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The Froude pendulum is a classical nonlinear mechanical system exhibit- 

ing friction induced, self excited oscillations. This system has not been stud- 

ied completely from the analytical vieieapoint. The nonlinearity arises from a 

cubic damping term and the sine function of the displacement in the equa- 

tions. In th i s  work. the averaging technique used by Sanders and Cushman 

is applied to the Froude pendulum and the planar bifurcations of the pa- 

rameters are studied. This is achieved by averaging over orbits in the phase 

space of the unperturbed hamiltonian, deriving the Picard-Fuchs and Ric- 

cat t i equations and numerically solving the latter. The bifurcation diagram 

enables the identification of limit cycles and various phase portraits. In the 

non-autonomous case. a hielnikor analysis yields a criterion for the onset of 

chaos. Thus this work provides interesting insights into the analytical aspects 

of the motion of the Froude pendulum. 
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Chapter 1 

Introduction 

Sulilirlthar dynarnical systems have attracred a great deal of attention since 

the early years of this century. Beginning with the pioneering work of 

Poincare [33. 3-11 and followed by the seminal work of Andronov [I], Lya- 

punot. [21, 251. Birkhoff [3, 41 and others, the theoretical developments gath- 

ered momentum ivith the fundamental contributions of Smale [37], -4rnold 

(21 and others. 

Even though the importance of applying the new results to problems in 

physics and engineering was recognised, the action u w  mostly confined to the 

theatre of mathematics. This situation changed drastically with the discovery 

of 11-hat has come to be known as deteminZStic chaos. Starting with the now 
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fanlous discovery of Lorenz [23] in 1963 in his studies involving a simplified 

model of fluid convection related to the atmosphere. this phenomenon made 

its presence felt. almost in an ubiquitous fashion. in a broad class of non 

linear systems which model the real world. 

Scientists were faced with the stark reality of unpredictability and extreme 

serlsit iviry to initial conditions even in the sacred territory of Seu-tonian me- 

chanics 1201. This. inevitably. has led to a paradigm shift in the approach to 

r~orili~it~iir sysr ems from the engi~leering point of view into an era when terms 

like esperimental error are viewed through the prism of caution. The crucial 

i113igilt that has been gained out of these intense efforts has been that non- 

linear systems demonstrate fundamentally different behaviour in comparison 

with linear systems and demand treatment on a different footing. Hence. 

every linearization or neglect of nonlinear terms of any order in a problem 

needs rigorous justification and a cavalier approach in this respect can lead 

to highly erroneous concIusions. 

Having observed that linear and nonlinear systems are fundamentally 

different, simultaneous1~- it must be noted that there exists a remarkable 

correspondence between the two. There exists a battery of powerful theorems 

in the arsenal of the mathematician, such as the Hartman-Grobman theorem 
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[ lz j  and the Stable Slanifold theorem [6], which affirm the correspondence 

between a linear system and its nonlinear cousin. In fact, it is this relationship 

which allows one to draw meaningful conclusions about a nonlinear system 

under a linearization. It is again. this feature that vitalizes the attack on 

nonlinear systems and makes the whole exercise worthwhile. 

Thus. the series of developments in both the theoretical and observational 

aspects of nonlinear systems has ushered in a revolution in our understand- 

ing u l  physical phenomena. which ranks on par with the other two towering 

a c h i ~ ~ ~ m e n t s  o l  the human intellect in the present century. viz. the rela- 

r i i - i+ r  i c e  and quant urn revolutions. But. perhaps. the omnipresent nature of 

nonlinear phenomena in the world around us, ranging from biological and 

social systems to quant urn field theories and cosmoIogical models make this 

area outstandingly unique. 

It is quite pertinent now to examine the implications of these develop- 

ments to engineering. Engineers have, for long, encountered apparently ran- 

dom effects in a wide variety of systems. The classical examples are mechan- 

ical, electrical, fluid, optical and control systems. In mechanical systems, 

nonlinear elastic or spring elements, fiction and damping effms and the 

like contribute to the nonlinearities. In electrical circuits, nonlinear resistive, 
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inductive or capacitative circuit elements and electromagnetic fields are a 

prime source. Turbulence, a purely nonlinear phenomenon is well known in 

fluid mechanics and its applications. The importance of nonlinear effects in 

serwrnechanisms and feedback control cannot be overemphasized. 

Thus. the presence of nonlinearities in engineering applications has been 

long recognized. The interesting question is the implication of the theoret- 

ical and computational developments for these applications. It remains a 

fact that due to limitations in our understanding of nonlinear systems and 

also due to the inadequate percolation of ideas from the pure sciences to 

~neincbfiring. often these nonlinear effects were either ignored or swept under 

the rug during design or analysis. That this led sometimes to disastrous 

consequences is an unfortunate but valuable lesson of engineering history. 

The collapse of the Tacoma suspension bridge in the United States under 

self-excited oscillations is a case in point. 

-4 more accurate understanding of nonlinear phenomena and application 

of the new de~elopments to engineering problems is highly desirable. Even 

though the elimination of nonlinear effects in engineering problems borders 

on the impossibh, a better insight undeniably leads to better analysis, design 

and control. 



Guided by this phi1osoph)-. this thesis esamines the nonlinear effects in a 

classical system that e-xhibits friction induced, selfmexcited oscillations. viz. 

the Froude pendulum. We shall study this system in detail in the subsequent 

chapters but it is perhaps appropriate here to highlight the features of this 

system. The oscillations in the Froude pendulum are caused by friction. Thus 

this pendulum serves as an effectil-e model in the analysis of friction induced 

motion. That. friction effects, albeit being of crucial import, have not been 

exhaustively explored in any approach to mechanics, adds to the mystery. 

The two features. which contribute to the nonlinear effects in this s>*stem are 

a rul)ir damping term (arising out of friction effects) and the sine function 

in the equations. In our analysis, we confront these terms as such, making 

no attempt to linearize them. That an effective analysis can be carried out 

and meaningful conclusions drawn with this approach is a highlight of the 

present work. 

The Froude pendulum has a considerably long history. It has been long 

recognized as an interesting mechanical system and has found mention in 

some of the classical treatises in nonlinear oscillations [28, 51. It has aIso 

been treated as a paradigm for nonlinear friction in oscillatory systems [261. 

But the treatment of this system in these works is far fkom being complete. 



With the possible exception of the work of the Soviet school, it does not seem 

to have enjoyed the extent of attention it desemes, from the analytical point 

of view. But recent work [9. 81 has drawn attention to the Froude pendulum 

and this sened as the main motivation for the present work. 

On the other hand. interesting strides have been taken in the develop 

nlent of averaging techniques applied to nonlinear differential equations. The 

esposition of Sanders and Verhulst [36] is a good survey of this area. Of par- 

ticular inrerest in this context is the work of Sanders and Cushman (351 which 

develops and applies a unique averaging technique to the Josephson equa- 

tion. In that work. the Josephson equation is treated as a perturbation of 

the mathematical pendulum. Averaging is then carried out on the system. 

Two appropriate functions are defined and the averaged equation is then 

studied using the properties of these functions. This Ieads to an interesting 

bifurcation picture and as a consequence, the limit cycles are classified and 

the entire phase portrait is generated for the Josephson equation. 

The crucial element in the present work is the observation that the Froude 

pendulum too, can be treated as  a perturbation of the mathematical pen- 

dulum, a well-understood hdtonian  system. It then becomes feasible to 

study the pendulum using the geometrical methods developed by Sanders 



and Cushman [35]. This leads to a bifurcation analysis and consequently to 

a classification of limit cycles and a clear view of the phase portrait. 

The Froude pendulum is also found to be interesting from the point of 

vieij* of chaos. Despite the amazing amount of work in the area of deter- 

ministic chaos. to this day. very fen* systems exist as paradigms for chaotic 

behariour. The standard list of these systems, which includes the Lorenz 

system [23]. the Van Der Po1 oscillator [40] and the D d n g  equation [ll], 

almosr eshausts the number of systems that have been extensively investi- 

gated from the chaos viewpoint. It is noteworthy that none of the above 

syst~ms demonstrates friction induced. self-excited, oscillations. .llso. none 

of the equations. which model these systems has a cubic damping term. In 

the work of Dai and Singh [9], it was shown that the Froude pendulum can 

behave chaotically. 

\cry few analytic criteria exist for predicting the onset of chaos in a non- 

linear dynamical system. But among the techniques available, the Melnikov 

analysis (271 is a powerful method. This method shall be dealt with in detail 

in a later chapter. Suffice to say here that this yields an analytic criterion 

for the transversal intersection of the unstable and stable manifolds about a 

hyperbolic critical point, which leads to the creation of a homoclinic tangle 
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anci cl~aos. 

In the present work, the Blelnikov method is applied to the Froude pendu- 

lum in the non-autonomous case and a condition for the onset of homoclinic 

chaos is obtained. This condition is an inequality involving the parameters 

in the system riz. the damping coefficient. the stiffness coefficients and the 

amplitude and the frequency of the forcing function. Thus, respecting the 

inequality during design shall eliminate the possibility of chaos in the system. 

The thesis is set as follo~vs: 

Chapter 2 introduces nonlinear systems in general. We survey the general 

propert ies using some examples. \Ye also esamine the import ant properties 

of linear systems, the process of linearization, and the Hartman-Grobman 

and Stable lfanifold theorems (141 that establish the correspondence between 

linear and nonlinear systems. The concepts related to critical points and the 

stability types of critical points are introduced. 

Chapter 3 is a deeper examination of the characteristics of nonlinear 

systems and their behaviour. Properties such as existence of limit cycles are 

studied. We also look into the interesting phenomena of bifurcations and 

chaos. The averaging technique, which is extremely useful in the analysis of 

nonlinear systems, is surveyed. This chapter focuses on the phenomena that 



n-r st ucly iri the contest of the Froude pendulum. 

