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ABSTRACT

The thesis presents a definition of a complex function which is
exploited to introduce a unified theory for predicting the dynamic
behavior of nonlinear control systems. 7

For symmetrical oscillations, a transient form of the. Krylov—’
Bogollubov asymptotlc method is given. In addition, a new osc111atory
transient descrlblng function is derived using a finite Laplace trans-
form.  The oscillatory transient describing function is proven to be
optimal in the sense that it minimizes the ﬁean square error. A
sambled-data version of this function is also provided. A computatiomal
rprocedure is presented for predicting the'oécillatory transieht:behavior
in nonlinear systems and determining their dynamic stability.

A novel asymmetrical transient describing function is derived |
and its associated propertles 1nvest1gated A sampled data version of
this function is glven. An auxiliary equation is introduced to
describe the bias signal during the asymnetr_i‘cal behavior. The new
equation is utilized together with the'quasi—lineari;ed equétion of the
system to determine all possible asymmetrical oscilla?ory‘modes and
their correspbnding‘dynamic stability.

A comparison between the proposed theory and the other ﬁethods‘
available in the literature is provided. The‘application of the thédry '

-to a practical system is demonstrated.
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1. INTRODUCTION

1.1 INTRODUCTORY REMARKS

~ Systems -that occur in real life are always nonlinéarﬁ Linear
systems are dpproximate models of nonliﬁear systems and are considéred'
us‘iially :for convenience. Nonlinearities are sometimes introduéed to
improve system performance. The behavior of nonlinear systénis is
complex since their characteristics are signal dependent. The main
approaches for the study of nonlineatr systems are the phase plane tech-
niques, staiaility analysis and approximate solutions, [1] - [8]‘.

' 'fhe phase plane method has been utilized in the literature of
nonlinear 5}"stems to determine their local and globai behavior. It
provides an exact topological account of all possible system trajector-
ies with all possible \initi'al~ conditions. However, this method is only

‘ cbnveniént for low order systems as its application to higher order
systems introduces formidable complit:ations to the analysis.

Under stability analysis, Liapunov's theorem is usually used.
This method is a powerful tool for obtaining a qualitative view of the
system global behavior. It is mainly based upon investigating the
given form of the differential équations without solving them. This
“comes by reformulating such equations. During reformulation certain
information about the system characteristic is alwéys lost and cannot
be estimated. Consequentl};, most of the stability conditions are suffi-
cient and not necessary. In addition, the stability. analysis.method
cannot predict easily margins of stability nor the extent of ény
instability associated in thie system. |

Approximate methods of solution permit a direct and efficient
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way for the investigation of a wide class of nonlinear problems. They
represent the first step in the design and synthesis of nonlinear sys-
fems. They give a simple estimation of how the structure and parameters
of the system influence the system dynamic‘éharacteriétics.,iéystém
‘simulation can tﬁen.provide the actual solution of the design problem.
An important question can afise about the determination of the accuracy
ofrsolutioﬁs obtained using the approximation méthods, Unfor;unately,
this problem is gqnefally tedious to study and the designer is usually
foréed to use the approximate techniques despite iﬁcomplete knowledge
of their accuracy.

Finally, it has been said very‘often that fbr‘a control system
to be superior, its perfbrmance should be predicted precisely and
should have a unique stable equilibrium. In the literature of nonlinear
control systems, the problem of Checking the uniqueness and stability of
equilibrium has been always an extremely hazardous enterprise. In the
following chapters an attempf is made to solve this problem by
describing the oscillatéry transient behaviors associated frequently

with nonlinear control systems and determining their dynamic stability.

1.2 OBJECTIVES
This thesis is devoted to the anaiysis‘of transient oséillations
.in nonlinear éontr01 systems. The oscillations are classified as
symmetrical or asymmetrical. The object is to describe such transient
oécillationé and to determine their dynamié stability. An apprbximate.
solution technique is used. | |
In Chapter 2, a unified theory for the in&eStigation of symmetri-

cal transient oscillations in nonlinear control systems is presented.
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The analysis includes continuous and sampled data systems. A traﬁsi;ant
form of the Krylov-Bogoliubov asymptotic metﬁod is given.‘ Also, a
computational proceduré for the prediction of symmetrical transient
oscillations Vrand c'letermining their dynamic sfability is described in
detail. | |

In Chapter 3, the p:boposed theory given in Chapter 2 is applied
to nonlinear' control s'ystenis’; with symmetricél oscillatory behavior. A
comparison between the presented theory. and the other approxnnate methods
available in the literature 1s also dlscussed

- In Chapter 4, the theory suggestec‘l‘has been generalized:for non-
linear control systems with qéylmnetrical oscillatory transient behavior.
- The chapter follows similar steps as Chapter 2. The description of the
dynamic.stability of the behavior is also provided.

In Chapter 5, the theory presented is applied to a positional

control system with symmetrical and nonsymmetrical nonlinearities.
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2. SYMMETRICAL TRANSIENT OSCILLATIONS - THEORY

2.1 INTRODUCTION

Approximate techniques have been commonly used}to analyze nonlin-
ear control systems [1]-[8]. These techniques can mainly be applied
eue to the‘evailability of digital computeis. For the study of sus-
tained oscillations. in nonlinear systems, the describiﬂg function has
proven to be particularly suitable. For the investigation of the tran-
sient or dynamic behaviour of nonlinear systems, various approaches
ha&e been reported [9]-[14]. The analytic description of transient os-
~ cillations in sucﬁ systems is a matter of practical importance [71.
Such oscillations can be expressed in terms of exponentially damped (or
divergent) sine waves with time varying amplitudes and frequencies. :
For lightly damped transients, the describing function can be applied
with success [1], [9]-[14]. Grensted [15] proposedee technique for the
aﬁalysis of transient oscillations restricted to eecond order differen-
tial equations. Popov [1] used soﬁe of the resulfs by Grensted tol
extend the Krylov-Bogollubov asymptotic method [2] to the transient
case wheré the rate of change of .the frequency and damping is small
Recently, Freeman and Cox [16], [17] introduced the concept of half
period transient gain to describe the npnlinearities'during the iran-
sient period. The approximation used minimizes tﬂe total square error.
Freeman [18] showed that like the describing fumction, the quadratic
component vanishes for single-valued nonlinearities. This prbpertyr
seefms to yield inaccuracies in predicting oscillatory traneient pro- -
‘cesses, since un11ke sustained osc1llat10ns, tran31ent osc111at10ns

undergo a phase shift upon pa551ng through nonllnear elements. Further— .
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~ "nbte; Va halt" wave transient fgain does not s‘eenl'te be snitable for non-
sylnnetrical 'nOnlinearities. The use of two halfA pei;i_odj gains to study i :
th‘e latter nenldnearities 'canladd formidable cemplig_:ations ‘1:6 the
analy51s. o B ‘ | o |
~ In this work a un1f1ed theory is presented for studymg tran- '
sient osc;llatlons in nonlmear systems. Contnnuous, also _dlscrete,

- systems are ‘considered.

2. 2 ‘THE TRANSIENT FORM OF THE KRYLOV-BOGOLIUBOV ASYMPTOTIC ME'IHOD

In ‘the study of trans:Lent osc111at10ns in nonlmear systems, |
"the traxlslent osc111at10ns are usually considered to be the solutlon

' "of a second-order nonllnear dlfferentlal equatlon of the fom, [1] s

© X -‘Zci + @éx £y f(ﬁ;ig =0 - (2;2-1}
v_vhiere-c‘,‘ wy and y are real constant coefficients. The value of y is
.~ ¢hosen to be small and f(x,d't) to be a‘ nonlinear function of its =
ai*gmnents; ' Assume the general form of the 'solution of (2.2-1) to be

| x(® ﬁ\Ao(t)'§°téin[dot J[étt)]‘ R 8
where A, (t) and 0 (t) are time dependent functlons.r Fef 'convenienee we

: ‘shall assume thls tme dependency Wlthout mdlcatlng 1t by appended

arguments We assume o
B | T ¢ 2% 2 B

o W) =etre o T (2.2-4)



~ so that K
P(t) = o
= u, + 0. | | (2.2-5)
Furﬂlemdr‘e, let
A=At - . (2.2-6)

We seék ‘a solution of the form (2.2-2) and (2.2-7)
X(t) = Aje® (o siny + w, cosy). | (2.2-7)

Such a solution does not yield second order derivatives of A, and ©

when X(t) is determined. This requires that '
AO - " L] V - V -
~—~ siny + 6 cosy = 0. (2.2-8)
A, ‘ :

Differentiating (2.2-7) with respect to time and using (2.2-2), (2.2-7)

and (2.2-8), we obtain
A . . . 4
=L cosy - 6 siny) + 20X - wyX. (2.2-9)

- - ot -
x(t) = Aje” v, A

Substituting (2.2-9) into (2.2-1), we get

AO . . . u _O-t '. .

