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ABSTRACT 

Advances in the Global Positioning System (GPS) and strapdown Inertial Navigation 

System (INS) have played a significant role in the development of airborne gravimeters. 

Previous studies have shown that the airborne gravity data obtained from these 

gravimeters have very good quality. In this thesis some possible procedures to determine 

the geoid from airborne gravity data are studied. Different practical issues are 

investigated: the digital terrain model (DTM) resolution needed to quantify the 

topography at the flight level, the need for terrain effects filtering, and the use of two 

downward continuation procedures. The results showed that for a geoid of resolution 

5' x 5', a D T M of 30 arcsec can be safely used, and in benign topography even a 60 

arcsec could be used. Although filtering is essential from the theoretical point of view, 

practically it is not important. The geoid determined from airborne gravity data, 

downward continued to the reference sphere using the normal free-air gradient, shows a 

better agreement with the reference geoid (computed from ground gravity data) than 

using the inverse Poisson integral. The geoid determined from airborne gravity agreed 

within the 5 cm RMS from the reference geoid on a 5' x 5' grid. 

An additional study performed in this thesis showed that - when ground data is used for 

geoid determination - the denser the D T M , the better the geoid is determined; also in this 

case, the normal free-air gradient gave a better-fitting geoid to the GPS/Levelling 

undulations. 

For both data types, airborne and ground, it was also concluded that the 2 n d Helmert 

condensation method is creating a rough field and thus causes problems, along with the 

problems of high frequency magnification, when it is downward continued by the inverse 

Poisson integral. 
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Chapter 1 
i 

Introduction 

1.1 - Background 

For more than a hundred years, gravity measurements have been done mostly on the 

surface of the earth or in the oceans. In the 1960's, the first attempts were made to 

indirectly measure gravity by modelling disturbances of the satellite orbits around the 

Earth. In this case, measurements were not gravity directly, but rather some functionals of 

the gravity field. Also, in the 1960's, attempts to measure the gravity itself from aeroplanes, 

using either modified sea gravimeters or Inertial Navigation Systems (INS), were made but 

were not very successful due to the poor INS system quality at that time and the poor 

positioning quality with techniques such as the optical methods. In the beginning of the 

1990's and with the advent of the Global Positioning System (GPS) attempts at airborne 

gravity measurements were starting to give acceptable results by using INS and GPS 

together. Currently, these instruments are considered to be the standard tools for measuring 

gravity in local and regional scales. The INS/GPS system, which can also be called 

INS/GPS gravimeter, integrates the two sensors: INS and GPS. 

The INS consists of a set of three orthogonal accelerometers that measure the acceleration, 

and three gyroscopes that define the orientation of the system. According to Einstein's 

theory of equivalence, it is impossible to distinguish between the effects of inertial 

acceleration and the gravitational field. In other words, an accelerometer, mounted in a 

moving body, measures both the acceleration caused by the Earth's gravity field and the 



2 
acceleration caused by the actual motion of the body. Hence, an independent determination 

of the acceleration of the motion of the body is essential in order to separate these two 

forces. 

Although the main measurements of GPS are the position and velocity of a moving body, it 

can also be used for determining the acceleration, by differentiating the position twice or 

the velocity once with respect to time. In this context, the difference between INS and GPS 

measurements yields the gravity. 

While this concept seems quite simple, its application is hampered by a wide range of 

difficulties and challenging problems, such as (in a very general sense) the quality of 

sensors used, time synchronization, and data processing. The first two problems have been 

successfully studied in the past 20 years due to the high level of maturity in sensor 

development. The data processing was extensively studied in the past decade and adequate 

algorithms were developed. Since most of the challenging problems for obtaining good 

quality gravity data have been solved (at least those that concern gravity and its 

applications in geodesy), processing of this data to lead to the desired quantities in geodesy 

needs to be investigated along with the quality of such quantities. 

In applied Earth sciences, the gravity field is used as a tool to determine mathematical and 

physical parameters needed for a range of applications: mapping, geophysics, exploration, 

etc. The interested reader can refer to the ESA report (1999). This research concentrates on 

the mapping part, where geoid determination is the aim. Geoid is the equipotential surface 

of the Earth's gravity field that best fits the global mean sea level. 

Many studies have been published in the past decade on airborne gravity data and its 

importance in future geoid determination. Different institutes around the globe are 

conducting research on using airborne gravity data for geoid modelling in the polar gaps 

and in un-surveyed areas. 

At the department of Geomatics Engineering, University of Calgary, many problems 

related to applications of airborne gravimetry are being studied. Among these problems are 

the terrain effect on the gravity signal at flight level, downward continuation, and whether 
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the airborne data can stand alone without the help of other data, like ground measured 

gravity disturbances/anomalies. 

1.2 - Problem statement and objectives 

The gravity information acquired from the airborne system is filtered to remove the high 

frequency components due to GPS errors, high aircraft dynamics, and phugoid motion. This 

filtering forces the gravity signal to be band limited within the frequency of the filtering 

(Ch. 2), and any processing made to this signal has to take into account this band 

limitedness. Tziavos et al. (1988) studied the effect of the terrain on airborne gravimetry by 

investigating the Digital Terrain Model (DTM) resolution and flight height needed to obtain 

accurate terrain corrections at the flight level. Yet, they did not link the topographic effects 

to the filtering of the gravity signal. Li (2000) also tried to examine the topographic effect 

on the filtered gravity signal at the flight level, however he did not study the filtering effect 

on geoid determination. Other studies, e.g., Forsberg and Solheim (2000), Fernandes et al. 

(2000), Timmen et al. (2000), among others, do not mention whether they remove the effect 

of the topography from the measured gravity signal, and most of their measurements are 

above the sea where there is no need for topographic reduction. Here, therefore, 

investigation of the effect of the topographic signal on the airborne gravity data taking into 

account the filtering of the gravity signal, and the effect of the D T M resolution, will be 

carried out. 

Downward continuation is well studied in the geodetic literature. Rigorously, it is evaluated 

by the inverse Poisson integral; other methods to downward continue the gravity data are 

collocation, analytical downward continuation, and free-air gradient, etc. When the inverse 

Poisson integral is used, problems are created due to the magnification of the high 

frequency part of the signal, and mainly the errors; thus, regularization of this inverse 

problem is applied using different methods (Bouman, 1998), i.e., Tikhonov-Philips, 

Collocation (either in space or frequency domain), iterative solutions, etc. Forsberg and 

Solheim (2000), Fernandes et al. (2000), Timmen et al. (2000) did not apply downward 

continuation, because measurements were either done at low altitudes or above the sea or 



4 
both. Forsberg and Kenyon (1995), on the other hand, studied the use of collocation and 

FFT for the downward continuation without dealing with the cumbersome rigorous inverse 

Poisson integral. Novak et al. (2001) studied the downward continuation by evaluating the 

inverse Poisson integral on a synthetic field and on actual data at low altitude. Neither study 

assessed the effect of the downward continuation and/or its absence on geoid modelling. As 

for the regularization, many studies dealt with this topic in the geodetic literature; among 

the many, we mention Schwarz (1979), Bouman (1998), Sun and Vanicek (1996), Rauhut 

(1992), Kern and Schwarz (2001). Since this topic needs, by itself, an in-depth 

investigation, this thesis deals with it passively by applying the iterative method. 

The main objective of this thesis is to compare two methods of geoid determination from 

airborne gravity, considering two downward continuation methods (inverse Poisson integral 

and normal free-air gradient), topographic effects, filtering of topographic effects, and 

terrain resolution. The two solutions will be compared to a reference geoid obtained form 

ground data and recommendations will be made, based on the accuracy, resolution, and 

efficiency of each method. 

Specifically, the first set of objectives of this thesis is to answer the following points: 

1. What D T M resolution is needed in airborne gravimetry? 

2. Is filtering of the topographic effects essential from the practical point of view? 

3. Which downward continuation method gives the best fit to the reference geoid? 

4. How different is the geoid when determined from data filtered to different 

frequencies? 

5. How good is the geoid determined from airborne gravimetry? 

Ground gravity data are used in this thesis mainly as a reference gravity field and the geoid 

determined from them as the reference geoid. In an attempt to make this study more 

complete, some investigation will be done on the geoid determined from ground gravity 

data in order to answer these two questions: 

1. How do the terrain effects computed from different digital elevation model 

resolutions affect the geoid, and 
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2. Which downward continuation method gives a best-fitting geoid to the 

GPS/levelling benchmarks when using ground gravity data? 

The airborne gravity data set that is used in this study was measured by a Honeywell 

LRFIII strapdown system over the Rocky Mountains; this data and missions are described 

in Bruton (2000). As for the ground data, the databases in the Geodetic Survey Division, 

NRCan, were used, with the addition of 176 values measured by the GEOIDE project group 

47 with the assistance of Mr. Philip Salib of NRCan during the summers of 1999 and 2000. 

1.3 - Thesis Outline 

The main objective of this research is the geoid computation from airborne gravity data. To 

accomplish this, different tasks are studied. This thesis is divided as follows. 

The second chapter covers the theoretical background of geoid determination: Stokes' and 

Hotine's Boundary Value Problems are stated and their solutions are discussed; the concept 

of airborne gravimetry is outlined; terrain effects are examined; downward continuation is 

studied; and the methodologies followed in this thesis are stated. 

The third and fourth chapters contain the numerical tests conducted. The third chapter deals 

with the D T M resolution needed for geoid determination and whether the topographic 

effects, used in airborne gravimetry, need filtering so that they are consistent with the 

gravity signal. This chapter also discusses the D T M resolutions needed for the geoid 

computed using ground gravity data. The use of the rigorous Poisson integral for downward 

continuation is also studied in this chapter. The fourth chapter examines geoid 

determination using ground and airborne gravity data. This chapter answers almost all the 

questions of the thesis, since the final product is the geoid. The fifth chapter summarizes 

the research, with recommendations for future research topics. 
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Theoretical Background of Geoid 
Determination from Airborne Gravity Data 

2.1 - Stokes' and Hotine's Boundary Value Problems and 
Their Solutions 

For the geodetic modelling of the gravity field, gravity values have to be given either on the 

topography and solved by Molodensky's theory (Moritz, 1980; Sideris, 1987) or on the 

geoid - approximated by a reference sphere - and solved by the classical Stokes/Hotine 

formulation (Stokes, 1849; Hotine, 1969). In this research, the Stokes/Hotine formulation 

will be used for geoid determination. The processing of the airborne data is very similar to 

that of the ground data with the difference that the points are not at the topography, neither 

are they close to the reference sphere, but rather at some altitude above the topography. The 

impact of this is the attenuation of the gravity signal and the problem of bringing the 

measurements to the reference sphere to be used either for geodetic or geophysical 

purposes. 

Geoid determination has been the centre of study in geodesy during the previous century. It 

is based on the third boundary value problem, developed by Neumann, that determines the 

disturbing potential, T, exterior to or on a surface, on which values functionally related to 

this disturbing potential exist. Stokes (1949) formulated this problem and developed the 

well-known Stokes' integral for determining the disturbing potential using gravity 

anomalies, Ag, at the surface of the geoid. Using Bruns's formula, one can obtain the 

geoid undulations from the computed disturbing potential. Hotine (1969) used gravity 
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disturbances, 8g, to compute the disturbing potential, and in turn geoid undulations, using 

Neumann's problem, thus leading to Hotine's integral. To resolve these two formulations, 

the following differential equation needs to be solved: 

A 2 r = 0 (2.1) 

with the boundary conditions 

A g ~ § - | r (2.2) 
or R 

or 

^g = ~ (2.3) 
or 

dr is the radial derivative. 

So, the gravity values used to compute the geoid are gravity anomalies, Ag, or 

disturbances, 5g. From the theoretical point of view, there is no difference between using 

Stokes' and Hotine's integrals; actually in planar approximation, the two integrals are 

identical. The two quantities, gravity disturbance and gravity anomaly, are related to each 

other by the fundamental equation of physical geodesy (Eq. 2.2). If we consider the planar 

approximation, R —» oo , we achieve the following expression, 

Ag = - ^ = 5g. (2.4) 
or 

Numerically, these two quantities can be related to each other as follows, 



<=> 8g = Ag + y -y 8g = Ag-
dh 

N (2.5) 

where g is the gravity measured at point P, y, is the normal gravity computed at point 

i = {p,q\, N is the geoid undulation at point i, and dy/dh is the normal free-air gravity 

gradient; see Fig. 2-1. 

Geoid 

Ellipsoid 

Figure 2-1: Geoid and ellipsoid 

Since /V is usually not known, we usually use a high degree and order geopotential model 

(GM) to approximate it and use it in this transformation. 

As mentioned above, the gravity information has to be on the boundary surface - the geoid 

approximated by a reference sphere in our case- so that it can be used in Stokes' or 

Hotine's integral to give the geoid. The gravity is measured at an altitude above the geoid 

and a way to downward continue it has to be followed. The harmonicity of the field is 

achieved by removing all masses above the geoid. This is done by removing the 

topographic and atmospheric effects from the measured gravity signal. 