Chapter 4 introduces the Froude pendulum. The physical system and the 

contest in which it arises are described. The equations governing this system 

arp  st ablished and the stage is set for the analysis that follows. 

Chapter 5 forms the core of the thesis. Here, we apply the averaging 

technique to the autonomous Froude pendulum. The chapter begins by es- 

tablishing that the Froude pendulum can be viewed as a perturbation of 

the mathematical pendulum. After appropriate scaling of the equation of 

t h ~  Froude pendulum. we identify two system parameters. We study the 

bifurcation phenomenon with respect to these parameters. The next step is 

averaging. This is camed out by defining two functions and then setting up 

Riccatti equations for these functions. These functions are then integrated 

numerically and the results are used in plotting the bifurcation diagram for 

the system. Further. numerical plots based on this diagram show the inter- 

est ing phase space behallour. 

Chapter 6 deals with the SIelnikov analysis. The method is introduced 

first in the framework of a general dynamical system and then applied to 

the non-autonomous Froude pendulum. The criterion for onset of chaos is 

then obtained. Further, we plot the phase portrait using numerical d u e s  
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for the system parameters obtained from the analysis and show that chaos 

does exist in a region where it is expected. This confirms the validity of the 

analysis. 

Chapter 7 highlights the conclusions and explores the possible directions 

of further research in this area. 

The numerical work associated with this thesis and the graphs have been 

done using the software packages klathematica @ and M.4PLE @. 



Chapter 2 

Nonlinear Systems 

Introduction 

-1s we have mentioned in Chapter 1. the objective of this thesis is the analysis 

of a nonlinear. oscillatory, engineering system, viz. the Froude pendulum. 

This pendulum being a classical nonlinear dynamical system, techniques from 

the theory of nonlinear differential equations have to be applied to this system 

in order to achieve our objective. To this end, we survey some of the useful 

concepts and results from the mathematical theory in this chapter. The 

material presented here is available in all the standard treatments of nonlinear 

differential equations and nonlinear mechanics such as [14, 21, 31, 191. 
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Linear systems are well known in engineering. Due to the intimate rela- 

tionsliip and the unique correspondence between a nonlinear system and its 

linear counterpart, any discussion of the former has to include a treatment 

of r h~ latter as well. Hence. we also discuss linear systems in this chapter. In 

many practical considerations. the nonlinear system under question is trans- 

formed to a linear system ria an approximation. This procedure, termed 

linearization desen-es attention and hence also enters our discussion. 

Thp theory of dynarnical systems, which has found extensive applications 

in engineering in recent times. is the study of mathematically and physically 

interesring systems with respect to a parameter termed 'time*. Since differ- 

ential equations offer the most convenient framework for such a study, the 

analysis of a dynarnical system reduces to the study of the corresponding 

system of differential equations. In a discrete case, this goes over to the 

study of the associated map. Indeed, in most modern treatments? a dynam- 

ical system is identified with the differential equation or the map. Thus, 

the analysis of the physical system reduces to the study of the differential 

equation governing its evolution. 

It follows from Newtonian mechanics that oscillatory mechanical systems 

are modeled using second order differential equations. The classical model in 
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this contest is that of the simple harmonic oscillator represented by a simple 

pendulum. Hence we shall introduce the essential features of the theory using 

this example. 

Consider the simple pendulum (Fig 2.1).  

The system comprises an inextensible string of length L. pivoted at point 

0. and carrying a bob of mass m. which is free to swing in the plane of the 

paper. In order to formulate the exact equation of motion. r e  consider the 

pendult~m in a displaced position. as shown. where the angle x designates the 

deviation from the vertical equilibrium position. As shown, the forces on the 

mass are the vertical gravitational force mg and the tension T in the string. 

Given this setting, neglecting frictional and other dissipative forces. the 

equation of motion of the pendulum can be mitten. applying Nen-ton's sec- 

ond law as 

mLP + mgsinx = 0 

which can be rearranged as 

i + k2sinx = 0 

where k = fi 



The Simple Pendulum 

Figure 2.1: The Simple Pendulum 



Expanding sin r as a power series. one obtains 

Substituting (2.3) into (2.2) we obtain 

It is obvious that (2.1) is a nonlinear differential equation due to the presence 

of r3 and the higher order terms. It is also well known that, considering all 

the terms. (2.4) has closed form solutions only in terms of the jacobian elliptic 

func.tions. But.  for the moment. we shall assume that the angie of oscillation 

is small. This allo~vs us the approsimation sin r 3;: z for small I and this 

leads us to the linear differential equation 

It is a crucial step that we have taken here, with this assumption. We have 

used an approsimation to linearize the system. Further, if one includes linear 

damping effects in the system and considers a pendulum driven by a harmonic 

forcing function, the equation of motion can be written as 
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where c is the damping coefficient. F and 3 the amplitude and frequency of 

the forcing function respectively. The equation (2.6) is the basic equation for 

periodic motion. We shall return to this equation as well as modifications 

of i t .  in detail at a later stage. but for the present. we consider (2.5) in order 

to study a linear system and to develop the theoretical framework. 

2.2 Linear Systems 

The equation (2.5) represents a simple linear oscillatory mechanical system. 

t lie undamped. unforced. harmonic oscillator. This system is readily inte- 

gra ble in terms of the standard functions and is conservative (hamiltonian). 

The gentxral solutiori to ( 2 . 5 )  can be uritten do~vn as 

x ( t )  = -4 sin kt + B cos kt (2.7) 

where -4. B are arbitrary constants of integration. Now let us consider a 

more general linear system 

We note that r is a vector valued function with n components and, -4 is an 

n x n matkx ttith constant coefficients. -4 solution of (2.8) is a vector tdued 



function I(-. t )  depending on time t and the initial condition z(0) = xo. 

Fundamental theorems of differential equations theory [13, 21 guarantee the 

esistenre and uniqueness of solutions to (2.8). for all t E R and 10 E Rn. It 

is appropriate to mention here that such global esistence of solutions in time 

does not. in general. hold for nonlinear systems. 

Hoac~er .  for the linear system (2.8). the solution can be written do1~r.n as 

where et,-' is the matris obtained by esponentiating -4. defined by the con- 

vergrnt s~rirls +' = [I  + t.4 + y + ....-]- -\ general solution to the Tstern 

(2.S) may bc obtained by a linear superposition of 'n' linearly independent 

solutions ~ ' ( t ) . r ' ( t ) .  .... xn(t) as 

We note here that the superposition principle that led to the genera solution 

is unique to linear equations. If A has 'n' linearly independent eigenvectors 

vJ.  j = 1,2. .., n, then r J ( t )  = eStu' where A, is the eigenvalue associated 

with d .  This provides a basis set in the space of solutions. 

Referring back to (2.9), we can consider etA as a mapping of Rn onto 

itself- In other words, etA maps point 10 to z(xo,  t) after time 't'. Thus, the 
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operator et-4 defines a flow on Rn and this flon- is generated by the vector 

field Ax. 

If we look at the f l o ~  as the set of all solutions to the system (2.5). those 

solutions that lie in the linear subspaces spanned by the eigenvectors are 

invariant under the flow. For esample, if d is a real eigenvector of -4, then a 

solurion based at a point c,rJ E Rn remains on span{%} for all time, where 

 span{^;} is the vector space for which v, is the set of basis vectors and so 

on. If this property is satisfied (that is, points in a certain subspace remain 

in the sillnth subspace for all time under the flo~r), then the subspace is called 

all in\-ariant suhspace of the ffo~v. Thus. the eigen spaces of -4 are invariant 

subspaces of the flow. 

This leads to a classification of the subspaces spanned by the eigenrectors 

as f01l0~T-s: 

1. Stable subspace, Es = span{vl, ..., vns) 

2. Unstable subspace C = span(ul. ...? unu) 

3. Centre subspace, Ec = span{m', ..., w w )  

where ui, uj. wk are eigenvecton with negative, positive and zero real parts 

for eigen~alues. respectively. +h, n = n, + nu + n,, where n is the dimen- 



sionali ty of the eigenspace. 

\Ye also note here that solutions in Es exhibit exponential decay (mono- 

tonic or oscillatory), those in EU groiv exponentially and EC is characterized 

by solutions which do neither. 

The above classification provides the framework for the two important 

theorenls for nonlinear systems that rye take up in the following section. 

2.3 Critical Points And Their Classification 

In the analysis of dynamical systems. the idea of critical (equilibrium) points 

plays a key role. -4s we shall see in the sequel. these are points in phase space 

which represent solurions to the given equation for all times and the constant 

nature of these equilibria suggests these as good starting points for the study 

of the (often) complex behaviour in their vicinity. Also, the phenomenon of 

asymptotic conyergence of nearby solutions to these points leads us to name 

them as attractors. The stability of solutions in the neighborhood of the 

critical points is another issue which adds to the importance of the analysis 

of equilibrium points. 



Consider a dynamical system 

i = f (x) (2.11) 

1 point x = a such that f (a) = 0 is called a critical point (equilibrium point) 

of the system. K e  note that a critical point corresponds to an equilibrium 

solution. since i ( t )  = a satisfies the equation for all time. It is also useful to 

recall the fundamental uniqueness theorem [13, 21, which implies that there 

exists a unique solution curve corresponding to any given point in phase 

space. -1s a consequence. an equilibrium solution can never be reached by 

other solutions in finite time. 

2.3.1 Linearization 

Before advancing to the analysis of critical points and their classification, 

we sho~t-. in general. how nonlinear systems can be linearized. Consider 

(2.11). -4ssuming the existence of a Taylor's series expansion for f (x), in the 

neighbourhood of the critical point x = a, we n-rite 

(x - a)  + higher order terms. 

