 ,k +1p(fap ]dr1J = 0 * 

Using the divergence theorem, this becomes 

(3.34) 

$  A$ tkenkdA + fTfd7* ['p'(f-a')-t k" 0.(3.35) 
dA  

When ' 1, we get 

fA tkI IVA + fr ( 'e _ae ) dr = 0 (3.36) 



73 

where 

fd,ti,rvA-
tndA, Lp-f•dr- pfdr Lpla  dr' padr (3 37) 

and n, n' are unit outward normal to dA and dA' respectively. tke 'e' 

pa, are to be interpreted as the stress tensor, body force and inertia 

associated with the macroelement dr. Using the divergence theorem in 

(3.36), we get 

fr [tke , k + C a ) I dr = 0 

It follows that whenever the integrand is continuous, 

tk,k + p(fe_ae) = 0, (3.38) 

which is the expression for momentum balance. 

By taking " (x') a x', one can show, using the same procedure as 

above, that the equations for the balance of the "first stress moment" 

are 

t -6 +A +ple -a me me kem,k I em em] 

where 

(3.39) 
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fdA,tkeXçflkdA A DOA' fdr p'f'x' dr' = pE dr kEink E0m Em 

fdrpsaEx6mdrl = 1mdT L•, Em S e dT J 
(3.40) 

The first term in (3.39) is the moment of surface tractions on the 

microsurfaces about its centroid.. Thus A kern it ii. dA are called the "first 

stress moments". Similarly the second and third terms in (3.40) motivate 

calling e em the "first body moment" and a em the "inertial spin". The 

last term, s, which is symmetric, is the "microstress average". 
me 

Using (3.31), we see that 

i.c dr fdr pax[a +(z +v v)x6 1dr' Em e nE k nj 

pi(Zke+veViLn)dr 

where 

Hence 

Alternately, if we let 

it can be checked that 

(3.41) 

pi1 dr = f P1XÔkXi5m(IT • (3.42) 

; =1 +L) 1) ) 
Em km IcE nEkn 

'kin - 

(3.43) 

(3.44) 
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'em ILOU "Mm 
(3.45) 

Physically, I resembles the "moment of inertia" tensor of the 

macroelement with respect to its centre of mass X. ikrn will be called 

the ttmiOroinertia moments" and by taking the material derivative of 

(3.44) it can be shown that the microinertia moments satisfy 

a 
(:L) + L V 

- '"ek - lkeUlem_ 0. !un,e e em  (3.46) 

To complete the mechanical description of the microstructured fluids 

we need the energy balance equation. Without going into the details (see 

Ramkissoon (1975) for details) we summarize the energy balance equation: 

tkeZJe,k + vme me me (s -t ) + 'kem 'me,k + qk,k + ph. (3.47) 

Here 6 is the internal energy and h the heat source per unit mass of the 

macroelement and q is the heat flux vector. 

Equations (3.38), (3.39) and (3.47) along with the mass conservation 

equation 

ap 
+ (pvk),k - 0 (3.48) 

provide the mechanical laws of motion for the fluid. Equations (3.48) 

and (3.38) are known from classical theory, (3.47) is an extension and 
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(3.39) is new, as it has no counterpart in classical continuum theory. 

3.5 Micropolar Fluids 

Till now we have considered the description of the rate of 

deformation and stress and the general laws of motion. Eringen (1966) 

has given the constitutive equations for a class of microstructured 

fluids called micropolar fluids. Our subject of study is this class of 

micropolar fluids. We now briefly reproduce the results of the linear 

constitutive theory of non-heat conducting micropolar fluids with 

isotropic structure (i.e ., i 

The micropolar fluids are assumed to have constitutive equations of 

the form 

t = [- + A tr(d) + A0 tr(b-d)]I 

and 

+ 2o + 2 i (-) + 2p2 (b_d), 

s [-ir + A tr(d) + tr(b-d)]I 

+ 21 0 d + p3 (bbt2d), 

A (ia +a +ia )5 
kem 1 mnn 2 nmn 3 nnm k 

+(ia +ia +ia )6 
4enn 5nen 6nne km 

+ (1751m + i a + 8nkn em 

+ 10akem + 1ll5kme + hl2aelan 

+ Yl3ae + 714'e + i 15a mek 

Ake = -. Akmes Vke Vek• 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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Here I is the unit tensor and tr denotes trace, and 

= Vke + ke' dke  = (Vk,+Ve,k) em Vke,m 

(A, 'opo are viscosity coefficients and it is the 

thermodynamic pressure 

a€. 
1 

ap H,i 

H being the entropy per unit mass. 

(3.54) 

One can introduce a microrotation vector u and a couple stress 

tensor m whose components are defined as: 

= 2 €nkeUJke 'im - kem. 

where 6ijk is the alternating tensor. 

Similarly one can have 

C 26 0 a 
- EnkeOke ke = -. nke n 

e n = - eeekey e ke = - 26nkeen 

(3.55) 

(3.56). 

(3.57) 

Assuming that i km = i6 ka (microisotropy) and using the fact that uke 

is skew-symmetric, it follows from (3.46) that 
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(3.58) 

Thus i is constant along material lines, which we shall take as j/2. The 

kinematic relation (3.43) reduces to 

(3.59) 

It follows (see Ramkissoon (1975) or Eringen (1966) for more details) 

that mioropolar fluids are characterised by the constitutive equations: 

tke = (—t + Ad )6 + (2p+i)d1 + ie ( -v 
mm ke kern m m 

'ke -a1v ke 6 +/3v +iv m,m k,e e,k 

Here 

(3.60) 

(3.61) 

is the vorticity vector and the coefficients, A, p, i<, x, /3, i are 

combinations of the viscosity coefficients introduced in (3.49) and 

(3.51). The equations of motion then become: 

Mass Conservation 

ap 
t+ (pv) 1 = 0 

Momentum Balance 

(3.62) 
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tek,e + - 0 

Balance of first stress moments 

mnk,n + ken en t +p(ek_k) = O 

Energy Equation 

t1ç (ye , k kenVn) + mke Ve , k + % , k + ph. 

(3.63) 

(3.64) 

(3.65) 

There are thermodynamic restrictions on the viscosity coefficients 

, /3, i, A, p, X. The second law of thermodynamics, which states that 

the rate of change of the total entropy is never less than the entropy 

influx through the surface of the body and the entropy production within 

the body, results in the Clausius-Duhem inequality 

PA - I it1 - p > 
Jfl,k T— 

(3.66) 

where H is the entropy permit mass and T is the temperature. Application 

of this principle in micropolar fluid theory results in the following 

restrictions on the viscosity coefficients: 

(3A+2p-I-K) > 0, (2p+i) > 0, .'c > 0 

(3a+p+'v) ≤ 0, - ≤ /3 < 1, v > 0 I 
(3.67) 

3.6 Field Equations 

The field equations for micropolar flow are obtained by inserting 

the constitutive laws (3.60) and (3.61) into the equations of motion. In 
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vector notation these take the form: 

Continuity Equation 

ap + y.pv = 0 (3.68) 

Balance of Momentum 

(A+2p+I)v v.v-(p+)v x v x v + K v x v—v'T+pf = p& (3.69) 

Balance of First Stress Moments 

(a+p+i)v v.z.'-iv x v x v + icy x v-2icv+pe (3.70) 

In the case of incompressible flow, (3.68) becomes 

v.v = 0, (3.71) 

so that (3.69) takes the form 

-(p+ic)vxvxv+icvx-vp+pfp'& (3.72) 

If in addition the flow is stely and slow, then the equations ( 3.69) 

and ( 3.70) reduce to 

-(p+ic)vxvxv+icvxv-vp+pf0 (3.73) 

v•i'-'iv x V X V + Icy x v-2iw+pe = 0. (3.74) 

It can be seen that the constant ic links the velocity and microrotation 
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and is often termed the coupling constant, since its vanishing uncouples 

the differential equations. In this case the global motion is unaffected 

by microrotations. 

3.7 Boundary Conditions  

The general field equations given in the previous section represents 

seven scalar equations for seven unknown field parameters p, v and 

Under appropriate boundary and initial conditions these differential 

equations should be capable of predicting the behaviour of micropolar 

fluids. As initial conditions we can prescribe the unknowns throughout 

the fluid at t = 0. As regards velocity, we could still insist on the 

no-slip condition on the boundary as in the classical situations. 

There doesn't seem to be a universal agreement on the right boundary 

conditions for microrotation. Eringen (1966) suggested 

v(xB,t) B' (3.75) 

where xB is a point on the boundary with prescribed microrotation 

This condition, together with the no-slip condition is based on the 

assumption that the fluid adheres to the solid boundary, and has been 

used by most authors. The main criticism for this assumption is that 

microrotation and velocity are kinematically distinct, and thus the 

validity of the assumption is in doubt. Another boundary condition 

sometimes used is the Cauchy boundary condition where the microrotation 

has the same value as the fluid vorticity at the solid boundary. Turk et 
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al. (1973), in their work on pulsatile blood flow, have applied yet 

another boundary condition, that the microrotation be constant on the 

boundary but requiring that microrotation grRrlients vanish there. But 

the problem of what is the best spin boundary condition for fluids with a 

microelement structure remains unsolved. In Chapter 6, in which we 

examine the flow of a micropolar fluid in a meandering channel, we will 

investigate the effect of two types of boundary conditions: (a) no-spin 

and (b) microrotation equals fluid vorticity. 
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CHAFFER IV 

TWO UNIQUENESS THEOREMS FOR MICROPOL1AR FLUIDS * 

4.1 Introduction 

In this chapter we establish two uniqueness theorems for the set of 

partial differential equations governing the motion of a micropolar 

fluid. First we prove that the motion pf such a fluid within a bounded 

region of space, which could be time dependent, is unique. This is done 

under some general assumptions of initial and boundary conditions and the 

boundedness of the field variables and their derivatives. Next we prove 

a uniqueness theorem for the flow caused by a finite solid body situated 

within a fluid extending to infinity in space. Here again certain 

general boundary and initial conditions are assumed, together with 

certain behaviour of solutions far from the body. 

