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ABSTRACT  

The thesis presents a definition of a complex function which is 

exploited to introduce a unified theory for predicting the dynamic 

behavior of nonlinear control systems. 

For symmetrical oscillations, a transient form of the. Krylov-

Bogoliubov asymptotic method is given. In addition, anew oscillatory 

transient describing function is derived using a finite Laplace trans-

form. The oscillatory transient describing function is proven to be 

optimal in the sense that it minimizes the mean square error. A 

sampled data version of this function is also provided. A computational 

procedure is presented for predicting the oscillatory transient behavior 

in nonlinear systems and determining their dynamic stability. 

A novel asymmetrical transient describing function is derived 

and its associated properties investigated. A sampled data version of 

this function is given. An auxiliary equation is introduced to 

describe the bias signal during the asymmetrical behavior. The new 

equation is utilized together with the quasi-linearized equation of the 

system to determine all possible asymmetrical oscillatory modes and 

their corresponding dynamic stability. 

A comparison between the proposed theory and the other methods 

available in the literature is provided. The application of the theory 

to a practical system is demonstrated. 
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1. INTRODUCTION 

1.1 INTRDDUCTO1Y PBqARKS 

Systems that occur in real life are always nonlinear. Linear 

systems are approxiniat models of nonlinear systems and are considered 

usii1ly for convenience. Nonlinearities are sometimes introduced to 

improve system performance. The behavior of nonlinear systems is 

complex since their characteristics are signal dependent. The main 

approaches for the study of nonlineai' systems are the phase plane tech-

niques, stability analysis and approximate solutions, [11 - [8]. 

The phase plane method has been utilized in the literature of 

nonlinear systems to determine their local and global behavior. It 

provides an exact topological account of all possible system trajector-

ies with all possible initial conditions. However, this method is only 

convenient for low order systems as its application to higher , order 

systems introduces formidable complications to the analysis. 

Under stability analysis, Liapunov's theorem is usually used. 

This method is a powerful tool for obtaining a qualitative view of. the 

system globalbehavior. It is mainly based upon investigating the 

given form of the differential equations without solving them. This 

comes by reformulating such equations. During reformulation certain 

information about the system characteristic is always lost and cannot 

be estimated. Consequently, most of the stability conditions are suffi-

cient and not necessary. In addition, the stability. analysismethod 

cannot predict easily margins of stability nor the extent of any 

instability associated in the system. 

Approximate methods of solution permit a direct and efficient 
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way for the investigation of a wide class of nonlinear problems. They 

represent the first step in the design and synthesis of nonlinear sys-

tems. They give a simple estimation of how the structure and parameters 

of the system influence the system dynamic characteristics. 'System 

• simulation can then provide the actual solution of the design problem. 

An important question can arise about the determination of the accuracy 

of solutions obtained using the approximation methods. Unfortunately, 

this problem is 'generally tedious to study and the designer is usually 

forced to use the approximate techniques despite incomplete knowledge 

of their accuracy. 

Finally, it has been said very often that for a control system 

to be superior, its performance should be predicted precisely and 

should have a unique stable equilibrium. In the literature of nonlinear 

control systems, the problem of checking the uniqueness and stability of 

equilibrium has been always an extremely hazardous enterprise. In the 

following chapters an attempt is made to solve 'this problem by 

describing the oscillatory transient behaviors associated frequently 

with nonlinear control systems and determining their dynamic stability. 

1.2 OBJECTIVES  

This thesis is devoted to the analysis of transient oscillations 

in nonlinear control systems. The oscillations are classified as 

symmetrical or asymmetrical. The object is to describe such transient 

oscillations and to determine their dynamic stability. An approximate 

solution technique is used. 

In Chapter 2, a unified theory for the investigation of symmetri-

cal transient oscillations in nonlinear control systems is presented. 



-3.-

The analysis includes continuous and sampled data systems. A transient 

form of the Krylov-Bogoliubov asymptotic method is given. Also, a 

computational procedure for the prediction of' symmetrical transient 

oscillations and determining their dynamic stability is described in 

detail. 

In Chapter 3,. the proposed theory given in Chapter 2 is applied 

to nonlinear' control systems with symmetrical oscillatory behavior. A 

comparison between the presented theory and the other approximate methods 

available in the literature is also discussed. 

In Chapter 4, the theory suggested has been generalized .- for non-

linear control systems with asymmetrical oscillatory transient behavior. 

'The chapter follows similar steps as Chapter 2. The description of the 

dynamic.stability of the behavior is also provided. 

In Chapter 5, the theory presented is applied to a positional 

control system with symmetrical and nonsynmietrical nonlinearities. 
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2. SYMMETRICAL TRANSIENT OSCILLATIONS - THEORY 

2.1, INTRODUCTION  

Approximate techniques have been commonly used to analyze nonlin-

ear control systems [l] - [8]. These techniques can mainly be applied 

due to the availability of digital computers. For the study of sus-

tained oscillations, in nonlinear systems, the describing function has 

proven to be particularly suitable. For the investigation of the tran-

sient or dynamic behaviour of nonlinear systems, various approaches 

have been reported [9] - [14]. The analytic description of transient os-

cillations in such systems is a matter of practical importance [7]. 

Such oscillations can be expressed in terms of exponentially damped (or 

divergent) sine waves with time varying amplitudes and frequencies. 

For lightly damped transients, the describing function can be applied 

with success [1], (9] - [14]. Grensted [15] proposed. a technique for the 

analysis of transient oscillations restricted to second order differen-

tial equations. Popov [1] used some of the results by Gensted to 

extend the Krylov-Bogoliubov asyñtotic method [2] to the transient 

case where the rate of change of the frequency and damping is small. 

Recently, Freeman and Cox [16], [17] introduced the concept of half 

period transient gain to describe the nonlinearities during the tran-

sient period. The approximation used minimizes the total square error. 

Freeman [18] showed that like the describing function., the quadratic 

càmponent vanishes for single-valued nonlinearities. This property 

seams to yield inaccuracies in predicting oscillatory transient pro-

cesses, since unlike sustained oscillations, transient oscillations 

undergO a phase shift upon passing through nonlinear elements.. Further-



more, a half wave transient gain does not seem to be suitable for non-

symniettical nonlineàrities. The use of two half period gains to study 

the latter nOnlinearities can add formidable complications to the 

analysis. ,, S 

In this work a unified theory is presented for studying tran-

sient oscillations in nonlinear systems. Continuous, also discrete, 

systens are 'corisiderè4. - 

2.2 THE TRANSIENT FORM OF THE KRYLOV-BOGOLIUBOV ASYMPTOTIC METHOD  

In the study of transient oscillations in nonlinear systems, 

the transient oscillations are usually considered to be the sôlutioii' 

of a second-o.rdet' nnlinear différential equation of the fu, [l], 

- 2a* wx + 1j '(t) O 

wherec, w and are real. constant'coefficieuits. The.valüe of uis 

thoen td be small and f(x,c to be a nonlinear function of its 

argtnnents. ksuine the, general form Of thésblutionof,(2.2-].)' to bb 

x(t) = 0(t) talntot e(t)]' ' 

where A0(t) and 0(t). are time dependent functions. Ior cpnvex4enc.we 

shall assume this time dependency without andicatmg it by appended 

arguments We assume 

Let 

(2.2-3) 

(2.2-4) 
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so that 
(t) = U) 

= (U 0 + 

Furthermore., let 

A = A0e(t 

We seek a solution of the form (2.2-2) and (2.2-7) 

i(t) = A0èat(Cr simp + (U 0 cosp). 

(2.2-5) 

(2.2-6) 

(2.2-7) 

Such a solution does not yield second order derivatives of A0 and 0 

when 3(t) is determined. This requires that 

A0 
A0 

in* + 0 cos* = 0. (2.2-8) 

Differehtiating (2.2-7) with respect to time and using (2.2-2), (2.2-7) 

and (2.2-8), we obtain 

(t) = A0eatw0( cos - sin*) ,+ 2a - x. (2.2-9) 

Stibstitutilig (2.2-9) into (2.2-1), we get 

A . __ -at 
—p- cos - 0 sitip - _____ e f [A sinip, A (o sinp 
A0 A0w0 

+ w0 cosq))J. 

... (2.2-10) 

From (2.2-8) and (2.2-10) and after some manipulations, we obtain 

0 11 -at A - - e f[A sinip, A(a sinij + o cosii)]cosp 

e f[A sinp, A(a sin* + wo, cosp)Jsini 

(2.2-11) 

(2.2-12) 
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Introduce the parameter c, to be denoted as the relative damping, such 

that 

= at. (2.2-13) 

Differentiating (2.2-13) yields 

(2.2-14)-

Since ii is chosen to be small, then A0 and 0 are small, so that A0(t) 

and e (t) are slowly varying functions of time. Hence we may consider 

and e to be approximated by stepwise functions with the duration of 

each step eual to half a period [16] or to a complete period [7]. If 

the duration of each. step is a complete period, then integrating 

(2.2-11) and (2.2-12).,' we get 

U 
A=--
0 2*w 

11  

2iA0u>0 

J. e f[A sin, A(a sin  + wo co)]cos 

0  

ef[Asin, A(a sin + w0 cos)]sin d. 