So, the first step in geoid determination from airborne gravity data is the terrain effects 

computation. The atmospheric effects are added as a constant number depending on the 

height at which the measurements take place; see Moritz (1984) for more details. The 

terrain effects are computed by evaluating the potential of the topographic masses around 

the measuring location; then, they are low-pass filtered so that they are consistent with the 
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airborne gravity data before being added. To account for the global gravity field effect, a 

high degree and order geopotential model (GM) is subtracted from the data. The downward 

continuation of the residual gravity data brings the data to the reference sphere. Having 

residual gravity values on the reference sphere, Stokes/Hotine formulation is applied to 

determine the co-geoid. To obtain the geoid, the topographic indirect effect is added to the 

co-geoid. When the GM contribution is added again in terms of geoid values, the final 

geoid is achieved. 

In this chapter, the theoretical formulation of the geoid computation will be made following 

Helmert's 2 n d condensation method. The classical remove-restore technique will be 

followed. There are many studies that compute the geoid differently; for example, some 

studies use the measured gravity at the surface of the topography without any kind of 

reduction, where the effect of these reductions are taken care of independently (e.g., 

Sjoberg and Nahavandchi, 1999; Sjoberg, 2000; Sjoberg, 2001). Here, the classical remove-

restore technique will be followed. 

2.1.1 - Stokes' integral 

As was mentioned previously, the geoid can be determined by either one of two integrals: 

Stokes' integral if gravity anomalies are available; and, Hotine's integral if gravity 

disturbances are available. First, we will present Stokes' approach and after that Hotine's. 

Since the derivation of both equations is similar and can be found in physical geodesy 

textbooks (e.g., Heiskanen and Moritz, 1967; Hotine, 1969; Dragomir et al., 1982), the 

equations will only be shown with a short discussion. 

Stokes' integral can be derived from Equations 2.1 and 2.2. The most general form of 

Stokes' integral is (Heiskanen and Moritz, 1967), 

(2.6) 
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where 

k is the gravitational constant, 

8M is the difference in mass between the real earth and the normal earth, 

8W is the difference in potential between the real earth and the normal earth, 

R is the radius of the reference sphere that approximate the geoid, 

y is the mean value of gravity, 

Ag are gravity anomalies reduced to the topography and to the G M , and downward 

continued to the geoid, 

S(\\i) is Stokes' function or kernel and it is expressed either as: 

a function ofLesendre polynomials: 

(̂m7) = X —̂—— P„ (cos vj/), where Pn it) is the Legendre function 
n=2 n-1 

or a closed formula: 

ct \ , 1 ^ • W r ^ . \1/ . -7 VLf 
b{\y) = \ + —,——v-6sin — -5cos \ \ i-3cos \ \J log sin —+ sin" — sin (W2) 

\ (2.7) 
•J 

Assuming that the mass of the real earth is equal to the mass of the normal earth and that 

the potentials generated from the two masses are equal, the first two terms of Eq. 2.6 
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become zero. In terms of the latitude cp and longitude X, the final form of Stokes' integral 

is, 

N(<?,X) J \Ag(y',),')s(\\r)cos<p'd<p'dk'. 
4%y v=o<p'=-v2 

(2.8) 

For the practical implementation of the above equation (Eq. 2.8), the integral turns into 

summation. This equation can be implemented in different ways, depending on the 

approximation used: planar or spherical. It can be evaluated by one-dimensional Fast 

Fourier Transform (FFT) or two-dimensional FFT (e.g., Hagmaans et al., 1993; Sideris and 

She, 1992; L i , 1993). The 1-D FFT is applied in this thesis. 

Since the contribution of a GM is subtracted from the gravity anomalies this contribution is 

added back in terms of geoid undulation after computing the residual geoid from Eq. 2.8. 

Also, the indirect topographical effect is to be added. So, the final geoid is obtained as 

follows: 

where the superscripts 'S ' , and ' G M ' stand for the geoid computed from Stokes' integral 

(Eq. 2.8) and the GM (Eq. 2.10), respectively, and NGIE is the indirect topographic effect 

and its computation is discussed in Section 2.3. 

N(<p, X)=NS (cp, X) + NGM (<p, X) + NGIE (cp, X) (2.9) 

N GM 
— E - E l C « m c o s ^ + ^ m s i n ^ r ^ ( c o s & ) 
l r n=2\r J m=0 

(2.10) 
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2.1.2 - Hotine's integral 

Instead of using gravity anomalies, the gravity disturbances are used here. A l l the 

derivations, implementations, and modifications are similar to Stokes' integral (Hotine, 

1969; Novak et a l , 2001). 

Hotine's integral is derived from Equations 2.1 and 2.3 and written as follows, 

(2.11) 

where h(\\i) is Hotine's function or kernel and it can be described either as: 

a function of Legendrepolynomials: 

n=2 

(2k+ l) 

a closed formula: 

hM= 
(v/2) 

- l o g 1 + 
(W2)J' 

(2.12) 
sm1 sin 
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Both kernels, Stokes' and Hotine's, can also be described spatially, where the kernel relates 

data on the reference sphere to data outside the reference sphere at some given height. 

The equation used in this thesis takes the form, 

n 271 7t/2 

iV~(q>A) = — J J8g((p',X')h(^)cos(p'd^'dX'. (2.13) 
4lZY V=0<p'=-7r/2 

The contributions of the GM and the topography are added in the same way as in Eq. 2.10. 

2.2 - Gravity data computation from airborne gravimetry 

2.2.1 - The concept of airborne gravimetry 

The main equation of airborne gravimetry is based on the Newton's equation of motion, 

and in the local-level frame is (Schwarz and L i , 1996a) 

al=fl-(2riie+Ql

eiy+gl, (2.14) 

where a1 is the body acceleration calculated form the GPS measurements, /' is the 

specific force measured by the accelerometers, vl is the body velocity measured also by the 

GPS, Q.\e and Q.'el are skew-symmetric matrices of the angular velocities coie and & l

e l due 

to the earth rate and body rate over the ellipsoid, and gl is the gravity vector that we are 

seeking. 

Introducing the normal gravity vector y' referenced to an ellipsoid, the gravity disturbance 

vector 8gl can be computed for the stable platform form 



8 g ' =a'-f' +(2Q'ie+Q'eiy -y' 

14 

(2.15) 

Considering a strapdown system, a rotation matrix should be introduced to transform the 

specific force measured in the body frame (b) to the local-level frame (/), and the equation 

becomes 

8g' =a'-Rl

bfb

+(2Ql

ie+Ql

el\ 1 yl (2.16) 

In detail, this equation has the following form, 

aE cos y cos r - sin y sin p sin r - sin y cos p cos y sin r + sin y sin /? cos r / e 

ny = aN - sin y cos r + cos y sin p sin r cosy cos p sin y sin r - cos y sin p cos r fN 

au - cosy sin r sin p cos /? cos r fu 
f 0 -co(e 0~ 0 - X sin cp Icoscp "o" 

+ 2 0 0 + lsin(p 0 <p - 0 

0 0 0 X cos cp -<P 0 .y. 

where 

(p = 
(r̂  + /z)cos(p 

and y, p, and r are the yaw, pitch and roll angles of the body that carries the apparatus. 

Other notations are the same as above, with the E, N, and U superscripts denoting the east, 

north, and up directions, respectively. 
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Before applying equation (2.16), processing of raw INS and GPS collected data has to be 

done separately. This processing currently takes place in three distinct steps (Glennie, 

1999). In the first step, the attitude, position, and velocity of the airborne gravity system is 

calculated by integrating the inertial measurements with the DGPS carrier phase and phase 

rate measurements. This is done by applying Kalman filtering techniques using the 

decentralized filter concept. In the second step, GPS position and velocity information are 

used to estimate the body's accelerations. The GPS system outputs are also used to 

determine the Coriolis acceleration correction. 

The centres of the INS and GPS are not coincident, so a relation between both references 

has to be established. This is done by the use of a theodolite and it is called the lever-arm 

offset connection. Then, double differentiation of the offset orientation is applied to add it 

to the derived accelerations of both systems. 

The third step is to estimate the gravity disturbance vector by differencing the INS specific 

force measurements and the GPS accelerations, and applying the corrections due to Coriolis 

and the lever-arm offset acceleration. 

To reduce the measurement noise the gravity disturbances are then low-pass filtered to a 

desired cut-off frequency using a finite impulse response (FIR) filter. The best FIR period 

is found to be 90 seconds for the acceleration computation. 

The output is still suffering from some systematic effects due to the tilt of the flight lines 

and accelerometer biases. This was investigated by Glennie (1999) where he applied some 

polynomial fit for the accelerometer bias, and a least-squares adjustment for the 

computation of the cross over points. This is not the case when there is only one flight line, 

but such surveys are avoided. 

The final output of this system is the disturbance vector, which consists of the magnitude of 

the disturbance and the two components of the deflection of the vertical multiplied by the 

normal gravity vector that refers to the point of measurement. 

Every value in equations (2.15) or (2.16) is affected by its measuring errors; specific force 

errors come from the accelerometer imperfections; yaw, pitch and roll errors come from the 

gyros, drift errors for example; acceleration, velocity, and position errors come from GPS. 
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By linearization of equation (2.16), one can derive an error model as follows (Schwarz and 

L i , 1996a): 

ddgi=dal+f'e '-R[dfb + (2Ql

ie + Q.l

el ]dv' - vl (ldwl

ie + dwl

d) 

-dy l

+(RlJb

+R'bfb)dt (2.17) 

A l l the notations are considered known, except for the dt, which is the synchronization 

error between the GPS and INS timing, and s ', which is the attitude errors due to the initial 

misalignment and gyro measurement noise. Because of the good estimates of velocity and 

position derived form GPS, there terms can be neglected without introducing much effect 

on the overall error model (ibid), so the final error model becomes 

2.2.2 - Filtering of the airborne gravity data 

The output of equation (2.16) is low pass fdtered to remove the high frequency errors that 

come from the high dynamics of the moving body, GPS errors, and phugoid motion. The 

reader can refer to Schwarz et al. (1994), Hammada (1996), Schwarz and Li (1996b) 

Glennie (1999), Bruton (2000), for spectral characteristics and low-pass filtering 

procedures. 

dbg1-da1 +flel-Rl

bdfb

+(Rl

bfb

+R'bfb)dt (2.18) 
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Figure 2-2: Measured and filtered gravity disturbances 

Here we will show an example of filtering on one dataset from the survey that took place in 

the Rocky Mountains in 1996. This campaign is well documented in Bruton (2000). 

Figure 2-2 shows the measured and the filtered gravity disturbances to 1/30, 1/60, and 1/90 

Hz cut-off frequency plotted versus the GPS time (in seconds). Fig. 2-3 shows the spectra 

of this data, and Fig. 2-4 shows the cumulative spectra. These plots demonstrate clearly 

why filtering is required. The raw measurements are so noisy that the real gravity signal is 

completely covered by noise (Fig 2-2.a). After applying the lowpass filter, the gravity 

signal becomes visible. Comparing the filtered data to upward continued ground data taken 

as reference, it was shown that the filtering frequency of 1/90 Hz gave the best fit. This is 

demonstrated in Glennie (1999) and Bruton (2000). 
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Figure 2-3: Spectra of the measured and filtered gravity disturbance 

Figures 2-3 and 2-4 reveal the spectral contents of the signals plotted in Fig. 2-2. It is 

clearly shown how filtering gets rid of the high frequencies from the signal. These high 

frequencies are not only the errors embedded in the signal, but also the high frequency 

signature of the gravity field itself; hence, the high frequency parts of the gravity spectrum, 

beyond the cut-off frequency, are also smoothed by the filtering. This analysis leads us to 

the belief that any post-processing of this gravity signal has to take into account this 

smoothing; this applies mainly to the reduction of the gravity data. 
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Figure 2-4: Cumulative spectra of the measured and filtered gravity disturbance 

2.2.3 - Cross-over adjustment of the airborne gravity data 

Near the origin of the spectra in Fig. 2-3, one notices a sharp decay. This is due to the low 

frequency contents in the data, which come from the low frequency of the gravity signal as 

well as the un-modelled biases in the accelerometers. Glennie (1999) tried different 

procedures to subtract or remove this bias and he concluded that the crossover adjustment is 

the best way. Bruton (2000), on the other hand, tried to combine a lowpass filtered 

geopotential model (GM) with the airborne gravity data after high-passing them to the 

frequency that corresponds to the extent of the surveyed region. He concluded that this 

couldn't be done due to the bad quality of the current GMs in the specific band of the 

spectra. He also stated that the best procedure for the time being is the crossover 
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adjustment. The output of this adjustment is a dataset of gravity disturbance with very good 

relative accuracy but with poor absolute orientation. To link this arbitrary dataset to the 

global gravity space, at least three gravity values from an independent instrument have to 

be available in the region. It should be noted that not all airborne gravimeters suffer from 

the long wavelength errors. 