—~ cosyp - O sihy = - —— e f[A siny, A(o siny + w, cosy)].
Ao Aowo ,
' s 00 (2. 2"10)

From (2.2-8) and (2.2-10) and after some manipulations, we obtain

Ay = - == e™" £[A siny, Ao siny + u, cosy)]cosy (2.2-11)
ian'd- ‘ ,
8 = — "t £[A siny, A(c ‘sinp *+ w, cosy)Isiny . - (2.2-12)

- Agwy
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Introduce the parameter o, to be denoted as the relative damping, such
that 7 |
o = ot. : “ (2.2-13)

Differentiating (2.2-13) yields

o =

. - | | L (2.2-14)

gla

Since u is chosen to be small, then }.\0 and .é are small, so that A (D)
and 6(t) are slowly vaxyir}g functions of time. Hence we may consider
AO and 0 to" bé apprdximatéd 'by‘étepwise functions with the dura!:ibn of
each step equai:to, half a period [16], or to a complete period [7]. If
the duration of each. step is a complete period, then integratingl -

(2.2-11) and (2.2-12); ‘we get

‘ AL .
By = - I ™ £[A siny, A(c siny + u, cosy)lcosy dy
and .e.(2.2-15)
- 2m ' : ‘
g = L j e"w_f[A siny, A(oc siny + w, cosy)]sing dy .
2nhguy | - 0 ‘

ve . (2.2-16)

Equations (2.2-15) and (2.2-16) will be denoted as the transient form
of the Kiylov-Bogoliubov asymptotic method: Upon comparing these

formulae with those of Popov [1] two distinct differences appear.

oy

First, the introduction of the weighting function ¢ °" under the inte-

gration and second upon evaluating the integrals, the amplitude A is
expressed in its explicit form Aoect. |

Equations (2.2-15) and (2.2?16) can be expressed as



A = - | 2:2-
A, = o AN, : (2:2-17)
and
LI l (2.2-18)
‘ Zmo P 4
where _
Np = Np(AO,a,o,mo)
| " 2m 7
1 j e £[A siny, A(6 siny
Ay /g .
-+ w, cosy)]siny dy _ (2.2-19)
and

Nq = Nq.(Ao’“’U’wo)

- 2m » -
-1 [ e £[A siny, A(o sin
} TI'AO 0 ' ’

g cosxp)]co'sq; dy. ; (2.2-20)

2.3 SYMMETRICAL OSCILLATORY TRANSIENT DESCRIBING FUNCTION

Let x(t), (2.2-2), and y(t) be the input and output to a nonlin-
ear element. For A,(t), (2.2-2), a_lconstént, let

x(t) = x(t,A;) and y(t) = y(t,A,). Furthermore, let
xp (6,4 = X(6,ADu (8) . (2.3-1)

and

Falta) = YCEA (0 s



where
(0 =u (0 -u (th) (@233
h is a constant.
Define the finite period complex function Nh(Ao,é) as

Ny(Rgos) = X (2.3-4)

Hence,

Y (tAg)e " dt.

N (A,58) = =2

00

i, (t,A et dt

Jh y(t,A)e St at

0 ‘
= . S (2.3-5)

h- -
] x(t,AO) e st dt
0

Consider a nonlinear element corsisting of 'a,nohlinearity, y{x,x;t).

_ Let the input be

x(tiA) = A Tsinp(t) @36
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where y(t) = wt. Then the output can be expressed as

y(t;A)) = y[Aoth sinwt, AOeOt(o sinwt + w coswt); t]

.. (2.3-7)
where w is assumed to be constant.
For h=T= anl and expressing s as s=o+jw, we obtain from (2.3-5), (2.3-6)
and (2.3-7) '
27
w
NT(AO)G’N) = 27

j‘” Aoec’rt,(s:'ant)e_(04'3.-“’)t dt
-, o

ec’t sinwt, Aoect(o sinwt + w coswt); tle” (o+ju)t de .

...(2.3-8)

Changing the variable of integration in (2.3-8) s introduéing oy (2.2-145 s
and simplifying yields | |
27

e y[Aoemp siny, Aoeaw _

T( 0:05:0’) iy o

&(c;i siny + cosy); %] eIV dy . (2.3-9)

Let NT(AO,a,w) , (2.3-9), be the cOmplete period oscillatory

transient describing function. Express NT(AO,a ,0) as

Np (Agsepw) = Np, (Rgsa) + Ny (Ag,a,0)  (2.3-10)

. We have
' . 1 2r ' .

NTp(AO s0,0) = '1;'1_'\;' .[0 e Y[Aoeaw sinw,Aoe“‘p

w(a siny + cosy); L] siny dv (2.3-11)
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27

-NTq(..AO,OL,L\!) = :ri_ f e-mpy[Aoeawsin ¥, AoeoulJ

0 ‘o
w(a sin ¢ + cos ¥); %ﬂ cosy dy.  (2.3-12)
If =0, (2.3—9) reduces to the deséribirig function [7] .

2.4 PROPERTIES OF THE OSCILLATORY TRANSIENT DESCRIBING FUNCTION

Lét a nonlinear element y(X,X;t) be injected with the transief}t

component
x(0,A) =Aesiny - (2.4-1)
wh‘ere‘ v = wt and o = % . The output from'the nonlinéari‘ty can be
expfessed as
| yb,A,) = }’[-.Aoleﬂsin w,'Aoeww(a sin 1]) + cos V) ; %]_' .

v (2.4-2)

‘Assuming the nonlinear element can be approximated by a gain and a

phase shift , the corresponding output can be expr.eszsed in the general form
yaA) = e™(a sin y + b cos ¥) (2.4-3)

where a and b are functions:of A,, o and ¥, This dependency will not
be “indicated by appended arguments.
Let .

Y (A = e My (,A) | (2.4-4)

and

yinA) = e My (h,A) (2.4-5)
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We seek to minimize the following error measure

2w

;2—=%? J e2(p,Ay) dy (2.4-6)
0 S , : 7
Whefe
e(h,Ag) = ¥ (h,A0) - Y4(hsAg) . . @4

The weighfiﬂg used to obtain y' and yji R fesults in ﬁransfoming the
latter functions to ‘sinusoids and hence pemits.‘the analysis to ijroceed
similar to th:;.t of the describing function [7]. At the minimm of
(2.4-6), we have o |

-2 2 . ‘ -
‘ _a_g._ = .a_?._. =0 , ‘ ’ (2.4'8)
%a ob

From (2.4-2) to (2.4—’8)7', we:obtaih

aq = % Ij“ ) e’Wy.[Aoewsintp R Aoeww(a Slan'*' cosi,b).; %]
;iﬁw v | o ..‘.(‘2.4-9)
and
by = J‘—‘ o e y1a e*siny, A ew‘bA( siny + cos )'° 9-;
T T Io ylAge " sing, Aje Twla \/ ¥); w]

cosy dyp. : ...(2.4-10)
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From (2.3-5), (2.4-1) and (2.4-3), it can be shown that

_ap by
NT(AO,OL,(D) = K:)- + ] —A-; . . (2.4“11)
Substituting (2.4-9) and (2.4-10) into (2.4-11), we obtain Ny(Ag,c,w)

as given in (2.3-9). Hence NT(AO,a,wj is optimal in the sense that it

- ‘minimizeé the mean square error (2.4-6).

2.5 STABILITY STUDIES

Consider the nonlinear system in Fig. Z.i. Nh(Ao,a,w) describes.
the ef£ect,of a nonlinearify in the closed: loop controlléysteﬁ during
~ a period h where A, is. the instanténeous-amplitude‘of the inpUt. G(s)
is fhe trénsfef function of a linéaf plant and is considered to be of

the form:

m -1
S o+ _+15S Feoet g . . ) )
G(s) = oL n L -~ 0 , nmz2 . (2.5-D)
bns + bnTlsp +oook b0
where s = ¢ + jw = oaw + jw, so that
Glow,jw) = Ly (a,w) + jL,y(o,w). (2.5-2)

L, (d,w) and L, (a,w) are real continuous functions of their arguments.
For any transient oscillations to take place, it is necessary and

sufficient that the Quasi-lineariied‘system satisfies
1+ N (Ay,0,0) Glawju) = 0. (2.5-3)
Equation (2.53-3) implies

1+ th(AO,a,w)Ll(oc?w) - th(AO,a,w]Lz(g,m) =_0. (2.5-4)



r(t) - x(t) | (o)
———-—»Q——h N :

G(s)

Fig. 2.1 A nonlinear control system.

c(t)
-

_vI_
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and

th(Ao,a,w)Lz(a,w) + th(AO,a,w)Ll(a,w) = 0. ; 11(2,5-5)

Equations (2.5-4) and (2.5-5) have an infinite number of soiutions.
For a given value of A, = Ag, the solufion will be denoted by

Sy = So(A(')’“o’woj and represents ’.c'he instantaneous oscillatory tran-
sient solution. Such a 'solutioﬁ will be considered to be stable if |

any perturbations to A(') tend to vanish as t + .

Theorem 2.1 7 _
Let U and V be the real and imaginary parts of (2.5-3). Conse-
quently, . ' “

U(s) + 3V(S) = 0 e , . (2.5-6)

where S = S(A;,0,w).

Assume that U and V-and their first derivatives “et‘i'e continuous
functions of S in a small domain around S,. Define the operator E,
such that |

| : 3 3 "
E=——+ K, (A) —+K,A) — 2.5-7

where Ka and Kw are real functions of Ay

Then a necessary and sufficient condition for S, to be stable is
for a real positive number n to exist such that in the neighbourhood of
Sy the condition

Wy « Ve «+ n(_a_z-_ay S W) O (2.5-8)
- 30, oa d0. dw 90 dw . V
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is satisfied.
Proof

Equation (2.5-3) can be expressed as
UCAy,o50) + JVCA ,0u) = 0 | : (2.5-9)

where U and V are the real and imaginary parts in (2.5-3). For
Ay = Ay, we have Sy = Sq(Ag,aq,0,) and it satisfies (2.5-9). Consider
small perturbations around S, and such that ‘Z\o and 6 are small. We

denote these perturbations as follows
1 1 )
Ay > Ag + LA,
ag > oy + doy + jho, ; (2.5-10)

wg > wy *+ Awl + Jhw,

AAy, Aa; and Aw; are small real numbers. Furthermore,

b
Ba, = = | j (2.5-11)
and

ho, = - =2, . (2.5-12)

Substituting the perturbed states into (2.5-9), expanding into
a Taylor series and equatihg the real and imaginary parts after

. neglecting second order terms, we obtain in the neighbourhood of S -

+aU +&‘A =3V, +3VA | 2.5-13
3A0 Mo tl - “1 ow v %2 ( ‘ )
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and

—-——AA0+———A0L1+——-Aw w2+——-Aa

v v 3V _ [ U U
1= "\ A 2/
BAO o0, ow dw da

(2.5-14)

