THE UNIVERSITY OF CALGARY
DETERMINATIONS OF SPEED OF SOUNDFROM DECOMPRESSION WAVE FRONT VELOCITYIN MODERATELY DENSE GASESAND MEASUREMENT OF THE ASSOCIATEDISOTHERMAL COMPRESSIBILITY COEFFICIENTAND COMPRESSIBILITY FACTOR
BY
MD. ALI ROB SHARIF
A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF MECHANICAL ENGINEERING
CALGARY, ALBERTA
JANUARY, 1984
(C) MD. ALI ROB SHARIF 1984

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled, "Determinations of Speed of Sound from Decompression Wave Front Velocity in Moderately Dense Gases and Measurement of the Associated Isothermal Compressibility Coefficient and Compressibility Factor", submitted by Md. Ali Rob Sharif in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

Date: January 201984

ABSTRACT

An apparatus is designed and developed for simultaneous measurement of the speed of sound, the compressibility factor and the isothermal compressibility coefficient in moderately dense gases. The speed of sound is obtained by measuring the velocity of a decompression wave front initiated by the rupture of diaphragm in a decompression tube.

Measurements are made at 273.15 K and 298.15 K , for carbon dioxide gas at pressures up to 4.5 MPa and for argon and nitrogen gas at pressures up to 35 MPa . These measurements are found to be in good agreement with available published data.

These observations, together with certain thermodynamic properties directly derived from them, are compared with predictions using the van der Waals, the Benedict-Webb-Rubin and a virial equation of state.

The author expresses his sincerest gratitude and appreciation to Dr. T. K. Groves, Professor, Department of Mechanical Engineering, for his invaluable guidance and encouragement as a supervisor throughout this study. His innovative thoughts greatly helped in designing and fabricating the apparatus and his constructive criticisms and suggestions were most valuable in analysing the results.

The author also expresses his indebtedness to Dr. T. W. Swaddle, Department of Chemistry, for his advice on high pressure equipment in the early stages of this study.

Financial support from the National Scientific and Engineering Research Council of Canada for this research and financial assistance from the University of Calgary is also gratefully acknowledged.

TABLE OF CONTENTS

CHAPTER TITLE PAGE
TITLE PAGE i
APPROVAL SHEET ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES xii
LIST OF PIATES xviii
NOMENCLATURE xix
I INTRODUCTION 1
II REVIEW OF LITERATURE 6
2.1 General References 6
2.2 Measurement of pot Data 7
2.3 Measurement of Speed of Sound 9
III THEORETICAL CONSIDERATIONS 18
3.1 Shock Tube Theory 18
3.2 Dense Gas Equations of State 24
IV EXPERIMENTAL METHOD 36
4.1 Outline of the Method 36
4.2 Apparatus 40
4.3 Procedure 47
4.4 Measurement Details 49
4.5 Working Formulae for Deriving Density, Isothermal Compressibility and Decompression Wave Front Velocity 52

TABLE OF CONTENTS (continued)

CHAPTER TITLE PAGE
V RESULTS 57
5.1 Preliminary Measurements of Sound Speed 57
5.2 Primary Observations 58
5.3 Observed Thermodynamic Properties 58
5.4 Comparison with Equations of State 60
VI DISCUSSION 158
6.1 Uncertainty Analysis of the Measurement System 159
6.2 Comparison of the Observations with Available Published Data 162
6.3 Comparison of the Observed Thermodynamic Properties with those Derived from Equations of State 165
6.4 Recommendations for Further Study 171
REFERENCES 173
APPENDIX A1 178
Al. 1 Details of Computation of Thermodynamic Properties from Equations of State 178
Al. 2 Tables of Necessary Constants and Properties 180
TABLE TITLE PAGE
4.4 .1 Thermocouple-Calibration Coefficients. 50
5.1.1 The Ratio of Observed to Ideal Gas State Speed of Sound for Various Gases at Low Pressure and Room Temperatures. 61
5.1.2 The Ratio of Observed to Ideal Gas State Speed of Sound for Carbon Dioxide at Room Temperatures and Pressures up to 4.5 MPa 63
5.2.1 Primary Observations for Carbon Dioxide at 273.15 K 65
5.2.2 Primary Observations for Carbon Dioxide at 298.15 K 66
5.2.3 Primary Observations for Argon at 273.15 K 67
5.2.4 Primary Observations for Argon at 298.15 K. 68
5.2.5 Primary Observations for Nitrogen at 273.15 K 69
5.2.6 Primary Observations for Nitrogen at 298.15 K 70
5.3.1 Observed Thermodynamic Properties along with the Fitted Values for Carbon Dioxide at 273.15 K 71
5.3.2 Observed Thermodynamic Properties along with the Fitted Values for Carbon Dioxide at 298.15 K 72
5.3.3 Observed Thermodynamic Properties along with the Fitted Values for Argon at 273.15 K 73
5.3.4 Observed Thermodynamic Properties along with the Fitted Values for Argon at 298.15 K 74

LIST OF TABLES (continued)

TABLE	TITLE	PAGE
5.3 .5	Observed Thermodynamic properties along with the Fitted Values for Nitrogen at 273.15 K .	75
5.3 .6	Observed Thermodynamic Properties along with the Fitted values for Nitrogen at 298.15 K .	76
5.3 .7	Density-Fitting Polynomial Coefficients and Standard Deviations of the Fit.	77
5.3.8	Sound Speed-Fitting Polynomial Coefficients and Standard Deviations of the Fit.	78
5.3 .9	Isothermal Compressibility-Fitting Polynomial Coefficients and Standard Deviations of the Fit.	79
5.4 .1	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .	98
5.4.2	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .	99
5.4 .3	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Argon at 273.15 K .	100
5.4 .4	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Argon at 298.15 K .	101
5.4 .5	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 273.15 K .	102