The linearized equation is, then, 
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We note here, once again, that the justification of this process of linearization 

yielding meaningful results in the case of nonlinear systems is a consequence 

of the Hartman-Grobman and Stable Manifold theorems 1141 referred to in 

section 2.5 (pp. 27-28) of the thesis. 

For simplicity, the point 'a' is shifted to the origin of phase space and putting 

f = x - a yields 

If 1ve abbreviate = A, an n x n matrix with constant coefficients, and 

omit the bar over I. we get 

This is the system that we shall be dealing with. The characteristic equation 

for this system is 

det(A - XI) = 0 (2.12) 

Let the eigenvalues be denoted by XI, A*, ...., An. 

We now classify the critical points based on the nature of these eigenval- 

ues at the points, assuming a two dimensional case, for simplicity. In this 

case, we will have only two eigendues, XI and A2. 



I 

Figure 2.2: The Node 

Case 1 The Node 

The eigenvalues are real and have the same sign. If XI # X2. ure have parabolic 

orbits in the phase space (Fig. 2.2). 

This type of critical point is called a node. If A1, X2 < 0 we have an at- 

tractor while XI, A2 2 0 implies a repeller. If XI = A*, the orbits are straight 

lines through the origin. 



Figure 2.3: The Saddle Point 

Case 2 Saddle Pozrrt(Hyperbo1zc Critical Point) 

In this case. the eigendues are real and have different signs. The be- 

ha\-iour of the orbits is hyperbolic (Fig. 2.3 and there esist two solutions 

which converge t o  the point as t -r x and two solutions with the same 

property for t + -m. The first two are called stable manifolds of the saddle 

point while the other two are called unstable manifolds. 

Case (3): The F~cus 

The eigenvdues are complex conjugate, the orbits spiral in or out, dew 



Figure 2.4: The Focus 

pending on the sign of their real parts. with respect to the critical point 

(Fig. 2.4) and it is called a focus. In the case of an inward spiral. the point 

is an attractor and a repeller in the other case. 

Case (4):  The Centre 

If the eigenralues are pure imaginq,  the point is calIed a centre. The 

orbits in the phase space are circles centred about the critical point (Fig. 

2.5). The point is, obviously, not an attractor in this case. 



Figure 2.5: The Centre 



2.4 Stability Of Solutions About Critical Points 

The stability of the critical points was alluded tol in our discussion of at- 

tractors and repellers in the previous section. The general rule in this is 

the following. If all the eigen~alues of the coefficient matrix have negati~e 

real parts. the solutions are stable about the critical point. If. at least one 

eigenralue has non-negative real part. there exists instability. This may also 

be intuitively understood as follo\~-s. In the case of a linear equation (or the 

linearized version of a nonlinear system). the solutions are of the form eAtt 

ivllttre A, are tile eigenvalues of the coefficient matrix. If A, has negative real 

part for all  1 .  then tvr get solutions that die out in time. In other words. 

the solutions asymptotically approach an attractor. This implies stability. 

.Alternatively. if at least one eigenvalue has positive real part, the solutions 

grow in time and one can espect instability. 

2.5 Nonlinear Systems 

Consider the nonlinear system 



I~ i \ -uk l~~g  the  basic. esistence and uniqueness theorems [[13. 2]] for differential 

equations, we can associate (at least locally) a flow bt : Rn + Rn defined by 

ot(.rill = r(t. 10). for the rector field (3.13). 

C'unsider critical puirlts of (1.13). Let 3 be such a critical point. We 

linearize (2.13) about f in the ~~~~~~~ing if-a!.. 

where D f = [Ffri is the Jacobian matris of the first partial derivatires of 

t fiirlct ion f (x j .  Since (2.14) is a linear system. we can write the lollo~~ing 

t l ~ i l l r t  t ~ C ~ I L  fur t lie f i u ~  

Given this background. we state (without proof), the follodng two theorems 

that form the pillars of nonlinear analysis [I41 

Theorem 1 Hartman-Grobman: 

If D f (3) has no zero or purely irnagznary eigenvalues then there is a homeo- 

morphism h defined on some neighbourhood U of Rn locally taking the orbits 

of the  nonlinearpow #t of (2.13) to those of the linearflow etDf(i) of (2.15). 

The homeomorphism preserves the sense of orbits and can also be chosen to 
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presenle parameterization by time. 

Xow. we define the local stable and unstable manifolds of 2, W'&) and 

T l'ul,,ii-) as follo\~s. 

n l i ~ r t ~  I' E Rn is a neighbourhood of the fised point f. The invariant man- 

ifolds I l - 31 ,  ( 3 )  and U'ul,,(f) problde nonlinear analogues of the flat stable 

and unstable eigenspaces EJ and EY of the linear problem. The next theorem 

sriltes that  ll''l,(F) and [I 'ul , , ( f )  are tangent to Es. EEY at Z- 

Theorem 2 Stable Manifold Theorem for a Fixed Point 

Suppose that x = f (x) hus a hyperbolic fized point f. Then there exist loco1 

stuble urzd unstable manzfolds II.*Sl,(3) and TI-ul,,(f) of the same dimension 

n, and n, as those of the eigenspaces Es and P of the linearized system, 

and tangent to E3, F a t  f. WSbc(z), WuloC(Z) are as smooth as the fmction 

f- 

Concfuding the section note that no comments have been made in the 

case when the real parts of the eigenvalues vanish (i. e. the eigenvalues are 
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zero or pure imaginary]. This invol~es the centre manifold theor?. which is 

not essential to our discussion and hence we leave it here with the note that 

the theory of centre manifolds ria normal forms treats this important aspect 

uf nonlinear systenis. 

2.6 Conclusion 

In this chapter. we took a closer look at nonlinear systems. Two important 

t h~orcm.5 that  establish the connect ion between linear and nonlinear systems 

were stated. Further. the concept of linearization was stated. Also. ideas 

relar ed t u cri t iral points of linear and nonlinear systems. their classification 

and stability issues were examined. On the basis of the framework so far, the 

nest chapter explores the phenomena of bifurcations and chaos in nonlinear 

systems as well as the method of averaging. 



Chapter 3 

Bifurcations and Chaos in 

Nonlinear Systems 

Introduction 

In this chapter. we shall di~russ  some deeper aspects of nonlinear systems. We 

sliall begin nith cyclic attractors and go on to chaotic attractors in dynamical 

systems. This leads us to the interesting phenomenon of chaos. Bifurcation 

is another aspect that shall be dealt with. Finally, we briefly examine the 

method of averaging which is a powerful technique in the context of nonlinear 

systems. In the subsequent chapters the averaging method is applied to the 



Froude pendulum and this leads to a bifurcation analysis and a classification 

of the limit cycles thereby. The chaotic behaviour of the Froude pendulum 

is also esplored. This explains our focus on these aspects in this chapter. 

The general references pertinent to the material in this chapter are [39, 

13. 41. 14. 36. 10. 221. 

3.2 Cyclic Attractors (Limit cycles) 

In r h ~  previous chapter. the idea of point attractors of dynamical systems 

!\-a> discussed. These are fixed point (equilibrium) solutions that attract 

nearby solutions. It turns out that there exist other types of equilibrium 

solutions too viz. cyclic and chaotic attractors. We discuss the limit cycle 

(cyclic attractor) first. 

;\ limit cycle is an isolated periodic solution of an autonomous system. 

represented in the phase plane by an isolated closed path, as shown in (Fig. 

(3.1) 

The neighbouring paths are not closed but spiral into or away from the 

limit cycle C as shown. In the case illustrated here which is a stable limit 

cycle, the device represented by the system wiII  spontaneously drift into the 



Figure 3.1: -4 Limit Cycle 
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corresyv~ldi~ig periodic oscillation from a r ide range of initial states. -A stable 

limit cycle represents a stable stationary oscillation of a physical system, akin 

ro the rppresenration of a stable equilibrium by a stable critical point. The 

existence of limit cycles hence assumes great practical importance since they 

represent t he stationary states of oscillations. The theory of limit cycles is 

also important in the study of self-sustained oscillations. the simplest esample 

of which \~ouId be the motion of the pendulum of a clock [19]. The nearby 

trajectories approach the limit cycle. Thus, the initial conditions become 

i ~ ~ i t l i r l [ t ~ ~ i ~ t I  a3 all ruvriun approaches and settles on tile cycle. In the case of 

111th pcrldulunl of a clock. the amplitude of oscillation at the start does not 

affect the final. stable. periodic motion. This is characteristic of all motion 

that approaches a stable limit cycle. This phenomenon is also found in the 

case of self-exited oscillations. 

Lirltlar J!-sr rnls 11-it h const ant coefficients do not eshibit limit cycles. Since 

nonlinear equations cannot be solved in general, it is important to  be able 

to establish the presence of limit cycles, if any, by other means. 
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3.3 Chaotic Attractors 

\Ye now esamine the phenomenon that has occupied the centre stage in 

nonlinear dynamics. in recent times. 

To begin with a rather formal definition [39], a chaotic attractor may be 

grumerrically identified as a stable structure of long term trajectories in a 

bounded region of phase space which folds the bundle of trajectories back 

onto itself. resulting in mixing and divergence of nearby states. 

From a physical point of vie~r-. this means that. a system that exhibits 

chaot ir beha\-iour can start off ivith two nearby initial states and end up 

in  fillill 3tates far away from each other after a certain period of time. In 

other words. the response of a chaotic system is highly sensitive to initial 

conditions. 

In 1963, Lorenz [23] published an analysis of a simplified model of con- 

vection in the atmosphere of the earth which involved a set of nonlinear 

differential equations in three variables. A numerical approximation of any 

solution to this set of equations has the following interesting properties. 

(a) The orbit is not closed. 

(b) The orbit does not represent a transition stage to wen known regular 
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behaviour. for some open regions of parameter space. 

(c) The orbit and the intricate geometrical structure it creates depend on 

the initial conditions in a very sensitive .era>*. Thus. a slight perturbation 

of the initial conditions produces a very different picture. 