Dividing by AA, and taking the limit A, + 0, we get

911_+§H§E‘}_+§H§_“.L=§.\li‘”£+i‘££‘£‘.& o (2 5-15)2
8Ag  da dAy dwdAy dw dA;, 8o dA |

and
V., WV doy + EXJE.‘.D_L = - (.?H.C_l_w_% + 92932.) (2.5-16)
3A, do dA;, Bw dA, dw dA;, " da dA,
. . t _ .(.1..(}.1. ' - dLOl
In the neighbourhood of §,, let K,(A;) = T and K (A)) = TV
: 0

0
In terms of the operator E, (2.5-7), (2.5-15) ‘and (2.5-16), can be

expressed as

O du, , 2V doy (2.5-17)

EW = 0 a@, " e 4,
and
by - o (M W)
¢« . < daz
Eliminating —= , we get
dAy
3 5V 3U oV, aU oV | du, ’ ‘
— + —E = | = - —= = —_ 2.5-19
da EW) do. W <8u dw  dw 8a> dA, “ ( )
From (2.5-12) the-instantaneous soiuti‘on S, is stable iff
n= o2 (2.5-20)
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Hence, 86 is stable iff in its neighbourhood there exists a real posi-:
tive number n such that condition (2.5-'8) is satisfied. I |
Some corollaries will now be given. AThe proofs will be
omitted'since they are straightforward. o

Let §, and §, be small.nonnegative quantities and define the
region R, around the instantaneous amplitpde Aoq such that .
Ry = (Aoq -84, Aoq + 6,). Then Sq = CAOq,a,w) is said to be an

equilibrium state of the nonlinear system, (2.5-3), if n > 0 for

VApeR;. Let Ei and €, be sufficiently small nomnegative quantities.
Define the region R, = (-e;,e,). A necessary and sufficient condition

for‘thé nonlinear system, -(2.5-3), to have a stable oscillatory mode

(Limit tycié)is that n > 0 foerueR2 If o is a monotonically
decrea51ng functlon of AO, then a necessary and sufficient condition

for the nonllnear system to possess a unlque stable limit cycle is

that n > 0 for VaeR,, and n < 0 otherwise. Let o < 0 for VA, 2 0 and
let ¢, be a small positive qﬁantity. If n > 0 for VA; < ¢y and n <0

for VA, 2 ¢,, then the nonlinear system, (2.5-3), is exponentidlly

asymptotically stable in. the large.

2.6 NONLINEAR SAMPLED DATA SYSTEMS

Transient form of the Krylov-Bogoliubov method.
We will now derive a sampled version of the nonlinear differen-

tial equation

x ~ 20X + wnx + eg(x,x) = 0 - (2.6-1)

where o, w, and ¢ are constants and ¢ is required to be small. We

consider a certain class of sampled data‘systems possessing the prop-
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erty
WT, << 1 | ; (2.6-2)

where w is the frequency of the oscillations and T is' the éampling
period. We assume that at time t = nTg, the input to the nonlinear

element can be expressed as

onTg - ,
x(nTg) = Ao(nTs)e sinfw,nTg + 8(nTg)] . (2.6-3)

Since ¢ is' selected to be small, then the variations in A, and 6 with

time will be small. w, is chosen to satisfy

0

wi=wl-o®>0. I (2.6-4)
Let
p* = wnTg
= w,nTg + 8 (uTg) . (2.6-5)

Let 6 = 8(nTy), 6 = 6(nlg), Ag = Ay(nT) and Ay = Aj(nTg). Using -

finite difference approximations i(nTs)' and i(nTS) can be expressed as

.  onTg . R *
x(nTg) = Age (o sing”™ + w, cosy”) (2.6-6)

onT

. _ 2 +‘2,+ . [ e A.onTS_ * 2.6-7
x(nTS) = -wX oX + wghge cosp® - wyA 6e siny* (2.6-7)

where wTg satisfies (2.6-2) and, (2.2-7) apd (2.2-8),

.

%9- siny* + & cosy* = 0 , (2.6-8)
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Substituting (2.6-7) into (2.6-1) yields

AO 7 . . € i -;O'nTS P
- cosyp® - @ siny® = - e glA siny*,
A, Agug
Ao sing® + w, cosy®)] - (2.6-9)
where
onT “
A=Age 5, : (2.6-10)

Ao and 6 will be assumed to be constant in a complete .period. Also let

Ng = [NTS} . | (2.6 }1)

From (2.6-8) and (2.6-9), the estimated rate of'cﬁange in the instan-

taneous amplitude and phase can be shown to be

. 2Ng-1
. _ T 3 .
A, = £ Y e ¥ g[A siny*, A(c siny®
- 2wgNg p=p
+ w, cosy*) Jcosy® (2.6-12)
and
| 2Ng-1
. -— *
§ = — Y} e 4 glA siny*, A(c siny*

ZAO(.O ONS h=0
+ w, cosy¥)}siny® . (2.6-13)

Equations (2.6-12) and (2.6-13) will be referred to as the sampled
version of the Krylbv-Bogoliubov asymptotic method in the transient

case. These equations can also be applied to the nonlinear difference
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equation
n+

9 _ . .
Xnay " pr.n+l qtx + 6¢(Xn’xn+1) =0 (2.6-14)

where p, q and § are constants and § is small. The relatioﬁship

between (2.6-1) and (2.6-14) is

= ETi | f (2.6-15)
S
L2 _: : ‘ ‘
w2 = LR |  (2.6-16)
TS
and
8
e =S (2.6-17)
T2 ,

Sampled oscillatory transient describing function.

Define the éomplex functiqn~Nh(A0,z) as

-n .

= (2.6-18)
[h/T]

-n
nzo x(nTs,Ao)z

where h is a time interval, z is a complex variable and A, is assumed

to be a constant. If h » =, NhCAo,z) reduces to the z-transform



-22-

describing function [19].

For w equal to a constant and w Ts<<1,'substituting (2.3-6) and (2;3-7)

. . . T : .
into (2.6-18) and letting z = e S, s = o+jw and h=T, we obtain

N1 | )
NS (Ag,a,u) = K_N_ T e yIA sin ¥, Au(a sin
n=0 ]
+ cos v*); %fq e_jw* . ‘ (2.6-19)

N;CAo,ﬁ,w) will denote the sampled oscillatory transient describing
function, SOTDF with period T. The direct .and quadratic components of

N;CAO,a,w) are

2N -1
-ap® : s .
N CAo,a w) = ET_—' z e yIA sin ¢*, Aw(a sin y*
n=0 -
+ cos P*); ETJ sin ¢* (2.6-20)
and 7
2N -1 . | ‘
QAO,a w) FTN" 2 e y[A sin ¢*, Aw(a sin ¢*
n_O . .
e - ‘
+ cos y¥¥); B—J cos ¥ . - (2.6-21)

The sampled oscillatory transient describing function minimizes the
mean square error.’ The proof is similar to “that given

in Section 2.4.

Stability analysis.
Consider the system in Fig. 2.2. The system contains a linear

plant, a zero-otrder hold and norlinear élemént. Let

1- e-gg

G(2) =3 L(s)} o (2.6-22)



Ts

) y*(t) ‘ -
N —] H () ——]  L(s)

;(t)__‘

Fig. 2.2 A nonlinear sanipled data control system.

.-sT
_le S
S

, transfer function of zero-order hold.

transfer function of linear plant.

nonlinear element.

_Sz_
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The corresponding function G*(aw,jw) can be expressed as
G*(w,3w) = L¥(a,0) + j L¥(a,u) (2.6-23)

" where LT(-) and,Lg(') are the real and imaginary componeﬁts of
Gf(aw,jw). For any transient OScillations to take place, it is neces-

sary and sufficient that the quasi-transient System.satisfies:
1+ ‘Nﬁ(AO,a,'w) G* (ow,jw) = 0 . b (2~.6-—24)

: ﬁhere NﬁCAa,a,w) is the SOTDF with period h.

‘Equation (2.6-24) implies

1+ Nﬁp(Ao,q,w) Li‘(oc,m} - N]’:q(AO,oz,w)ier(q,w) = 0
’ | ‘ ... (2.6-25)
and o

' NﬁpcAo,g,a) Ly (a,0) + Nicho,a,w) Lica,m?= 0. (2.6-26)

For a given instantaneous amplitude A0=A5, the predicted instantaneous
oscillatory transient state solution Sg = Sg(Ag,uo,mo) can be obtained
by solving (2.6-25) and (2.6-26) simultaneously. A necessary and

sufficient condition for Sg to be stable canh be obtaineq as in Section

2.5, provided (2.6-2) is satisfied.

2.7 Extensions ‘
In the previous sectiqns we considered h=T. In Table 2-1, a
summary of the results obtained is given for h=T and also for h = %-.
Similar to the describing funétioﬁ, the analysis presenfed éan
be extended to nonlinear systems with several degrees of freédbm té]'_

or with multiple honiinearities [20].‘ For some classes of nonlinear

elements possessing the characteristic



‘Table (2-1) = Half and complete period formulae for Qscill‘atory transient analysis

Method Type
| -} T ;dll) . : U i ~-o .
Transient form of the Half Ag = Twy ’Oe £ cosydy 8= Ko o Io e °f 51.nlbdlb
Krylov-Bogoliubov :
1 . u 27 —ap . y 27 o R
asymptotic. method Complete Ay = — J e ' f cosydy 8 .= m} e f sinydy
- 0 /o , 0% /o
2 &l _aw ,- 2 ™ _alp‘
Half NT (Ay,0,0) = A | e 'y sinydy Np (Ag,0,0) = Ao j(‘)e y cosydy
Oscillatory transient 'z P 74 :
describing function 1 (2T _ - ) 1 (27, v
' It Complete NTﬁ(AO,a,w) il 1o e 'y sinydy qu(Ao,a,w) = ?A—O—J e 'y cosydy
) -0 0
: Sémpled vex;s.ion of the | N_-1 & Ns-1 I
' ‘ ' Half A o= =€ § e " g% cosp® § =g )L © T g% siny
transient form of the 0" weNg no 0“0s  n=0
Krylov-Bogoliubov asy- ' 2N, -1 . - 2N, -1
ic Complet A, = =5 e W g cosyn 6 = e § e W g giny®
mptotic-method omplete 0 = TN nZO g ey nZO g 7

-5g-
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yQAOeawsin ¥)

<
]

“y (A, sin ¥) (2.7-1)

the describing function and the oscillatory transient describing func-
tion, OTDF, will yield the same reSulteg Examples of such nonlineari-

ties are given .in Fig. 2.3.