The theorems we prove apply to the complete set of nonlinear partial 

differential equations given in the previous chapter. The only 

uniqueness theorems proved so far concerns steady,linearised flow as 

given by Ramkissoon (1984) and Cowin (1972). 

Contents of this chapter have been accepted for publication in Acta 

Yechanica. Also presented at the Tenth U.S. National Congress of 

Applied Mechanics held in Austin, Texas, June 1986. 
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It is natural to enquire about the existence of solutions of the 

equations of motion. Predictably, no existence results are available for 

the nonlinear equations of micropolar flow. This is not surprising, 

since even the classical Navier - Stokes equations lack existence 

theorems. For the linearised equations, however, existence results have 

been proved, under various boundary and initial conditions by Ramkissoon 

(1984). 
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4.2 Uniqueness of flow in bounded regions  

Consider the motion of a compressible non-heat conducting micropolar 

fluid occupying a finite region V = T(t) with sufficiently smooth 

boundary . We recall the constitutive equations for the fluid from 

Chapter 3: 

+ (2P+Ic)d1 + 6ijkkk) 

m 13 .. k,k ij =cw 8 1 +v. . 3 +'w. 

Here v is the velocity, E the microrotation, p the pressure and 

d.. = 1 (v 1. .+v. .) 
13 2 ,3 3,1 

. to 1 3k j = 1..v. ,k * 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Note that the viscosities satisfy p > 0, , ≥ 0, 3A+2p+i > 0, 3cx+p+t > 0. 

The equations of motion are 

P + pv = 0 

t.. . +pf.  
31,3 1 

in.. . 31 ,3 3k +€ 1.. t.3k +p€.1 =pj1'1. 

(4.5) 

(4.6) 

(4.7) 

Here, as usual, f is the body force and € the body couple and a 

superposed dot indicates material derivatives. For a compressible fluid 

equations (4.5)-(4.7) have to be supplemented by the energy balance 

equation 
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pt = t. A. . + m. .v. . + . (w -v )t.. (4.8) 
13 13 13 3,1 ijk k k '3 

where E is the specific internal energy. 

It is convenient to recast equations (4.5)-(4.8) in an alternative 

form for the ensuing treatment. We thus define the second order tensors 

T, M, D, N, G and V as follows: 

T.. = t.., M.. M. 
I3 13 13 13 

D. . 13 = d 1J . ., N 13 . .= e 1. 3.k ( k -vk ), 

G. . v. ., V. . = /w . .+(2p+i)d. .+KN. 
13 3,1 13 k,k 13 13 13 

Then the equations (4.5)-(4.8) may be rewritten in the form 

j + p div v = 0 

pf + div T 

pjz' pe + div M + 2(t.-v) 

pt T:D + M:G + T:N 

where we have used the conventional notations 

A:B=A..B.., (div A). =A.. 
13 1J 1 31,3 

We assume the fluid is non-heat conducting and has equations of 

state 



87 

p = p(p,.) 

E=C . 
V 

(4.13) 

(4.14) 

where 0 is the temperature and C  is the specific heat at constant 

volume. C is taken to be a positive constant. The function p is 

assumed to be sufficiently differentiable. 

Our aim is to determine if, given the initial velocity, 

microrotation, temperature and density distributions and prescribed 

boundary conditions at all times, they uniquely determine subsequent 

motion. The uniqueness of the corresponding steady, slow, incompressible 

flow under various boundary conditions has been established by Raiukissoon 

(1984). We show here the uniqueness of the flow governed by the complete 

set of equations of motion (4 .9)-(4.12) and the boundary conditions 

prescribed below. 

Let n denote the outward rrma1 to T and G the outward normal 

velocity of V3 . Then U = v'n-G is the relative normal velocity of 

particles on the boundary. Suppose that 

a) At all points on the boundary and at all times v is prescribed; 

b) the initial values of the flow variables are prescribed at all 

points on the closure of i; 

c) at all points where U < 0 the temperature and density are 

prescribed. 

Note that the condition (c) implies that at points where fluid is 

entering the region Y, the thermodynamic properties are prescribed. 

By a solution of the initial value problem described by (4.9)-(4.12) 
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and the boundary-initial conditions (a)-(c) we mean a set of continuously 

differentiable functions satisfying (4.9)-(4.12) and taking on the values 

prescribed in (a)-(c) in the closure of V. 

Our main conclusion is: 

Theorem. Let the viscosities satisfy the inequalities 3A+2p+i > 0, 

2p+i > 0. Then there can be at most one solution of the above 

initial-boundary value problem. 

Proof. Without loss of generality let us put C  = 1. Let (p,v,v,) and 
•t A# -. - 

(p,v,v,) be two solutions of the initial value problem. A tilde over a 

flow quantity shall be understood to mean a quantity evaluated for the 

second flow. Also let us denote F' = F-F for any flow quantity F. For 

example v' = v-v. The proof consists of showing that 

V I = V' = p' = 4' = 0. 

We first derive some identities which will be used frequently. If 

denotes material derivative and if we define 
at-

dP' aF' 
- + (v . grad)F' 

then it follows immediately that 

dF dPdF' 
Eff - + (v' • grad)F 

(4.15) 

(4.16) 
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for any flow quantity F. It is also easy to show by simple algebra that 

AB - AB = AB' - A'B . (4.17) 

Next we derive the transport equation 

JpF dv = J p dF dr - pTJF ft. 

To show this we start with the obvious identity 

(4.18) 

'f pF dr = f -a-:E (pF) dr + pFG ft. (4.19) 51 
ly 

kr 

This says that t1e rate of change of fpF consists of two parts: the 

internal changes of pF given by the first term on the right and changes 

due to motion of the boundary 93 which is moving with a normal velocity G. 

Rewriting the right side of (4.19) as 

J (pF)dii + (v.n)pF d + f pF(G-v-n)clm 

I 

and using the divergence theorem, 

JpF dr = 5 (pF) + div(pF v)]dr + pF(G-v.n)d. (4.20) 
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But 

(pF) + div(pF v) = PraF + (v.rad)F] + F[ + div(p v)] 

dF 
= p (4.21) 

using the equation of continuity and the definition of the material 

derivative. This proves (4.18), since U = v.n-G by definition. 

In the following we shall agree to omit surface and volume 

infinitesimals in all expressions, since the context makes clear the 

nature of the integrals. 

Since both the postulated flows satisfy (4.9), we get 

+ p dlv v = 0 

- 

p + p div v = 0 

(4.22) 

(4.23) 

Subtracting (4.23) from (4.22) and using the identities (4.16) and (4.17) 

we get 

•  +v'  dt - • grad p+pdivv'+p'divvO. 

Multiplying this by p ' , 

(4.24) 
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d. [.ffl '21 1 '2 
Tt- P  - p'v' grad p + pp' div v' + p div 

Using the transport equation (4.18) in (4.25) we get 

d f 1 '2 
pp = _J'ppsvi -grad p + pp' div v'+ p'2d1v } - 'ii 

(4.25) 

1 2 
PUP 

(4.26) 

Again since both flows satisfy (4.10), we have, by subtraction, scalar 

multiplication by v' and rearranging, 

P [112] = +IVI. (_f+pv'..v'} + :' .div T (4.27) 

'2 dv 
where v v' .v' and a = EE I 

Let us now separate T into a sinmetrio and an antisymmetric part. 

Define 

T = S+A (4.28) 

where 

S. ij = (-p+Avk,k ij )o + (2p+K)d. . (4.29) 

and 

A ij ..=E..kJ(t It-vk). ij  

Then (4.27) can be rewritten as 

P (..v 2) - {pv..(a-f)+Pv..•.v-+S ':V '-v '-div A} 

(4.30) 
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+div(v•S). (4.31) 

Using the transport equation (4.18) and the fact that v 0 on M we get 

(pv '2) = _J{P'v'H f .(a_f)+Pv.D.v+S:V_.divA}. (4.32) 

The above procedure of subtraction, scalar multiplication and use of 

transport equation is now repeated in precisely the same manner with the 

remaining two equations of motion (4.11) and (4.12). The results are: 

d 1 '2 a€ j(i' ) = _J{p'v'.(i_e)+piv'..v'_2Kt.' .z)'+2Jcv 2-v'.div Mt} 

(4.33) 

'2 
where  =v'.v'andb,and 

aE 

d f 1 PO 2 fo ,fT:D ,+T 1:N)+(-p+A9'*)e+RN ,:D 

+ ((2P+K)D':D+T:NI)+M:G'+M':G} (4.34) 

+ f•-1 01 -p 'V 1 .grad - f 1 ' .- pU 2 

where 0 = div v = I : D (I being identity). 

Our next task is to estimate the various quantities occurring on the 

right sides of equations (4.26), (4.32), (4.33) and (4.34). For this 
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purpose we restrict our attention to a fixed time interval 0 ≤ t ≤ r, 

where r is arbitrary but fixed. If the flow is known to exist for 

time to, then r < t0. In what follows let P denote an upper bound; P 

will be different at each estimate but it will be possible to determine 

its size at each stage. We use this convention to avoid introducing too 

many symbols at the estimation stage. Let 6 be an arbitrary positive 

number to be fixed later. Using Cauchy's inequality 2ab ≤ a2 +b we have 

pp'v'.gradp+p2p'div v'+pp 2d1v vi ≤ P(p2+v2) + 602. (4.35) 

Here P depends on 6 and the bounds for the magnitudes of (p,v,v,c) and 

(p,v,v,!') and their derivatives during 0 ≤ t < r. 

It is convenient to introduce the following notation: 

f1 '2 2 PP 

11 '2 
J 2 PV 

fi . '2 
K =  2 PjV 

L=J.p 2 

Using (4.35) and the fact that p U p 2 ≥ 0 because of the boundary 

conditions, we get from (4.26), 

≤ J P(p2+v2) + 602, 0 < t ≤ 

Turning to (4.32), we observe that 

(4.36) 
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= -p'D'+V':D'. 

