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Abstract 

In this dissertation, an adaptive h z y  logic control algorithm has been developed 

for a Power System Stabilizer (PSS) to improve dynamic performance of the sys- 

tem. The proposed PSS deals with automating the parameta tuning and structure 

optimization in orda  to adiieve the desired peiformance. 

This approach combines the advantages of both Fuzy Logic Control (FLC) and 

ArtWal Neural Network (ANN) and avoids their drawbadrs. The parameters of 

the controuer, membaship b d i o n s  and infaence d e s  are adjusted according to 

gradient decent learning algorithm. 

Moreover, the mechanism of how the FLC can be trained in a dosed-loop control 

system is investigated. In the fist step, a desired controller is employed to generate 

the input-output data required for training. The FLC leams to copy the desired 

controller. This approach needs the existence of the desired controller. To overcome 

this problem, in the next step, a self-learniag approach is utilized to train the FLC 

directly from the plant output. A genetic algonthm is also used to optimize the 

structure of FLC, preventing the Iearauig aigorithm kom the overfitting problem. 

Simulation studies and cornparison between the proposed adaptive fuzzy PSS 

and the conventional PSS using a single-machine connected to an intinite bus are 

conducted. For vaification, it ha9 been applied to a multi-machine mode1 of the 

power system. 

A TMS320C30 Digital Signal Processor (DSP) and an ABB PHSC2 Programmable 

Logic Controllet (PLC) w a e  cmp10yed to develop a prototype real-time digital con- 

trol environment and to implement adaptive b z y  logic PSS. 
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Chapter 1 

Introduction 

1.1 Power System Control 

An electric power system contains thousands of int erconnected electric element S. 

Many elements are highly nonlinex and some of than are combinations of electrical 

and mechanical parts. Power systems have thus devdoped into complex operating 

and control systems with various kinds of unstable charaderistic [1][2]. Since these 

systems are spread over vast geographical areas, some of which span over the en- 

tire continents, they are subject to many difEerent types of disturbances. Also, the 

tendency of operating the generators with small stability margins has made these 

systems even more &agile [3] [4]. 

With the advent of interconnection of large electric power systems, many new 

problems have emerged [l]. Some of these problems are the oscillations of the 

sub-systems of a large interconnected powrr system against each other, the sub- 

synchronous tortional oscillations of turbines in a steam power plant with capacitor- 

compensated transmission lines, and othas [SI. 

The definition of stability, as applied to power systems may be stated as [3]: 

If the oscillatory response of a power system during the transient perïod 

following a disturbance is damped and the system settles in a finite time 

to a new steady state operating condition, the system is stable. Other- 

wise, it is considered unstable. 



In order to simplify the analysis, power system stability is considaed in its three 

aspects, namely [6] [7] [8]: 

Steady State Stabiüty - This refas to the stabiIity of a power system subjected 

to small and gradua1 changes in load. If the synchronous machine maintains 

synchronism after such a small disturbance, it is said to be steady-state stable. 

Dynamic Stabiüty - This refas to the stability of a power system subjected to 

a relatively small and sudden disturbance. For this category, it is assumed 

that the system is steady-state stable and s m d  variations around a certain 

steady-state point are studied. 

Transient Stability - If a spnduonous machine maintains equilibrium when sub- 

jected to a sudden impact, then it has transient stability. Large changes in load, 

line switching and system faults cari be considmd to be impact disturbances 

which may lead to transient inst ability. 

A small signal perturbation mode1 around an equilibrium point can be considered 

for dynamic stability studies and the system can be described by linear differential 

equations. However, for transient stability andysis and control design, the power 

system must be described by nonlheaz dinuential equations. 

Although t h e  are several sources of positive damping in a power system, there 

sre also sources of negative damping, notably voltage-regulating and speed- gov- 

erning sy stems. Furthermore, although ordinarily the inhuent positive damping 

predominates, in some circumstanas the net damping can become negative. With 

net negative damping, angular swing of the machine, instead of declining, increases 

either until equilibrium amplitude B reached or synchronism i s  lost. 



Over the years, considaable eor ts  have been devoted to improve power systern 

stability in various ways [9] (101 [Il] [12]. These attempts can be divided into three 

broad groups as below: 

0 grnerator excitation control, 

0 genaetor input power control, and 

0 s yst em operat h g  condition and configuration control. 

For a partidar problem, any one or more of the above methods can be employed. 

Among these methods, excitation control is prderred due to the folloftring reasons: 

a generdy eledrid systems have much smaller time constants than mechanical 

systems, 

a electrical control systems are more economical and easy to implernent than 

mechanical cont r 01 s y s t ems , 

O additional equipment required operates at low power level, whereas other meth- 

ods (such as resistor braking and capacitor switching) need a much higher 

power level. 

Effectiveness of damping produced by excitation control has been demonstrated 

both by computation and by field tests [13] [14]. To date, many of the major electric 

power plants in large interconnected systems are equipped wïth this supplementary 

excitation control, commonly referred to as Power System Stabiher (PSS). Several 

kinds of supplementaxy signals (speed deviation, fiequency deviation and accelerating 

power) have been used as input signas to the PSSs. 



1.2 Supplementary Excitation control 

Excitation controllas have been used widely in power systems for decades. The main 

objed is to achieve an acceptable voltage profile at the consumer taminal and to 

control the reactive power flow in the network. High gain, short time constant and 

high cUling voltage excitation control are among the characteristics of this controi 

loop. These r d t  in increasing both the steady state and transient stability limits 

of the system [15]. 

As the size of the intacoanected power system grew, the possibility of withstand- 

ing unexpected disturbances without loss of system stability inueased. It became 

appaent that the voltage control loop had a detrimental impact upon the dynamic 

stability of the power system. OsciUstions of srnall magnitude and low frequency 

often persisted for long periods of time and in some cases presented limitations on 

power traasfer capability. Similar types of oscillations might also be observed when 

remote generating units are connected to a relatively large power system through 

long radial transmission lines. 

Vazious methods have been proposed to enhance the dynamic performance of the 

power system. They can be divided into two broad groups: 

a Design new excitation controllex based on modem control theory, 

a hprove the performance of the presently used excitation controllers by intro- 

ducing a supplementary control signal [16]. 

A typical method in the second group is to utilize a PSS [17][18]. The basic 

function of a PSS is to extend stability mugin via modulation of the generator exci- 



tation to damp the oscillations of spachronous machine. The osdations of concern 

occur in the frequency range of approrimately 0.2 to 2.5 Hz. To provide damping, 

the s t a b h  produces a component of electricd torque on the rotor whkh is in 

phase with speed variations. Independent of the type of input signal, the stabilizer 

must cornpensate for the gain and phase charactaistics of the excitation s ystem, the 

generator, and the power system, which collectively determine the open loop tram- 

fer function. This t r d e r  function is strongly iduenced by voltage regulator gain, 

generator power level, and AC system strength. 

1.3 DifEerent Types of Stabilizers 

1.3.1 Conventional Power System Stabiliser 

Today, PSSs are widelp used on synchronous generators. The most commonly used 

PSS, referred to as the Conventional PSS (CPSS), is a âxed parameter analog -type 

device. The CPSS, first proposed in 1950's, is based on the use of a t r ader  function 

designed using the dassical control th- [19]. It contains a phase compensation 

network for the phase difference from the excitation controller input to the damp- 

ing torque output. By appropriately tuning the phase and gain characteristics of 

the compensation network, it is possible to set the desired damping ratio. CPSSs 

are widely used in the power systems these days and have improved power system 

dynamic stability. 

The CPSS, however, has its inherent drawbadrs. Lt is designed for a particulas 

operating condition around which a linearized t r ade r  function mode1 is obtained. 

The high non-liaearity, very wide operating conditions and unpredictability of per- 



turbations of the power system exhibit the following problems to the CPSS: 

a the accuracy of lin- model for the power system, 

a the accuracy of the paramdas for that model, 

a the effective tuning of the CPSS parameters, 

a the interaction between the various machines, 

a the tracking of the system non-luiearity. 

Extensive research has been carried out to solve these problems [20]. Numerous 

tuning techniques have been introduced to effectively tune the CPSS parametas [21]. 

Mutual interaction between CPSSs in multi-machine systems has aIso b e n  studied 

[22]. To solve the parameter tracking problem, variable structure control theory 

was introduced to design the CPSS [23]. However, the CPSS is a lineu controuer 

which generally cannot maintain the same quality of performance at 0th- operating 

conditions. 

1.3.2 Adaptive Power System Stabiliser 

The adaptive control theorp provides a possible way to solve the above mentioned 

problems relatuig to the CPSS [24]. At each sampling instance, input and output 

of the generating unit are sampled, and a mathematical model is obtained by some 

on-line identification method to represent the dynamic behavior of the generating 

unit at that instant of tirne. It is expected that the mathematical model obtained 

at each sampling period can track changes in the system. 



Following the identification of the model, the required control signal for the gen- 

erating unit is produced based on the identined model. There are various control 

strategies, among them are Pole Assignment (PA) and Pole Shifting (PS) techniques 

[25]. These control strategies are generally developed by assuming that the identi- 

fied model is the tme mathem atical description of the ge~erating unit [26] [2î] [28] (291. 

However, since the powa system is a high order noplineat continuous system, it is 

hard for the low order discrete identified model to preciselp describe the dynamic 

behaviot of the power system. Consequently, a high order discrete model is used 

to represent the powa systexn, which consumes a significant amount of computing 

time. The computing time for an adaptive PSS is roughly proportional to the square 

of the order of the discrete model used in the identification. The longer computing 

time limits the control effect. This is more significant if the oscillation frequency 

is relatively high. There must be a compromise between the order of the discrete 

model and the computing time for parameter identification and optimization. 

1.3.3 Neural Network Based PSS 

Artifiaal neural networks (ANNs) attempt to achieve good performance via dense 

interconnection of simple computational elements [30]. Their structure is based on 

the present undastanding of biological nervous systems. 

ANNs have a number of advantages [31] : 

0 Capability of synthesizing complex and transparent mappings. 

a Speed due to the pardel mechanism. 

0 Robustness and fault taierance. 



Adaptively adjustable to the new environment. 

Research on ANN application in power system stability has been reported in 

[32][33][34]. The success of ANNs to control unknown systems under significaat 

uncutsinties makes ANNs very attractive. Howeva, there are some drawbacks to 

the using of conventional ANNs as follows: 

Black-box characteristics; it is difficult for an outside observer to undentand 

or modify the network decision making process; the reason that initial d u e s  

for the paxameters are chosm randomly. 

Long training time; ANNs may require a long training time to get the de- 

shed performance. The larger the size of ANN and the more complicated the 

mapping ta be performed, the longer the training tirne required. 

1.3.4 Fuzzy Logic Based PSS 

One of the new methods which has recently been used in many controiler designs 

is Fwzy Logic Control (FLC) [35]. Fuzzy control systems are rule-based systems 

in which a set of hzzy rules rep~esents a control deusion mechsnism to adjust the 

effects of certain causes coming fiom the system [36][37]. 

The followings are some of the major features of FLC [38] 1391 : 

Mode1 fke based; unlike other dassical control techniques, this method doesn't 

requise the exact mathematical mode1 of the system. 

Robust nonlinear controller; FLC offers ways to implement simple but robust 

solutions that cover a wide range of system pasameters aad that cope with 

major disturbances. 



0 Development time reduction; FLC works at two levels of abstraction: the sym- 

bol level and compiled level. The symbol level is appropriate for describing the 

application engineers7 strategies, while the compiled level is w d  underst ood 

by the eledronîcs engineers. Since then is a wd-d&ed translation between 

those levels, an FLC can heIp in reducing the cornmunication problems. 

a Knowledge based; fuazy control simulates the strategy of the person controlling 

a process. Thus, the control strategy mimics the human's way of thinking. In 

this way, the expenence of a human operator can be implemmted through an 

automatic control method, not through the slow response of a human controlla. 

Designing stabilizers based on FLC is a vuy active area aad satisiactorg results 

have been obtained [40][41]. AIthough FLC introduces a good tool to ded with 

complicated, nonlineéu and ill-defuied systems, it &ers fiom a drawback - the 'pa- 

rameter tuningn for the controlla. At present, there is no systematic procedure for 

the design of the FLC. The most straight forward approach is to define Membership 

Functions (MFs) aad decision d e s  subjectively by studying an operating system or 

an existing controller. Therefore, there is a need for an effective method for tun- 

ing the MFs and decision des so as to minimim the output error or maximize the 

performance index. 

1.4 Thesis Objective 

The objective of the thesis is to solve the problems encountered with the design of 

h z y  logic and neural network based power system stabiliw. This work makes orig- 

inal contribution to the development and application of the power system stabiüzer. 



To be more s p d c ,  the ob jedive of thir thesis indudes the followhg aspects: 

1. Both the FLC and ANN have bem employed together to design a new PSS, 

Adaptive-Network-Based Fmzy Logic PSS (ANF PSS). In this approach, a 

h z y  logic PSS with lcarning ability has b e n  constructed and is trained di- 

rectly ftom the input and output data of the gentxating unit. Because the ANF 

PSS has the property of leaming, MFs and b z y  deasion rules can be tuned 

automatically by the learning algorithm. Leamhg is based on the error that is 

evaluated by comparing the output of the controller with the desired controller 

which in this case has bem chosen a self-optimizing polcshifting adaptive P SS . 

2. In a typical situation, the desired contrder may not be available. Therefore, a 

self-learning approach is utilized to train the ANI? PSS from the performance of 

the gmerating unit output. In other word, without resorting to another existing 

controller, it is proposed to construct an FLC that performs a presaibed task. 

To train the controller, the enor between the actual and the desired plant 

output is back-propagated through the plant mode1 to produce the error in 

control signal. 

3. Besides the problem of parameter tuning, the selection of the number of MFs 

and inference d e s  is not a trivial task. Finding the optimum number of d e s  

for a specific application is, to a large extmt, a process of trial and error, 

relying mostly on past q u i e n c e  with simiiar application. Also, by increasing 

the numba of MFs the size of adaptive network grows exponentially, requiring 

more training time. This problem becomes more crucial when the number of 

input variables inaeases. 



In order to solve this problem, Genetic Algorithm (GA), as a global optimiza- 

tion technique, is employed to constnid an ANF PSS with optimum stmcture. 

Since the number of d e s  depends, in a direct mannet, on the number of MFs, 

the number and shape of MFs are detamined h t  by applying GA. Then the 

parameters in the consequent part of the rule table are s p d e d  by the learning 

algorithm which is a specid form of the gradient descent. 

4. Behavior of an ANF PSS undes single machine power system environment as 

well as mdti-machine powa system envizonment is obsemed. The coordination 

with o t h a  PSSs is &O investigated. 

5. h addition to the theoretical and simulation studies, the behavior of the pro- 

posed PSS in a physical modd of the adual power system is examined. The 

ANF PSS has been implemented on a Digital Signal Processor (DSP) mouated 

on a PC. Consistency of the theoretical and simulation results with the ex- 

perimental results exhibits the effectiveness of the ANF PSS to improve the 

dynamic performance of the system over a wide range of operating conditions. 

This thesis is composed of 9 chapters divided into 3 parts: 

Part 1 - Control Algoritms 

Three most popular branches of Artifiaal Intelligence (AI), Fuzzy Logic, Adap- 

tive Neural Network and Gcnetic Algonthm, are bridy reviewed in Chapter 

2, 



Details of the Adaptive-Network-Based Fwzy Logic controller aad its advan- 

tages compared with conventiond h z y  controUets are given in Chapter 3. 

An Adaptive-Networlc-Based Fuzzy Logic Controller is trained to tune the pa- 

rametas of the Fuzzy Logic Controlla. This approach combines the benefits 

of both h z y  Logic Control and Adaptive Neural Network. Furthamore, the 

self-leaniing technique is discussed in this Chapta. In this technique, the ANF 

PSS is trained fiom the performance of the generating unit output, rather than 

from the controller output. 

Optimization of the ANF PSS structure is also discussed in Chapta 3. First, 

the necessity and advantages of optimized structure are described. Then, the 

application of Genetic Algorithm for the stmcture optïmization of the ANF 

PSS is described, 

a Part II - Simulation Studies: 

This part consists of 4 chapters and focuses on the resuits obtained fiom simula- 

tion program. Application of the Adaptive-Network-Based Ftmy Logic power 

system stabilba to a singlemachine power system is investigated in Chapter 

4. The ability of the proposed stabiLizer to provide enough darnping over a 

wide operating range is discussed. 

Chapter 5 gives the detailed simulation studies of the proposed cont~oller 

trained using self-learning technique. Similar to Chapter 4, the learning method 

is basically a special form of gradient descent. However, instead of employing 

a desired controller, the plant output error signal is back-propagated to h d  

the error of the controIler output signal. 



In Chapter 6, the simulation results, obtaiaed by utiliPng both Genetic Algo- 

rithm and Adaptive Neural Network to tune the parametas and optimize the 

stmcture of the b z y  logic power system stabiber, aze presented. 

The last Chapter of this patt, Chapter 7, focuses on the simulation and de- 

tailed analysis of the proposed ANF PSS behavior in a multi-machine power 

system. Especially the behavior of the ANF PSS in response to diiferent oscil- 

lation modes and the ability of the ANF PSS to work in cooperation with the 

conventional PSS and the other ANF PSSs are described. 