2.8 Recommended Computational Procedure

In this section, we suggest a computational procedure for
predicting fhe instantaneous etate solutions and for determining the
dynamic stability of the coﬁtinuous nonlinear control éystem in Fig. 2.1.
The procedure to be presented can be applied after some slight modifi- -
cations to the nbﬂlinear sampled data control systems in Fig. 2.2.

1. Determlne the components Nh (Aj,0,w) and.N CAO,u,w) of the
OTDF of the nonlinear element in the system. ‘

'Express theé OTDF as an amplltude and a phase

N, (Agre,0) = m}zll'o(Ao,a,'m) + N}ziq(Ao,oz_?m)' o (2.8-1)

and o
‘ ’ Nh (AO,Q'. w) .
o eh(Ao, ,U)) = tan W t o (2.8"2)

3. For an arbitrary value of A0=AB, plot a family of curves in the
Nh-eh plahe,rto be denoted as the-N-curves; by fixing o to be equal to

arbitrary constants al, Gyy +.., .0 and varying the parameter w.

n
4. The aim is now to solve (2.5-3). From (2.5- 3)

hCA 50y w) —TEZ%?ET"‘ 7 | (2.8-3)

We equate the amplitude and phase of both sides of (2.8-3). From
(2.8-1) and (2.8-2), the amplltude and phase of the left hand side of



..82‘..

L---a- -

Fig. 2.3 Special class of nonlinear elements possessing the characteristic (2.7-1).
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(2.8-3) can be determined. Let the real and imaginafy components of

-1 be denoted by Q, (a,w) and Q,(a,w) respectively. The ampli-
Glow,jw) 1 2 o

tude and phase of _Ef&i%}ﬁj- cah be eXpressedras

K, (a,u) = 2 (a,0) + Q2 (ar0) (2.8-4)
and

‘ -1 Qa (o,w) | | :

eg(a,w) = tan [QITE?ET] , ' | (2.8?5) ,
respectively. ' ' : | -

Let o assume arbitrary values A, O o . Obtain a family of

22
curves in the Kg'eg plane, to be denoted as the G-curves, for each o

Hi
=

by varying w. Since (2.5-3) must be satisfied, it follows that:Nh
and Oy = Oy ' '
5. Superimpose the N and thé G'Curves. Search for a boint of
intersection of these curves which has the same o and w. Usé inter-
polation if necessary. This point corréspbndé to §, = Sd(Aé,ao,wo).
6. Repeat the above for varioué vaiueS'of‘AO. This &ields a curve:'
S = SCAO,d,w); The projection of S on the Ao—a pléné gives a relative -
démping charactéristic and dﬁ the Ay-w plane aAfredﬁéncy characteristic.
7. From (2.5-3) détetmine U(Ag,0,0) and V(A,,a,0), the real and
imaginary parts of the characteristic-eduafion. Determiﬁé %%;3 %%;,
gg, %gv %g- d %%u: For diffqrént vaiues of A,, evaluate K (A;) and
KwCAO) graphically from the préjéctions of S on the Aj-o and Ao—w planes,
by determining the slopes of the curves at the selected values.of A,. -
8. For the values of-A0 seleéted in.7, calculate n(AO) using

(2.5-7), (2.5-8) and the information obtained in Step 7. The. values

of o and w corresponding to the selected values of A, can be obtained
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from the curve of S in (Ag,0,w) space.
9. Plot the curve of n versus A, and determine the regions of

' stability using Theorem 2.1.
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3. SYMMETRICAL TRANSIENT OSCILLATIONS - A STUDY

3.1 INTRODUCTION

In this chépter we consider f&o examples. The first is a'contin—
.uous féedback control system with a rectgngular hysteresis element and
the second is a sample& data feedback control system with a nonlinear
amplifier. We analyse theSe systems and determine the predicted values
of the transient oscillations using.different approximate méthods
including the one introduced in Chaptér 2. The stability of these sys-
tems is also investigated.

-3.2 CONTINUOUS FEEDBACK CONTROL SYSTEM WITH A RECTANGULAR -
HYSTERESIS ELEMENT

Consider the system shown in Fig.'S.l. -Let the input to the

nonlinear element be of fhé form
x() = Ae™ siny ‘ S (B.2-1)
where y = wt. Define y, and y, such that

(3.2-2)

A
D

o ) ,
eV siny, =

>i04

’. 0<1p1
0 .
and

o .
e‘wz sing, = - — , owm <P, S
: Ay :

1
<D

(3.2-3)
2

whére em1 and em2 are defined as in Fig. 3.2. The compléte period

oscillatory transient describing function can be expressed as

NT(AO,a,w) = NTpCAo,a,w) + jNTq(Ao,a,w) ' (3.2-4)



y(t) c(t)

G(s)

r(tl%-Q x(t)

Fig. 3.1 A nonlinear control system with hysteresis.

K X
s(t,s+1) (z,s+1)

G(s) =

_zg_
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Fig. 3.2 Typical oscillatory transient berfomance of a rectangular hysteresis element.
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where, (2.3-11),

- N ;
= el \ L o 1
NTP(AO,a,w) ”y [ [0 e 7(-D) siny dy

27

v, : S
+ f e *¥(D)siny dy + f e ™ (-D) siny dxp} .
. 11’1 o IPZ . .- .
...(3.2-5)
This reduces to
' o D .. . § . -2mo _ '
NTPCAO ,OL) — m [Santpl + Santpz + Ko—(e 1) )
o Za(sinzlpi + éinzwz)] . '7“‘_"(3.2—6)”
Also, (2.3-12),
RN “ .
Npg (A sa0) = L U e ¥ (-D). cosy dy
TT.AO 0
‘1’2 2’[\' ) .
[Ty copap [ D) cosy a]
" | V2 ... (3.2-7)
which reduces to
_ Do . . 8§ . ~2ma _
NTq(AO ,OL) = m [SmZI,Ul + 51n21p2 + —A—;(e 1)
- 2 (sin?y, + sin2p)] . (3.2-8)
o ! i :

Using similar steps, the half period transient oscillatory descrlblng

function can also be derlved The results with other approx;mate
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gains reported in the literature are given in Table 3-1.
Let K=0.5, 7,1.0, 1,=0.5, 6=0.5 and D=2.0. Then the transfer
function of the plant in Fig. 3.1 becomes

1 | | -
69) * sy (3.2-9)

We will follow the proceduré outlined in Section 2.8. - Fgr h=T we o’p—
tain NTp(AO ,g) and “NTq(Ao,oz) given in (3.2-6) and (3‘.2-8) respectively. -
We select 42 = 16, als a =-0.25, -0.3, -0.35, ..., -0.7. Since Np
and NTq are indeper}dent of w, then for each o selected we ‘oiatain a
single point in the amplitude-phase plane, Fig. 3.3.
We determine Q, (c’u »0) aﬁd Q, (a,u) . This yields

~a3w3 + 3003 - 30202 + 302 - 200 (3.2-10)

"

Ql (a,0)

and

Qz(a,w) ~30203 + @3 - 6aw? - 2w . (3.2-11)

Using (2.8-4), (2.8-5) and for the various values of o selected we
determine the G-curves, Fig. 3.3. Searching for a point of intersection
of thé N and G curves which has the same o and w, we obtain point a,

Fig. 3.3. In Fig. 3.3 the N curve for %9— =16 and h = % is also shown.
The common point in this case is b. The above i)rocedure is repeated for
various values of A, and the results are plotted in the Ay-o and Aj-w
planes, Figs.3.4 and 3.5 respectively. In these figures the relation-
“ships betweén Ay-o and Aj-w are shown for h = 321- , also u;%ing the
describing function, the Iﬁethod of Freeman and Cox [16] aﬁd the estimated
half period behavior obtaineci using simulation [31]. It can be seen from

Figs. 3.4 and 3.5 that the best accuracy can be achieved using the half



Table (3-1) Equivalent complex gains of the rectangular hysteresis element during oscillatory
transient behavior. ' "
Method Direct Component Quadratic ‘Component
. b [sin2y. + sinZ;p + Q—L———- [sin2y. + sinZy, +
Complete Period 18 (1+6:2) 1 2 a8 (1+a2) 1 2

Oscillatory transient

describing function S -2wo, _ — Cedm2 $ -2ma 1y _ 2 pein2 T

' A? (e | 1) + 2@(51n P, + sin 1p27)]‘ _Z\; (e | 1) = {sin Y, + sin wz)]
| “ 2D . s ¢ -T0,_ 2Do s 8 -To,_
Half Period OSCil‘latorY i (1_'_.&-2) [Slnzll)l + NO‘ (e’ 1) s (14_“(;—_2_) [Slnzllll + K(; (e 1)
transient describing '
function + 20 Sinzwl]; - &z-—sinzwl]

e g . '4D § 2 " -4D¢

Describing function [71] — Y1 - ()

& ﬂAO - KO— 7A, 2

0

Freeman and Cox half
Period Complex gain [16]

4Do, - -

ayy .
[2 e “.cosyp, +e
Ao(ez““-l) o

uies

71-4&%—]“
0

~8Duis

A 2(e"™-1)

..92..
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- Fig. 3.3 Determination of the instantaneous transient solution at ——60— = 16 for the system of Fig. 3.1.
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Estimated behavior using simulation.
Complete period OTDE.