0 ...(22l6) 

Equations (2.2-15) and (2.2-16) will'be denoted as the transient form 

of the Kiylov-Bogoliubov asymptotic method; Upon comparing these 

formulae with those of Popov [1] two distinct differences appear. 

First, the introduction of the weighting function e under the inte-

gration and second upon evaluating the integrals, the amplitude A is 

expressed in its explicit form A0 eat . 

Equations (2.2-15) and (2.2-16) can be expressed as 
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and 

where 

and 

A0 = A0Nq 

11 N 
2w0 P 

Np = 

- J e f[A sin, A(â sin 
irA0 0 

+ w0 cosip)]sini d 

Nq = 

= J e f[A sin, A( sin 
irA0 

+0 cosiI)]cos dip-

(2.'2-17) 

(2.2-18) 

(2.2-19) 

(2.2-20) 

2.3 SYM4ETRICAL OSCILLATORY TRANSIENT DESCRIBING FUNCTION  

Let x(t) (2.2-2), and y(t) be the input and output to a nonlin-

ear element. For A0(t), (2.2-2), a constant, let 

x(t) = x(t,A0) and y(t) = y(t,A0). Furthermore, let 

and 

Xh(t)Ao) = x(t,Ao)uh(t), (2.3-1) 

= y(t)Ao)uh(t) (2.3-2) 
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where 

%(t) = u_ 1(t) - u 1(t-h) (2.3-3) 

h is a constant. 

Define the finite period complex function Nh(AO ,$) as 

Hence, 

Nh(A 

Nh(AO ,s 

Yh(AO ,$) 

Xh(Ao ,$). 

00 

dt• 

J.00  xh(t,AO)edt 
o  

y(t)A0)et dt 

0 

3 x(t,A0)e - St  dt 
0 

(2.3-4) 

(2.3-5) 

Consider a nonlinear element consisting of anonlinearit y(x,k;t). 

Let the input be 

x(t )AO) = A0esinp(t)' (2.3-6) 
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where ip (t) = wt. Then the output can be expressed as 

cr y(t,A0) = y[Aoeat s1mit, A0e t(a sinwt + w cosut); t] 

where w is assumed to be constant. 

For h=T= Ir L and expressing s as s=ci+jo, we obtain from (23-5), (2.3-6) 

and (2.3-7) 
2ff 

_.J0 y[A. 

2ff r 
0 

s t) e t dt 

et sint, A0et(a sinut + Üi cosct); t]e t at 

Changing the variable of integration in (2.3-8), introducing a, (2.2-14) 0 

and simplifying yields 

2ir 

NT(AO,a,w) = f e y[A0e sfinp, A0e 
irA0. 0 

(c sinii + c0st1); ] e dp . (2.3-9) 

Let NT(AO , a,w), (2.3-9), be,, the complete period oscillatory 

transient describing :Eunction. Express NT(AQ)a,w) as 

We have 

NT(AQ,a)) N,(A'0,a,w) -4-

Zir 
1  N(A,c,c) , ' J 'e' y[A0e sinp,A0e 

- ' 

7rAO 

(2.3-10) 

w(c simp+ cosp); .] sinip dp (2.3-11) 



NT (A c) - 

4O P ir. 
U 

27rL I e y[A0esin 4,, A0e 
A., 

w(c sin 4, + cos 4'); cos4, dip. (2.3-12) 

If 0, (2.3-9) reduces to the describing function [7]. 

2.4 PROPERTIES OF IHB OSCILLATORY TRANSIENT DESCRIBING FUNCI'ICN  

Let a nonlinear element y(x,kt) be injected with the transient 

coiiponent 

x(4,,A0) =A0es±n i (2.4-1) 

where 4, = wt and o = . The output from the nonlinearity can be 

expressed as 

y(4,,A0) = yA0esin 4,,A0ew(c sin 4, + cos  

...(2.4-2) 

Assuming the nonlinear element can be approximated by a gain and a 

phase shift, the corresponding output can be expressed in the general form 

Y(A0) = ea4,(a sin iJ + b cos 4,) 

where a and b are functions of A0, c and 4,. This dependency will not 

be indicated by appended argi..nnents. 

Let 

and 

y'(ip,A0) = e'*y(ip,A0) 

y(ip,A0) = 

(2.4-4) 

(2.4-5) 
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We seek toininimize the following error measure 

where 

2ir 
e —•i__ 1 f e2(p,A0) 

2 
(2.4-6) 

e(p,A0) =y'(p,A0) - yal (ip )A0) . (2.4-7) 

The weighting used to obtain yt and y, results in transforming the 

latter functions to sinusoids and hence permits the analysis to poceed 

similar to that of the describing function. (7]. At the m1nj1wnu of 

(2.4-6), we have 

0 ,, (2.4-8) 
aa Db 

From (2.4-2) to (2.44), we obtain 

aT4. 

aiid 

2'rr 

0 
ey.(A0èsin, A0eü (ct sin* + cos*).; 

siniP d  

I 2ii ey[A0e 4simp, A0ew(c sifl + cosp); -] 
Jo 

cosp dp. ...(2.4-lO) 
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From (2.3-5), (2.4-1) and (2.4-3), it can be shown that 

aT bT 
NT(AO ,,w) = +  

A0 Ao 
(2.4-11) 

Substituting (2.4-9) and (2.4-10) into (2.4-11), we obtain NT(AO ,c )w) 

as given in (2.3-9). Hence NT(AO ,c ,w) is optimal in the sense that it 

minimizes the mean square error (2.4-6). 

2.5 STABILITY STUDIES  

Consider the nonlinear system in Fig. 2.1. Nh(AO,c,w) describes 

the effect of a nonlinearity in the closed loop control system during 

a period h where A0 is. the instantaneous amplithde of the input. G(s) 

is the transfer function of a 1inea± plant and is considered to be of 

the form 

am am- m-1 +...+ a0 
G(s) =   , n-m 2 

bs'1 + b +...4 b0 n-i 

where.s = a + jw = cw + jw, so that 

(2.5-1) 

L1(c,w) + jL2(cw). (2.5-2) 

L1(d,w) and L2(c.,ü) are real continuous functions of their arguments. 

For any transient oscillations to take place, it is necessary and 

sufficient that the quasi-linearized system satisfies 

1 + Nh(AO,c,ü) d(cw,jw) = 0. (2.5-3) 

Equation (2.5-3) implies 

1 + =0 (2.5-4) 



r(t) x(t) 
N 

Y(t) 
G(s) 

Fig. 2.1 A nonlinear control system. 
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+ Nhq (Ao ,c,w)L1(a,w 

Equations (2.5-4) and (2.5-5) have an infinite number of solutions. 

For a given value of A0 = A, the solution will be denoted by 

S0 = S0(A, 0,w0) and represents the instantaneous oscillatory tran-

sient solution. Such a solution will be considered to be stable if 

any perturbations to A tend to vanish as t +CO . 

Theorem 2.1  

Let U and V be the real and imaginary parts of (2.5-3). Conse-

quently, 

U(S) + JV(S) = 0 (2.5-6) 

where S = S(A0 ,c,u). 

Assume that U' and V and their first derivatives are continuous 

functions of S in a small domain around So. Define the operator E, 

such that ' 

B = + K(A0) 1- + K(A0) -aw 

where K and K are real functions of A0. 

Then a necessary and sufficient condition for S0 to be stable is 

for a real positive number n to exist such that in the neighbourhood of 

S the condition ' 

B(U) +.iB(V)+ /V'U 
w 

(2.5-8) 
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is satisfied. 

Proof  

Equation (2.5-3) can be expressed as 

U(A0,c,) + jV(A0,c,&) = 0 (2.5-9) 

where U and V are the real and imaginary parts in (2.5-3). For 

A0 =A, we have S = S0(A,c 0,0) and it satisfies (2.5-9). Consider 

small perturbations around S0 and such that A0 and 5 are small. We 

denote these perturbations as follows 

A-A+A0 

ct0 ' + Aal + iAc 

+ 0 + AW + 

A0, La 1 and Aw,are small real numbers. Furthermore, 

tc =.L. 
2 U)0 

and 

(2-.5-10) 

(2 5-11) 

(2.5-12) 

Substituting the perturbed states into (2.5-9),, expanding into 

a Taylor series and equating the real and imaginary parts after 

neglecting second order terms, we obtain in the neighbourhood of S0 

3U 11 DU DU av +—w1=—LU2 •Ta L 2 (2.5-13) 
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and 

av I u 
+ Ac#. + w =—I---Lw + 

0 1 1 2 2/ 

Diyiding by A0 and taking the limit M 0 0, we get 

and 

_v+ i- x__+ 
o aw dAO 

+ av dal + - DU  + 

A0 ac dA aw dA.0 aw dAo 

In the neighbourhood of S0, let K(A) = aa 1-and K(A) - dwl 
dAO 

In terms of the operator B, (2.5-7), (2.5-15) and (2.5-16), can be 

expressed as 

(2.5-14) 

(2.5-15) 

and 

B(U) aVdw2Vdc2 
wdA0 cdA0 

(u.ci 2.. • au dot, 
-  - 

\awdA0 ac. dA0 

Eliminating dc 2- , we get 
dAO 

(auay. auav\duz 
- - Da ) a -0 

From (2.5-12) the.instantaneous solution S0 is stable iff 

(2.5-16) 

(2.5-17) 

(2. 5-18) 

(.2.5-19) 

(2.5-20) 



-18-

Hence, S is stable iff in its neighbourhood there exists a real posi-

tive number r such that condition (2.5-8) is satisfied. 1 
Some corollaries will now be given. The proofs will be 

omitted since they are straightforward. 