Then it is easily seen that 

< J P(p 2+v '2+p 2) + f[€(e '2+(div A) 2 )-V':D'j, 0 ≤ t ≤ r 

EE -(4.38) 

where (divA)2= (Ajj,j)(Akj,k). 

In a similar fashion we obtain from (4 . 33), 

dK < fP(P'2+v2+12) + J (Iv't.'j(divM) 2-2ILJ 2], 0 ≤ t ≤ 7. 

(4.37) 

(4.39) 

Again from (4 . 34), noting that pUp' > 0 on the boundary because of 

the condition (c), we get 

dL ≤ J P(p' + v' 2 •I- p' 2 + r' 2) + J €(e' 2 + D':D' + G':G' + M':M') 

(4.40) 

Adding inequalities (4.36),(4.38),(4.39) and (4.40),we obtain 

(I + J +K + L,) ≤ P(I + J + K + L) + $ [ 6 (3 9 ,2 + D':D') -V':D' I 

$ [ ( I'' j(div MI) 2 + G' :G' + M' :M' + (div A) 2 ) - 2 
(4.41) 

For a symmetric 3x3 matrix D one can show that D:D, which is the sum 
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of squares of all the nine elements in the matrix, satisfies the relation 

3D: D = 02 + 42 

where 42 (d1-d2)2+(d2-d3)2+(d3--d1)2, 

(4.42) 

(4 .43) 

the d.'s being the eigenvalues of D. This is most easily proved by, 

observing that D:D is invariant under a similarity transform of D. For, 

let (P).. p.. and (P 1).. q..; then 
13 1.J 13 1J 

(P 1DP) : (P 1DP) = (P1DP) ii (P'DP)1 

= . 

= 

6ke idiedite = dkedle 

= dkedek = D:D 

The assertion (4.42) now easily follows by a simple computation on a 

diagonalised matrix. 

Using (4'.42), we have that 

V':D' = AO ' 2+(2p+i)D':D' 

= . {(&+2p+x)a 12+ (2/j+,K ),d 1 21 

In addition, we also have 

(4.44) 
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Thus 

s(39 '2+D':D') . (108 2+4 2). (4.45) 

6(3o 2+D':D')-V:D' = .. (109 2.1.4 2) - . ((3A+2p+I)e 2+(2p+I)4 2)) 

< 0, (4.46) 

if e is chosen sufficiently small. Note that the conditions on 

viscosities stated in the theorem were used to make this conclusion. 

Once again by choosing 6 sufficiently small we have, 

6[Iv1)1I(divM) 2+(divA) 2+G:G1+MM1] - 2iw 2 ≤ 0. (4.47) 

Combining the observations (4.46) and (4.47) we finally obtain from 

(4.41), 

(I+J+K+L) ≤ P ( I+J+K+L), 0 ≤ t ≤EE r 

On integration of this inequality we get 

(4.48) 

I+J+K+L ≤ (I+J+K+L) It=o e Pt , 0 ≤ t ≤ T. (4.49) 

Since I, J, K, L are zero initially, they remain zero throughout 

0 ≤ t ≤ r. But then. v' = z-" = p, = c6' = 0 and the two postulated flows 
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are identical till t T. It follows that the two flows are identical as 

long as they exist and the theorem is proved. 

As a simple corollary one can state that under the conditions of the 

theorem the flow of an incompressible micropolar fluid is unique. For, 

in this case p = p and hence p' 0 and the result follows immediately 

from the theorem. 

One can consider other combinations of restrictions on the 

viscosities and the proof carries through without difficulty. An 

important exception occurs when 3A+2p+R = 0 and 2p+ = 0 (which makes 

A = 0). When this happens, the crucial step (4.46) no longer holds, and 

the theorem cannot be proved. 
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4.3 Uniqueness of flow past a solid body 

In this section we prove a uniqueness theorem for an incompressible 

micropolar fluid in Ehe presence of a solid body. Specifically, given a 

finite solid body within a mass of incompressible micropolar fluid that 

extends to infinity, we seek to determine if the motion of the fluid is 

uniquely determined by the motion of the solid body. An affirmative 

result is proved subject to certain smoothness and boundedness conditions 

on the velocity, microrotation and their derivatives together with a 

certain convergence condition on pressure at large distances from the 

solid body. 

We recall the equations of motion of an incompressible micropolar 

fluid in component form 

av 

(p+ic)v. :i,jj i . .+KS j {_ + v kv 1 i,kj 

ay. 
i v. . .+(a+p)v. .-2ew.+&e.. v. +pe. = p. + v v 

i,jj j,ij i ijk J,k i j k i,kj 

(4.50) 

(4.51) 

(4.52) 

The symbols are explained in Chapter 3. A suffix following a comma 

indicates partial derivative. 

Consider a solid body S with sufficiently smooth boundary aS 

immersed in a micropolar fluid of infinite extent. Let E denote the set 
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of points of space exterior to S and T be a time interval (O,t0) where 

is arbitrary but fixed. To completely specify the problem we assume that 

1) The flow variables Y, v are prescribed throughout E U S at t = 0. 

ii) The v. 1 and v 1 . are prescribed on as at all times t > 0. 
- 

iii) The f and e are prescribed at all times and all points of space. 

In addition, we require the following boundeciness and continuity 

conditions: 

iv) The velocity components v1 and their first partial derivatives with 

respect to space and time are continuous bounded functions of these 

variables in E x T and the second order spatial derivatives are continous 

in E x T. 

v) The microrotation components r.' and their first partial derivatives 

with respect to space and time are bounded continuous functions and the 

second order space derivatives of v are continuous in (E U aS) x T. 

vi) The pressure p is continuous and has continuous first order spatial 

derivatives in E x T. 

We further assume the following convergence condition at infinity: 

Let r2 = x.x. (using summation convention). At infinity p converges 

to a constant p0 such that for all t in T 

p = p0 + O(r -1/2-6) as r -, oo, € being an arbitrary 

small positive constant. 

Our main result is 

Theorem. There can be at most one solution of the equations 

(4.50)-(4.51) satisfying the conditions (i)-(vi) and the convergence 
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conditions on pressure. 

Proof: Assume that the conditions (i)-(vi) as well as the convergence 

condition on pressure holds. Let {v.,v.,p} and {v+vj,v+vj,p+p'} be two 

possible solutions of the problem. The proof will consist of showing 

that vj v! and p' are identically zero. 

Since both solutions satisfy the basic equations (4.50)-(4.52) we 

have, by subtraction, 

0 
11 

av! (p+R)v ..+ie.. . z -p'. = pv_+ v'(v!+v.) + vv' 
1,J3 ijk j,k ,i t k 1 1 ,k k 1,kj 

(4.53) 

(4.54) 

+ v(v+v),k + Vkzfik]* 3-;Jj J)Ij I ijk j,k [ —8t 

4.55) 

These are the equations governing the perturbation quantities vj v and. 

p1. 
Let Br be a closed ball centred at the origin, of radius r and 

having surface C. Let us choose r large enough so that the solid body S 

remains within B for t € T. Let B' fl E. = B r r r 
On multiplying (4.54) by v! and integrating over B, using Green's 

theorem and the boundary conditions v! = 0 on as, we get 



101 

I -(p+i)v .v! .dB +(p+i) I v!v! .n.dC +1 1<€. v!v1 j d13  
j i,j i,j r j i i,j j r j ijk 1 ,k i 

Be C Be 
r r r 

v'p'n dC J . vjvj)dBR+J pv1v(v+v1) 1 d1\,+$ . v!v!v n dC iikk r J I iR 
C Be B' C 
r r r r 

(4.56) 

In this expression n denotes an outward drawn unit normal on Cr 

Similarly, multiplying (4.55) by v and integrating over Be, one gets, 

using Green's theorem and the boundary conditions on 5, 

-if v ..'! .dB -I-il z .z.'!n.dC -(+p)I v! .z". AB 
J 1,3 1,3 r j 1,31 j r J 1,3 3,1 r 
Be C B 
r r r 

.n.dC -2RIV!v!dB -Iis.. z.' vdB +f,. vxLdC 
J 13,11 r j 11 rj ijki,kj rj 1Jk1JK r 
C Be B' C 
r r r r 

+ z" v'n dS + (c+/3) v'v' .n.dS J i,j i j j 1 3,1 1 

as as 

fPj a (u!v!)dB + dB fpi U'v'vn.dC 
T- TE 1 1 r f ik 1 i,k rJ Z 1 1 k K r 

Be Be C 
r r r 

f i IVOOS 
as 

where dS denotes a surface element on as. 