The crossover adjustment takes into consideration that the value of the gravity signal does 

not change during the survey. So, if the same location is occupied twice at different times, 

the time dependent accelerometer bias and the slope in the gravity signal along the flight 

line can be modelled and removed from the data by a least-squares adjustment. The 

measurement model of this adjustment is given as (Glennie, 1999): 

A5g = stAt, + SjAtj + bi + bj (2.20) 

where Adg is the difference in disturbances between flight lines at the crossover points, 

Sj,Sj,bi,bj are the slopes and biases of the flight lines rand j, respectively, and At^Atj 

are the time difference between the start of the flight line and the time of the current 

crossover point. 

For more details, one can refer to Glennie and Schwarz (1999) and Glennie (1999). 

2.3 - Topographic effects 

There are different methods for the treatment of the topographic effects, which can be 

classified as approximation methods and as reduction methods. For the former, there is the 

planar approximation (e.g., Nagy, 1966; Sideris, 1984; Sideris, 1990; L i , 1993; Peng, 

1994; Li and Sideris, 1997; Omang and Forsberg, 2000; Nagy et al., 2000; Smith et al., 

2001) and the spherical approximation (e.g., Martinec and Vanicek, 1994a; Martinec and 

Vanicek, 1994b; Martinec, 1998; Novak, 2000; Smith et al., 2001). Concerning the 

reduction methods, there are many procedures available: Bouguer (Heiskanen and Moritz, 
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1967), Isostatic (Heiskanen and Moritz, 1967; Sjoberg, 1998; Tsoulis, 2001), Helmert 

(Heiskanen and Moritz, 1967; Sideris, 1990; Martinec, 1998), and others like Rudzki and 

Poincare and Prey (Heiskanen and Moritz, 1967, Dragomir et al., 1982). As mentioned in 

the introduction, the 2 n d Helmert condensation method in the spherical approximation is 

used in this research due to the small indirect effect it creates and to its wide use for geoid 

determination. 

The potential of the topographical masses can be quantified by the Newtonian theory of 

attraction. In spherical approximation, the equation takes the form (Martinec, 1998) 

V(r,qU)= k \ \ f+HW'X')9^^^}r'2dr'co^'d^dX' (2.21) 

where 

£ = 6.672x10-" m3/kg/ sec2 is the gravitational constant, 

p (kg I 3) is the specific density of the topography, 

r, cp, X are the radial distance (R + HTOPO), latitude, and longitude of the computation point, 

r', cp', X' are the radial distance (R + H'), latitude, and longitude of the running point, 

L(r,\\j,r') = *Jr2 + r'2 - 2rr'cosv|/ is the distance between the computation and running 

points, 

cos\|/ = sincpsincp' + cosAxosVcos fV-X) is the angular distance between the 

computation and running points, and 

R = 6371 km is the mean radius of the Earth. 

The above equation (2.21) is handled by splitting the topography into a regular part, the 

Bouguer shell, and irregular part, the actual topography. For a thorough analysis of the 

above equation, the reader is referred to Martinec (1998). The final equation used for the 

terrain correction (TC) in Helmert's 2 n d condensation method, takes the form 
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TC(r,(p,k) = 

Gil dr 

r'=R+H((p'X) 

•p(<pA) 
dL-](r,y,r') 

r'=R 
dr 

r'=R+H(ip,X) 

r'=R 

cosq'dy'dX' 

(2.22) 

and the Condensed Terrain Corrections (CTC), on the other hand, is 

CTC(r,(p,\)=GR21J[a((p\A,')-a(q>,X)} 
5Z' 1(r,M / , i?) 

(7/-
coscp'dcpW (2.23) 

=R+H{y,\) 

where 

a(cp, X) is the condensation density and it takes two forms: 

<s = pH 
f H H2 ^ 
1+— + 

V R 3R 2 
J 

applied to the first methodology considering that the potential of the Bouguer shell is equal 

to the potential of the condensed Bouguer shell both evaluated at the measuring location 

(Martinec, 1998); 

or 
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applied to the second methodology considering that the potential of the Bouguer shell 

evaluated at the measuring location is equal to the potential of the condensed Bouguer 

shell evaluated at the geoid. 

This investigation showed that the difference between the two condensation-density 

equations listed above is negligible when evaluated on a 5'x 5' grid for it does not exceed 

20 uGal for the CTC and 5 mm for the GIE. 

The partial derivative 

fe^ = [ ( r ' 2

+ 3 r 2 ) c o s V + (l + 

is used for the TC and is the radial derivative of the kernel 

L 1 (r, V|/, R) = — (r' + 3r cos \\i)L(r, r) + + — (3 cos 2 y -1 llog r' - r cos \]) + L(r, \\),r'J + C 

where C is a constant, and 

dL-l(r,y,r') r - r'cosi|/ 
dr 

which is used for the CTC and is the radial derivative of the Newton kernel 1/ Z(r, r'). 

As it is well know, the Direct Topographic Effect (DTE) is the difference between the TC 

(Eq. 2.22) and CTC (Eq. 2.23). 
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Finally, the topographic indirect effect of both the actual and condensed topography is 

expressed as follows: 

G 

y(<pA)_ 
2np(<p,X)H2(<p,X)(l+*^^ 

3 R 

-p{(p,XpL [R,\\i,r 1 

q(<p',A/)-(r((pA) 
L{R,y,R) 

cos q>'dq>'dX' 

(2.24) 

with y(cp, A,) being the normal gravity computed from an approximation to Somigliana's 

formula: 

y(cp, X) = y0 (1 + aQ sin 2 cp + ax s in 4 cp) (2.25) 

where y0 is the normal gravity value at the equator of the best-fit ellipsoid of revolution, 

and a0 and ax are constants that depend on the reference ellipsoid. The WGS84 reference 

ellipsoid was used here. 

2.4 - Downward continuation 

The downward continuation (D.C.) can be evaluated in different ways: inverse Poisson 

integral (e.g., Heiskanen and Moritz, 1967; Sun and Vanicek, 1996, among others), 

analytical downward continuation, collocation (Moritz, 1980), actual gravity gradient 

approximated by the normal free-air gradient, etc. Each of these methods gives a different 
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procedure to compute the gravity anomalies or disturbances on the reference sphere. From 

these, the inverse Poisson integral and the free-air gradient are used here. 

2.4.1 - Inverse Poisson integral 

The Poisson integral is usually used to compute gravity field functionals at a height above 

the Earth when the same (or other) gravity field functionals exist at the reference sphere. 

For example, if the gravity anomalies need to be known at some altitude above the 

reference sphere, the Poisson integral can make use of gravity field functionals, such as 

gravity anomalies or deflections of the vertical, located at the reference sphere to predict 

the wanted values at the desired altitude. 

The problem of downward continuation is the opposite. Gravity anomalies or disturbances 

are located at some altitude and need to be known at the reference sphere. This is evaluated 

by the inverse of the Poisson integral. 

Since it is an inverse problem, its regularization is a must (Schwarz, 1979; Bouman, 1998; 

Novak et al., 2000; Kern and Schwarz, 2001). Some of the regularization methods that are 

used in Geodesy are (Bouman, 1998): 

• Tikhonov-Phillips regularization: this regularization removes the numerical 

instability by adding a stabilizer to the functional minimized (Tikhonov, 1963). This 

stabilizer is a parameter added to the normal matrix of the solution and it acts as a 

weighting factor between the relative importance of the prediction error and 

minimizing the solution norm (Rauhut, 1992). 

• Collocation (can be either in the space or frequency domain and can be a built-in 

filter in the convolution; see, e.g., Li (2000)): it is based on the minimization of the 

norm of the observation error; this restricts the errors from being magnified. The use 

of an error covariance matrix also strengthens the diagonal elements of the 

covariance matrix to make its inversion stable, 
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• Iteration: the idea here is to make as many iterations to the system to extract the low 

order components and to stop before the solution becomes oscillatory due to the 

magnification of data errors (Bouman, 1998). 

The Poisson equation, to upward continue the gravity disturbances (or anomalies), is 

written as: 

rhg(r, (p, X) = —- \\dg(R, q>, f)K(r, R)d<5 
4n 1 

(2.26) 

where 8g(r,cp,A.) is the upward continued gravity disturbance to the radial distance r, 

8g(R,(p,X) is the gravity disturbance at an equipotential sphere of radius R , and 

a function of Legendrepolynomials: 

oo (R\ 
K(r,W,R)=Y,(2n + U- ^(cosv)/) 

«=2 \r) 

a closed formula: 

K{r,y,R) = R R' 

(R2 +r2 -2rRcosyf2 

3R 
•—COSV)/ (2.27) 

with \\i being the spherical distance and Pn (cos \\t) the Legendre function of degree n . 

The gravity disturbance (or anomaly) itself is not a harmonic function, so its multiplication 

with its radial distance creates a harmonic function that can be used in the Poisson integral 

(Heiskanen and Moritz, 1967). 
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In an inverse problem, the possibility of the i l l posedness of the solution is present. Sun and 

Vanicek (1996) showed that the D.C. of gravity disturbances (or anomalies) is a well-posed 

problem when gridded to a 5'x 5' grid using the iterative scheme. The procedure of the 

iterative scheme will be used in this study, which is well documented in the geodetic 

literature, e.g. Sun and Vanicek, (1998); Martinec, (1998). 

2.4.2 - Normal free-air gradient 

Gravity changes with altitude. This change is called the vertical gravity gradient and it is 

computed from (Heiskanen and Moritz, 1969): 

^ = -2gJ + 4nkp-2ay2 (2.28) 
3H 

dg 
where —2- is the gravity gradient sought, 

dH 

g is the gravity value, 

J is the mean curvature of a surface and is equal to: 

Wxx+W 
j x± yJL 5 with Wu is the second partial derivative of the gravity potential along the 

i — axis, 

p is the density of the topography and the crust, and 

co is the rotation rate of the earth. 

This equation (2.28) cannot be evaluated directly because it is difficult to compute the 

mean curvature and because of lack of density information. Instead of using the gradient of 

the real gravity field, the normal gravity gradient is used as an approximation. 

The normal gravity y at altitude h can be expanded into a series in terms of h : 
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(2.29) 

From this series, only the first two terms are worth using due to the small effects of the 

other terms. The first term is approximately equal to 0.3086 mGal I m and the second can 

reach approximately the value of 1 mGal for heights of 3500 meters and is approximated 

as: 

where a is the semi-major axis of the ellipsoid, and y is the normal gravity. 

The normal free-air gradient series up to 2 n d order term is used in this thesis as 

approximation of the real gravity gradient to move the measured gravity value at certain 

height to the reference sphere at height zero. 

2.4.3 - Collocation 

Collocation is used to stochastically link the observed gravity signal at a certain altitude 

above the geoid to values on the geoid by their auto- and cross-covairiance functions. The 

principal equation of collocation is based on the minimization of the norm of the 

observation error; thus, collocation is by itself a regularization procedure. The collocation 

equation is 

(2.30) 
dh2 a2 

(2.31) 
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where C„„ is the error covariance matrix of the data, Cx „s * is the cross-covariance 
nn ' bg Hg 

matrix of the data, and C, *. » is the auto-covariance function at flight level. 

Collocation also provides errors estimates for the results expressed by the prediction error 

covariance matrix (Moritz, 1980). 

2.4.4 - Analytical downward continuation 

In the analytical downward continuation, the gravity disturbances (or anomalies) at the 

reference sphere are linked to the gravity disturbances (or anomalies) at some height by 

Taylor power series, as: 

Zg(r) = bg(R)+±±^^h" (2.32) 
„=i n\ dr" 

The solution in Equation (2.32) can be simplified by using the first term of the series only 

(Moritz, 1980) and it can be written as: 

h(R) = ?>g(r)-^h (2.33) 
or 

with the vertical gradient equal to: 

dbg= 8 g ( q a ) | R 2

 f f 5 g ( (p 'A0-8 g (q ) ,X . ) J c ( 2 3 4 ) 

dr R 2tz ]J L3(r,y,r') 
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A l l terms have been defined previously. This equation allows for the evaluation of the 

vertical gradient by the use of data on the reference sphere. 

2.5 - Geopotential Model contribution 

The contribution of the geopotential model (GM) is evaluated by a spherical harmonic 

expansion series. In the spherical approximation, the gravity anomaly is: 

AgGM =^£(-T+
 cosmX + Snm Smm%)pnm(cosQ) (2.35) 

r „ = 2 V r > m = 0 

whereas the gravity disturbance is: 

5g CM kM r \n+\ ' a 
Z - ( « + 0 Z ( C « ™ c o s w ^ + 5 « m s i n ^ ^ K m ( c o s 9 ) 

(2.36) 
« = 2 V 

where M is the mass of the Earth, 

n, m and n m a x are the degree, order, and the maximum degree of the GM used, 

respectively, 

Cnm and Snm are the normalized spherical harmonic coefficients of the disturbing 

potential, 

r is the radial distance to the computation point, 

Pnm (cos 9) is the normalized associated Legendre function evaluated at the co-latitude 0, 

and X is the longitude. 

