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Abstract

In this dissertation, an adaptive fuzzy logic control algorithm has been developed
for a Power System Stabilizer (PSS) to improve dynamic performance of the sys-
tem. The proposed PSS deals with automating the parameter tuning and structure
optimization in order to achieve the desired performance.

This approach combines the advantages of both Fuzzy Logic Control (FLC) and
Artificial Neural Network (ANN) and avoids their drawbacks. The parameters of
the controller, membership functions and inference rules are adjusted according to
gradient decent learning algorithm.

Moreover, the mechanism of how the FLC can be trained in a closed-loop control
system is investigated. In the first step, a desired controller is employed to generate
the input-output data required for training. The FLC learns to copy the desired
controller. This approach needs the existence of the desired controller. To overcome
this problem, in the next step, a self-learning approach is utilized to train the FLC
directly from the plant output. A genetic algorithm is also used to optimize the
structure of FLC, preventing the learning algorithm from the overfitting problem.

Simulation studies and comparison between the proposed adaptive fuzzy PSS
and the conventional PSS using a single-machine connected to an infinite bus are
conducted. For verification, it has been applied to a multi-machine model of the
power system.

A TMS320C30 Digital Signal Processor (DSP) and an ABB PHSC2 Programmable
Logic Controller (PLC) were employed to develop a prototype real-time digital con-

trol environment and to implement adaptive fuzzy logic PSS.
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Chapter 1

Introduction

1.1 Power System Control

An electric power system contains thousands of interconnected electric elements.
Many elements are highly nonlinear and some of them are combinations of electrical
and mechanical parts. Power systems have thus developed into complex operating
and control systems with various kinds of unstable characteristic [1][2]. Since these
systems are spread over vast geographical areas, some of which span over the en-
tire continents, they are subject to many different types of disturbances. Also, the
tendency of operating the generators with small stability margins has made these
systems even more fragile [3][4].

With the advent of interconnection of large electric power systems, many new
problems have emerged [1]. Some of these problems are the oscillations of the
sub-systems of a large interconnected power system against each other, the sub-
synchronous tortional oscillations of turbines in a steam power plant with capacitor-
compensated transmission lines, and others [5].

The definition of stability, as applied to power systems may be stated as [3]:

If the oscillatory response of a power system during the transient period
following a disturbance is damped and the system settles in a finite time
to a new steady state operating condition, the system is stable. Other-

wise, it is considered unstable.



In order to simplify the analysis, power system stability is considered in its three
aspects, namely [6][7][8]:

Steady State Stability — This refers to the stability of a power system subjected
to small and gradual changes in load. If the synchronous machine maintains

synchronism after such a small disturbance, it is said to be steady-state stable.

Dynamic Stability — This refers to the stability of a power system subjected to
a relatively small and sudden disturbance. For this category, it is assumed
that the system is steady-state stable and small variations around a certain

steady-state point are studied.

Transient Stability — If a synchronous machine maintains equilibrium when sub-
jected to a sudden impact, then it has transient stability. Large changes in load,
line switching and system faults can be considered to be impact disturbances

which may lead to transient instability.

A small signal perturbation model around an equilibrium point can be considered
for dynamic stability studies and the system can be described by linear differential
equations. However, for transient stability analysis and control design, the power
system must be described by nonlinear differential equations.

Although there are several sources of positive damping in a power system, there
are also sources of negative damping, notably voltage-regulating and speed- gov-
erning systems. Furthermore, although ordinarily the inherent positive damping
predominates, in some circumstances the net damping can become negative. With
net negative damping, angular swing of the machine, instead of declining, increases

either until equilibrium amplitude is reached or synchronism is lost.



Over the years, considerable efforts have been devoted to improve power system
stability in various ways [9][10][11][12]. These attempts can be divided into three

broad groups as below:
e generator excitation control,
e generator input power control, and
e system operating condition and configuration control.

For a particular problem, any one or more of the above methods can be employed.

Among these methods, excitation control is preferred due to the following reasons:

o generally electrical systems have much smaller time constants than mechanical

systems,

e electrical control systems are more economical and easy to implement than

mechanical control systems,

¢ additional equipment required operates at low power level, whereas other meth-
ods (such as resistor braking and capacitor switching) need a much higher

power level.

Effectiveness of damping produced by excitation control has been demonstrated
both by computation and by field tests [13][14]. To date, many of the major electric
power plants in large interconnected systems are equipped with this supplementary
excitation control, commonly referred to as Power System Stabilizer (PSS). Several
kinds of supplementary signals (speed deviation, frequency deviation and accelerating

power) have been used as input signals to the PSSs.



1.2 Supplementary Excitation control

Excitation controllers have been used widely in power systems for decades. The main
object is to achieve an acceptable voltage profile at the consumer terminal and to
control the reactive power flow in the network. High gain, short time constant and
high ceiling voltage excitation control are among the characteristics of this control
loop. These result in increasing both the steady state and transient stability limits
of the system [15].

As the size of the interconnected power system grew, the possibility of withstand-
ing unexpected disturbances without loss of system stability increased. It became
apparent that the voltage control loop had a detrimental impact upon the dynamic
stability of the power system. Oscillations of small magnitude and low frequency
often persisted for long periods of time and in some cases presented limitations on
power transfer capability. Similar types of oscillations might also be observed when
remote generating units are connected to a relatively large power system through
long radial transmission lines.

Various methods have been proposed to enhance the dynamic performance of the

power system. They can be divided into two broad groups:

e Design new excitation controller based on modern control theory,

e Improve the performance of the presently used excitation controllers by intro-

ducing a supplementary control signal [16].

A typical method in the second group is to utilize a PSS [17][18]. The basic

function of a PSS is to extend stability margin via modulation of the generator exci-



tation to damp the oscillations of synchronous machine. The oscillations of concern
occur in the frequency range of approximately 0.2 to 2.5 Hz. To provide damping,
the stabilizer produces a component of electrical torque on the rotor which is in
phase with speed variations. Independent of the type of input signal, the stabilizer
must compensate for the gain and phase characteristics of the excitation system, the
generator, and the power system, which collectively determine the open loop trans-
fer function. This transfer function is strongly influenced by voltage regulator gain,

generator power level, and AC system strength.

1.3 Different Types of Stabilizers

1.3.1 Conventional Power System Stabilizer

Today, PSSs are widely used on synchronous generators. The most commonly used
PSS, referred to as the Conventional PSS (CPSS), is a fixed parameter analog -type
device. The CPSS, first proposed in 1950’s, is based on the use of a transfer function
designed using the classical control theory [19]. It contains a phase compensation
network for the phase difference from the excitation controller input to the damp-
ing torque output. By appropriately tuning the phase and gain characteristics of
the compensation network, it is possible to set the desired damping ratio. CPSSs
are widely used in the power systems these days and have improved power system
dynamic stability.

The CPSS, however, has its inherent drawbacks. It is designed for a particular
operating condition around which a linearized transfer function model is obtained.

The high non-linearity, very wide operating conditions and unpredictability of per-



turbations of the power system exhibit the following problems to the CPSS:

o the accuracy of linear model for the power system,
o the accuracy of the parameters for that model,

o the effective tuning of the CPSS parameters,

o the interaction between the various machines,

o the tracking of the system non-linearity.

Extensive research has been carried out to solve these problems [20]. Numerous
tuning techniques have been introduced to effectively tune the CPSS parameters [21].
Mutual interaction between CPSSs in multi-machine systems has also been studied
[22]. To solve the parameter tracking problem, variable structure control theory
was introduced to design the CPSS [23]. However, the CPSS is a linear controller
which generally cannot maintain the same quality of performance at other operating

conditions.

1.3.2 Adaptive Power System Stabilizer

The adaptive control theory provides a possible way to solve the above mentioned
problems relating to the CPSS [24]. At each sampling instance, input and output
of the generating unit are sampled, and a mathematical model is obtained by some
on-line identification method to represent the dynamic behavior of the generating
unit at that instant of time. It is expected that the mathematical model obtained

at each sampling period can track changes in the system.



Following the identification of the model, the required control signal for the gen-
erating unit is produced based on the identified model. There are various control
strategies, among them are Pole Assignment (PA) and Pole Shifting (PS) techniques
[25]. These control strategies are generally developed by assuming that the identi-
fied model is the true mathematical description of the generating unit [26][27][28][29].
However, since the power system is a high order nonlinear continuous system, it is
hard for the low order discrete identified model to precisely describe the dynamic
behavior of the power system. Consequently, a high order discrete model is used
to represent the power system, which consumes a significant amount of computing
time. The computing time for an adaptive PSS is roughly proportional to the square
of the order of the discrete model used in the identification. The longer computing
time limits the control effect. This is more significant if the oscillation frequency
is relatively high. There must be a compromise between the order of the discrete

model and the computing time for parameter identification and optimization.

1.3.3 Neural Network Based PSS

Artificial neural networks (ANNs) attempt to achieve good performance via dense
interconnection of simple computational elements [30). Their structure is based on
the present understanding of biological nervous systems.

ANNs have a number of advantages [31]:

o Capability of synthesizing complex and transparent mappings.
¢ Speed due to the parallel mechanism.

e Robustness and fault tolerance.



o Adaptively adjustable to the new environment.

Research on ANN application in power system stability has been reported in
[32](33][34]. The success of ANNs to control unknown systems under significant
uncertainties makes ANNs very attractive. However, there are some drawbacks to

the using of conventional ANNs as follows:

o Black-box characteristics; it is difficult for an outside observer to understand
or modify the network decision making process; the reason that initial values

for the parameters are chosen randomly.

o Long training time; ANNs may require a long training time to get the de-
sired performance. The larger the size of ANN and the more complicated the

mapping to be performed, the longer the training time required.

1.3.4 Fuzzy Logic Based PSS

One of the new methods which has recently been used in many controller designs
is Fuzzy Logic Control (FLC) [35]. Fuzzy control systems are rule-based systems
in which a set of fuzzy rules represents a control decision mechanism to adjust the
effects of certain causes coming from the system [36][37].

The followings are some of the major features of FLC [38][39):

o Model free based; unlike other classical control techniques, this method doesn’t

require the exact mathematical model of the system.

e Robust nonlinear controller; FLC offers ways to implement simple but robust
solutions that cover a wide range of system parameters and that cope with

major disturbances.



e Development time reduction; FLC works at two levels of abstraction: the sym-
bol level and compiled level. The symbol level is appropriate for describing the
application engineers’ strategies, while the compiled level is well understood
by the electronics engineers. Since there is a well-defined translation between

those levels, an FLC can help in reducing the communication problems.

e Knowledge based; fuzzy control simulates the strategy of the person controlling
a process. Thus, the control strategy mimics the human’s way of thinking. In
this way, the experience of a human operator can be implemented through an

automatic control method, not through the slow response of 2 human controller.

Designing stabilizers based on FLC is a very active area and satisfactory results
have been obtained [40][41]. Although FLC introduces a good tool to deal with
complicated, nonlinear and ill-defined systems, it suffers from a drawback - the “pa-
rameter tuning” for the controller. At present, there is no systematic procedure for
the design of the FLC. The most straight forward approach is to define Membership
Functions (MFs) and decision rules subjectively by studying an operating system or
an existing controller. Therefore, there is a need for an effective method for tun-
ing the MFs and decision rules so as to minimize the output error or maximize the

performance index.

1.4 Thesis Objective

The objective of the thesis is to solve the problems encountered with the design of
fuzzy logic and neural network based power system stabilizer. This work makes orig-

inal contribution to the development and application of the power system stabilizer.
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To be more specific, the objective of this thesis includes the following aspects:

1. Both the FLC and ANN have been employed together to design a new PSS,
Adaptive-Network-Based Fuzzy Logic PSS (ANF PSS). In this approach, a
fuzzy logic PSS with learning ability has been constructed and is trained di-
rectly from the input and output data of the generating unit. Because the ANF
PSS has the property of learning, MFs and fuzzy decision rules can be tuned
automatically by the learning algorithm. Learning is based on the error that is
evaluated by comparing the output of the controller with the desired controller

which in this case has been chosen a self-optimizing pole-shifting adaptive PSS.

2. In a typical situation, the desired controller may not be available. Therefore, a
self-learning approach is utilized to train the ANF PSS from the performance of
the generating unit output. In other word, without resorting to another existing
controller, it is proposed to construct an FLC that performs a prescribed task.
To train the controller, the error between the actual and the desired plant
output is back-propagated through the plant model to produce the error in

control signal.

3. Besides the problem of parameter tuning, the selection of the number of MFs
and inference rules is not a trivial task. Finding the optimum number of rules
for a specific application is, to a large extent, a process of trial and error,
relying mostly on past experience with similar application. Also, by increasing
the number of MF's the size of adaptive network grows exponentially, requiring
more training time. This problem becomes more crucial when the number of

input variables increases.
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In order to solve this problem, Genetic Algorithm (GA), as a global optimiza-
tion technique, is employed to construct an ANF PSS with optimum structure.
Since the number of rules depends, in a direct manner, on the number of MF's,
the number and shape of MF's are determined first by applying GA. Then the
parameters in the consequent, part of the rule table are specified by the learning
algorithm which is a special form of the gradient descent.

4. Behavior of an ANF PSS under single machine power system environment as
well as multi-machine power system environment is observed. The coordination

with other PSSs is also investigated.

5. Tn addition to the theoretical and simulation studies, the behavior of the pro-
posed PSS in a physical model of the actual power system is examined. The
ANF PSS has been implemented on a Digital Signal Processor (DSP) mounted
on a PC. Consistency of the theoretical and simulation results with the ex-
perimental results exhibits the effectiveness of the ANF PSS to improve the

dynamic performance of the system over a wide range of operating conditions.

1.5 Thesis Organization

This thesis is composed of 9 chapters divided into 3 parts:

@ Part I — Control Algoritms

Three most popular branches of Artificial Intelligence (AI), Fuzzy Logic, Adap-
tive Neural Network and Genetic Algorithm, are briefly reviewed in Chapter
2.
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Details of the Adaptive-Network-Based Fuzzy Logic controller and its advan-
tages compared with conventional fuzzy controllers are given in Chapter 3.
An Adaptive-Network-Based Fuzzy Logic Controller is trained to tune the pa-
rameters of the Fuzzy Logic Controller. This approach combines the benefits
of both Fuzzy Logic Control and Adaptive Neural Network. Furthermore, the
self-learning technique is discussed in this Chapter. In this technique, the ANF
PSS is trained from the performance of the generating unit output, rather than

from the controller output.

Optimization of the ANF PSS structure is also discussed in Chapter 3. First,
the necessity and advantages of optimized structure are described. Then, the
application of Genetic Algorithm for the structure optimization of the ANF
PSS is described.

Part II — Simulation Studies:

This part consists of 4 chapters and focuses on the results obtained from simula-
tion program. Application of the Adaptive-Network-Based Fuzzy Logic power
system stabilizer to a single-machine power system is investigated in Chapter
4. The ability of the proposed stabilizer to provide enough damping over a

wide operating range is discussed.

Chapter 5 gives the detailed simulation studies of the proposed controller
trained using self-learning technique. Similarto Chapter 4, the learning method
is basically a special form of gradient descent. However, instead of employing
a desired controller, the plant output error signal is back-propagated to find

the error of the controller output signal.
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In Chapter 6, the simulation results, obtained by utilizing both Genetic Algo-
rithm and Adaptive Neural Network to tune the parameters and optimize the

structure of the fuzzy logic power system stabilizer, are presented.

The last Chapter of this part, Chapter 7, focuses on the simulation and de-
tailed analysis of the proposed ANF PSS behavior in a multi-machine power
system. Especially the behavior of the ANF PSS in response to different oscil-
lation modes and the ability of the ANF PSS to work in cooperation with the
conventional PSS and the other ANF PSSs are described.

e Part ITI — Experimental Tests:

Laboratory implementation and experimental tests of the proposed ANF PSS
on a physical model of a power system are described in Chapter 8. Real-time
tests were performed on this model employing an ABB PHSC2 Programmable
Logic Controller (PLC) as AVR and a Digital Signal Processor as a stabilizer.
For comparison, a digital type conventional PSS (CPSS) was implemented in
the same environment and tested under the same conditions. Behavior of the
ANF PSS and the CPSS in an actual physical power system is observed and
details of implementation along with the experimental results are described in
this Chapter.

Finally, conclusions and comments on further research topics in the area of
Adaptive-Network-Based Fuzzy Logic power system stabilizer are summarized in

Chapter 9.
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Control Algorithms
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Chapter 2

Fuzzy Logic Control, Artificial Neural Networks

and Genetic Algorithms - An Overview

2.1 Introduction

In recent years, Fuzzy Logic Control (FLC), Artificial Neural Network (ANN) and
Genetic Algorithms (GAs), as three branches of Artificial Intelligence (AI), have at-
tracted considerable attention as candidates for novel computational systems because
of the variety of advantages that they offer over the conventional computational sys-
tems. This chapter covers the basics of these three areas, which are addressed in
separate sections. Each section contains a brief historical perspective, functionality,
characteristics and drawbacks of each branch.