(d) The orbits with different initial conditions possess qualitative similarity 

in the sense that they are bounded within a certain region of phase 

(P The system is very much deterministic. That is. if one were to start 

from identiceal initial conditions one would recover identical orbits. 

-4 graphical representation of this phenomenon is given in Fig. (3.21. 

Due to the bounded nature of the trajectories, the presence of an at- 

tracting region is quite evident in this case. But within the bounded region 

there exists an unpredictable. non-periodic pattern and this is termed chaotic 

beha-iour. An attractor of this type is called a chaotic attractor. 

The interesting discovery at as that chaotic behaviour is generic to a class 

of nonlinear systems. 

Here we consider the following nonlinear equation with a periodic forcing 
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Figure 3.2: Di~ergence from adjacent initial conditions - Chaos 
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funct ion: 

? + a  i - + b x 3  = Fcost  

\\*e focus on the phase space i. e. the (x,x) plane and obsene two numer- 

ical J u t  iun3 l~it l l  arbitrarily small difference in the initial conditious. The 

sulur ions diverge esponentially with time. Continuing the solutions in time 

reveals the chaotic nature of the system. 

The motion is non-periodic. The system is deterministic. .Use, the expo- 

nential di~ergence makes it impossible to establish any long term correlation 

bvr~vtl(~rl r he rwo solut ions by reducing the difference in the initial conditions 

sinre each order of magnitude improvement in initial agreement vanishes in 

a fixed increment of time. In other words. solutions starting off with nearby 

initial conditions do not stay close to each other as they evolve in time. Yet, 

the set of trajectories esist in a bounded region of phase space and hence 

t herti dues esist an at tractor. Thus. (3.1) sholvs chaotic behariour. 

Froni an engineering point of view, unpredictability and chaos may be 

undesirable. There exists a correlation between this phenomenon and the 

system parameters. In other words, chaotic behaviour is seen only for cer- 

tain ranges of values of the system parameters. Thus, for nonlinear systems 

amenable to andpsis it is possible to identifv chaotic regimes. The effort 
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~vould then be to avoid these regimes. Hence, the identification of chaotic 

attractors in engineering systems is of prime importance. 

-1 technique of identifying ranges of parameter values for which chaotic 

lwhai-iour car] br ohaer~ed in a nonlinear system is the ilelnikov analysis 

I.17. 2.1. 141. 111 chapter 6. we apply this method to the Froude pendulum and 

derive an analytic criterion for the onset of chaos. 

3.4 Bifurcations 

Thr pllcnornerlon of bifurcation refers to the significant qualitative changes 

h a t  uc-cur in the orbit structure of a dynamical system as the system pa- 

rameters are varied [13. 17, 14, 71. These changes have serious implications 

for the ultimate fate of the system and often this is a prelude to the onset of 

chaos. 

In a broad class of systems it is observed that as the parameters go 

through a range of values, the qualitative nature of the phase space is dras- 

tically affected. These changes could range from anywhere between a change 

of stability type to fundamental variations in the topology of the phase space. 

Collectively, these phenomena are termed bifurcations. Bifurcations may be 
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mainly classified as local and global and we briefly examine both, below. 

3.4.1 Local Bifurcations 

The qualitative changes in the global structure of phase space, due to raria- 

r iorl~ in the system parameters. that can be detected and studied locally ( i .  

e. with respect to a critical point), are called local bifurcations. 

In the previous chapter. it was observed that the nature of the eigenvalues 

under a lil~earization leads to a classification of the equilibrium points as 

sacidles. nodes. foci and centres. Also. the sign of the eigenvalues dictates 

the stability type of the point. The principal idea in local bifurcations is 

the following. For parameter dependent systems, under a linearization. the 

eigerivaiues ~vould be functions of the parameters. It follows, then, that 

a change in the values of these parameters can affect the eigenvdue and 

Iltbucr the nature of the critical point may be altered. This is called a local 

bifurcation. 

To make the idea more precise, let us consider a dynamical system i = 

f(x. p )  that depends on the parameter p. For the present discussion, we 

consider only a single parameter but it is evident that most practical prob- 

lems involve more than one parameter. For example, the general oscillatory 
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mechanical system depends on the mass. stiffness. and damping coefficients 

as well as on the amplitude and frequency of the forcing function. 

Ler ru(p be a critical point of the above system. Hence, f (xo ( p ) :  p )  = 0 

For convenience. we shift to the origin by the follo~ving transformation. 

where A(p)  = af (xo(p): P )  
ax 

and 0 ( z 2 )  represents the higher order terms in the expansion. The stability 

~t .I , ( / r  i. dependent on the eigenvalues of d(p). Let the eigenvalues be 

A, ( p  ) . Further. 

1. if Rr(X, ( p ) )  < 0. V i. xo(p) is uniformly and asymptotically stable. 

2. if 3 at least one j such that Re(A,(p)) > 0. xo(p) is unstable. 

Hew. IV* note that -4 is a function of i r  and hence the eigenvalues are 

also functions of p. Thus. as 11 evolves. the nature of the eigen values may 

change affecting the stability of the critical point. A change in stability may 

be expected u-henever, for some p = po, Re(Ai(pa)) = 0 where Re{Ai(pa)) 

represents the real part of the eigenvalue. The d u e s  of for which the 

above condition is satisfied locate the bifurcation points of the system. 
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Further, if we restrict ourselves to the condition that A(p) is a real valued 

matrix, that is, it can have either real values or complex conjugate pairs of 

eigenvalues only, bifurcation points can arise in the following ways: 

1. X,(po) = 0 and Xn(pa) < 0 V m # n and X(p) is real. 

2, MP) = L(C0 = ~ ( c ( o )  + i B(M) for some m, n; a(m) = 0; B(M)  # 0 

and Re{X&)) c 0 V k # m, n. 

Case 1 is called a one dimensional bifurcation and case 2 is called a Hopf 

bifurcation. 

3.4.2 Global Bifurcations 

When a change in a parameter value alters the qualitative behaviour in phase 

space, a global bifurcation is said to have taken place. These are not local in 

the sense that their analysis cannot be restricted to the neighbourhood of a 

critical point. This behaviour is exceedingly complex and is yet to be under- 

noo d exhaustively. h c i a t e d  with global bifurcations are the appearance 

and disappearance of limit cycles, formation and destruction of homoclinic 

loops, saddle connections and so on. 

Oscillatory engineering systems involve various parameters. Hence, the 



C'H-4 P TER 3. BIF L-R C-4 TIO-\-S -4 . .D CH-4 OS 15- -SOXI.YEE4R 
SI'STEJIS 42 

atlalysis of bifurcations that result in abrupt changes in system behaviour 

are important in the analysis and design of these engineering systems. 

Bifilrcations may also be studied in parameter space. hs we shall see in 

tllt1 wcluel. tliil bifurcations of the Froude pendulum under our consideration 

orc. l lr  in tllr spatsr of parameters. Indeed. these effects in the parameter space 

are reflected in the phase space of the system. as well. 

3.5 Averaging 

-11 c i p i n g  i? iin est rc~111t~ly poivrrfiil t ~ rhn ique  in asymptotic analysis [36. 301. 

Tllr st artirig point is a perturbed nonlinear system. If the system involves pe- 

riodic functions. a corresponding averaged equation can be generated wherein 

the functions are integrated over the period. 

Tire important result is that approximate solutions (often to any degree 

of accuracy) for the original equation may be mitten down by solving the 

simpler. averaged equation. Thus. averaging, in general, may be viewed 

as a technique of generating approximate solutions of perturbed nonlinear 

systems by solving the corresponding averaged equation, which, hopefully, 

admits simpler solutions. 



- - -- 

Once again. to make the ideas more precise, let us consider the follon-ing 

system: 

~ v h e r ~  c is a perturbation parameter. If the function f is T-periodic in t .  the 

averaged equation corresponding to the above equation can be written as 

where ~ " ( I J )  = - i lT f ( f -  d dt 

With respect to the above equations. the averaging theorem (361 states 

thac. to an? desired degree of approsirnation. the solutions of the original 

equatioll ar~d the averaged version stay close enough to each other. 

What makes this approach really powerful is the existence of theorems 

that guarantee a close correspondence between the original equation and the 

averaged version. Thus, properties like existence and stability of attractors, 

and bifurcations carry over to the averaged equation and rice versa. This 

makes it possible to deduce a great deal of information about the original 

system from the study of the averaged equation. 

This technique is exceptiond1y useful in tackling nonlinear problems in 

engineering, since the averaged equation often admits simpler solutions. In 



cliapter 5 .  we approach the Froude pendulum using this method. 



Chapter 4 

The Froude Pendulum 

4.1 Introduction 

The Froude pendulum is a classical mechanical system that exhibits friction- 

induced. self-exited osciilations [28, 8, 29. 5. 261. Apart from being unique 

in its own right in the class of interesting nonlinear systems. it has sen-ed as 

a paradigm for the treatment of friction-induced nonlinear motion. Despite 

the fact that this system has been known to be important for a considerably 

long time [28, 381, a survey of the literature confirms the existence of many 

open questions with respect to this system. 

Self-emit ed oscillations have received considerable attention in the re- 
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search on nonlinear systems. the most important esample being the \-an der 

Pol oscillator. The dynamics of these systems being self generated. they are 

of great interest. 

On the other hand. friction continues to be a grey area in the enr ire land- 

scape of dynamics. The classical approach is to model friction by Coulomb's 

law. FT = pF\.. where. the frictional force FT equals the normal reaction &- 

multiplied by the coefficient of friction p. The inadequacy of this ideal rela- 

tiunship a5 a satisfactory model both from the theoretical and applied points 

I ,f i - ir)~*:  1-1ii5 twen long r ~ c o g n i z ~ d .  for instance. in [32]. It is also observed 

t liar a broad class uf e~igineering systems admit nonlinear frictional egects. 