The super-script " G M " refers to the values evaluated using the G M . 
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The GM contribution is not studied explicitly in this thesis. Previous studies have shown 

that, for the region under study, the optimal contribution of the EGM96 geopotential model 

is obtained by using a maximum degree and order 200 with an integration cap size of not 

less than ten degrees (Esan, 2000). 

2.6 - Noise propagation and filtering 

Noise exists in every type of measurement. When these measurements are used in 

mathematical models to determine certain functionals, the noise is propagated through the 

model parameters into the estimated functionals. Noise propagation is used to determine the 

noise in the final results, provided that statistical information - variances and covariances -

on the initial measurement noise is known. In airborne gravimetry, this is done through 

equations 2.17 and 2.18. Noise propagation can be applied to all physical geodesy 

mathematical equations: terrain effects, downward continuation (when inverse Poisson 

integral, collocation, and analytical downward continuation are used), Stokes/Hotine 

formulations, GM contributions, etc. 

Noise propagation requires the existence or knowledge of the noise variance and covariance 

of the initial data. D T M variances and covariance have to be known to estimate the noise in 

the terrain effects. As for the downward continuation, the noise in the data, plus the noise 

propagated after the terrain reduction, can be used to estimate the noise of the downward 

continued gravity values at the reference sphere. In addition to this, noise information can 

also be used for regularizing the ill-posed problem when the inverse Poisson integral is 

used, e.g. using Tikhonov-Phillips regularization or collocation. Stokes'/Hotine's integrals 

can also be used to propagate the gravity noise into noise in the determined geoid. The 

variances and covariances in the GM coefficients are used to estimate the error introduced 

into the final geoid from the uncertainty of the GM coefficients. 

Error propagation is a very good tool when the errors of the initial data are known, but 

unfortunately this is not the case here. For example, error propagation in geoid 

determination from airborne gravimetry (Eq. 2.17) has not been implemented explicitly; 

however, a spectral study of the errors of the subsystems revealed that the airborne gravity 
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data have a white noise of approximately 2 mGal; for more details see, Bruton (2000) and 

Schwarz et al. (1994). Moreover, the differences between the airborne and the ground 

gravity data do not yield the right error knowledge to use in the propagation, due to the fact 

that the ground gravity data are also polluted with errors whose neither the real value nor 

the distribution is known. 

Noise filtering, on the other hand, can be applied to measurements when predicting 

functionals obtained from the measurements. The requirement for filtering is the knowledge 

of the behaviour and the type of the noise, i.e., stationarity, non-stationarity, white, 

coloured, etc. Also, filtering can be built into the mathematical model; for example, Wiener 

filtering (Sideris, 1996) can be built into the convolution integrals used in physical geodesy, 

i.e., Stokes'/Hotine's, Poisson's integral, inverse Poisson's integral (Li, 2000), etc. 

Theoretically speaking, filtering is possible but, unfortunately, the errors in the data do not 

match our desire of being randomly distributed and with known variances. In the real 

geodetic world, errors are non-stationary and are not normally distributed. Errors that 

accompanied the data - in databases - can be used, but we have to realize that if they do not 

represent the real situation, no improvements should be expected in the solution (Bayoud 

and Sideris, 2001). 

For the reasons mentioned above, error propagation and stochastic noise filtering have not 

been applied here. An independent study has to take place on this topic. 

2.7 - Combination of airborne with ground gravity data 

Airborne gravity data suffer from high and low frequency errors. Combination of different 

ground gravity data with the airborne data is a good tool to minimize these errors. 

It is the author's opinion that the combination between airborne and ground gravity data is 

useful only for the long wavelength errors. This is because the high frequency errors, of 

both data types, are filtered out when they are input into Stokes'/Hotine's integral. 

Stochastic combination (Bendat and Piersol, 1996; Sideris, 1996)) of data sets can improve 
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the solution immensely as long as the right error model is chosen; otherwise, the solution is 

not improved (Bayoud and Sideris, 2001). 

As mentioned before, the imperfections in the accelerometers cause long wavelength errors 

in the airborne gravity data. The crossover adjustment has proven to be the best way to 

minimize these errors (Glennie, 1999), but the outcome is a dataset that does not fit the long 

wavelengths of the gravity field on the region. This means that the crossover adjusted 

airborne gravity data refer to an arbitrary plane in space. A way to correct this is to link the 

airborne data to ground data by removing the systematic differences between them. 

In theory, only three points are sufficient to define a plane, so three ground gravity 

measurements are sufficient to orient the airborne gravity data. Due to the possibility of 

outliers in the ground gravity data, several ground gravity points are recommended, the 

number of which depends on their accuracy and coverage, and on the extent of the area of 

airborne gravity data. One has to recognize that ground measurements in old databases are 

mostly gravity anomalies, while the airborne system outputs gravity disturbances; a 

systematic transformation between the two quantities (described in Sec. 2.1) has to take 

place before the combination. 

When a stochastic combination is required - and it is only recommended when we have a 

sound knowledge of the data errors - different methods can be employed: Input-Output 

System Theory (IOST) (Andritsanos, 2000; Andritsanos et. al, 2000; Sideris, 1996; Bendat 

and Piersol, 1986), Least-Squares Collocation (LSC) (Moritz, 1980; Tscherning, 1974), 

Fast Collocation (FC) (Bottoni and Barzaghi, 1993; and Eren, 1980), and Least Squares 

Adjustment in the Frequency Domain (LSAFD) (Li and Sideris, 1997; Bouman and Koop, 

1998). A very brief comment on each method is given below. 

• IOST: Among these methods, the IOST proved to be slightly superior (Li and 

Sideris, 1997; Tziavos et al., 1996, Tziavos et al., 1998, among others) for the 

reason that it uses a detailed (anisotropic) signal Power Spectral Density (PSD), and 

is computationally efficient. But gridded data and coverage of all datasets on the 

same grid are required. 



34 

• LSC: Collocation overcomes the disadvantage of the previous method, but its 

inefficiency is well known. The use of an isotropic covariance function introduces 

an approximation, yet this is not a problem for local geoid modelling. 

• FC: The FC, on the other hand, proved to be efficient in computational speed 

compared to the LSC but has the same requirements as the IOST. 

• LSAFD: The LSAFD uses the least-squares technique in the frequency domain. 

This method assumes that the observations and their noise PSD's are known. 

Studies in (Barzaghi et a l , 1993; and Li and Sideris, 1997) showed that this method 

gives worse results than the other methods listed above, because it is more sensitive 

to the input noise. 

As for the systematic errors, a surface between the datasets is removed after modelling it. 

This model has to be of low order and describes also the differences in datum between the 

two datasets. The model often used in geodetic literature is the four-parameter model 

(Heiskanen and Moritz, 1967): 

D = dx cosq>cosA. + <i2 cos(psinX + d3 sincp + d4 , (2.37) 

where D is the difference between the two datasets, cp and X are the spherical coordinates, 

and the d( 's are the parameters of the surface computed by the least-squares adjustment. 

This model was used to make the airborne and ground datasets consistent in Chapter 3 and 

also to combine the gravimetric and geometric geoids in Chapter 4. 

2.8 - Methodologies used for geoid determination from 
gravity data 

The two methodologies that are used in this research are generated from the procedure for 

computing the gravity disturbances (or anomalies) at the reference sphere; this depends on 
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the downward continuation method. They apply to the use of either ground or airborne 

gravity data for geoid determination. 

1st methodology: (Fig. 2.5 and 2.7) 

When the inverse Poisson integral is used, the procedure for computing gravity 

disturbances (or anomalies) on the reference sphere is described in the following scheme: 

1. Compute the normal gravity at the same location as the measured gravity values 

when 8g is sought (or at the telluroid when Ag is sought) and subtract them, 

The '6' coefficients depend on the reference ellipsoid; see Fleiskanen and Moritz 

(1967) for more details. The WGS84 reference ellipsoid was used here. 

2. Compute the direct topographic effects (DTE) at the computation point (filter them 

in case of airborne data), and add them to the values of step 1 

3. Subtract the Geopotential Model contribution from the values of step 2 

4. Downward continue the values of step 3 to the reference sphere using the inverse 

Poisson integral 

5. Determine the co-geoid by Stokes/Hotine formulation 

6. Compute the geoid by adding the Geoid Indirect Effect (GIE) and the GM 

contribution. 

The interested reader can refer to Vanicek and Martinec, (1994), Martinec and Vanicek 

(1994a), and Martinec and Vanicek (1994b) for a thorough analysis of this methodology. 

2nd methodology: (Fig. 2.6 and 2.8) 

On the other hand, when the normal free-air gradient is used, the computation of gravity 

anomalies or disturbances on the reference sphere is described in the following scheme: 

(2.38) 
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1. Compute the normal gravity at the geoid when 5g is sought (or at the reference 

sphere when Ag is sought) and subtract it from the measured gravity values, 

2. Compute the Terrain Corrections (roughness of the topography, TC) at the 

computation point (filter them in case of airborne data), and add them to the values 

from step 1 

3. Compute the Condensed Terrain Corrections (CTC) at the reference sphere (filter 

them in case of airborne data), and subtract them from the values from step 2 

4. Subtract the Geopotential Model contribution from the values of step 3 

5. Use the normal free-air gradient up to the second order (the 2 n d order term can reach 

a value of approximately 1 mGal for heights of 3500 metres) to downward continue 

the measured gravity values to the reference sphere 

6. Determine the co-geoid by Stokes/Hotine formulation 

7. Compute the geoid by adding the Geoid Indirect Effect (GIE) and the GM 

contribution. 

The interested reader can refer to Sideris (1990) for thorough analysis of this methodology. 

Although the planar approximation was used in (ibid), the main methodology is the same. 

These two methodologies are applied when either ground or airborne gravity data is used. 

The only difference is with the computation of the topographic effects, where the 

computation point in the case of the airborne data is not at the topography but at the flight 

height. Also, when the airborne gravity data is used, the topographic effects - whether they 

are the DTE, TC, or CTC - have to be filtered first before used in the gravity disturbances 

(or anomalies) computations. The effect of filtering will be discussed in the next chapters. 

Based on these methodologies, the main objective of this thesis is studied, along with the 

tasks that are stated in the first chapter. 
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N = S(bgPo) + NGM + NGIE 
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Figure 2-5: Methodology # 1 when computing gravity disturbances 

H P o = g p - ^ H - ^ H ^ - l p o + TCp-CTCDO-GM 
dH 2 dH2 po 

dH ~ dh 

N = S(5gPo)+NGM+NGIE 

d2g x d2y 

dH2 ~ dh2 

Free-air 
gradient 

Flight line 

Geoid 

Reference sphere 

Figure 2-6: Methodology # 2 when computing gravity disturbances 
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Figure 2-7: Methodology # 
! when computing gravity anomalies 
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omputing gravity anomalies 
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Chapter 3 

Gravity Data Processing and Numerical 
Tests 

In this chapter, the pre-processing of gravity data will be analysed. Two data types will be 

used: ground and airborne gravity data. These analyses start after the initial processing 

(Kalman and low-pass filtering in case of airborne data) of the gravity data, and they 

include: terrain effects, gridding, and downward continuation. After the introduction, the 

reduction of the topographic masses follows, for both the ground and airborne gravity data. 

Then the gridding follows for the airborne data, where different datasets will be examined. 

Downward continuation is the last item studied in this chapter, when the inverse Poisson 

integral is used. The use of the ground gravity data illustrates the differences in processing 

methodologies, and is used to investigate the two objectives listed in the introduction. Also, 

as mentioned before, the ground data is used as a reference for the airborne gravity data. 

3.1 - Introduction 

Due to the lowpass filtering of the airborne data in the frequency domain (Ch. 2), the part 

of the topographic gravity signal that exists beyond the filtering frequency is also filtered 

out. This leads to the idea that to have consistent datasets when reducing the filtered gravity 

signal, the contribution of the topography has to be filtered first and then be used for 

reduction purposes. It is the author's opinion that although this is theoretically correct, 

investigation should be done to study the effect of not filtering the terrain effects on the 

geoid. In this chapter, analysis of the contributions of the terrain effects on ground and 

airborne gravity data computed from different D T M resolutions will be made by evaluating 

these effects D T M resolutions of 15, 30, and 60 arc seconds (averaged from a 3 arcsec 
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DTM). The second task will be to investigate if the filtering of the topographic effects is 

essential from a practical point of view. 

After the topographic reductions, using the 2 n d Helmert condensation, the data have to be 

brought to the reference sphere for the geoid determination. This downward continuation is 

done either rigorously by applying the inverse Poisson integral or by simply applying the 

gravity gradient. Since the true vertical gradient is not known, the normal free-air gradient 

is used as an approximation. 