Let 61 and S.be small nonnegative quantities and define the 

region R1 aioithd the instantaneous amplitude Aoq such that 

= (Aoq - i' Aoq + 62). Then Sq = A0q ,c,ui) is said to be an 

equilibrium state of the nonlinear system, (2.5-3), if Ti > 0 for 

VA0ER1. Let c1 and e2 be sufficiently small nonnegative quantities. 

efine the region R = (-e 1,e2).. A necessary and sufficient condition 

for the nonlinear system, (2. 5-3), to have a stable oscillatory mode 

(limit yc1e) is that n. > 0 for VacR2. If a is a monotonically 

decreasing function of A0, then a necessary and sufficient condition 

for the nonlinear system to possess a unique stable limit cycle is 

that n > 0 for VctR2, and n 5 0 otherwise.. Let a < 0 for VA0 0 and 

let so be a small positive quantity. If n > 0 for VA0 < o and n 50 

for VA0 ? so, then the nonlinear system, (2.5-3), is exponentially 

asymptotically stable in, the large. 

2.6 NONLINEAR SAMPLED DATA SYSTEMS  

Transient form of the Kryiov-Bogoliubov method. 

We will now derive a sampled version of the nonlinear differen-

tial equation 

x - 2ax + w 2 x + cg(x )x) = 0 (2.5-1) 

where a, w and c are constants and c is required to be small. We 

consider a certain class of sampled data systems possessing the prop-
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erty 

wT << 1 
S 

(2.6-2) 

where w is the frequency of the oscillations and T5 is the sampling 

period. We assume that at time t = nT5, the input to the nonlinear 

element can be expressed as 

x(nT5) = A0(nT5)e YflTssm[w0nT5 + e(nT5)] . (2.6-3) 

Since c is selected to be small, then the variations in A0 and 0 with 

time will be small. wo is chosen to satisfy 

Let 

2 WO 2 2 
= - a > 0 

= 

= w0nT5 + 0(nT5) 

(2.6-4) 

Let 0 = e(nT), 6 = (nT5), A0 = A0(nT5) and A0 = A0(nT5). Using 

finite difference approximations (nT5) and (nT5) can be expressed as 

k anT(nT5) = A0e (cr sinp *  cos**) (2.6-6) 

2 . apT .anT5 
x(nT5) = nX + 2ac + w0A0e cosi* - w0A00e sinip* (2.6-7) 

where wT5 satisfies (2.6-2) and, (2.2-7) and (2.2-8), 

A0 . 
- s1np* + 0 cosp = 0 (2.6-8) 
A0 
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Substituting (2.6-7) into (2.6-i) yields 

A . 

coo -  o sinp* -, C 

0 OW O 

A(a sinip* + w0 cosp)] (2.6-9) 

where 

anT 
A=A0e S (2.6-10) 

AO and 0 will be assumed to be constant in a complete period. Also 'let 

N5 = 11 I . (2.6-il) 

From (2.6-8) and (2.6-9), the estimated rate of, change in the instan-

taneous amplitude and phase can be shown to be 

and 

2N5-1 

A -   eg[A sinip*, A(a sintp* 
0 2U)oNs n=o 

0 -

2A0w 0N 

+0 cosp*)jcosp* 

C 

ZN -1 

e g[A sin**, A(a sirnp* 
12=0 

+ WO coslp*)]sin* 

(2.6-12) 

(2.6-13) 

Equations (2.6-12) and (2.6-13) will be referredto as the sampled 

version of the Krylov-Bogoliubov asymptotic method in the transient 

case. These equations can also be applied to. the nonlinear difference 
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equation 

xfl+2 - 2pxn+1 + q2x + S (x ,x 1) = 0 (2.6-14) 

where p, q and s are constants and 5 is small. The relationship, 

between (2.6-1) and (2.6-14) is 

and 

-, q2+1-2p  
fl T2 

Sampled oscillatory transient describing function. 

Define the coii1ex function Nh (A0 , z) as 

Nh (AO,z) 
Yh (AO ,z) 

Xh (AO ,Z) 

[hIT5] 

y(nT ,A0) 

[h/Ts 1 
JO X(flT5,A0)Zn 

(2.6-15) 

(2.6-16) 

(2.6-17) 

(2.6-18) 

where h is a time interval, z is a complex variable and A0 is assumed 

to be a constant. If h +co, Nh(Ao,z) reduces to the z-transform 
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describing function [19]. 

For w equal to a constant and 'w T5<<l, substituting (2.3-6) -and (2.3-7) 

into (2.6-18) and letting z = eSTs, s = +w and h=T, we obtain 

2N5-1 

I$(Ao,c,w) - N e-  ytA sin *, Aw(c sin 
A0 5  

+ COS ip , e_ip* (2.649) 

N(A0,cz,w) will denote the sampled oscillatory transient describing 

function, SOD)F with period T. The direct and quadratic components of 

?4(A0,c,w) are 

and 

2N-1 

N TP A0,w) - A1N n e yLA sin , Aw(a sin 

+ Cos *• sin 4)* J) j (2.6-20) 

2N-1 

N;q(Aou>) AO 12 Jo e* y[A sin **, Aw(c sin 

+ cos *); cos . (2.6-21) 

The sampled oscillatory transient describing function minimizes the 

mean square error. The proof is similar tothat given 

in Section 2.4. 

StabiVity ana2ysis. 

Consider the system in Fig. 2.2. The system contains a linear 

plant, a zero-otder hold and nonlinear element. Let 

G(z) =' 
1-e sTs 

L(s) } (2.6-22) 



x(t) 
N L(s) 

Fig. 2.2 A nonlinear sampled data control system. 

-sT 
l-e S 

H0 (s) 
- 

, transfer function of zero- orderhold. 

L(s) transfer function of linear, plant. 

N : nonlinear element. 
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The corresponding funtion G*(ctü,jw) can be expressed as 

G*(cuo,jw) = L(a,w) +j L(c.,ui) 2.6-23) 

where L (.) and L (.) are the real and imaginary components of 

G*(cu,jw). For any transient oscillations to take place, it isneces-

sary and sufficient that the quasi-transient system satisfies 

1 + N(A0,c;w) G*(cw,jw) = 0 

where N(A,u) is the SOTDF with period h. 

Equation (2.6-24) implies 

and 

1 + N(A0 c) L(c,w 

(2.6-24) 

* (Ao,,w)L2(c,c1) = 0 

(2.6-25) 

L(c,w) + N .q (AoX(i)) L(c,w) 0. (2.6-26) 

For a given instantaneous amplitude A0=A, the predicted instantaneous 

oscillatory transient state solution S = S(A )c0,ü 0) can be obtained 

by solving (2.6-25) and (2.6-26) simultaneously. A necessary and 

sufficient condition for S to be stable can be obtained as .in Section 

2.5, provided (2.6-2) is satisfied. 

2.7 Extensions  

In the previous sections we considered h=T. In Table 2-1, a 

summary of the results obtained is given for h=T and also for h = 

Similar to the describing function, the analysis presented can 

be extended to nonlinear systems with several degrees of freedom [6] 

or with multiple nonlinearities [20]. For some classes of nonlinear 

elements possessing the chaacteris tic 



Table (2-i) Half and complete period formulae for oscillatory transient analysis 

Method Type J 

Transient form of the Half 
A0 fo e f cosd -c fo ef sind 

Krylov-BogoIiubo'r 

asymptotic. method Complete A0 - f0 cosdU 
110 f 27r sin\bdb e-a•f 2 0 

Oscillatory transient 

Half NT (A0)a,) 

P 

- f e-a'*y sind NT (A0,) _ 

2 q 
f e Y Co"" - 

describing function 

NT$Ao,c,ci) - - 

f27re"y 
sinpd  2ircomplete 

NTq(A o CL3) - -Tryo  J e'Y cosipd4 
Sanipled version of the 

transient form of the Half A - 

NS-1 - * 

e g* cos** . T 

nO 
' 

N5-1. - 

g* Sifl4)* e 
A o°o N' s J 0 0 u.0N 

' }ylov-Bogoliubov asy- 

mptotic' method Complete A0 - 

2N l 

eg* COS 

' " 2N -1 
- e 

' 

g* S]11 
2 0N5 



Saled Oscillatory 

transient describing 

function2N-1 

Half N* 
T 

2 
- 

N-i 

e y sin4i N 
q 

N-i 
2 

- 

(A0,c;u) AN L 
n=O 

e *y*cos * 

AoN n0 

Complete'. 
TP 

- 7 1 
1170 
ey* sin**' ey* 

2N -1 
1 cos* * 

A0N5 A0N5. n=O 
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y = y(A0esin p) 

= ey(A0 sin P) (2.7-1) 

the describing function and the oscillatory transient describing func-

tion, OTDF, will yield the same results. Examples of such nonlineari-

ties are given in Fig. 2.3. 