0 Part III - Experimental Tests: 

Laboratorp implementation and experirnental tests of the proposed ANF PSS 

on a physical model of a power system are described in Chapter 8. Real-time 

tests were performed on thîs model empioying an ABB PHSC2 Programmable 

Logic Controller (PLC) as AVR and a Digital Signal Processor as a stabilizer. 

For cornparison, a digital type conventional PSS (CPSS) was implemented in 

the saxne environment and tested under the same conditions. Behavior of the 

ANF PSS and the CPSS in an actual physical powr system is observed and 

details of implementation dong with the experimental results are described in 

this Chapta. 

Finally, conclusions and comments on Mher  research topics in the area of 

Adaptive-Network-Based Fuzzy Logic power system stabiIizer are summarized in 

Chapter 9. 



Part 1 

Control Algorit hms 



Chapter 2 

W z y  Logic Control, Artificial Neural Networks 

and Genetic Algorithms - An Overview 

2.1 Introduction 

In recent years, Fuzzy Logic Control (FLC), ArtScid Neural Network ( A m )  and 

Genetic Algorithms (GAs), as t k  branches of Artsaal Intelligence (AI), have at- 

tracted considerable attention as candidates for novel computational systems because 

of the variety of advantages that they offa over the conventional computational sys- 

tems. This chapter covers the basics of these three areas, which are addressed in 

separate sections. Each section contains a brief historical perspective, functionolity, 

characteristics and drawbacks of each branche 

Unlike classical design approach which requires a deep &standing of the sys- 

tem or exact mathematical models, h z y  logic incorporates an alternative approach. 

Fuzzy logic control technique has been found to be a good replacement for conven- 

tional control techniques which require highly complicated nonlinear mathematical 

models. However, the design process of fuzzy controllers at some point becomes a 

trial-and-aror approach. Such an approach requires a large number of repetitions, 

and it is therefore, t h e  consuming and tedious. 

Artificial Neural Networks are based on a simplified model of the brain, with 

the processing tasks distributed actoss many simple nodes. The power of an ANN 



cornes from the collective behavior of the simple nodes. In addition to capabiiity 

of learning and adaptation, this structure off' many other adoantages induding 

speed, robustness and fault tolerance. On the other hand, ANNs suffer from some 

drawbacks, among them is its "black-ban characteristic. It is difEicult for an outside 

observer to understand or modify the network decision making process. 

Genetic Algorithm is a probabilistic optimization approach inspind by biologicd 

evolution in nature. In general, genetic algorithms have proven to be more effective in 

solving a vafiety of complu< multi-dixnemional systems, which the other tediniques 

have S d t y  in solving. Particularly, GAs are mccessful at catching the optimum 

solution where the hyperspace is nonlinear, or highly convoluted with many local 

optima. 

2.2 h z y  Logic Control 

2.2.1 History of FLC 

Fuzzy logic control is based on fuzzy set theory. In a symposium on system theory 

in Brooklyn 1965, L. A. Zadeh from the University of California, Berkeley, presented 

the fuzzy set theory. He believed that fuzzy logic would find home in psychology, 

philosophy, and in human science. He suggested it would play an important role in 

control (421. Due to its name, fuzzy logic was not welcomed by many scholars in the 

begi~ing.  Many people did not redize that h z y  logic is not a logic that is hzzy 

but a logic that desaibes fuzziness. 

In 1973, Zadeh published his second most iduential paper, which laid the hame- 

work for £uzzy logic control [35]. This paper, which he c d s  the key paper outlining 



a new approach to analysis of cornplex systems, showed how engineess and corpo- 

rations could use b z y  logiç In the same year, E. Mamdani and S. Assilisn at the 

University of London succeeded in implementing the fuaay if-then rules to control 

a s t e m  engine. The results wae supezior to those using numerical methods and 

modeling [43]. 

In 1980, P. H b b l a d  and J. Ostergaard, Danish agineers, installed a fuzzy 

logic controller pennanmtly in a cernent kiln [U]. The pair had developed the first 

commercial application of fuzzy controUer. Currently about 10% of the world cement 

kilns use this approach [42]. 

Fwzy logic fadcd in the West, but Japanese picked up the idea and started 

applying it in early 1980s. In 1983 a h z y  logic based water purification plant was 

put to work by M. Sugeno. In the same year he pioneered the application of h z y  

Iogic in robot control and a self-parking car [45][46]. h 1985, following the invention 

of the first h z y  logic processïng chip by Togai, S. Miyamoto and S. Yasunobu 

published a paper desaibing the automatic train operation by a predictive b z y  

control. The train started working in 1987 at Sandai subway system &ex thousands 

of cornputer simulation and adual runs on the track [4?] [48]. 

It was not until the late 1980s, that efForts were made to investigate h z y  logic 

more intensively. B. Kosko formulated many concepts in h z y  set theory and intro- 

duced the Fuzzy Associative Memory (FAM) whkh îs a broader view of h z y  d e s  

Pl 
Currently there is a substantial literature within the field of fuzzy set theory that 

deals wit h dynamic systems, control applications and system modeling [39] [50] [51]. 



2.2.2 &y Sets 

A h z y  set is a generalization of the concept of an ordinary bivalent set or m i s p  

set. If C is a aisp set dehed on the universe U, then for any dement u of U, either 

u E C or u C. For any crisp set C it is possible to d&e a characteristic fundion 

p : U + {O, 1 .  In h z y  set theory, the characteristic function is generalized to 

Membership Function (MF) that assigns to every u E U a value from the unit interval 

[OJ] instead of from the two-element set {O, 1). The set that is defined on the basis 

of such an extended membership is cded a k z y  set. 

Let X be a h z y  set and A and B be two fuzzy sets with the membership fimctions 

pA(x) and pB(x) ,  respectivelp. Then the union, intersection and complement of h z y  

sets are respectively defined as: 

2.2.3 Linguistic Variables 

A linguistic variable means a variable whose values are words in an artifidal intelli- 

gence language. A linguistic variable is characterized by: 



in which x denotes the symbol name of a linguistic variable, e.g. age, speed, 

temperature, etc. and T ( z )  is the set of linguistic values that x can take. In the case 

of the linguistic variable temperature s, T(z)  = {cold, cool, comfort able, wann, hot). 

In the case of enor or change-of-=or it usually is the set {NB, NM, NS, 20, PS, 

PM, PB). U is the actual physical domain over which the linguistic variable x takes 

it s quantitatives. In the case of temperature it can be the interval [-IO0 C, 35' C] and 

in the case of error one oftm uses a normaliaed value [-1,1]. M, is semantic function 

which gioes an interpret ation of a linguistic d u e  in term of the quantitative element s 

of x. In other words, M. is a fanction which takes a symbol as its argument, e.g. 

NB, and returns the meaning as "an error less than -0.8". 

These ter- can be characterked as h z y  sets whose membership functions are 

shown in Fig. 2.1. 

Figure 2.1: A typical set of gaussian membership functions 



2.2.4 f i z y  If-then Statements 

A h z y  if-then production rule is symbolicdly expressed as: 

if (fuzzy propsitan) thm (f uzzy propositon ) 

where (fuzzy prproposzta) is a compound h z y  proposition. For example if e and 

é are process state variables and u is the control output variable then: 

if e is NB and è is PM then u is NS. 

Fig. 2.2 shows the domains of e and é and aU the rules. In the case that e is PS 

and é is NS for example, the output field for u is 20. Important properties for a set 

of d e s  are: 

Figure 2.2: A typical set of fuzzy inference d e s  



a Completeness - any combination of input values results in aa appropriate 

output due;  

0 Consistency - thae are no two rules with the same de-antecedent but dif- 

ferent de-consequent; 

0 Continuity - it d a s  not have neighboring d e s  with output h z y  sets that 

have empty intersection. 

2.2.5 Basic Structure of Ehzzy Logic ControUer 

Fig. 2.3 shows the basic configuration of a Fuzzy Logic Controllet (FLC), which 

comprises four principal cornponents: fuzzification module, howledge base, inference 

mechankm and a dehdcat ion  module- 

Figure 2.3: Basic structure of fuazy logic controller 

A. Fuzdication Module: 

The haifkation module performs the following fundions: 

a measures the dues of input variables; 



O performs a scale transformation (normaiaation) which maps the physical mea- 

sured value i ~ t o  a normalized domain; 

a using membnship functions, converts the curent value of a process state vari- 

able into a h z y  set, in order to make it compatible wïth the h z y  set repre- 

sentation of the procrni state variable in the de-antecedent. 

In fa&, in £uzzification process, the input qace is partitioned into sub-domains. 

Propa partitionhg of this space requires some information about the system output 

state variables which is a part of knowledge base. Membership functions can be 

a variety of shapes, the most usual being triangular, trapezoidal or a beU shape 

(gaussian). The gaussiaa shape shown in Fig. 2.1 is used for the controller described 

in this thesis. 

B. Inference Mechanism: 

Merence mechanismplays an essential role in FLC. In this component, the mem. 

bership values obtained in hzification step are combined through a specific T-nom, 

usually multiplication or nhhization,  to obtain the firing strength of each d e .  

Each d e  characterizes the control goal and control policy of the domain experts by 

means of a set of linguistic control d e s .  Then, depending on the firing strength, 

the consequent part of each qualified d e  is generated. 

The most commonly used b z y  inference mechanism can be dassified into three 

groups : 

1. Mamdani's Minimum Operation Rule 

For siniplicity, only two h z y  control d e s  are assumed: 

Ri: if x is Al and y is Bi then z is Ci 



Rz: if x is A2 and y îs B2 then z is C2 

Then the firing strengths q aad a2 of the rules can be ucpressed as: 

where pnL ( x )  and pal (y) are the degrees of membership for each input z and y. 

In this type [39], the ith d e  leads to the control decision: 

which implies that membaship fundion pc is point wise given by 

To obtain a deterministic control action, a dehzification strategy is required, as 

WU be disnused lata. This type of b z y  reasoning process îs shown in Fig. 2.4. 

2. Tsukamato's Method with Linguistic Terms as Monotonie 

As shown in Fig. 2.5, it is a simplified method of the first type in which the 

membership functions of fhzy  sets are monotonic [52]. The result inferred fiom 

each rule is such that = Ci(yi)  in which Ci is a monotonic b z y  set. A crisp 

control action may be expressed as the weighted combination: 



Figure 2.4: Mamdani fuzzy reasoning mechanism 

3. Talcagi and Sugeno's Method 

In this method [36], shown in Fig. 2.6 the 2th b z y  control d e  is of the form: 

i f z  is &and - . -and y i s  Bi thenz= f i ( x ; - - , y )  

whese x ,  - - - , y, and z are linguistic variables repnsenting process state variables 

and the control variable, respectively; A, - , Bi are linguistic values of those vari- 

ables. The ha1 aisp control action is the weighted average of each d e :  

C. Knowledge Base: 



Figure 2.5: Tsukamato's b z y  reasoning mechanism. 

The knowledge base of an FLC consists of a data base. The basic function of 

the data base is to provide the necessary information for the proper functioning 

of fuzzification module, the inference engine, and the defiudcation module. This 

informat ion indudes: 

Fuzzy sets (membership hctions) representing the meaning of the linguistic 

values of the process state and the control output variables. 

Physical domains and th& normabed countaparts together with the normal- 

izatioa (scaling) factors. 

D. Defuzzificatioa Module: 

The defuzsification module performs the following functions: 



Figure 2.6: Talcagi and Sugeno's fuzzy reasoning medianism. 

a converts the set of modified control output dues into a nonfuzzy control ac- 

t ion; 

O performs an output denormalization which maps the range of values of h z y  

sets to the physicd domain. 

At present, there are three commonly used strategies for debdication as the 

max &tenon, the mean of maximum, and the center of arek The widely used center 

of area strategy generates the cenkr of gavity of the possibility distribution of a 

control action. In the case of a disaete domain, this method pields: 

where n is the number of quantbation levels of the output. 



2.2.6 Characteristics of E'uzzy Logic Control 

Considering the existing applications of b z y  logic controlla, which range fiom 

very small, micr~controUed based systems in home appliances to large-scale process 

control systmw, the advantages of using h z y  control usudy fall into one of the 

following categories: 

a Robust nonlinear control - A fuzzy logic controIler, in general, has a non- 

linear transfer function. III fact, this is the most attractive feature that has 

made this controllet very attractive. Bas idy ,  the source of non-hearity 

cornes from d e  base, though the fuzzy operators invohed in hzification and 

defuzzifîcation are also non-lineax in nature. A representation theorem, mainly 

due to Kosko [49], states that arry continuous nonLinear Eunction can be ap- 

proximated as exadly as needed with a firiite set of h z y  variables, values and 

des .  

For the conventional PID controllers, a substantial parameter change or major 

externa1 disturbance lead to a sharp decrease in performance. In presence of 

such disturbances, PID systems usually are faced with a trade-off between fast 

reactions with sigdicant overshoot or smooth but slow reactions. In this case, 

h z y  control offas ways to implement simple but robust solutions that cover a 

wide range of system paxameters and that can cope with major disturbances. 

Implementing expert kmwledge - In many cases of industrial process 

control, the de- of automation is quite low . There is a variety of conventional 

control loops, but a human opaator is still needed. The knowledge of this 

operator is usudy based on expenence. In this case fwzy control offers a 



method for implementing the expert's knowledge. 

a Reduction of development time - Fuzzy control, which works at two levels 

of abstraction, oEas laquages at both l e d s  of expertise: the symbolic level 

is appropriate for desaibing the application engïneer's strategies, while the 

compiled level is well understood by the control agineers. Since there is a wd- 

defined formal translation betwem these two levels, a h z y  based approach can 

help reduce communication problems. 

2.2.7 Limitations of h z z y  Logic Control 

Although, FLC introduces a good tool to ded with complicated, nodineas and ill- 

defined systems, it suffers fiom the following drawbacks: 

At pnsent, then is no systematic procedure for the design of FLC. The most 

straight forward approach is to define MFs and decision rules subjectively by 

studying an opaating system or dsting controller. 

Sn the case of too complex controlled system, the proper decision d e s  cannot 

easily be derived by human expertise. 

0 Designing and tuning a Multi-Input Multi-Output (MIMO) b z y  logic con- 

troller is so tediaus as to be unfeasible. 

0 In some situations, a reliable expert knowledge may not be adable; even with 

relying on expert knowledge, fine tuning or achieving the optimal FLC is not 

a trivial ta&. 



Some s i 6 c a n t  operoting changes, i.e. disturbances or parsmeter changes , 

might be outside the expert's cxpaience. 

2.3 Artificial Neural Network 

Artificid Neural Networks and control community have a long history, whidi prob- 

ably began with Weiener's book Cyberneties[53]. The first neuro controk was 

developed by Widrow and Smith in 1963 [54]. A simple ADAptive LLNear Element 

(ADALINE) was tau& to reproduce a switching cume in order to stabihe and 

control aa inverted pendulum. This ADALINE was one of the first ANNs and it has 

a simple architecture that has been used extensively in other ANNs. 

During 1970s, Albus proposed the CMAC as a tabular model of the function- 

ing of the cerebellum and used it to control robotic manipulation. Since the early 

1980s, the CMAC has been used extensively to model and control highly non-liaear 

processes [55]. In 1980s, many diEerent A N N s  and IC architectures wae proposed 

for integrating and extending these algorithms. Reinforcement learning and adap- 

tive critic schemes have beea extensively researched [56] and new ANNs such as the 

MLPs [30], RBFs [57], FLNs [58], and B-spline [59] have been developed. Recur- 

rent networks have ben used in optimization schemes and for plant modehg and 

estimation [SOI. 

ANNs have made a significant impact on the industry, with the applications 

in non-linear process and human operator modeling, automatic plant knowledge 

dicitation, fault detection and monitoring, procw control and optimization and 



sensor validation, iatapntation and fusion [61]. 

2.3.2 Basic Elements 

Neurons are the bais of the neural networks. A neuron is an information-processing 

unit that is fundamental to the operation of a netual network. Fig. 2.7 shows the 

model for a neuron. There are tkee basic elements of the neuton model, as desaibed 

here: 

Figure 2.7: Nonlinear model of a neuton 

A set of synapses or connecting links, each of which is characterized by a weight . 

A signal x j  at the input of the synapse j connected to neuron k is multiplied 

An adder for summing the input signals, weighted by the respective synapses. 

An activation function for limiting the amplitude of the output of a neuron. 

This limit usually is in the unit interval [0,1] or altematively [-1,1]. 



This mode1 also includes ao extandy applied threshold Bk that has the effect of 

lowering the net input of the activation fundion. In mathematical terms, a neuron 

k can describe by the following pair of equations: 

and 

where X I ,  22, - - , zp are the input signah; wki, w u ,  - - , w b  are the synaptic weights 

of neuron k, ut is the linear output; Ok is the threshold; #(.) is the activation function; 

and yk is the output signal of the neuron. There an thret basic types of activation 

funct ions: 

1. Threshold Function: 

2. Piece-wise-Linear Function: 

3. Sigmoid hindion: 



where a is the dope parameta of the sigmoid function. 

2.3.3 Network Architectures 

The mamer in which the neurons of a neural network are connected can be dassified 

int O two architectures: 

1. Feedforward Networks - In this type of network, outputs of every layer 

are projected to the inputs of the next Iayer, but not vice versa, as shown in 

Fig. 2.8. 

Output 

input laya Hidden layers Output layu 

Figure 2.8: Feedfomard neural network with two hidden layers. 