(4.57) 
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Adding (4.56) and (4.57) and rearranging, we get 

S 
B' 
r 

1-01  p (vv) 1 i-(v'v' )+(p+I)v! .v .+1v! .v! ldB + 2- at i i 1,3 1,3 1,3 i,iJ r 

-r [Pv!v'(v.+v') +piv!v'(v+v.) +2iwv!+(c+p)v! .z". .+2ie.. V 1 v'.ldB 1 k 1 1 ,k 1 k 1 1 ,k 1 1 1,3 3,1 ijk i,lt jj r 
B' 
r 

+ f[p+,v'v' .n -ice. v'v'n. - VVVkflk_ViPfl +(cx+p)v'. .n. + i ii,ji ijkiji 2 ii 1 13,13 

C 
r 

+ 'V v!V l n -  L U.LJVkflh]dC 

+ I [w! .v 'a + (a+c3)vv'. . - " vv!v.]n.dS. 
J 1,31 13,1 2 113 j 
as 

(4.58) 

Integrating (4.58) with respect to t from 0 to t1 and then again with 

respect to t1 from 0 to a, where a (0<a≤t0) is to be prescribed later, it 

follows that 

a r a 

V 1 .v! .+ivf l 1 fdt , 1 11 pv'v' + Pij JdBJ+Jdt1JJdt$ [ ,J 1,3 1 ,j ,j]dB 
rtB J L ii 

0  j 0 PO B' r 

t 
a fi 

=-Idt if dtf [Pvl!v'(v.+v!) +pjv!v'(v.+v!) +2icv!v+(a+p)v! .v + J 'lJ   k 1 i ,k 1 k 1 1 ,k 1 1 1,3 J1 

0 10 B' 
r 
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+ 2 ijkVi kVi]dB rJ 

t 
a fi 

+ Idt 1 dtl [+vv . i n.-e€ vvn 
j llj ii 11,33 jkijk 
0 10 C r 

_VV 1 vknl_V.pn.+(a+p)v!v. .n. + 1  13,13 

Pi 
+ 7 v!v .n. - v'v'v n 'dC 1 

11,33 iikkJ rj 

a dt1 Jti pi +  v'v'v ]ndS' . (4.59) $ J J 1,3 3 2. J1  j j J 
0 10 as 

Let us call the left side of (4.59), P(r). Then because p, i, i, p, j 

are all non negative it is easy to see that P(r) > 0, 

Now we need estimates for the various quantities on the right of 

(4.59). Using Cauchy 's inequality 2ab≤a 2 2 +b and conditions (111) and 

(iv), we find that 

Iv!v'(v.+v!) < Nv!v! 1  1 i,k - lii 

v!v'(v!+v) < N (v!v!+i'!v!) 
i 1  1 ,k - 2 11 11 

v! v! ••t 2. v!v! +v! .v! ii,jj 2 11 1,3 1,3 

v!vfv n < N v'v' 
iikk - 3ii 

lv ••I < !v! + ' • 

1 3,1 3 2 1 1 2 1,3 1,3 

I" n.1 < v!v! + 1 us us 
1 1,3 3 - 1 1 1,3 1,3 

viviv knk 4 < N i 'i! 
-  
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v'. v! I < N i"! .v! 
j,i i,j - 5 1,3 1,3 

vv < N (v!v!+ •' •) 
ijk j i,k - 6 1 i ij i,j 

where N1,.. . , N are positive constants. For example N3 supj Vk I' the 
suprenium taken in E x T, over all indices k. 

Using the convergence condition on p, that p O(r"2 ) as r -* oo, 

we get 

if p'v!ndC< II p'2 dC 111 v!v!dC 
i i r - rjij ii r 

C C C 
r r r 

< 
1/2 

v!vdC 
f ii r 
C 
r 

Using these inequalities in (4.59), we have 

a a 

0 ≤ P(r) ≤ (N1+pN2 ii r +2icN6 )a fdt1f vvdB + (2ic+pN2 )a fdt v'v'dB + 
1J ii r 

0 B' 0 B 
r r 
t 

a I 

[+PN+2KN 5 6]JdtJJdt1f ui!yj 1,j n 
0 10 B' j 

r 

+ fdt f [3Z (P+,K)+ 3+]v 1v1dC l+fdtjj 
0 Icr [(Ia+PI+1)++RJv'v'dc 1 i i rf Jo r ii rj 
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t t 
a 1 a 1 

+JdtiJJdtJv .v! .dC '+dt fdtJ(Ia+p1+ )vj v dO1,3 1J ri J ii 
0 10 Cr J 0 [o c rj 

r 

a fl 1/2 

+ N7r"2 Jdt1Jf dt vivldC 1 1 [J ii rj I 
0 l Fl o Cr 

fta i1 
tl1- J  + dtl ['w! .v'.+(a+/3)v!v'. . - Pi Lv!v.]n.dS . (4.60) 

If j 1,3 1 i j,i 2 1 1 j j 

0 aS 

Let us now put 

m 2(N1+pN2+2KN6) 2(2i+pN2) 

p ' pi 

and choose 

J 
(4.61) 

af t0 0 1 }. (4.62) max -: in -,n integer 

Then (4.60) becomes 

0 ≤ P(r) < P(r) + 

a a 

+ fdtif [.(P+)+N3+KlvIvIdC + fdtlf [II+14+K]11I1I(10r Jii r 
0 C 0 C 

R r 

a l a 

+ fdt1JJ dtJ v! .v! .dC 1• fdt, dtj ( a+p +i ) ' v' AC 1 
0 10 Cr ,J 1,3 rj 0 10 Cr ii ii rj 
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a 1/2 

+ a312N r"2 [fdtf v!v!dC 
7 j  ii r 

0  r 
It a Ii 

+ I dt I dtf [iv! .v!+(c+p)v!v' . v!v!v.]n.dS . (4.63) 
j 'lj j i,j 1 1 31  
0 10 as 

Because of the boundedness conditions on v. and its derivatives on 
1 

the surface of the body as, it follows that the last term on the right of 

the above equation is bounded. Thus it is clear that we can find a 

positive number e, by taking the appropriate suprema, such that 

0 ≤ P(r) < e[P I(r) + r 1/2-s .JPI(r) +1] (4.64) 

where PI(r) = c1P(r)  

We now proceed to show that P(r) 0. First we observe that because 

of the boundeciness condition (iii) and (iv), P(r)  .. 0(r3) as r -, co 

Suppose P(r0) 0 0 for some r0 > 0. Then P(r0) > 0. Also PI(r) > 0 for 

r > r0 (because P(r) is the volume integral of non-negative quantities) 

hence P(r) is monotonic increasing and 

+ r P(r) + iJ r > r0 . (4.65) 0 < P(r 0) < P(r) < £[Pt(r) 1/2-s .J  

Thus 

PI(r) +JP'(r) r 1/2-s - 2(r0) 1 ≥ 
e  I 

and hence 

(4.66) 
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  1 1/2-6 JP' (r) r [_i + i 1+4r21 P(r0) I e  - i]] >0, r > r0 

(4.67) 

Thus it follows that 

.JP'(r) > 4r 1/2-€ r 26-1 

P(r 0) 
where 41 -1>0. 

Thus we have, from (4 .65), using (4.68), 

(4.68) 

1-2s 
P(r) ≤ P (r) [1 +  J + e . (4.69) 

Assuming that 1-2e. > 0, we have, for sufficiently large r, 

or 

P(r) ≤ p1 (r) r 1-26 

P'(r) 1 2e.-1 41r 2s-1 
P(r) >-r 2P(r) * 

This gives, upon integration, 

P(r) > P(r0) exp (.i 26-r (r 0 26 ) + f(r)} 

where f(r) 26-3 O(r ) as r - co. 

(4.70) 

(4.71) 

(4.72) 
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But this contradicts the assertion that P(r) = 0(r3) as r -+ oo• Hence 

P(r)  0. It follows that v' = 0, v! 0 throughout E x (0, a). 

Integrating (4.59) with respect to t from a to a-I-t1 and with respect to 

from 0 to a, and repeating the above arguments it follows that 

v! 0 throughout E x (a, 2a). In this manner we can cover the whole 

interval T in steps of length a and it follows that v 0 in E x T. 

Finally from (4.54) and the conditions on p it follows that p' = 0 in 

E x T. This proves the theorem, since t0 was arbitrary. 
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CHAPTER V 

CAUSAL FUNDAMENTAL SOLUTIONS FOR THE SLOW FLOW 

OF A MICROPOLAR FLUID * 

5.1 Introduction 

One fruitful method of dealing with the linearised equations of 

fluid dynamics is the construction of fundamental singular solutions. 

These are solutions of the flow equations corresponding to a delta 

function external force. Apart from giving insight into how the various 

parameters affect the nature of the flow, these fundamental solutions 

also serve as the kernels in an integral representation of the flow 

variables. Panico (1979) has constructed such fundamental solutions for 

classical Navier-Stokes fluids and applied them to a variety of flow 

problems. In the case of micropolar fluids Ramkissoon (1975) has 

constructed fundamental solutions for the steady Stokes-linearised 

equations in two and three dimensions, while Olmstead and Majumdar (1983) 

have constructed solutions to the steady two dimensional Oseen-linearised 

equations. 

Very few time dependent flow problems have been solved in micropolar 

fluids. This is not surprising, considering the complexity of the 

* Contents of this chapter were presented at the Twenty Third Annual 

Meeting of the Society for Engineering Science held in Buffalo, New York, 

August 1986. 
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governing equations. In this chapter we will explicitly construct 

fundamental singular solutions for the non-steady (causal) 

Stokes-linearised two dimensional micropolar equations. The fundamental 

solutions could be used to obtain integral representations of the flow 

field. Because of the complex nature of the fundamental solutions it is 

not expected that they will lead to the exact solution of time dependent 

problems. However one could analyse the resulting integral equations 

asymptotically, for small physical parameters, for example. This could 

lead to an understanding of how the physical parameters affect the 

characteristics of the flow. 

5.2 Formulation 

The equations of motion of an incompressible mioropolar fluid are, 

in vector notation, 

0 (5.1) 

2 au' 
(p+K)v U' - p(u' .v )u' - p - + e v xv' - v p' F' (5.2) 

at,  

. -1 2 v v' + (cx+p)v (v .v') - pj(u'.v )v' - pj --- - 2iw'+iv x u' = L'. 
at, 

(5.3) 

Here all the variables are in dimensional form, with u' being the 

velocity, ii' the microrotation and p the pressure. The constants c,  

i, p, i, p and j are characteristic of the fluid. The body force F' and 

the body couple L' are assumed to be known. 

The equations (5.1)-(5.3) are nondimensionalised through the 
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scalings 

Uu, V, = VU, p -  p, x ex, t' = t, 

where U, V, e are some reference velocity, microrotation and length, 

respectively. 

Confining our interest to two dimensional flow in the x1-x2 plane we 

take 

A A A 

u(x,t) = i1u1(x,t) + i2u2(x,t); z.'(x,t) = i3 (x,t) 

A A A 

F(x,t) = i1F1(x,t) + i2F2 (x,t); L(x,t) = i3L(x,t), 

1, 12, 13 being unit vectors in the three coordinate directions. 