2.8 Recommended Computational Procedure  

In this section, we suggest a computational procedure for 

predicting the instantaneous state solutions and for determining the 

dynamic stability of the continuous nonlinear control "system in Fig. 2.1. 

The procedure to be presented can be applied after some slight modifi-

cations, to the nonlinear sampled data control systems in Fig. , 2.2. 

1. Detei-mine the components Nhp(Ao cw) and Nhq(AOa of the 

OTDF of the nonlinear element in the system. 

2. 'Express the OTDF as an amplitude and a phase 

and 

Nh(AO,c,U) A(A0,c,u) + N q(Ao. W) 

Oh(AO,,w) = LWhp Ao 
(2.8-2) 

3. For an arbitrary value of A0 =A, plot a family of curves in the• 

Nh-oh plane, to be denoted 'as the ,N-curves ) by fixing 6 to be equal to 

arbitrary constants c, c2, ... " an and varying the parameter w. 

4. The aim is now to solve (2.5-3). From (2.5-3) 

Nh(AO,c,w) - -1  G(cw,jw) • (2.8-3) 

We equate the amplitude and phase of both sides of (2.8-3). From 

(2.8-1) and (2.8-2), the amplitude and phase of the left hand side of 



y 

1 

M2 , 
0 

x 

in2 

I-..--
1 

0 

1 

Fig. 2.3 Special class of nonlinear elements possessing the characteristic (2.7-1). 

x 
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by varying w. Since (2.5-3) must be satisfied, 

and eh 0g• 

(2.8-3) can be determined. Let the real and imaginary components of 

-1  
G(aw,jw) be denoted by Q1(a,w) and Q2 (a,w) respectively. The ampli-

tude and phase Of 

and 

respectively. 

-1  
.G(aw,jw) 

can be expressed as 

Kg (aUi) = /Q(a,w) + Q(a,w) 

eg(aw) = tan' [Q, (,w)j 

(2.8-4) 

(2.8-5) 

Let a asume arbitrary values a a2, ... a. Obtain ,a family of 

curves in the Kg 9g plane,to be denoted as the G-curves, for each a 

it follows that 'Nh K 

S. Superimpose the N and the G curves. Search.for a point of 

intersection of these curves which has the same a and w. Use inter-

polation if necessary. This point corresponds to S0 = S(A,a0,w0). 

6. Repeat the above for various values of A0. This yields a curve 

S = SA0,a,w). The projection of S on the A0-a plane gives a relatiVe 

damping characteristic and on the A0-w,p1aiie a frequency characteristic. 

7. F±'om (2.5-3) determine U(A0 ,a,co) and V(A0 ,a,w), the real and 

DU 3V imaginary parts of the characteristic equation. Determin:e .-, ' 

au , .Y1, .J! and .i. For different values of A  evaluate K (A) and a , . 0' a 0 

K(A0) graphically from the projections of S on the A0-a and A0-w planes, 

by determining the slopes of the curves at the selected values .of A0. 

8. For the values ofA0 selected in.7, calculate r(A0) using 

(2.5-7), (2.5-8) and the information obtained in Step 7. The. values 

of a and w corresp'onding to the selected, values of A0 can be obtained. 
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from the curve of S in (A0,c,w) space. 

9. Plot the curve of n versus A0 and determine the regions of 

stability using Theorem 2.1. 
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3. SYNMETRI CAL TRANSIENT OSCILLATIONS - A STUDY 

3.1 INTRODUCTION  

In this chapter we consider two examples. The first is a contin-

uous feedback control system with a rectangular hysteresis element and 

the second is a sampled data feedback control system with a nonlinear 

amplifier. We analyse these systems and determine the predicted values 

of the transient oscillations using different approximate methods 

including the one introduced in Chapter 2. The stability of these-sys-

tems is also investigated. 

3.2 CONTINUOUS FEEDBACK CONTROL SYSTEM WITH A RECTANGULAR  
I-YSTERESIS ELEMENT  

Consider the system shown in Fig. 3.1. Let the input to the 

nonlinear element be of the form 

x(p) = A0  sinP 

where 'p = wt. Defineand .'such that 

and 

e 1 sini1 ..L 

c42 
e sinp2 ---, 

rto 

0 < 

IT< 

0m1 

< 0 
- m2 

(3.2-2) 

(3.2-3) 

where 0m and e are defined as •n Fig. 3.2. The complete period 
1 2 

oscillato-ry transient describing function can be expressed as 

NT(AO,ct,w) = 
(3.2-4) A0,c,w) + 3Tq0''  



D 

r(t) 

C 

X(t) -6 I  6 

li 

G(s) 
C(t) 

Fig. 3.1 A nonlinear control system with hysteresis. 

G(s) = 

K 

s (T 1s+1) (r25+l) 
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Fig. 3.2 Typical oscillatory transient perfonnance of a rectangular hysteresis element. 
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where, 

*1 

= [j e-"(-D) sin* d* rpp(Aocw) irA0 L 

This reduces to 

Also, (2.3-12), 

*2 2ir 

+ J e*(D)sin* d* + J e*(D) s* d 
*2. 

N  (AO ) 

3.2-5) 

=' D  
irS(l+c2) [n2*1 + s1n2*2 + —(e 2 - 1) 

+ 2c(sin2*1 + inip)] 

Nq(Ao) =,* J e(-D) cos* d 

+ f *2  e*(D) cos* d + f 27r e-O' 

which reduces to 

-D) cos* d*] 

(3.2-7) 

NTq (AO 1) =  Dc  irS(l+c2) [u1.2* + si112*2 + —(e 2 - 1) 
A0 

- -- (sin2* +sin2*2)] 
a 1 

(3.2-8) 

Using similar steps, the half period transient oscillatory describing 

function can also be derived. The results with other approximate 
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gains reported in the literature are given in Table 3-1. 

Let K=O.5, T1=l.O, T2 0.5, =O.5 and D=2.0. Then the transfer 

function of the plant in Fig. 3.1 becomes 

1  

s(s+1) (s+2) 
(3.2-9) 

We will follow the procedure outlined in Section 2.8. For h=T we ob-

tain N TP (A0,a) and NTq(Aoa) given in (3.2-6) and (3.2-8) respectively. 

We select AO= 16, also 6 =-0.25, -0.3, -0.35, ..., -0.7. Since N 
TP 

and NTq are independent of u, then for each a selected we obtain a 

single point in the amplitude-phase plane, Fig. 3.3. 

Wedeterinine Q1(a,w) and Q2(c,u).. This yields 

and 

Q1(a,w) = -a3w3 + 3c 3 - 3a2w2 +32 - 2c (3.2-10) 

Q2(a,) = •3 2w3 + - - 2u . (3.2-11) 

Using (2.8-4), (2.8-5) and for the various values of a selected we 

determine the C-curves, Fig. 3.3. Searching for a point of intersection 

of the N and C curves which has the same a and w, we obtain point a, 

Fig. 3.3. In Fig. 3.3 the N curve for AO = 16 and h = is also shown. 

The coilunon point in this case is b. The above procedure is repeated for 

various values of A0 and the results are plotted in the A0-a and A0-w 

planes, Figs.3.4 and 3.5 respectively. In these figures the relation-

ships between A0-a and A0-w are shown for h = 1 , also using the 

describing function, the method of Freeman and Cox [16] and the estimated 

half period behavior obtained using simulation [31]. It can be seen from 

Figs. 3.4 and 3.5 that the best accuracy can be, achieved using the half 



Table (3-1) Equivalent complex gains of the rectangular hysteresis element during oscillatory 
transient behavior. 

Method Direct Component Quadratic Component 

Complete Period 

Oscillatory transient 

describing function 

D . 