Half period OTDF.

Describing function.
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Fig. 3.5 Oscillatory transient frequency characteristics of the system of Fig. 3.1.
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period OTDF. This can also be concluded from the responses in the time
domain shown in Figs. 3.6 to 3.11. From Figs. 3.4 and 3.5 it can also
appear that the describing function method fails completely when the -
oscillatory behavior starts to be heavily damped. To study the dynamic
stability of the system, we shall use the half period OTDF to describe
the nonlinearity during the oscillatory transient behavior. Following
step 7 of Section 2.8 we find that U(Aj,0,0) and V(Aé,a;w) can be

expréssed as

UCAgses0) = -Q) (0] + Ny (Aq,6) (3.2-12)
1 g} Tk ‘ -
and .
V(Ao,a,w) = -Qz(oc,w)_ + NT.-q(AO’a)' . (3.2—'13)
2

From (3.2-10) to (3.2-13), we obtain

Oy .
.z (3.2-14)
BA, 0A, | .
oNp _
Vo__2 (3.2-15)
3, 8A,
| a’Nlp |
30 o 30243 - 308 + 6aw? + 2o + —2 (3.2-16)
o0 o0
| aNIq
W powd + 602 + —2 (3.2-17)
o0 o0
53U

P 303w? - Qow? + 60w - 6w + 20 (3.2-18)
w .
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Fig. 3.6 Instantaneous oscillatory transient solution for the system of Fig. 3.1.
A.  Using simulation. C. Half period OIDF. D. Describing fumction.
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Fig. 3.7 Instantaneous oscillatory transient solution for the system of Fig. 3.1.

A. Using simulation. B. Complete period OTDF. E. Freeman and Cox gain.
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Fig. 3.8 Instantaneous oscillatory transient solution for the system of Fig. 3.1.
A. Using simulation. C. Half period OTDF.
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Fig. 3.9 Instantaneous oscillatory transient solution for the system of Fig. 3.1.

A. Using simulation. B. Complete period OTDF. E. Freeman and Cox gain.
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Fig. 3.10 Instantaneous oscillatory transient solution for the system of Fig. 3il.

A. Using simulation. C. Half period OTDF.
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Fig. 3.11 Instantaneous oscillatory transient solution for the system of Fig. 3.1.

A. Using simulation. B. Complete period OIDF. E. Freeman and Cox gain.
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d . '
and _g_\[ = 90202 - 3w2 + 120w + 2 . (3.2-19)
, ,

K,(A,) and K (Ao) are determined from Figs. 3.4 and 3.5 respectively.
Following steps 8 and 9 of Section 2.8, we obtain the n(;Ao), cufve shown
in Fig. 3.12. The stability regions are indicated in the figuré-. The
system has a ;mique limit cycle at A, .= i.10. Systém simulation

indicated a unique limit cycle with amplitude A, = 1.13.

3.3 SAMPLED DATA CONTROL SYSTEM WITH A SQUARE ROOT ELEMENT

Consider the nonlinear sampled data system shown in Fig. 2.2.
The nonlinear element will be aéswned to have a squafe root character-
istic, [7], that is.
y = /X, | ‘ x50 . (3.3-1)

and

A
o

y=-/<, x (3.3-2) -

where x and y are the input and outpu,tr of the nonlinear elemeﬁtrespec-
“tively. 7 -
We select
o4 o | 33
L(s) = ———————— (3.3-3)
s(s+1) (s+2) - : - .
. and let Tg = 0.1 secs.

- We have, [19],

6(2) = $H,(S)L(s)]

4(1_e,—0. 15) |

s2(s+1) (s+2)
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=22 3,0+

1 ’ (z-0.9048)  z-0.8187

0.2 4‘(z--1)‘- o z-1 2 g
-~ (3.3 4)

sT o ,
Substituting z = e °, with s = ow + jw and following the same steps

as in Section 3.2, we cbtain the instantaneous oscillatory transient
solution in Figs. 3.13 and 3.14. From these figures it can also be
seen thatr the best accuracy in the pre‘diction is achieved using ‘the
half period sampled OTDF. The staiaility regions', detenninéd as in
Section 3.2, are showﬁ in Fig. 3.15. It is seen that the systeiﬁ con-
sidered has a unique limit cycle at A, = 0.55. System s’imulatidp;

indicated a unique limit cycle with amplitude A, = 0.5543. ..

3.4 FILTER HYPOTHESIS

If transient osciliations are preéent in the nonlinear sYste;h,.
the frequency spectrum of the output of tﬁe linear plant will be contin-
uwous, for example as in Fig. 3.16. Those results were obtained using
the Hewlett-Packard Fourier Analyzer 5v450A, [32]. The amplitude"spec-
trum of this output predicted using the djesci‘ibing fuﬁction conéists of
an imbulse at the fundamental frequency, Fig. 3.16. If the OTDF is
used, the spectrum of the outpﬁt is predicted to be as shown in the same
figure. The a@litﬁe spectrum of the prediction error using the OTDF
improves as the order of‘;:he plant increases. This is demons trated in
Fig. 3.16 using Butterworth filters. It is also obvious from Fig. 3.16
that the predicted output using the OTDF has a better ampiitude spectrum
than that'ob‘éained using the describing function. It should be noted
that the results reported here are qualitative. An exact error analysis-

is fommidable.
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Fig. 3.14 Oscillatory transient frequency characteristics of
the system given in Section 3.3.

A. Estimated behavior using simulation.

B. Complete period sampled OTDE.
1\ C. Half period sampled CTDF.
D. Sampled describing function.
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4. ASYMMETRICAL TRANSIENT OSCILLATIONS

4.1 INTRODUCTION

Asymmetrical»oscillafory transient processes are common ipwsome
classes of nonlihear control systems where the gscillatory behavior is
superimposed on aperiodic slowly varying signals. This typé of oscilla-
tion is encouﬁtefed‘when the ihput-output characteristics of the non-
linéarity is nonsymmetrical, or when the input to the nonlinear éiement
consists of an oscillatory signal and.én aperiodic or bias signal. In
most cases, it is required that the frequency of the bias signal be suffi-
ciently lower than the osciilatory one [8]. For lightly damped'tranéients,
many writers have used the concept of dual describing function to repre-
sent the oscillatory behaviéf [i], (121, [211 - [23]. They gonsidefed
the input to'the nonlinearity to be a sinusoidal component superimpdsgd
upon a constant bias signal. The sinusoidal signal effectivelyrlinearized
the nonlinearity to the bias signal. As the‘basic assumpfion in that
approach is only true for lightly damped - transients, desirable responses
have not been predicted with sufficient accuracy when theroscillations
are damped. The following sections present a unified theory for the
investigation of asymmetrical transient oscillations in nonlinéar'sys—
tems. Continuous, also discrete, systems are considered. |

4.2 THE ASYMMETRICAL TRANSIENT FORM OF THE KRYLOV-BOGOLIUBOV
ASYMPTOTIC METHOD

In the study of asymmetrical transient oscillations in nonlinear
systems, the asymmetrical behavior.is usually considered to be the solu-
tion of the second-order nonautonomous nonlinear differential equation of

the form : . _
X - 20% + wf x + u £(x,%;t) =0 C(4.2-1)
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where o, w N and u are real constant coefficients. The value of yp is
restricted to be small and f(x,X;t) is a nonlinear function.

We seek a solution for equation (4.2-1) of the form
x(t) = e®H{B (t) + Ay(t).sinfw,t + 6(t)]} (4.2-2)

where A (1), B,(t) and 6(t) are time dependent functions. For con-
venience we shall assume this time dependency without indicating it by

‘appended arguments. w, is chosen such that

0

wy? = w ? - 02> 0. . , (4.2-3)
Let - : |

B(£) = wgt + 6 | (4.2-4)
so that : |

P(t) = w ,

= w6, - (4.2-5)

tand o = % . Consequently, x(t) and

Also assume A = A, eOt, B = B, e
X(t) can be expressed using an approach similar ‘to that followed in Sec-

tion 2.2 as

x(t) = o(B + A sing) + wyA cosyp | (4.2-6)

and

x(t)

W, eat(.z\o cosw—éAo siny) + “’02 et B,
+ 20% - w2, | (4.2-7)
This requires, (2.2-8),

B, + Ao sing + 6A, cosy = 0. (4.2-8)

Substituting (4.2-8) into (4.2-1), we get

AO éAO ] ue—oup )
By + a)—(—)—cosw - a—o—smw = - Tof'f[B + A siny,

o(B + A siny) + w,A Cosy; 1. (4.2-9)

g e
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Also, from (4.2-8) and (4.2-9) and after some manipulations, we obtain

1'30 siny + w B, cosy + Ao = - %:—-6- e'mp f[B‘+ A sing,

o(B + A siny) + wyA cosy; lu’)'- ] cos;p‘v (4.2-10)

and

:'B B ‘ : . oy :

—Q-Cosw - gg_ﬁ.sinw + 6 = 39—f—-f[B + A siny,;-
Ay A Aguy .

o(B + A siny) + wyA cosy; %] siny. (4.2-11)

Since p is restricted to be small, then Z\O, B, and 6 are small, so that
A, (1), B (f) and 6(t) are slowly varying functions of time. Consequent-
ly, by averaging equations (4.2-9) to (4.2-11) over a complete perioci,

the estimated values of 2\0, 6 and B, turn to be

27 .
]\0 = - __u___J e ™ f[B + A siny, o(B + A siny) +
211'(.00 0 ) .
wyA cosy; %—] cosy dy ‘ (4.2-12)
2T

6 = —2 f e £[B + A siny, o(B + A siny) +
2rAgwg 4o . '

wyA cosy; li’)— ] éintﬁ dy 7 ' (4.2-13)
and
Zw“
B, = - — f e £[B + A siny, o(B + A sinp) +
Zﬂw% 0 -

wo A cosp; %] dyv ., (4.2-14)
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Equations (4.2-12), (4.2-13) and (4.2-14) will be referred to as the
asymmetrical transient form of fhe Krylov-Bogoliubov asymptoti.c,method;
When evaluating the integrals in those equations, A and B should be
expressed in their explicit form as Ao‘e(jt and BOeGt respectively,
Define the function N;(A,Bg,a,0,0,) as ;

A

I e f[B + A siny,

0 :

NO (Ao’ BO ,a’o’wo) = ZTI'BO

o(B + A siny) + oA cosp; L] dp . (4.2-15)
Then, equation (4.2-14) can be written as
wg + WNg (A ,Bg,0,0,04) = 0 . - (4.2-16)

Equation (4.2-16) will be'denoted as the auxiliary equation of the sys-
tem described by (4.2-1).