In conformity with the Stokes linearisation we now neglect the 

convective operator u•v in (5.2) and (5.3) and obtain the following four 

scalar equations: 

au  au, 
- + -. - 0 
ax  ax  

[(2 al +b_- - F1 
V - m ju1 ax  c 

(5.4) 

(5.5) 
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where 

[12 a -b_ - -F2 V - m ju2 ax1 (5.6) 

a aU2 au1 
[v - n - cv+a — ax1 ax  -a - - L (5.7) 

Iceu ,ceV 2,e 
a-_V_., b- (p+ic)U' •1 

2 
p 

M - eU -, n - jpeU 
I 

In slow two-dimensional flows, one is required to solve the system 

of equations (5.4)-(5.7) under appropriate initial and boundary 

conditions. This is generally a formidable task. However, much insight 

into the nature of the flow can be obtained by considering the 

fundamental singular solutions, which are solutions of the governing 

equations obtained by replacing the body force F and the body couple L by 

appropriate delta functions. Moreover the fundamental singular solutions 

can be used to reduce the problem of solving (5.4)-(5.7) into solving a 

set of integral equations, which, in general, are easier to handle. We 

thus define the following fundamental solution problem: 

aE i1 aE. 
12 o 

ax1 ax2 

. 

2 a + b aQ -_ - ae 1 - 6 i5 () 6 (t- to) 
V - m TE  IEi1 ax2 •c 

(5.8) 

(5.9) 
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112 v 

aQ ae 
- m - b - - -6. 26(x)6(t-t0 ) 

aE. 
- - +a - n : E- CIQ i2  I ax 

aE. 
11 a 

ax2 
- 5136(x)6(t-t0) 

I = 1,2,3 

where 6 ij is the Kronecker delta and 6(x) = 6(x1 ,x2 ) is the two 

(5.10) 

(5.11) 

dimensional delta function. The singularities of the delta functions 

have been located at x1 = x2 = 0, t = to for convenience. 

Our aim is to determine the solutions of (5.8 )-(5.11) which tends 

to zero at infinity since this is the one of usual interest. It should 

is the 

direction 

be noted that physically 

i th response to a concentrated force at x 0, t t0 in the  

for i = 1,2 and for 1 = 3 this is the response to a concentrated couple 

at the origin at t = t0 acting in the x1-x2 plane. 

5.3 Solution by Laplace transfonn 

To solve the system of equations (5.8 )-(5.11) we adopt a Laplace 

00 
transform procedure. Taking the transform Jet( )dt with respect to 

time of the system (5.8 )-(5.11) we obtain 

aE i a. 
1 12 _o 

ax  ax2 
(5.12) 
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i a. ae. -st -msl +b__-_-e 05 6(x) 
jl ax ox ii -

- msi E . 
j i2 

ns 

a. Oe. -st 
1 1 0 

- b - - - -e 8 6x ax Ox2 i2 - 

OE. 8E i -st 0 i2 i  
- cQ. + a   - a  -e 6 6x 

Ox Ox  i3 - 

I = 1,2,3. 

(5.13) 

(5.14) 

(5.15) 

Here E , ,, . denote the Laplace transform with respect to time of 

e1 respectively. 

To solve (5.12)-(5.15) we have used a method based on the matrix 

representation of the system. The method is somewhat laborious and we 

briefly outline the procedure. Similar procedures for constructing 

solutions can be found in Panico (1978), Ramkissoon (1975). 

The first step is to write the systems (5.12)-(5.15) in the 

following matrix form: 

a a 
Ox1 ax  

0 0 

4 ü __L b-i. 
1 ax 1 ax2 

-b-i. 
0 ax 2 ax1 

a a 
-a - a - 

ax2 ax1 
0 

E. 
12 

e 
1 

Qi 

0 

-st0 
-6 i öe 1 

-st0 
-6 1.2 äe 

-st0 
-6. 1 6e 

3 

(5.16) 
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where 

2 
V -ms 

and 6 denotes 8(x V x2 ), the two dimensional delta function. 

So long as we do not carry out any division, we can treat the above 

system as a linear algebraic system. This enables us to uncouple the 

equations. We find that 

2 -st 
- _.428e 0 

ax2 

2 -st 

AE 21 axax2 426e 0 (5.18) 

AE 31 b v2oe 0  

0 
JE 12 -  ax 426e (5.20) 

1 ax  

2 -st 

AE 22 - 2 (5.21) 
ax1 

2 AE 32 -b v6e_5t0 (5.22) 

-st 
i2+abv2J öe 0 (5.23) 

1 ox  

-st 
[zl •&cv2] äe 0 (5.24) 

2 ax 2 

4e3 = 0 (5.25) 
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4Q1 

4Q3 

a 2 -st0 
-a - v 6e ax2 

a
a V 2 6e -st0 

-  

Ox  
2 -st0 

= - 6e 

where 4 = v2 [4142+ab v2]. 

(5.26) 

(5.27) 

(5.28) 

We have found that the solutions to (5.17)-(6 .28) can be expressed, 

in Laplace space, in terms of two scalar functions (x1, x2 , s), 

(x1,x2 ,$) as follows: 

- a2 
E11 - 

ax 

E12 E21 

- a2 
E22 

ax 

E31 - b 

_12 +1 (v2 - - 

ins ma ms 

-ns -c) ax1ax2  IT'S ms 

(-12-12 ab 
- — +  ns - c) + 
mav ma ins 

4  
ax  

b   
32 ax 1 

e2  -nis)ø 

- 0 

ax 2 

+ 
ab 
ma •j 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 
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Q2 

Q3 

- a 
ax1 

(v 2 -ms) 

(5.38) 

(5.39) 

The scalar functions 5 and are such that they satisfy the following 

relations: 

2 2- 
-st0 

(v -ms)vQ-e 6(x) 

-st I(V 2 _ ms)(v 2 - ns, - c) +abv2]_e 0(j)• 

(5.40) 

(5.41) 

The transforms of the fundamental solutions are determined once the 

solutions of the equations (5.40) and (5.41) are known. (5.40) has the 

solution 

-st0 

- e {log(r2) + K0 (.iiii r)} 
4imis 

(5.42) 

where r = (x + x) 112 and K0 denotes modified Bessel function of the 

second kind. This is the solution that tends to zero as r - o• 

The solution of (5.41) presents a few difficulties. In general the 

inversion of a fourth order partial differential operator is reaiily 

achieved only if it can be factored into a product of two quadratic 

operators. This requirement imposes restrictions on the constants a, b, 

c, m, n. We now derive those conditions. 
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Let 

L 2 2 (v -ms)(v -ns-c) + ab v 2 

We need L to be factorable such that 

L = (v2+A1s+B1)(v2+A2s+B2 ), 

where A , B1 (i = 1,2) are constants independent of s. 

(5.43) 

(5.44) 

We have chosen the above form because we would like to obtain conditions 

on the parameters of the problem, independent of the Laplace transform 

variables. Compatability between (5.43) and (5.44) requires that 

A1+A2 - - (n+m) 

A1A2 = mn 

B1+B2 = ab-o 

B1B2 - 0 

A1B2+A2B1 = mc. 

These requirements are satisfied if 

ab - n-rn- c > 0 
n 

in which case 

mc 
A1 -n, A2 -m, B1 = 0, B2 = - i --. 

(5.45) 
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If, on the other hand, we choose A1 = -m, A2 = -n, then we have ab = 0, 

which is not physically interesting. Similarly the choice ab = c which 

makes B1 = B2 = 0 also leads to mc = 0, a physically uninteresting case. 

We will thus require that the condition (5.45) holds. In terms of the 

original micropolar parameters this condition implies that 

2 
2p+ic 

(5.46) 

This is the condition obtained by Olmstead and Majumc.iar (1983) for the 

Oseen flow problem. Similar conditions were also obtained by Smith and 

Guram (1974), in considering Taylor flows. 

Assuming that the condition (5.45) holds we proceed to determine 

which now satisfies 

2 2 mc -st0 
(v -ns)(v - ins - -) = -e n 

(5.47) 

To solve (5.47) we first observe that if f1 and f2 are two functions 

satisfying 

(v 2_a 2 1)f1 -e -t 

2 2 -e °o(x) (v -a2 )f -st 2 

(5.48) 

(5.49) 
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then the function 

1 
g-  2 

a1 - a2 

satisfies 

-st 
22 2 (v -a1)(v -a2 2 )g -e 

Since 

has the solution 

(v 2 2 -a )f = -(x) 

f = 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(where K0 denotes the modified Bessel function of the second kind) we 

immediately obtain 

-st0 

e  •KO(ZE r) - K0 [(ins + mc 1/2 r 
2,(n-m) n  D 

2 Here r = (x1 2 +x2) 1/2 

(5.54). 

This essentially completes the solution in Laplace space, only the 

appropriate differentiations and substitutions in the expressions for 

(TE . . 1J 1 1 , , .) remain to be done. 

To determine the fundamental solution in real space we would require 
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the inverse Laplace transforms of 0, 0/s, and f/s. Using the 

convolution theorem for Laplace transforms, these are found to be 

0 = L1(, s-.t) = H(t-t0) {log(r2) + El  Mr  2 

4mii 

- H(t-t 0 2 
L71 ) •(t-to )log(r2) + I E11sj 4irm liclzI 

(5.55) 

(5.56) 

• A(t-t') 2 nr [  al mr 
1 H(t-t0 )e 0 t-t0 e -AV - ___  -e- A + - 2 

L () 4ir(n-m)   v  dv (5.57) fo  

L 1() = 
H(t-t0) 

4rA(n-m) 

JrA(t-t) t-t0 -An 

2 
o mr 

t-tO __V n 
e - 

fo V 

e 

euIA + 

where H(t) is the Heaviside unit function and 

V 

(5.58) 

ix 

so -y 
E1(x) 1 -dy (5.59) 

is the exponential integral. 

In order to facilitate writing explicit expressions for the 
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solutions we introduce a set of notations. 