+ + Da-n2p1 {sin24 + sin2ip 2 + 
- [si sm2 2 

(1+M 2) 
- 

i- (e- 2,,a_,) + 2c(sin2.p1 +sin2p2)} 

i 

r&(l+cL2)  

- 

_- (e-e 2 -l) - '.(sin2ii1 + sin2 )J 
O 

Half Period Oscillatory 

transient describing 

function 

2D + a (e-1) Ma  [sin2 1 + (e-l) [sin2 1 

- 

+ 2ct sin2lll1]- - a 5±fl211 ) 

Describing function [71 -06iTA 
/ 4D 2 

- - A— - 

0 - 0 a 

- 

Freeman and Cox half 

Period Complex gain [16] 

4D +e cS -8Dc 
[2•e -cosp 1 

A0(e2 -l) 
2 - A02(e -I) 



I F  
-4.0 -40.0 -6.O -32.0 -28.0 -24.0. -20.0 -16.0 12•°A -8.0 

Fig. 3.3 Determination of the instantaneous transient solution at 16 for the system of Fig. 3.1. 
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A0/6 
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A. Estimated behavior using simulation. 

B. Complete period CJrDF. 

C. Half period ()IT)F. 

D. Describing function. 

E. Freeman and Cox gain. 

16.0 18.0 20.0 

Fig. 3.4 Relative ddmping.characteristics for the system of Fig. 3.1. 
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A. Estimated behavior using simulation. 

B. Complete period OTDF. 

C. Half period OTDF. 

D. Describing function. 

B. Freeman and Cox gain. 
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Fig. 3.5 Oscillatory transient frequency characteristics of the system of Fig. 3.1. 
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period OrDF. This can also be concluded from the responses in the time 

domain shown in Figs. 3.6 to 3.11. From Figs. 3.4 and 3.5 it can also' 

appear that the describing function method fails completely when thern 

oscillatory behavior starts to be heavily damped. To study the dynamic 

stability of the system, we shall use the half period OTDF to describe 

the nonlinearity during the oscillatory transient behavior. Following 

step 7 of Section 2.8 we find that U(A0,ct,cü) and V(Aô,ct,w) can be 

expressed as 

and 

U (A0 , a ,) 7. -Q1 (a ;w) + NT A0 

V(A0,ct,w) = 

2 

From (3.2-10) to (3.2-13), iqe'obtain 

aN 

au  

9A0 aA 

aNT 
av_ -2q 

aA0 aA0 

(3.2-12) 

(A0,ct). .  

DU 23 --3ctw -3w3+6aw2+2+  2  
Da act 

aNT 

.16ctw3+6w2 +  i  

act act 

qu = 3ct3w2 ­ 9=2-4  9ctw2 + 6ct2ü - f + 2ct 
aw 

(3.2-14) 

(3.2-15) 

(3.2-16) 

(3.2-17) 

(3.2-18) 
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-0.5 

-1.0 

Fig. 3.6 Instantaneous oscillatory transient solution for the system of Fig,. 3.1. 

A.' Using simulation. C. Half period O1I'DF. D. Describing function. 
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Fig. 3.7 Instantaneous oscillatory transient solution for the system of Fig. 3.1. 

A. Using simulation. B. Coniplete period OTDF. B. Freeman and Cox gain. 
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Fig. 3.8 Instantaneous oscillatory transient solution for the, system of Fig. 3.1. 

A. Using simulation. C. Half period OTDF. 
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Fig. 3.9 Instantaneous oscillatory transient solution for the system of Fig. 3.1. 

A. Using simulation. B. Complete.period OTDF. E Freeman and Cox gain. 



Fig. 3.10 Instantaneous oscillatory transient solution for the system of Fig.. 3i1. 

A. Using simulation. C. Half period QTDF. 



Fig. 3.11 Instantaneous oscillatory transient solution for the system of Fig. 3.1. 

A. Using simulation. B. Complete- period CYI'DP. E. Freeman and Cox gain. 
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= 9 2w2 - 3w2 + l2cw + 2 (3.2-19) 

K(A0) and K(A0) are determined from Figs. 3.4 and 3.5 respectively. 

Following steps 8 and 9 of Section 2.8, we obtain the ii (A0). curve shown 

in Fig. 3.12. The stability regions are indicated in the figure. The 

system has a unique limit cycle at A0 i.1O. System simulation 

indicated a unique limit cycle with amplitude A0 = 113. 

3.3 SAMPLED DATA CONTROL SYSTEM WITH A SQUARE ROOT ELEMENT  

Consider the nonlinear sampled data system shown in Fig. 2.2. 

The nonlinear element will be assumed to have a square root character-

istic, [7], that is, 

and 

y = vST1 

y =  

x O. (3.3-I) 

where x and y are the input and output of the nonlinear element . respec-

.tively. 

We select 

L(s)= 4  
s (s+l) (s+2) 

and let T5 = 0.1 secs. 

We have, [19], 

G(z) = {H0(s)L(s)] 

= [  4(le'°'5)] 
L s2 (s+l) (s+2) 

(3.3-3) 
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Fig. 3.12 Stability regions for the system of Fig. 3.1. 
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Fig. 3.13 Relative damping characteristics b,f the system given in Section 3.3. 

A. Estimated behavior using sinulation. B. Complete period sampled OTDF. 

C. Half period sampled OI'DF. D. Sampled describing ftuction. 
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Fig. 3.14 Oscillatory transient frequency characteristics -of 
the system given in Section 3.3. 

A. Estimated behavior using simulation. 

B. Complete period sampled OTDF. 

C. Half period sampled OrDF. 

D. Sampled describing function. 
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Fig. 3.15 Stability regions for the system given in Section 3.3. 
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4. ASYMMETRICAL TRANSIENT OSCILLATIONS 

4.1 INTRODUCTION  

Asymmetrical oscillatory transient processes are common in some 

classes of nonlinear control systems where the oscillatory behavior is 

superimposed on aperiodic slowly varying signals. This type of oscilla-

tion is encountered when the input-output characteristic of the non-

linearity is nonsymmetrical, or when the input to the nonlinear element 

consists of-an oscillatory signal and an aperiodic or bias signal.. In 

most cases, it is required that the frequency of the bias signal be suffi-

ciently lower than the oscillatory one [8]. For lightly damped transients, 

many writers have used the concept of dual describing function to repre-

sent the oscillatory behavior [1], [12], [21] - [23]. They considered 

the input to the nonlinearity to be a sinusoidal component superimposed 

upon a constant bias signal. The sinusoidal signal effectively linearized 

the nonlinearity to the bias signal. As the basic assumption in that 

approach is only true for lightly damped transients, desirable responses 

have not been predicted with sufficient accuracy when the oscillations 

are damped. The following sections preseiita.unified theory for the 

investigation of asymmetrical transient oscillations in nonlinear sys-

tems. Continuous, also discrete, systems are considered. 

4.2 THE ASYMMETRICAL TRANSIENT FORM OF THE KRYLOV-BOGOLIUBOV  
ASYMPTOTIC METHOD  

In the study of asymmetrical transient oscillations in nonlinear 

systems, the asymmetrical behavior is usually considered to be the solu-

tion of the second-order nonautonomous nonlinear differential equation of 

the form 

- 2c* + x + p f(x,;t) = 0 (4.2-1) 
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where a, w and p are real constant coefficients. The value of p is 

restricted to be small and f(x,±;t) is a nonlinear function. 

We seek a solution for equation (4.2-1) of the form 

x(t) = eat{0(t) + A0(t).sin[w0t + o(t)]} (4.2-2) 

where A0(t), B0(t) and 0(t) are time dependent functions. For con-

venience we shall assume this time dependency without indicating it by 

appended arguments. w0 is chosen such that 

Let 

so that 

= 0) 2 a2 > 0. (4.2-3) 

ip(t) 0)0t+ 0 

(t) = 

=W 0 + e. (4.2-5) 

Also assume A = A0 eat, B = B0 eat and c = E . Consequently, c(t) and 

can be expressed using, an approach siini1aro that followed in Sec-

tion 2.2 as 

and 

*(t) a(B + A sin) + w0A cosip (4.2-6) 

(t) = w ea'(A0 cos4'-A0 sinip) + 0)02 eat B0 

+ 2ak - wx. (4.2-7) 

This requires, (2.2-8), 

to + A0 sinp + ÔA0 cos* = 0. (4.2-8) 

Substituting (4.2-8) into (4.2-1), we get 

A0 0A0 - _____ 

B0 • - cosi - - sini = _____ 0 0 wo2 f{B + A sirnp, 

a(B + A sin*) + w0A cos*; I . (4.2-9) 
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Also, from (4.2-8) and (4.2-9) and after some manipulations, we obtain 

B0 sinip + w0 B0 cosip + A0 = - —e f[B+ A sinip,, 
WO 

and 

cr(B + A sin*) + uóA cos i; .. ] cosip. 

BO wB • e" 
.--cosip oo nip+eP  f[B+Asinip, 
A0 .A0 A0ü0 

4. 2-10) 

ci(B + A sinip) + w0  cosip; ±-J sinip. (4.2-11) 

Since p is restricted to be small, then A0, •B0 and .6 are small, so that 

A0 (t), B0 (t) and 8(t) are slowly varying functions of time. Consequent-

ly, by averaging equations (4.2-9) to (4.2-li) over a complete period, 

the estimated values of A0, 0 and B0 turn to be 

and 

A0 =  f 2,, 
e f[B A sinip, a(B+ A sinip) + 

2 7T 0 0 

W0  cosip; - J coo dip (4.2-12) 

27r0 11  J e f[B +,A sin* , cr (B + A sinip) + 
2irA0w0 0 

w0A cos*; sinip dip (4.2-13) 

2ir, 

B   I e f[B + A sinip, c(B + A sinip) + 
0 2irwJ 0 

w0A cosip; - II di!) (4.2-14) 
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Equations (4.2-12), (4.2-13) and (4.2-14) will be referred to as the 

asymmetrical transient form of the Krylov-Bogoliubov asymptotic method. 