Unlike classical design approach which requires a deep understanding of the sys-
tem or exact mathematical models, fuzzy logic incorporates an alternative approach.
Fuzzy logic control technique has been found to be a good replacement for conven-
tional control techniques which require highly complicated nonlinear mathematical
models. However, the design process of fuzzy controllers at some point becomes a
trial-and-error approach. Such an approach requires a large number of repetitions,
and it is therefore, time consuming and tedious.

Artificial Neural Networks are based on a simplified model of the brain, with

the processing tasks distributed across many simple nodes. The power of an ANN

15
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comes from the collective behavior of the simple nodes. In addition to capability
of learning and adaptation, this structure offers many other advantages including
speed, robustness and fault tolerance. On the other hand, ANNs suffer from some
drawbacks, among them is its "black-box” characteristic. It is difficult for an outside
observer to understand or modify the network decision making process.

Genetic Algorithm is a probabilistic optimization approach inspired by biological
evolution in nature. In general, genetic algorithms have proven to be more effective in
solving a variety of complex multi-dimensional systems, which the other techniques
have difficulty in solving. Particularly, GAs are successful at catching the optimum
solution where the hyperspace is nonlinear, or highly convoluted with many local

optima.

2.2 Fuzzy Logic Control

2.2.1 History of FLC

Fuzzy logic control is based on fuzzy set theory. In a symposium on system theory
in Brooklyn 1965, L. A. Zadeh from the University of California, Berkeley, presented
the fuzzy set theory. He believed that fuzzy logic would find home in psychology,
philosophy, and in human science. He suggested it would play an important role in
control [42]. Due to its name, fuzzy logic was not welcomed by many scholars in the
beginning. Many people did not realize that fuzzy logic is not a logic that is fuzzy
but a logic that describes fuzziness.

In 1973, Zadeh published his second most influential paper, which laid the frame-
work for fuzzy logic control [35]. This paper, which he calls the key paper outlining
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a new approach to analysis of complex systems, showed how engineers and corpo-
rations could use fuzzy logic. In the same year, E. Mamdani and S. Assilian at the
University of London succeeded in implementing the fuzzy if-then rules to control
a steam engine. The results were superior to those using numerical methods and
modeling [43].

In 1980, P. Halmblad and J. Ostergaard, Danish engineers, installed a fuzzy
logic controller permanently in a cement kiln [44]. The pair had developed the first
commercial application of fuzzy controller. Currently about 10% of the world cement
kilns use this approach [42].

Fuzzy logic faded in the West, but Japanese picked up the idea and started
applying it in early 1980s. In 1983 a fuzzy logic based water purification plant was
put to work by M. Sugeno. In the same year he pioneered the application of fuzzy
logic in robot control and a self-parking car [45][46]. In 1985, following the invention
of the first fuzzy logic processing chip by Togai, S. Miyamoto and S. Yasunobu
published a paper describing the automatic train operation by a predictive fuzzy
control. The train started working in 1987 at Sandai subway system after thousands
of computer simulation and actual runs on the track [47][48].

It was not until the late 1980s, that efforts were made to investigate fuzzy logic
more intensively. B. Kosko formulated many concepts in fuzzy set theory and intro-
duced the Fuzzy Associative Memory (FAM) which is a broader view of fuzzy rules
[49].

Currently there is a substantial literature within the field of fuzzy set theory that

deals with dynamic systems, control applications and system modeling [39][50](51].
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2.2.2 Fuzzy Sets

A fuzzy set is a generalization of the concept of an ordinary bivalent set or crisp
set. If C is a crisp set defined on the universe U, then for any element u of U, either
u € C or u € C. For any crisp set C it is possible to define a characteristic function
pc : U — {0,1}. In fuzzy set theory, the characteristic function is generalized to
Membership Function (MF) that assigns to every u € U a value from the unit interval
[0,1] instead of from the two-element set {0,1}. The set that is defined on the basis
of such an extended membership is called a fuzzy set.

Let X be a fuzzy set and A and B be two fuzzy sets with the membership functions
ra(z) and pg(z), respectively. Then the union, intersection and complement of fuzzy

sets are respectively defined as:

Vz € X : pans(z) = min(pa(z), ps()), (2.1)
Vz € X : paus(z) = maz(pa(z), u8(z)), (2:2)
Vz € X : pa(z) =1 — pa(z)- (2.3)

2.2.3 Linguistic Variables

A linguistic variable means a variable whose values are words in an artificial intelli-

gence language. A linguistic variable is characterized by:

(=, T(:B), U, M;). (2.4)
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in which ¢ denotes the symbol name of a linguistic variable, e.g. age, speed,
temperature, etc. and T'(z) is the set of linguistic values that ¢ can take. In the case
of the linguistic variable temperature z, T'(z) = {cold, cool, comfortable, warm, hot}.
In the case of error or change-of-error it usually is the set {NB, NM, NS, ZO, PS,
PM, PB}. U is the actual physical domain over which the linguistic variable = takes
its quantitatives. In the case of temperature it can be the interval [-10°C, 35°C] and
in the case of error one often uses a normalized value [-1,1]. M, is semantic function
which gives an interpretation of a linguistic value in term of the quantitative elements
of z. In other words, M, is a function which takes a symbol as its argument, e.g.
NB, and returns the meaning as “an error less than -0.8”.

These terms can be characterized as fuzzy sets whose membership functions are

shown in Fig. 2.1.

NB NM NS 20 PS PM PB

1.00
0.75

050

Membership Function

025

0.00 100 087 033 0.0 033 067 1.00

Input Variable (normalized)

Figure 2.1: A typical set of gaussian membership functions
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2.2.4 Fuzzy If-then Statements
A fuzzy if-then production rule is symbolically expressed as:
if (fuzzy propositon) then (fuzzy propositon )

where (fuzzy propositon) is a compound fuzzy proposition. For example if e and

€ are process state variables and u is the control output variable then:
if e is NB and é is PM then u is NS.

Fig. 2.2 shows the domains of e and ¢ and all the rules. In the case that e is PS
and é is NS for example, the output field for u is ZO. Important properties for 2 set

of rules are:

Error Derivative

- — - T -1 :
asee- Ening 1. ¥ Py CpY o |- i .
NB:ENM-1"NS: -1 ZO0: | 'PS.[-PM [P
TR IRy PR | RN .

NB|nB [NB [NB [NB [ NM| NS |20

N nB [nB | NB |NM NS | 2o | Ps

O |NB [NM | NS [ZO | PS |PM | PB

NB
e
‘NS|{NB [NB [NM | NS | zo | Ps | M
20
PS

Output Error

s |NM NS | Zo | Ps [Pm | PB | PB

%|ns |zo lps|pm|pe | PB|PB

8|zo | ps|Pm|PB|PB|PB |PB

Figure 2.2: A typical set of fuzzy inference rules
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e Completeness — any combination of input values results in an appropriate

output value;

e Consistency — there are no two rules with the same rule-antecedent but dif-

ferent rule-consequent;

e Continuity ~ it does not have neighboring rules with output fuzzy sets that

have empty intersection.

2.2.5 Basic Structure of Fuzzy Logic Controller

Fig. 2.3 shows the basic configuration of a Fuzzy Logic Controller (FLC), which
comprises four principal components: fuzzification module, knowledge base, inference

mechanism and a defuzzification module.

oo KnowiedgBase |-----.
input E PRI ! Sl Output
— ' - «Defuzzification -
cn) | | : [ e )
.-én .
| e Machanism: [z

Figure 2.3: Basic structure of fuzzy logic controller

A. Fuzzification Module:

The fuzzification module performs the following functions:

e measures the values of input variables;
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e performs a scale transformation (normalization) which maps the physical mea-
sured value into a normalized domain;

¢ using membership functions, converts the current value of a process state vari-
able into a2 fuzzy set, in order to make it compatible with the fuzzy set repre-

sentation of the process state variable in the rule-antecedent.

In fact, in fuzzification process, the input space is partitioned into sub-domains.
Proper partitioning of this space requires some information about the system output
state variables which is a part of knowledge base. Membership functions can be
a variety of shapes, the most usual being triangular, trapezoidal or a bell shape
(gaussian). The gaussian shape shown in Fig. 2.1 is used for the controller described
in this thesis.

B. Inference Mechanism:

Inference mechanism plays an esseantial role in FLC. In this component, the mem-
bership values obtained in fuzzification step are combined through a specific T-norm,
usually multiplication or minimization, to obtain the firing strength of each rule.
Each rule characterizes the control goal and control policy of the domain experts by
means of a set of linguistic control rules. Then, depending on the firing strength,
the consequent part of each qualified rule is generated.

The most commonly used fuzzy inference mechanism can be classified into three
groups:

1. Mamdani’s Minimum Operation Rule

For simplicity, only two fuzzy control rules are assumed:

Ry: if zis A; and y is By then zis C;



23
Ry: if z is Az and y is B, then zis C>

Then the firing strengths a; and «; of the rules can be expressed as:

ar = pay(2) A g, (¥) (2.5)

a2 = pay(T) A 128, (Y) (2:6)

where p4, (z) and g, (y) are the degrees of membership for each input z and y.

In this type [39], the ith rule leads to the control decision:

por = ai A pe(w) (2.7)

which implies that membership function uc¢ is point wise given by

pc = pey V ey = [on A pe ()] V [ A pey(w))- (2.8)
To obtain a deterministic control action, a defuzzification strategy is required, as
will be discussed later. This type of fuzzy reasoning process is shown in Fig. 2.4.
2. Tsukamato’s Method with Linguistic Terms as Monotonic
As shown in Fig. 2.5, it is a simplified method of the first type in which the
membership functions of fuzzy sets are monotonic [52]. The result inferred from
each rule is &; such that o; = Ci(¥:) in which C; is a monotonic fuzzy set. A crisp

control action may be expressed as the weighted combination:

,oant o tanm
- tom

(2.9)
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Figure 2.4: Mamdani fuzzy reasoning mechanism
3. Takagi and Sugeno’s Method
In this method [36], shown in Fig. 2.6 the ith fuzzy control rule is of the form:

if::isA;a.ud---andyis Bi thenz:fi(z,---,y)

where z,---,y, and z are linguistic variables representing process state variables
and the control variable, respectively; A;,--*, B; are linguistic values of those vari-

ables. The final crisp control action is the weighted average of each rule:

7= alfl(zsy) +--- +aﬂfn(z!y)
ar+---+on )

(2.10)

C. Knowledge Base:
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Figure 2.5: Tsukamato’s fuzzy reasoning mechanism.

The knowledge base of an FLC consists of a data base. The basic function of
the data base is to provide the necessary information for the proper functioning
of fuzzification module, the inference engine, and the defuzzification module. This

information includes:

@ Fuzzy sets (membership functions) representing the meaning of the linguistic

values of the process state and the control output variables.

@ Physical domains and their normalized counterparts together with the normal-

ization (scaling) factors.

D. Defuzzification Module:
The defuzzification module performs the following functions:
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Figure 2.6: Takagi and Sugeno’s fuzzy reasoning mechanism.

e converts the set of modified control output values into a nonfuzzy control ac-

tion;

e performs an output denormalization which maps the range of values of fuzzy

sets to the physical domain.

At present, there are three commonly used strategies for defuzzification as the
max criterion, the mean of maximum, and the center of area. The widely used center
of area strategy generates the center of gravity of the possibility distribution of a
control action. In the case of a discrete domain, this method yields:

_ X7=1 Ba(w;)-w;

0= S (2.11)

where n is the number of quantization levels of the output.
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2.2.6 Characteristics of Fuzzy Logic Control

Considering the existing applications of fuzzy logic controller, which range from
very small, micro-controlled based systems in home appliances to large-scale process
control systems, the advantages of using fuzzy control usually fall into one of the

following categories:

e Robust nonlinear control — A fuzzy logic controller, in general, has a non-
linear transfer function. In fact, this is the most attractive feature that has
made this controller very attractive. Basically, the source of non-linearity
comes from rule base, though the fuzzy operators involved in fuzzification and
defuzzification are also non-linear in nature. A representation theorem, mainly
due to Kosko [49], states that any continuous nonlinear function can be ap-
proximated as exactly as needed with a finite set of fuzzy variables, values and
rules.

For the conventional PID controllers, a substantial parameter change or major
external disturbance lead to a sharp decrease in performance. In presence of
such disturbances, PID systems usually are faced with a trade-off between fast
reactions with significant overshoot or smooth but slow reactions. In this case,
fuzzy control offers ways to implement simple but robust solutions that cover a

wide range of system parameters and that can cope with major disturbances.

¢ Implementing expert knowledge ~ In many cases of industrial process
control, the degree of automation is quite low. There is a variety of conventional
control loops, but a human operator is still needed. The knowledge of this

operator is usually based on experience. In this case fuzzy control offers a



28
method for implementing the expert’s knowledge.

¢ Reduction of development time — Fuzzy control, which works at two levels
of abstraction, offers languages at both levels of expertise: the symbolic level
is appropriate for describing the application engineer’s strategies, while the
compiled level is well understood by the control engineers. Since there is a well-
defined formal translation between these two levels, a fuzzy based approach can

help reduce communication problems.

2.2.7 Limitations of Fuzzy Logic Control

Although, FLC introduces a good tool to deal with complicated, nonlinear and ill-
defined systems, it suffers from the following drawbacks:

e At present, there is no systematic procedure for the design of FLC. The most
straight forward approach is to define MFs and decision rules subjectively by

studying an operating system or existing controller.

o In the case of too complex controlled system, the proper decision rules cannot

easily be derived by human expertise.

e Designing and tuning a Multi-Input Multi-Output (MIMO) fuzzy logic con-

troller is so tedious as to be unfeasible.

o In some situations, a reliable expert knowledge may not be available; even with
relying on expert knowledge, fine tuning or achieving the optimal FLC is not

a trivial task.
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e Some significant operating changes, i.e. disturbances or parameter changes ,

might be outside the expert’s experience.

2.3 Artificial Neural Network

2.3.1 History of ANN

Artificial Neural Networks and control community have a long history, which prob-
ably began with Weiener’s book Cybernetics[53]. The first neuro controller was
developed by Widrow and Smith in 1963 [54]. A simple ADAptive LINear Element
(ADALINE) was taught to reproduce a switching curve in order to stabilize and
control an inverted pendulum. This ADALINE was one of the first ANNs and it has
a simple architecture that has been used extensively in other ANNs.

During 1970s, Albus proposed the CMAC as a tabular model of the function-
ing of the cerebellum and used it to control robotic manipulation. Since the early
1980s, the CMAC has been used extensively to model and control highly non-linear
processes [55]. In 1980s, many different ANNs and IC architectures were proposed
for integrating and extending these algorithms. Reinforcement learning and adap-
tive critic schemes have been extensively researched [56] and new ANNs such as the
MLPs [30], RBFs [57], FLNs [58], and B-spline [59] have been developed. Recur-
rent networks have been used in optimization schemes and for plant modeling and
estimation [60].

ANNs have made a significant impact on the industry, with the applications
in non-linear process and human operator modeling, automatic plant knowledge

elicitation, fault detection and monitoring, process control and optimization and
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sensor validation, interpretation and fusion [61].

2.3.2 Basic Elements

Neurons are the basis of the neural networks. A neuron is an information-processing
unit that is fundamental to the operation of a neural network. Fig. 2.7 shows the
model for a neuron. There are three basic elements of the neuron model, as described

here:

Figure 2.7: Nonlinear model of a neuron

@ A set of synapses or connecting links, each of which is characterized by a weight.
A signal z; at the input of the synapse j connected to neuron k is multiplied

by the synaptic weight wg;.
@ An adder for summing the input signals, weighted by the respective synapses.

® An activation function for limiting the amplitude of the output of a neuron.
This limit usually is in the unit interval [0,1] or alternatively [-1,1].
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This model also includes an externally applied threshold 6; that has the effect of
lowering the net input of the activation function. In mathematical terms, a neuron

k can describe by the following pair of equations:

P
Uk = ) WiiT; (2.12)
j=1
and
Y = d(us — k) (2.13)
where 21, Z5, - - -, Zp are the input signals; wgy, ke, - * - , wip are the synaptic weights

of neuron k, ug is the linear output; 0y is the threshold; ¢(.) is the activation function;
and yx is the output signal of the neuron. There are three basic types of activation

functions:

1. Threshold Function:

1 fv>0
é(v) = (2.14)
0 ifv<o
2. Piece-wise-Linear Function:
1 fo>1
$p(v)=19 v if ;>v>-1 (2.15)
0 ifv< —%

3. Sigmoid Function:
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1
1 + ezp(—av)

$(v) = (2.16)

where a is the slope parameter of the sigmoid function.

2.3.3 Network Architectures

The manner in which the neurons of a neural network are connected can be classified

into two architectures:

1. Feedforward Networks — In this type of network, outputs of every layer
are projected to the inputs of the next layer, but not vice versa, as shown in

Fig. 2.8.

Input layer Hidden layers Ourtput layer

Figure 2.8: Feedforward neural network with two hidden layers.