4.3 ASYMMETRICAL OSCILLATORY TRANSIENT DESCRIBING FUNCTION

Let x(t), (4.2-2), and y(t) be the input and the output to a
nonlinear element. For A (t) and B,(t), (4.2-2), equal to constants,
let x(t) = x(t,AO,Bo) and y(t) = y(t,AO,BO). Furthermore, let

xh(t,AO sBy) = x(t,AO,BO) uh(t) (4.3-1)
and

Y (t480,B,) = ¥ (£,A0,B,) Uy () (4.3-2)

where uh(t) is given in (2.3-3).

Define the finite period compiex function Nh(AO »By,S) as
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. Y., (A, ,B,,S)
NhCAo’Bo’s) = —E—ngﬁg—__
X, (A 5B58)

J ¥, (£54,,B,) e St at
0

o]

J X (t,A4,B) e St at
0 “

h VR
J y(t,Ay,B;) e Stae :
= 12 ‘ (4.3-3)

J x(t,A;,B,) e 5t at
0

Consider a nonlinearity y(x,fc;t) . Let the 'input to this nonlinearity

be
X(t,Ay,B,) = ¢°F [B, + A, sinp(£)] . - (4.3-4)

where y(t) = wt and w is assumed to be constant. Then, the output

y(t,A,5B,) can be written as-

y(t,Ay,By) = yie”t (B, + A, sinut), ¢” [o(B, *+ A, simut)

+ wA, coswt]; t} . (4.3-5) -

In dealing with asymmetrical types of oscillations, we select

h:T:.Z.lr_.
w

Expressing s as s = ¢ + jw, we obtain from (4.3-3), (4.3-4) and

(4.3-5)
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2m ,
et B+A, sinut), " Flo(By+A, sinut)

NL(Ay By ,000) =

—
(=) Sll\)o
=

&7t (B, +A, sinut) o (INT gp

+ uh, cosut]; t} e (OHINT g, (4.3-6)

Changing the variable of integration in (4.3-6) ,l introducing o,
and simplifying.yields :
27

o o . oy .
) fo e T yle” (By + A, siny),

NT (AO"’BO 50‘:“’) = ;‘5{—

e™ola(B, + Ay siny) + Ay cosy]; L1 eIV ay
| L (4.3-7)

Let N.(Ag,Bg,0,0), (4.3-7), be the asymmetrical

oscillatory transient describing fumction. Express NT(AO’BO’O"“’) as

NI‘(A() ’BO’O"“’) = N’I‘p(AO’BO »0,0) + jNTq(AO ,BO 205 0)
...(4.3-8)

We have

27

NTp(AO ’BO 20,0) = ‘;‘i"‘J e"OLl}J y{eaw (BO +“A0 siny),

0°0

o : .Y .
e q)w[a(Bo + Ay siny) + A, cosy]; o } siny dy
oo-(4-3-9)

and
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27
NTq(A0 02%s®) = A IO e Y y{eéw(Bo+Ao siny),

e*Vula(By+A, siny) + Ay cospl; L} cosy dy (4.3-10)

If we let B, = 0, (4.3-7) reduces to the complete period OTDF
(2.3-9). | _
To complete the analysis, let us define N (A Bo,a,w)‘, to be

the aumllary dlrect gain, as.

1im NT(AO ,Bo ,s)

S+ou

No (Ao ’Bo ,OL,(D)

(T -st .,

y(t,Ao,Bo) e dt f '

lim ; L (4.3-11)

STaw J x(t,A,,B,) e St at e
0 )

Substituting x(t;AO,Bo).and y(t,AO,BO), (413'4) and (4.3-5), into

(4.3-11), we obtain after some manipulations
‘ 1 2 ap . ab .
No (AO ’Bo 90"‘1’) = 'Z‘T;B'O‘ jo € Y{e CB0+A0 sm\p) ’

eula(B +A, sim) + Ay cospl; &3 dy. (4.3-12)

4.4 PROPERTIES OF THE ASYMMETRICAL OSCILLATORY TRANSIENT DESCRIBING
FUNCTION

Let a nonlinear element y(x,X;t) be injected with the transient
component

x(0,Ag,Bg) = e*V(Bo+A, siny). (4.4-1)

Then, the output can be expressed as
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y(,Aq,Bg) = y{e® (B A, siny), e®Vula(By*A, siny) +
Ay cosyl; &3 . . (4.4-2)

Due to the presence of the bias signal, the output of the nonlinear

element will be assumed to take the form, (2.4-3),
¥, @,4,,8,) = e™(a siny + b cosp + ) (4.4-3)

where a, b and ¢ are functions of Ag, Bp, o and w. This dependency

will not be indicated by appended arguments.

As in Section 2.4, let

Y (,44,8p) = e—awY(‘P:AO’B_Q) ‘ (4.4-4)

and

¥, (,40,80) = &%y (9,40,80). (4.4-5)

We minimize the mean error square over a complete period 55; where
" .' B -
‘ e(lb ’AO ,BO) = Y'(l!) ,AO ,Bo) - Ya(lb ’AO ’BO) .- (4-4—6)

At the minimum,

aZ =2 2
2e oe e (4'4_7)

From (4.4-2) to (4.4-6), we obtain
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N LU v
ap = = I e ™ y{e®(Bo+A, siny), e™ula(By+A, siny)
0 : ‘ .

+ Ag cospl; 43 siny dy (4.4-8)
1 (%" oo s "
bT = = f e @ y{ea (Bo+Aq siny), e wla(By+A, siny)
™ Jo
+ Ay cosvl; ¥ cosy av (4.4-9)
and
2m

CT = %TT I e—(w y{ew‘b (B0+A0 Sin‘p) ) eaww[a(ﬁo-"'j\o Sinw)
0 .

+ Ay cosyl; Y3 ay. - (4.4-10)

From (4.3-3), (4.4-1) and (4.4-3), it can be shown that

~

: b S
Np(AgsBysow) = 2L+ § 2L ‘ (4.4-11)

0 0
Moreover, it appears from (4.3-11), (4.4-1) and (4.4-3) that

NO(AO,BO,a,w)'= %%-. | ‘ ' (4.4-12)

Substituting (4.4-8), (4.4-9) and (4.4-10) into (4.4-11) and (4.4-12),
we obtain NT(AO,BO,u,w) and N, (A,,B,,a,0) és given in (4.3-7) and
(4.3-12). Hence, they are optimal in the sense that they minimize

the mean square error.

4.5 STABILITY STUDIES

Consider the nonlinear system in Fig. 2.1. Let NT(AO,BO,a,w)
describe the effect of the nonlinearity in the closed loop system

during a period T, where A, and B, are the instantaneous amplitude and
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biased component of the iﬁput respectively. For any asymmetrical tran-
sient oscillations to take place, it is necessary and sufficient that

the quasi-linearized system satisfies
1+ NTCAO,BO,a,m) « Glaw,jw) = 0. (4.5-1)

Also, to describe the biased component let, (4.3-3), (4.3-11) and '
(4.3-12), |

W(A,,B,,0,w)

lim [1 + NT(A(),BO’S‘) G(s)1
SO

1+ Ny(A,By,0,w) Glow)
= 0. . ' , (4.5-2)

Equation (4.5-2) will be referfed'fo as the auxiliary equation of the
systém in Fig. 2.1. |

~ The solution to equations (4.5-1) and'(4.5—2) for a given value
of Ay = Ay will be denoted by S, = SOCAé’Ba5ao’wo) and represents the
instantaneous asymmetrical oscillatory transient solution. Such a
solution will be considered to be stable if any perturbations to Ay

tend to vanish as to<,

Theorem 4.1
Let U and V be the real and imaginary parts of (4.5—1).
Consequently, '
Us) + j V(S) = 0. | (4.5-3)
Also let, (4.5-2), .
W(S) = 0 - (4.5-4)
where S = S(Ay,Bp,0,w).
Assume that U and V and their firstrderivatives are continuous

functions of S in a small domain around Sy Define the operator E,,
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such that
E = B'QK(A) 9 +.K(A)-'6——-+K(A)-§——° (4.5-5)
a —BK; bOEB_O- a0’ Jo w~ 07 B )

Then a necessary and sufficient condition for S, to be stable is
for a real positive number n, to exist such that in the neighborhood of °

S0 the condition

) 0 90, dw  o8a  dw’

is satisfied.