When evaluating the integrals in those equations, A and B should be 

expressed in their explicit form as A00 atand B0et respectively. 

Define the function N0(A)B0,c,a,w0) as 

=   

2B0 
N0(A0, B0,c,a,w0)  f 0 e £[B + A sinp, 

a(B + A sinp) + w0  cösip; . ] dp . (4.2-15) 

Then, equation (4.2-14) can be written as 

+ pN0(A0,B,c,a,w0) = 0 . (4.2-16) 

Equation (4.2-16) will be denoted as the auxiliary equation of the sys-

tem described by (4.2-1). 

4.3 ASYMMETRICAL OSCILLATORY TRANSIENT DESCRIBING FUNCTION  

Let x (t), (4.2-2), and y (t) be the input and the output to a 

nonlinear element. For A0 (t) and B0 (t), (4.2-2), equal to constants, 

let x(t) = x(t,A0,B0) and y(t) = y(t,A0,B0). Furthermore, let 

and 

Xh(t,Ao,Bo) = x(t,A0,E0) Uh(t) (4.3-1) 

y(t,A0)B0) = y(t,A0,B0) Uh(t) (4.3-2) 

where uh(t) is given in (2.3-3). 

Define the finite period complex function Nh(Ao,Bo,$) as 
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Nh(Ao,BO,$) - Yh (AO ,B0 ,$) 

Xh(AO,BO,$) 

foo yh(t,AO,Bo) et dt 

foo 
A0 

Xh(tBO : ) 
et dt 

- fo y(t,A,B0) et dt 
Jh x(t,A0,B0) e at 0  

(4.3-3) 

Consider a nonlinearity y(x,k;t). Let the input to this nonlinearity 

be 

x(t,A0,B0) = [B0 4 A0 s in* (t)] 

where ip (t) = wt and w is assumed to be constant. Then, th output 

y(t )A0,B0) can be written as 

y(t,A0,B 0) = y{e t (B0 + A0 sinwt), eat {ci(BO + A0 sint) 

+ wA0 coswt]; t} 

In dealing with asymmetrical types of oscillations, we select 

h=T=JL. 

(4.3-5) 

(4.3-5) 

Expressing s as s = a + ju, we obtain from (4.3-3), (4.3-4) an 
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2'ir 

NT(AO )B0 ,a,w) 

J w y{e0t(B0+A0 sinwt), eat{a(B0+A0 
Je at (B0+A0 sinwt) (j)t dt 
o 

+wA0 ôoswt]; t} e3t dt. (4.3-6) 

Changing the variable of integration in (4.3-6), introducing a, 

and simplifying yields 

NT(AO,BO,ci,w) == :  e {e (B0 + A0 sin), 

ew{a(B0 + A0 sinip) +A0 cosp}; } e-jv dp 

...(4.3-7) 

Let NT(AO,BO,a,w), (4.3-7), be the asymmetrical 

oscillatory transient describing function. Express NT(AO)BO,a,) as 

N(A0)B0,a,u) = N TP (A0,B0,a,w) + 

...(4.3-8) 

We have 

2',r 

N(A0,B0,a,w) - e y{e (B0 +A0 sini),7rAO f 0 

c 
e w[a(B O + A0 sinp) + A0 cosipj; 1 } sirup dp 

...(4.3-9) 

and 



-60-

2'rr 

:i I 
NTq (Ao BO cw) - - J e-cj) y{e(B0+A0 sinip), 

ew[ct(B0+A0 sinP) + A0 cos]; - } cosip d (4.3-10) 

If we let B0 = 0, (4.3-7) reduces to the complete period OTDF 

(2.3-9). 0 

To complete the analysis, let us define N0(A0,B0,c )w), to be 

the auxiliary direct gain, as. 

N0(A0,B0,c,w) = liin (A0,B0,$) 

= urn 
S+cw 

J. y(t,A0,B0)  0 et dt 

JT x(t,A,B) et dt 

(4.3-li) 

Substituting x(t,A0,B0) and y(t,A0,B0), (4.3-4) and (4.3-5), into 

(43-l1), we obtain after some manipulations 

1  fo 
27r 

N0(A0,B0,c,w) - 2B0 e y{e(B0+A0 sin4'), 

ew[c(B0+A0 sinip) + A0 cos4]; iL} (4.3-12) 

4.4 PROPERTIES OF THE ASYMMETRICAL OSCILLATORY TRANSIENT DESCRIBING  
FUNCTION  

Let a nonlinear element y(x,i;t) be injected with the transient 

component 

x(p,A0,B0) = eC(Bo+A0 sin*). (4.4-1) 

Then, the output can be expressed as 
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y(P,A0,B0) = y{e (B0+A0 sinii), ew[a(B0+A0 sin) + 

A0 cos]; (4.4-2) 

Due to the presence of the bias signal, the output of the nonlinear 

element will be assumed to take the form, (2.4-3), 

= e(a sin* + b cosil + c) (4.4-3) 

where a, b and c are functions of A0, B0, ci. and w. This dependency 

will not be indicated by appended arguments. 

As in Section 2.4, let 

y'(,A0,B0) = ey(,A0,B0) (4.4-4) 

and 

yP,A0,B0) = eya(P,Ao,Bo). (4.45) 

We minimize the mean error square over 'a complete period e2, where 

e(,,B0) = y'(,,B0) - Ya  (4.4-6) 

At the minimum, 

e2 De2 - ae2 

Da Db Dc 

From (4.4-2) to (4.4-6), we obtain 

- 0 . (4.4-7) 



-62-

aT = 1 27r  - fo e y{e(B0+A0 sini), ew[a(B0+A0 sinip) 

+ A0 cosiPl; -} sinip dip (4.4-8) 

and 

2ff 
e y{e(B0+A0 sinip), e [z(B0+A0 sinip) 

O 

+ A cosiP]; -} cosip dip (4.4-9) 

2ff (  
{e(B04A0 sinip), ew[(B.+A0 snip) CT=I e 

+ A0 cosiP]; -} dip. (4.4-10) 

From (4.3-3), (4.4-1) and (4.4-3), it can be shown-that 

S 

Moreover, it appears from (4.3-11), (4.4-1) and (4.4-3) that 

CT 

T O 

(4.4-11) 

(4.4-12) 

Substituting (4.4-8), (4.4-9) and (4.4-10) into (4.4-Il) and (4.4-12), 

we obtain NTAO,BO,c,w) and N0 A0,B0,ct,w) a:s given in (4.3-7) and 

(4.3-12). Hence, they are optimal in the sense that they minimize 

the mean square error. 

4.5 STABILITY STUDIES  

Consider the nonlinear system in Fig. 2.1. Let NT(AO,BO,a,w) 

describe the effect of the nonlinearity in the closed loop system 

during a period T, where A0 and B0 are the instantaneous amplitude and 
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biased component of the input respectively. For any asymmetrical tran-

sient oscillations to take place, it is necessary and sufficient that 

the quasi-linearized system satisfies 

1 + NT(AO,BO,a,w) • G(ctujw) = 0. (4.5-1) 

Also, to describe the biased component let, (4.3-3), (4.3-11) and 

(4.3-12), 

W(A0,B0,c,w) = Urn [1 + NT(AO,BO,S) G(s)] 
5+cui 

= 1 + N0(A0,B0,c) G(cw) 

= 0. (4.5-2) 

Equation (4.5-2) will be referred to as the auxiliary equation of the 

systhm in Fig. 2.1. 

The solution to equations (4.5-1) and (4.5-2) for a given value 

of A0 = A will be denoted by S0 = So(A,Bc,c o,wo) and represents the 

instantaneous asymmetrical oscillatory transient solution. Such a 

solution will be considered to be stable if any perturbations to A 

tend to vanish as t-o. 

Theorem 4.1 

Let U and V be the real and imaginary parts of (4.5-1). 

Consequently, 

U(S) + j V(S) = 0. (4.5-3) 

Also let, (4.5-2), 

W(S) = 0 (4.5-4) 

where S = S(A0,B0,a,w). 

Assume that U and V and their first derivatives are continuous 

functions of S in a small domain around S0. Define the operator Ea 
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such that 

Ea — •'+ Kb -- (AO) • + K (A0 c ) •— + K (AO) L . (4.5-5) 
c  

Then a necessary and sufficient condition for S0 to be stable is 

for a real positive number iìa to exist such that in the neighborhood of 

S0 the condition 

DU U V  
•!E (U ) + i V Ea(V) + ( .- ) - 0 (4.5-6) 

is satisfied. 