In other words, this network is strictly of a feedforward type. Usually, the
network consists of an input layer, one or more hidden layers and an output
layer. By adding one or more hidden layers, a feedforward network is enabled

to extract higher-order statistics. The source nodes in the input layer supply
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the input signals to the network, and the neurons in the output layer constitute
the overall response of the network. In term of node’s connection, the network

can be fully connected or partially connected.

. Recurrent Networks — The main difference between a recurrent neural
network and a feedforward neural network is that the recurrent neural network
has at least one feedback lcop. In Fig. 2.9, the recurrent network is shown
with feedback loops. This has a profound impact on the learning capability of
the network, and on its performance. Moreover, the feedback loops involve the
use of unit-delay element, which results in a nonlinear dynamic behavior of the

network.

Unit-delay c

> 2”

2-1 F:i-_ ‘ . Outpuls

7Y

Inputs

Input layer Hidden layers Output layer

Figure 2.9: Recurrent network with hidden neurons.
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2.3.4 Training Algorithms

Among the many properties of a neural network, the property that is of primary
significance is the ability of the network to learn from training data, and to im-
prove its performance through learning. There are basically three classes of learning

paradigms:

1. Supervised Learning — As it implies, supervised learning is performed under
the supervision of an external teacher. The network parameters are adjusted
under the combined influence of the training data and error signal; the error
signal is defined as the difference between the actual response of the network

and the desired response.

Examples of supervised learning algorithms include the Least-Mean-Square
(LMS) algorithm [62] and its generalization known as the Back-Propagation
(BP) algorithm [63]. The back-propagation algorithm derives its name from
the fact that error terms in the algorithm are back-propagated through the

network, on a layer-by-layer basis.

Supervised learning can be performed in an off-line or on-line manner. In
the off-line case, once the desired performance is accomplished, the training is
frozen, which means the neural network operates in a static manner. On the
other hand, in on-line training, learning is accomplished in real time, with the

result that the neural network dynamically adjusts the parameters .

2. Reinforcement Learning — Reinforcement learning involves the use of a

critic that evolves through a trial-and-error process. Compared to supervised
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learning, the learning is done on the basis of the reinforcement received from
the environment; there is no teacher to supply gradient information during
learning. To obtain information, a reinforcement learning system probes the

environment through the combined use of trial-and-error and delayed reward.

This learning approach is more suited in less-structured situations where it
may be possible to improve plant performance over time by means of on-line

reinforcement learning [64].

3. Unsupervised Learning — Unsupervised learning is performed in a self-
organized manner in which no external teacher or critic is required to instruct
the network. Rather, provision is made for a task-independent measure of the
quality of representation that network is required to learn. In other words, by
using unsupervised learning, the network is able to form the underlying struc-
ture of the input data in an explicit or simple form. The two most important
unsupervised network architectures are Kohonen’s Self-Organizing Map ([65]
and Grossbeerg’s ART networks [66].

2.3.5 Different Control Schemes

There are different control schemes to train a neural network to control a plant that
is too complex, or about which too little is known. In a typical control problem, one
may have desired plant output but not the desired neural network output, which is
the control signal. Three basic ways in which the training information required for

supervised learning can be obtained are given below:
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Copying an Existing Controller — If there exists a controller capable of
controlling the plant, then the information required to train a neural network
can be obtained from this controller as shown in Fig. 2.10. The desired network
output for a given input is the output of the existing controller for that input.

The network learns to copy the existing controller.

A

" CONTROLLE

Figure 2.10: Copying an existing controller with a network.

One might question the utility of this method on the ground that if there
already exists an effective controller, why would it be useful to have another
one in the form of a neural network? Two answers are apparent. First, the
existing controller may be a device that is impractical to use; like an artificial
intelligent based controller with a large number of inference rules. Second the
existing controller may use very complicated algorithms to calculate the control

signal, forming a large delay in control response.

Identification of System Inverse — Fig. 2.11 shows how a neural network
can be used to identify the inverse of a plant. The input to the network is the

output of the plant, and the desired output is the plant input. If the network
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can be trained to match these targets, it will implement a mapping that is a
plant inverse. Once one has such an inverse, it can be used for control purposes;
the desired plant output is provided as input to the network and the resulting

network output is then used as input to the plant.

N
DT

CONTROLLER

Figure 2.11: Inverse plant modelling using a network.

A major problem with this approach arises when different plant inputs produce
the same output, i.e., when the plant’s inverse is not well defined. In this case
neural network will attempt to map the same network input to many different

desired responses.

Differentiating a Model — This method of training a controller relies more
on backpropagation than on general network methods [67]. The method is
illustrated in Fig. 2.12. The backpropagation algorithm is used to identify
the plant, resulting in a forward model of the plant in the form of a layered
network. Thus the derivative of the model’s output with respect to its input

can be computed by the backpropagation process. Propagating errors between
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actual and desired plant outputs back through the forward model produces the

error in the control signal. This error is used to train the controller.

H P L )

CONTROLLE

PLANT QUTPUT
ERROR

~ PLANT MODEL
Figure 2.12: Backpropagating through a forward model of the plant.

In Fig. 2.12 this backpropagation process is illustrated by the dashed line pass-
ing back through a second neural network. Of course, to apply this idea one
needs a model in a form that can be differentiated. This method is discussed

in more detail in Chapter 3, using an adaptive fuzzy logic controller.

2.3.6 Characteristic of ANNs
Neural networks offer solutions to problems that are very difficult to solve using

traditional algorithms. The potential benefits of a neural approach are:

e Nonlinearity ~ A neuron is basically a nonlinear element. Consequently, a

neural network, made up of an interconnection of neurons, is itself nonlinear.
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e Learning — Neural networks can learn from the interaction with the envi-
ronment, rather than explicit programming, it learns from the examples by

constructing an input-output mapping for the problem at hand.

e Complex Mapping — It has the capability of synthesizing complex mappings
which may be very difficult or even impossible to be expressed in mathematical

form.

e Generalization — It is able to generalize the training information to similar

situations in which it has never experienced before.

e Speed — Due to the parallel mechanism, once an ANN is trained, it can
provide the ability to solve the mapping problem much faster than conventional

methods and other artificial methods.

¢ Robustness and fault tolerance — Even if the input data are incomplete or
noisy, the ANN can still provide satisfactory results. Also, due to distribution
of computational load across many simple processing elements, the networks

possess some degree of fault tolerance with respect to processor failures.

e VLSI Implementable — The massively parallel nature of a neural network

makes it ideally suited for implementation using Very Large Scale Integrated
(VLSI) technology.

2.3.7 Limitations of ANN

Some of the advantages mentioned above, such as learning ability, cannot be found

in the fuzzy logic controllers. However, ANNs do have some limitations as listed
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¢ Black Box — The major draw back of neural networks is black-box characteris-
tic. It is not easy to understand the knowledge stored in an ANN. Training sets
rarely contain a complete description of the desired input-output relationship
and once learning has ceased, it may be necessary to modify the stored infor-
mation. This can only be performed if the knowledge is stored in a transparent

fashion.

¢ Long training time — ANNs may require a long training time to obtain the
desired performance. The larger the size of ANN and the more complicated

the mapping to be performed, the longer the training time required.

o Network structure — The selection of number of hidden layers and number
of neurons in each layer is not a trivial task. It is, to a large extent, a process

of trial and error.

2.4 Genetic Algorithms

Genetic Algorithms are search algorithms which are based on the genetic processes of
biological evolution. They work with a population of individuals, each representing
a possible solution to a given problem. Each individual is assigned a fitness score
according to how well it solves the given problem. For instance, the fitness score
might be a performance index for a closed loop control system. In nature, this is
equivalent to assessing how effective an organism is at competing for resources. The

highly adapted individuals will have relatively large numbers of offsprings. Poorly
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performing ones will produce few or even no offspring at all. The combination of
selected individuals produces superfit offsprings, whose fitnesses are greater than
that of the parents. In this way, the individuals evolve to become more and more

well suited to their environment.

2.4.1 History of GAs

The underlying principles of GAs were first published by Holland in 1962 [68]. The
mathematical framework was developed in the late 1960’s, and presented in Holland’s
pioneering book in 1975 [69]. GA'’s have been used in many diverse areas such as
function optimization [70], image processing [71] and system identification [72] [73].
In the last decade, research devoted to GAs has significantly increased, as attested
by the existence of several conferences on the topic. An excellent reference on GAs

and their implementation is Goldberg’s book [74].

2.4.2 Basic Principles

The standard GA can be represented as shown in Fig. 2.13. In what follows, different
steps of the algorithm are briefly explained:

e Coding — To translate a problem into a suitable form for 2 GA, a poten-
tial solution should be represented as a set of parameters. These parameters
(known as genes), after transformation to binary value, are joined together to
form a string of values (known as chromosome). The choice of the genetic
coding is crucial to the performance of the genetic algorithm, as the genetic
coding defines the window through which the algorithm connects to the actual

problem.
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Figure 2.13: Mechanism of genetic algorithm.

¢ Evaluation — The first step in every iteration of a genetic algorithm is to
determine how well each individual can solve the problem. A fitness function
must be defined and return a single numerical fitness, which is supposed to
be proportional to the ability of the individual. For function optimization,
the fitness function should be the value of the function. The result of this
evaluation is used to specify how many offsprings should be generated by an
individual.

o Reproduction — In this step, three genetic operators are applied to the current

population:

1. Selection: The individuals of higher quality are more likely to be chosen
for reproduction than those of lower quality. A number of exact copies are
generated with the best individuals producing the most copies. As a re-
sult, good individuals might be selected several times while poor ones may
not be chosen at all. In this thesis, the selection method called the rank-
ing scheme has been chosen. In this technique, each individual is ranked
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based on its fitness. Then depending on its rank, each individual pro-
duces a specific number of offsprings. By using this technique, the fittest

individuals cannot dominate the population within a single generation.

2. Crossover: This operator combines two previously selected individuals as
shown in Fig. 2.14 and yields the offsprings. This operator tries to com-
bine vital parts of two individuals in order to create a superior individual.
During the crossover operation two points in the strings are randomly cho-
sen and the part, which is enclosed by two points, is swapped. Crossover
is not usually applied to all individuals; a random choice is made with a

certain probability.

Parents

osprings  [TJOJOJO[1]OTO]T]

Figure 2.14: Crossover operation.

3. Mutation: Mutation is used to introduce new solutions and prevent the
population from unrecoverable loss of important information. Mutation
is accomplished by flipping single bits of the string as shown in Fig. 2.15
with a certain probability. The probability for mutation is usually kept

low to prevent a negative influence on the crossover operation.

While crossover roughly establishes the region of the search space, which con-

tains the solution, mutation is additionally useful for fine tuning at the end of



Figure 2.15: Mutation operation.

the optimization.

2.4.3 Characteristic of GAs

e GA is a global optimization method which is specifically useful for discontin-
uous cost functions. The other optimization techniques, like gradient descent
method, rely heavily on the differentiability of the cost function.

e Compared to other conventional search algorithms, genetic algorithm considers
many points in the search space simultaneously. Also it uses probabilistic rules
not deterministic rules to guide its search. For these two reasons, genetic

algorithms have a reduced chance of converging to local optima.

2.4.4 Limitations of GAs

e The optimal solution is usually determined by going through a number of
generations. However, the number of generations necessary to ensure that the

most-fit individual is found is a priori unknown.

o Since there are many parameters involved in the algorithm, there is no guar-
antee that the genetic algorithm can reach a near-optimal solution. If the
parameters are not properly selected, it can fall into a local optimal point

depending on the topology of the search space.
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2.5 Summary

The basic concepts and theories of three branches of artificial intelligence, fuzzy
logic control, artificial neural networks and genetic algorithms are introduced in this
Chapter. The fundamental procedure for each one is explained. Also their benefits
as well as their limitations are given.

Nonlinearity and knowledge based are among the most important characteristics
of fuzzy logic control. However, it suffers from the drawback of parameter tuning.
There are many parameters, including membership functions and rule base, to be
tuned. On the other hand, artificial neural network has the capability of learning. It
is shown in Chapter 3, by proper combination of these two techniques, the drawbacks
of each one can be mostly compensated by the benefits of the other technique.

As mentioned in this Chapter, for designing an artificial neural network, one
faces the issue of network structure setup. Selection of a large number of neurons (or
hidden layers) leads to the problem of overfitting and long training time as well. Too
small network, on the other hand, bring the situation that the network is not able to
learn the desired input-output relationship at all. Genetic algorithm, as a powerful
technique for multi-criterion optimization problems, can be used to automate the

design of neural network architecture.



Chapter 3

Adaptive Fuzzy Logic Controller

3.1 Introduction

In Chapter 2, static fuzzy logic systems are explained. Their success is due to the
fact that inherently nonlinear control strategies can be obtained from human ex-
pert and then implemented as a fuzzy controller. The strengths and weaknesses of
this approach are explained as well. Obtaining the rules from an expert, known as
knowledge elicitation, is one of the major bottlenecks in the development of fuzzy
logic control. Frequently, the fuzzy algorithms provided by experts are not correct,
relevant and complete. These problems can be overcome using adaptive fuzzy sys-
tems which automatically find an appropriate set of rules and membership functions
(75](76].

Adaptive fuzzy system is implemented in the framework of adaptive network
architecture and equipped with a training (adaptation) algorithm. Training input
data are presented to the network and the network computes its output. Error
between the system’s output and the desired output is calculated, and finally the
error is back-propagated through the whole network to adjust the network parameters
such that the output error reduces at each step.

Similar to ANN, there are different approaches to train an adaptive fuzzy con-
troller. The most straight-forward approach is to train the controller using another

existing desired controller. However, in a general situation, the desired controller

46



47

or domain expert may not be available. Therefore, a self-learning approach has to
be constructed in order to train adaptive fuzzy controller without resorting to other
existing controllers [77].

Although adaptive fuzzy systems offer the potential solution to the knowledge
elicitation problem, fuzzy systems still suffer from advanced setting of the structure
of fuzzy system. The structure, expressed in term of the number of membership
functions and number of inference rules, is usually derived by trial and error. When
the number of inference rules is small, the inference rules cannot describe the input-
output relationship of given data precisely. On the contrary, when the number of
inference rules is large, the generalization capability of the inference rules is sacrified
because of the overfitting problem. Therefore, the number of inference rules has to
be determined from a standpoint of overall learning capability and generalization ca-
pability. In order to solve this problem, a genetic algorithm is employed to automate
the design method for optimizing the structure of fuzzy system [78].

In this chapter, first the structure of adaptive fuzzy system is explained, and
necessity of using a self-learning algorithm to train the controller is given. Then,
the self-learning adaptive fuzzy controller based on back-propagation through time
is formulated. Finally, genetic algorithm is described to construct an adaptive fuzzy

controller with optimum structure.

3.2 Fuzzy Logic Controller with Learning Ability

Artificial Neural Networks have elicited strong interest among researchers over the

last decade. One reason for this resurgent interest is the discovery of a powerful
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training algorithm for multilayer neural networks - the so-called back-propagation
algorithm. In fact, the basic concept of back-propagation algorithm can be applied
to any feedforward network. Therefore, if the fuzzy logic systems can be represented
as feedforward networks, the idea of back-propagation can be used to train them.
This is the motivation of the training algorithm for fuzzy logic controller in this

section.

3.2.1 Structure of Adaptive Fuzzy Controller

By observing the functional form of fuzzy controller, it becomes apparent that the
fuzzy controller can be represented as a five-layer feedforward network as shown in
Fig. 3.1. With this network representation of the fuzzy logic system, it becomes
straightforward to apply back-propagation to adjust the parameters in membership
functions and inference rules.

For simplicity, assume that the fuzzy controller has two inputs z; and z; and one

output z. Each fuzzy if-then rule is of Takagi and Sugeno’s type [36]:
If z; is Aj and z3 is B, then f; = piz1 + giz2 + 7 ;

where A; and B are linguistic variables, f; is the output of the ith rule and
{p:, ¢i,r:} is the inference rule’s parameter set. The node functions in each layer are
of the same type function as described below:

Layer 1 - Each node in this layer performs a MF:

Yi = pai(Z:) = ezp {'- [(zi; q)z]"*‘} (3.1)

where z; is the input of node z, A, is linguistic label associated with this node and

{a;,bi,¢;} is the parameter set of the bell-shaped MF. y} specifies the degree to
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Gain

Layer 1 Layer 2 Layer 3 Layer4 LayerS
Figure 3.1: Architecture of adaptive fuzzy controller.

which the given input belongs to the linguistic label A;, with maximum equal 1 and
minimum equal to 0. As the values of these parameters change, the bell-shaped
function varies accordingly, thus exhibiting various forms of membership functions.
In fact, any continuous and piecewise differentiable functions, such as trapezoidal or
triangular membership functions, are also qualified candidates for node functions in
this layer.