In 0th- words, this network is strictly of a fdorwasd type. Usually, the 

network consists of an input layer, one or more hidden layes and an output 

layer. By adding one or more hidden layers, a feedforward network is enabled 

to extract higher-order statistics. The source nodes in the input layer supply 



the input signals to the network, and the neurons in the output layer constitute 

the overall response of the network. In t a m  of node's connedion, the network 

can be fdly conneded or partidy connected. 

2. Recment Networks - The main diflerence between a recurrent neural 

network and a feedforward neural netwoik is that the recurrent neural network 

has at least one feedback loop. In Fig. 2.9, the remnent network is shown 

with feedback loops. This has a profound impact on the l e h g  capability of 

the network, and on its performance. Moreover, the feedback loops uivolve the 

use of unit-delay dement, which results in a nonlineu dynamic behavior of the 

network. 

input laycr Hidden Iayers Output taycr 

Figure 2.9: Recunent network with hidden neurons. 



2.3.4 Training Algorit hms 

Among the many properties of a neural network, the propaty that is of primary 

significana is the ability of the network to Iearn fiom training data, and to im- 

prove its performance through learning. There an basically three classes of learning 

paradigrns: 

1. Supervised Learning - As it implies, supenised learnkig is pnformed under 

the supervision of an extemal teacher. The network parameters are adjusted 

under the combined iduence of the training data and enor signal; the error 

signal is defîned as the difference between the actual response of the network 

and the desired response. 

Examples of superviseci 1earPing dgorithms indude the Least-Mean-Square 

(LMS) algorithm [62] and i t s  generalization known as the Ba&-Propagation 

(BP) algorithm [63]. The back-propagation algorithm derives its name from 

the fact that error terms in the algorithm are back-propagated through the 

network, on a laya-by-layer basis. 

Supervised learning can be performed in an off-line or on-line manner. In 

the off-line case, once the desired performance is accomplished, the training is 

frozen, which mesns the neutal network operates in a static manner. On the 

other hand, in on-line training, leamhg is accomplished in real tirne, with the 

result that the neural network dynamically adjusts the parameten . 

2. Reinforcement Leuning - Rcinforament leaming involves the use of a 

critic that evolves through a trial-and-enor process. Compared to s u p e ~ s c d  