Proof  

Equation (4.5-1) can be expressed as 

U(A0.,B0,) + j V(A0,B0,,w) 0 (4.5-7) 

where U and V are the real and .imaginary parts in (4.5-1)., 

For AO = A, we have S0 = S0(A,;cL0,.w0) and it satisfies (4.5-2) and 

(4.5-7). 

Consider small perturbation around S0 such that A0 ,' B0 and 

are small. We denote these perturbations as follows 

A0 ± A0 + AA0 

B±B+B0 

' + I. i 

0)o + AW + 

(4.5-8) 

B0, Aa, and Aw are real numbers. La2 and Aw are given by 

equations (2.5-11) and (2.5-12) respectively. 

Following similar steps as in Theorem 2.1, we get in the 

neighborhood of S 0'the relationships 
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u au 4B0 d dW1 - V   

DAO B0 cIA0 + + dA( cIA0 + 

and 

K (A1) dw1 
•U) o Ck 

dcc 
cc dA0 

dB d  dw v v  0 v 1 v  u   
+ a R  dA + + — + 

u dc2 
ac 

(4.5-9) 

(4.5-10) 

dB0 cc d 1 
In the neighborhood of S0, let Kb(A) - dA  , Kc 

, (A) -  and 

In terms of the operator 'Ea; (4.5-5), equations (4. 8-9) and 

(4.5-10) can be expressedas 

dc 

Ea (U)d + 777 cIA 

and 

U dw  dz2 
B = - dA + @a dAO 

dc 
Eliminating cjA 2 , we get 

0 

au E(U) + :E(V) = (- U aV U - - dA0 

(4.5-11) 

(4.5-12) 

(4.5-13) 

From (2.5-12), the instantaneous solution S0 is stable iff 

dw 

= cu  

Hence, S is stable iff in its neighborhood there exists a real 

positive number n a such that the condition (4.5-6) is satisfied. 

Similar corollaries can be obtained as those given in Section 2.5. 
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4.6 NONLINEAR SAMPLED DATA SYSTEMS  

Asymmetrical transient form of the Krylov-Bogoliubov method 

We will now present a' sampled version of the nonlinear differen-

tial equation 

5-2a±+wx +cg(x,±;t)0 (4.6-1) 

where a, w and e are constants and c is required to be small. We con-

sider only the class of systems possessing the property wT5<<l, (2.6-2). 

The general solution of (4.6-1) can be expressed as 

anT 
x(nT5) = e 5{B(nT) + A0(nT5) sin[w,nT5 + O(nT5)]} 

where w0 satisfies (2.6-4). 

Since e is selected to be small, then the variation in A0, B0 

and 0 will be small. 

We seek a solution for ±(nT5) in the form 

*(nT5) = a(B + A sin**) + woA cosp*. 

This requires, (2.2-8), 

+ A0 sinlp* . ôAcosp* = 0. 

(4.6-3) 

(4.6-4) -

Following the same steps as in Sections 2.6 and 4.2 we can write 

the sampled version of the asymmetrical transient form of the Krylov-

Bogoliubov method as, (2.6-9) to (2.6-11). 

N-1 e* gEB + A sin*, a(B + A sin*) + 
2w0N5 n  

A coo*; } COS (4.6-5) 
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2N5 l 

•  2A w N e g[B + A sin**, a(B + A sin*) + 
00 S n=O 

and 

A coslp*; Sinip* (4.6-6) 

2N5-1 

B - e gEB + A sinp* o(B + A sinip*) 
0 2NSW2 n=O 

+w0 A cos**; *j 

Sampled asymmetrical oscillatory transient describing function 

Ddfine the finite period complex function NhAo,Bo,z) 

Yh CAO ,B0 , z) 

Nh(Ao,Bo,z) Xh(Ao,Bo,Z) 

[h/T 1 
S y(nT5,A0,B0)z 

n=O. 

[h/Ti 
S x(nT5,A0,B0)Z' 

n=O 

as 

(4.6-7) 

(4.6-8) 

sT 
From (4.3-4), (4.3-5) and (4.6-8), and letting t = nT5, z = e s 

s = + jo and h = T, we can write the sampled asymmetrical transient 

describing function as 

N(A0 ,B0 ,a,w) 
2N5 -1 

e-  y{B + A sin**, 
0"S n=O 

w[c*(B + A sin**) + A coslp*]; ip - * } e 
U) 

1* 

(4.6-9) 

Let us also define N*(A0,B0,a,U), to be denoted as the sampled auxi-

liary direct gain, as follows 
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N(A0 B0,c,w) = liin NT(AO,BO,z) 

z->-e Ts 

[T/T5] 

= urn 

z+e 

y(nT5,A0,B0)z 
n=O 

chwT5 

, x(nT5',A0,B0) z 

n=O 

2N5 -1 

- 1  2NSBO nO e y{B + A sinp*, 11  

+ A sinlp*) + A cosP*]; }. 

Similar to Section 4.4, the complex function N(A0,B0,c,w) and 

the gain N(A0,B0,c,w) axe optimal in the sense that they minimize the 

mean square error. 

Stability analysis 

The stability of the sampled data system can be investigated in 

a similar way as in Section 4.5. The instantaneous asymmetrical solu-

tion must also satisfy the auxiliary equation (4.6-11) 

W*(A0,B0,a,w) = urn El + NT(Ao,Bo,z) G(z)1 
z+e Ts 

= 1 +N(A0,B0,ct,w) G*(cw) 

= 0. (4.6-11) 
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4.7 CONTINUOUS FEEDBACK CONTROL SYSTEM WITH NONSYNMETRICAL PRELOAD  
ELEMENT  

Consider the system shown in Fig. 4.1. The nonlinear element 

will be assumed to have a nonsymmetrical preload characteristic, [9], 

that is, 

y = D1 + m1x , x ≥ 0 (4.7-1) 

y=-D2+m2x, x<O. (4.7-2) 

Where x andy are the input and the output of the nonlinear ele-

ment respectively. Let x be of the form 

x() = e  (Bo + A0 sin) (4.7-3) 

where = wt. Define '1j and such that 

and 

A0 sint1) + =OP 0m1 i ≤. 0m2 

A0 sinp2. + B0 = 0, 6 m 2 L '1)2 2 

(4.7-4) / 

(4.7-5) 

where 0 and 0 are defined as in Fig. 4.2. 
MI M2 

B0 D1 D2 
Let 60 , 6 = .- and 6.2 = 

The asymmetrical oscillatory transient describing function can 

be expressed as 

where, (4.3-9), 

NT(AÔ,BO,c,w) = N(A0,B0,a,ü) + i NTq (AO BoW) 
...(4.76) 

1 (J 'e[D1 + m1e(B0 + A0 sntp)] 
NTh (AO,BO,c,u) - 

sin dp + J ' " e [-D2 + m2 e'P(B0 + A0 sin'1i)]sin'1 dp - 



r(t) AN& x(t) Y(t) 
C(s) 

C(t) 
- -:----

Fig. 4.1 A nonlinear control system with a preload element. 

C(s) = 
K 

(T1s+l) (125+1) (135+1) 
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Fig. 4.2 Typical asymmetrical transient performance of a preload element. 
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2ir 
e [D1 + m1e(B0 + A0 sin)] sin* du}. (4.7-7) 

This reduces to 

NTP (AO BO 

Also, (4.3-10), 

which reduces to 

m  1 { 1 In2 
Tr T- - (2ir + - - T- ( - 

- (m2 - rn1) (sin 2b 1 - sii2b2) -  1  
1+a2 [e (cS + 

(csinip 1 + cosip1) _e2(6 1 ± 

1 
- :;- {j0 e_c1P{ 

) (csinip2 + cosp2) - 

(4.7-8) 

+ m1e(B0 + Ad sinp)J 

cos d f *2 e- I 2 + m2e(B0 + A 
1 sin)] cs d 

HP H 

2ir :• 

+ e + m1e(BO + A0 sin*)] cos dp} (4.7-9) 

NTq(A0B0) = { jE- (m2-MI)(c0s2tp1 - cos2P2) 

1  
e (6 1+S2)(ccosp 1 - 51nip 1) - e 

i+ 2 

(acos 2 - s in* 2) - 

Furthermore, for the auxiliary direct gain we have, (4.3-12), 

(4.7-10) 
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I f 1 [ N0(A0)B0,c.,w e ) 2iiB0 j0  

+ 

f •2 

1 

2ir 

2 

e'[-D2 + m2e(B0 + A0 sin)] dip 

sinip)}dip 

e[D1 + m1e(B0 + Aó sin)] dip} (4.7-1l) -

which reduces to 

N0(A0,B0,c = {m1(2r + 2) - m2(ip 1-ip2) + 

(m2-m1) 

0 - ç (e -e ) + 

-c 1 2 -2iic 
---(1-e +e -e )}. (4.7-12) 

Let D, = 2.0, D2 = l.0,m = 0.2, ill2 •= 0.5, r1 = 0.2, T2 = 0.5, 

¶3 1.0 and K = 5.0. Then the transfer function of the plant in 

Fig. 4.1 becomes 

5.0  
G (s) = (0. 2s+1) (0. 5s+1) (s+l) (4.7 713) 

Following similar steps as those outlined in Section 2.8, we 

obtain the asymmetrical instantaneous oscillatory transient solution 

shown in Figs. 4•3,: 4.4 and 4.5. From these figures, it can be seen 

that the accuracy of prediction is less than that of the symmetrical case. 