Layer 2 — Every node in this layer represents the firing strength of the rule. Hence,
the nodes perform the fuzzy AND operation:

v} = wi = min(pai(1), pai(22))- (3.2)

Layer 3 — The nodes of this layer calculate the normalized firing strength of each
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rule:
3 _ - W
i TWi = =R -
i Wi

Layer 4 — Output of each node in this layer is the weighted consequent part of the
rule table:

(3.3)

¢ = fi = Gi(pizs + qiT2 + 1) (3.4)
where 5; is the output of layer 3, and {p;, ¢;, 7} is the parameter set.
Layer 5 — The single node in this layer computes the overall output as the sum-
mation of all incoming signals:
Yyl = Zn: fi (3.5)
=1
Thus a fuzzy logic controller with learning capability has been constructed. In
order to achieve a desired input-output mapping, these parameters are updated ac-
cording to the given training data and a gradient-based learning procedure described
below.
Assuming that the training data set has P entries and the output layer has only

one node, the error measure for the pth entry of training data:

By = 50~ 4)" (36)
where ¥, is the pth component of desired vector and yf is the pth component of
actual output vector. For each training data, a forward pass is performed and then
starting at the output layer, a backward pass is used to compute %ﬁ? for all internal

nodes. For the output node:

0E, .
3t =~ = %) (1)
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and for the internal nodes in layer :

aE K1 aE a,yk+1

Z 3y"+1 k (3'8)

where y}fp is the output of the node in the ith position of kth layer which has K
nodes and K1 is the number of nodes in (k + 1)th layer.

Assuming a is a parameter of the adaptive network:

dE, dy*

3.9
y};s 37+ P (3.9)

where S is the set of nodes whose outputs depend on a. The goal is to minimize the

overall error E = 5, E,, by using the general learning rule :

0E
in which 7 is the learning rate and
OF _ <95, (3.11)
8a o Oa

Also, similar to the training of conventional neural networks [30}, a momentum

term is added for a better convergence:

Aa(t) = —n-g—f + fAa(t - 1). (3.12)

where 3 is the momentum factor and Aa(t — 1) is the change of « in the last step.
Now, the fuzzy logic system with the above mentioned gradient descent method
can be used as an identifier for nonlinear dynamic systems or as a nonlinear controller

with adjustable parameters.
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3.2.2 Advantages of Adaptive FLC

There are many advantages in using adaptive fuzzy control systems over the static

fuzzy control systems and the neural network based controllers:

® In a situation where there is a large uncertainty or unknown variation in plant
parameters and structure, a fuzzy logic controller should be able to adjust its
parameters to maintain consistent performance of the system. Therefore, fuzzy

controller need to be capable of learning.

® Fuzzy rules obtained from human operator are not precise and may not be
sufficient for constructing a successful controller. They provide very important
information about how to control the system, however they need to be carefully
tuned. Adaptive fuzzy control provides a tool for making use of the fuzzy

information in a systematic and efficient manner.

e Compared to the conventional adaptive controllers, the major advantage of
adaptive fuzzy control is that the ability to incorporate linguistic fuzzy infor-

mation from a human expert.

o Compared to the conventional artificial neural networks, the parameters of
neural network controller have no clear relationships with input-output data,
and therefore their initial values are usually chosen randomly. On the other
hand, the parameters of adaptive fuzzy controller have clear physical meanings.
By incorporating the knowledge base as initial parameters for adaptive fuzzy

controller, the speed of convergence is dramatically increased.
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3.3 Self-Learning Adaptive Fuzzy Logic Controller

Tt is necessary to know the error in the controller output, (u4 — ), to train an adap-
tive fuzzy controller. This approach requires the existence of the desired controller
which restricts the application domains of adaptive fuzzy controllers. To overcome
this problem, a separate adaptive fuzzy identifier is trained to behave like the plant.
The block diagram of Fig. 3.2 shows two adaptive fuzzy systems, one acting as the
controller and the other acting as the plant identifier. This identification is similar
to plant identification in adaptive control theory, except that the plant identification
is done automatically by an adaptive fuzzy system capable of modeling non-linear
plants.

The utility of this plant identifier is that it can compute the derivative of the
plant’s output with respect to the plant’s input by means of the back propagation
process. The final output error of the plant, (z4 — z), is back-propagated through the
adaptive fuzzy identifier to obtain the equivalent error for the controller’s output. In
this figure, back-propagation process is illustrated by the dashed line passing through
the forward identifier and continuing back through the adaptive fuzzy controller that
uses it to learn the control rule.

Another approach to produce a suitable descent direction at the output of adap-
tive fuzzy controller, to use the plant Jacobian, or sensitivity derivative [79]. If the
cost function is defined as J(w), then, knowing the Jacobian of the plant, the gra-
dient of the cost function with respect to the control output, v, is easily determined

as:
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Figure 3.2: Back-propagating through a forward model of the plant.

dJ(w) & 8J(w) Iy
6u _z Ye 6u

where y; is the :th plant output. If little is known about the plant, it would

(3.13)

t=1

be difficult to obtain an analytical expression for the plant Jacobian. Numerical
differentiation could be used to form an approximation to the Jacobian, but would
suffer from the large errors that plague such a technique.

Another technique [80] is to use the sign of the Jacobian, instead of its real
value, for the training of adaptive fuzzy controller. This is often available simply
from qualitative knowledge of the system in question. The plant backpropagation
equation then becomes:

0J(w) Oy;

&8I (w)
. -g S SCN(ZY). (3.14)

Among these methods, using an adaptive fuzzy identifier is preferred because
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of two reasons. First, the backpropagation mechanism can be employed to adjust
the plant identifier as well as the controller. Therefore, the plant identifier can
follow any change or large disturbance in the actual plant, hence the backpropagated
error becomes more accurate. Secondly, by incorporating the prior knowledge of the
plant into the adaptive fuzzy identifier, the training time for identifier is decreased
dramatically.

There are two learning paradigms for training the self-learning adaptive fuzzy
controller. With the on-line training, the parameters of the controller are updated
immediately after each sampling time has been passed. On the other hand, in back-
propagation through time, the parameters are updated after a certain elapsed time
(77] [81).

Given the state of the plant at time ¢t = k * h, adaptive fuzzy controller will
generate an input to the plant and the plant will evolve to the next state at time
(k +1) = . By repeating this process starting from ¢ = 0, a plant state trajectory is
determined by the initial state and the parameters of adaptive fuzzy controller. The
state transition from ¢ = 0 to m * & is shown in Fig. 3.3, which contains m sampling
states of the plant.

Accordingly, the back-propagation gradient descent is applied to minimize the
difference between the plant trajectory output and the desired trajectory. In this

way, the corresponding error to be minimized is:

m-1

E =3 lx(he k)~ slh+ )+ Ao IR, @19)

where zy(h *k) is the desired trajectory, u(k* k) is the controller’s output at time

t = h«xk. By a proper selection of ), a compromise between trajectory error and
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Figure 3.3: The plant trajectory of self-learning adaptive fuzzy controller

control signal can be obtained.
The parameter changes from all the stages obtained from the back-propagation

algorithm are added together and then added to the controller’s parameters.

3.4 Genetic Optimization of Adaptive Fuzzy Controller

3.4.1 Problem of Structure

Generally, training of any type of adaptive network involves the selection of an opti-
mal network structure. Usually the designer has to search for the optimal structure
by trial and error. This search causes a large number of experiments. If the selected
network is too large, it may fail to generalize because it has too many degrees of
freedom. A large number of parameters often allows a network to initially learn to

detect global features of the input-output mapping, and as a consequence generalize
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quite well. However, after prolonged training the network will start to recognize each
individual example of input-output pair rather than settling for parameters that de-
scribe the mapping for all cases in general. This problem is called overfitting (or
overtraining) {82].

When that happens the network gives exact answers for the training set, but is
no longer able to respond correctly for input not contained in the training set. Much
research is being done to find the optimal network architecture. An overall review is
presented in [83] and a comprehensive bibliography can be found in [84].

The same problem arises for an adaptive fuzzy controller. The result of the
learning depends on the number of membership functions and inference rules. When
the number of inference rules is small, the inference rules cannot express the input-
output relation for given data. On the contrary, when the number is large, the
generalization capability of the inference rules is sacrified because of overfitting.
Therefore, the number of inference rules has to be determined from a standpoint of
overall learning capability and generalization capability.

Fig. 3.4 shows generalized relations between the number of inference rules and
the training and checking errors. The larger the number of inference rules, the
smaller the training error obtained. However, the checking error becomes larger for
a larger number of inference rules after it exceeds a certain threshold value. Genetic

algorithm can be used to overcome this problem as is described in the next section.

3.4.2 Algorithm to Optimize Inference Rules

By applying genetic algorithm the number of inference rules and the shape of mem-

bership functions can be determined. Fig. 3.5 shows the encoding of membership
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Figure 3.4: Effect of number of inference rules on training and checking error

functions to a bit string. The membership function takes triangular shape, and the
width of each membership function is defined to be the length between the centers
of neighboring membership functions.

The number and the shapes of membership functions can be expressed in term
of strings consisting of “0’ and “1”, wherein the center position of each membership
function is expressed by “1”. By using this kind of encoding, the optimal number
of membership functions and the center positions of these are searched for each
input variable by the genetic algorithm. Since there is a direct relation between
the number of membership functions and the number of inference rules, one can

obtain the optimum number of inference rules from optimum number of membership
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Figure 3.5: Encoding the membership functions to a bit-string

functions.

The four stages of genetic optimization are as follows:
1. Initialization — First, the domain of each input is divided into twelve sections,
and a string with the length of 11 entries is associated with that interval. Each
entry takes one of two possible values, 0 denoting the absence and 1 indicating the
presence, of a triangular MF. To make sure that the MF's exist for both ends of the
input domain, the first and the last entries are set to 1. The length between the
centers of two neighboring MFs defines the width of each MF.

Given the strings for both input variables, the genotype (each individual in

the population) is constructed by concatenating two strings, to yield a bit-string
of length 22. The GA starts with a random population of such a bit-string, each
string representing a network structure.

2. Evaluation — To qualify each individual, a fitness function is defined as:
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F, =% — ¥ (3.16)

where F; is the fitness function for the ith individual, $; defines the objective
function which should be minimized for that individual, and ®,,, is the maximum
objective function in the whole population. In this way, the best individual receives
the maximum fitness.

The objective function is a combined objective function:

®; = by N; + ko Eeri + k3 Echis (3.17)

where N; is the number of adaptive nodes in the net-work, E4. is the network
error obtained from training data and E.x; is the network error as a result of checking
data. The weighting parameters, k;, k; and k; are mostly dependent on the problem
and the desired solution. The checking error is included with the overall objective
function in order to avoid problems with overfitting. If just the training error is used,
then a network that has been overfitted might have a higher fitness than a network
that cannot generalize well at all.
3. Selection — The individuals from the population are copied to a mating pool.
Highly fit individuals are likely to be copied more than once. Unfit or poor performing
individuals may be removed from the population. The behavior of the GA very much
depends on how individuals are chosen to go into the mating pool. In this thesis,
the fitness ranking technique is employed. Individuals are sorted in order of raw
fitness, and then reproductive fitness values are assigned according to the rank of
the individuals.



61

4. Genetic Operations — The selected individuals are recombined using crossover
and mutation. During the crossover operation, two points in the strings are ran-
domly chosen and the part enclosed by these two points is swapped. Mutation is
accomplished by alteration of a single bit at a particular string position.

If the GA has been correctly implemented, the population will evolve over suc-
cessive generations, so that the fitness of the individuals in each generation increases
toward the global optimum. The population is said to have converged when 95% of

the population shares the same value.

3.4.3 Combination with Self-learning Method

By employing both genetic algorithm and adaptive fuzzy controller, the inference
rules’ parameters can be tuned and also the number of membership functions can be
optimized at the same time. This optimization contains two major process:
a) Search for the optimum number of rules and shape of MF's by using GA.
b) Train the network to determine the consequent parts of rule base by the gradient
descent algorithm.

These processes and their interactions are shown in Fig. 3.6 and are described

below:

e The cycle starts with a uniformly distributed random population of strings.
e Each string in the current population is decoded to an adaptive fuzzy network.

o Each network is trained to determine the consequent parts of fuzzy if-then
rules.
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Figure 3.6: Training and optimization processes.

o After a certain number of epochs, training process is stopped and the total
mean square error, E,;, between the actual outputs and the desired outputs is

calculated.

o Checking data is applied to each network and checking error, E i, is derived

in the same fashion.
e The fitness for each individual is computed by using eqn. 3.16.

e With probability according to the fitness, 2 number of children are produced

in the current generation.

e Genetic operations, crossover and mutation are applied to child individuals
produced above and the new generation is formed.
3.5 Summary

In this Chapter, two major drawbacks of conventional fuzzy systems, the parameter

tuning and finding the optimum structure, are discussed. Fuzzy system’s parameters
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are in membership functions and inference rules. Adaptive fuzzy systems as a candi-
date to solve this problem is presented. Each step in the fuzzy system is implemented
to a layer of a network containing the adjustable parameters of the fuzzy system.
Then back-propagation algorithm is applied to the network and the parameters are
tuned in such a way that the overall error of the network is minimized.

Using adaptive fuzzy system, one can copy any existing non-linear controller as
a desired controller. However in general, the desired controller may not be available.
A self-learning approach for training the adaptive fuzzy controller is presented. In
this approach without using any desired controller, the error at the output of the
plant is back-propagated through a plant identifier to obtain the error signal at the
output of the controller. The adaptive fuzzy controller is trained using this error
signal. To make the plant follow a desired trajectory, plant output is traced for m
sampling period and compared with the desired trajectory. The derivative of error
to a parameter for each sampling time is calculated and finally the changing rule is
applied to the network.

The second problem, finding the optimum structure, can be overcomed by em-
ploying genetic algorithm. By encoding the membership functions to a bit-string,
genetic algorithm starts from a random population of such a strings. Each string,
representing an adaptive fuzzy controller, goes under the genetic operators such as
cross-over and mutation. If the optimization process converges, it means the op-
timum solution has been found based on the fitness criteria. The fitness criteria
consists of three elements: number of nodes in the network, final error due to the
training data and final error due to the checking data. The last one assures that the

adaptive fuzzy controller does not to become overfitted.
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So far, the basics of FLC, ANNs and GAs (Chapter 2); and employing ANN and
GA techniques to make Fuzzy Logic Controller more effective (Chapter 3) have been
given. In the next part of dissertation, the potential of applying Fuzzy Logic Control

with learning ability to power system will be discussed.



Part 11

Simulation Studies
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Chapter 4

Adaptive Fuzzy Logic Power System Stabilizer

4.1 Imntroduction

Studies have shown that the use of supplementary control signal in the excitation
system and/or governor system of a generating unit can provide extra damping for
the system and thus improve the unit’s dynamic performance [8]. This method of
stability improvement is cheap, flexible and easy to implement. A variety of PSS
algorithms have been proposed and studied extensively in recent decades, among
which some have been used successfully in the industry [85].

The most commonly used PSS, referred to as Conventional PSS (CPSS), is a
fixed parameter analog-type device. The CPSS, first proposed in 1950’s, is based
on the linear model of the power system at some operating point to damp the low
frequency power oscillations in the power system. This type of PSS is widely used
in power systems and has made a great contribution in enhancing power system
dynamic stability [17].

With the development of power systems and the increasing demand for quality
electricity, it is worthwhile looking into the possibility of using modern control tech-
niques. Power system’s configuration keeps changing either due to switching actions
in the short term or system enhancement in the long term. Therefore, it would
be more suitable to use adaptive control techniques that can track the operating

conditions and changes in the system. An adaptive PSS (APSS) can adjust its pa-
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rameters on-line according to the environment in which it works and can provide
good damping over a wide range of operating condition [26, 27].

The response time of the controller is the key factor to a good closed-loop per-
formance. The APSS employs complicated algorithms for parameter identification
and optimization which require significant amount of computing time. The higher
the order of the discrete model of the controlled system used in identification, the
more computing time is needed. To develop a quick response PSS, it is necessary to
investigate alternative techniques.

In recent years, Fuzzy Logic Control (FLC) and Artificial Neural Network (ANN),
as two branches of Artificial Intelligence (Al), have attracted considerable attention
as candidates for novel control strategies because of the variety of advantages that
they offer over the conventional computational systems. Unlike other classical control
methods, FL.C and ANN are model-free controllers, i.e. they do not require an exact
mathematical model of the controlled system. Moreover, rapidity and robustness are
the most profound and interesting properties in comparison to the classical schemes.

Designing power system stabilizers (PSSs) based on FLC has become an active
area and satisfactory results have been obtained [40, 41]. Although, FLC introduces
a good tool to deal with complicated, nonlinear and ill-defined systems, it suffers
from a drawback - the "parameter tuning” for the controller. At present, there is no
systematic procedure for the design of FL.C. The most straightforward approach is to
define Membership Functions (MFs) and decision rules subjectively by studying an
operating system or an existing controller. Therefore, there is a need for an effective
method for tuning the MF's and rules so as to minimize the output error or maximize

the performance index.
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Similarly, research on ANN application in power system stability has been re-
ported [32, 33]. Besides the advantages mentioned above, ANN has the powerful
capability of learning and adaptation, the advantages that can not be found in the
FLC. However, one of the drawbacks of using conventional ANN is its "black-box”
characteristic. It is difficult for an outside observer to understand or modify the
network decision making process. For this reason initial values are chosen randomly.