Let us define 

I.(a,b) = 

t-t 
0 e -av-b/v 

fo 
dv 

v3 

and introduce the following symbols: 

2 mx 2 4x2 4x2 
1-mr 11   2 i) 2 3. 

r1,2 - exPl4(tt)h 2 - - + -V J + 7 -
i 1,2 

t-t)r r r r r 
0 

2 mx1x2 + 4x I  - 4x1x2 

r3 e 1  -mr4(t-t ) I { (- ) 

mx 2. 2 2 4x2 2x2 

r4,5 - i1[o1 _J + i0[o_]{ _ - } + 2(t-t){ ! - . } 
r r r r r 

(i = 1,2) 

mx x 2 4x x2 2 4x x (t-t 
12 1 mr 1 f inn 12 0  

r6  2 'it°'-T-J + 4 10[0'Tj - 4 r r r 

2 2 m3 2 2 
r7,8 - - I2O + x.I __I V 3(0,ar), i = 1,2 

3 
M 

r9 = — x1x2 

MX. 2 
r 

- 1 [Inn 1 
10,11 - - 2 2(t-t0) exP4(tt)J 

i = 1,2 
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1 m 2 x. 1 r 2 

12,13 T - (t-t)2 exP[4(tmr_t0) 

S1,2 . 12 exp { A (t-t0) { 1 m2x 2 . + 
i 

2 
1 Ic mr) 

+ . m I21_ + 
1 

i = 1,2 

2 2 
marl 1 22 1 nrl 

A_-_j +.nX. I3 {A__J 

2 
I 

n IA nn __j , 1 1,2 

2 2 
12 2.+ mr 12 nn 

s3 e{A(t_t0 )}{- m x1x2 1 AJ + n x1x2 I3 IAj } 

54,5 

S6 

78 

- exp{A(t-t0 )} 

A 

2 n 2 x 2. 2 
IBX I 1 1 [A, nr + . 

2 2 
1 12 

f nrl + + A mar n 
j - I2[A } 

2 n 2 x. 2 2 
1(1 22 lomni 1 + 7ç mx 1 .I3 [___J   I3[o7 nr _4_} 

exp{A (t-t0 )} 

A 

( 1 2 M x1x2 

exp{A (t-t0 )} 

16x 

2 

m [NI—T-1 cmr2' '2 

1 2 c 
' 
mx1x2 IH I 

2 
Icmnl - 21' 

2 
+ I[0-•nr ] I , i = 1,2 

2 
marl 1 2 

• A__j + fl X1 X2 

2 
n x1x2 [0, 1_21-_j nn  

2 
nr 1 

I3 I A, nr  

2 2 

1 

422 r0 marl 42 1 nnl 
mx.r I _I_+A ,__j + n r I5[A_._J 



+ 16m21 Ic - 16n 
3 
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2 2 
+2xn3 (r2 +6x2)IfE.+ i 41. A__j - 2n3 (r2 + 6x2)I 4 [A, lIE'Ti 

2 2 

- 16m2 3m I + "" 1 + 16n2 13 [A ,_] I 

1 
16A { 

422 2 422 2 
m x.r I5[__.v} - n x.r I5 {o,_4_] 

:i. 

2 
- 2m3(r2+6x2) Ic mr 1 3 2 2 nr j 14[j-4-J + 2n (r + 6x1 )I4{O_] 

2. 2 Inn 
31 'TJ I = 1,2 

x1x2eXp{A(t"t0)} f- 4 2 2 2 
Sg 16A IlL I' I5[ + A!!_] + n4 r2 

2 2 
+12m31 [,,c nm1 A__j - 12n3 I4[A,_] } 
X1X21 42 1c m" 2 1 42 

+ 16A m r '5i1'T] - n r I5{o_ 2 _J 

2 
Ic mr 1 nr 

- 12m3 '41—'--r-J + 12n3 I4{o_•7J } 
x. 2 2 
1 ml + mr1 I r)' 

810,11 = { 2[ AJ - nI2[AJ , I = 1,2 

2 2 
10 mrl 

S12 = A exp(A(t-t0 )) { i1[_] - I11+ A_4_j } 
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2 

+ tt0 { exp[_ 4(t -t0)] 
2 

I- - e- c - (t-t mr 
0) - 4(t_t0)J } 

In terms of these symbols the fundamental solution is given below: 

H(t-t0) 1 1 (r - r ) 1 I' me + Is --s.--ns 
E11  47r H  2 8 L8 n b 21} 

H(t-t0) 1 +r) 1 r mc 
I-s s 12 21  4T  {(_r3 _ + + 6 

H(t-t) ri 1 1 mc 
E22 0 (r47T m 1 - r7) + —i--. - - s4 - i] 11 

H(t-t0) 

31 - b 4ir(n-m) 

H(t-t0) 

E32 = b 4ir(n-m) 10 

H(t-t0) 

e1 = -   (- r 2 + m 10 r) 

H(t-t0) 

e2 - 4am  (- r13 +  11 IIIr) 

(5.60) 

ns3]} 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

e3 = 0 (5.67) 

H(t-t0) 

= a 4ir(n-m) ii (5.68) 



126 

H(t-t0) 

4'nm 10 

H(t-t0) 

- 4ir(n-m) (s1+s2-ins12) 

(5.69) 

(5.70) 

This completes the determination of the fundamental solution. 

It is worth comparing these solutions with the corresponding 

fundamental solutions for the classical Navier-Stokes equations (see 

Panico(1978)). In that case 

2 a 
-   

1J 
ax. ax. 
1J 

2 
) S(x , t) (5.71) 

e(x,t)_i_( V -Ps 2 a )S(x,t) — 
ax. at 
1 

Here R is the Reynolds number and S should satisfy 

- R ) S(x ,t) - 6(x) 5(t). 
Tt-

The solution for S is 

H(t-t0) 

S - { log(r2) + El{  4' t)} J 
4TR 

which compares with (5.55). There is no classical analogue for the 

function 4i occuring in the micropolar theory. 

(5,72) 

(5.73) 

(5.74) 
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5.4 Integral Representations 

One of the principal uses of the fundamental singular solutions is 

to obtain integral representations of flow variables. Consider two 

dimensional micropolar flow past a finite object occupying, a region A 

with smooth contour .r in the presence of body force F = (F1,F2) and body 

couple F313. Then the flow field has the following integral 

representation: 

00 

u1 (x,t) = Jo J i I I E ji (x - J ,t - r) F. (x - ,t - r) dA() dr 

A 

+1 Jo  fE (x- ,t- r) a (x- ,t - r) dr() dr (5.75) 
ii -

v (x,t) - - .r) F (x - ,t - r) dA() dr 
0 1 A J i 

00 

+1  I . Jo J 
F 

(x - ,t - r) a (x - ,t - r) dr() dr (5.76) 

p (x,t) J J 
JO  

A e (x - ,t - r) F (x - ,t - r) dA() dr 

+f0 J e. (x - 

F 

,t- r) a. (x- ,t- r) dA() dr (5.77) 

with the repeated index j implying sum over j = 1,2,3. The unknown 

functions a are related to the stress function on the body. Once the 

values of u,v and p are prescribed on the body, together with the body 

force and couple, (5.75) - (5.77) lead to a set of integral equations for 
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the unknown functions a... Knowing a., the flow variables could be 

determined from (5.75) - (5.77). The complicated nature of 

and e. virtually rules out exact solutions in most cases. However an 

'asymptotic analysis based on small parameter approximation could be 

carried out on the integral equations. An extensive review of such 

applications in classical viscous fluids can be found. in Olmstead and 

Gautesen (1976). 
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CHAPTER VI 

MICROPOLAR FLOW IN A MEANDERING CHANNEL * 

6.1 Introduction 

Interest in viscous flow in channels and conduits with irregular 

surfaces and curving centrelines has been widespread in recent years. A 

prime motivation for such studies comes from a need to understand flow 

characteristics in blood vessels that lead to various pathological 

conditions. Lee and Fung (1970) have numerically studied flow in tubes 

with a bell shaped constriction and determined wall stresses for low 

Reynolds numbers. Chow and Soda (1972) used a perturbation technique to 

obtain solutions of flow in tubes with a continuous constriction. 

However, all these studies consider blood as a homogeneous Newtonian 

fluid. In recent years it has come to be known that the micropolar fluid 

theory, which allows for micromotions within the continuum, serves as a 

better model for such rheologically complex fluids as blood. Ariman et 

al. (1974) have used this microcontinuum approach to study steady and 

pulsatile flow of blood in circular conduits. They have obtained results 

for velocity profiles and cell rotational velocities which are in good 

Contents of this chapter have been accepted for publication in the 

Canadian Journal of Chemical Engineering. 
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agreement with the experimental results of Bugliarello and Sevilla 

(1970). Radhakrishnama Charya (1977) has extended the studies of Chow 

and Soda (1972) to the case of micropolar fluids. 

In this chapter we study the flow of a micropolar fluid in a 

meandering channel of constant width. The corresponding problem for 

viscous fluids in three dimensions has been first investigated by Wang 

(1980). He considers small centreline curvatures K(s), setting K(s) 

6k(s) where s is length measured along the centreline and € is a small 

perturbation parameter and k is of order 1. In order to effectively use 

a perturbation scheme he also assumes small Reynolds numbers, Re = 0(6). 