Stability regions are also given in Fig. 4.6 using the analysis given 

in Section 4.5. 
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5. APPLICATIONS 

5.1 INTRODUCTION  

Interest in the study of nonlinear oscillations arose due to 

their occurrence in practical systems, such, as in automatic regulatory 

systems and in follow-up systems, [1, 7, 8, 19, 24-30]. Oscillatory 

transient behavior appears in many practical systems for exulLple in 

the stabilization of powered gyroscopes with several degrees of free-

clam [1]. This problem can be studied using the transient form of the 

Krylov-Bogoliubov asymptotic method as given in Section 2.2. The same 

analysis can also be applied to many types of electronic oscillators 

[6]. 

In this chapter we give two examples for the application of the 

OTDF and the asymmetrical OTD. 

5.2 POSITIONAL CONTROL SYSTEM  

Consider the positional control system shown in Fig. 5.1, [33]. 

The non1inar friction in the rotating parts of the servomotor' is 

neglected. The motor is represented by a first-order linear system and 

the tachometer characteristics are assuned to be linear. The backlash 

element and the preamplifier reduce to a rectangular hysteresis element, 

Fig. 3.1, with D=l.0 and s=0.0S. The transfer function of the linear sys-

tem can be written as 

G(s) - 

4.91 

12 s s(0.688s+l)(-• T 
(5.2-1) 

Using the half period OTDF given in Table 3-1 to represent the nonlin-

ear element, the instantaneous oscillatory transient solutions can be 
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Fig. 5.1 Schematic diagram of the positional control system given in Section 5.2. 
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obtained by following the procedure outlined in Section 2.8. The re-

suits together with those obtained using measurements on the physical 

system are shown in Figs. 5.2 and 5.3. The latter results were obtained 

by introducing step inputs, measuring the corresponding x(t) and from it 

conputing A0, c and w. The stability regions, computed using the pro ce -

dure described in Section 2.8, are shown in Fig. 5.4. The system is 

seen to have a unique limit cycle at A0 = 1.0. , This wa's also confirmed 

by the practical system. From Figs. 5.2 and 5.3 it is seen that the 

accuracy of the prediction method is very satisfactory due' to surplus 

filtering in the system. 

5.3 SYSTEM WITH NONSYMMETRICAL NONLINEARITY  

Consider the positional control system shown in Section 5.2. 

Let us investigate the case when the nonlinearity is a biased rectangu-

lar relay. Let us denote the input and thb output of the nonlinearity 

by x and y respectively. We get 

and 

y = MD 

y = -D 

x. ? b ' (5.3-1) 

x < b (5.3-2) 

where m, D and b are constants. 

Let the input to the nonlinearity be an asynimetricaloscillatory 

transient signal (4.4-1). Define iP, and such that 

e (A0 sinp1 + B0) = b , 0 < < emi 

e (A0 sinp2 + B0) = b , 0m1 2 
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and 

lj) 
.e 3(A0 sinp3 + B0) = b ,. 0m2 < < 2ff (5.3T5) 

where eml and are given in Fig. 4,2. 

The direct component of the asymmetrical oscillatory transient 

describing fithction can be expressed as, (4.3-9)., 

flTr 
3 

This reduces to 

B0, c, 1 

irA 
if, I I e(-b) sinpdp + 

e mD sind + JV3 e -D) sindb + 

e 4' mD sinpdp ] (5.3-6) 

N  (AO , B0) c) - D {(M+1)[e 1(ct sinp1 + cosp1) 
irA0 (1+ct2) 

- e2 (c silllj)2 + cos4) + 

- (me + l)} 

_ctJ)3( sini 3 + cosP 3)] 

Also, for the quadratic coionent, we have, (4.3-10), 

NTq( B0, a w) = rj e(-D) + 

irA0 L 0 

(5.3-7) 
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11)3 

e mD + J e(-D) 
11) 1 

I 2mr e mD cosdip 
11) 3 

which reduces to 

I 

+ 

(5.3-8) 

D  
NTq (Ao BO- a) -  {(m+l) [ e"'1(ct cosq - 

irA0 (l+a2) 

sin*,) - e2(c cosp2 - sin4i2) + e 3(c c0s1p3 - 

sintp3)} - c(me 2 + i)3  

For the auxiliary direct gain of the nonlinearity, we have, 

(4.3-12), 

N0(A0 B0, a, 
, [J e(-D) + J 

2irB0 0 

+ f é(D) +f e m d j (5.3-10) 

or after sin1ificatioh, we get 

N0 (AO , 

e'nmD d 

-  D  (mn+1)(eT1. - e2 + e 3) 
2irB0ct 

- (me 2 ' + i) 1 

We consider the same linear plant described by (5.2-i 

(5.3-11) 
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select m--l.5, D=l and b=O.5. By following the same steps as in Section 

4.7, the asymmetrical instantaneous oscillatory transient solutions 

can be determined. The results together with the measured quantities 

from the practical system are shown in Figs • (5. 5), (5.6), and (5.7). 

The stability regions can be computed and are plotted in Fig. (5.8). 

The system has a unique asymmetrical limit cycle at A0 = 1.10 and 

B0 = 0.173. The practical system indicated a unique asyinnetrical limit 

cycle at A0 = 1.163 and B0 = 0.220. 



From mea-
surement 

Using pre-
diction 

A0 

-0. 2 Fig. 5.5 Predicted and measured relative damping characteristics for the system given in 
Section 5.3. 



(1) 

Fig. 5.6 Predicted and measured asymmetrical oscillatoxy transient fre-
quency characteristics for the system given in Section 5.3. 

3.0 

0 

2.5 
-.---m. From measure-

ments 

us* ng predic-
tion 

2.0 

1.5 

0 
2.0 3.0 4.0 5.0 

J 
6.0 7.0 

I I I> 
8.0 9.0 10.0 

A0 



B0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0 

From measurements 

Using prediction 

Fig. 5.7 Predicted and measured asymmetrical oscillatory transient bias characteris-
tics for the system given in Section 5.3. 

0 

1.0 2.0 

0 

0 

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

A0 



na 
0.2 

1.0 

-0.1 

-0.2 

-0.3 

I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Fig. 5.8 Stability regions for the system given in Section 5.3. 

I. Unstable II. Stable III. Unstable 



-91-

6. CONCLUSION 

A proposed theory for the investigation of the dynamic behavior 

of nonlinear control systems has been presented. It represents the 

generalization of the describing function method in the transient case. 

For the investigation of symmetrical transient oscillations, a 

transient, form of the Krylov-Bogoliubov asymptotic method has' been 

introduced. In addition, a new complex function based on a finite 

period of time has béen.defin.ed. The new definition has been utilized 

to derive a new oscillatory transient describing function. It has been: 

proven that the OTDF is optimal in the snse that, it minimizes the 

'mean square error in. the approximation.. In estimating the OTDF, 

half and complete period intervals have been considered. It has been 

shown that the half period OTDF results in high accuracy with systems 

employing symmetrical nonhinearities. Moreover, by comparing the new 

CJI'DF with the other approxiniaté gains reported in the literature it has 

been found that the OTDF yield's the, best results especially when the 

tiansient oscillations are heavily dáned., Furthermore, using the 

approach suggested, which is not a tep by step' approach, it is possible 

to determine the dynamic stability of nonlinear systems during the 

oscillatory transient behavior. The proposed theory has. been. extended 

to a wide class -of sampled data 'systems. 

Asymmetrical transient oscillations in nonlinear systems have 

been investigated. A new asymmetrical transient form of the Kiylov-

Bogoliubov asymptotic method has been advanced. A finite period com-

plex gain has been utilized, to derive the asymmetrical OTDF. This 

function generalizes the dui1 describing function to the transient case 
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and minimizes the mean square error. The thesis presented 

also a new auxiliary equation to be used with the quasi-linearized 

characteristic equation to describe the asymmetrical oscillatory tran-

sient behavior of the system. For both continuous and sanled data 

systems, it has been possible to predict the asymmetrical behavior 

and to determine the system dynamic stability. 

It has been, demonstrated that the accuracy of prediction is 

improved by using surplus filtering in the system. A position control 

system was used to show the applicability of the technique proposed. 

Finally, the. thesis has succeeded in predicting accurately the oscil-

latory transient behaviors associated with nonlinear control systems 

and detei'mining their dynamic stabiliy without using any step by step 

approach. This it is felt represents the main contribution, of the 

thesis. 
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