The downward continuation will be the second step of the processing. First, the inverse 

Poisson integral will be applied on the ground and then on the airborne gravity data. The 

normal free-air gradient solution is applied to the data in the process of computing the 

gravity anomalies or disturbances (as shown in the equations in Fig. 2-6 and 2-8). This 

leads to the two methodologies discussed in the previous chapter. 

Due to the imperfections of the accelerometers (Allied Signal Q-Flex model QA 2000-010) 

in the INS system used (Honeywell system), it is highly recommended that ground data be 

used for linking the crossover adjusted airborne data to the gravity space by removing 

systematic differences between the ground and airborne data (as discussed in Ch. 2). Note 

that other systems might not have the same problem in the accelerometers and a link to the 

gravity space using ground data might not be needed. 

In the above procedure, the geopotential model contribution - i.e., the EGM96 (Lemoine et 

al., 1996) to degree and order 360, and the GPMar, br, or cr (Wenzel, 1998) to degree and 

order of 720 - is removed from the data before the downward continuation. This 

contribution is added back either after downward continuation as gravity information when 

gravity is the final product, or as geoid information after Stokes/Hotine formulation is 

applied when the geoid is the final product. 

In the following, we will implement the previously discussed methodologies on the 

airborne as well as on the ground gravity data, using the latter as the reference. The ground 

data will also be upward continued to the flight level to be used for the consistency check 

of the two data sets, as well as for padding the edges of the airborne data before downward 

continuing them when the first methodology is employed. 
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3.2 - Topographic effects - 2 Helmert condensation 

In this section, the evaluation of the terrain effects is studied for the ground and airborne 

gravity data. First, the terrain effect on ground data using different D T M resolutions is 

studied; then, the terrain effects evaluated at the flight level are examined using different 

D T M resolutions along with the study of the filtering effects. A code in C++ was written by 

the author to carry out the computation of the terrain effects in this thesis. 

3.2.1 - Topographic effects on ground gravimetry 

For the practical implementation of the equations discussed in Section 2.3 and assuming 

constant topographic density, they can be written as follows, 

Terrain Correction (TC) 

dL-l(R + H'opo,\y,r') 
r'=R+H(ip'X) 

7 r ( r , q a ) = G p X I 
dr 

coscp'AcpAA. (3.1) 
r'=R+H((p,\) 

Condensed Terrain Correction (CTC) 

CTC{r, q>,A.) = GR2 XI H<p\ A.')-o(q>, *)] 
dL-x(R + Hlopo,\y,R) 

cos cp'AcpAA. 
dr 

r=R+H(<p,X) 

(3.2) 

Geoid Indirect Topographic Effect (GIE) 
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i V G / £ ( 9 A ) = 
Gp 

y(<p,X) 

7? 
(j(<p',X')-cj(q>,X) 

L(R,y,R) 

3 7? 

cos(p'A9AX 

(3.3) 

3.2.1.1 - Numerical Test 

In the numerical test with ground data, the same region where we have airborne data was 

chosen. There are 2110 gravity values, 176 out of which were measured in the summer 

1999 and 2000, located between 49.3° < cp < 52.4° and 241.5° < X < 246.5°. The 

geographical coverage and the topography in that region are shown in Fig. 3-1. 

For the quantification of the topographic gravity signal, three Digital Elevation Model 

(DTM) resolutions were used: 15, 30, and 60 arcsec, averaged from a 3 arcsec D T M (Table 

3-1). The integration radius was chosen to be 1 degree. Table 3-2 shows the statistics of the 

free-air gravity anomalies (the first and second terms of the Taylor series were used), 

complete Bouguer anomalies, and refined Bouguer anomalies. 

Table 3-1: Statistics of the DTM's used, in meters 

Max Min Mean ~5td ~ RMS 

15 arcsec 3851 186 1306 521 1406 

30 arcsec 3670 216 1306 519 1405 

60 arcsec 3405 233 1306 513 1403 

The refined Bouguer anomalies, computed from the 15 arcsec D T M , were used to form a 

5 'x5 ' grid between the boundaries: 49.4333° < (p < 52.35° and 

241.875° < X < 246.45833° generating 2016 values. This grid was chosen because of the 
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availability of airborne data at its nodes between the boundaries: 50.4333° < cp < 51.35° 

and 243.5167° <X< 245.0417°. 

A larger region was chosen to perform the integration in geoid determination. The gridded 

gravity anomalies reduced to the topography and to EGM96 to degree and order 360 are 

also listed in Table 3-2. These are the (free-air + DTE - Ag G M ) values and (free-air + TC h -

CTC 0 - Ag G M ) values; the first will be used in the inverse Poisson integral for downward 

continuation and the second will be used in the 2 n d methodology for the geoid 

determination as described in (Sideris, 1990). Figures 3-2 and 3-3 show these datasets 

computed using the 15 arcsec D T M . In the 2 n d methodology, TC h is computed at the 

topography and CTC 0 is computed at the reference sphere. C T C 0 has small values whose 
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effect on the geoid does not exceed 2 cm in the region under study with a grid spacing of 

5 'x5 ' . 

Table 3-2: Statistics of ground gravity anomalies on 5'x 5' grid (mGal) 

Reduced D T M Max Min Mean Std RMS 
anomalies resolution 

Free-air 484.1 -497.4 -14.4 62.7 64.3 

Complete Bouguer 189.3 -596.5 -167.2 40.1 172.0 

15 102.0 -347.6 -162.5 31.2 165.5 

Refined Bouguer 30 101.8 -352.7 -162.5 31.2 165.5 

60 102.3 -348.2 -161.6 31.6 164.7 

15 123.4 -144.6 -7.1 29.4 30.3 

Free-air + DTE - 30 121.6 -144.5 -8.0 29.2 30.3 
A g G M 

60 119.7 -144.4 -9.3 28.9 30.4 

15 158.6 -161.0 -4.9 44.1 44.3 

Free-air + TC h - 30 156.8 -161.1 -5.8 43.8 44.2 
CTC 0 - A g G M 

60 155.0 -161.3 -7.2 43.5 44.1 

Table 3-3 shows the statistics of TC, CTC, and DTE computed at the nodes of the grid. 

Table 3-4 shows the statistics of the differences in TC, CTC, and DTE computed from 15, 

30, and 60 arcsec D T M . The differences in TC (15 minus 30, and 15 minus 60 arcsec) 

computed from the different D T M resolutions are shown in Fig. 3-4 and 3-5. Their 

correlation with the topography is well displayed. Studying Fig. 3-4 and the first row of 

Table 3-4, it is observed that the effect of D T M resolution on the TC is immense. Although 

in rough topography the differences are much larger than those in smooth topography, as is 

expected, a shift of around 1 mGal is distributed all over the region, indicating that the 15 

arcsec data set contains more information and a larger signal is detected. A regional bias of 

around 1 mGal causes major problems in the geoid computation; the denser the D T M is, the 

better the geoid is modelled. As for the 60 arcsec data set, the shift of around 2.3 mGal 

clearly indicates a problem if used in the geoid modelling. In the next chapter, the geoid 

differences are shown when these D T M resolutions are used. The D T M resolution has no 
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significance on the computation of C T C 0 due to its small values and thus they are not 

shown here. The difference in DTE, on the other hand, has a similar behaviour as that of the 

TC, from which similar conclusions can be drawn. Here these differences in terms of 

gravity signal are not shown, but they will be re-visited in terms of their effect on geoid 

modelling in the next chapter (4). 

Table 3-3: Statistics of TC, CTC and DTE computed from 15, 30, and 60 arcsec DTM at the 
topography on 5'x 5' grid (mGal) 

Terrain 
reduction 

D T M Max 
resolution 

Min Mean Std RMS 

15 78.8 0.0 9.3 8.3 12.4 

TC 30 78.6 0.0 8.4 7.6 11.3 

60 74.0 0.0 7.0 6.7 9.7 

15 132.0 -69.7 2.2 23.7 23.8 

CTC 30 132.1 -71.1 2.2 23.8 23.9 

60 132.3 -75.7 2.1 24.1 24.1 

15 112.8 -59.1 7.0 23.3 24.4 

DTE 30 115.7 -59.4 6.1 23.4 24.2 

60 121.1 -63.2 4.8 23.8 24.2 

Table 3-4: Statistics of the differences in TC, CTC and DTE computed from 15, 30, and 60 
at the topography on 5'x 5' grid (mGal) 

arcsec DTM 

Terrain 
reduction 

D T M 
resolution 

Max Min Mean Std RMS 

15-30 6.3 -1.4 0.9 1.1 1.4 

TC 15-60 14.7 -2.3 2.2 2.4 3.3 

15-30 1.5 -2.8 0.0 0.1 0.1 

CTC 15-60 5.9 -7.7 0.0 0.7 0.7 

15-30 6.4 -2.9 0.9 1.1 1.4 

DTE 15-60 16.3 -8.3 2.1 2.6 3.4 
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Figure 3-2: Gravity values reduced by the DTE using 15 arcsec D T M and EGM96 (mGal) 
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Figure 3-3: Gravity values reduced to the TC using 15 arcsec D T M and EGM96 (mGal) 
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Figure 3-4: Difference between the TC computed from a 15 and 30 arcsec D T M (mGal) 
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Figure 3-5: Difference between the TC computed from a 15 and 60 arcsec D T M (mGal) 
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The GIE is computed using Eq. (3.3). This quantity is in meters and is added to the co-

geoid computed by Stokes'/Hotine's integral to obtain the geoid. Its values can range from 

zero to a couple of meters in very rough topography and are always negative. In Table 3-5, 

the GIE computed from the different D T M resolutions are listed, and Table 3-6 shows the 

statistics of these differences. 

Table 3-5: Statistics of GIE computed from 15, 30, and 60 arcsec DTM on 5'x 5' grid (m) 

Indirect effect D T M 
resolution 

Max Min Mean Std RMS 

15 -0.023 -1.067 -0.325 0.191 0.377 

GIE 30 -0.023 -1.067 -0.325 0.191 0.377 

60 -0.023 -1.066 -0.324 0.191 0.376 

Table 3-6: Statistics of the differences of GIE compute from the different D T M resolution on 5'x 5' grid 
(m) 

Indirect effect D T M 
resolution 

Max Min Mean Std RMS 

GIE 
15-30 0.004 -0.004 -0.000 0.001 0.001 

GIE 
15-60 0.009 -0.013 -0.001 0.003 0.003 

As it is clearly seen, the GIE is less affected by the D T M resolution due to the fact that it is 

of low frequency nature and thus is hardly influenced by the high frequencies coming from 

the topographic masses. For completeness, Fig 3-6 shows the GIE computed from the 15 

arcsec D T M . 

In this section, the terrain reductions were processed for ground data using two different 

reduction methods and three D T M resolutions: 15, 30, and 60 arcsec all, averaged from a 3 

arcsec D T M . The integration cap chosen was one degree. An integration cap of half a 

degree would result in an omission signal of up to a few centimetres in terms of the geoid 

(RMS = 5 cm). 
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Figure 3-6: GIE computed using the 15 arcsec DTM on 5'x 5' grid (m) 
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3.2.2 - Topographic effects on airborne gravimetry 

For the estimation of the terrain effects at flight level, the same equations as in the previous 

section are used with a slight change in the radial distance of the computation point. 

Equations (3.1), (3.2), and (3.3) are written as follows: 

Terrain Correction (TC) 

r'=R+H(<$',\') 

cos(p'A9AA, (3.4) 
r'=R+H(<p,X) 

7 1 C ( r , 9 A ) = C ? p I £ 
cp A. 

dL-'[R + Hflisht,\y,r') 
or 

Condensed Terrain Correction (CTC) 

CTC(r,<$>,X) = 

GR'ZZHV'^)-^)} 
<p x 

dL-x(R + Hflish>,\y,R) 
or 

cos y'AyA'k 
(3.5) 

=R+H((p,X) 

Geoid Indirect Topographic Effect (GIE) 

Gp 

y(<pA) 

R 
a((p',X')-a((p,X) 

L(R,y,R) 
c o s 9 ' A 9 A ? l 

J (p x 

=/?+//(<p',V) 

=«+//(<p,X) 
(3.6) 

Note that the only change in the above equations is the radial distance of the computation 

points, where now we have it at the flight level: R + H^ighl. The computation of the GIE is 

the same for it is evaluated at the reference sphere since we are after the geoid and not the 
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quasi-geoid. The height of the flight is nearly constant throughout the survey, and thus all 

the points have the same height. 

As mentioned before, the terrain effects - TC, CTC, and DTE - have to be fdtered first and 

then used in the processing. To do so, the terrain effects were computed at the locations of 

the airborne measurements. Figure 3-7 shows the flight lines and the topography in the 

region, which is the same as the region in Figure 3-1. 

242 2*3 244 ?4S 2*6 

242 243 ?44 245 246 

Longitude 

Figure 3-7: Coverage of the airborne data and the topography of the region, in meters 

The data that is used in the following were collected two days, and merged into one dataset. 