Sonlinear friction is the central theme in the discussion of the Froude 

pendulum and thus. along with the self-excited nature of the oscillations. the 

pendulum becomes an important object of study. 

In the sequel. lollo~ving standard analysis. the equations of the Froude 

pmclul~~rn  are set up and then cast in a form that Facilitates the bifurcation 

analysis that we intend to carry out via the averaging technique developed 

by Sanders and Cushman in the context of the Josephson equation [35]. 
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4.2 The Froude Pendulum 

.-\ schematic diagram of the Froude pendulum is shown in Fig (4.1). The shaft 

uf tlir pendulunl is connected to an engine which rotates freely in the bearing 

pivor ar a constant angular velocity R. The pendulum is fixed to the bearing 

pivot which swings on the rotating shaft. There arises friction in the contact 

iurfat*es het i~een the shaft and the bearing pivot. It is standard procedure to 

treat frictional forces as functions of the slipping velocity (28. 26. 12. 18. 161. 

If the angular displacement from the vertical by d. the frictional torque of 

r f w  Froudt. pendulum is assumed to have a relation to the slipping angular 

i.el"city d and is espressed as a function .\I (R - 6 )  128. 8, 261. Thus the 

equation of niution can be written as 

n-here m is the combined mass of the pendulum and the pimt, I, the total 

nlunlrtlt of inertia of all rotating components of the pendulum, g, the ac- 

celeration due to gravity, c the coefficient of damping, I ,  the distance from 

the axis of rotation to the centre of gravity of the pendulum. Expanding 

M(R - 6)  as a power series about a given R (chosen as a point of ineection 

of ;ZI(R) implying Jftn(R) = 0 )  and considering only the first four terms of 
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i-ff--" otating Shaft 

Figure 4.1: The Froude pendulum - the rotating shaft is connected to an 
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the resulting series. we obtain the standard equation [28, 81: 

1 
I6  + c6 + mgl sin 6 = M(R)  - dlr(n)Q - -M'"(R)@ 

6 (4-2) 

Rearranging this equation. we get. 

1 
lo i (C + ; \ I t ( R ) ) ~  + - . 2 1 " ' ( ~ ) & ~  + md sin o = d l ( R )  

6 (4-3) 

Dividing both sides by I. and introducing constants. we obtain 

z + a o +  b i 3  + hsino = c 

c- . ! f r tn l  Jf(9) where ( I  = - ,v"'cflr h = y ,d , = . . b = -  61 ' 

Thui .  (4 .4)  rppresents the unforced Froude pendulum. This is. obviously. a 

highly nonlinear equation with contributions from the cubic damping term 

and the sin o term- 

4.3 Analysis of The Froude Pendulum 

As was observed before, the analysis of (4.4), in the literature is incomplete. 

One encounters treatments with the approximation sin # = 9, which reduces 

the system to a simple harmonic oscillator with a cubic damping term. Such 

a Iinearizat ion (as has been emphasized before), is justified in certain cases, 

but, more often than not, obscures the essential features of the system. Even 
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more disturbing is the fact that replacing sin d with ai  leads to a completely 

different equation. a different system. 

These considerat ions converge to the conclusion that. to the extent pos- 

s ib l~ .  ( 4 . 4  ) illoulil h~ t reared in its full generality. with sin o and the cubic 

damping term receiving the attention they rightly deserve. 

That such an approach. leading to meaningful results is possible. is the 

highlight of the present effort. The technique that we adapt here is the one 

adopted by Sanders and Cushman in the case of the Josephson equation. 

The Josephson junction is described by the equation [35] 

where a. 3. :+ are constants. 

The central idea is the following. The above equation can be treated as a 

perturbation of the following system known as the mathematical pendulum 

L-11. 3.5; given by the equation, 

The mathematical pendulum is a well known Hamiltonian system and 

treating the Josephson equation as a perturbation of this system, averaging 
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may be carried out over the level sets of the hamiltonian- Using this method. 

the bifurcations and the phase portrait of the Josephson equation can be 

studied. as shown in the work of Sanders and Cushman [35;. 

Consider the equation of the Froude pendulum (1.4). Rearranging terms. 

we get 

~ + h s i n s + a & + b & ~  = C  

If we scale the above equation by setting h = 1. we get 

6 + ~ i n o + a 4 + b $ ~  = c  

this implies 

Comparison nith (1.6) shows that the difference between the two equations 

is in the estra damping terms and the constant term. 

Thus. the critical observation here is that if we treat a and b to  be small. 

the Froude pendulum can be treated as a perturbation of the mathematical 

pendulum. Taking this approach, we are able to stud? the bifurcations, limit 

cycles and the entire phase portrait of the Froude pendulum. The details are 

worked out in the following chapter. 
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4.4 Conclusion 

The Froude pendulum is an example of friction-induced, self-escited. non- 

linear oscillations. This system has not been analyzed eshaustirely. From 

the form of the equations. it is observed that this system can be treated as 

a perturbation of the mathematical pendulum. One such system that has 

been studied from this angle is the Josephson equation [35]. It turns out 

to be possible to apply the same techniques to the Froude pendulum. This 

leads to a bifurcation analysis. a classification of limit cycles and interesting 

phenumenit in the phase space. This is carried out in the next chapter. 



Chapter 5 

Bifurcations and Limit Cycles 

in The Froude Pendulum 

5.1 Introduction 

This chapter forms the core of the thesis. Here. r e  apply the averaging 

technique mentioned in [35], the method of Sanders and Cushman to the 

Froude pendulum. In [35], this technique is applied to the Josephson equation 

and the crucial obsenration here is that both the Josephson equation and the 

Froude pendulum can be treated as different perturbations of the well known 

Hamiltonian system viz. the mathematical pendulum. The latter system is 
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the starring point of the discussion in (361. and we apply the same method 

to the Froude pendulum. This leads to a bifurcation analysis ria the Ricatti 

equations and as a consequence. significant comments can be made on the 

limit cycles in the system. 

-4s RP have observed earlier. a knowledge of the limit cycles and their 

classification is estremely useful in the analysis of nonlinear systems and the 

case of the Froude pendulum is no exception. A highlight of this approach, 

as n-r shall see in the sequel is that no attempt is made to linearize the 

system. The noniineariries presented by sin o and the cubic damping term 

ill t h e  equations are genuine and rye treat them as such. 

5.2 The Froude Pendulum - A perturbation 

of the mat hematical pendulum 

Lat us rrcaIl the Froude pendulum given by the equation [4.1]: 
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There are four parameters a. b. h.  c associated with the system. For the 

bifurcation analysis that follo~vs, we consider the two parameters a and c. 

Thus. we need to scale the above equation such that we are left with these 

tn-o parameters. Setting n~gl  = I and dlt"(R) = 61. we get the follor~ing 

equation. 

It is noted here that this choice is motivated by the need to carry out 

bifurcation analysis with respect to the parameters a and c. 

Before proceeding further. we remark that the analysis that follows is not 

restricted to the set of parameters that we have chosen. Our choice is guided 

by the fact that a is a coefficient of the leading damping term and c can be 

r iew~d as a constant value of the forcing function. It is possible to carry out 

the bame bifurcation analysis for a different set of parameters. 

The analysis carried out here closely foIlo~vs [35]. 

Transforming to the first order system which we shall call Xa,= 
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ahere c is a perturbation parameter. 

Holding c &xed. X,, is a two parameter family of vector fields on the cylinder 

TS' . which we shall study by the averaging method. 

If we set f = 0 in ( 5 . 2 ) .  we see that it gives us the following system 

This system of equations represents the mathematical pendulum and hence 

the jtaterlient that the Fruudc pendulum can be treated as a perturbation of 

t h~ niat l~ematiral pendulum is validated. 

5.3 The Averaged Equation 

\Ye now derive the averaged equation. As stated before, when r = 0. the 

unperturbed system is the Hamiltonian vector field XH describing the math- 

ematical pendulum where the Hamiltonian function is 

y2 H(#?Y) =y- cos 4 

Instead of variables (4, y) we use (4, h),  where h is defined as 
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Averaging, as we have seen in an earlier chapter, can be broadly called as 

a method of constructing periodic solutions of perturbed equations from the 

knonn solutions of the unperturbed problem. In this case, as  we shall see, 

this procedure reduces to the integration of the perturbed part of the equa- 

tion over level sets of the unperturbed system. That this process reveals an 

enormous amount of information about the perturbed system is the central 

theme of the story. 

Differentiating (5.5) with respect to 4 and using (5.2), we get 

y$ + sin 4 

But 

Before we take the next step of avetaging, we need to comment on the 
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Figure 5.1: The Phase Space of the Mathematical Pendulum 

phase space of the mathematical pendulum. 

We note that in Fig. (5.1) the phase space is actually a cylinder with 

the points (h, 0) identified. This diagram is a planar representation of the 

surface of this cylinder.Thete exist three distinct f d e s  of dosed cycles rh 

on the cylinder: 

1. r?, when -1 < h < 1. The level set (which is a periodic solution of Xh 

except when h = 1) is smooth, connected, compact and contractable 
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to a point. 

2. rr+, when h > 1 and y > 0. rh+ is the component of the level set given 

by the graph of the function ,/--. rhc is not contractable 

to a point and it winds around the cylinder. 

3. rh-, when h > 1 and y < 0. Here the equation to the c w e  is y = 

-\/2(h + cos 4). 