leamhg, the learnuig is done on the basïs of the reinforcement received fkom 

the eavironment; there is no t e d a  to suppb gradient information during 

~~~~g. To obtain information, a reinforcement learning system probes the 

environment through the combined use of trial-and-error and delayed reward. 

This learniilg approach is more suited in less-structured situations where it 

rnay be possible to improve plant performance over time by means of on-line 

reinforcement iearning [64]. 

3. Unsupenrised Learning - Unsupervised leatning is pedormed in a self- 

orgaRiZed mannes in which no extemal teacher or aitic is required to instrud 

the network. Rather, provision is made for a task-independent measure of the 

quality of representation that network is required to learn. In 0th- words, by 

using unsupdsed learning, the network is able to form the undeslying stmc- 

ture of the input data in an explicit or simple form. The two most important 

unsupervised network architedures are Kohonen's Self-Orgaaizing Map [65] 

and Grossbeerg's ART networks [66]. 

2.3.5 DifEerent Control Schemes 

There are diifent control schemes to train a neural network to control a plant that 

is too cornplex, or about which too little is known. In a typical control problern, one 

may have desired plant output but not the desired neural network output, which is 

the control signal. Three basic ways in which the training information required for 

supervised learaing can be obtained are given below: 



Copying an Existing Controllet - If thae  e x k t s  a controller capable of 

controllhg the plant, then the information required to train a neural network 

can be obtained hom this controller as shown in Fig. 2.10. The desind network 

output for a given input is the output of the ucisting controUer for that input. 

The network leanis to copy the existing controller. 

Figure 2.10: Copping an existing controuer with a network. 

One might question the utility of this method on the ground that if there 

aiready exists an effective controller, why would it be useful to have another 

one in the form of a neural netwotk? TWO bnswers are appaxent. First, the 

existing conttolles may be a device that is impractical to use; like an a r t f i a l  

intelligent b a s 4  controller with a large number of inference d e s .  Second the 

aristiag controller may use very complicated algonthms to calculate the control 

signal, forming a large dday in control response. 

Identification of System Inverse - Fig. 2.11 shows how a neural network 

can be used to identifp the inverse of a plant. The input to the network is the 

output of the plant, and the desired output is the plant input. If the network 



can be trained to match these targets, it will implemuit a mapping that is a 

plant inverse. Once one has such an invase, it can be used for control purposes; 

the desired plant output is provided as input to the network and the resulting 

network output is then used as input to the plant. 

Figure 2.11: Inverse plant modelling using a network. 

A major problem with this approach arises when dinnent plant inputs produce 

the same output, Le., when the plant's inverse is not well defined. In this case 

neural netwotk attempt to map the same network input to many difEerent 

desired responses. 

3. Dinerentiating a Mode1 - This method of training a controller relies more 

on badrpropagation than on generd network methods [671. The method is 

illustrated in Fig. 2.12. The backpropagation algorithm is used to identify 

the plant, resulting in a forward mode1 of the plant in the form of a layered 

network. Thus the derivative of the model's output with respect to its input 

can be cornputed by the badrpropagation process. Propagating mors between 



actual and desiseci plant outputs back through the forward model produces the 

aror in the control signal. This aror is used to train the controller. 

PLANT OUTPUT 

PLANT MODEL 

Figure 2.12: Backpropagating through a forward model of the plant. 

In Fig. 2.12 this badrpropagation process is illustrated by the dashed line pass- 

ing back through a second neural network. Of course, to apply this idea one 

needs a model in a form that can be Merentiated. This method is discussed 

in more detail in Chapter 3, using an adaptive h z y  logic controller. 

2.3.6 Characteristic of ANNs 

Neural networks offer solutions to problems that are very d3Ecult to solve using 

traditional algorithms. The potexttial benefits of a neural approach are: 

O Noniinearity - A neuron is basically a nonlinear element. Consequently, a 

neural network, made up of an interco~mection of neurons, is itself nonlinear. 



0 Learning - Neural networks cari leam fiom the interaction with the envi- 

ronment, ratha than expliut programmhg, it l e m  fiom the examples by 

constniaing an input-output mapping for the problem at hand. 

0 Complex Mapping - It has the capability of synthesizing cornplex mappings 

whîch may be very &cult or even impossible to be expressed in mathematicd 

foml- 

0 Generalization - It is able to generabe the training information to similat 

situations in which it has never experienced before. 

0 Speed - Due to the pasallel mechanism, once an ANN is trained, it can 

provide the ability to solve the mapping problem much faster than conventional 

methods and other artSual methods. 

a Robustness and fault tolerance - Even if the input data are incomplete or 

noisy, the ANN can still provide satisfactory results. Also, due to distribution 

of computational load a c ~ ~ s  many simple processing elements, the networks 

possess some degree of i ad t  tolaance with respect to processor failures. 

VLSI Implementable - The massively parallel nature of a neural network 

makes it ide* suited for implementation using V' Large Scale Integrated 

(VLSI) tehology. 

2.3.7 Limitations of ANN 

Some of the advantages mentioned above, such as learning ability, c a ~ o t  be found 

in the h z y  logic controllas. However, ANNs do have some limitations as listed 



below: 

Black Box - The majot draw badr of neural networks is black-box charaderis- 

tic. It is not easy to understand the knowledge stored in an ANN. Training sets 

rarely contain a complete description of the desired input-output relationship 

and once learning has ceased, it may be necessssary to modifp the stored infor- 

mation. This can only be paformed if the knowledge is stored in a transparent 

fashion. 

Long training time - ANNs may require a long training time to obtain the 

desired performance. The larger the size of ANN and the more complicated 

the mapping to be performed, the longer the training time required. 

Network structure - The selection of number of hidden layers and number 

of neurons in each layer is not a trivial task. It is, to a large extent , a process 

of trial and =or. 

Genet ic Algorit hms 

Genetic Algorithms am search algorithm which are based on the genetic processes of 

biological evolution. They work with a population of individuals, each representing 

a possible solution to a given problem. Each individual is assigned a fitness score 

according to how well it solves the given problem. For instance, the fitness score 

might be a performance inda for a dosed Ioop control system. In nature, this is 

equivalent to assessing how cffective an organism is at competing for resources. The 

highly adapted individuals will have relatively large numbers of offsprings. Poorly 



pedorming ones wil l  produce few or even no offspring at d. The combination of 

selected individu& produces superfit oEqrings, whose fitnesses are greater than 

that of the parents. In this way, the indioiduals evoIve to become more and more 

w d  suited to their environment. 

2.4.1 History of GAs 

The underlying principles of GAs w m  fkst published by Holland in 1962 [68]. The 

mathematical framework was developed in the late 196Ops7 and presented in Holland's 

pioneering book in 1975 [69]. GA'S have been used in many diverse areas such as 

function optimization [70], image processing [Tl] and sy stem identification [721 (731. 

In the last decade, sesearch devoted to GAs has significantly increased, as attested 

by the existence of several conferaices on the topic. An excellent refaence on GAs 

and their implexnentation is Goldberg's book [74]. 

2.4.2 Basic Principles 

The standard GA can be represented as shom in Fig. 2.13. In what follows, different 

steps of the algorithm are briefly explained: 

Coding - To translate a problun into a suitable fonn for a GA, a poten- 

tial solution should be represented as a set of parameters. These parameters 

(honni as genes), after transformation to binary value, are joined together to 

form a string of values (known as chromosome). The choice of the genetic 

coding is crucial to the performaace of the genetic dgorithm, as the genetic 

coding defmes the window through which the dgonthm connects to the actual 

problem. 



Generation Operations 

Evaluation w 
Figure 2.13: Mechsnism of genetic algorithm. 

a Evaluation - The fkst step in every iteration of a genetic aigorithm is to 

determine how well each individuai can solve the problem. A fitness fundion 

must be defiaed and retum a single numerical fitness, which is supposed to 

be proportional to the ab* of the individual. For fuaction optimization, 

the fitness hinction should be the value of the function. The result of this 

evaluation is used to speQfy how many offsprings should be generated by an 

individual. 

Reproduction - In this step, three genetic operators are applied to the curent 

population: 

1. Selectaoa: The individu& of higha qualïty are more likely to be chosen 

for reproduction than those of lower quality. A number of exact copies are 

gaierated with the b a t  individuals producing the most copies. As a te- 

sult, good individuals might be selected several times while poor ones may 

not be chosen at d. In this thesis, the selection method called the rank- 

ing scheme has b a n  chosen. In this technique, each individual is ranked 



based on its fitness. Then depending on its rank, each individud pro- 

duces a specific number of offsprings. By using this technique, the fittest 

individuals c-ot dominate the population within a single generation. 

2. Cmssouer: This operator combines two previously selected individuals as 

as to corn- shown in Fig. 2.14 and yields the offsprings. This operator tri, 

bine vital parts of bwo individuals in order to create a superïor individual. 

During the crossova operation two points in the strings are randomly cho- 

sen and the part, which is enclosed by two points, is swapped. Crossover 

is not usually applied to d individuals; a randorn choice is made with a 

certain probability. 

Parents 

Figure 2.14: Crossover operation. 

3. Mutation: Mutation is ued to introduce new solutions and prevent the 

population from unmoverable loss of important information. Mutation 

is accomplished by füpping single bits of the string as shown in Fig. 2.15 

with a certain probability. The probability for mutation is usually kept 

low to prevent a negative infiuence on the crossover operation. 

While crossover roughly establishes the region of the search space, which con- 

tains the solution, mutation is additionally usefid for fine tuning at the end of 



Figure 2.15: Mutation operation. 

the optimisation. 

2.4.3 Characteristic of GAs 

GA is a global optimization method which is specïiically us& for disconth- 

uous cost fundions. The other optimization techniques, like gradient descent 

method, rely heavily on the differentiability of the cost function. 

Compared to 0th- conventional se& dgorithms, genetic algorithm considers 

many points in the search space simultaneously. Also it uses probabilistic d e s  

not deterrninistic d e s  to guide its search. For these two reasons, genetic 

algorïthms have a reduced chance of converging to Iocd optima. 

2.4.4 Limitations of GAs 

0 The optimal solution is usually determined by going through a number of 

generations. However, the number of generations necessary to ensure that the 

most-fit individual is found is a priori unknown. 

Since there are many parameters involved in the dgorithm, there is no guar- 

antee that the genetic algorithm can reach a near-optimal solution. If the 

parameters are not propaly selected, it can fall into a locd optimal point 

depending on the topology of the search space. 



The basic concepts and theories of three branches of artificid intdigcnce, f u z q  

logic control, artificial neutal networks and genetic algorithms ase introduced in this 

Chapter. The fundamental procedure for each one is explained. h o  their benefits 

as well as their limitations are given. 

Nonlinearity and knowledge based are among the most important characteristics 

of fuazy logic control. However, it s d k s  fiom the drawback of parameter tuning. 

There are many parameters, including membership fundions and d e  base, to be 

tuned. On the other hand, artifiQal neural network has the capability of leaniing. It 

is shown in Chaptes 3, by propa combination of these two techniques, the drawbacks 

of each one can be mostly compensated by the b d t s  of the other technique. 

As mmtioned in this Chapter, for designing an artSial neural network, one 

faces the issue of network stmcture setup. Selection of a large number of neurons (or 

hidden layers) leads to the problem of overfitting and long training t h e  as weU. Too 

s m d  network, on the other hand, bring the situation that the network is not able to 

learn the desired input-output relationship at ail. Genetic algorithm, as a powerful 

technique for multi-criterion optimisation problems, can be used to automate the 

design of neural network architecture. 



Chapter 3 

Adaptive b z y  Logic Controller 

3.1 Introduction 

In Chapta 2, static h z y  logic systems an explained. Their success is due to the 

fact that inherently nonlinear control strategies can be obtained from human ex- 

pert and then implemented as a h z y  controlla. The strengths and weaknesses of 

this approach are explained as weU. Obtaining the d e s  fiom an expert, known as 

knowledge elicitution, is one of the major bottlenecks in the development of fuzzy 

logic control. Frequently, the fuzzy algonthms provided by experts aie not correct, 

relevant and complete. These problems can be overcome using adaptive h z y  sys- 

tems which automatically find an appropriate set of d e s  and membership functions 

[75l P I  
Adaptive fuzzy system is implemented in the framewoik of adaptive network 

architecture and equipped with a training (adaptation) algorithm. Training input 

data are presented to the network and the network cornputes its output. Error 

between the systan's output and the desired output is caldated, and findy the 

error is back-propagated through the whole network to adjust the network parameters 

such that the output error reduces at each step. 

Similar to ANN, there axe different approaches to train an adaptive hzzy con- 

troller. The most straight-forward approach is to train the controller using another 

existing desired controller. Howeva, in a generd situation, the desired controller 



or domain atpert may not be adable .  Thacfon, a self-leariiing approach has to 

be const~cted in orda to train adaptive k z y  controuer without resorting to other 

existing controllers [VI. 

Although adaptive k z y  systems offer the potentid solution to the knowledge 

elicitation problem, b z y  systans still d e r  fiom advanad setting of the structure 

of fuzzy system. The stnicture, expressed in term of the number of membership 

functions and number of inference rules, is usually dezived by trial and error. When 

the number of inference rules is small, the inference des cannot describe the input- 

output relationship of givm data precisely. On the contrary, when the number of 

inference rules is large, the generirlization capability of the inference d e s  is s a d e d  

because of the overfîtting problem. Therefore, the number of inference d e s  has to 

be determined korn a standpoint of overd learning capability and generahzation ca- 

pability- In order to solve this problem, a genetic algorithm is anployed to automate 

the design method for optimiPng the structure of h z y  systan [?BI. 

In this chapter, first the stmdure of adaptive fuzzy system is explained, and 

necessity of using a self-leaming algorithm to train the controller is given. Then, 

the self-learning adaptive fuzzy controllet based on back-propagation through time 

is formulated. Finally, genetic algorithm is described to construct an adaptive h z y  

controUer wit h optimum s t ~ c t u n .  

3.2 Fuzzy Logic Controuer with Learning Ability 

Artiiicial Neural Networks have eliuted strong interest among researchers over the 

last decade. One reason for this tesurgent interest is the discovery of a powerful 



training algorithm for multilayet neural networks - the so-called badr-propagation 

algorithm. ki fact, the basic concept of back-propagation algorithm can be applied 

to any feedforward network. Thdore ,  if the h z y  logic systems can be represented 

as feedfomatd networks, the idea of back-propagation can be used to train them. 

This is the motivation of the training algorithm for fuzzy logic controk in this 

section. 

3.2.1 Structure of Adaptive Ebzy Controller 

By observing the functional fomi of fuzzy controller, it becomes apparent that the 

hzzy controller can be represented as a five-Iayet feedforward network as shown in 

Fig. 3.1. With this network representation of the hzzy logic system, it becomes 

straightfofward to apply back-propagation to adjust the parameters in membership 

functions and inferace des. 

For simplicity, assume that the fuzzy controller has two inputs x i  and x2 and one 

output z. Each h z y  if-then d e  is of Takagi and Sugeno's type [36]: 

when Ai and BI are linguistic variables, fi is the output of the ith d e  and 

(Pi, qi, r i )  is the inference de's parameta set. The node fundions in each layer are 

of the same type function as described below: 

Layer 1 - Each node in this layer perfonns a MF: 

Y: = pAi(xi) = e z p  {- [(y)2]&] 
where zi is the input of node H, A, is linguistic label apsociated with this node and 

(G, bit ci) is the parameter set of the bell-shaped MF. y: spedes the degree to 



Layer 1 Layer 2 Layer 3 Layer4 Layer 5 

Figure 3.1: Architecture of adaptive h z y  controller. 

which the given input belongs to the linguistic label A, with macbum equal 1 and 

minimum equal to O. As the dues  of these parameters change, the bell-shaped 

function varies accordingly, t hus exhibithg various f o m  of membership functions. 

In fa&, any conthuous and piecewise diff'entiable fuadions, such as trapezoidal or 

triangdar membership functions, are &O qualified candidates for node functions in 

this layer. 

Layer 2 - Every node in this layer represents the firiag strength of the d e .  Hence, 

the nodes perform the h z y  AND operation: 

Layer 3 - The nodes of this layer caldate the norrnalized firing strength of each 



d e :  

Layer 4 - Output of each node in this layer is the weighted consequent part of the 

d e  table: 

where t& is the output of laya 3, and bi, q;, ri) is the parameta set. 

Layer 5 - The single node in this layer cornputes the overall output as the s u m -  

Thus a fumy logic controller with learnuig capability has b a n  constnicted. In 

orda to achieve a desind input-output mapping, these parameters are updated ac- 

cording to the given training data and a gradient-based leaming procedure desclibed 

below . 
Assuming that the training data set has P entries and the output layer has only 

one node, the error measure for the pth entry of training data: 

where &, is the pth componmt of dcsired vector and is the pth component of 

actual output oectot. For each training data, a fornard pass is perfonned and then 

starting at the output layex, a backward pass is used to compte 2 for all intemal 

nodes. For the output node: 



and for the interna nodes in laye k: 

whae y&, is the output of the node in the ith position of kth layer which has K 

nodes and KI is the number of nodes in (k + 1)th laya. 

Assuming Q is a parameta of the adaptive network: 

where S is the set of nodes whose outputs depend on a. The goal is to minimize the 

overd error E = Ep by using the general learning rule : 

in which i )  is the leaming rate and 

Also, similar to the training of conventional neural networks [3O], a momentum 

term is added for a betta convergence: 

where B is the momentum factor and Ao(t - 1) is the change of a in the last step. 

Now, the f u z q  logic system with the above mentioned gradient descent method 

can be used as an identifia for nodineas dynamic systems or as a nonlinear controller 

with adjustable parameters. 



3.2.2 Advantages of Adaptive FLC 

These are many advantages in using adaptive fuzzy control systnns o v a  the static 

fuzzy control systems and the neural network based controllas: 

In a situation where thae  is a large unccrtaine or unknown variation in plant 

parameters and structure, a fuzzy logic controuer should be able to adjust its 

parameters to maintain consistent performance of the system. Thetefore, f u z y  

controller need to be capable of learning- 

k z y  tules obtsined fiom human operator are not precise and may not be 

sufnamt for constructing a successful controller. They provide very important 

information about how to control the system, however they need to be carefdly 

tuned. Adaptive fuzzy control provides a tool for making use of the fuzzy 

information in a systematic and efficient mamer. 

Compased to the conventional adaptive controllers, the major advantage of 

adaptive b z y  control is that the ability to incorporate linguistic h z y  infor- 

mation from a human expert. 

Compared to the conventional a.rtifîcia.1 neural networks, the parameters of 

n e d  network controller have no dear relationships with input-output data, 

and therefore their initial d u e s  are usually chosen randomly. On the other 

hand, the psramcters of adaptive h z y  controllet have dear physical meanings. 

By incorporating the knowledge base as initial parametas for adaptive h z y  

controller, the spad  of convergence is drarnatically increased. 



3.3 Self-Learning Adaptive h z y  Logic Controller 

Tt is necessasy to know the aror in the controllex output, (ud - u), to train an adap- 

tive h z y  controlla. This approach requires the existence of the desired controller 

which restricts the application domains of adaptive £uzzy controUers. To overcome 

this problem, a separate adaptive f i ~ ~ z p  identifier is trained to behave like the plant. 

The block diagram of Fig. 3.2 shows two adaptive h z y  systans, one acting as the 