In this Chapter, both the FLC and the ANN have been employed together to
design a new PSS, Adaptive-Network based Fuzzy Logic PSS (ANF PSS). In this
approach, a fuzzy PSS with learning ability has been constructed and is trained
directly from the input and output data of the generating unit [75, 76]. Because the
ANF has the property of learning, fuzzy rules and MFs of the controller can be tuned
automatically by the learning algorithm. Learning is based on the error evaluated
by comparing the output of the ANF controller and a desired controller. For studies
in this Chapter, a self-optimizing pole-shifting APSS [28] has been chosen as the

desired controller.

4.2 Adaptive-Network based FLC PSS

Essentially, an adaptive network is a superset of a multi-layer feedforward neural
network with supervised learning capability. An adaptive network consists of nodes
and directional links through which the nodes are connected. Each node performs
a particular function which may vary from node to node. The choice of each node
function depends on the overall input-output function which the adaptive network

is required to perform. Whereas in an ANN, the adaptive parameters pertain to the
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links between the nodes, here the links only indicate the direction of flow of signals
and part or all of the nodes contain the adaptive parameter(s). These parameters
are specified by the learning algorithm and should be updated to achieve a desired
input-output mapping. Similar to the ANN with supervised learning algorithm, the
learning rule of adaptive network is based on gradient descent [30].

A class of adaptive networks which are functionally equivalent to FLC is referred
to as Adaptive-Network based FLC. This scheme combines the idea of FLC and adap-
tive network structure and as a result an FLC network is constructed automatically
by learning from the training examples itself.

In this study, an Adaptive-Network based FLC structure is employed to design
a new fuzzy logic PSS (ANF PSS) for the system. The FLC is considered to have
two inputs, the generator speed deviation Aw and its derivative Aw, and one control
output, Up,s. Moreover, the rule base contains the fuzzy if-then rules of Takagi and
Sugeno’s type [36], in which the output of each rule is a linear combination of input

variables plus a constant term:
If Aw is A; and Aw is B; then Uy, = piAw + ¢:Aw +7;

and the final output is the weighted average of each rule’s output. The architecture
of the ANF PSS is shown in Fig. 4.1 , where node functions in each layer are as
described below:

Layer 1 — Each node in this layer performs a MF:

y} = pas(z:) = ezp { - [("; Q)’]h} (41)

where z; is the input of node z, A; is the linguistic label associated with this node

and {a;, b;, ¢;} is the parameter set of the bell-shaped MF. y} specifies the degree to
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Layer1 Layer2 Layer3 Layer4  Layer5
Figure 4.1: Architecture of ANF PSS.

which the given input belongs to the linguistic label A;, with maximum equal to 1
and minimum equal to 0.
Layer 2 — Every node in this layer represents the firing strength of the rule. Hence,

the nodes perform the fuzzy AND operation:

y? = w; = min(p(Aw), pei(Aw)). (4.2)

Layer 3 — The nodes of this layer calculate the normalized firing strength of each
rule:

3 _ - _ W
Yy =wi= n
=

Layer 4 — Output of each node in this layer is the weighted consequent part of the
rule table:

(4.3)

1 Wi

y: = f‘ = zb‘,-(p,-Aw + q.Acb + Ti) (44)
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where 15; is the output of layer 3, and {p:, ¢;,7:} is the parameter set.
Layer 5 — The single node in this layer computes the overall output as the sum-
mation of all incoming signals:
w=3f (45)
Thus an adaptive network has been constructed which is functionally equiva-
lent to a fuzzy logic PSS. This structure can update MF and rule base parameters

according to the gradient descent update procedure.

4.3 ANF PSS Training

In a conventional FLC, parameters (MF's and rules) are specified by an expert who
is familiar with the system. In the ANF based PSS, however, it is assumed that no
expert is available; the initial values of MF's parameters are equally distributed along
the universe of discourse and all consequent parts of rule table are set to zero. In
this manner, the ANF PSS starts from zero output and during the training process
it gradually learns to function as close to the desired controller as possible. However,
in practice, a priori knowledge in the form of the untuned fuzzy if-then rules is
employed. As a result, the training starts from much less error.

In the studies presented in the next section, the ANF PSS was trained by the self-
optimizing pole shifting APSS [28] as the desired controller. The sampling period,
T, for APSS is set to 50ms and no computation time is assumed. The training was
performed over a wide range of conditions for the generating unit, i.e., the generator
output ranging from 0.1 p.u. to 1.0 p.u., and the power factor ranging from 0.7

lead to 0.1 lag. Similarly, a wide spectrum of possible disturbances was used for
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the training. These disturbances are: reference voltage and infinite bus voltage
disturbances in the range of -0.05 p.u. to 0.05 p.u., governor input torque variations
from -0.3 p.u. to 0.3 p.u., one transmission line outage, and three phase fault on one
line of the double circuit transmission line connected to the generating unit. A total
of 18000 input-output data pairs were obtained for the training of ANF PSS.

The number of MF's for each input variable is determined by the complexity of
the training data and by trial and error. It is similar to choosing the number of
neurons in the hidden layers of an ANN; too many neurons will result in wasting
the computer memory and computing time and too few neurons will not give the
appropriate control effect. Based on earlier experience, seven linguistic variables for
each input variable were used to get the desired performance. The MFs for two
inputs, Aw and Aw , before and after training are shown in Fig. 4.2. As Fig. 4.2
shows, the universe of discourse for both input variables is normalized and the gain

parameters are chosen based on the input-output space:

Aw gain = 1.2 , Aw gain = 0.1 , Up,, gain= 0.1

4.4 System Configuration and Model

A number of studies have been performed to investigate the effect of the proposed
stabilizer and the results are compared with those of the CPSS and ANF PSS. In all
the following tests, CPSS is chosen to be an analog type PID controller and ANF
PSS is considered to be a digital controller with T, = 50 ms.

This study is based on a detailed model of a generating unit connected to a

constant voltage bus through two parallel transmission lines. A schematic diagram
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Figure 4.2: Membership functions before and after training.

of the system is shown in Fig. 4.3. For comparison the CPSS was also included in
the studies. A switch is used to achieve the changes between the stabilizers. The
differential equations used to simulate the generating unit, the transfer functions of
the governor, AVR and CPSS, and also the system parameters are given in Appendix
A.
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Turbine Generator v, Vi
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Figure 4.3: Basic system model configuration.

4.5 'Test Results

4.5.1 CPSS Parameter Tuning

With the generator operating at a power of 0.7 p.u., 0.85 power factor lag, a 0.05 p.u.
step in input torque reference is applied at time 1 s. At time 5 s, the change in torque
reference is removed and the system returns to its previous operating condition.

Under these conditions, the CPSS with the transfer function given in Appendix
A was carefully tuned for the best performance, i.e. the overshoot and settling time
were minimized by the CPSS damping effect. The parameters of the CPSS were
then kept unchanged for all the tests described in this Chapter.

Results of the study with the ANF PSS, CPSS and without a stabilizer are shown
in Fig. 4.4. It can be seen from the figure that the ANF PSS damps out the low
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frequency oscillations very quickly.
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Figure 4.4: Response to a 0.05 p.u. step increase in torque and return to initial
conditions.

4.5.2 Light Load

The system condition is the same as the previous case except that the generator is
now operating under a light load condition: the power is 0.30 p.u. with 0.85 power
factor lag, and the disturbance is a 0.15 p.u. step increase in input torque reference.

The disturbance is large enough to cause the system to operate in a nonlinear region.
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System response for these non-linear conditions is shown in Fig. 4.5 for both the
CPSS and ANF PSS. Because the CPSS is designed for best performance at another
operating condition, it is not able to provide as effective a damping at this operating

condition. However, the ANF PSS still provides very effective performance.

0.36 — — S—
i |---- OPEN \
0.30 F e —— - CPSS ]
; . | —— ANFPSS |
= 2
g 0.24 | :
s 3
2 3 i
s 3
E 018 . : _
a F s
2 3 5
o 012f 3
< 3 h: 3
S 3 o 3
2 oosf s :
A 3 DR
F S
: N\ o
00 § Nttt e
o ' iy )
: : v t:l
3 : : brooy
_0.06 P i . PSP BTSSR NN L ¥ | ks de PP TP P
0 2 4 6 8 10

Time, s

Figure 4.5: Response to a 0.30 p.u. step increase in torque and return to imitial
condition in light load test.
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4.5.3 Leading Power Factor Test

When the generator is operating at a leading power factor, it is a difficult situation
for the controller because the stability margin is reduced. However, in order to
absorb the capacitive charging current in a high voltage power system, it may become
necessary to operate the generator at a leading power factor. It is, therefore, desirable
that the controller be able to guarantee stable operation of the generator under
leading power factor condition.

With the generator operating at a power of 0.3 p.u. with 0.9 p.f. lead, a 0.2
p.u. step increase in torque reference was applied. The results given in Fig. 4.6
show that the oscillation of the system is damped out rapidly and demonstrates
the effectiveness of the ANF PSS to control generator under leading power factor

operating conditions.

4.5.4 Voltage Reference Change

With the generator operating at 0.2 p.u. active power, 0.8 p.f. lag and 1.04 p.u.
terminal voltage, a 5% step decrease in reference voltage was applied at 1 s and
removed at 5 s. The generating unit power angle deviation responses are shown in
Fig. 4.7. In the open loop system without any PSS, the severity of the oscillations
increases as the reference voltage drops, since the system stability margin decreases
as the reference voltage drops for a certain active power output. It can be seen
from Fig. 4.7 that the oscillations are effectively damped by ANF PSS for both
reference voltage decrease and increase, which means that the system stability margin

is enhanced by using ANF PSS.



78

S - [---oPeN |
0.20 s .| ~—- CPSS |-
N o : | ——— ANFPSS| |
P e :
= 3 I~ (4 - b4 :
E 0.16 KI < ‘J)
- o ! H
s "|:§
2 o012 i
Q
a
2 - 1
® 008 [
<
[
2 I
0.04
£ I
0.00 |
_0_04-.;4._k_14‘_igg. PSS SR N NP "
0.0 2.0 40 6.0 8.0 10.0

Figure 4.6: Response to a 0.2 p.u. step increase in torque under leading power factor
conditions.

4.5.5 Fault Test

The behavior of the proposed ANF PSS under transient conditions was further veri-
fied by applying a fault. For this study, the equivalent reactance of the double circuit
transmission line was set at 0.4 p.u. instead of 0.6 p.u.. The response of the power
system to a three phase to ground short circuit at the middle of one transmission
line, cleared 200 ms later by the disconnection of the faulted line and successful

reclosure after 4 s is shown in Fig. 4.8 . The results show that ANF PSS minimizes
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Figure 4.7: Response to a 0.05 p.u. step decrease in reference voltage and return to
initial condition.

the deviation of the power angle of the generator after the fault and helps the system

to reach the new operating point very quickly.

4.5.6 Stability Margin

Besides the improvement of the dynamic performance by introducing the supple-
mentary controller, the stability margin has also been increased. To demonstrate

this effect, a simulation study was conducted with the initial operating conditions of
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Figure 4.8: Response to a three phase to ground fault at the middle of one trans-
mission line.

0.95 p.u. , 0.9 p.f. lag, and the input torque reference was increased gradually. The
dynamic stability margin is described by the maximum power output at which the
system losses synchronism. The results for the system without stabilizer, with CPSS
and with ANF PSS are given in Table 4.1. ANF PSS provides the largest output
power, which indicates that the dynamic stability margin of the system is improved
most by the ANF PSS.
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4.6 Comparison of ANF PSS and APSS

The purpose of training in this Chapter is to make the ANF PSS function as close
to the APSS as possible. In Fig. 4.9, typical comparison curves of the closed-loop
system response with ANF PSS and APSS are given. The generator operating point
and the applied disturbance are the same as Test 1;i.e. P =0.7 p.u., p.f. = 0.85 lag
and a 0.05 p.u. step in input torque reference is applied. In this figure, APSS-1 is the
system response using an adaptive PSS with no computation time and APSS-2 is
the system response using the same APSS, but with an assumed computation time
of 20 ms for the control signal. Although in general, there is not much difference
between the performance of the ANF-PSS and APSS-1, some differences can be seen
between ANF PSS and APSS-2 performances.

If the computation of control signal in APSS takes more time (such as in the case
of MIMO systems), the difference between these two stabilizers will become even

more significant.

4.7 Comparison of training time with ANN

As mentioned in Section 3.2.2, by incorporating the knowledge base as initial pa-

rameters of ANF PSS, the training time can be reduced drastically. Artificial neural

OPEN | CPSS | ANF PSS

TS pw [ 285 pw. | 3W pu
[ Maximum Rotor Angle | 1.18 rad. | 2.10 rad. | 2.45 rad. I

Table 4.1: Dynamic stability margin results.
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Figure 4.9: Comparison of ANF PSS and APSS (same conditions as in Fig. 4.4).

networks suffer from long traing time since their training starts with small random
initial parameters. To demonstrate this property, an ANN with two hidden layers
and 40 neurons in the first layer and 20 neurons in the second layer was chosen
for comparison with the ANF PSS described in Section 4.2. Both networks have
the same number of inputs and outputs. Moreover, exactly the same training data
obtained from the APSS is given to both networks.

Before training starts, the ANF PSS contains only 13 major rules. These rules
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are located on the center row and center column of fuzzy rule table as shown in
Fig. 4.10. This figure shows the values of ¢c; parameter in the consequent part of
Sugeno’s inference rules. The other parameters, a; and b;, are set to zero. Although
all 49 rules can be assigned the corresponding values, it is assumed that the only
available knowledge about the input-output relation of the stablizer is when one
of the input signals is zero and the other one varies. As shown in Fig. 4.10, the

consequent part of the inference rule table is equally distributed from NB to PB.

Aw
NB

Ns NS
g [z0|nB|mm|Ns|zo | psiPm | P8
£ 3 PS
m PM
e =

Figure 4.10: Initial fuzzy rule table of parameter ¢; before training

Fig. 4.11 shows the sum of squared error curves for both the ANN PSS and the
ANF PSS. The following can be concluded from this figure:

o Initial error for ANF PSS starts from much smaller value, since the stabilizer

has a rough a priori knowledge at the beginning.

e After about 50 epochs, ANF PSS training has converged. However, in the
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Figure 4.11: Comparison of ANF PSS and APSS (same conditions as in Fig. 4.4).

ANN PSS case, even after 150 epochs, the network error is still reducing.

¢® Obviously, final error is lower for ANF PSS than that of ANN PSS.

4.8 Summary

A new design method for power system stabilizer employing adaptive-network-based
tuzzy logic controller and its application to a power system are described in this
Chapter. The proposed PSS employs a muliti-layer adaptive network. The network is

trained directly from the input and the output of the generating unit. The algorithm
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combines the advantages of the Artificial Neural Networks and Fuzzy Logic Control
schemes.

The following conclusions can be drawn from the results.

e The proposed method retains all the advantages of artificial neural networks
and fuzzy logic controller, such as simplicity, adaptability, rapidity and robust-

ness.

e In this method, by using neural network as a structure for the fuzzy logic
controller, the design time of conventional FLC can be significantly reduced;
fuzzy rules and membership functions are generated automatically to meet the

prespecified performance; i.e. the tuning problem has been eliminated.

e Compared to a conventional neural network, the training time is dramatically
decreased, since a priori knowledge in the form of fuzzy if-then rules can be
employed. It means that the initial parameters of the adaptive network can
be chosen in such a way that the training of the network starts from a much
less error at the output of the network than that of a neural network with
random initial parameters. Also, the parameters of the proposed controller
have physical interpretations unlike the "black-box” characteristic of the neural

network.

e Test results for various conditions show that the proposed stabilizer is able to
function as close to the adaptive PSS as possible. However, the longer compu-

tation time is one of the major limitations of the adaptive control strategy.

e Simulation results show that the ANF PSS can provides good damping over a
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wide operating range and can significantly improves the dynamic performance

of the system.



Chapter 5

A Self-Learning Fuzzy Logic Power System

Stabilizer

5.1 Imtroduction

In Chapter 4 [86][87], both the FLC and the ANN have been employed together to
design a new PSS, Adaptive-Network-Based Fuzzy Logic PSS (ANF PSS). In this
approach, a fuzzy PSS with learning ability has been constructed and is trained
directly from the input and output data of the generating unit [75, 76]. Because the
ANF has the property of learning, fuzzy rules and MFs of the controller can be tuned
automatically by the learning algorithm. Learning is based on the error evaluated
by comparing the output of the ANF controller and a desired controller which in this
case has been chosen as a self-optimizing pole-shifting Adaptive PSS (APSS) [28].
The ANF PSS presented in this Chapter is based on a self-learning FLC [77].
In other word, without resorting to another existing controller, it is proposed to
construct an FLC that performs a prescribed task. Similar to the first approach,
the learning method is basically a special form of the gradient descent (back prop-
agation), which is used for the training of ANN. To train the controller, the back-
propagation method is employed to propagate the plant output error signal through

different stages in time [81].
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5.2 Self-Learning ANF PSS

In Chapter 4, the ANF PSS was trained by the self-optimizing pole shifting APSS
[26] as the desired controller. However, in a typical situation, the desired controller
may not be available. The ANF PSS presented in this Chapter is trained from the

performance of the generating unit output which is the generator speed deviation.