Averaging (3.6) over a compact, connected component rh of the level set 

leads to the averaged equation 

Son degenerate zeroes of the right hand side of (5.8) correspond to limit 

cycles of Xa,,. Define the path integrals involved in the problem as 

From here on, when required, we use superscripts 0 and & on A, B and 

C to denote the r h  family being used. For a h e d  d u e  of the parameter c, 
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those values of u n-hich give rise to zeroes of the ayeraged equation in (5.8) 

are esactly the values of the function 

where 

Setting the right hand side of (5.8) equal to zero gives. using (5.11) 

sirlc*~ A. B and C are functions of h. it follo~vs that q(h )  is as defined in 

5.4 The Picard-Fuchs and Riccatt i Equations 

The nest step in studying the averaged equation is to find the Picard-Fuchs 

equations satisfied by the functions -1. B and C and then to analyze the 

solutions of the resulting 'Riccatti' equations. As we shall see in the sequel, 

the bifurcation picture emerges as a result of solving the 'Riccatti' equations. 

From (5- l l ) ,  C(h) = Jr, y3d4. Hence 
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Here. ive haw used the result = 1, which is obtained by differentiating 

(3.5)  with respect to h. Also w have used (5.11) in obtaining (5.15). 

From (5.10). B = kh ydo. Hence 

Diff'rentiating both sides of (5.3)  with respect to h 

Csing (5.l;) i11 (5.16): we get 

Again. from (.5.11). 

c = Jr, (y3)d# = Jh (Y3) Y d4 

= frk 2(h + cos $)Y& (from (5.5) 1 (4 

- - 2h /,, Y ~ O  + 2 Irk vcos 4d4 (b) 

2hB + 2 Jr, y cos 4d4 (c) (5.19) 
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From 13.5. (3.9).p.302]. integrating by parts. 

Differentiating (.5.5) with respect to Q on both sides. (heping in mind that 

h is treated as a separate variable). we get 

dy sind - = -- 
d~ Y 

Csing this result. 

Thus. 

Hence. 11-e get 

Substituting into (5.19), we get 
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Hence. using (3.1 1) and (-5.18). lye get 

Thus. 

Or. 

From (5.15). 5 = 3 8 .  

Csing (3.16) and (5.24). the Picard-Fuchs equations for the system can be 

writ ten as 

Having obtainecl th r  Picard-Fuchs system of equations, the nest step is to 

tlrrivr rhc Ricatri equations for c ( h )  and q(,h). \ le  have defined { ( h )  = 

and q(h) = c$ - c(h) .  Hence, using (5.13): (5.16) and (5.21), 

- - '3B - 9% B (using (5.13) and (5.16)) 

= 3 - $c(h) [A f c - 2 h ~ ]  (from (5.24)) 

[ 3 ~ 2 ( h )  - 2h((h)] (using (5.13)) = 3 - w z  
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Thus. 

dC 3 (1 - h2)-  = 3(1 - h') - - c 2 ( h )  + 2h{(h) ( 5  26)  
dh 4 

This is the Ricatti equation satisfied by c (h ) .  Since q(h)  = c$ - f ( h ) ,  

From (5.9). -4 = Ir, d& and hence 

from (5.24) and (5.27). 

Using (5.13) in the above expression, we get 



This gives 

This is the Ricatti equation satisfied by ~ ( h ) .  

U'e now comment on the relationship between t 0 ( h )  and To(h) .  Here the 

superscripts indicate that these functions are considered over T:, as defined 

in section [5.3]. We recall. q ( h )  = c$ - { ( h ) .  For T 0 ( h ) ?  -4 = Jr, dm = 0, 

sincbr the cycle is contractable to a point. Hence 

Before w e  proceed to integrate the Ricatti equations for c(h)  and q(h) nu- 

merirall? we need the initial conditions for both. Deriving these shall be 

our nest task- We use a simple argument for the following derivation. From 

(5.26).  

h = 1 *  -3(t3*+2C=O s (a) 

p(l) = ir co(-1) = 0 (6 )  
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Since r l ( l , )  = c s  - { ( h ) .  where -4 = Jrh do and B = I,, y d ~ ,  and since 9 

varies ber~i-eeu -ii and 7. 

Lr ydo = Jz, d6. (setting h = 1 in (5.7)) ( a )  

k i n g  (5.38) and (5.36(b)) in (5.37) we get 

5.5 Plot of t0 (h )  

Given the initial condition (- 1) = 0, we solve numerically, the differential 

equation for { ( h )  (3.26). The numerical integration was carried out using the 

software package Mathematics @. As can be seen from the plot, ((1) = 

which is exactly the calculated value. We observe that in this range [-I, 1) 

for h, c(h) has a unique maximum given by P,, = 2.668. 
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Figure 5.2: The Plot of c ( h )  rs h 

5.6 The Bifurcation Diagram 

The nest step is the crucial one in this analysis, one that results in the 

important bifurcation diagram that we seek. In this. we plot the bifurcation 

curve (Fig. 5.3) between the two parameters a and c, of the system. The 

starting point is (5.39), ~ ( 1 )  = 7 -!. This gives us an initial condition ~ ( l ) ,  

for every value of c. Using this, the Merentid equation for q(h) (5.31) is 

solved numerically. The heavily mathematical arguments in [35] give that the 

bifurcations occur at b ( h )  = a- Using this result, we pick the rnzuimum 

 due of r)(h) from the numerical solution and plot it against c. This gives the 
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Figure 5.3: The Bifurcation Diagram 
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bifurcation diagram. I s  can be seen from the phase portraits, for different 

regions of parameter values in the bifurcation diagram, we observe different 

hehaviour in the pllase space. Using the results ('(1) = 2.666 and c:, = 

2.668 from (Fig. 5.2).  and from (5.35). we especr significant changes at 

a = -2.666 and a = -2.668. Hence these points are also important in 

the bifurcation diagram. This is established by the rigorous arguments in 

3 .  The nun~erical work associated with this section was carried out using 

Mat hematica 0. 

5.7 Stability Of The Equilibrium Points 

The crir ical points of the vector field (5.2) are given by sin & = cc and y = 0. 

Linearization of (5.2) about the equilibrium points gives the Jacobian matrix 

1 sin @=cc 
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Eigc~l~alues can be calculated from the characteristic equation of (5.40) 

1 2 2  ~ * + c a X -  (1 + ~e c )(&I) = O  (a) 

-ca f ,/c2a2 + 47(1+ $c2c2) 
X= = .  here q = f 1 ( b )  (5.41) 

2 

For given values of a and c this g i ~ e s  the stability type of the critical point. 

5.8 The Phase Portrait and Limit Cycles from 

the Bifurcation Diagram 

Before we discuss the details of the phase portrait, we note that the compu- 

rational work in this section \\-as carried out using the DE Tools subpackage 

of the software Maple @. This facilitates the plotting of the phase portrait 

for different parameter values. 

\\*e shall esamine the phase portrait in some regions of the bifu~cation 

diagram. There esist difficuIties in this esercise for two reasons. In a numeri- 

cal plot of the equations, we need an estimate of the perturbation parameter 

c which is unobtainable fiom averaging theory The averaging arguments 

all hold good for 'sufficiently' small epsilon and it is not straightforward to 

obtain a range of numerical values for this c and this creates difficulties in 
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tlie co~~lputatiooal parr of the analysis. Sonetheless, we do plot the phase 

portrait for an arbitrarily chosen small value of the perturbation parameter 

a d  still are able to see the esistence of limit cycles. 

.As IVP shall discuss in the nest chapter. this kno~vledge of the esistence 

of limit cycles is quite important from the point of view of further work. It  is 

well known that a non autonomous nonlinear system is extremely hard to deal 

a i r h  and ill this contest. if oue were to study the Froude pendulum driven 

by a forcing function. the existence of limit cycles and their behaviour with 

respect to the unforced problem becomes important. Here. due to significant 

computational difficulties. we treat this exercise just as an indicator of the 

different types of system beha~iour. These difficulties are compounded by 

the comples behaviour of nonlinear systems. The initial conditions. step 

size in the numerical integration, time period for which the solutions are 

traced. arld rlw inherent capability of the software package are the other 

major constraints in this contest. However, the regions we examine are quite 

rich in structure and the numerical results that we get do possess a high 

degree of clarity. 

The important features that we see from the phase portraits drawn on 

the basis of the bifurcation diagram are the foIlowing. First of all, we see 
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the presence of limit cycles. Interestingly, we see the existence of limit cycles 

under large perturbations as well. Averaging is essentially an approximation 

method and hence, the fundamental averaging theorems guarantee results 

only under small perturbations. But in this case, we see that the limit cycles 

survive under large perturbations. At once, we should add that in nonlinear 

systems limit cycles can make sudden appearances and disappearances due 

to different reasons and hence, we need to be cautious in drawing conclusions. 

Yet, the presence of limit cycles is always valuable information. 

A closed trajectory joining the saddle points in the phase portrait is called 

a double saddle connection. If the connection exists in the upper (lower) half 

of the phase plane alone, it is known as an upper (lower) saddle connection. 

We see the appearance of saddle connections of all three types. 

The last figure in the series (Fig. 5.21), suggesting a chaotic attractor 

for the Froude pendulum under the action of a forcing function needs special 

mention. Here the pendulum is driven by a fordng amplitude F = 0.4 and 

a forcing frequency w = 2. Chaotic behaviour in the Roude pendulum has 

been observed in recent times [9] and the winding of the limit cycle around 

the annular region suggests chaotic behaviourUT This can be expected since 

the time dependent forcing hction adds another dimension to the phase 
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space and the presence of invariant tori is possible. 

Concluding the chapter, it is noted that the nonlinear averaging technique 

as used by Cushman and Sanders [353 was applied successfully to the Froude 

pendulum. The bifurcation diagram for 'a* vs 'c' and the phase portrait have 

been obtained. the phase portraits have been plotted using (5.2). Parameter 

values for a and c have been taken based on the regions in the bifurcation 

diagram (Fig. 5.3). The actual values of a and c, the regions to which they 

correspond and values of the perturbation parameter c are detailed in the 

phase port rair . 