Proof

Equation (4.5-1) can be expressed as
UAqsBy,0,u) + § V(Ag,Bg,a,0) = 0 ‘ (4.5-7) -

where U and V are thg;reél and .imaginary parts in_(4.5—1), -
For'.AO = Ay, we have Sy = Sy(Ag,Bg,0,,6,) and it satisfies (4.5-2) and
(4.5-7). |

Consider small perturbétioﬁ around Sy such thatiAo; Bo and 6
are small. We denote these perturbatioﬂs as follows

\

Ag > Ay + BAg

B! - B! + AB -
070 0 > (4.5-8)

O > o, + boy +.] Aa2

wy > wy * Aw1‘+ j sz : )

Mg, 8By, do; and Aw; are real mumbers. A, and Aw, are given by
equations (2.5-11) and (2.5-12) respectively.
Following similar steps as in Theorem 2.1, we get in the

neighborhood of S the relationships



-65-

3U_, 38U :dBo+aU'd°‘1+§_gd‘”1 av 4,
Ay 3B, dA, " Ba dA, " dw dA;  Bw EUK‘
do
= HK% (4.5-9)
and
ov_ L ov BB ey gy I QU oy |
Ay ~ 3B, dA, " Do ali" dw dA; w- dA,
da K .
Ul aﬁ o (4.5-10)
dB da
In the nelghborhood of §;, let KbCAOJ HK_" K (A ) = azr-and
t dwl .
€00 = g -

0
In terms of the operator_Ea; (4.5-5), equations (4.5-9) and

(4.5-10) can be expressed as

duw do. , ,
V- 2 9V "2 :
B =w &t w, | (4.5-11)
and
dw do
_ 30 2 U 2 . -
Ea(v) = _an I * 5 T, ). (4.5-12)

daz -
Eliminating I o we get
0

V. 3Uu oV dwz

v
Ba E (U) 30, EaCV) = 30 0w dw 5&9 HK—" (4.5-13)

From (2.5-12), the instantaneous solution S, is stable iff

dw,

na =m> 0. | (4.5-14)

Hence, S, is stable iff in its neighborhood there exists a real
positive number n, such that the condition (4.5-6) is satisfied. i

Similar corollaries can be obtained as those given in Section 2.5.
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4.6 NONLINEAR SAMPLED DATA SYSTEMS

Asymmetrical transient fbrm 5f the Krylov-Bogoliubov method
We will now presenfna‘sampied version of the nonlinear differen-
tial equation |
X - 20% ¥ wﬁ x +egx,%t) =0 o (4f6-1)
where o, w and e are constants and € is.required to be small. We cbn—
sider only the class of systems possessing the property wTS<<1, (2;672).
The general soiutioﬁ of (4.6-1) can be expressed as |

onT , ' o
x(@T) = e, S{By(nT) + Ay(@l) - sinfwynT, + 8(nT)]1)

oo (4.6-2)
where w, satisfies (2.6-4).
Since ¢ is selected to be small, thén the variation in Ay, B,
and 6 will be small.

We seek a solution~for iCnTS) in the form

X(nTg) = o(B + A simy*) + wj A cosy*.  (4.6-3)

This requires, (2.2-8),
By + A, simp* + 6A;-cosy* = 0. ‘ (4.6-4)
Following the same steps as in Sections 2.6 and 4.2 we can write

the sampled version of the asymmefrical transient form ofvfhe Krylov-
Bogoliubov method as, (2.6-9) to '(2.6-11);
2N_-1

. 8 —qU®
Ry = -t 1 ™ gB + A sing*, o(B + A siny¥) +
0"'s n=0

. X .
Wy A cosy*; %-] cosw*w (4.6-5)
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ZNS—l :
- - * :
6 = ZEBEhﬁT_ ‘ Z e o glB + A sinp*, o(B + A sing*) +
s n=0
p* .
wy A cosy*; L] simy* ~ (4.6-6)
alld M -
2Ng-1

3
B o= .- . E_ e o[B + A siny* , o(B + A sing®
0 'ZNSw'OE ZO g s )

® . ' : '
1. (4.6-7)

£l

o, A.cosw*;

Sampled asymmetrical osceillatory transient describing function

Define the finite period complex function NhCAO,BO,Z) as

Yh(A()’Bo’Z]
Ny (Ro5B0»2) = x B 7y
. h 0270

[h/T ] _

z Y(nTS:AO ,BO)Z B

- _n=0 — (4.6-8)
[h/T_] ,

n

-n
:x(nTs,Ao,BO)Z
n=0

, sT
From (4.3-4), (4.3-5) and (4.6-8), and letting t = nT_, z = e s,

s = o+ jwand h = T, we can write the sampled asymmetrical transient

describing function as .
ZNS—].
* j ~aPp® .

SR ] *.‘p*' ‘j‘l’* :
wla(B + A sing*) + A cosy*]; 6'} e . (4.6~9)

Let us also define NgCAO,Bq,a,w), to be denoted as the sampled auxi-

liary direct gain, as follows
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Ny (AgBgs0,6) =  Llim  Ni{Aq,By,2)
- z+eawTS
(T/T] |
o 2 ychs ’Ao ’Bo)z—n
= lim 0. ,

owT -
Ss 1/t

Z+ -
, ,25 x(nTg,A,,B0z "
n=0
2Ng-1
1 ~ap® .
= N T e y{B + A siny*
s~0 n‘zo ’

wlo(B + A sinp®*) + A cosy*]; %*}.

.. (4.6-10)

Similar to Section 4.4, the complex function N?I‘.(AO,BO,oc,w) and
the gain Ng‘ (Ay,Bg,a,u) are optimal in the sense that they minimize the '

mean square error.

Stability analysis
The stability of the sampled data system can be investigated‘ in
a similar way as in Section 4.5. The instantaneous asymmetrical solu-

tion must also satisfy the auxiliary equation (4.6-11)

W# (A() ’Bo 2005 0)

"

Lin  [1 + Ny(Ag,By,2) 6(2)]

z+eawTs

[}

1 + N (Ag,Bg,0,u) G (ow) -

= 0. - | (4.6-11)
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4.7 CONTINUOUS FEEDBACK CONTROL SYSTEM WITH NONSYMMETRICAL PRELOAD
ELEMENT

Consider the system shown in Fig. 4.1. The nonlinear element
will be assumed to have a nonsymmetrical preload characteristic, [91,
that is, 7
y=D +mx, x=20 (4.7-1)

and

i

Cy=-D, +mx, x<O0. - (4.7-2)

Where x and y are the -input and the output of the nonlineaf ele-

ment respectively. -Let x be of the form
x(@) = ¥ (By + Ap sing) - S (4.7-3)
where ¥ = wt. Define p; and p, such that

(4.7~4j’

(A
@

| Ao sinlp1 +_B0 =0, ‘o <y
and

Ay sing, + By =0, 6. <y, < 2r (4.7-5)

where 6 and 6 are defined as in Fig. 4.2.
my my o

By | D, D

' 2
Let 60:.3\_0—’ 61=K—aand62=

KE .
The asymmetrical oscillatory[tranéient describing function can

be expressed as
Np(Ag,Bosa,0) = TpcAO,Bo,a B+ 3y o (g sBgs2,0)

..(4.7-6)
where, (4.3-9),

b, .
NTPCAO’BO’@’“) = E%f'{Jole—aw[Dl * mleacho * Ay sing)]

Yo : ' .
sing dy + f ’ e [-Dy + mp e®¥(By + Ay siny)Isiny dy +

¥



T(t)

x(t)

y(t)

G(s)

c(t)

Fig. 4.1 A nonlinear control system with a preload element.

G(s) =

X

Crls+1)(rzs+l)(rss+1)

_‘OL_
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Fig. 4.2 Typical asymmetrical transient performance of a preload element.
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2 . ' . .
J e W [D1‘+m1ew(B0 + Ay sing)] sing dy}. (4.7-7)
by ,

This reduces to

N(ABOL3=-1-{m—1(2ﬂ+IP‘lP)*m—2(¢'ll’)“*
Tp+ 02702 T 2 o 2 2 1 2’
L, - my) (sin 2, - sin2y,) - 11 (e 15, + 6,
. +o.

(asiny, + c05¢1)3-e'“w2(51.f 62)(asinw2 + co§w2) -

5,1 - e 2™y, - = (4.7-8)
‘Also, (4.3-10), ' |
| 1 ("1 -ap o o
NTqCAq,BO,a,m) = EK; {fo e '[D; +me (B, + Ay siny)]
R ] U] - ‘ : ‘ ' -
~cosy dy + f 2 e 0”‘b[—Dz + mzeaw(Bo + A, sinw)] cosy dy

9,

, 2 3y B | : -
+ f e 0‘."’[Dl + mpe Ip(BO + Ay siny)] cosyp dy} (4.7-9)

which reduces to

NTqCAé:Bo’“) = %—{ %-Omz-mij(c052¢1 - cos2Py) -
1 o, o ~op, :
,1+a2 [‘e ‘ (61+62)(acoswl - s;nwl) - e (61+62)
(ocosy, - sing,) - as; (L-e"2™)7}.  (4.7-10)

Fﬁrthermore, for the auxiliary direct gaih we have, (4.3-12),
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M e e s s i
No(Ag,By,0,w) = 7?55-{ . e "'[D; +me (B, + A, §1an]dw

1’) ) ‘ ' ) .
+ J 2 e d¢[_D2 + mzemp(Bo + Ay sing)] dy
by

2r y . K ;
+ J e [D; + me® (B, + A, siny)] dy} (4.7-11) -
vy > : ,

which reduces to
No(Ag»Bgs0) = 3 tmy (2n + b, = ¥,) - mp(hy-vy) *

5, (cosy, -cos&z)— ag;-ge -e ) +

8, -oy;  -ap, -2ma : . )
— (1 - e +e -e . )} ' (4.7-12)
ado , : '

Let D, = 2.0, D, = 1.0, m; = 0.2, m, = 0.5, 7, = 0.2, T, = 0.5,

T3 = 1.0 and K = 5.0, Then the transfer function 6f'the plant in

Fig. 4.1 becomes

S so0 -
6() = sy E ¢ - (4.7:13)

Following similar stépS'as those 6utlined in Séction 2.8, we
obtain the as&mmetrical instantaneaus oscillatory transient sdlution
shown in Figs.4.3, 4.4 and‘4.5. from these figures, it can be seen
that the accuracy of prediction is less than that of thetéymmetrical case;
Stability regions are also given iﬁ Fig. 4.6 using the analysis given -

in Section 4.5,
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Fig. 4.3 Asymmetrical relative damping characteristics of the system given in Section 4.7.-
A. Estimated behavior using simulation. '
B. Asymmetrical OTDF.
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A. Estimated behavior using simulation.