5.2.1 Structure of ANF PSS

In this approach, before finding a controller to control the plant states, a function
approximator (or model) is needed to represent the input-output behavior of the
plant. To model the plant, an adaptive-network-based fuzzy logic model is employed,
which has the same structure as the controller. The utility of this plant model is
that it can compute the derivative of the model’s output with respect to its input by
means of the back propagation process. Consequently, propagating errors between
actual and desired plant outputs back through the model produces the error in the
control signal, which can be used to train the controller. The block diagram of
Fig. 5.1 shows an adaptive network containing two subnetworks, the fuzzy controller
and the plant model.

The training process for the controller starts from an initial state at ¢ = 0. Then
the FLC and the plant model generate the next states of U,,, and Aw at time t = h.
The process continues till the plant state trajectory is determined. The objective of
the learning orocess is the minimization of:

m m-1

E=Y [Aw(hsk)— Dwg(h * k)2 + A% 3 Upus(h * kY2 (5.1)
k=0

k=1
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Figure 5.1: Error back-propagation through plant modei

where Awy is the desired output trajectory, which is always zero and the tuning

parameter A is selected to improve the plant trajectory.

5.3 Training of ANF PSS

The training was performed over a wide range of conditions for both the controller
and the plant model with the generator output ranging from 0.1 p.u. to 1.0 p.u.,
and the power factor ranging from 0.7 lead to 0.1 lag. Similarly, a wide spectrum of
possible disturbances was used to obtain the training data. These disturbances are:
reference voltage and infinite bus voltage disturbances in the range of -0.05 p.u. to
0.05 p.u., governor input torque variations from -0.3 p.u. to 0.3 p.u., one transmission

line outage, and three phase fault on one circuit of the double circuit transmission
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The MFs for two inputs of the controller, Aw and Aw, before and after training

are shown in Fig. 5.2.

5.3.1 System Configuration and Model

A number of studies have been performed to investigate the effect of the proposed
stabilizer and the results are compared with those of the CPSS and ANF PSS.
This study is based on a detailed 7th order model of a generating unit connected to

a constant voltage bus through two parallel transmission lines. A schematic diagram
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of the system is shown in Fig. 4.3 For comparison the CPSS was also included in
the studies. A switch is used to achieve the changes between the stabilizers. The
differential equations used to simulate the generating unit, the transfer functions of
the governor, AVR and CPSS are given in the Appendix A.

5.4 Test Results

5.4.1 Tuning the parameter A

With the generator operating at 0.7 p.u. power, 0.85 p.f. lag, a 0.15 p.u. step in input
torque reference is applied at time 1 s. At time 5 s, the change in torque reference
is removed and the system returns to its previous operating condition. Under these
conditions, the performance of the self-learning ANF PSS was investigated. The
results are shown in Fig. 5.3 for different values of A, and for the subsequent studies

A =11s used.

5.4.2 Light Load

With the system now operating under a light load condition of 0.20 p.u. power, 0.85
p.f.lag, a 0.30 p.u. step increase in input torque reference is applied. The disturbance
is large enough to cause the system to operate in a nonlinear region. System response
for these conditions is shown in Fig. 5.4 for both the CPSS and ANF PSS. Because
the CPSS is designed for best performance at another operating condition, it is not
able to provide as effective a damping at this operating condition. However, the

ANF PSS still provides very effective performance.
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Figure 5.3: Response to a 0.15 p.u. step increase in torque with different values of A

5.4.3 Leading Power Factor Test

When the generator is operating at a leading power factor, it is a difficult situation
for the controller because the stability margin is reduced. However, the controller
must guarantee stable operation under these conditions also.

With the generator operating at 0.3 p.u. power, 0.9 p.f. lead, a 0.20 p.u. step
increase in torque reference was applied. The results given in Fig. 5.5 show that the

oscillation of the system is damped out rapidly. It demonstrates the effectiveness of
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Figure 5.4: Response to a 0.30 p.u. step increase in torque and return to initial
condition in light load test

the ANF PSS to control generator under leading power factor operating conditions.

5.4.4 Fault Test

The behavior of the proposed ANF PSS under transient conditions was further ver-
ified by applying a fault. The response of the power system to a three phase to
ground short circuit at the middle of one transmission line, cleared 200 ms later by

the disconnection of the faulted line and successful reclosure after 4 s is shown in
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Figure 5.5: Response to a 0.20 p.u. step increase in torque under leading power factor
condition

Fig. 5.6 . The results show that ANF PSS minimizes the deviation of the power an-
gle of the generator after the fault and helps the system to reach the new operating

point very quickly.
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Figure 5.6: Response to a three phase to ground fault at the middle of transmission
line.

5.5 Summary

A new design method for power system stabilizer employing adaptive-network-based
fuzzy logic controller with self-learning capability and its application to a power
system are presented in this Chapter. The proposed method retains all advantages
of artificial neural network and fuzzy logic controller, such as simplicity, adaptability,

rapidity and robustness. Compared to a conventional neural network, the training
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time is dramatically decreased , since a prior knowledge in the form of fuzzy if-then
rules can be employed. The ANF PSS presented in this Chapter is trained directly
from the performance of the generating unit and thus was independent of other PSS.
It provides good damping over a wide range and significantly improves the dynamic

performance of the system.



Chapter 6

Genetically Optimized Fuzzy Logic Power

System Stabilizer

6.1 Introduction

In Chapter 4, use of an Artificial Neural Network (ANN) to design an Adaptive-
Network-Based Fuzzy Logic PSS (ANF PSS) is described [87], [88]. Because the
ANF has the property of learning, fuzzy rules and MF's of the controller can be tuned
automatically by the learning algorithm. However, the selection of the number of
inference rules in these methods is not a trivial task. Finding the optimum number
of rules for a specific application is, to a large extent, a process of trial and error,
relying mostly on past experience with similar application. Also, the size of the
adaptive network grows exponentially with the increasing number of MF's, requiring
more training time. This problem becomes more crucial when the number of input
variables increases.

In order to solve this problem, the Genetic Algorithm (GA) [69], as a global opti-
mization technique, is employed to construct an ANF PSS with optimum structure.
Since the number of rules depends, in a direct manner, on the number of MF's, the
number and shape of MF's are determined first by applying the GA [78]. Then the
parameters in the consequent part of the rule table are specified by the learning
algorithm which is a special form of the gradient descent (back propagation).

97
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6.2 Genetically Optimized ANF PSS

Although the adaptive-network-based FLC can solve the problem of tuning MF's
and inference rules, the selection of the number of rules is still tedious trial and error
work. Two trivial algorithms, constructive and destructive, are usually employed.
Both methods, however, are guided by a predefined heuristic, as it is computationally
expensive to try out all possible networks.

The more powerful technique for efficiently searching the space of all possible
networks is the genetic algorithm. By encoding the center of MF's to a bit string as
shown in Fig. 6.1, the shape and number of MF's can be optimized by means of the
GA [69]. Since the number of rules is proportional to the number of MF’s for each
input, the optimum number of rules (and eventually optimum network structure)

will be achieved.
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o
(4]
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o
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Figure 6.1: Encoding the MF's to a bit-string.

The four stages involved in the genetic search process are described in Chapter



99

3. In the initialization step, the domain of both input variables, Aw and Aw, are
divided into twelve sections. A bit string, containing 0 or 1, is associated with each

section.

The fitness function is defined to be:

F'i = chz - ®; (6.1)

where F; is the fitness function for the ith individual, ®; defines the objective
function which should be minimized for that individual, and ®.,,. is the maximum
objective function in the whole population. In this way, the best individual receives
the maximum fitness.

The objective function is a combined objective function:

S; = b\ N; + k2 Eepi + k3 Echis (6.2)

where N; is the number of adaptive nodes in the network, E,,; is the network error
obtained from training data and E.xi; is the network error as a result of checking
data. The weighting parameters, ki, k2 and k3 are mostly dependent on the problem

and the desired solution. Their values are chosen as:

k1 = 002, k‘) = 1, ka = 20.

The checking error is included with the overall objective function in order to avoid
problems with overfitting. If just the training error is used, then a network that has
been overfitted might have a higher fitness than a network that cannot generalize
well at all.
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6.3 Training and Optimization Processes

Genetic optimization of the ANF PSS contains two major processes:

a) Search for the optimum number of rules and shape of MFs by using GA.

b) Training the network to determine the consequent parts of rule base by the gra-
dient descent algorithm.

Data from not only the typical operating conditions but also over as wide a
range of operating conditions as the system is likely to encounter, must be used for
proper training of an ANF PSS. In this case, the training data and checking data
were obtained over the generator output ranging from 0.1 p.u. to 1.0 p.u., 0.7 p.f.
lead to 0.1 p.f. lag, and a wide spectrum of disturbances with the self-optimizing
pole-shifting APSS [26] acting as a non-linear power system stabilizer and with all
appropriate excitation limits in place. These disturbances are: reference voltage and
infinite bus voltage disturbances in the range of £ 0.05 p.u., governor input torque
variations of £ 0.3 p.u., one transmission line outage, and three phase fault on one
circuit of the double circuit transmission line.

The optimum triangular MF's for two inputs of the controller obtained by GA are
shown in Fig. 6.2, four MFs for Aw and six MFs for Aw. In genetic optimization,
the probability of crossover and mutation operators are chosen to be 80% and 5%
respectively and the population is 25.

Since for each generation all networks have to be trained individually with the
whole set of training data, this takes a very long computation time. The whole set of
training data was reduced to 15% during genetic optimization. After the convergence

of GA, by which the structure of the optimum network is achieved, the complete
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Figure 6.2: Optimized Membership Functions.

training data (15000 pairs) was employed to fine tune the MFs and inference rules
with the initial values of MF's obtained from GA optimization. The final set of MF's
shown in Fig. 6.3 has the same number for both input signals, but the shape of MFs
is changed from the triangular to bell function with smoother characteristics.

The initial control action surface and the final control action surface after com-
plete training are shown in Fig. 6.5 and Fig. 6.4 respectively. The final control
action surface after complete training depicted pictorially the effect of non-linearity

in controller. The control action before optimization is completely flat.
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Figure 6.3: Optimized MFs after complete training.

6.4 Test Results

A number of studies have been performed to investigate the effect of the proposed
stabilizer and the results are compared with those of the CPSS. The system used
for the studies is a Tth order non-linear model of a generating unit as described in

Chapter 4.
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Figure 6.4: Control action surface before training.

6.4.1 CPSS Parameter Tuning

With the generator operating at 0.7 p.u. power, 0.85 p.f. lag, a 0.05 p.u. step in input
torque reference is applied at time 1 s. At time 5 s, the system returns to its initial
operating condition. Under these conditions, the CPSS was carefully tuned for the
best performance, i.e. the overshoot and settling time were minimized by the CPSS
damping effect. The parameters of the CPSS were then kept unchanged for all the
tests described in this Chapter. Results of the study with the ANF PSS, CPSS and
without a stabilizer given in Fig. 6.6 show that the ANF PSS damps out the low

frequency oscillations very quickly.
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Figure 6.5: Control action surface after complete training.

6.4.2 Light Load

With the system now operating under a light load condition of 0.20 p.u. power,
0.85 p.f. lag, a 0.15 p.u. step increase in input torque reference is applied. System
response for these conditions is shown in Fig. 6.7. Despite a large change in the

operating conditions the ANF PSS still provides very effective performance.

6.4.3 Fault Test

The behavior of the proposed ANF PSS under transient conditions was further ver-

ified by applying a fault. The response of the power system to a three phase to
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ground short circuit at the middle of one transmission line, cleared 200 ms later by
the disconnection of the faulted line and successful reclosure after 4 s is shown in
Fig. 6.8. The results show that ANF PSS minimizes the deviation of the power angle

of the generator after the fault and helps the system to reach the new operating point

very quickly.
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6.4.4 Control Signals

The ANF PSS supplementary control signals for the three previous tests are shown

in Fig. 6.9.

6.4.5 Effect of optimization with GA

With the generator operating at 0.3 p.u. power, 0.9 p.f. lead, a 0.10 p.u. step increase

in torque reference was applied. Closed-loop system response of two ANF PSSs with
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Figure 6.8: Response to a three phase to ground fault at the middle of one trans-

mission line.

different number of MFs is given in Fig. 6.10. The structure for the first one is

chosen to be 7 MFs for each input, resulting in 49 inference rules. The structure for

the second ANF PSS is as Fig. 6.3 obtained from GA optimization; 4 and 6 MFs

respectively for the two inputs, Aw and Aw, resulting in 24 inference rules.
Although in general, there is not much difference between the performance of

these two stabilizers, the second has a reduced structure, requiring less memory and

less computation time.
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Figure 6.9: Supplementary control signal of ANF PSS for previous tests.

6.4.6 Stability Margin

The introduction of the supplementary controller not only improves the dynamic
performance, but also increases the stability margin. To demonstrate this effect,
the input torque reference was increased gradually from the initial value, 0.95 p.u.,
0.9 p.f. lag. During this test the terminal voltage remained constant as long as the
system was stable. The dynamic stability margin is described by the maximum power

output at which the system losses synchronism. The result for the system without
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Figure 6.10: Comparison of two ANF PSSs, with 4x6 and with 7x7 MFs.

stabilizer, with CPSS and with optimized ANF PSS are given in Table 6.1. ANF
PSS provides the largest output power, which indicates that the system dynamic
stability is improved most by the ANF PSS.

6.5 Summary

A genetic approach for optimization of adaptive-network-based fuzzy logic controller

and its application to a power system are presented in this Chapter. By employing
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Table 6.1: Dynamic stability margin results.
OPEN CPSS | ANF PSS

— Masimum Power | 135 pu. | 2.85 pu. | 3.05 pu._
[ Maximum Rotor Angle [ 1.05 rad. [1.78 rad. | 1.95 rad. |

an adaptive network, fuzzy logic controller is able to learn the input-output behavior
of a complex controller. However, selecting the optimum number of inference rules
is still a tedious task. Genetic algorithm, as a global optimization technique, is
employed to determine the shape and the number of membership functions which in
turn defines the number of rules. The results show that the proposed optimized ANF
PSS provides good damping over a wide operating range and significantly improves
the dynamic performance of the system.

When the proposed ANF PSS is to be used in a multi-machine power system
environment, it faces some other problems, such as multi-mode oscillations, coor-
dination with other PSSs of the same or different type, etc. Use of the proposed
ANF PSS in a multi-machine power system environment is investigated in the next

Chapter.



Chapter 7

Self-Learning Adaptive Fuzzy Logic PSS in

Multi-Machine Power System

7.1 Imtroduction

Simulation studies in Chapters 4, 5 and 6 showed that properly trained ANF PSSs
can provide an effective damping of the power system [87][88](89]. These studies were
on the single-machine infinite-bus environment. The effectiveness of the ANF PSS
to damp multi-mode oscillations in multi-machine environment needs to be verified.

The effectiveness of the ANF PSS to damp multi-mode oscillations in a multi-
machine environment is investigated in this Chapter. A five machine power system
is used in this study and its transient response to a large disturbance is presented
with the multi-mode oscillation phenomenon.

Multi-mode oscillations appear in a multi-machine power system in which the
interconnected generating units have quite different inertia and they are weakly con-
nected by transmission lines. These oscillations are generally analyzed in three main
oscillation modes, i.e. local, inter-area and inter-machine modes. Depending upon
their location in the system, some generators participate in only one oscillation mode,
while others participate in more than one mode [17].

Speed deviation, Aw, and accelerating power, AP,, are chosen as the inputs

to ANF PSS. It is demonstrated by the simulation results that when installed on
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different machines, the proposed ANF PSS can adjust itself to provide good damping
for different oscillation modes, such as the local and inter-area mode. Also, the self-
coordination capabilities of the ANF PSS with other ANF PSSs and conventional

PSSs are demonstrated.

7.2 Power System Multi-Mode Oscillations
There are three modes of oscillation in a multi-machine power system:

Local Mode - usually refers to oscillations occurring in plant transients stemming
from generator rotors oscillating relative to the combined equivalent inertia of
the system. This is also described as the generator swinging relative to an
infinite bus formed by the combined equivalent inertia external to a particular
generator as shown in Chapter 4, 5 and 6. Frequency magnitudes are directly
related to the equivalent rotational inertia of the generator and the prime
mover, and to the synchronous torque coefficient linking the generator to the
fixed bus. Local mode oscillations are in the range of 0.8 to 2 Hz.

Inter-Machine Modes - this describes frequencies related to closely coupled gen-
erators swinging relative to each other. This can occur at a plant that has
a diverse mix of generators and controllers or at neighboring plants that are
linked with inter-ties such that the machines are relatively closely coupled.
Inter-machine frequencies are related to the equivalent machine inertia of the

closely coupled generator groups and are in the range of 0.3 to 1 Hz.
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Inter-Area Modes - these frequencies stem from coherent groups of generators in
one area swinging relative to a number of other coherent groups in other areas.
Inter-area frequencies are in the range of 0.1 to 0.7 Hz and these frequencies

may overlap with frequencies described under the other two modes.