Figure 5.4: Region I: Upper Saddle connection, e = 0.0001, a = 1, c = 5 
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Figure 5.5: Region P: Lower Saddle Connection, c = 0.0001, a = 1, c = -5 
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Figure 5.7: Region IP: Lower saddle connection, c = 0.0001, a = 1, c = -1 
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Figure 5.11: Region W: Limit Cycle, c = 1, a = -0.85, c = 0 
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Figure 5.12: Region IV: Double saddle connection, c = 0.0001, a = -0.5, c = 
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Figure 5.13: Region M: Phase portrait for r = 0.0001, a = -3, c = 0 





CH-4 P TER 5.  BIF L-R CATIO,YS -4A-D L1.J IIT C\ 'CLES 1-S THE 

Figure 5.15: Region VIII': Phase portrait for r = 0.0001, a = -3, c = -4 





Figure 5.17: The Node at a = 1, c = 0, for E = 1 
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Figure 5.20: Limit Cycle for a = 0.8, c = 0, r = 1 
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Figure 5.21: Candidate for Chaotic Attractor a = # a 9  c = @ r =a F =Om+ 



Chapter 6 

Melnikov Analysis 

6.1 Introduction 

Despite the extensive investigations of the phenomenon of chaos in recent 

times. there still exist very few analytic criteria capable of predicting chaos 

in a nonlinear system. From the point of vie\\* of engineering. the power 

to predict is ert remely import ant. Typically. engineering systems involve 

various parameters that naturally enter the governing differential equations. 

For example, as we have seen before, in the case of an oscillatory mechanical 

system, the parameters would be mass, coefficients of stfiess and damping, 

the amplitude and the frequency of the forcing function. In this case, if the 



system is chaotic in certain regimes, it would indeed be quite desirable to 

obtain a criterion which predicts the onset of chaotic behaviour for certain 

ranges of values of the system parameters. 

O r l ~  technique that turns out to be estrernely useful in this contest is the 

I Ithlrlikov method [XI. It is applicable to behariour in the neighbourhood 

of hyperbolic critical points alone and the reason for this becomes apparent 

once we are acquainted uith the theory behind this technique. That this 

analytical method is applicable to a broad class of systems is indicative of 

its utility. 

i\*e shall begin by esaniining the beha\-iour of separatrices about h~per-  

bolic critical points under a perturbation and proceed to describe the theory 

behind the Melnikov approach. Here we closely follow the treatment in [22] 

and refer to the same for more details. After deriving the criterion for the 

onset of chaos. we shall apply the analysis to the system of our prime concern. 

the Froude pendulum. 



6.2 Perturbed Hamiltonian Systems 

Consider a Hamiltonian system given by 

perturbed under an area preserving mapping. 

It is interesting to examine the consequences of the perturbation given 

by (6.1). Let the unperturbed system corresponding to (6.1) have the phase 

space structure of an elliptical critical point flanked by two hyperbolic critical 

points (Fig. 6.1). The standard example of such a $?stern is the harn~or\ic. 

oscilIator. 

.I comparison of (Fig. 6.1) with (Fig. 6.2) Leads to the conclusion that 

under the perturbation. the stable and unstable manifolds (HC and H-) of 

the two critical points are not likely to join together smoothly. This is the 

central point of the discussion. 

At each of the hyperbolic critical points. four cumes join. corresporuling 

to the two incoming trajectories of the stable manifold H' and the two 

outgoing trajectories of the unstable manifold H-. h point r is said to lie 

on KC if the repeated transformation T" z brings x to the critical point as n 

tends to infinity. Similarly, the point lies on H- if the inverse transformation 
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Figurt. C. 1: Phase Space of Cnperturbed Harniltonian System 

9 4 \+l 

Figure 6.2: Phase Space of the perturbation of a Hamiltonian System 



bririgs z to the  singular point as n tends to infinity. The period being infinite 

on the separatrix. the movement of I to~vards the critical point becomes 

increasingly slo\v as the saddle point is approached. 

We again observe that  under the perturbation. the H- curve leaving 

one critical point generically intersects the H' curve aniving a t  the neigh- 

bouring critical point. This intersection is called a homoclinic point. as it 

cunrlecrs outgoing and incoming trajectories of the topologically same hy- 

perbolic point. The presence of a single intersection implies the presence of 

infinitely many more all of which are homoclinic points. The existence of 

tliese ilot~i~clirlic points leads to what is known as a homoclinic tangle. 

Lrt us examine this phenomenon a bit more closely with reference to 

(Fig. 6.2). The first intersection occurs at S, the second at x', the third 

at S" and so on. The distance between successive points decreases as one 

mmm closer to the critical point. Successive points are a result of an area 

preserving mapping T". As a consequence. the fluctuation of the trajectory 

gets increasingly wild as it gets closer to the critical point. This creates the 

homoclinic tangle, leading to chaotic behaviour. 
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6.3 The Melnikov Integral 

In this section. derive the Melnikov integral which provides the criterion 

fur t h~ transversal intersection of the stable and unstable manifolds which 

lead:. ro tile fornlatio~l of the homoclinic tangle and signals the onset of chaos. 

The Ilel~iikov integral measures the distance between the stable and unstable 

n~anifolds under the perturbation (Fig. 6.4). The idea is the follon-ing: if this 

distance .d' changes from positive to negative. or rice versa. then in between. 

ar sornp point. 'd' is 0. That is. the stable and unstable manifolds intersect 

rrea t inp, the homoclinic tangle. 

The discussion in this section closely follows the treatment in [22]. 

For a sinipie illusrrarion of the theory wve consider a two dimensional au- 

tonomous system that has a single hyperbolic critical point and is perturbed 

by a periodic function of time. Thus this is a time dependent perturbation of 

a Hamiltonian system. However it is to  be noted that the argument carries 

over to higher dimensions. Let the two dimensional system be denoted by 

i = f (x) + dl (x, t )  (6-2) 

where x = (q? x2) and fi is periodic in t with period T. The unperturbed 



Figure 6.3: Homoclinic Tangle and the 1Ielnikov Distance 

q s t e m  is taken to be integrable and is assumed to possess a hyperbolic fixed 

point Xo and an integrable separatriv orbit xo(t)  such that lirnt,, xo = Xo. 

The system is illustrated in Fig. (6.3(a)). The stable and unstable orbits 

r"(t and ru( t )  are labelled and smoothly joined to each other. There is. in 

general. an elliptic fixed point within the separatriv orbit. 

To find the condition for intersection, ure calculate, using perturbation 

theory, the distance D from the unstable to the stable orbit at time to. For 

D < 0 for all to, we have Fig. (6.3(b)). For D > 0 we have Fig. (6.3(c)) and 

if D changes sign for some to ,  we have the chaotic motion of Fig. (6.3(d)). 
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Figure 6.4: The Slelnikov Distance - The dashed curve represents the unper- 

turbed separatris 

To calculate D. we need the stable and unstable orbits rJ and ru to first 

urder in c .  U'riting 

where to is an arbitrary initial time and inserting (6.3) into (6.2), we obtain 

to first order 

where 

is the Jacobian matris of fo evaluated at xo(t - to)  and where the second 

subscripts denote the components of fo and YQ. .&o, fol; = & and so 
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011. must solve (6.4) for xs for t > to. and for xu for t c to. with the 

condition that 

xS(t x ) = x U ( t  -. -x) = X,. where X, is the perturbed position of 

the  Iiyperl~olir- fisrcl point. The two solutions differ by 

The l l ~ l n i k o ~  distance D ( t .  t o )  is defined as 

\~.ilict~ is t h ~  projecbriun of d along a normal N to the unperturbed orbit xo 

at t (Fig. 6.4). From (6.2) (with c =0)! a normal to xo(t -- to)  is 

Introducing the wedge operat or 

x y = .rly2 - .z-fll  and substituting (6.7) into (6.6). we can mite 

To find an expression for D, we use (6.5) to write 



Taking the time derirat i re  of (6.10) 

Csing xo = fu and also (6.4) in (6.11) 

The first two terms in (6.12) combine to give 

where T r M  is the trace of the Jacobian matrix of fo. since Ds follows the 

stable orbit, we must integrate (6.13) from t to m. Rather than treat this 

general case. IYP focus on an unperturbed Hamiltonian system. for which 

T r M  = 0 on the separatriu. Integrating (6.13) then yields 

D s ( x ,  t o )  - DS(tot t o )  = jb fo A fi dt 

But 



because fo(Xo) = 0. Thus 

Proceeding similarly to calculate DY. we obtain D" = TrM(xo)DU + fo A fi 

si~lre DU folIo~\*s the unstable orbit, we integrate from -x to to t o  obtain. 

for an unperturbed hamiltonian system, 

Csing (6.11) and (6.15) in (6.9), we obtain finally 

If D changes sign at some to, the case in Fig. (6.3(d)) occurs and chaotic 

motion is present near the separatrix. 

6.4 Melnikov Analysis of the Froude Pendu- 

lum 

Consider the forced Roude pendulum given by the following equation 
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Transforming to a first order system 

Q = -hsind - ay - by3 + Q(R) + Fcoswt 

Tllc unperturbed system is 

For o = 0. f ;i and y = 0. the right hand side of the unperturbed sys- 

tem vanishes and hence the critical points are given by (0.0). (f T ,  0). The 

hamiltonian for the unperturbed system is given by 

From (6.19), 

Substituting (6.20) into (6.19), we get 

?? +-= h cosq5+h=h(l+cos#) (b )  
2 



;\gain (0.0) is a fised point. Hence 

Sub~rirurirlg (6.23) into (6.19), 

This can be integrated to give 

y = # = l & e c h & t  (6.24) 

Referring back to (6.2), the equations can be written in explicit form as 

From (6.18) for the Froude pendulum, these equations can be written as 

[:)=( - h sin # ) + € (  -ay - by3 + Q(S2) + F(coswt) 

0 
(6.26) 



Comparison of (6.25) and (6.26) gives 

f 0 l  = Y (4 

f11 = 0 ( b )  

fO2 = -hsincb ( c )  

f12 = -ay - by3 + Q(R) + F cos w t  (d) 

From the definition of the wedge product. 