B. Asymmetrical OTDF.
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10.0

Fig. 4.4 Asymmetrical oscillatory transient frequency characteristics of the system given in

Section 4.7.
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Fig. 4.5 Asymmetrical oscillatory transient bias characteristics of the system given in Section 4.7.
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Fig. 4.6. Stability regions for the system given in Section 4.7.
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5. APPLICATIONS

5.1 INTRODUCTION

Interest in the study of nonlinear oscillations arose due to
their occurrence in practical systems, such as in automatic regulatory
Systems and in follow-up systems, [1, 7, 8, 19, 24-30]. Oscillatory
transient behavior appeérs in many practical systems for exaﬁple in
the stabilization of powered gyroscopes with several degrees of free-
dém [1]. This:problem can be studied using tﬁe transient form of the
Krylov-Bogoliubov asymptotic method as given in Sectioﬁ 2.2. The'same
analysis can also be applied to many t&peé of electronic oscillators
[61. |

In this. chapter we give t&o §xaﬁp1es for the application of the
OTDF and the asymmetrical OTDEF.

5.2 POSITIONAL CONTROL SYSTEM

Conéidér the positionallcontrol system shown in Fig. 5.1, [33].
The nonlinear friction in the rofating péxts.of the sefvomotor‘is
neglected. ‘The motor is represented By'a first-order linear system and
the tachometer characteristics are assumed to be linear. The baékiaéh
element and the preamplifiér fédﬁceﬂto a rectangular hyéteresis element,
Fig. 3.1, with D=1.0 and §=0.05. The trénsfer function of the linear sys-
- tem can be wfitten as a ' |
4.91

2

$(0.688s+1) ('1%6‘ + V7 i%* 1)

G(s) = (5.2-1)

Using the half period OTDF given in Table 3-1 to represent the nonlin-

ear element, the instantaneous oscillatory transient solutions can be



backlash element preamplifier filter motor
-gear potentio-
reduction meter -
! g
Ly(s) s+l S
."(:)" K
P)
tachometer
Fig. 5.1 Schematic diagram of the positibnal control system given in Section 5.2.
K, = 12.66 rad./sec. voltage t = 0.85 sec.
K, = 0.027 voltage sec./rad. P, = 0.03
Ky = 1:30 7 g, = 2.88 voltage/voltage
K, = 5.03 voltage/rad. g, = 23.2 voltage/voltage
Ly(s) = ———
7 g

10

_6L-
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obtained by following the procedure outlined in S'ection'u2.8. The re-
sults together with those obtained using measurements on the physical -

~ system ére shown in Figs. 5.2 and 5.3. The latter results were obtained
by introducing step inpufs,"me‘asuring ‘th’e corresponding x(t) and from it
combutiﬁg Ab, o and w. The stability regions, computed using the proce-
dure describéd 1n Section 2.8, are shown in Fi‘g.' 5.4, The system is”
seen to have a unique limit cycle at A, = 1.0.‘ This was also coﬁfirmed
by the practical system. From Figs. 5.2 and 53 it is seen that' the
accuracy of the prediction method is very:sa‘tisfactory due to suiplus

filtering in the system.

5.3 SYSTEM WITH ‘NONSYIVMETRIC.IAL‘ NONLINEARITY

Consider the positional control system shown in Section 5.2.
Let us investigate the case when the ‘non‘liin‘earity is a biased rectangu-
lar relay. Let us denote the input and the output of the nonlinearity

by x and y respectively. We get

y=mD X2 b (5.3

and

[0
1
o

y X<b . (5.3-2)

where m, D and b are constants.
Let the input to the nonlinearity be an asymmetrical oscillatory

transient signal, (4.4-1). Define y,, ¥, and ¢, such that

Il

alpl . ' B . [
. + B 5.3-3
e (A, siny; + By) =b , 0 <Yy < oy ( )

ew‘UZ(A0 siny, + By) =

I
o
-
@
A
b=
N
SA
@

(5.3-4)
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5.2 Predicted and measured relative damping characteristics for the system given in Section 5.2.

Using prediction

..."[8-



w
(¥5]

1.0

Fig. 5.3 Predicted and measured oscillratory transient frequency character-
istics for the system given in Section 5.2.
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and

e (A, siny, +By) =b ,. O, < ¥3 < 2 © (5.3-5)

where O, and emz'. are given in Fig. 4.2. _
The direct component of the asymmetrical oscillatory transient

describing function can be expressed as, (4.3-9),

¥

. | 1 -aq) . ‘ .
N (Ay, By, 0, 0) = — f e (-D) sinydy +
Tp( 0 0‘: .ﬂAO[.O .
wZ . ipg .
J e Y mp sinydy + [ e ¥ (-D) sinydy +
lbl ‘ . lj)2
2w ) , } ’
, J e w mD sinydy :] . - (5.3-6)
by ‘ : ' - -
This reduces to
N’Ip(Ao’ Bo’ a) = ____]Z)___'{(m+1) [e—wl(a siny, + cosy,)
‘ A, (1+a2) .

- e"“wZ(a siny, + coswé) + ¢-aw3(a siny, + cosw3)]

- @™ s 1y . (5.3-7)
Also, for the quadratic component, we have, (4.3-10),
V1

-1 -op
N Ay, By, o, = - [J e -D) cosydy +
Tq(AO 0> Os 0) A A (-D) pdy
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v, L

j e ™ mp cosydy + j e—a¢(-D) cosypdy +

by v,

VA : : ’ :

f e ™ 1D cosydy ] : - (5.3-8)
b3

.which treduces to

NTq(Ab’ By, o) = {(m"'l) [ e“a‘h:(a Cos‘l’_l -

Ay (1+a?2)

sinwlj -(e'“wZCa cosy, - sinwé) + e_uw3(a cosy, -

sinw;)] - alme 2™ & D} . * ~ (5.3-9)

For the auxiliary direct gain of the nonlinearity, we have,

(4.3-12),
: v 12
No(Ags Bys @, 0) = —= [J (D) ay + f e “¥mD dy
‘1’3 o 2m o _ ,
. f (D) dp +f e b dy ] (5.3-10)
Y, Vs |

or after simplification, We!get

‘ D
Ng(Ags Bgs @) = =

'ﬂ'oa

[ D) (71 - ™2 4 g7V

- me T D] - (5.3-11)

We consider the same linear plant described by (5.2-1), and ;
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select m=1.5, D=1 and 1;=0.5. By following the same steps as in 'Section;
4.7, the asymmetrical inétantaneous oscillatory transient solutions
can be determined. The results together with the measur'edr quantitie;s '
from the practical system aré shown in Figs; (5.5), (5.6), and (5.7).
The stability regions can be computed and are plotted in Fig. (5.8).
The system has a unique as.ymn'etrical limit cycle at A, = 1.10 and

B, = 0.173. The practical system indicated a unique asymnetrical‘ limit

cycle at A, = 1.163 and By = 0.220.
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Fig. 5.6 Predicted and measured asymmetrical oscillatory transient fre-
quency characteristics for the system given in Section 5.3.
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Fig. 5.7 Predicted and measured asymmetrical oscillatory transient bias characteris-
tics for the system given in Section 5.3.
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6. CONCLUSION

A propoeed theory for the investigatien of the dynamic behavior
of nonlinear control systems has beeh presented It represents the
generallzatlon of the describing function method in the transient case.

For the investigation of symmetrical transient oscillations, a
transient form of the Krylov—Bogeliubov asymptotic method has been
introduced. In addition, a new complex functlon based on a f1n1te
period of ‘time has been. defined. The new def1n1t10n has been utlllzed
to derlve a new osc1llatory transient describing functlon It has been
proven that the OTDF is ‘optimal in the sénse that it minimizes the
‘mean” square error . in- the approximation. In estimating the OTDF,
half and complete period intervals have been considered. It has been
shown that the half period OTDF results‘in high accuracy'w;th systems
employing symmetrical nonlinearities. Mbreover,‘by comparing the new
OIDF with the other approximete gains reported in the iiterature it has
been found that the‘OTDF &ields the best resuits especially when the
transient oscillations are heavily damped.. Furthermore, using the
approach suggested,'which is net a step by.step'approach, it is possihle
to determine the dynamic stability of nonlinear systems during the
oscillatory transient behavior. The ptopOSed theory has. been, extended
to a wide class of sampled data:systems. |

nAsymmetrical transient esciliations in nonlinear systems have
been investigated. A new asymmetrical transient form of the Krylov-
Bogoliubov asymptotic method has been advanced. A finite period com-
plex gain has been utilized to derive the asymmetrical OTDF. This

function generalizes the dual describing function to the transient case
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and minimizes the mean square error. The thesis presented
also a new auxiliary equation to be used with the quasi;linearized
characteristic eduation to describe the asymmetrical oscillatory tran-
- sient behaviqr of the sysfem. For both continuous and sampled data
systems, it has been possible to pred;ct the asymmetrical Behavior
and to determine the system dynamic stability. '

It has been demonstrated that the_accuracy of prediction is
improved by uéing surplﬁs filtering in the system. A position control
system was used to‘shqw the abplicability of the techﬂique proposed.
'Finally, ‘the thesis has éuccéeded in predicting accurately the oscii-
latory transienf behaviors associated with nonlinear control systems
and determining their dynamic stability without ﬁsing any step by step
apprdachi}‘This it-is felt represents the main contributiqd‘of the

thesis.
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