The terrain effect computations took place at an approximate altitude of 4325 meters above 

the reference sphere and with an integration cap of one degree. Three D T M resolutions (as 



54 

in the ground case) were used: 15, 30, and 60 arcsec. The effect of the D T M resolution on 

the terrain effect computed at the flight level is studied first. These values will be shown in 

a profile along the flight lines due to the way the airborne gravity data is measured. Then, 

the impact of terrain effect filtering will be studied by computing the differences between 

the computed and filtered terrain effects to see if their values are significant. Figure 3-8 

shows the TC and DTE computed using the 15 arcsec D T M . 

0 0.5 1 1.5 2 2.5 3 3.5 

x10" 

Figure 3-8: TC and DTE computed at the flight level using 15 arcsec DTM (mGal) 

Comparing the values in Fig. 3-8 with those computed at the topography (although they are 

different datasets, some general conclusions can be drawn) it can be seen that the values of 

TC at the flight level become larger, whereas the DTE happens to be smaller. Concerning 

the TC, the large values are because the topography is right below the computation point 

and the radial attraction due to the radial derivative of the potential becomes larger. Also, 
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the TC can have large negative values, which can be expected because the topography is 

below the computation point and the Bouguer plate/shell passes through the corresponding 

location of the computation point at the topography. The larger negative values are not 

surprising and also occur in terrain correction for bathymetry used in the reduction of 

gravity data for applied geophysics. Concerning the DTE, it becomes smaller and it can be 

assumed that at larger altitudes the DTE becomes. 

3.2.2.1 - DTM Resolution 

The TC and DTE were computed for the airborne dataset (34,560 values) using the same 

15, 30, and 60 arcsec D T M used on the ground case; see the statistics in Table 3-7. The 15 

arcsec D T M was used as reference in the comparisons. Figure 3-9 shows the difference in 

TC and Fig. 3-10 shows the difference in DTE. The statistics of these differences are listed 

in Table 3-8. 

Table 3-7: Statistics of TC, CTC and DTE computed from 15, 30, and 60 arcsec DTM at the flight level 
(mGal) 

Terrain 
reduction 

D T M 
resolution 

Max Min Mean Std RMS 

15 131.2 -73.1 1.0 30.0 30.0 

TC 30 132.8 -73.2 1.0 30.1 30.1 

60 133.1 -73.3 1.0 30.3 30.3 

15 143.5 -77.8 1.5 34.9 34.9 

CTC 30 143.5 -77.8 1.5 34.9 34.9 

60 143.6 -78.0 1.5 34.9 35.0 

15 13.2 -25.4 -0.4 6.5 6.5 

DTE 30 13.1 -25.2 -0.4 6.4 6.5 

60 12.9 -24.5 -0.4 6.3 6.3 
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Contrary to the ground data, the airborne data are less sensitive to the D T M resolution. As 

we see from Fig. 3-9 and 3-10 and Table 3-8, a 30 arcsec D T M can be used safely without 

losing much information (a =0.1 mGal and max = 2 mGal). In some cases, even the 60 

arcsec can be used, since a a of 0.4 mGal and a maximum of 6.9 mGal does not cause 

major problems in the geoid modelling. From here further on, only data reduced using the 

15 arcsec D T M will be used. 
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Figure 3-9: Differences in TC computed at the flight level (mGal) 
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Table 3-8: Statistics of the differences in TC, CTC and DTE computed from 15,30 and 60 arcsec DTM 
at the flight level (mGal) 

Terrain D T M Max Min Mean Std RMS 
reduction resolution 

15- 30 1.3 -2.1 -0.0 0.0 0.0 
TC 15- 60 6.9 -3.7 -0.0 0.4 0.4 

15- 30 0.1 -0.1 -0.0 0.0 0.0 
CTC 15- 60 0.8 -0.7 -0.0 0.0 0.0 

15- 30 1.2 -1.9 -0.0 0.0 0.0 
DTE 15- 60 6.1 -3.6 -0.0 0.3 0.3 
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Figure 3-10:Differences in DTE computed at the flight level (mGal) 
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3.2.2.2 - Terrain Effect Filtering 

The TC and DTE computed from the 15 arcsec D T M (Fig. 3-8) were filtered to 1/30, 1/60, 

and 1/90 Hz cut-off frequency. These filtered values were compared with the corresponding 

values before filtering and were plotted in profiles. Figures 3-11 and 3-12 show the 

differences between the computed and filtered TC and DTE, respectively. Tables 3-9 and 3-

12 list the statistics of these differences. 

3.2.2.2.1 - Effect on TC 

The effect of TC filtering is very well illustrated in the plots of Fig. 3-11, where a large part 

of the signal is removed. A thorough investigation of the effect of filtering on the geoid is 

not possible at this point and is left to the next chapter. Yet, it is interesting to study the 

effect of filtered TCs after adding them to the data and using them for gridding when 

forming the refined Bouguer gravity disturbances. 

Table 3-9: Statistics of the differences between the computed and filtered TC (mGal) 

Filtering frequencies Max Min Mean Std RMS 

1/30 Hz 44.4 -37.2 -0.0 7.2 7.2 

1/60 Hz 59.2 -50.0 -0.0 12.7 12.7 

1/90 Hz 92.5 -66.5 -0.0 17.2 17.2 

Three terrain-reduced disturbances data sets are formed, each with TCs filtered to one of 

the three frequencies, and are labelled data_30, data_60, and data_90. Note again that all 

three datasets are based on a 15 arcsec D T M . Tables 3-10 and 3-11 have the statistics of 

these datasets before gridding, using filtered and unfiltered TCs, respectively. Although the 

differences between filtered and un-filtered TCs are well pronounced in Fig 3-11 and Table 

3-9, they are less distinct when added to the gravity data. These values reflect a very 

interesting fact about the smoothing the TC does when added to the Bouguer disturbances. 

In Table 3-10, the c's are smaller that the a's in Table 3-11 because, for the latter, filtered, 

smoother TC was used. Data 90 is the smoothest dataset before reduction because it is 
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more filtered, but when reduced by the terrain effects, depending on whether the terrain 

effects are filtered or not, it changes its behaviour. For example, when un-fdtered TC 

(rough) was added, Data_90 becomes smoother (RMS = 12.8 mGal) than the other two 

datasets (data_30 RMS = 19.6 and data_60 RMS = 76.9); when fdtered TC (smooth) was 

added, Data_90 becomes rougher (RMS = 22.2 mGal) than the other two datasets (data_30 

RMS = 20.9 and data_60 RMS = 21.3) 
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Figure 3-11: Differences between computed and fdtered TC (mGal) 
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Table 3-10: Statistics of the three datasets (refined Bouguer anomalies), reduced using un-filtered TC 
(mGal) 

Data set Max Min Mean Std RMS 

data_30 -123.3 -291.3 -207.8 19.6 208.7 

data_60 -142.5 -257.2 -210.6 16.9 211.3 

data_90 -159.6 -253.9 -210.8 12.8 211.2 

Table 3-11: Statistics of the three datasets (refined Bouguer anomalies) reduced using filtered TC 
(mGal) 

Data set Max Min Mean Std RMS 

data_30 -118.1 -297.7 -207.7 20.9 208.8 

data_60 -123.6 -290.0 -210.6 21.3 211.7 

data_90 -120.3 -313.1 -210.8 22.2 211.9 

After gridding (Sec. 3.3), the Bouguer plate is added back leaving the gravity anomalies 

reduced only to the TC. Note that these datasets will be used in the second methodology. 

3.2.2.2.2 - Effect on DTE 

The effect of filtering on DTE is certainly small as seen in Fig 3-12 and Table 3-12. The 

statistics and the plots show the high frequency nature of these differences. These are 

filtered out when Stokes'/Hotine's integral are used due to the low-pass nature of the 

integrals. If the second methodology is to be used, it might be recommended that the DTE 

be added to the data; then, form the grid without filtering the DTE. This argument is also 

strongly supported by the statistics of the three datasets reduced by the DTE without and 

with filtering listed in Table 3-13 and Table 3-14, respectively. 
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Table 3-12: Statistics of the differences between the computed and filtered DTE (mGal) 

Filtering frequencies Max Min Mean Std RMS 

1/30 Hz 1.0 -0.6 0.0 0.1 0.1 

1/60 Hz 1.6 -1.5 0.0 0.2 0.2 

1/90 Hz 4.4 -4.3 0.0 0.8 0.8 

DTE: computed minus filtered to 1/30 Hz 
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Figure 3-12: Difference between computed and filtered DTEs (mGal) 

Table 3-13: Statistics of the three datasets reduced by the un-filtered DTE (mGal) 

Data set Max Min Mean Std RMS 

Data_30 118.7 -91.4 2.6 28.6 28.7 

Data_60 92.8 -86.8 -2.2 28.0 28.0 

Data_90 74.2 -84.9 -2.4 28.2 28.2 
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Table 3-14: Statistics of the three datasets reduced by the filtered DTE (mGal) 

Data set Max Min Mean Std RMS 

Data_30 118.6 -91.4 2.6 28.6 28.7 

Data_60 92.5 -86.8 -0.2 28.0 28.0 

Data_90 76.5 -84.9 -0.4 28.2 28.2 

Fourth data set: Another dataset was formed without any filtering of the terrain; this 

dataset was created as follows: grid the measured values and then add the terrain effects on 

the grid nodes. For this dataset, we will use the one filtered to 1/60 Hz. The aim of the 

fourth dataset is to see if we can simplify our computation procedures by not computing the 

terrain effects at all the points along the flight lines and not filtering them thus saving a lot 

of computation time (e.g., computation of 35000 terrain effect values takes more than 70 

hours using a personal Pentium III computer with a 500 MHz processor!) The fourth 

dataset is labelled data_grd; see Table 3-15 for the statistics. These values are less smooth 

when compared to those reduced by the terrain effects as is well expected. The fourth 

dataset can be reduced after gridding to either TC-CTC 0 or DTE, and after that used in the 

corresponding methodology. 

Table 3-15: Statistics of the datagrd (mGal) 

Data set Max Min Mean Std RMS 

Datagrd 111.8 -89.4 2.0 32.3 32.3 

Geoid Indirect Effect: The GIE is computed as in the case of ground data using Eq. (3.3). 

Since it is added to the residual geoid computed from the Stokes/Hotine formulation, there 

is no need for filtering. Tables 3-5 and 3-6 and Fig 3-6 can be consulted. 
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After forming the seven datasets - three reduced by the complete Bouguer reduction, three 

reduced by the DTE, and one not reduced at a l l — they were gr idded onto a 5' x 5' gr id 

between the boundaries 50.4333° < cp < 51.35° and 243.5167° < X < 245.0417°, 

generating 228 values. Figure 3-13 shows the measured data of the two days and the grid 

formed from them. Due to the high dynamics of the aircraft during the turns, data acquired 

at those locations were not used. Due to edge effects, out of these 228 points only 170 will 

be used for geoid determination by removing the perimeter points. 

The statistics of the datasets before gridding (Tables 3-10, 3-11, 3-13, 3-14, and 3-15) show 

that the smoothest ones are those reduced by the complete Bouguer reduction. 
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Figure 3-13: Measured and gridded values 



64 

The first three datasets, used in the second methodology, will be used directly in the geoid 

modelling after subtracting the C T C 0 and adding the Bouguer shell at the nodes of the grid. 

So they will be re-visited in the next chapter when the geoid is modelled. The other three 

datasets, used in the first methodology, will be passed through the inverse Poisson integral 

to downward continue them to the geoid, approximated by a reference sphere with mean 

radius of 6371 km. The last dataset on the other hand can be used in either method as long 

as it is correctly reduced for the topography, i.e., for the DTE for the first methodology and 

for the TC minus C T C 0 for the second methodology. 

Since data is acquired using the Honeywell RFIII INS system, owned by Intermap® and 

operated by Intermap® and the U of C, a problem of data pollution with biases coming 

from the imperfections of the accelerometers occurs here. For this, we have first to remove 

the bias by linking this data to upward continued gravity data. The data used in Section 

3.2.1.1 were upward continued to the height of the airborne data and used for this task. The 

link was made after gridding the airborne data. Using other measuring systems with 

temperature control over the accelerometers, e.g. AIRGrav built by Sander Geophysics 

Limited, it was observed that the bias is less than 1 mGal; hence, a link to ground data 

might not be necessary. 

The statistics of the gridded datasets, reduced by the TC, are listed in Table 3-16, and those 

reduced by the DTE are listed in Table 3-17. Recall that the fourth dataset in each Table 

was reduced after forming the grid and without any filtering of the terrain effects. Taking 

the data_60 as reference, in both cases, we subtracted the other three datasets from it; 

Tables 3-18 and 3-19 show the statistics of the differences. 