controller and the other acting as the plant identifier. This identification is similar 

to plant identification in adaptive control theory, except that the plant identification 

is done automatically by an adaptive fuzzy system capable of modeling non-linear 

plants. 

The utüity of this plant identifier is that it can compute the derivative of the 

plant's output with respect to the plant's input by means of the back propagation 

process. The final output error of the plant, (za - z), is back-propagated through the 

adaptive h z y  identifia to obtain the equivalent enor for the controller's output. Ln 

this figure, back-propagation process is Uustrated by the dashed Iine passing through 

the fornard identifier and continuhg back through the adaptive h z y  controller that 

uses it to learn the control rule. 

Another approach to produce a suitable descent direction at the output of adap- 

tive fuzzy controller, to use the plant Jacobian, or sensitivity derivative [79]. If the 

cost function is d&ed as J(w),  then, knowing the Jacobian of the plant, the gra- 

dient of the cost function with respect to the control output, u, is eady determined 

as: 



PLANT MODEL 

Figure 3.2: Back-propagating through a forward mode1 of the plant. 

where yi is the ith plant output. If little is known about the plant, it would 

be difficult to obtain an analytical expression for the plant Jacobikn. Numerical 

merentiation could be used to form an approximation to the Jacobian, but would 

sufFer from the latge errors that plague such a technique. 

Another technique [80] is to use the sign of the Jacobian, instead of its red 

value, for the training of adaptive fuzzy controlla. This is often a d a b l e  simply 

fiom qualitative knowledge of the system in question. The plant backpropagation 

equation then becornes: 

Among these methods, using an adaptive &zy identifier is preferred because 



of two reasons. First, the badrpropagation mediansm cari be employed to adjust 

the plant identifia as w d  as the controUc Thdore, the plant identifier can 

follow any change or large disturbance in the actual plant, hence the backpropagated 

enor becomes more accurate. Secondly, by incorporating the prior know1edge of the 

plant into the adaptive h z y  identifia, the training time for identifier is decreased 

dramaticdy* 

There are two leaming paradigms for training the self-learning adaptive h z y  

conttoller. With the on-line training, the parameters of the controuer are updated 

irnmediately after each sampling time has b e m  passed. On the 0th- haad, in back- 

propagation through time, the parameters are updated &ter a certain elapsed time 

Given the state of the plant at t h e  t = k * h, adaptive h z y  controller will 

generate an input to the plant and the plant will evolve to the next state at time 

(k + 1) * h. By repeating this process starting from t = O, a plant state trajectory is 

determinecl by the initial state and the parameters of adaptive fuzzy controller. The 

state transition fiom t = O to m * h is shown in Fig. 3.3, which contains m sampling 

states of the plant. 

Accordingly, the béuk-propagation gradient descent is applied to minimiw the 

difference between the plant trajectory output and the desired trajectory. In this 

way, the corresponding error to be minimized is: 

where zd(h * k) is the desired trajectory, u(h 4 k) is the controller's output at time 

t = h * k. By a propa selection of A, a compromise between trajectory error and 



Figure 3.3: The plant trajectory of self-learning adaptive fuzzy controller 

control signal can be obtained. 

The parameter changes from all the stages obtained from the back-propagation 

algorithm are added together and then added to the controller's parameters. 

3.4 Genetic Optimization of Adaptive Fuzzy Controller 

3.4.1 Problem of Structure 

Generally, training of anp type of adaptive netwotk involves the selection of an opti- 

mal network structure. Usually the designer has to search for the optimal structure 

by trial and mor. This search causes a large numba of urperiments. If the selected 

network is too large, it may fail to geperalize because it has too many degrees of 

heedom. A large number of parameters ofien d o w s  a network to initially learn to 

detect global featurcs of the input-output mapping, and as a consequuice generalize 



quite w d .  However, &a prolongeci training the network wi l l  star t  to recognize each 

individual example of input-output pair rather than settling for parameters that de- 

scribe the mapping for dl cases in general. This problem is called overfitting (or 

overtraining) 1821. 

When that happens the network gives exact answers for the training set, but is 

no longer able to respond comctly for input not contained in the training set. Much 

reseatch is being done to find the optimal netaork architecture. An overall review is 

presented in [83] and a comprehensive bibliography can be found in [84]. 

The same problem arises for an adaptive h z y  controller. The result of the 

learning depends on the numba of manbership fimctions and inference d e s .  When 

the numba of infence rules is srnd, the inference rules cannot express the input- 

output relation for given data. On the contrary, when the number is large, the 

grnerabation capability of the inference rules is s a d e d  because of overfitting. 

Therefore, the number of inference d e s  has to be detamined from a staadpoint of 

overd leaming capability and generalization capability. 

Fig. 3.4 shows genaalized relations between the number of inference d e s  and 

the training and checking errors. The ldtger the number of inference des, the 

srnader the training aror obtained. However, the checkhg error becomes larger for 

a larga numba of inference des after it exceeds a certain threshold value. Genetic 

algorithm can be used to overcome this problem as is described in the next section. 

3.4.2 Algorithm to Optimhe Inference Ruies 

%y applying genetic algorithm the number of inference rules and the shape of mem- 

bership functions can be determined. Fig. 3.5 shows the encoding of membership 



Number of Inference Ruks 

Figure 3.4: Effect of number of infaence des on training and chedcing error 

functions to a bit string. The membership fundion takes tr î~gular  shape, and the 

width of each membership function is dehed to be the length between the centers 

of neighboring membaship fundions. 

The number and the shapes of membaship furidions can be expressed in term 

of strings consisting of "0' and "ln, wherein the center position of each membership 

fundion is expressed by "1". By using this kind of encoding, the optimal number 

of membership functions and the cent- positions of these are searched for each 

input variable by the genetic algorithm. Since there is a direct relation between 

the number of membaship functions and the number of inference d e s ,  one can 

obtain the optimum number of inference d e s  from optimum number of membership 



Figure 3.5: Encoding the membaship functions to a bit-s-g 

funct ions. 

The four stages of genetic optimïzation are as folIows: 

1. InitiaIization - First, the domain of each input is dïvided into twdve sections, 

and a string with the length of 11 entries is assoaated with that interval. Each 

entry takes one of two possible vaiues, O denotiag the absence and 1 indicating the 

presence, of a triangular MF. To make sure that the MFs e x i s t  for both ends of the 

input domain, the first aad the last entries are set to 1. The length between the 

centers of two neighborhg MFs d&es the width of each MF. 

Given the strings for both input variables, the genotype (each individual in 

the popdation) is const~cted by concatenating two strings, to yield a bit-string 

of length 22. The GA starts with a random population of such a bit-string, each 

string representing a network structure. 

2. Evaluation - To q u e  each individual, a fitness function is defined as: 



where Fi is the fitness function for the ith individual, b defines the objective 

function which should be minimized for that individual, and @,, is the maximum 

objective fundion in the whoe population. In this way, the best indipidual receives 

the maximum fitness. 

The objective h c t i o n  is a combinecl objective function: 

where Ni is the number of adaptive nodes in the net-work, Eti is the network 

error obtained from training data and EeMi is the network error as a result of checking 

data- The weighting parametas, kl, kz and k3 are mostly dependent on the probiem 

and the desired solution. The checking w o r  is included with the overd objective 

function in order to avoid problems with ovedit ting. If just the training error is used, 

thea a network that has been overfitted might have a higher fitness than a network 

that cannot genaabe well at d. 

3. Selection - The individuals fiom the population are copied to a mating pool. 

Highly fit individuals are likeIy to be copied more t han once. Unfit or poor performing 

individuals may be rmioved from the population. The behavior of the GA very much 

depends on how individuals ase chosm to go into the mating pool. In this thesis, 

the fitness ranking technique is employed. Individuals are sorted in order of raw 

fitness, and then reproductive fitness d u e s  are assigned according to the rank of 

the individuals . 



4. Genetic Operations - The selected individu& are tecombined using crossover 

and mutation. During the crossover opaation, two points in the strings are ran- 

domly chosen and the part endosed by these two points is swapped. Mutation is 

accomplished by alteration of a single bit at a partidar string position. 

If the GA has been comctly imp1emented, the population will  evolve over suc- 

cessive genaations, so that the fitness of the individuals in each genaation increases 

toward the global optimum. The population is said to have convaged when 95% of 

the population lares the same value. 

3.4.3 Combination wit h SeKlearning Method 

By employing both genetic algorithm and adaptive £uzzy controller, the inference 

d e s '  parameters cari be tuned and also the number of membership functions can be 

optimized at the same time. This optimization contains two major process: 

a) Search for the optimum number of d e s  and shape of MFs by using GA. 

b) Train the network to detamine the consequent parts of rule base by the gradient 

descent algorit hm. 

These processes and their interactions are shown in Fig. 3.6 and an described 

beIow : 

a The cycle starts 6 t h  a d o r m l y  distributed random population of strings. 

Each string in the m e n t  population is decoded to an adaptive fuzzy network. 

a Each network is trained to detumine the consequent parts of fumy if-then 



Genetlc Network 
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Figure 3.6: Training and optimization processes. 

O After a certain numbu of epochs, training process is stopped and the total 

mean square error, Eti, between the actual outputs and the desired outputs is 

cdculat ed. 

Checkhg data is applied to each network and checking error, E-, is denved 

in the same fashion. 

0 The fitness for each individual is computed by using eqn. 3.16. 

a With probability according to the fitness, a number of children are produced 

in the m e n t  generat ion. 

0 Genetic opaations, crossover and mutation are applied to child individuah 

produced above and the new generation is formed. 

In this Chapter, two major drawbacks of conventional fuazy systems, the parameter 

tuning and finding the optimum structure, are discussed. b a y  system's parameters 



are in membership functions and inference des .  Adaptive h z y  systans as a candi- 

date to solve this problem is presented. Each step in thefbay system is implemented 

to a Iayer of a network containhg the adjustable parameters of the f ~ q  system. 

Then back-propagation algorithm is appfied to the network and the parameters are 

tuned in such a way that the o v d  error of the network is mhimhd- 

Using adaptive h z y  system, one can copy any utisting non-Linear controller as 

a desired controller. However in gened, the desired controller may not be available. 

A self-Ieaming appzoach for training the adaptive fkzy controller is presented. In 

this approach without using any desired controlla, the error at the output of the 

plant is back-propagated t k g h  a plant identifier to obtain the error signal at the 

output of the controller. The adaptive h z y  controller is trained using this error 

signal. To make the plant follow a desired trajectory, plant output is traced foi m 

sampling period and compared with the desked trajectory. The derivative of error 

to a parameter for each smpling time is caldated and f indy the chmging nile is 

applied to the network. 

The second problem, finding the optimum structure, can be overcomed by em- 

ploying genetic algorithm. By encoding the membership functions to a bit-string, 

genetic algorithm starts fiom a random population of such a strings. Each string, 

representing an adaptive fuzzy controller, goes under the genetic operators such as 

cross-ovex and mutation. If the optimization process converges, it meam the o p  

timum solution has been found based on the fitness criteria- The fitness criteria 

consists of three elanents: number of nodes in the network, final error due to the 

training data and h a 1  error due to the checking data. The last one assures that the 

adaptive b z y  controuer does not to become ovefitted. 



So far, the basics of FLC, ANNs and GAs (Chapta 2); and employing ANN and 

GA techniques to make Fuzzy Logic ControIler more dedive (Chapter 3) have been 

given. In the nutt part of dissertation, the potential of applying Fuzzy Logic Control 

with lesrning ability to powa system wÏi i  be discussed. 



Part II 

Sirnulat ion S t udies 



Chapter 4 

Adaptive Fhzy Logic Power S ystem S tabilizer 

4.1 Introduction 

Studies have shown that the use of supplementary control signal in the excitation 

system and/or govenior system of a genaating unit can provide extra damping for 

the system and thus improve the unit's dynamic performance [8]. This method of 

stability improvexnent is cheap, flexible and easy to implement. A varie* of PSS 

algorithms have been proposed and studied extensively in recent decades, among 

which some have been used successfully in the industry [SI. 

The most commonly used PSS, referted to as Conventional PSS (CPSS), is a 

fixed parameter analog-type device. The CPSS, fkst proposed in 1950's, is based 

on the linear mode1 of the power system at some operating point to damp the low 

fiequency power oscillations in the power system. This type of PSS is widely used 

in power systems and has made a great contribution in enhancing power system 

dynamic stability [17]. 

With the development of power systems and the increasing demand for quaïty 

electricity, it is worthwhile looking into the possibility of using modem control te&- 

niques. Power sy stem's configuration keeps changing either due to switching actions 

in the short term or system enhancement in the long term. Therefore, it would 

be more suitable to use adaptive control techniques that can track the operating 

conditions and changes in the system. An adaptive PSS (APSS) can adjust its pa- 



rametus on-line according to the environment in which it works and c m  provide 

good damping ove a wide range of operating condition [26,27]. 

The response tirne of the controIler is the key factor to a good dosed-loop per- 

formance. The APSS miploys complicated algorithms for parameta identification 

and optimisation which requVe significant amount of cornputhg time. The higher 

the order of the discrete model of the controIIed system used in identification, the 

more computing t h e  is needed. To devdop a qui& response PSS, it is necessary to 

investigate alternative techniques. 

In recent years, Fuzzy Logic Control (FLC) and Artifiaal Neural Network (ANN), 

as two branches of ArtiGQal Intelligence (AI), have attracted considerable attention 

as candidates for novel control strategies because of the variety of advantages that 

they offer over the conventional computational systems. Unlike 0th- classical control 

methods, FLC and ANN are model-fiee controllers, Le. they do not require an exact 

mathematical model of the controlled system. Moreover, rapidity and robustness are 

the most profound and interesting properties in comparison to the dassical schemes. 

Designing power system stabihers (PSSs) based on FLC has become an active 

area and satisfactory results have b e m  obtained [40, 411. Although, FLC introduces 

a good tool to deal with complicated, nodinear and ill-defined systems, it sufFers 

from a drawback - the "parameter tuning" for the controller. At present, there is no 

systematic procedure for the design of FLC. The most straightforward approach is to 

define Membaship Functioas (MFs) and decision d e s  subjectivdy by studying an 

operating system or an acisting controller. Thaefore, there is a need for an effective 

method for tuning the MFs and d e s  so as to minimise the output error or maxi& 

the performance index. 



Similady, rescarch on ANN application in power system stability has bear re- 

ported [32, 331. Besides the advantages mmtioned above, ANN has the powerful 

capability of learning and adaptation, the advsntages that can not be found in the 

FLC. However, one of the drawbacks of usïng conventional ANN is its *black-boxn 

characteristic. It is difEcult for an outside obseroa to understand or modify the 

network decision making process. For this reason initial dues are chosen randomly. 

In this Chapter, both the FLC and the ANN have been employed together to 

design a new PSS, Adoptive-Network based Fuzzy Logic PSS (ANF PSS). In this 

approach, a h z q  PSS with leaming ability has been constructed and is trained 

directly from the input and output data of the generating unit [75, 761. Because the 

ANI? has the property of leaming, fuazy rules and MFs of the controller can be tuned 

automatically by the learning algorithm. Learning is based on the exror evaluated 

by comparing the output of the ANF controller and a desked controller. For studies 

in this Chapta, a self-opthking pole-shifting APSS [28] has been chosen as the 

desired controller. 

4.2 Adaptive-Network based FLC PSS 

Essentially, an adaptive network is a supuset of a multi-layer feedforward neural 

network with s u p d s e d  leanÿng capability. An adaptive network consists of nodes 

and directional ünks through which the nodes are connected. Each node performs 

a p a r t i d a  function which may vary from node to node. The choice of each node 

function depends on the overd input-output fundion which the adaptive network 

is required to perform. Whereas in an ANN, the adaptive parameters pertain to the 



Iinks between the nodes, here the links only indicate the direction of flow of signals 

and part or all of the nodes contain the adaptive parametes(s). These parameten 

are speded by the leaming dgorithm and should be updated to achieve a desired 

inputoutput mapping. Similar to the ANN with supervïsed learning dgorithm, the 

leaming d e  of adaptive network is based on gradient descent [30]. 

A dass of adaptive networks which are functionally equivalent to FLG is referred 

to as Adaptive-Network based FLC. This scheme combines the idea of FLC and adap- 

tive network structure and as a result an FLC network is const~cted automatically 

b y learning fiom the training examples itself. 

In this study, an Adaptive-Network based FLC structure is employed to design 

a new h z y  logic PSS (ANF PSS) for the system. The FLG is considered to have 

two inputs, the genaator speed deviation Aw and its dexîvative Ab, and one control 

output, U,,. Moreover, the d e  base contains the fuzzy if-then d e s  of Takagi and 

Sugeno's type [36], in whieh the output of each d e  is a linear combination of input 

variables plus a constant term: 

If Aw is & and Ab is Bi then U,, = piAw + qiAb + ri 
and the final output is the weighted avaage of each rule's output. The architecture 

of the ANF PSS is shown in Fig. 4.1 , where node functions in each layer are as 

described below : 

Layer 1 - Each node in this laya performs a MF: 

where y is the input of node i ,  is the linguistic label associated with this node 

and (G, bi, G) is the parameter set of the bd-shaped MF. y: specifies the degree to 



Figure 4.1: Architectute of ANF PSS. 

which the given input belongs to the linguistic label A-, with maximum equal to 1 

and minimum equd to O. 

Layer 2 - Every node in this layer represents the âiring strength of the d e .  Hence, 

the nodes perform the h z y  AND operation: 

Layer 3 - The nodes of this layer caldate the normalized firing strength of each 

Layei 4 - Output of each node in this layer is the weighted consequent part of the 

d e  table: 



where üj,: is the output of laya 3, and (pi, qi, ri) is the parameter set. 

Layer 5 - The single node in this Iaya cornputes the overd output as the sum- 

mation of all incoming signals: 
n 

Thus an adaptive network has been constnicted which is functiondly equiva- 

Lent to a b z y  logic PSS. This structure can update MF and d e  base parameters 

according to the gradient descent update procedure. 

4.3 ANF PSS Training 

In a conventional FLC, parameters (MFs and d e s )  are specified by an expert who 

is familiar with the system. In the ANF based PSS, however, it is assumed that no 

expert is a d a b l e ;  the initial values of MFs parameters are equally distributed dong 

the universe of discourse and all consequent parts of d e  table are set to zero. In 

this manner, the ANF PSS starts £rom zero output and during the training process 

it gradually learns to function as close to the desired controller as possible. However, 

in psactice, a priori knowledge in the form of the untuned f&zy if-then d e s  is 

employed. As a result , the training starts from much less error. 

In the studies presented in the next section, the ANF PSS was trained b y the self- 

optimizing pole shifting APSS [28] as the desired controller. The sampling period, 

Ts, for APSS is set to 50ms and no computation time is assumed. The training was 

performed over a wide range of conditions for the generating unit, i.e., the genaator 

output ranging from 0.1 p.u. to 1.0 p-u., and the power factor ranging from 0.7 

lead to 0.1 lag. Similady, a wide spectnim of possible disturbances was used for 



the training. These disturbances are: refereace voltage and infinite bus voltage 

disturbances in the range of -0.05 p.u. to 0.05 peu., governor input torque variations 

fiom -0.3 p.u. to 0.3 pu., one transmission line outage, and tkee phase fault on one 