7.3 A Multi-Machine Power System Model

A detailed 5th order five-machine power system without infinite bus, as shown in
Fig. 7.1, is used to test the proposed ANF PSS. Five generators are connected through
a transmission network. Generators Gy, G, and G have much larger capacities than
G3 and Gs. Parameters of all generators, governors, AVRs, transmission lines and
loads operating conditions are given in Appendix B. G3, G2 and G5 maybe considered
to form one area, and G and G, a second area. The two areas are connected together
through a tie line connecting buses 6 and 7. Under normal conditions, each area
serves its own load and is almost fully loaded with a small load flow over the tie line.

When this system is disturbed, multi-mode oscillations arise because of the dif-
ferent sizes of the generators and the network configuration. The multi-mode oscilla-
tions can be clearly observed in Fig. 7.2. A 0.10 p.u. step decrease in the mechanical
input torque reference of Gi3 is applied at 1 s, and the system returns to the original
condition at 10 s. Under the above mentioned disturbances without any PSS in-
stalled, the local mode oscillation at a frequency of about 1.3 Hz and the inter-area
mode of about 0.65 Hz are quite distinct. This is because of the large difference
in the inertia of the generators. The speed difference between G, and Gj exhibits
mainly local mode oscillations, while the speed difference between G; and G2 shows
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Figure 7.1: A five machine power system configuration

the inter-area mode oscillations. Both local and inter-area oscillations exist in the

speed difference between G; and Gj;.

7.4 The Effectiveness of ANF PSS in Damping Multi-Mode

Oscillations

The ANF PSSs employed in this test are the same as those developed in Chapter 3
and tested in the single-machine infinite-bus environment in Chapter 5. Accelerating
power, AP,, and speed deviation, Aw are used as the inputs to the stabilizer as
shown in Fig. 7.3. Since there is no infinite bus in the system, speed deviation has
a DC offset value. A washout filter is utilized to remove the DC value before speed

deviation signal is fed to the stabilizer.
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Figure 7.2: Multi-mode oscillations of the five-machine power system.
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7.4.1 Only One PSS Installed

Under the same disturbance, 0.10 p.u. step decrease in the mechanical input torque
reference of G3, the proposed ANF PSS was installed on G3 and none of the other
generators was equipped with PSS. The speed deviation, Aw, and the accelerating
power, AP,, were sampled at the rate of 20Hz.

The training was performed over a wide range of conditions for both the controller
and the plant model. The generator output ranging from 0.1 p.u. to 1.0 p.u., and the
power factor ranging from 0.7 lead to 0.1 lag. Similarly, a wide spectrum of possible
disturbances was used to obtain the training data. These disturbances are: reference
voltage disturbances in the range of -0.05 p.u. to 0.05 p.u., governor input torque
variations from -0.15 p.u. to 0.15 p.u., one transmission line outage, and three phase

fault on one circuit of the double circuit transmission line.
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Figure 7.4: Membership functions before and after training

The MF's for two inputs of the controller, Aw and AP,, before and after training
are shown in Fig. 7.4.

After the complete training, as shown in Fig. 7.5, the ANF PSS damps the local
mode oscillations very effectively. However, as expected, it has little influence on the
inter-area mode oscillations. This is because the rated capacity of G3 is much less
than G, and G»; and G3 does not have enough power to control the inter-area mode

oscillations.
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For comparison, in a separate test a conventional PSS (CPSS) with the following

transfer function [90] was installed on the same generator:

sTs 1+4sT11+sT;
14+sTsl+sT21 48T

Upas(s) = K, AP.(s) (7.1)

After careful parameter tuning, the CPSS with the following parameter set per-
forms almost similar to the ANF PSS.

X
I
'—-A
o
"
I
&3
0
o
&
5
I

T, = 0.10, Ts = 0.4

The results are shown in Fig. 7.5. The same conclusion as that for the ANF PSS
can be drawn for the CPSS.

7.4.2 With Three PSSs Installed

To damp both local and inter-area modes of oscillations, the ANF PSSs were in-
stalled on G;, G2 and G3. The ANF PSS on G3 was kept the same as the previous
test, however, due to the different size of input signals, the ANF PSS on G, was re-
trained with the initial parameters acquired from ANF PSS on G3. Then the latest
parameters were duplicated to that of ANF PSS on G.. Responses given in Fig. 7.6
show that both modes of oscillations are damped out effectively.

Fig. 7.6 also depicts the system response when CPSSs are installed on G;, G
and G3. The proper parameter set for the CPSS on G, and G, is:

K, =10, T =T3 =03, T, = Tg = 001, Ts = 04
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7.4.3 Coordination Between ANF PSS and CPSS

In practice, the newly installed ANF PSS will have to work together with CPSSs
which already exist in a power system. For the five machine power system, the
proposed ANF PSS was installed on G; and G;, with CPSSs on G2, G4 and Gs.
Fig. 7.7 shows the system performance and demonstrates that the two types of PSSs

can work co-operatively.

7.4.4 Three Phase to Ground Fault Test

So far, the parameters of CPSSs are tuned under the disturbance of 0.10 p.u. step
change in the mechanical input torque reference of G3. It has been shown that perfor-
mance of the CPSS at a specific operating point can be satisfactory if its parameters
are tuned properly at that operating point and under the same disturbance.

To compare the performance of ANF and CPSS under different disturbances,
a three phase to ground fault was applied at the middle of one transmission line
between buses #3 and #6 at 1 s and cleared 100 ms later. At 10 s, the faulted line
was restored successfully. The disturbance is large enough to cause the system to
work in the nonlinear region. Fig. 7.8 shows the system response when the proposed
ANF PSSs are installed on G;, G2 and Gj3. It shows the closed-loop response of the
system when CPSSs are installed on the same generating units.

From these two system responses, it can be concluded that because the CPSS is
designed for best performance for the small disturbances, it is not able to provide
as effective a damping. However, despite a large change in the operating conditions

the ANF PSS provides very effective performance.
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7.4.5 New Operating Condition Test

The behavior of ANF PSS and CPSS under other operating condition is investigated
in this test. The new system operating point is given in Appendix B. With ANF
PSSs and CPSSs installed on G;, G; and G3, Figs 7.9 shows the system response
under a three phase to ground fault. Again, it is shown that the system response
with ANF PSSs is further improved than with CPSS. The reason is that the ANF
PSS is designed to capture the nonlinearity of the power system, whereas the CPSS

is a linear controller.

7.5 Summary

In this Chapter, the effectiveness of an ANF PSS in damping the multi-mode oscilla-
tions of a five machine power system environment is investigated. The accelerating
power and speed deviation of the generating unit are used as the inputs to ANF
PSS. Training procedure for the proposed stabilizer is based on 2 self-learning tech-
nique; i.e. independent of other PSS. The ANF PSS also was trained over the full
working range of the generating unit with a large variety of disturbances to capture
the non-linear behavior of the power system. This is a desirable characteristic the
conventional PSS lacks. Also, the coordination of the ANF PSS with the CPSS is
well demonstrated.

From the simulation results in this part of dissertation, it can be seen that the
proposed ANF PSS can produce satisfactory performance when it is used in both the
single-machine power system and the multi-machine power system. The behavior of

the proposed ANF PSS applied to a physical system is studied in the next part.
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Figure 7.9: System response to three phase to ground test for the new operating
condition.



Part 111

Experimental Tests

126



Chapter 8

Experimental Studies with a Self-Learning

Adaptive Fuzzy Logic PSS

8.1 Introduction

Theoretical development of a self-learning Adaptive-Network based Fuzzy Logic
Power System Stabilizer (ANF PSS) is described in Chapter 3[87]. It has been
simulated on a single-machine infinite-bus power system (Chapter 4, 5 and 6) and
a multi-machine power system (Chapter 7). The proposed fuzzy controller has the
powerful capability of learning and adaptation. In this approach a fuzzy PSS with
learning ability has been constructed. Fuzzy rules and MFs of the controller can
be tuned automatically by the learning algorithm. Moreover, it is not dependent
on another existing controller. In other words, it employs a self-learning scheme in
which the ANF PSS is trained from the performance of the generating unit output
and not the controller output [88].

After the theoretical development and computer simulation studies, the perfor-
mance of the ANF PSS is investigated further on a physical model of a power system.
Scaled physical model is able to emulate the behavior of the actual power plant in the
laboratory environment. The ANF PSS has been implemented on a Digital Signal
Processor (DSP) mounted on a PC.

For comparison, a digital conventional PSS (CPSS) was implemented in the same
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environment on the DSP board. Details of implementation along with the exper-
imental studies are described in this Chapter. The results demonstrate that the
proposed self-learning ANF PSS provides good damping over a wide range of oper-

ating conditions and improves the stability margin of the system.

8.2 Physical Model of a Power System

A single-machine infinite bus power system was physically modeled in the Power
Research Laboratory at the University of Calgary. An overall schematic diagram
of this model is shown in Fig. 8.1. The parameters are given in the Appendix C.
A three phase 3 kV A, 220 V synchronous micro-alternator driven by a dc motor is
employed to model the generating unit.

The transmission line was modeled by a lumped element physical model. This
simulates the performance of a 500 £V, 300 km long double circuit transmission line
connected to a constant voltage bus. Consisting of six r sections, the transmission
line gives a frequency response that is close to the actual transmission line response
up to 500 Hz. A Time Constant Regulator (TCR) was used to change the effective
field time constant of the generator in order to simulate a large generating unit. By
using the TCR, the effective generator field time constant can be changed up to 10
s.

In this setup, an ABB AVR implemented on a PHSC2 Programmable Logic
Controller (PLC) is used to control the terminal voltage of the alternator. Three
phase ac terminal voltages and currents are stepped down, rectified and filtered

with a cut-off frequency of 8 Hz to form six dc signals proportional to the terminal
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voltages and currents. As shown in Fig. 8.1, the PLC accepts these analog voltage
and current signals as the inputs and provides the required field control signal as
the output which is fed to the TCR. At the same time, the PLC calculates various
electrical signals; among them is active power signal, P, applied as input signal to the
stabilizer. PHSC2 PLC has been programmed using a function block programming
language called FUPLA. Using a PC, FUPLA program is compiled and downloaded
to the PLC.

Various disturbances can be applied to the model power system. The generator
terminal voltage can be stepped up and down by changing the voltage reference
setting of AVR. Similarly, by changing the armature current of the dc motor, the
active power of the micro-alternator can be changed. Different types of faults can

be applied on the transmission line to simulate large disturbances.

8.3 DSP Based Real-Time ANF PSS

8.3.1 Hardware Requirement

Structure of the real-time digital ANF PSS environment is shown in Fig. 8.2.
Development of the real-time digital control environment is based on a DSP board
supplied by SPECTRUM Signal Processing Inc. The board contains a TMS320C30
DSP chip which is a 32-bit floating-point device with 60 ns single cycle instruction
execution time. Its performance is further enhanced through its large on-chip memo-
ries, concurrent DMA controller, two external interface ports and instruction cache.
Furthermore, the two 200 kHz, 16-bit analog I/O channels on board, coupled with
direct access to all the serial and parallel I/O channels of DSP chip, provide the exte-
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rior input-output functions. The DSP board is installed on a PC with corresponding
development software and debugging application program.

The output of the physical plant, P, is calculated by PLC and sent through
analog output port. The A/D input channel of DSP board receives P, signal, samples
at a 5 ms sampling interval and stores in a buffer from which the main processor
can read as needed. Then, the control signal, Up,,, computed by the DSP processor
is placed into the output channel and converted by D/A. This output channel is
connected to the analog input of the PLC. Combining the PSS signal obtained from
the DSP board and the AVR signal acquired from the PLC internal calculation, PLC

sends the field control signal to the TCR, thus forming a closed-loop control system.

8.3.2 Software Development

With the PC accommodating the DSP board, ANF PSS program is developed in a
modular manner using C and Assembly languages. Once the application program is
completed, the program is downloaded to the DSP board and started on the board.

To further enhance the power and convenience of this system, a human-machine
interface program has also been designed on the same PC. The operation of this
program is independent of the controller. After downloading the DSP program to
the board, interface program reads the parameters of the ANF PSS from the corre-
sponding data file, sends them to the board and waits for the DSP signal to begin the
main control loop. At a 50 ms sampling interval, the interface program samples the
input-output signals of the controller running on the DSP board. The input-output
data is plotted on-line on screen with proper scale, while the user can choose the

specific time for the beginning and end of saving the data in a file.
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8.4 Initial Training of ANF PSS

The structure of ANF PSS used in experimental tests is shown in Fig. 8.3. Electric
power deviation, AP,, and its integral, [ AP,, are used as the inputs to the stabilizer.
Since both signals contain DC offset value, two washout filters are implemented in
software program on DSP board to diminish this DC value.

Pe [ washour APe 4 . . .
" Filter APe . . . .
I’(ﬂ _ Ko Upss

Washour
I APe Lo Filter Kjor. E

Figure 8.3: Structure of ANF PSS used in experimental tests

The ANF PSS is initially trained off-line. For this, typical disturbances under
various operating conditions were applied to a power system simulation model, where
the machine is modeled by a detailed 7th order model. The disturbances used were:
reference voltage and infinite bus voltage disturbances in the range of -0.1 p.u. to
0.1 p.u., input torque variations from -0.25 p.u. to 0.25 p.u. and three phase fault on
one of the double circuit transmission lines connected to the generating unit.

The MF's for two inputs of the controller, AP. and [ AP,, before and after training
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are shown in Fig. 8.4.

After a complete training procedure on a SUN Sparc Station computer, the pa-
rameters of the fuzzy controller, MFs and inference rules, were transferred back to
the PC to build the ANF PSS on the DSP board.

8.5 Digital Conventional PSS

For comparison, a conventional PSS (CPSS) with the following transfer function
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sTs 1+sT11+4+ T3

A 8.1
1+8T51+8T21+3T4AP($) ( )

U”.(S) = K,

was implemented in the same environment. Since the control setup is for the devel-
opment of digital controllers, the CPSS transfer function was discretized according
to the given sampling rate r. Because the washout filter is implemented in another
function block, only the lead-lag compensator needs to be discretized.

Using the bilinear transformation, s = %%, the transfer function of the CPSS

in the s-domain can be transformed into the z-domain as below:

(1) = BEaZT + g2
U\t = B flz i £ fya?

where the coefficients {g/} and {f/} are explicit functions of gain K, and the time

APe(t) (8-2)

constants T}, ---,Ty. The sampling rate for the digital CPSS were chosen to be 7 =

1 ms.

8.6 Experimental Studies and Discussion

The active power signal P., computed by the ABB PLC, was sampled at 5 ms
sampling interval as the input signal to the ANF PSS. The control signal was added
at the sum junction after the AVR. Various disturbances under different operating
conditions were applied to test the behavior of the proposed ANF PSS and the
results were compared with those of the CPSS. All experimental data was collected
by the human-machine interface and saved in the PC for further analysis. For easy
comparison, the time axis was adjusted so that the disturbances seem to happen at

the desired time point.
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8.6.1 Voltage Reference Step Change

With the alternator operating at the following operating point:
P = 090 pu., p.f. = 0.85lag, V; = 1.10 p.u.

a 10% step increase in the reference voltage was applied at 1 s and removed at 9
s. The alternator active power deviation with ANF PSS, with CPSS and without
PSS are shown in Fig. 8.5. In the open loop system without any PSS, the severity
of the oscillations increases as the reference voltage drops, since the system stability
margin decreases as the reference voltage drops for a certain active power output. It
can be noticed from Fig. 8.5 that the oscillations are effectively damped by the ANF
PSS in about one cycle.

To make a reasonable comparison between the CPSS and the proposed stabilizer,
the parameters of the CPSS were carefully tuned to make the CPSS produce almost
the same performance as that of ANF PSS at this particular operating condition.

The CPSS parameters are as follow:
K, = -80,T; =006, T, =01, T; = 01, Ty, = 0.08

It is apparent from Fig. 8.5 that the parameters of the CPSS have been tuned
properly, as it is able to enhance the performance of the system at the design oper-
ating point. Comparison of the control signals for ANF PSS and CPSS is given in
Fig. 8.6.

In order to investigate the performance of the ANF PSS and CPSS, the param-

eters of the CPSS are kept unchanged while the operating condition is changed to:

P=090pu., p.f.=0.95lead, Vit=1.00p.u.
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Figure 8.5: Comparison of ANF PSS and CPSS responses to a 10% step reference
voltage disturbance at P = 0.90 p.u., power factor 0.85 lag.