Table 3-16: Statistics of the four datasets reduced by the TC (mGal) 

Data set Max Min Mean Std RMS 

Data_30 145.5 -125.3 7.2 58.9 59.2 

Data_60 166.5 -129.6 7.2 58.7 59.0 

Data_90 158.7 -123.7 7.2 58.9 59.2 

Data tc 142.9 -120.1 7.2 56.6 57.0 
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Table 3-17: Statistics of the four datasets reduced by the DTE (mGal) 

Data set Max Min Mean Std RMS 

Data_30 74.5 -72.3 2.8 32.5 32.6 

Data_60 65.1 -72.2 2.8 32.6 32.6 

Data 90 63.9 -75.1 2.8 33.2 33.2 

Datadte 67.9 -74.0 2.8 32.7 32.8 

Table 3-18: Statistics of the differences between data 60 and the other three datasets reduced by the 
TC (mGal) 

Differences Max Min Mean Std RMS 

Data_60 - Data_30 28.7 -39.4 0.0 10.1 10.1 

Data 60-Data_90 21.5 -22.8 0.0 7.6 7.6 

Data 60 - Datajc 39.6 -22.7 0.0 8.9 8.9 

Table 3-19: Statistics of the differences between data_60 and the other three datasets reduced by the 
DTE (mGal) 

Difference Max Min Mean Std RMS 

Data 60 - Data_30 27.1 -31.9 0.0 9.100 9.0 

Data 60 - DataJO 7.0 -9.6 0.0 2.293 2.2 

Data_60 - Datadte 10.0 -11.6 0.0 3.347 3.3 

From the values in Table 3-19 (when the DTE is used for reduction), it can be noticed that 

Data_60, Data_90, and Datadte are close to each other, with an RMS of 2.2 mGal and 3.3 

mGal, respectively. 

Although the differences between Data_60, Data_90 and Datadte in Table 3-18 (when the 

TC is used for reduction) are much larger, than RMS of 7.6 mGal and 8.9 mGal, 

respectively, it is still expected that, when used on a 5'x 5' grid, these values will not affect 

the geoid computation due to their high frequency nature. 

In this section, it has been shown that for airborne gravimetry, the D T M resolution does not 

play such a significant role as in the case of ground gravimetry. A D T M resolution of 30 

arcsec can be safely used without loss of information; a 60 arcsec D T M can also be used in 
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an area with a smoother topography. While filtering of the terrain effects is essential from 

the theoretical side, its practical implication is minor and can be omitted as a process for the 

geoid determination. If gravity values are needed, then it is essential to filter the terrain 

effects. 

To summarize, eight datasets were created, four for each methodology, as follows: 

1. Data set filtered to 1/30 Hz, reduced for filtered topographic effects to the same 

frequency (data_30). 

2. Data set filtered to 1/60 Hz, reduced for filtered topographic effects to the same 

frequency (data_60). 

3. Data set filtered to 1/90 Hz, reduced for filtered topographic effects to the same 

frequency (data_90). 

4. Data set filtered to 1/60 Hz, gridded, and then reduced for the topographic effects 

without filtering (datatc, datadte). 

The first three data sets are used to investigate whether we can use the 1/30 and 1/60 Hz 

filtered data to achieve a high-resolution geoid. The fourth data set is to study the effect of 

TE filtering on the whole procedure. It is clear that if we do not have to filter the TE, the 

processing becomes very easy and straightforward. 

For the 1s t methodology, these data sets will first be downward continued to the reference 

sphere and then be used to compute the geoid. In the 2 n d methodology, they are used for 

geoid determination right after the gridding. 

3.4 - Downward continuation by inverse Poisson integral 

The downward continuation with inverse Poisson integral formula is discussed in Chapter 

2. In this section, the evaluation of the equation is done using ground and airborne gravity 

data. First, the ground gravity data will be downward continued; then, the four sets of 

airborne gravity data are downward continued. 
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3.4.1 - Ground data 

The data described in the section (3.2.1.1) was used for the D.C. Specifically, we used the 

gridded gravity anomalies reduced by the DTE computed using the 15-arcsec D T M (Fig 3-

2). The number of iterations was 25 with a threshold of less than 1 pGal. The statistics of 

the downward continued gravity anomalies are listed in Table 3-20 and shown in Fig. 3-14. 

These values will be passed through the Stokes'/Hotine's integral in the next chapter to 

give the residual geoid. 

Table 3-20: Statistics of the residual Helmert ground anomalies before and after the D.C. (mGal) 

Data set Max Min Mean Std RMS 

Free-air + DTE - A g U M 123.4 -144.6 -7.1 29.4 30.3 

Downward continued 375.5 -180.2 -0.3 66.9 66.9 

Comparing these values with the values of the gravity anomalies that will be used for the 

second methodology (statistics in Table 3-2, row 10), it is seen that these values are larger 

and rougher. This is attributed to the magnification of the high frequency signal in the 

gravity data because of their use in an inverse problem. According to Heck (2001), the 2 n d 

Helmert condensation method creates a rough gravity field that is not suitable to use in the 

inverse Poisson integral. The smoother the gravity field, the better it fits the requirements 

for stable downward continuation. 

3.4.2 - Airborne data 

In this section, four datasets are downward continued: the three datasets that were reduced 

by the filtered DTE before gridding and the fourth with the measured, filtered to 1/60 Hz, 

with the unfiltered DTE added after gridding (Table 3-17). These datasets are labelled 

data_30, data_60, data_90, and datadte. For an integration area of 1 degree, upward 

continued ground gravity data was padded around the airborne gravity data as shown in 

Figure 3-15. As in the case of the ground data, the iterative method was used for the 

Poisson inversion. 



Longitude 

Figure 3-14: Downward continued gravity anomalies (mGal) 
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Figures 3-16 to 3-19 show the downward continued airborne gravity data. The data used in 

these figures are the 170 values that correspond to the 170 airborne data. The statistics are 

listed in Table 3-21. 

Table 3-21: Statistics of the downward continued airborne gravity data (mGal) 

Data set Max Min Mean Std RMS 

Data_30 160.0 -156.7 4.3 56.2 56.2 

Data_60 115.6 -129.9 3.1 51.8 51.8 

Data_90 105.5 -137.8 2.9 52.4 52.4 

Datadte 129.3 -141.4 3.2 55.2 55.2 
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Figure 3-15: Airborne and upward continued ground used for padding 

Taking the data_60 as reference, comparisons were made with the other three datasets. 

Table 3-22 has the statistics. As it is seen, there are significant differences between data 60 



and data_30 with a mean of -1.1 mGal and an RMS of 26.7 mGal. this is expected since 

the noise in data_30 is more magnified than the noise found in data_60. Concerning the 

other two datasets, data_90 (mean of 0.1 mGal and RMS of 7.0 mGal) and datadte (mean 

of-0.0 mGal and RMS of 14.9 mGal), their differences, although not as large, are still 

significant. While these differences can be considered noteworthy in terms of gravity 

information, their effect is minimized when they are input to the Hotine's integration, 

because of the low-pass filtering nature of this integral. 

Table 3-22: Statistics of the difference between data_60 and the other three datasets (mGal) 

Data set Max Min Mean Std RMS 

Data 60 - Data 30 91.4 -100.9 -1.1 26.4 26.4 

Data_60 - Data_90 27.9 -37.4 0.1 7.0 7.0 

Data_60 - Data_dte 43.9 -50.9 -0.0 14.9 14.9 

243.80 244.00 244.20 244.40 244.60 244.80 

Figure 3-16: Downward continued data_30 airborne gravity disturbances (mGal) 



243.80 244.00 244.20 244.40 244.60 244.80 

Figure 3-17: Downward continued data_60 airborne gravity disturbances (mGal) 

Figure 3-18: Downward continued data_90 airborne gravity disturbances (mGal) 
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243.80 244.00 244.20 244.40 244.60 244.80 

Figure 3-19: Downward continued datadte airborne gravity disturbances (mGal) 
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Geoid determination from ground and 
airborne gravity data 

In the fourth chapter, the geoid determination from ground and airborne gravity data is 

discussed. Geoid determination using ground data will be discussed first; the D T M 

resolution effect will also be studied. The eight airborne data sets generated in the previous 

section will also be processed to determine the geoid. Decisions on the methodology and 

D T M resolution will be the outcome of this chapter, along with the judgment on whether 

the filtering of the TE for airborne gravity data is needed or not. 

4.1 - Geoid determined from ground gravity data 

Firstly, a study of the effect on the geoid of different D T M resolutions will be made by 

evaluating the TC and DTE contributions by Stokes' integral. After that, the final geoid 

(Eq. 2.7) will be computed using the gravity data using the two datasets that emerged from 

the two methodologies described in Ch. 2. 

4.1.1 - Terrain contribution on the geoid 

To study the effect of the D T M resolution on the geoid, we used the differences in TC 

computed from DTMs with 15, 30, and 60 resolutions (Fig. 3-4 and 3-5, Table 3-4) as input 
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into Stokes' integral. The differences in DTE (Table 3-4) will also be used as input in 

Stokes' for the same purpose. 

The contribution of the differences in terms of TC is seen in Fig. 4-1 and Fig 4-2 and in 

terms of DTE in Fig 4-3 and 4-4. The statistics are tabulated in Table 4-1. As it is seen, 

moving from a 15 arcsec to a 30 and 60 arcsec D T M resolution, gives a lower geoid by 

around 17 cm and 40 cm, respectively, in the case of the second methodology. This 

difference does not change much in the case of the 1s t methodology (16 cm and 40 cm, 

respectively). As can be seen from the statistics and the graphs, they are both sensitive with 

respect to the D T M resolution, with a negligible difference of 1 to 2 cm between them. 



Table 4-1: Terrain Effects on the geoid using different D T M resolutions (m) 
75 

Geoid D T M Max Min Mean Std RMS 
differences resolution 

TC - C T C 0 
15--30 0.250 0.070 0.164 0.046 0.170 

TC - C T C 0 

15--60 0.608 0.171 0.400 0.114 0.416 

15--30 0.244 0.068 0.159 0.045 0.166 
DTE 

15--60 0.589 0.164 0.383 0.108 0.398 
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Figure 4-3:Difference in the geoid contributions of the DTE using 15 and 30 arcsec DTMs (m) 

As seen from the results, the geoid is very sensitive to the D T M resolution used. Thus, here 

we stress again what was mentioned in the previous chapter, i.e., that the 15 arcsec D T M is 

better for geoid computation using ground data. In the following, a 15 arcsec D T M is used. 
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247 

49 241 

Figure 4-4:Difference in the geoid contributions of the DTE using 15 and 60 arcsec DTMs (m) 

4.1.2 - Geoid modelling 

In this section, computations of the geoid are carried out using gravity data obtained using 

the two methodologies; the first is that obtained from the D.C. (Fig. 3-14, Table 3-20), and 

the second is that obtained from the normal free-air gradient (Fig. 3-3, Table 3-2). The 

residual geoids, computed from Stokes' integral plus the GIE, are seen in Fig. 4-5 and 4-6 

and their difference in Fig. 4-7; the statistics of these values are listed in Table 4-2. To 

obtain the final geoid, we have to add the contribution of the GM using Eq. 2.8. 
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Figure 4-5: Residual geoid computed from the 1st methodology (m) 
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From the values in Table 4-2 and their representation in Fig 4-7, it is noticed that the two 

methodologies give a different residual geoid with -82 cm bias between them and an RMS 

of 85 cm. This is considered a large difference. From Fig 4-7, it is seen that these large 

differences are correlated with the topography of the region, which is expected due to the 

two different methods used to downward continue the data to the reference sphere. It 

should be noted, too, that the geoid computed from the 1 s t methodology is higher than that 

computed from the 2 n d methodology. It is expected that the magnification of the high 

frequency uncertainties (e.g., height uncertainties and D T M imperfection, errors in data) in 

the data, cause this difference in the 1s t methodology due to the use of the inverse Poisson 

integral. The use of the 2 n d Helmert condensation, as mentioned in the previous chapter, is 

also responsible for the differences, because of the rough field that is produced by this 

reduction (Heck, 2001). 

Figure 4-7: Difference in geoids between the two methodologies (m) 
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Table 4-2: Statistics of the residual geoid from the two methodologies and their difference (m) 

Max Min Mean Std RMS 

Res. Geoid, 1 s t method 1.365 -1.426 -0.254 0.376 0.454 

Res. Geoid, 2 n d method -0.002 -2.261 -1.070 0.360 1.128 

Difference -0.341 -1.864 -0.816 0.260 0.856 

For an independent comparison between the two solutions, GPS/Levelling undulation 

benchmarks (BM) were used. Thirty-six Helmert orthometric heights, computed in 1995 by 

the Geodetic Survey Division in Canada, were used for this task; see Fig 4-8. 

The two residual geoids were interpolated at the locations of the BMs and differences were 

formed after subtracting the 360 degree and order GM from the later. The statistics of the 

differences are listed in Table 4-3. 