line of the double circuit transmission line connected to the gmerating unit. A total 

of 18000 input-output data pairs were obtained for the training of ANF PSS. 

The numba of MFs for each input variable is determined by the complexity of 

the training data aad by trial and error. It is similar to choosing the number of 

neurons in the hidden layers of an ANN; too many neurons will result in wasting 

the computa memory and computing time and too few neurons WU not give the 

appropriate control &ed. Based on eartier experïence, seven linguistic vaxiables for 

each input variable were used to get the desired performance. The MFs for two 

inputs, Aw and Aw , bdore and a&r training are shown in Fig. 4.2. As Fig. 4.2 

shows, the universe of discourse for both input variables is normalized and the gain 

paramet ers ase chosen based on the input -output space: 

Aw gain = 1.2 , Aw gain = 0.1 , U,.. gain= 0.1 

4.4 System Configuration and Mode1 

A number of studies have b a n  performeh ta hvestigate the effect of the proposed 

stabiher and the results are compared with those of the CPSS and ANF PSS. In d 

the follotning tests, CPSS is chosen to be an analog type Pm controller and ANF 

PSS is considered to be a digital controk with Ts = 50 ms. 

This study is based on a detailed mode1 of a generating unit connected to a 

constant voltage bus through two parallel transmission lines. A schematic diagram 



Figure 4.2: Membaship functions before and after training. 

of the system is shown in Fig. 4.3. For cornparison the CPSS was also included in 

the studies. A switch is used to achieve the changes between the stabibers. The 

Merential equations used to simulate the generating unit, the transfer functions of 

the governor, AVR. and CPSS, and also the system parameters are given in Appendix 



Figure 4.3: Basic system mode1 configuration. 

4.5 Test Results 

4.5.1 CPSS Parameter Tuning 

With the generator operating at a power of 0.7 PA., 0.85 power factor lag, a 0.05 p.u. 

step in input torque rdermce is applied at time 1 S. At time 5 s, the change in torque 

reference is removed and the system retums to its previous operating condition. 

Under these conditions, the CPSS with the trader function given in Appendix 

A was carefully tuned for the best performance, i.e. the overshoot and settling time 

were minimized by the CPSS damping effect. The parameters of the CPSS were 

then kept uchanged for aIl the tests described in this Chapter. 

Results of the study with the ANF PSS, CPSS and without a stabiher are shown 

in Fig. 4.4. It can be seen fiom the figure that the ANF PSS damps out the low 



frequency oscillations very qtiickiy. 

Figure 4.4: Response to a 0.05 pu. step increase in torque and retum to initial 
condit ions. 

4.5.2 Light Load 

The system condition is the same as the previous case uccept that the generator is 

now operating under a light load condition: the power is 0.30 pu. with 0.85 power 

factor lag, and the disturbance is a 0.15 p.u. step increase in input torque reference. 

The disturbance is large enough to cause the system to operate in a nonlinear region. 



System response for these non-linear conditions is shown in Fig. 4.5 for both the 

CPSS and ANF PSS. Because the CPSS is designed for best paformance at another 

operating condition, it is not able to provide as dective a damping at this operating 

condition. However, the ANF PSS still provides very dective pedormaace. 

Time, s 

Figure 4.5: Response to a 0.30 pu. step increase in torque and return to initial 
condition in light load test. 



4.5.3 Leading Power Factor Test 

When the generator is operating at a leadiag powa factor, it is a difEcult situation 

for the controller because the stability margin is reduced. However, in order to 

absorb the capacitive charging curent in a high voltage powet system, it may become 

necessary to aperate the generator at a leading power factor. It is, therefore, desirable 

that the controller be able to guarantee stable operation of the generator under 

leading power factor condition. 

With the genaator operating at a power of 0.3 p.u. with 0.9 p. f. Iead, a 0.2 

pu. step increase in torque refaence was applied. The resdts given in Fig. 4.6 

show that the oscillation of the system is damped out rapidly and demonstrates 

the effectiveness of the ANF PSS to control generator under leading power factor 

operating conditions. 

4.5.4 Voltage Reference Change 

With the gaierator operating at 0.2 pu. active power, 0.8 p. f. lag and 1-04 p.a. 

terminal voltage, a 5% step decrease in reference voltage was applied at 1 s and 

removed at 5 S. The generating unit power angle deviation responses are shown in 

Fig. 4.7. In the open hop system without any PSS, the severity of the oscillations 

increases as the reference voltage drops, since the system stability rnargin decreases 

as the reference voltage drops for a certain active powa output. It can be seen 

h m  Fig. 4.7 that the oscillations are dfectively damped by ANF PSS for both 

reference voltage decrease and increase, which mesns that the system stability margin 

is enhanced by using ANF PSS. 



Figure 4.6: Response to a 0.2 p.u. step inaease in torque under leading power factor 
condit ions - 

4.5.5 Fault Test 

The behavïor of the proposed ANF PSS under transient conditions was finther ven- 

fied by applying a fault. For this study, the equident reactance of the double circuit 

transmission line was set at 0.4 pou. instead of 0.6 pu.. The nsponse of the power 

system to a thra phase to ground short circuit at the middle of one transmission 

line, cleared 200 ms later by the disconnection of the faulted line and successfd 

reclosure after 4 s is shown in Fig. 4.8 . The results show that ANF PSS minimbes 



Figure 4.7: Response to a 0.05 p.u. step decresse in teference voltage and retum to 
initial condition- 

the deviation of the power angle of the generator after the fadt and helps the system 

to reach the new operating point very quiddy. 

4.5.6 Stability Margin 

Besides the improoement of the dynamic pedonnance by introducing the supple- 

mentary controller, the stability margin has also b a n  increased. To demonstrate 

this effect, a simulation study was conducted with the initial operating conditions of 



Figure 4.8: Response to a three phase to ground fault at the rniddle of one trans- 
mission line. 

0.95 p-u. , 0.9 p. f. lag, and the input torque reference was increased gradually. The 

dynamic stability masgin is described by the maximum power output at which the 

system losses synchronism. The results for the system without stabilizer, with CPSS 

and with ANF PSS are given in Table 4.1. ANF PSS provides the largest output 

power, which indicates that the dynamic stability margin of the system is improved 

most by the ANF PSS. 



4.6 Comparison of ANF PSS and APSS 

The purpose of training in thu Chapta is to make the ANF PSS function as dose 

to the APSS as possible. In Fig. 4.9, typical cornparison curves of the dosed-loop 

sptem respome with ANF PSS and APSS are givai. The generator operating point 

and the applied disturbance an the same as Test 1; i.e. P = 0.7 p-u., p. f. = 0.85 lag 

and a 0.05 pou. step in input torque reference is applicd. In this figure, APS S-1 is the 

system response using an adaptive PSS with no computation time and APSS-2 is 

the system response ushg the same APSS, but with an assumed computation tirne 

of 20 ms for the control signal. Although in general, there is not much merence 

between the performance of the Am-PSS and APSS-1, some differences can be seen 

between ANF PSS and APSS-2 paformances. 

If the computation of control signal in APSS takes more time (such as in the case 

of MIMO systems), the difference betweui these two stabibers will become even 

more sigdicant. 

4.7 Comparison of training time with ANN 

As mentioned in Section 3.2.2, by incorporating the knowledge base as initial pa- 

rametas of ANF PSS, the training time can be reduced drastically. Artifkial neural 

Table 4.1: Dynamic stability margin results. 

ANFPSS 
3.30 pou. 

CPSS 
2.85 p.u. Mwimum Power 

OPEN 
1.95 p.u. 

[ Maximum Rotor Angle 1.18 rad. 2.10 rad. 2.45 rad. 



T i e  (second) 

Figure 4.9: Cornparison of ANF PSS and APSS (same conditions as in Fig. 4.4). 

networks suifer from long traing tirne since their training starts with s m d  random 

initial parameters. To demonstrate this property, an ANN with two hidden layers 

and 40 neurons in the fist layer and 20 neurons in the second layer was chosen 

for cornparison with the ANF PSS described in Section 4.2. Both networks have 

the same numbu of inputs and outputs. Moreover, exactly the same training data 

obtained from the APSS is given to both networks. 

Before training starts, the ANF PSS contains only 13 major des. These rules 



are located on the cmter row and centcr column of fkzy  d e  table as shown in 

Fig. 4.10. This figure shows the values of parameter in the consequent part of 

Suguio's inference des. The otha parameters, and bi, are set to zero. Although 

a.ll 49 rules can be asigned the comsponding dues, it is assumed that the only 

available knowledge about the input-output relation of the stabliw is when one 

of the input signals is zero and the other one varies. As shown in Fig. 4.10, the 

consequent part of the inference d e  table is equally distributed fiom NB to PB. 

Figure 4.10: Initial h z y  d e  table of parameter before training 

Fig. 4.11 shows the sum of squared error curves for both the ANN PSS and the 

ANF PSS. The following can be concluded from this figure: 

O Initial error for ANF PSS starts from much s r n k  value, since the stabilizer 

has a rough a priori knowledge at the beginning. 

After about 50 epochs, ANF PSS training has converged. However, in the 



Number of epochs 

Figure 4.11: Cornparison of ANF PSS aad APSS (same conditions as in Fig. 4.4). 

ANN PSS case, even after 150 epochs, the network error is still reducing. 

Obviously, h a 1  aror is lower for ANF PSS than that of ANN PSS. 

4.8 Summary 

A new design method for power system stabilieer emploping adaptive-network-based 

h z y  logic controlla and its application to a power system are desaibed in this 

Chapta. The proposed PSS employs a multi-layer adaptive network. The network is 

trained directly from the input and the output of the generating unit. The algorithm 



combines the advantages of the ArtinQal Neural Networks and Fuzzy Logic Control 

schemes- 

The following conclusions can be drawn from the results. 

a The proposed method tetains all the advantages of difiaal neural networks 

and fuzzy logic controller, such as simpliûty, adaptability, apidity and robust- 

ness- 

0 ki this rnethod, by using neural network as a structure for the b z y  logic 

controller, the design time of conventional FLC can be significantly reduced; 

hrzzy d e s  and membership functions ase generated automaticdy to meet the 

prespedied performance; i.e. the tuning problern has been eliminated. 

a Compared to a conventional neural network, the training time is dramatically 

decreased, since a priori knowledge in the fonn of fuzzy if-then d e s  c m  be 

employed. It means that the initial parameters of the adaptive network can 

be chosen in such a way that the training of the network starts kom a much 

less utor at the output of the network than that of a neural network with 

random initial paramet ers. Also, the parameters of the proposed controller 

have physical intespretations unlike the " black-box" characteristic of the neural 

network. 

0 Test results for various conditions show that the proposed stabilizer is able to 

function as dose to the adaptive PSS as possible. However, the longer compu- 

tation time is one of the major limitations of the adaptive control strategy. 

a Simulation results show that the ANF PSS can provides good damping over a 



wide opesating range and can significantly improves the dp&c performance 

of the system. 



Chapter 5 

A Self-Learning M z y  Logic Power System 

S tabilizer 

5.1 Introduction 

In Chapter 4 [86] [87], both the FLC and the ANN have been employed together to 

design a new PSS, Adaptive-Network-Based Fwzy Logic PSS (ANF PSS). In this 

approach, a b z y  PSS with learning ability has been constructed and is trained 

directly fiom the input and output data of the generating unit [75, 761. Because the 

ANF has the property of leamkg, h z y  rules and MFs of the controller can be tuned 

automatically by the learning algorithm. Learning is based on the error evaluated 

by comparing the output of the ANF controller and a desired controller which in this 

case has been chosen as a self-optimbkg pole-shifting Adaptive PSS (APSS) [28]. 

The ANF PSS presented in this Chapter is based on a self-Ieaniing FLC [77]. 

In other word, without resorting to another existing controller, it is proposed to 

construct an FLC that performs a prescribed task. Similar to the G r s t  approach, 

the leaining method is basicdy a special form of the gradient descent (back prop- 

agation), which is used for the training of ANN. To train the controller, the back- 

propagation method is exnployed to propagate the plant output error signal through 

difFerent stages in time [al]. 



5.2 SeIf-Learning ANF PSS 

In Chapter 4, the ANF PSS was trained by the self-opthking pole shifting APSS 

[26] as the desired contr011er. Howeva, in a typical situation, the desired controller 

may not be available- The ANF PSS presented in this Chapta is trained from the 

performance of the generating unit output which is the generator speed deviation. 

5-2.1 Structure of ANF PSS 

In this approach, before finding a controller to control the plant states, a fundion 

approximator (ot model) is needed to represmt the input-output behavicr of the 

plaat. To mode1 the plant, an adaptive-network-bared h z y  logic model is employed, 

which has the same structure as the controller. The utility of this plant model is 

that it can compute the derivative of the modd's output with respect to its input by 

means of the back propagation process. Consequmtly, propagating errors between 

actud and desired plant outputs back through the model produces the error in the 

control signal, which can be used to train the controller. The block diagram of 

Fig. 5.1 shows an adaptive network containing two subnetworks, the b z y  controller 

and the plant model. 

The training process for the controller starts from an initial state at t = O. Then 

the FLC and the plant model generate the next states of U,, and Aw at time t = h. 

The process continues till the plant state trajectory is determined. The objective of 

the lestning yocess is the minimization of: 
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Figure 5.1: Error back-propagation tkough plant modd 

where Awa is the desired output trajectory, which is always zero and the tuning 

parameter X is selected to improve the plant trajectory. 

5.3 Training of ANF PSS 

The training was pedormed o v a  a wide range of conditions for both the controller 

and the plant mode1 with the generator output ranging from 0.1 pu. to 1.0 p.u., 

and the powu factor ranging fiom 0.7 lead to 0.1 lag. Similady, a wide spectrum of 

possible disturbances was used to obtain the training data. These disturbances are: 

seference voltage and infinite bus voltage disturbances in the range of -0.05 p.u. to 

0.05 pu., govanor input torque variations h m  -0.3 pu. to 0.3 pou., one transmission 

line outage, and three phase fault on one circuit of the double Qrcuit transmission 



Figure 5.2: Membership fanctions before and after training 

The MF's for two inputs of the controUer, Aw and Aw, before and after training 

are shown in Fig. 5.2. 

5.3.1 System Configuration and Mode1 

A number of studies have ben perfonned to investigate the d e c t  of the proposed 

stabilizer and the results are compared with those of the CPSS and ANF PSS. 

This study is based on a detailed 7th orda mode1 of a genaating unit connected to 

a constant voltage bus through tao  patallel transmission lines. A schunatic diagram 



of the system is shown in Fig. 4.3 For cornparison the CPSS was also induded in 

the studies. A switch is used to achieve the changes between the stabiliws. The 

differential equations used to simulate the genaating unit, the t r a d e r  functions of 

the govanor, AVR and CPSS are given in the Appendix A. 

5.4 Test Results 

5.4.1 Tuning the parameter X 

With the generator operating at 0.7 p.u. powa, 0.85 p. f. log, a 0.15 p.u. step in input 

torque reference is applied at time 1 S. At t h e  5 s, the change in torque reference 

is removed and the system retunis to its previous operathg condition. Under these 

conditions, the pedomiance of the self-learning ANF PSS was investigated. The 

r e d t s  are shown in Fig. 5.3 for Merent values of A, and for the subsequent studies 

X = 1 is used. 

5.4.2 Light Load 

With the system now operating uada a light load condition of 0.20 p.u. power, 0.85 

p. f. lag, a 0 -30 pu. step increase in input torque refixence is appïied. The disturbance 

is large enough to cause the systern to operate in a nonlinear region. S ystem response 

for these conditions is shown in Fig. 5.4 for both the CPSS and ANF PSS. Because 

the CPSS is designed for b a t  perfonnbnce at another operating condition, it is not 

able to provide as dective a damping at this operating condition. However, the 

ANF PSS still provides very &ective performance. 



T m e  (second) 

Figure 5.3: Resporw to a 0.15 peu. step increase in torque with Werent values of X 

5.4.3 Leading Power Factor Test 

When the generator is operating at a leading powa factor, it is a difEcult situation 

for the controller because the stability masgin is reduced. However, the controller 

must guaraatee stable operation unda these conditions also. 

With the generator operating at 0.3 p.u. powa, 0.9 p. f. lead, a 0.20 p.u. step 

increase in torque reference was applied. The results given in Fig. 5.5 show that the 

oscillation of the system is damped out rapidly. It demonstrates the dectiveness of 



Time, s 

Figure 5.4: Response to a 0.30 p.u. step inaease in torque and return to initial 
condition in Iight load test 

the ANF PSS to control generator under leading power factor operating conditions. 

5.4.4 Fault Test 

The behavior of the proposed ANF PSS under transient conditions was h-ther ver- 

ified by applying a fault. The response of the power system to a three phase to 

ground short circuit at the middle of one transmission line, deared 200 ms later by 

the disconnection of the faulted line and successful reclosure after 4 s is shown in 



Figure 5.5: Response to a 0.20 p.u. step inaease in torque under leading power factor 
condition 

Fig. 5.6 . The results show that ANF PSS minimbes the deviation of the power an- 

gle of the generator a f k  the fault and helps the system to reach the new operating 

point very quickly. 



Tie  (second) 

Figure 5.6: Response to a three phase to gound fault at the middle of transmission 
line. 

A new design method for powa system stabiliw employing adaptive-network-based 

fuzzy logic controller with self-learning capability and its application to a powet 

system are presented in this Chapter. The proposed method retains all advantages 

of &Scia1 neural network and h z y  logic controller, such as simplicity, adaptability, 

rapidity and robustness. Compared to a conventional neural netwotk, the training 



t h e  is dtamaticdly decreased , since a pnor knowledge in the form of fuzzy if-then 

d e s  can be employed. The ANF PSS presented in this Chapter is trained directly 

fiorn the performance of the generating unit and thus was independent of 0th- PSS . 

It provides good damping o v a  a wide range and signiticantly improves the d p d c  

performance of the system. 



Chapter 6 

Genetically Optimized Fuzsy Logic Power 

System Stabilizer 

6.1 Introduction 

In Chapta 4, use of an Artificial Neural Network ( A m )  to design an Adaptive- 

Network-Based Fuzzy Logic PSS (ANF PSS) is described [87], [88]. Because the 

ANF has the property of leaniing, fuzzy d e s  and MF's of the controller can be tuned 

automaticdy by the learning algorithm. However, the selectioa of the number of 

inference rules in these methods is not a trivial task. Finding the optimum number 

of d e s  for a specific application is, to a large extent, a process of trial and error, 

relying mostly on past ucperience with simila application. Also, the size of the 

adaptive network grows exponentidy with the inmeashg number of MFs, reqwring 

more training time. This problem bemrnes more crucial when the number of input 

variables increases. 

In orda to solve this problem, the Genetic Algorithm (GA) [69], as a global opti- 

mization technique, is employed to constact an ANF PSS with optimum structure. 

Since the numba of d e s  depends, in a direct manner, on the number of MFs, the 

number and shape of MFs are detamined &st by applying the GA [78]. Then the 

parameters in the consequent part of the d e  table axe speded by the learning 

algorithm whkh is a specid fonn of the gradient descent (badr propagation). 



6.2 Genetically Optimized ANF PSS 

Although the adaptive-netwotk-based FLC can solve the problem of tuning MFs 

and inference d e s ,  the selection of the number of d e s  is still tedious trial and enor 

work. Two trivial algorith,  constmctive and destructive, are usually employed. 

Both methods, however, are guided by a predefkied heuristic, as it is computationally 

expensive to try out all possible networks. 

The more powerful tedinique for aciently searching the space of aIl possible 

networks is the genetic algorithm. By encoding the center of MFs to a bit string as 

shown in Fig. 6.1, the shape and number of MFs can be optimized by means of the 

GA [69]. Since the number of d e s  is proportional to the number of MF's for each 

input, the optimum numba of d e s  (and eventually optimum network structure) 

will be achieved. 

Figure 6.1: Encoding the MFs to a bit-string. 

The four stages involved in the genetic search process are described in Chapter 



3. In the initiakation step, the domain of both input variables, AW and Aw, are 

divided into twelve sections. A bit string, containhg O or 1, is associated with each 

section. 

The fitness function is dcfined to be: 

where Fi is the fitness function for the ith individual, iPi defmes the objective 

function which should be minimked for that individual, and 0- is the maximum 

objective fimction in the whole population. In this way, the b a t  individual receives 

the maximum fitness. 

The objective function is a cornbined objective fundion: 

where Ni is the number of adaptive nodes in the network, E~ is the netwotk error 