From (6.16) and (6.28), the Slelnikov integral can then be written as 

Son. from (6.21) 

y = 2 fi sech( f i )  t 

Substituting the above equation into (6.29) and denoting the four integrals 

on the right hand side of (6.29) by Dl, 4, D3 and D4, one obtains 



This can be evaluated as 

Dl = 8ah (6.31) 

D2 = Lms 16 bh2 sech4\/i; t dt  (6.32) 

D3 = -Q(R) 2Ji;  s e c h f i  t dt (6.33) 

D4 = - J-=% 2 f i  s e c h f i  t F cos wtdt (6.34) 

where 

Finally. we obtain 

\Ire know that a, 6 and h do not change sign. Hence D changes sign 

depending on Q(R)? F and w. Thus, from (6.37) a combination of the pa- 
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ramerer values Q(R).  F, u which changes the sign of D leads to homoclinic 

chaos in the Froude pendulum. 

6.5 Illustration of the Melnikov Analysis 

Based on the analysis above. we examine the phase portrait for values of 

tl lp parameters which indicate chaotic behaviour. In all the figures. we trace 

the evolution of two solutions with initial conditions o(0) = 3, y(0) = 1 and 

o(0) = 3 . 2  y(0) = 4.2. 

1. Variation of forcing amplitude. F. other parameters fixed. 

Consider u = 1. b = 0.073. Q(R) = 0.0001. h = 1. s, = ?. For these 

~alues. from (6.37), the value of F at which the Melnikov distance D 

changes sign is F = 2.16088. Belon* we plot the t .  #(t)  diagram and the 

o(t) .  y(t) diagram (the phase spare) for F = 1.3 and F = 2.5 . That 

is. for one value below and the other above the critical \due. As we 

can clearly see, for F = 2.5, there are indications of chaotic behaviour. 

(a) Non Chaotic Case (Figures 6.5, 6.6) 

(b) Indication of Chaotic Behaviour (Figures 6.7,6.8) 
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2.  \*ariation of damping coefficient, a. other parameters fixed 

Consider F = 0.5, b = 0.075, Q(R) = 0.0001, h = 1, w = $. For these 

va!ues. troni (6.37). the value of a a t  ahich the 3feIniko~- distance D 

cshange:, sign is. a = 0.2545868. Below we plot the t .  o(t)  diagram and 

o( t ) .  y ( f )  diagram (the phase space) for a = 0.1 and a = 0.5. That is. 

for one value below and the o t k r  a b o ~ e  the critical value. -4s we can 

clearly see. for u = d. I. there are indications of chaotic behariour. 

( a )  Son Chaotic Case (Figures 6.9. 6.10) 

(b) Indication of Chaotic Behaviour (Figures 6.1 1. 6.12) 

In conclusion. we note that the foIlon.ing diagrams are only indicative 

of chaotic behaviour. based on the Melnikov analysis. Further numerical 

investigations have to  be carried out to  obtain a more detailed understanding 

of chaos in t h ~  Froude pendulum. 
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Figure 6.5: Displacement-time diagram. No Chaos for a = 1, b = 0.075, Q = 

0.0001, h = 1, w = I, F = 1.5. Initid conditions for two solutions #(0) = 3 

and d(0) = 3.2 



Figure 6.6: Phase Space. No Chaos for a = I, b = 0.075, Q = 0.0001, h = 

1. jl = 5, F = 1.5. InitiaI conditions for two solutions #(O) = 3 and 

&(O) = 3.2 
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Figure 6.7: Displacement-time diagram. Indications of Chaos for a = 1, b = 

0.075, Q = 0.0001, h = 1, w = I, F = 2.5 Initial conditions for two 

solutions #(O) = 3 and #(O) = 3.2 
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Figure 6.8: Phase Space. Indications of Chaos for a = 1, b = 0.075, Q = 

0.0001, h = 1, w = f, F = 2.5 Initial conditions for two solutions #(O) = 

3and@(O) = 3.2 



Figure 6.9: Displacement-time diagram. No Chaos for F = 0.5, b = 

0.075, Q = 0.0001, h = 1, w = !, a = 0.5 Initial conditions for two D 

lutions ~ ( 0 )  = 3 and #(0) = 3.2 
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tit+' 

Figure 6.10: Phase Space. No Chaos for F = 0.5, 6 = 0.075, Q = 

0.0001. h = 1. i = 2 8' a = 0.5 Initid conditions for two solutions o(0) = 3 

and b(0) = 3.2 



Figure 6.11: Displacement-time diagram. Indications of Chaos for F = 

0.5, b = 0.075, Q = 0.0001, h = 1, w = $, a = 0.1 Initial conditions 

for two solutions 4(O) = 3 and #(0) = 3.2 
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Figure 6.12: Phase Space. Indications of Chaos for F = 0.5, b = 0.075, Q = 

0.000I. h = 1, = $, a = 0.1 Initial conditions for two solutions $(O) = 3 

and ~(0) = 3.2 



Chapter 7 

Conclusions and Further Work 

Tl~r  averaging m e t  hod applied t u  tlle autonomous Froude pendulum and the 

S lrlniko\- analysis applied to the non-autonomous case of the same system 

have yielded useful and interesting results. In this chapter. we draw conch- 

sions from these results and suggest directions for further work. 

7.1 Conclusions 

1. With respect to the analysis and design of nonlinear engineering syj- 

terns, the work presented in this thesis confirms that the neglect of 

nonlinear terms, unless justified compIeteIy in the context, can lead 

to highly erroneous conclusions. For instance, had one treated the 
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Froude pendulum as a perturbation of the simple harmonic oscillator, 

i-e. f + x = 0, the analysis would have been much simpler, but the 

essential features ~ ~ o u l d  have been completely missed. 

2- The Froude pendulum. being a classical example of friction induced 

nonlinear oscillations. the present work highlights the richness of srruc- 

ture and phenomena inherent in this class of systems. Also, we have 

shown that a considerable amount of precise analysis is possible in en- 

gineering systems which e-xhibit nonlinear frictional effects. The focus 

on the two parameters 'a' and 'c' in the present work is by no means 

unique and one could carry our similar analyses in the case of different 

sets of parameters. 

3. .4n important observation in this thesis is the presence of limit cycles in 

the Froude pendulum and the bifurcation phenomena associated with 

the two parameters. Limit cycles, as we have seen before, are of vital 

importance in nonlinear analysis. 

4. in this thesis, we have analyzed a system with a nonlinear damping 

term. This facilitates the analysis of other enpineering systems with 

nonlinear damping factors. 
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5. From the point of view of chaos, the present work confirms, by the 

technique of Melnikov analysis and computational verification, that 

the Froude pendulum exhibits chaotic behaviour. Thus, we ~~nf i rm 

that yet another important engineering system demonstrates chaos. 

6. The analysis of most oscillatory systems involves the small angle a p  

proximation, i.e., sin@) c 4. Since we do not make any such approx- 

imation, the technique used in this thesis applies to large oscillations. 

The present work also shows that the averaging method can be applied 

to a wide class of nonlinear systems that can be treated as pertur- 

bations of the mathematical pendulum. These ate highlights of the 

present work. 

7. Rom the analytical point of view, the present work is an exampIe 

of nonlinear averaging. The neglect of nonlinearities has also serious 

consequences from the mathematical point of view since it leads to a 

completely different set of mathematical results. Seen from the per- 

spective of perturbation techniques, the work in this thesis reminds us 

that we are not constrained to treat ail nonlinear odh to r s  as per- 

turbations of the simple harmonic d a t o r .  In other words, aective 
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analysis is possible even as we retain the nonlinear terms and consider 

large oscillations and nonlinear damping. 

8. Finally? we need to look at the conclusions that could be drawn from 

the numerical perspective. While the importance of numerical tools 

in nonlinear analysis is too well known to warrant further mention, 

the present work highlights the advantage of having analyticd results 

before the system is approached from the computational perspective. 

For instance, it was the analysis that pointed to the different regions 

in phase space, where interesting phenomena were obsemed. In the 

case of the Melnikov analysis, the analytical results gave an indication 

of parameter d u e s  where chaotic behaviour could be found. But we 

must note that the present work would not have been complete without 

computational tools 

Further Work 

The present work suggests various directions for further research. 

1. The direct extension of the present work wi l l  be a similar andm of 

the forced Fkoude pendulum. Non-autonomous nonlinear systaas are 
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notorious for serious difficulties and the F'roude pendulum cannot be 

expected to be an exception. Yet, the bifurcation diagram, the Limit 

cycles and the different phase portraits provide valuable infomation 

for further work in the non-autonomous case. 

2. The bifurcations with respect to sets of parameters other than the one 

considered in this thesis can be carried out, within the framework that 

we have used. The behaviour of the system under a scaling different 

from the one used in this thesis should also be interesting. 

3. The cubic nonlinearity in the damping term is a consequence of ex- 

panding the 'friction hction' ,  F(M - w )  as a Taylor series. The 

present technique can be applied in the cape of any general function 

representing fiction. 

4. Under a broader scope, the averaging technique used in this thesis can 

be applied to various nonlinear systems similar to the Roude pendu- 

lum, which so far have been treated under the small angle approxima- 

tion. 

5. The Melnikov analysis may be applied to other important engineering 

systems to obtain analyticd criteria for the onset of chaos. 
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6.  Esperimentai work needs to be carried out on the Froude pendulum to 

obtain a relation between the frictional torque acting on the system and 

relative angular velocity. :\.I (R - 6) and to verify the results obtained 

in this r Ilc13is. 

Theat. ubservations conclude the chapter and the thesis. 
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