Table 4-3: Statistics of the differences between the gravimetric and the control geoids at the BM (m) 

Max Min Mean Std RMS 

1 s t method-BM 0.057 -1.731 -0.925 0.264 0.961 

2 n d method - BM 0.704 -0.715 -0.314 0.351 0.467 

Table 4-4: Statistics of the differences between the gravimetric and the control geoids at the BM after 
the fit (m) 

Max Min Mean Std RMS 

1s t method-BM 0.464 -0.728 0.000 0.170 0.170 

2 n d method - BM 0.173 -0.401 0.000 0.096 0.096 
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Figure 4-8: Location of the GPS/Levelling points 

As was expected, the Is methodology gives poorer agreement with the geoid at the BMs 

(RMS =96 cm). The 2 n d methodology gives an agreement of 47 cm RMS, which is still a 

considerable difference for a precise geoid determination. But it should be noted that the 

STD is smaller in the 1st methodology, which means a large bias exists in the gravity 

anomalies, and in turn in the geoid when computed using this methodology. 

After the four-parameter model fit (Eq. 2.37), on the other hand, the agreement of both 

methodologies improved significantly. The RMS goes down to 17 cm and 9 cm for the 1s t 

and 2 n d methodology, respectively. 

The geoid determination using the airborne gravity data sets, analysed in Ch. 3, will be the 

focus of the following discussion. 
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4.2 - Geoid determined from airborne gravity data 

As in the case of ground data, the airborne gravity data, after the appropriate reductions, 

will be input to Hotine's integral to give the geoid. In this section, the geoid will be 

evaluated using the two methodologies. Recall from the previous chapter that eight datasets 

were formed; four for each methodology. 

Eight geoids, determined form the two methodologies, are evaluated and then compared to 

the ground solution. Since two ground solutions are available, the one coming from the 2 n d 

methodology will be employed since it has a better fit to the BMs. 

Now, it will be possible to investigate the following points: 

1. Is filtering of the topographic effects essential from a practical point of view? 

2. Which methodology gives a better fit to the reference geoid? 

3. How different is the geoid determined from data filtered to different frequencies? 

4. How good is the airborne geoid? 

The first point will be investigated by studying the geoid determined from the two data sets 

data_60 and datatc or datadte, depending on the methodology used. Recall that the 

datatc and data die were computed by adding the un-filtered TE after the gridding of the 

measured airborne gravity data. Comparing the geoid determined from the two 

methodologies with the reference geoid, gives the answer to the second point above. 

Recall again that the following data sets were formed: data_30, data 60, and data_90. By 

determining the geoids from these data sets and inter-comparing them, a conclusion will be 

reached for the third point. 

The fourth point will be answered after the comparison with the reference geoid. 
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4.2.1 - Airborne geoid from the 1s t methodology 

The four data sets created for the 1s t methodology were the inputs to Hotine's integral. 

Figure 4-9 shows the four geoids. 

Table 4-5: Statistics of the differences between ground and airborne geoid using the 1st methodology 
(m) 

Differences using Max Min Mean Std RMS 

dataSO 0.570 -0.332 0.119 0.165 0.218 

data_60 0.616 -0.330 0.135 0.163 0.224 

Data_90 0.642 -0.382 0.139 0.171 0.235 

data dte 0.632 -0.331 0.136 0.164 0.227 

We also computed the geoid using ground data, derived from the 2m methodology, on the 

same nodes of the grid. These two geoid types are now comparable. Figure 4-10 shows 

these differences, while Table 4-5 has their statistics. Discussions will follow in Sec. 4.2.3. 

4.2.2 - Airborne geoid from the 2 n a methodology 

Here also, the four data sets created for the 2 n d methodology were the inputs to Hotine's 

integral. Figure 4-11 shows the four geoids. The same reference geoid as above was used. 

Figure 4-12 shows these differences, while Table 4-6 has their statistics. Discussions will 

follow in Sec. 4.2.3. 
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data 30 data GO 

Latitude 5 0 5 243.5 Longitude Latitude *0.5 243.5 L o n g i t u d e 

data 90 data dte 

Latitude SOS 243.5 L o n g i t u c i e Latitude 50.5 24X5 Lor,gitude 

Figure 4-9: The four residual geoids computed from the four data sets created using the 1st methodology 
(m) 
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Figure 4-10: Differences between the reference geoid and geoids computed from the 1st methodology (m) 



87 

Table 4-6: Statistics of the differences between ground and airborne geoid using the 2" methodology 
(m) 

Differences using Max Min Mean Std RMS 

data_30 0.186 -0.222 0.006 0.064 0.064 

data_60 0.216 -0.192 -0.001 0.052 0.052 

Data 90 0.272 -0.220 -0.005 0.061 0.061 

data dte 0.212 -0.201 -0.004 0.055 0.055 

4.2.3 - Discussion of geoid results from airborne gravity data 

From the values in these tables (4-5 and 4-6), we can conclude that all three filtering 

frequencies, regardless of the methodology, give us similar geoids when using data on a 

5' x 5' grid. This means that data sets fdtered to 1/30 Hz can give us the same geoid as data 

sets fdtered to 1/60 or 1/90 Hz, which have better agreement with the reference gravity 

field. In the case under study, having a flying speed of 100 m/sec, a high-resolution geoid 

of spacing 3 km can be achievable with a 5 cm RMS accuracy. 

As for the fourth data set of each methodology, we conclude that filtering of the TE is not 

needed from the practical point of view when using data on a 5'x 5' grid. Rather, it is 

enough to reduce for the TE after gridding the measured gravity anomalies; a procedure 

that saves a lot of processing time and effort. 

Regarding the methodology used, it is clear that the 2 n d methodology gives better 

agreement with the reference geoid, where the RMS is around 5 cm; whereas that of the 1bt 

methodology goes up to roughly 21 cm. This is due to the inverse Poisson integral that 

magnifies high frequencies in the data, which have high frequency characteristics. The 

same statement, drawn when ground data were used with the 2 n d Helmert condensation 

method also applies here. 
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Figure 4-11: The four residual geoids computed from the four data sets created using the 2 methodology 
(m) 
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Figure 4-12: Differences between the reference geoid and geoids computed from the 2" methodology (m) 
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Summary, Conclusions and 
Recommendations 

5.1 - Summary 

In this research, different practical and computational issues were investigated to determine 

the best possible geoid from airborne gravity data. These issues we redefined in the first 

chapter and they are: D T M resolution needed in airborne gravimetry to quantify the 

topography; the need of filtering the terrain effects; the difference in geoid determination 

methodology when using two different downward continuation methods; which airborne 

gravity data sets, filtered to different frequencies, can be used for geoid determination; and 

how good the airborne geoid is. Furthermore, the difference in downward continuation 

methods and different D T M resolutions were tested on ground gravity data. 

Even though airborne gravimetry has been used for geoid determination for the last five 

years, the above topics were rarely visited. Hence, the importance of this research lies in its 

novelty in embracing these different issues that were only partially investigated before. 

Namely, these are the D T M resolution, filtering of TE, and comparisons between the two 

downward continuation methods. 

To investigate the above points, an airborne gravity survey that took place in 1996 above 

the Canadian Rocky Mountains was used. Three D T M resolutions were used to test the 

sensitivity of gravity reductions on D T M resolution. The terrain effects were filtered and 

compared with their initial unfiltered values to examine the effect of filtering. The gravity 
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disturbances were brought to the reference sphere using two different downward 

continuation methods; one is the inverse Poisson integral and the other is the normal free-

air gradient. After all these computations and comparisons, eight solutions of the same 

geoid were computed and inter-compared to answer the different questions defined in the 

Introduction. These eight solutions were also compared with the geoid determined from 

ground gravity data for validation. 

As for the geoid determined from ground data, also three D T M resolutions were tested. The 

two methodologies to bring the gravity anomalies to the geoid were tested, too. The two 

geoid solutions computed were compared to undulations at existing GPS/Levelling BMs in 

that area and conclusions were drawn using the undulations at BMs as reference values. 

5.2 - Conclusions 

The answers to the questions stated in the Introduction will now be given, for both the 

airborne and ground data. 

First, here are our conclusions regarding the five questions asked about the airborne 

gravimetry: 

1. What DTM resolution is needed in airborne gravimetry? 

A D T M resolution of 30 arcsec can provide the gravity effects of the topography with 

accuracy better than what the measuring system can offer. Differences in terrain effects 

computed from 15 and 30 arcsec DTMs are negligible. This indicates an insensitivity 

of the airborne gravity data to the high-frequency changes in the topography due to the 

large distance of these changes from the measuring instrument. A 60 arcsec D T M can 

safely be used in areas with moderate topography and where a high-accuracy geoid is 

not required. 
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2. Is filtering of the topographic effects essential from the practical point of view? 

Although filtering of topographic effects is essential from the theoretical point of view 

and its effect is considerable on gravity, it is negligible in terms of the geoid, where 

this effect has an RMS of less than 1 cm for filtering frequencies of 1/30, 1/60, and 

1/90 Hz. 

3. How different is the geoid determined from data filtered to different frequencies? 

While airborne data filtered to 1/30 Hz and 1/60 Hz give poorer agreement with the 

reference gravity filed compared with the data filtered to 1/90 Hz, geoids determined 

from all these data are of the same accuracy when a 5' x 5' grid is used. 

4. Which methodology gives a better fit to the reference geoid? 

The geoid determined from the 2 n d methodology gave a better fit to the geoid computed 

from ground gravity data (a « 5 cm). It is believed that this is due to the magnification 

of the high frequency signals when the inverse Poisson integral is used in the 1 s t 

methodology (a « 22 cm), in addition to the roughness of the disturbances created by 

the 2 n d Helmert condensation method and their use in the inverse Poisson integral. 

5. How good is the airborne geoid? 

It has been shown that an off-the-shelf inertial navigation system integrated with GPS 

can deliver a geoid accurate to about 5 cm (a) compared to a geoid computed from 

ground data on a 5'x5' grid. The same, if not better, accuracy can be achieved with 

3x3 Km grid when airborne gravity data filtered to 1/30 Hz is used. 

It should be noted here that when using gravity data on a denser than 5'x5' grid, the 

possibility of an unstable inverse Poisson solution exists. 

As for the ground data, we can answer as follows: 
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1. How do the terrain effects computed from different Digital Elevation Model 

resolutions affect the geoid? 

The denser the D T M , the better the geoid is determined. In a mountainous region as the 

Rocky Mountains, a 30 arcsec D T M is by no means sufficient for determining a geoid 

accurate to the cm-level. Here, a 15 arcsec D T M was used and it is expected that a 

denser D T M will give better results. 

2. Which methodology gives a best-fitting geoid to the GPS/levelling benchmarks, 

when using ground gravity data? 

The inverse Poisson integral creates problems due to the magnification of the high 

frequencies in the data, and due to the rough field it generates when Helmert's 2 n d 

condensation is used, which, in turn, has a consequence on the geoid. The normal free-

air gradient, although an approximation, gave a geoid that is closer to the 

GPS/levelling derived undulations than the geoid determined using the inverse Poisson 

integral for the D.C. The smaller STD in the 1s t methodology indicates that a bias 

exists in the gravity data and it is propagated to the geoid, whose explanation is not 

clear. 

A l l the above conclusions are valid for data/results on a 5'x5' grid. 

5.3 - Recommendations 

Although some ways of processing of the airborne gravity data to determine the geoid have 

been studied in this thesis, there still exist some other points that should be investigated and 

tested. These are listed below. 

a) The 2 n d Helmert condensation method was used in this thesis. This condensation 

method yields a rough gravity field. Helmert's 1s t condensation method gives a 
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smoother field (Heck, 2001), which is highly recommended for downward 

continuation when the inverse Poisson integral is used. It is proposed that the 1s t 

condensation method be tested and compared with the 2 n d condensation method and 

the gradient solution. 

b) Other downward continuation methods were investigated and tested, on both ground 

and airborne gravity data, in other studies. Investigations on the geoid determined 

using these methods have to be made. 

c) Although the iterative method for the regularisation of the inverse Poisson integral 

is considered to be a good tool, it is important to test the impact of other 

regularisation methods on the geoid determination. 

d) It was shown here that the geoid determined from airborne gravity data is within 5 

cm RMS from the geoid determined from ground gravity data; this comparison was 

done on a 5'x5' grid. The airborne data filtered to 1/30 Hz give a resolution of 3 

km; it is recommended to compute the geoid at this resolution and to try to use the 

different downward continuation methods to see if the same accuracy can be 

obtained. It is well known that the inverse Poisson integral stability depends on the 

ratio between the height of data and the grid resolution. 

e) The conclusion on filtering the terrain effects was drawn on a 5'x5' grid. Is this 

conclusion valid when a denser grid is considered? This needs further investigation. 

f) For ground data, a 15 arcsec D T M was recommended for use instead of 30 and 60 

arcsec. A higher resolution is definitely needed in ground gravimetry. It is important 

to check whether denser D T M spacing is essential and to what resolution. 

g) A through analysis of filtering and propagation of noise is essential. The 

investigation has to start from the measurement noise to reach the final product 

noise estimate passing through all processing. 

h) It is highly recommended to use different datasets measured in different areas to 

confirm the conclusions drawn in this thesis and see if they can be considered 

universal. 
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