In a recent paper Van Dyke (1983) has significantly improved upon Wang's 

scheme by introducing the further assumption that the centreline 

curvature is not only small but also slowly varying in the sense that the 

variation of the channel takes place over distances large compared'with 

the channel width. With this assumption Van Dyke could remove Wang's 

restriction that Re = 0(€) and proceed as far as the fourth approximation 

in a systematic perturbation scheme. We consider the corresponding 

problem for a micropolar fluid. Assuming that the channel meanders 

slowly and slightly we use a perturbation series for the stream-function 

and microrotation to study the effect of curvature and micropolarity on 

the shear stresses on the wall and the downstream pressure gralient. The 

nature of the exact form of boundary condition for microrotation is not 

yet settled; therefore we investigate the effect of two types of boundary 

conditions: 1) that the microrotation vanishes on the boundary (the 

no-spin boundary condition), ii) that the microrotation on the boundary 
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is. equal to the local fluid angular velocity. In finding exact solutions 

for arbitrary curvatures and micropolar parameters we could not go beyond 

the second approximation because the expressions become too big to write 

down. As a result we could not determine how the inicropolar Reynolds 

numbers B and D (defined later on) affect the flow, since their effect 

comes into play only in the third approximation. However we have found 

strong dependence of important flow properties on the parameter A 

which effectively measures the micropolarity of the fluid. Although the 

general way in which curvature and micropolarity affects the flow 

characteristics has been found to be independent of the type of bounc3ry 

condition on microrotation, the magnitude of these effects has been found 

to be enhanced by the no-spin boundary condition. 
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Figure 6.1. Meandering channel and coordinate system 
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6.2 Statement of the Problem 

Consider the steady two-dimensional flow of an incompressible 

mioropolar fluid through a smooth curvilinear channel of constant width 

2a (Figure 6.1). Following Wang (1980) we introduce a coordinate system 

(s ,n , z) consisting of a distance s measured along the centreline of 

the channel and a distance n' normal to it and z' taken parallel to the 

generators of the channel. The curvature of the centreline is assumed to 

be given by a smooth function k' (s) of the length s' along the 

centreline. The curvature is reckoned positive if the channel is turning 

to the left. 

From chapter III the equations governing the steady motion of an 

incompressible mioropolar fluid in the absence of body couples are 

U , 0 (6.1) 

-(p+ic)vx(vxu) +RVXV 1 - p(u .v)u - vp ' - pf' = 0 (6.2) 

- vx(vxv')] + (a+p)v(vv') - pj(u'.v)v' - 2iw + ,vxu ' = 0. 

(6.3) 

Here all variables are in dimensional form, with u' being the velocity, 

p' the pressure and v' the microrotation. The constants a, /3, i, /J, f, 

j, p characterize the properties of the fluid, and f' is the body force. 

For the problem under discussion we assume that 

u ' (s ' ,n' ) = (u' (s' ,n' ) ,v' (s' ,n' ) ,0) 

i'' (s ' ,n' ) = (0,0, vs (s' ,n' ) ) 
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Then in terms of the coordinate system introduced above the equations of 

motion (6.i)-(6.2) become 

-+ --- {(1-kn)v] = 0 
as , an' 

— 1  [av' - -- (1-k' n' )u' +E al)' 

an' 14-k'n' Las' on' an' 

- u' Ou' , Ou' 1  Op' +  k'  

111-k'n' as' an' 1-k'n' Os' 1-k'n' 

  a  1  [av, a 

1-k'n'as'as' an 

p 

(1_kmnh)ul]} - 
ic 

1-k'n' as' 

(6.4) 

(6.5) 

[  u'  8v Ov , - +p k'  U 2 = 0 (6.6) 
as' an" an' 

-  fo f - i  Oz)' 
1-k 'n' LOs' 11-k'n' Os' 

- .-.- I(i-k'n') - 2iv' 
On' I an-

- pi I 
F u'  ôv' Oii' 1 Ov' 0 1_k'nh)u'] = 0. 

Li_kin' as' On'J 1-k'n' [as' an' 

(6.7) 

The last term in (6.5) and (6.6) arises from the centrifugal effects due 

to curvature. 

Next we introduce a stream function 'P' defined by u' - 

On' 
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vs =  1 a'P , so that the equation of continuity (6.4) is identically 
1-k'n' as' 

satisfied. Let the mean volume flux rate per unit distance normal to the 

s-n plane be 2M. Then the variables can be nondimensionalised as 

follows: 

(p+i)M 
-' = " 2 ' = 5'1a, n = n'/a, k = 
-aa 

z = z'/a. 

Eliminating pressure from (6.6) and (6.7) we get the following equations 

of motion in nondimensional form: 

where 

aa ai'a12 
v4?+Av2i B 

1-kn Lan as as an 

Cv2v=2v+v2'P+ D aa ai'a 

1-im Lan as as an] 

1< MP B - --, A= — , 

'1 

- 

are dimensionless parameters and 

D -j 

aK 

V2 - 1 1 a [1_k ±_11 
=   

1-kn [as [i + _ an an 1 

(6.8) 
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We restrict our attention to channels whose centrelines meander 

slowly and slightly. That is to say, locally the centrelines deviate 

only slightly from a straightline and the slow variation of the 

centreline takes place over distances large compared with the channel 

width. Following Van Dyke (1983) this is expressed by setting 

k(s) = 6f(äs) 

where s << 1, 6 << 1 are two small positive perturbation parameters. For 

simplicity of analysis we set € = 6 and introduce a new stretched 

coordinate S = 6s, so that k(s) = sf(S). With this assumption on the 

curvature the equations of motion (6.8) and (6.9) become 

where 

  apa a'pa2 

- 
+ Av2v - e.B - -  

1kn Lan a an 

2 6D a?a aial 
Cv2v 2 + +   lan --- —jv 

1-kn as as an 

2 1 [62 a 1  aV +1-kn  as [1-kn as] an an .1 

(6.11) 

(6.12) 
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slightly from straightline we expect that the Poiseuille flow in a 

straight channel should remain the first approximation to the solution of 

(6.11) and (6.12). Hence we expand the solutions 1 and v in a 

perturbation series 

i'(S,n) = 1'0 (n) + e 1(S,n) + (6.14) 

v(S,n) = v0 (n) + 6v1(S,n) + €3v2(S,n)+.. (6.15) 

where ?0 (n), v (n) are the Poiseuille flow in a straight channel. 

Substituting (6.14) and (6.15) into (6.11) and (6.12) and collecting 

terms we obtain the following equations for successive approximations 

(these are generated using MACSYMA (1983)): 

60 order: 

d2v d4 '0 
A o+ 

2 dn4 

d2v d2?0 

C 2O - 2v0 +dn 

61 order: 

(6.16) 

(6.17) 
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a2z., a4?1 
A 2 + 4 -- 

an an 
+2 f(S) (6.18) 

a2v 2? ci? 
C 21 - C f(S) - 21 + 2v1 - f(S) 

an dn an dn 

2 order: 

az.'1 a4 IP 9 a 3 1? 1 f dv0 d3'P 
A 2 - A -.. f(S) + ____ - 2 f(S) + - An - - 2n 

an an an an cm dii 

d2? fdI-II0 a'i'1 d' 0 a3i ..d? 2 1 
2 f2(s)l = - B + 

cm J=& as - dn n2aS cin f 
a2v av di.. 

C 22 -Cf(S) - Cn f2(S) DJ0 _8V 1 3V 0 alp hl 
an an cm tdn as an asJ 

alp d? a2?2 
- f(s) + 2v2 - n - f2(5) + an2 an dn 

(6.19) 

(6.20) 

(6.21) 

The boundary conditions on? are ?(n = ±1) = ±1 and .alp  (n = ±1) = 0. 
Tn 

There is, however, no universal agreement on the boundary conditions 

for v. Many authors use the condition of no spin on the boundary. 

However, as pointed out by Ariinan, Turk and Sylvester (1974), there is 

some evidence suggesting that particles could actually be rotating on the 

boundary, tumbling along the wall. A physically reasonable assumption 
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under such circumstances would be to take microrotation on the boundary 

as equal to the local fluid angular velocity. 

In the following we will investigate the effect of both kinds of 

boundary conditions on the flow. 
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6.3 Solution with No-Spin Condition 

Imposing the boundary conditions 

d?0 
0(n±1) =±1,   (n±1) 0 =0, 

the solution to (6.16) and (6.17) is readily found to be 

(6.22) 

v0 (n) =gn + h sinh(nin) (6.23) 

p0 (n) = in + j n3 +e sinh(inn) 

where 

and 

3m2sinh(m) - 3m2 - -[3m2s1nh(m)+3m(0m2-2)cosh(m)] 
- d  ,h-----,i-  d 

m 2sinh(m) 3( 2_2) 
d ,e  d 

d = 3(Qn2-2) (sinh(m)-mcosh(m) )-2m2sinh(m) 

2 2-A 2p+R a2i 
M -,-. 

(6.24) 

This solution for a straight channel may be found in a number of works 

(see Radhakrisbnama Charya (1977)). 

It is worth observing that when the fluid becomes Newtonian, 
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g -, -1/2, h -, -  3  
2sir1h(m) 

I - 3/2, j - -1/2, e -, 0 

A -,O, V  

(6.25) 

and we recover the result P0 (n) = 3/2 n - 1/2 n3 as given by Van Dyke 

(1983). 

Using the known expressions for (n) and v0 (n), the e 1 order 

equations (6.18) and (6.19) become 

a2v a? 
A 2 +I [(Abm+2em3)cosh(mn)+Ag+12j]f(S) 

an an 
(6.26) 

a2z.' a2? 
C 21 - 2v] + 21 - [(Chm-em)cosh(nmn)-3jn2-i+Cg]f(S). (6.27) 

an an 

Again, using the limits (6.25), these equations reduce, in the case of 

a4? 
Newtonian fluids, to 41 - -6f(S), which agrees with Van Dyke (1983). 

an 

The solutions to (6.26) and (6.27) subject to homogeneous boundary 

conditions are found to be 

2rw Cq ) 4[t - q 1 r SOp 9p 
n) ?1(S,n) = n — - __ + n 

12 2m 12 12m2j + - + -in 4m 2m 

+ fCP  - 2.]nsin1i(mn) + Cm 2_2 (k1e wn +k2e-wn ) - k3n2 + 
2m m m 

(6.28) 
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n 2 q npsinh(mn) - 5osh(ma) k1e'+k2e' 
n) - 2m3 4m4 • 2  + k3 (6.29) 

2m m 

where 

P . [Chm3+em3+Ahin]f(S) 

q = {6j+Agjf(S) 
ZT 

r = [em—Chm]f(S) 

t = 3j f(S) 

W = [-Cg+i]f(S) 

and kj, k2, k3, k4 are constants depending on the various parameters. 