obtained fiom training data and Es is the network error as a result of chedring 

data. The weighting parametas, ki, k2 and k3 are mostly dependent on the problem 

and the desired solution. Their values are chosen as: 

The chedeng error is induded with the overd objective function in order to avoid 

problems with ovexfitting. If just the training error is used, then a network that has 

been overfitted might have a higha fitness than a network that ca~ao t  generahe 

well at all. 



6.3 Training and Opthnhation Processes 

Genetic optimization of the ANF PSS contains two major processes: 

a) Search for the optimum numba of d e s  and shape of MFs by using GA. 

b) Training the network to detumine the consequent parts of rule base by the ga- 

dient descent algorithm. 

Data fiom not ody the typical operating conditions but also over as wide a 

range of operating conditions as the systun is likdy to mcounta, must be used for 

proper training of an ANF PSS. In this case, the training data and checkhg data 

w a e  obtained o v e  the generator output ranging fiom 0.1 p.u. to 1.0 pu., 0.7 p.f .  

lead to 0.1 p. f. Iag, and a wide spectrum of disturbances with the self-optimizing 

pole-shifting APSS [26] acting as a non-linear power system stabilizer and with ail 

appropriate excitation Iimits in place. These disturbances are: reference voltage and 

infinte bus voltage disturbances in the range of k 0.05 p.u., governor input torque 

variations of It 0.3 pu., one traasmission line outage, and three phase fadt on one 

circuit of the double circuit trassmission line. 

The optimum triangular MFs for two inputs of the controllet obtained by GA are 

shown in Fig. 6.2, four MFs for Au and six MFs for Aw. In genetic opthkation, 

the probability of crossover and mutation operators are chosen to be 80% and 5% 

respectively and the population is 25. 

Since for each guiuation al1 networks have to be trained individudy with the 

whole set of training data, this takes a wp long computation time. The whole set of 

training data was reduced to 15% during genetic optimization. After the convergence 

of GA, by which the structure of the optimum network is achieved, the complete 



Figure 6.2: Optimized Membership Functions. 

training data (15000 pairs) was miployed to fine tune the MF's and inference d e s  

with the initial dues of MFs obtaiaed from GA optimization. The final set of MFs 

shown in Fig. 6.3 has the same number for both input signals, but the shape of MF's 

is dianged fiom the triangular to bd function with smoother characteristics. 

The initia control action surface and the final control action surface after corn- 

plete training are shown in Fig. 6.5 and Fig. 6.4 respectively. The final control 

action surface &a complete training depicted pictorially the dfect of non-linearity 

in controuer. The control action before optimization is completely flat. 



Degree of Membership Degree of Membership 



Figure 6.4: Control action sudace before training. 

6.4.1 CPSS Parameter nning 

With the generator operating at 0.7 pu. power, 0.85 p. f. lag, a 0.05 p.u. step in input 

torque referace is applied at time 1 S. At time 5 s, the system returns to its initial 

operating condition. Under these conditions, the CPSS was carefully tuned for the 

best performance, i.e. the ovashoot and settling time w a e  minimized by the CPSS 

damping effect. The parametas of the CPSS were then kept unchanged for all the 

tests described in this Chapter. Results of the study with the ANF PSS, CPSS and 

without a stabilieer given in Fig. 6.6 show that the ANF PSS damps out the low 

frequency oscillations very quickly. 



Figure 6.5: Control action surface &a complete training. 

6.4.2 Light Load 

With the s y s t a n  now operating under a light load condition of 0.20 p.u. power, 

0.85 p. f. lag, a 0.15 p.u. step increase in input torque reference is applied. System 

response for these conditions is shown in Fig. 6.7. Despite a large change in the 

opaating conditions the ANF PSS still provides very a c t i v e  performance. 

6.4.3 Fault Test 

The behavior of the proposed ANF PSS under transient conditions was further ver- 

ided by applying a fault. The response of the power system to a three phase to 



Figure 6.6: Response to a 0.05 p.u. step increase in torque and retum to initial 
conditions. 

ground short circuit at the middle of one trbpsmission line, deared 200 ms later by 

the disconnedion of the faulted line and suc ces^ reclosure after 4 s is shown in 

Fig. 6.8. The results show that ANF PSS minimizes the deviation of the power angle 

of the generstor afta the fault and helps the system to nach the new operating point 
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Figure 6.7: Response to a 0.15 p.u. step increase in torque and return to atid 
condit ions. 

The ANF PSS supplunentary control signals for the the previous tests are shown 

in Fig. 6.9. 

6.4.5 Effect of optimisation with GA 

With the generator operating at 0.3 p.u. power, 0.9 p. f. lead, a 0.10 p.u. step increase 

in torque reference was applied. Closed-loop system response of two ANF PSSs with 
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Figure 6.8: Rcsponse to a t h e  phase to ground fault at the middle of one trans- 
mission line- 

different numbu of MFs is Qven in Fig. 6.10. The stmcture for the fint one is 

chosen to be 7 MFs for each input, nsulting in 49 inference des. The structure for 

the second ANF PSS is as Fig. 6.3 obtained from GA optimization; 4 and 6 MFs 

respectively for the two inputs, Aw and Aw, tesulting in 24 inference d e s .  

Although in general, there is not much merence betweeri the performance of 

these two stabilizers, the second has a reduced structure, requising les3 memory and 

less comput ation time. 



Figure 6.9: Supplementary control signal of ANF PSS for previous tests. 

6.4.6 Stability Margin 

The introduction of the supplementary controller not only improves the dpnamic 

performance, but dso inaeases the stability margin. To demonstrate this effect, 

the input torque reference was increased gradually from the initial value, 0.95 p.u., 

0.9 p. f. lag. During this test the terminal voltage remained constant as long as the 

system was stable. The dynamic stability matgin is described by the maximumpow~ 

output at which the system losses synchronism. The result for the system without 



Figure 6.10: Cornparison of two ANF PSSs, with 4x6 and with 7x7 MFs. 

stabilizer, with CPSS and with opthized ANF PSS are given in Table 6.1. ANF 

PSS provides the largest output powa, which indicates that the system dynamic 

stability is improved most by the ANF PSS. 

A genetic approach for optimisation of adaptive-network-based f u z q  logic controller 

and its application to a power system are presented in this Chapter. By employing 



an adaptive network, h z y  logic controller is able to leatn the input-output behavior 

of a complex controllet. Bowever, selecting the optimum numba of inference des 

is still a tedious task. Genetic dgorithm, as a global optimisation technique, is 

employed to determine the shape and the number of membership functions which in 

turn defines the numba of des. The results show that the proposed optimized ANF 

PSS provides good damping o v e  a wide operating range and significantly improves 

the dynamic performance of the systmi. 

When the proposed ANF PSS is to be used in a multi-machine power system 

environment, it faces some 0th- problems, such as multi-mode oscillations, coor- 

dination with otha PSSs of the same or different type, etc. Use of the proposed 

ANF PSS in a multi-machine power system enviromnent is investigated in the next 

Table 6.1: Dynamic stability margin r d t s .  

Chapter. 

Maximum Power 
OPEN 1 CPSS 1 ANF PSS ] 

1.35p.u. 2.85p.u. ( 3.15p.u. 
1.78 rad. 1 1.95 rad. Maximum Rotor Angle 1.05 rad. 



Chapter 7 

Self-Learning Adaptive W z y  Logic PSS in 

Mult i-Machine Power System 

7.1 Introduction 

Simulation studies in Chapters 4, 5 and 6 showed that properly trained ANF PSSs 

can provide an enedive damping of the power sy stem (871 [88] [89]. These studies were 

on the single-machine infinite-bus environment. The effectiveness of the ANF PSS 

to damp multi-mode oscillations in mdti-machine environment needs to be verified. 

The efFectiveness of the ANF PSS to damp multi-mode oscillations in a multi- 

machine environment is iavestigated in this Chaptes. A five machine power system 

is used in this study and its transient response to a large disturbance is presented 

with the multi-mode oscillation phenornenon. 

Multi-mode oscillations appear in a multi-machine power system in which the 

interconnected generating units have quite M e r a t  inertia and they are weakly con- 

nected by transmission fines. These oscillations are generally andyzed in three main 

oscillation modes, i.e. local, inter-ana and inter-machine modes. Depending upon 

theh location in the systmi, some generaton participate in only one oscillation mode, 

while others paxticipate in more than one mode [l?]. 

Speed deviation, Au, and accelaating power, AP., are chosen as the inputs 

to ANF PSS. It is demonstrated by the simulation results that when installed on 



difEimnt machines, the proposed ANF PSS can adjust itseIf to provide good damping 

for diiferent oscillation modes, such as the local and inter-area mode. Also, the self- 

coordination capabilities of the ANF PSS with other ANF PSSs and conventional 

PSSs are demonstrated. 

7.2 Power S ystem Multi-Mode Oscillations 

Thae are t hree modes of oscillation in a multi-machine power sy stem: 

Local Mode - urnially refers to oscillations occurring in plant transients stemmiag 

h m  guiaator rotors oscillatùig dat ive to the combined equivalent inertia of 

the system. This is also described as the generator swinghg relative to an 

infinite bus formed by the combined equivalent inertia extemal to a particular 

generator as shown in Chapter 4, 5 and 6. F'requency magnitudes are directly 

related to the equivalmt rotational ïnertia of the generator and the prime 

mova, and to the syndvonous torque coefficient linking the generator to the 

fixed bus. Local mode oscillations are in the range of 0.8 to 2 Hz. 

Inter-Machine Modes - this describes fiequencies related to dosely coupled gen- 

aators swinging relative to each other. This can occur at a plant that has 

a diverse mix of gaierators and controUers or at neighboring plants that are 

linked with inter-tics such that the machines are relatively closdy coupled. 

Inter-machine frequencies are related to the equivalent machine inertia of the 

dosely coupled grnerator groups and are in the range of 0.3 to 1 Hz. 



Inter-Area Modes - these fiequenaes stem fiom coherent groups of gaerators in 

one axea swinging relative to a numba of other coherent groups in 0th- areas. 

Inter-area fkequencies are in the range of 0.1 to 0.7 H z  and these fkequencies 

may ovdap with fiequenaes desaibed unda the 0th- two modes. 

7.3 A Multi-Machine Power System Mode1 

A detailed 5th order five-machine power system without infinite bus, as shown in 

Fig. 7.1, is used to test the proposed ANF PSS. Fivegenerators are connected through 

a transmission network. Generators Gr, G2 and G4 have much larger capacities than 

GJ and Gs. Parametas of all generators, governors, AVRs, transmission hes  aad 

loads operating conditions are given in Appendix B. G3, Gz and Gs maybe considered 

to form one area, and Gi aad G4 a second area. The two areas are connected together 

through a tie line conneding buses 6 and 7. Under normal conditions, each area 

serves its own load aad is almost fully loaded with a small load flow over the tie line. 

When this system is disturbed, multi-mode oscillations &se because of the dif- 

ferent sizes of the generators and the network codiguration. The multi-mode oscilla- 

tions can be dearly obsemed in Fig. 7.2. A 0.10 pu. step decrease in the mechanical 

input torque teference of G3 is applied at 1 s, a d  the system retums to the original 

condition at 10 S. Under the above mentioned disturbances without any PSS in- 

stalled, the local mode oscillation at a fiequency of about 1.3 Hz and the inter-area 

mode of about 0.65 Hz are quite distinct. This is because of the large ciifference 

in the i n d a  of the generators. The speed ditference between G2 and G3 exhibits 

rnainly local mode oscillations, while the speed difference between and Gz shows 



Figure 7.1: A five machine power system configuration 

the inter-area mode oscillations. Both local and inter-area osdlations exist in the 

speed meraice between Gi and Ga. 

7.4 The Effectiveness of ANF PSS in Damping Multi-Mode 

OsciUat ions 

The ANF PSSs employed in this test are the same as those developed in Chapter 3 

and tested in the singlcmachine intioite-bus environment in Chapter 5. Accelerat ing 

power, AP., and speed deviation, Aw are used as the inputs to the stabilizer as 

shown in Fig. 7.3. Since there is no idhite bus in the system, speed deviation has 

a DC offset value. A washout filter is utilized to remove the DC value before speed 

deviation signal is fed to the stabher. 



Figure 7.2: Multi-mode oscillations of the five-machine power system. 



Figure 7.3: Structure of ANF PSS used in multi-machine tests 

7.4.1 Only One PSS Installed 

Under the same disturbance, 0.10 p.u. step deaease in the mechanical input torque 

refamce of Ga, the proposed ANF PSS was installed on G3 and none of the other 

generators was equipped with PSS. The spad deviation, Aw, and the accelesating 

power, hPe, w a e  sampled at the rate of 2082. 

The training was performed over a wide range of conditions for both the controIler 

and the plant model. The genuator output ranging fiom 0.1 peu. to 1.0 p-u., and the 

power factor ranging from O.? lead to 0.1 lag. Similady, a wide spectnim of possible 

disturbances was used to obtain the training data. These disturbances are: reference 

voltage disturbances in the range of -0.05 p.u. to 0.05 p.u., govemor input torque 

variations from -0.15 p.u. to 0.15 p.u., one transmission line outage, and tkee phase 

fadt on one circuit of the double circuit transmission line. 



Figure 7.4: Membership functions befixe and after training 

The MFs for two inputs of the controller, Aw and AP., bdore and after training 

are shown in Fig. 7.4. 

After the complete training, as shown in Fig. 7.5, the ANF PSS damps the local 

mode oscillations very dectivdy. Howeva, as expected, it has little influence on the 

inter-area mode oscillations. This is because the rated capacity of GÎ is much less 

than Gi and 4; and G3 does not have enough power to control the inter-asea mode 

osc~ations. 



T i e ,  s 

Figure 7.5: System response with ANF PSS and CPSS installed on G3. 



For cornparison, in a separate test a conventional PSS (CPSS) with the following 

t r d e r  hct ion [90] was instded on the same generator: 

After careful parameter tuning, the CPSS with the following parameter set per- 

forms h a s t  similar to the ANF PSS. 

The results are shown in Fig. 7.5. The same condusion as that for the ANF PSS 

can be & a m  for the CPSS. 

7.4.2 With Three PSSs Installed 

To damp both local and inter-area modes of oscillations, the ANF PSSs were in- 

stalled on Gi, 4 and Ga. The ANF PSS on G3 was kept the same as the previous 

test, however, due to the diE'ent size of input signals, the ANF PSS on Gi was re- 

trained with the initiai parameters acquind from ANF PSS on Ga. Then the latest 

parameters were duplicated to that of ANE' PSS on G2. Responses given in Fig. 7.6 

show that both modes of oscillations are damped out &edively. 

Fig. 7.6 also depicts the systmi response when CPSSs are installed on G1, G2 

and G3. The proper parameter set for the CPSS on 6 and G2 is: 



Figure 7.6: System response with ANF PSS and CPSS installed on Gi, G2 and G3. 



7.4.3 Coordination Between ANI? PSS and CPSS 

In practice, the newly installed ANF PSS will have to work together with CPSSs 

which aInady exist in a power system. For the five machine power system, the 

proposed ANF PSS was installed on Gi and G3, with CPSSs on G2, Gc and Gs. 

Fig. 7.7 shows the system performance and demonstrates that the two types of PSSs 

can work CO-operatively. 

7.4.4 Three Phase to Ground Fault Test 

So far, the parameters of CPSSs are tuned under the disturbance of 0.10 p.u. s t e p  

change in the mechanical input torque rtference of Ga. It has bem shown that perfor- 

mance of the CPSS at a spedic operating point côn be satisfactory if its parameters 

are tuned properly at that opvating point and unda the same disturbance. 

To compare the performa&e of ANP and CPSS under difEerent disturbances, 

a three phase to grouad fadt was applied at the middle of one transmission line 

between buses #3 and #6 at 1 s and cleared 100 rns later. At 10 s, the faulted line 

was restored successfully. The disturbance is large enough to cause the system to 

work in the nonlineat region. Fig. 7.8 shows the system response when the proposed 

ANF PSSs are installed on 4, Gz and Ga. It shows the dosed-loop response of the 

system when CPSSs are instded on the same generating units. 

From these two system responses, it can be conduded that because the CPSS is 

desîgned for best pafonnance for the s m d  disturbances, it is not able to provide 

as effective a damping. Eowever, despite a large change in the operating conditions 

the ANF PSS provides very effective performance. 



Figure 7.7: Systun response with ANF PSSs on and G3 and CPSSs on G2, G4 
and G5. 



Figun 7.8: System responoe to three phase to ground test 



7.4.5 New Opetating Condition Test 

The behavior of ANF PSS and CPSS under other opaating condition is investigated 

in this test. The new system operating point is gïven in Appendix B. With ANF 

PSSs and CPSSs installed on Gi, 4 and Ga, Figs 7.9 shows the system response 

under a three phase to ground fault. Again, it is shown that the system response 

with ANF PSSs is further improved than with CPSS. The reason is that the ANF 

PSS is designed to capture the nonlinearity of the powa systun, whereas the CPSS 

7.5 S u m m a r y  

In this Chapter, the effectiveness of an ANF PSS in damping the multi-mode oscilla- 

tions of a five machine power system environment is investigated. The accelerating 

power and speed deviation of the generating unit are used as the inputs to ANF 

PSS. Training procedure for the proposed stabilizer is based on a self-learning tech- 

nique; Le. independent of 0th- PSS. The ANF PSS &O was trained over the full 

working range of the generating unit with a large variety of disturbances to capture 

the non-linear behavior of the power system. This is a desirable characteristic the 

conventional PSS lacks. Also, the coordination of the ANF PSS with the CPSS is 

well demonstrated. 

From the simulation results in this part of dissertation, it can be seen that the 

proposed ANF PSS can produce satisfactory performance when it is used in both the 

singlemachine power system and the multi-machine power system. The behavior of 

the proposed ANF' PSS applied to a physical system is studied in the next part. 



Figure 7.9: System response to three phase to ground test for the new operating 
condition. 



Part III 

Experimental Tests 



Chapter 8 

Experimental S tudies wit h a Self-Learning 

Adaptive F h z y  Logic PSS 

8.1 Introduction 

Theoretical development of a self-leaming Adaptive-Netwoik based Fwzy Logic 

Power System Stabilizer (ANF PSS) is desmibed in Chapter 3[87]. It has been 

simulated on a singltmadllne W t e - b u s  power systan (Chapta 4, 5 and 6) and 

a multi-machine power system (Chapter 7). The proposed fuuy controller has the 

p o w d  capability of learning and adaptation. In this approach a fuzzy PSS with 

learaing ability has been constnicted. Fwzy rules and MFs of the controller can 

be tuned automatically by the learning algorithm. Moremer, it is not dependent 

on another existing controuer. In other words, it employs a self-leaming schune in 

which the ANF PSS is trained from the pedonnance of the gmerating unit output 

and not the controila output [88]. 

Afta  the theoretical development and cornputer simulation studies, the perfor- 

mance of the ANF PSS is investigated furthes on a physical model of a power system. 

Scaled physical model is able to d a t e  the behavior of the actual power plant in the 

laboratory environment. The ANF PSS ha9 b e n  implunented on a Digitd Signal 

Processot (DSP) mounted on a PC. 

For cornparison, a digital conventional PSS (CPSS) was implunented in the same 



environment on the DSP boatd. Details of implemmtation almg with the exper- 

irnental studies are desaibed in this Chapter. The nsults demonstrate that the 

proposed self-learning ANF PSS provides good dampiag over a wide range of oper- 

ating conditions and improves the stability margin of the system. 

8.2 Physical Mode1 of a Power System 

A singlemachine infinite bus power system was physically modeled in the Power 

Research Laboratory at the University of Calgary. An overd schematic diagram 

of this model is shown in Fig. 8.1. The parameters ate given in the Appendix C. 

A three phme 3 kVA, 220 V synchronous micro-alternator driven by a dc motor is 

employed to model the generating unit. 

The transmission line was modeled by a lumped element physical model. This 

simulates the performance of a 500 kV, 300 km long double circuit transmission line 

connected to a constant voltage bus. Consisting of six r sections, the transmission 

line gives a frequency response that is close to the actual transmission line response 

up to 500 Hz. A T h e  Constant Regdator (TCR) was used to change the effective 

field time constant of the genaator in order to simulate a large generating unit. By 

ushg the TCR, the effective generator fidd time constant can be changed up to 10 

S. 

In this setup, an ABB AVR implemented on a PHSC2 Programmable Logic 

Controuer (PLC) is used to control the terminal voltage of the altemator. Three 

phase ac terminal voltages and cusrents are stepped dom, rectified and filtered 

with a cut-off frequency of 8 Hz to form six dc signals proportional to the terminal 





voltages and ments .  As shomi in Fig. 8.1, the PLC accepts these analog voltage 

and m e n t  signais as the inputs and provides the required field controI signal as 

the output which is fed to the TCR At the same time, the PLC caldates various 

eledrical signals; among them is active power signal, P., applied as input signal t O the 

stabilizer. PHSC2 PLC has been progiammed ushg a function bIock programming 

language called FUPLA. Usbg a PC, FUPLA program is compiled and downloaded 

to the PLC- 

V ' o u s  disturbances can be applied to the mode1 power system. The generator 