The same voltage reference step change of 10% is applied at 1 s and 9 s respectively.
Active power deviations and the control signals for both the ANF PSS and CPSS are
shown in Figs. 8.7 and 8.8 respectively. The stability margin at the leading power
factor is reduced, but the ANF PSS still can yield very satisfactory results. With
the ANF PSS, the system settles down within 1 s, whereas it takes longer with the
CPSS. This test has shown that the ANF PSS can successfully compensate for the

nonlinearity of the generating unit, i.e. the gain and phase lag changes with respect
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Figure 8.6: Control signals of ANF PSS and CPSS for a 10% step reference voltage
disturbance at P = 0.90 p.u., power factor 0.85 lag.

to the changes of the operating conditions.

8.6.2 Input Torque Reference Step Change
With the alternator operating at:

P=090pu., pf.=085lag, Vi=1.10p.u.

a 0.25 p.u. step decrease in the input torque reference was applied at 1 s and removed

at 9 s. The response is shown in Fig. 8.9. When the generator condition changes to
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Figure 8.7: Comparison of ANF PSS and CPSS responses for a 10% step reference
voltage disturbance at P = 0.90 p.u., power factor 0.95 lead.

a lower operating point at 1 s, the CPSS can provide very good damping and thus
there is not much difference between the ANF PSS and the CPSS. However, when a
0.25 p.u. increment step change was applied to the system at 9 s, the response with
the ANF PSS was consistently good.

For a leading power factor conditions, the performance with the two PSSs at

operating point:

P=090pu., p.f.=095lead, Vt=1.00p.u.
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Figure 8.8: Control signals of ANF PSS and CPSS for a 10% step reference voltage
disturbance at P = 0.90 p.u., power factor 0.95 lead.

is shown in Fig. 8.10.
Because the ANF PSS possesses nonlinear behavior, it can provide consistent

effective control signal over a wide range.

8.6.3 Three Phase to Ground Test

To investigate the performance of the ANF PSS under transient conditions, a three

phase to ground fault test has been conducted at the operating point:
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Figure 8.9: Comparison of ANF PSS and CPSS responses to a 0.25 p.u. step torque
disturbance at P = 0.90 p.u., power factor 0.85 lag.

P=050pu., pf.=09lag, Vt=1.10p.u.

At this operating condition, with both lines in operation, a three phase to ground
fault in the middle of one transmission line was applied at 3 s. The transmission line
was opened, by relay action, at both ends of the line 100 ms later. An unsuccessful
reclosure attempt was made after 600 ms, and the line was opened again 100 ms

later due to a permanent fault.
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Figure 8.10: Comparison of ANF PSS and CPSS responses to a 0.25 p.u. step torque
disturbance at P = 0.90 p.u., power factor 0.95 lead.

The system response with the ANF PSS and CPSS under the above transient
condition is shown in Fig. 8.11. The amplitude of the first oscillation for both
controllers is the same, however, the settling time of the response with the ANF PSS
is about 30% smaller than that with CPSS.

At the leading power factor operating point:

P=090pu., p.f.=0.95lead, Vt=1.00p.u.
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Figure 8.11: System response with ANF PSS and CPSS for three-phase short circuit
test at lagging power factor.

the performance with the three phase short-circuit-fault and unsuccessful reclosure

is shown in Fig. 8.12.

8.6.4 Dynamic Stability Test

The main purpose of employing power system stabilizer is to enhance the stability
of the power system. With PSS in operation, the system can operate at high loads

even if it is not stable without a PSS or with a poor PSS. In this test, the capability
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Figure 8.12: System response with ANF PSS and CPSS for three-phase short circuit
test at leading power factor.

of the ANF PSS to improve the dynamic stability margin of the system is presented.
First with the ANF PSS operating, the system input torque reference was in-
creased gradually to the level:

P=120pu., p.f.=090!lag, Vt=1.05p.u.

at which the system was still kept stable. At 4 s, the ANF PSS was replaced by

the CPSS. After replacement, the system started to oscillate without any external
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disturbance, which means that the CPSS is unable to maintain system stability at
this load level. The ANF PSS was switched back at 17 s and the system very quickly
reached the stable condition.

As shown in Fig. 8.13, the ANF PSS successfully damps the oscillations. This
test demonstrates that the ANF PSS can provide a larger dynamic stability margin,

thereby allowing the generating unit to operate at heavier load conditions.
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Figure 8.13: Dynamic stability improvement by ANF PSS.
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8.7 Summary

Real-time implementation of the proposed ANF PSS and experimental studies on a
physical model power system are presented in this Chapter. Active power deviation
and its integral are employed as the inputs to the ANF PSS. Training procedure for
the proposed stabilizer is based on a self-learning technique; i.e. independent of an-
other PSS. The experimental results are discussed and compared with a digital type
conventional PSS. The results demonstrate that both the CPSS and the proposed
ANF PSS are effective in improving the dynamic performance of the system at design
operating point. However, when operating point deviates from its design point, the
performance of the CPSS deteriorates. This is due to the nonlinear characteristic
of the generating unit. Also, the ANF PSS can provide a larger dynamic stability
margin than the CPSS.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

As discussed in Chapter 1, Power System Stabilizers (PSSs) have proven very effec-
tive in enhancing the stability of power systems. Numerous theoretical studies and
experimental tests have been conducted to better understand the behavior of the
PSS and to make them more applicable in practice. Different types of PSSs have
been investigated, and their advantages and disadvantages have become more and
more clear. Based on these studies criteria have been developed to help the designer
to choose the most suitable configuration for a particular application.

Conventional PSS (CPSS) has been successfully applied to power industry in
many cases. However, because of its inherent linear characteristic, it faces many
serious problems. The stabilizer should be able to catch the non-linearity of the
system and produce the same performance for different operating conditions and
different types of disturbances.

This dissertation is devoted to the development of an adaptive fuzzy logic power
system stabilizer. It has made systematic contributions to all three stages of develop-
ing such a stabilizer —-theoretical development, simulation studies and experimental
tests.

After studying and comparing fuzzy logic and neural network control strategies,

an adaptive fuzzy logic based power system stabilizer has been proposed [86][87].
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It combines the advantages of both control strategies, avoids their drawbacks, and
connects these two seemingly different algorithms together. By using the adaptive
fuzzy logic PSS, the tuning problem of fuzzy controller is removed and black-box
characteristic of neural network controller is significantly improved. In this way,
it simplifies the tuning procedure during commissioning and thus makes it more
suitable for practical applications.

The proposed adaptive fuzzy PSS requires another existing controller (desired
controller) to adjust its parameters to yield the same control performance. Adaptive
self-optimizing pole-shifting PSS (APSS) is selected to be the desired controller.
A trained adaptive fuzzy controller can produce quick control signal and overcome
the disadvantage of long computing time of the desired controller. The computing
time of APSS increases as the identification and control algorithms become more
complicated. By training an adaptive fuzzy PSS to simulate the function of an
APSS, the new PSS combines the good control effect of APSS and quick response of
ANN, and thus improves the performance of the power system.

In the next stage of designing adaptive fuzzy PSS, a self-learning approach is
used to train the controller directly from the generating unit output [88][91]. This
approach is independent of other PSSs. An adaptive fuzzy identifier is first trained
to identify the dynamic of the unknown plant, and then this identifier is utilized to
back-propagate the error at the generating unit output to the output of the controller.
The parameters of the controller are updated after a certain elapsed time to minimize
the difference between the plant trajectory output and the desired trajectory.

Besides the tuning problem of fuzzy logic controllers, the selection of the number

of inference rules and membership functions is done by trial and error. By increasing
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the number of input and outputs, this problem becomes more crucial. To automate
the process of finding the optimum structure for adaptive fuzzy PSS, Genetic Al-
gorithm as a global optimization technique is employed [89]. By applying both GA
and back-propagation techniques, the number and the shape of membership func-
tions are determined by GA and the consequent part of inference rules are specified
by back-propagation algorithm.

The adaptive fuzzy PSS is built and tested in the single-machine infinite-bus
environment by computer simulation. In each of three mentioned approaches, the
adaptive fuzzy PSS is trained in the full working range of the generating unit with a
wide range of disturbances. Simulation results have demonstrated that the proposed
adaptive PSS can adjust its parameters to produce a control signal that can provide
enough damping to different disturbances.

The effectiveness of the adaptive fuzzy PSS to damp multi-mode oscillations in a
multi-machine environment is also verified in this dissertation [92]. Test results show
that each adaptive fuzzy PSS can damp the specific mode of oscillation introduced
mainly by the generating unit on which it is applied. Several adaptive fuzzy PSSs
working together can damp both local and inter-area mode oscillations. There are
no coordination conflicts with the other types of PSSs.

These results have shown that the adaptive fuzzy PSS has many promising fea-
tures that the conventional PSS lacks. This makes it a strong candidates to replace
the conventional PSS in future.

Next stage in the development process is the implementation of the device. If it
is considered that the simulation studies prove the proposed control algorithm theo-

retically, the implementation tests prove the proposed control algorithm practically.
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Implementation is a critical step towards its practical application. By utilizing a
PHSC2 Programmable Logic Controller as AVR and a TMS320C30 Digital Signal
Processor as PSS, a real-time digital control environment has been established to
implement adaptive fuzzy PSS [93]. For comparison, a digital type conventional
PSS has also been implemented in this environment and tested under the same con-
ditions. Experimental tests have produced results consistent with the simulation

studies, proving the capability of the proposed adaptive fuzzy PSS.

9.2 Future Work

Research on fuzzy logic, neural network and genetic algorithm in control systems has
advanced rapidly in recent years. Since the application of these techniques in power
engineering is a new area, much work needs to be conducted in order to put them
into practical use.

Based on the work of this dissertation, the followings are recommended as further

research topics:

o For training the adaptive fuzzy controller, off-line learning method is used.
The next immediate step seems to be to investigate the possibility of apply-
ing on-line learning method to track time varying stochastic power systems.
However, there are many serious aspects that need to be investigated before
on-line method can be put into use. Stability of the closed loop system is the
major concern. Since the controller parameters are updated each sampling
interval, without having an efficient criteria to limit the parameter update,

on-line learning method may lead the system to unstable region.



151

e Adaptive fuzzy controller, in general, can be used as a multi-input muliti-output
controller without facing the tuning problem. Only two inputs and one output
are considered for adaptive fuzzy PSS. Increasing the number of inputs and
outputs could be very interesting. By using the generating unit terminal volt-
age, V;, as another input to the controller, the combination of AVR loop and
PSS loop will be achieved, hence both power oscillations, AFP,, and terminal
voltage deviation, AV;, can be controlled at the same time and in one control

loop.

Also, integrating both the excitation and the governor control loops and con-

sidering the interaction between them are worth looking into.

e Although many theoretical stability criterias are proposed for fuzzy and neu-
ral network based control systems, still a guaranteed reliability to handle all

unpredicted situations is of greatest need for these control schemes.

e Lab implementation of the ANF PSS was based on a sequential computation
method using a DSP board. To reduce the computing time further, it is sug-
gested that the ANF PSS be implemented on a commercially available fuzzy

logic chip.
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Appendix A
Single-machine Power System

A.1 The generating unit is modeled by seven first order differential equations given

below:

§ = wow (A.1)
&= T+ + Kb~ T.) (A2)
M = g4+ Tata + wolw + 1), (A.3)
Ay = €q + Tatq + wolw + 1)Aq (A.4)
Af = eg — tri (A.5)
Med = —Tkdira (A.6)
Abg = —Tkgtig (A.T)

A.2 The AVR and excitor model used in the system is from the IEEE standard
P421.5,1992, Type ST1A as shown in Fig. A.1.

A.3 The governor used in the system has the transfer function:

9= [a+ 1+3T9]6

A.4 The conventional PSS has the following transfer function:

sTs 1+sT11+sT; 1

UP“(") = K'l +sTs1+sTo 1+ 8Tyl + 5T

(A.8)
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Vz Va 1 V
— - : -
a Vcl IVT* (Rc+iXc) ITI 1+sT
VREF § - ViMax [ Vamax Ermax
b HV (1+$TC) (1+STCI) KA +
X GATE (1+5Tp) (1+5Tg,) 1+T, h GATE
Vpss UEL _J r B
VimMiN Vamv Vv, Ermiv
Ve [FF ] -~
1+sT
Epmax = Vrmax V1 -KeIp Ir —3 Kf-i7"
Epmiv = Vemiy V1 -Ke Ip Ir 2

Figure A.1: AVR and excitor model Type ST1A, IEEE standard P421.5,1992.
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A.5 Parameters used in the simulation study are given below:

rs = 0.007

r¢ = 0.00089
zqg =124

z, = 0.743

z5 =133

K4 =200

Re = 0.0

Tg = 0.03
Tr=1.0
Vanmin = -999
Vamax = 7.8
a = —0.001328
T1=0.1

Ty =0.02

K, =0.05

Tea = 0.023
H=1346

ZTid = 1.15
ZTwg = 0.652
r, = 0.05
T4=0.01

Xc =100
Tc1=0.0
Vimrn = -999
Vamax = 999
VgL = -999
b=-0.17

T> = 0.02

Ts =165

UpuMIN =-0.1

Tig = 0.023
Kg =~ 0.027
ZTmd = 1.126
Tmq = 0.626
z. = 0.6
Kr=0.05
Tc =0.1

T =0.0
Vimax = 999

Vrmin = -6.7
Voer = 999
T, = 0.25
T3=0.1

Ts = 0.005

UpuMAX =01

All resistances and reactances are in per-unit and time constants in seconds.



Appendix B
Multi-machine Power System

B.1 The generating unit is modeled by five first order differential equations given
below:

6 = wow (B.1)
w—ﬁ:Tm+g+K4€ T.) (B.2)
Tj¢, = ef — (Td — Zy)ia — € (B.3)
Tire! = [ej — (24 — z3)ia — eg] + Tioe, (B4)
Tiel = (z4 — Zh)iq — €] (B.5)

B.2 Generator parameters:
G1 G, Gs Gs Gs
Xq4 01026 0.1026 1.0260 0.1026 1.0260
X, 0.0658 0.0658 0.0658 0.0658 0.0658
X'q 0.0339 0.0339 0.0339 0.0339 0.0339
X"; 0.0269 0.0269 0.0269 0.0269 0.0269
X", 0.0335 0.0335 0.0335 0.0335 0.0335
T's%, 5.6700 5.6700 5.6700 5.6700 5.6700
T"2 0.6140 0.6140 0.6140 0.6140 0.6140
T, 0.7230 0.7230 0.7230 0.7230 0.7230
H  80.000 80.000 10.000 80.000 10.000
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B.3 AVR and simplified ST1A exciter parameters:

G
0.0400

190.00
0.0800
10.000

3

T. 1.0000

B.4 Governor parameters:

G,
T, 0.2500
a -0.0001
b -0.0150

G,

0.0400
190.00
0.0800
10.000
1.0000

G
0.2500
-0.0001
-0.0150

B.5 Transmission line parameters:

Bus# R,

1-7 0.00435
2-6 0.00468
3-6 0.01002
3-6 0.01002
4-8 0.00524
5-6 0.00711
6-7 0.04032
7-8 0.01724

B.6 Operating point #1:

Gs

0.0400
190.00
0.0800
10.000
1.0000

Gs
0.2500
-0.0013
-0.1700

X

0.01067
0.04680
0.03122
0.03122
0.01184
0.02331
0.12785
0.04153

Gq

0.0400
190.00
0.0800
10.000
1.0000

G,
0.2500
-0.0001
-0.0150

B./2

Gs

0.0400
190.00
0.0800
10.000
1.0000

Gs

0.2500
-0.0013
-0.1700

0.01536

0.00404

0.03204

0.03204
0.01756

0.02732

0.15858

0.06014
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P,pu.

Q,p-u.
V.pu.

é, rad.

G Ga

5.1076 8.5835
6.8019 4.3836
1.0750 1.0500
0.0000 0.3167

Loads in admittances in p.u.:

Gs

0.8055
0.4353
1.0250
0.2975

G4

8.5670
4.6686
1.0750
0.1174

Gs

0.8501
0.2264
1.0250
0.3051

L1 =75-75.0,L; =85-3750, L3 = 7.0 - j4.5

B.7 Operating point #2:

P pu.

Q.pu.

V,p.u.
é, rad.

Gy G,

3.1558 3.8835
2.9260 1.4638
1.0550 1.0300
0.0000 0.1051

Loads in admittances in p.u.:

Ly =3.755 -32.5 , L, = 4.25- 525, L3 = 3.5 - 72.25

G;

0.4055
0.4331
1.0250
0.0943

G4

4.0670
2.1905
1.0500
0.0361

0.4501
0.2574
1.0250
0.0907
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Appendix C
Physical Model Power System

C.1 The parameters of the micro-alternator are:

T, = 0.026 red = 0.0083 1y, = 0.0083
ry=0.000747 z5=1.27 H =475

zg=1.2 ZTeqg = 1.25 ZTma = 1.129
z, =12 Tig =125  zmg=1.129

C.2 Each transmission line consists of six 50 km equivalent 7-section. For each

w-section, the parameters are:

R=10.036 X =0.0706 B = 18.779
C.3 The parameters of the conventional PSS are:
K, = —8.0, T1 = 0.06, Tz = 0.1, T3 = 0.1, T4 = 0.08

All resistances and reactances are in p.u. and time constants in seconds.
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