Evaluation of these constants using MICSYMA shows that k and k2 have 10 

terms each, k3 and k4 have 30 and 88 terms respectively when written out 

in terms of the basic parameters. They are not given as they are too 

lengthy to be written down. 

We have not attempted to go to the next approximation, equations 

(6 .20) and (6 .21), as the expressions involved are too big. 

6.4 Solution with Boundary Condition v = 1/2 v x U 

The condition that the microrotation is equal to the local fluid 

• angular velocity on the wall is given by v = 1/2 ! x u on the wall. In 

terms of the streamfunction 1> this condition becomes 
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1/2 v21, n = ±1. (6.30) 

From this we readily obtain the following boundary conditions on voy Vil 

V2 . 

d2-i' 

v0--1/2 2' 
dn 

n ±1 (6.31) 

1/2 
f a 2_p 
lan dn — c1? f(S) }' n ±1 (6.32) -  

Ia2?2 f(S) - n d?0 f2(s)} n = ±1. (6.33) 
-_— FanZ  — 

On dn 

Solving (6.16) and (6.17) with the boundary conditions (6.32) and 

di'0 
?0 (n ±1) ±1,   (n = ±1) = 0, we obtain the Poiseullie flow 

dn 

v0 (n) = 3/2 n (6.34) 

?0 (n) = 3/2 n - 1/2 n3. (6.35) 

It is interesting to note that the solution for P0 (n) is the same as for 

Newtonian fluids. 

Using (6.34) and (6.35), the equations for second approximations, 

(6.18) and (6.19) becomes 
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a2v a41  A - 
an2 4 [. A - 6]f(S) (6.36) 

82v a2? 
C __ - 21 + 2v1 + 2.f(S) - .. (1-n2- 7 - )f(S). (6.37) 

an an 

The solution to (6.36) and (6.37) with the boundary conditions 

a? 
(6.32) together with ?1(n = ±1) = o, (n ±1) 0 is found to be 

an 

21 
v1(S,n) - n  2 + a1 eosh(mn) + a2 

2m' 

21  2 1 
?1(S,n) - f(S) - n q + [_n'.  - 

8 2 12m 2m 

+ 2 (a 2n 1cosh(mn)) - a 2 + a3 
m 

where 

PI (A-1)f(S) 

1 3 
q .. (C-1)f(S) 

a - 3m2f(S)+2ni2q1+20p1  

2Cm cosh(m) 

13 sinh(m) - 3 sinh(m)  - !If(s) I-
14 mcosh(m) 2 2Qu3cosh(m) 4j 

(6.38) 

(6.39) 
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+ 

+ 

sinh(m)  - 

2mcosh(m) 

Csinh(m) 

2m3cosh(m) 13 

a = sinh(m)  

3 mcosh(m) 

+ 

Cm3 cosh (m) 2 

sinh(m)  - 11 1 
q 

- sinh(m) 

m5cosh (m) 

- 3  sinh(m)  - 

2 Qn3cosh(m) 

C 

2m 

3 

2m 
+ 

1 1 
P 

3 - 't f (S) 

•J -8 j 

Jsinh(m) sinh(m)  1 2 
- + q t2mcosh(m) - Cm3cosh(m) m Cm j 

+ J sinh(m) - sinh(m) 1 

12m3 5 _ J  -T cosh(m) mcosh(m) 12m -  

2 

M 

Two quantities that are of prime importance in the channel flow are 

the longitudinal pressure grient and the shear stress on the walls. 

From the streamwise momentum equation (6.5) we find that the non-

dimensional longitudinal pressure gradient has the expression 

ap  11 

as 

I d3? a3 d3i 

--7-1 
n [d ' d2i'01 ] I 3-01+J- 31 _ 1 n +nf 30+ 2Jf(S) 

dn J [ dn 

a3' d2? a d? a2? d'0 2 
+62_ 32-B dn20+B '-Av2 +—f(S) 

an  as dn anaS cm 
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+ nf(S) 31 + 21 f(S) + 

an an 
(6.40) 

The non-dimensional shear stress t Sn on the wall is found to be given by 

d2?2 a2 1 dl' 
= (1-A) 2 - 2Av0 + 6 (1-A) 2 - 2Av1 + (1+A) __2- f(s) 

Sn dn an dn 

+ 62 -{(1 A) 2 - ci? 
an2 2Av2 + (1+A) -i nf(S) 

cm 

+ (1+A) an 3 —f(s) + O(e ). (6.41) 

We use these expressions and the solutions for the first and second 

approximations derived above to calculate numerical values of pressure 

gradient and wall stress in the next section. 
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A = 0.1 

A = 0.3 

A = 0.5 

A = 0.7 

A = 0.9 

= 0 Boundary condition v 1/2 v x u Boundary condition 

£0 

3.0237 

3.0719 

3.1211 

3.1716 

3.2231 

£1 

-0.0136 f(S) 

-0.0412 f(S) 

-0.0698 f(S) 

-0.0980 f(S) 

-0.1272 f(S) 

£0 Cl 

3 

3 

3 

3 

3 

-0.0171 f(S) 

-0.05005 f(S) 

-0.08143 f(S) 

-0.i109 f(S) 

-0.1382 f(S) 

Table 6.1. Centreline pressure gradient for C = 1 

0 Boundary condition 1/2 v x u Bounr1ry condition 

A = 0.1 -2.685 

A = 0.3 -2.064 

A = 0.5 -1.458 

A = 0.7 -0.864 

A = 0.9 -0.285 

Cl 

-1.784 f(S) 

-1.363 f(S) 

-0.939 f(S) 

-0.562 f(S) 

-0.184 f(S) 

C l 

-3 -1.489 f(S) 

-3 -1.464 f(S) 

-3 -1.438 f(S) 

T3 -1.408 f(S) 

-3 -1.375 f(S) 

Table 6.2. Shear stress on the wall n = 1 for C = 1 
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6.5 Numerical Results and Discussion 

Much of the simplicity gained by introducing the concept of slow and 

slight variations in the channel flow of viscous fluids is lost in the 

case of micropolar fluids. For viscous Newtonian fluids the successive 

terms of the perturbation series could be determined by simple quadrature 

(see Van Dyke (1983)). For micropolar fluids, however, one needs to 

solve two coupled differential equations at each stage of approximation. 

There are at least four basic parameters describing micropolar flow and a 

multiplicity of various combinations of these parameters at each step 

rapidly blows up the amount of labour required. In principle, one can go 

to higher approximations using a computer program that manipulates 

algebraic symbols. We have used the symbol manipulation system MACSYMA 

to generate the successive perturbation equations (6.16)-(6 .21), the 

expressions for pressure grdient and stresses and to solve the 

differential equations. 

Here we have carried out the solution to the second approximation. 

Although we have made no assumptions about the smallness of the two 

micropolar Reynolds' numbers B and D, the inertial terms did not affect 

either the first or the second order solutions. 

Table 6.1  gives the first and second approximations to - along 
as 

the centreline for various values of A and fixed C = 1, computed using 

the two kinds of boundary conditions. 

The corresponding result for Newtonian fluids is a value 3 for 6 term 

and no 6 terms. We observe that if we use the no-spin boundary 

condition, the pressure gradient down the centreline is increased for 
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micropolar fluids. The secondary effect of curvature is to reduce the 

pressure grRdient on positively curving portions of the channel and 

increase it on negatively curving portions, the amount of increase or 

decrease being larger for fluids of higher micropolarity. In contrast, 

for the second type of boundary condition the e terms are unaffected by 

micropolarity while the secondary effects are exactly as above although 

slightly enhanced in magnitude. Table 6.2 gives the first and second 

approximations to the shear stress on the wall n = 1 for various values 

of A and fixed C = 1. 

For the wall n = -1, the E.°-order terms are opposite in sign to 

those given above while e.'-order terms are the same. The corresponding 

results for Newtonian fluids are -3-26f(S) for the wall n = 1 and 

3-26f(S) for n = -1. We observe a substantial reduction in shear stress 

on the walls for micropolar fluids using the no-spin boundary condition. 

On positively curving portions of the upper wall the shear stresses are 

increased due to secondary curvature effects while it is decreased on 

negatively curving portions, the increase or decrease becoming smaller 

with increasing micropolarity. The opposite effect applies to the lower 

wall. We note that the secondary effects may be explained by what Wang 

(1980) calls "the streamlines taking a less tortuous path than the 

centreline." In sharp contrast, the second type of boundary condition 

leads to less pronounced secondary effects and no reduction of shear 

stress for the first approximation. 

Finally we would like to make some concluding remarks regarding the 

relevance of this study to the field of blood rheology. The results in 
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this chapter are of some interest to the investigators in blood rheology. 

It is known that the behaviour of blood as measured by viscometric 

techniques is markedly non-Newtonian; for example the presence of a yield 

stress and the dependence of apparent viscosity on shear rate despite the 

fact that blood plasma is a Newtonian fluid tends to indicate 

non-Newtonian character. It is believed that the suspended blood cells 

are responsible for the observed non-Newtonian nature of blood rheology 

through such mechanisms as erythrocyte deformation and erythrocyte 

aggregation. Another interesting anomalous viscous property exhibited by 

blood is the Fahraens-Lindqvist effect - the apparent viscosity decrease 

with decreasing tube diameter and/or cell volume fraction and the inverse 

variation with shear rate. It is known that artherosolerosis which 

causes heart attacks and strokes among other things is related to 

deposition of fat on artery walls. The haemodynamic forces causing these 

depositions are not fully understood (see Roach, 1980). In this context 

a better understanding of stresses on the walls of curving conduits and 

channels would be vital. The present study has been motivated by the 

belief that despite its limitations, the micropolar fluid model would be 

better suited to describe blood flow in meandering channels because it 

allows for certain micromotions within the fluid. Such models would be 

of increasing importance for understanding the behaviour of blood and 

physiological fluids in artificial organs. More experimental and 

theoretical work is required in this area. 
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