terminal voltage can be stepped up and down by changing the voltage teference 

setting of AVR. Similady, by changing the armature current of the dc motor, the 

active power of the micro-dternator can be changed. DiEerent types of faults can 

be applied on the transmission line to simulate large disturbances. 

8.3 DSP Based Real-Time ANF PSS 

8.3.1 Hardware Requirement 

S tmcture of the real-time digital ANF PSS environment is shown in Fig. 8.2. 

Development of the real-time digital control enviromnent is based on a DSP board 

supplied by SPECTRUM Signal Processing Inc. The board contains a TMS320C30 

DSP drip which is a 32-bit floating-point device with 60 ns single cycle instruction 

execution time. Its performance is furtha enhanoed through its large on-chip memo- 

ries, concursent DMA controlIer, two extemal interface ports and instruction cache. 

Furthexmore, the two 200 kHz, %-bit d o g  I/O chamels on boatd, coupled with 

direct access to all the serial and paralle1 I/O channels of DSP chip, provide the exte- 
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rior input-output functions. The DSP board is instaiIed on a PC with corresponding 

development softiirate and debugging application program. 

The output of the physical plant, P,, is cdculated by PLC and sent through 

analog output port. The A / D input channel of DSP board receives P. signal, samples 

at a 5 ms sampling i n t d  and stores in a b& fiom which the main processor 

can read as needed. Thai, the control signal, U,,., computed by the DSP processor 

is placed into the output chamel and converted by D/A. This output channel is 

connected to the analog input of the PLC. Combining the PSS signal obtained fkom 

the DSP board and the AVR signal acquired fiom the PLC intenial caldation, PLC 

sends the field control signal to the TCR, thus forming a dosed-loop control system. 

8.3.2 Software Development 

With the PC accommodating the DSP board, ANI? PSS program is developed in a 

modular manner using C and Assembly laquages. Once the application program is 

completed, the program is donnloaded to the DSP board and stazted on the board. 

To furtha enhance the power and convenience of this system, a human-machine 

interface program has also been designed on the same PC. The operation of this 

program is independent of the controlla. After dodoading the DSP program to 

the board, interface program reads the parameters of the ANF PSS fiom the corre- 

sponding data file, sends them to the board and waits for the DSP signal to begin the 

main control loop. At a 50 ms sampling i n t d ,  the interface program samples the 

input-output signals of the controller running on the DSP board. The input-output 

data is plotted on-line on scleen with propa scaie, while the user can choose the 

s p e d c  time for the beginning and end of saving the data in a Be. 



8.4 Initial Training of ANF PSS 

The stmcture of ANF PSS used in expaimental tests is shown in Fig. 8.3. Electric 

power deviation, Me, and its integral, $ AP., are used as the inputs to the stabilizer. 

Since both signals contain DC o h t  value, two washout filtets are impIemented in 

software program on DSP board to diminish this DC value. 

Figure 8.3: Structure of ANF PSS used in experimental tests 

The ANF PSS is initially trained off-line. For this, Srpical disturbances under 

various operating conditions were appiied to a power system simulation model, where 

the machine is modeled by a detailed 7th order model. The disturbances wed were: 

reference voltage and infinite bus voltage disturbances in the range of -0.1 pu. to 

0.1 p.u., input torque variations from -0.25 peu. to 0.25 p.u. and three phase fault on 

one of the double circuit transmission Iines conmcted to the generating unit. 

The MFs for two inputs of the controIler, AP. and J AP., before and after training 



Active Power Deviation (normalized) 

Integrai of Active Power Deviation (normalizcd) 

Figure 8.4: Membership fundions of two inputs before and after training. 

are shown in Fig. 8.4. 

After a complete training procedure on a SUN Sparc Station cornputer, the pa- 

rameters of the fuzzy controller, MFs and inference d e s ,  were trderred back to 

the PC to build the ANF PSS on the DSP board. 

8.5 Digital Conventional PSS 

For cornparison, a conventional PSS (CPSS) with the following ttansfer function 



was implemented in the same environment. Since the controI setup is for the devel- 

opment of digital controlIers, the CPSS trd' function was discretized according 

to the given sampling rate r. Because the washout filta is implanmted in another 

function block, only the lead-lag compensator needs to be discretized. 

2 2-1 Using the bilùlear transformation, s = ;,, the transfer function of the CPSS 

in the s-domain can be transformed into the z-domain as below: 

where the co&cients {gi) and {fl) are expliut fundions of gain Ks and the time 

constants Ti, - - ,4. The sampling rate for the digital CPSS were chosen to be r = 

1 ms. 

8.6 Experimental Studies and Discussion 

The active power signal P., computed by the ABB PLC, was sampled at 5 m s  

sampling intaval as the input signal to the ANF PSS. The control signal was added 

at the s u m  junction after the AVR. Various disturbances unda different operating 

conditions were applied to test the behavior of the proposed ANF PSS and the 

results w a e  cmpared with those of the CPSS. All experimental data was collected 

by the human-machine interface and saved in the PC for W h e r  adysis.  For easy 

cornparison, the time axis was adjusted so that the disturbances seem to happen at 

the desired time point. 



8.6.1 Voltage Reference Step Change 

With the alternator operating at the following opaating point: 

P = 0.90 p.%., p - f .  = 0.85 log, & = 1.10 pu. 

a 10% step increase in the refcnna voltage was applied at 1 s and removed at 9 

S. The altemator active power devïation with ANI? PSS, with CPSS and without 

PSS are shown in Fig. 8.5. In the open loop system without any PSS, the severity 

of the oscillations increases as the refisence voltage drops, since the system stability 

margin decreases as the refezence voltage drops for a certain active power output. It 

can be noticed fkom Fig. 8.5 that the oscillations are effectively damped by the ANF 

PSS in about one cycle. 

To make a teasonable comparison between the CPSS and the proposed stabiliw, 

the parametas of the CPSS were carefully tuned to make the CPSS produce almost 

the same paformance as that of ANF PSS at this particular operating condition. 

The CPSS parameters are as follow: 

It is apparent from Fig. 8.5 that the parameters of the CPSS have b en tuned 

properly, as it is able to enhance the performance of the system at the design oper- 

ating point. Cornparison of the control signals for ANF PSS and CPSS is @en in 

Fig. 8.6. 

In order to investigate the performance of the ANF PSS and CPSS, the param- 

eters of the CPSS are kept unchanged while the operating condition is changed to: 



Figure 8.5: Cornparison of ANF PSS and CPSS responses to a 10% step reference 
voltage disturbance at P = 0.90 p.u., power factor 0.85 lag. 

The same voltage reference step change of 10% is applied at 1 s and 9 s respectively. 

Active power deviations and the control signab for both the ANF PSS and CPSS are 

shown in Figs. 8.7 and 8.8 respectively. The stability margin at the leading power 

factor is reduced, but the ANF PSS still can yield vexy satisfactory results. With 

the ANF PSS, the system settles down within 1 s, whaeas it takes longer with the 

CPSS. This test has shown that the ANF PSS can successfully compensate for the 

nonlinearity of the generating unit, i.e. the gain and phase lag changes with respect 



Figure 8.6: Control signals of ANF PSS and CPSS for a 10% step reference voltage 
disturbance at P = 0.90 peu., power factor 0.85 log. 

to the changes of the operating conditions. 

8.6.2 Input Torque Reference Step Change 

Wit h the alt emator operating at : 

P=O.9Op.u., p.f.=0.85Iag, Vt=l.lOp.u. 

a 0.25 p.u. step decrease in the input torque teference was applied at 1 s and removed 

at 9 S. The response is shown in Fig. 8.9. When the generator condition changes to 



Figure 8.7: Cornparison of ANF PSS and CPSS responses for a 10% step reference 
voltage disturbance at P = 0.90 p.u., power factor 0.95 lead. 

a lowa operating point at 1 s, the CPSS can provide very good damping and thus 

there is not much diflerence between the ANF PSS and the CPSS. However, when a 

0.25 p.u. increment step change was applied to the system at 9 s, the response with 

the ANI? PSS was consistently good. 

For a leading power factor conditions, the performance with the tiRo PSSs at 

operating point: 



Figure 8.8: Control signals of ANF PSS and CPSS for a 10% step reference voltage 
disturbance at P = 0.90 p.u., power factor 0.95 lead. 

is shown in Fig. 8.10. 

Because the ANF PSS possesses nonlinear behavior, it can provide consistent 

efFective control signal over a wide range. 

8.6.3 Three Phase to Ground Test 

To investigate the performance of the ANF PSS under transient conditions, a tkee 

phase to ground fault test ha9 been conducted at the operating point: 



Figure 8.9: Camparison of ANF PSS and CPSS responses to a 0.25 p.u. step torque 
disturbance at P = 0.90 p-u., power factor 0.85 Zag. 

At this operating condition, with both lines in opaation, a three phase to ground 

fault in the middle of one transmission line was applied at 3 S. The transmission line 

was opened, by relay action, at both ends of the line 100 rn latex. An unsuccessful 

redosure attempt was made &et 600 ms, and the line was opened again 100 ms 

later due to a permanent fault. 



Figure 8.10: Cornparison of ANF PSS and CPSS responses to a 0.25 p.u. step torque 
disturbance at P = 0.90 p.u., power factor 0.95 lead. 

The system response with the ANF PSS and CPSS under the above transient 

condition is shown in Fig. 8.11. The amplitude of the fmt oscillation for both 

controllers is the same, howeves, the settling time of the response with the ANF PSS 

is about 30% smaller than that with CPSS. 

At the leading power factor operating point: 



Figure 8.11: System respoase with ANF PSS and CPSS for three-phase short Srcuit 
test at lagging power factor. 

the performance with the three phase short-circuit-fault and unsuccessful reclosure 

is shown in Fig. 8.12. 

8.6.4 Dynamic Stability Test 

The main purpose of employing powa system stabiliza is to enhance the stability 

of the powa system. With PSS in operation, the system can opaate at high loads 

even if it is not stable without a PSS or with a poor PSS. In this test, the capability 



Tirne. sec 

Figure 8.12: System response with ANF PSS and CPSS for three-phase short circuit 
test at leading power factor. 

of the ANF PSS to improve the dynamic stability m a r e  of the system is presented. 

First with the ANF PSS operating, the system input torque teference was in- 

aeased gradudy to the level: 

at which the system was stîll kept stable. At 4 s, the ANF PSS was replaced by 

the CPSS. A f t a  replacement, the systun started to oscillate without any extemal 



distusbance, which means that the CPSS is unable to maintain system stability at 

this load level. The ANE' PSS was switched back at 17 s and the system very quickly 

reached the stable condition- 

As shown in Fig. 8.13, the ANF PSS successfJly damps the oscillations. This 

test demonstrates that the ANF PSS can provide a larger dynamic stability margin, 

thereby allowing the genaating unit to operate at heavïer load conditions. 

hA : CcA - .  - 3. 
ANFPSS i CPSS :ANF PSS 

1 

Figure 8.13: Dynamic stability irnprowment by ANF PSS. 



Real-time irnplanentation of the proposed ANF PSS and experimental studies on a 

physical mode1 power system are presmted in this Chapter. Active power deviation 

and its integral are anployed as the inputs to the ANF PSS. T~aining procedure for 

the proposed stabibu is based on a self-1earniog technique; i.e. independent of an- 

otha PSS. The experimental r d t s  are disnisaed and compand with a digital type 

conventional PSS. The results demonstrate that both the CPSS and the proposed 

ANF PSS are efkctive in improving the dynamic pdo11nance of the sy stem at design 

operating point. However, whai operating point deviates fiom its design point, the 

performance of the CPSS deteriorates. This is due to the nonlinear characteristic 

of the generating unit. Also, the ANF PSS can provide a larger dpnamic stability 

margin than the CPSS. 



Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

As discussed in Chapter 1, Power System Stabilizers (PSSs) have provm very effec- 

tive in enhancing the stability of power systems. Numerous theoretical studies and 

experimental tests have b a n  conducted to better understand the behavior of the 

PSS and to make them more applicable in practice. Dinaent types of PSSs have 

been investigated, and their advantoges and disadvantages have become more and 

more dear. Based on these studies aiteria have been devdoped to help the designer 

to choose the most suitable configuration for a particular application. 

Conventional PSS (CPSS) h a  been success£dy applied to power industry in 

many cases. However, because of its inherent linear characteristic, it faces many 

serious problmu. The stabfier  should be able to catch the non-linearity of the 

systmi and produce the same performance for diflEerent operating conditions and 

different types of disturbances. 

This dissertation is devoted to the development of an adaptive h z y  logic power 

system stabiker. It has made systcmatic contributions to all t k e e  stages of develop- 

ing such a stabfier -theoretical development, simulation studies and experimental 

tests. 

After studying and comparing fuzzy logic and neural network control strategies, 

an adaptive h z y  logic based power system stabilizer has been proposed [86][87]. 



It combines the advantages of both control strategies, avoids th& drawbacks, and 

coimeds t h a e  h o  seemingly different algorithms together. By using the adaptive 

k z p  logic PSS, the tuning problan of f u z q  controller is removed and black-box 

characteristic of neural network controk is significantly improved. In this way, 

it simplifies the tuning procedure during commissioning and thus makes it more 

suitable for practical applications. 

The proposed adaptive k z y  PSS requires snother existing controller (desired 

controlla) to adjust its parameters to field the same control performance. Adaptive 

self-optimizing pole-shifting PSS (APSS) is selected to be the desired controller. 

A trained adaptive fuzzy controller can produce qui& contd signal and overcome 

the disadvantage of Long computing time of the desired controller. The computing 

time of APSS increases as the identscation and control dgorithms become more 

complicated. By training an adaptive hy PSS to simulate the function of an 

APSS, the new PSS combines the good control effect of APSS and qui& response of 

ANN, and thus improves the performance of the pown system. 

In the next stage of designing adaptive fuzzy PSS, a self-learning approach is 

used to train the controller directly from the generating unit output [88] [U]. This 

approach is independent of other PSSs. An adaptive fuzzy identifier is first trained 

to idmtify the dpamic of the unknown plant, and then this identifia is utilized to 

back-propagate the error at the genaating unit output to the output of the controller. 

The parametas of the controller are updated af ta  a certain elapsed time to minimize 

the difference between the plant trajectory output and the desired trajectory. 

Besides the tuning probiem of fuzzy logic controllers, the selection of the number 

of inference d e s  and membership functions is done by tnd and error. By increasing 



the numbu of input and outputs, this problem becomes more crucial. To automate 

the process of finding the optimum structure for adaptive b z y  PSS, Genetic Al- 

gorithm as a global opthkation technique is anployed [89]. By applyïng both GA 

and back-propagation techniques, the number and the shape of membaship func- 

tions are determined by GA and the consequent part of inference d e s  are specified 

b y back-propagation algorit hm. 

The adaptive fuzzy PSS is b d t  and tested in the singlemachine idbitebus 

environment by cornputer simulation. In each of three mentioned approaches, the 

adaptive hzzy PSS is trôined in the full workirg range of the generating unit with a 

wide range of disturbances. Simulation results have demonstrated that the proposed 

adaptive PSS can adjust its parametas to produce a control signal that can provide 

enough damping to different disturbances. 

The effediveness of the adaptive fuzzy PSS to damp multi-mode oscillations in a 

multi-machine environment is &O verifed in this dissertation [92]. Test results show 

that each adaptive k z y  PSS can damp the spe&c mode of oscillation introduced 

mainly by the generating unit on which it is applied. Several adaptive fuzzy PSSs 

working together can damp both local and inter-area mode oscillations. There are 

no coordination conflicts with the 0th- types of PSSs. 

These results have shown that the adaptive fuzzy PSS has many promising fea- 

tures that the conventional PSS lacks. This makes it a strong candidates to replace 

the conventional PSS in future. 

Next stage in the devdopment process is the implementation of the device. If it 

is considered that the simulation studies prove the proposed control algorithm the* 

retically, the implementation tests prove the proposed control algorithm practicdy. 



Implementation is a critical step towards its practical application. By ut-g a 

PHSC2 Programmable Logic Controiler as AVR and a TMS320C30 Digital Signal 

Processor as PSS, a rd-time digital control environment has been established to 

impiement adaptive fuzzy PSS [93]. For cornparison, a digital type conventional 

PSS has also been implmiented in this environme& and tested under the same con- 

dit ions. Eixperiment al tests have produced iesult s consistent with the simulation 

studies, prooing the capability of the proposed adaptive fuzzy PSS. 

9.2 Future Work 

Research on h z y  logic, n e d  network and genetic algorithm in control systems has 

advanad rapidly in receat years. Since the application of these techniques in power 

engineering is a new area, much work needs to be conducted in order to put them 

into practical use. 

Based on the work of this dissertation, the followings are recommended as further 

research topics: 

For training the adaptive f k z y  contder ,  off-line learning method is used. 

The next immediate step seems to be to investigate the possibility of apply- 

ing on-line learning method to track time varying stochastic power systems. 

However, thae an many serious aspects that need to be investigated before 

on-Iine method c m  be put into use. Stability of the closed loop system is the 

major concem. Since the controlla parametus are updated each sampling 

intaval, without having an &&nt criteria to limit the parameta update, 

on-Iine leamhg method may lead the system to unstable region. 



Adaptive £uzzy controlla, in general, can be used as a multi-input mdti-output 

controller without facing the tuning problem. Ody two inputs and one output 

are considaed for adaptive b z y  PSS. hcreasing the number of inputs and 

outputs could be very intaesting. B y usïng the generating unit terminal volt- 

age, &, as aaother input to the controlla, the combination of AVR Ioop and 

PSS loop will be achieved, hmce both powa oscillations, AP., and terminal 

voltage deviation, A&, can be controlled at the same time and in one control 

ioop. 

Also, integrating both the excitation and the governor control loops and con- 

sidering the interaction between them are worth looking &o. 

a Although many theoretical stability criterias are proposed for h z y  and mu- 

ral network based control systems, still a guaranteed reliability to haadle all 

unpredicted situations is of greatest need for these control schemes. 

Lab implementation of the ANF PSS was based on a sequential computation 

method using a DSP board. To reduce the computing t h e  furtha, it is sug- 

gested that the ANF PSS be implemented on a commercidy adable  h z y  

logic chip. 
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Appendix A 

Single-machine Power S yst e m  

A.1 The gmaating unit is modeled by seven &st orda diffaential equations given 

below: 

A.2 The AVR and excitor mode1 used in the system is from the IEEE standard 

P421.5,1992, Type ST1A as shown in Fig. A.1. 

A.3 The governor used in the system har the t r d e r  function: 

A.4 The conventional PSS has the following trader function: 



Figure A.1: AVR and excitor model Type STlA, IEEE standard P421.5,1992. 



A.5 Parasnetas used in the simulation study are givm below: 

All resistances and reactances an in per-unit aod t h e  constants in seconds. 



Appendix B 

Multi-machine Power System 

B.1 The generating unit is modeled by five Grst orda differential equations given 

below : 

B.2 Generator parameters: 

G1 

Xd 0-1026 

Xq 0.0658 

XId 0.0339 

XIId 0.0269 

X", 0.0335 

Ttdo 5.6700 

Tt'& 0.6140 

T t  0.7230 

H 80.000 



B.3 AVR and simpiided STlA excita parameters: 

G G2 G3 G4 G5 

T, 0.0400 0.0400 0.0400 0.0400 0.0400 

K, 190.00 190.00 190.00 190.00 190.00 

Kc 0.0800 0.0800 0.0800 0.0800 0-0800 

T, 10.000 10.000 10.000 10.000 10.000 

Te 1.0000 ~.OOOO 1.0000 1.0000 1.0000 

B.4 Governot parameters: 

G G2 G3 G4 Gs 

Tg 0.2500 0.2500 0.2500 0.2500 0.2500 

u -0.0001 -0.0001 -0.0013 -0.0001 -0.0013 

b -0-0150 -0.0150 -0.1700 -0.0150 -0.1700 

B .5 Transmission line parametas: 

Bus# 

1-7 

2-6 

3-6 

3-6 

4-8 

5-6 

6-7 

7-8 

B.6 Operating point #1: 



G1 G2 G3 G4 6 5  

P,p.u. 5.1076 8.5835 0.8055 8.5670 0.8501 

Q,p . r .  6.8019 4.3836 04353 4.6686 0.2264 

V,p.u. 1.0750 1.0500 1.0250 1.0750 1.0250 

6, rad. 0.0000 0.3167 0.2975 0.1174 0.3051 

Loads in admittances in P.u.: 

B.? Operating point #2: 

Gl G2 G3 G4 G5 

P,p.u. 3.1558 3.8835 0.4055 4.0670 0.4501 

9,p.u. 2.9260 1.4638 0.4331 2.1905 0.2574 

V, p.u. 1.0550 1.0300 1.0250 1.0500 1.0250 

6, rad. 0.0000 0.1051 0.0943 0.0361 0.0907 

Loads in admittances în p.u.: 



Appendix C 

Physical Mode1 Power System 

C.1 The paramet- of the micro-altemator are: 

r, = 0.026 ru = 0.0083 +a, = 0.0083 

rf = 0.000747 2 j  = 1.27 H = 4.75 

xd = 1.2 x u  = 1.25 x d  = 1 .129 

xq = 1.2 zh=1.25 xm=1.129 

C.2 Each transmission line consists of six 50 km equivalent ?r-section. For each 

x-section, the paramet ers are: 

C.3 The parameters of the conventional PSS are: 

AU resistmces and readances are in p.u. and t h e  constants in seconds. 