LIST OF TABLES (continued)

TABLE TITLE PAGE
5.4.15 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Argon at 273.15 K 112
5.4.16 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Argon at 298.15 K 113
5.4.17 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Nitrogen at 273.15 K 1145.4.18 Comparison of Observed Normalized Ratios ofSpecific Heats $\left(\gamma / \gamma^{0}\right)$ with those Derivedfrom Equations of State. For Nitrogenat 298.15 K .115
5.4.19 Comparison of Observed Normalized Speeds of Sound (a/aO) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K 116
5.4.20 Comparison of Observed Normalized Speedsof Sound (a / a°) with those Derivedfrom Equations of State. For Carbon Dioxideat 298.15 K.117
5.4.21 Comparison of Observed Normalized Speedsof Sound (a / a°) with those Derivedfrom Equations of State. For Argonat 273.15 K .118
5.4.22 Comparison of Observed Normalized Speeds of Sound (a/a ${ }^{\circ}$) with those Derived from Equations of State. For Argon at 298.15 K. 119
5.4.23 Comparison of Observed Normalized Speedsof Sound (a / a°) with those Derivedfrom Equations of State. For Nitrogenat 273.15 K .120

TABLE	TITLE	PAGE
5.4.24	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of state. For Nitrogen at 298.15 K .	121
5.4 .25	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .	122
5.4 .26	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .	123
5.4 .27	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 273.15 K .	124
5.4 .28	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 298.15 K .	125
5.4.29	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 273.15 K .	126
5.4 .30	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 298.15 K.	127
A1.2.1	Molecular Weights, Critical Constants and Force Constants for the Gases Used.	180
Al. 2.2	Benedict-Webb-Rubin Equation of State Constants for the Gases Used.	181
A1.2.3	Constant Pressure Specific Heat at Ideal Gas Condition for the Gases Used.	182

LIST OF FIGURES

FIGURE	TITLE	PAGE
3.1 .1	The Wave System Produced by Bursting a Diaphragm in a Shock Tube.	19
3.1 .2	Pressure and Temperature Distribution in a Simple Shock Tube after Diaphragm is	
	Ruptured.	20
3.2.1	Pictorial Representation of Hard Molecule or Rigid Sphere and Lennard-Jones (6-12) Potential Energy Function.	33
3.2 . 2	Illustration of σ_{h} as the Value of r for which $\phi(r)=k T$ fhr Lennard-Jones Potential.	33
4.1 .1	A Typical Set of Pressure (Voltage)-Time Signal from the Piezoelectric Transducers; as Viewed on the Oscilloscope Screen and Recorded by xy plotter.	37
4.1 .2	Signal Description.	37
4.2 .1	Schematic Diagram of the Apparatus.	41
4.2.2	Details of the Diaphragm Clamp.	45
5.1.1	Percent Deviation of Observed from Ideal Gas state speed of Sound for Several Gases at Low pressures and Room Temperatures (293 K - 295 K).	62
5.1.2	Ratio of Observed to Ideal Gas State Speed of Sound for Carbon Dioxide at Room Temperatures (293 K - 295 K).	64
5.3.1	Observed Density Versus Pressure for Carbon Dioxide Compared with the Data of Michels et al. [2.10], Vukalovich et al. [2.12] and MacCormack and Schneider [2.11] at 273.15 K .	80
5.3.2	Observed Density Versus Pressure for Carbon Dioxide Compared with the Data of Michels et al. [2.10] at 298.15 K.	81

LIST OF FIGURES (continued)

FIGURE	TITLE	PAGE
5.3.3	Observed Density Versus Pressure for Argon Compared with the Data of Michels et al. [2.13] at $273.15 \mathrm{~K}$.	82
5.3.4	Observed Density Versus Pressure for Argon Compared with the Data of Michels et al. [2.13] and Kestin and Liedenfrost [2.14] at $298.15 \mathrm{~K},$.	83
5.3.5	Observed Density Versus Pressure for Nitrogen Compared with the Data of Michels et al. [2.18, 2.19], Verschyole [2.16], Bartlett et al. [2.17] and Smith and Taylor [2.15] at $273.15 \mathrm{~K}$.	84
5.3.6	Observed Density Versus Pressure for Nitrogen Compared with the Data of Michels et al. [2.18, 2.19] at $298.15 \mathrm{~K} .$.	85
5.3 .7	Observed Isothermal Compressibility Versus Pressure for Carbon Dioxide at 273.15 K .	86
5.3.8	Observed Isothermal Compressibility Versus pressure for Carbon Dioxide at 298.15 K .	87
5.3.9	Observed Isothermal Compressibility Versus pressure for Argon at 273.15 K .	88
5.3.10	Observed Isothermal Compressibility Versus Pressure for Argon at 298.15 K .	89
5.3.11	Observed Isothermal Compressibility Versus pressure for Nitrogen at 273.15 K .	90
5.3.12	Observed Isothermal Compressibility Versus pressure for Nitrogen at 298.15 K .	91
5.3.13	Observed speed of Sound Versus Pressure for Carbon Dioxide at 273.15 K.	92

FIGURE	TITLE	PAGE
5.3.14	Observed speed of Sound Versus Pressure	
	for Carbon Dioxide Compared with the	
	Data of Novikov and Trelin [2.34, 2.35]	
	and Hodge [2.20] at 298.15 K.	93
5.3.15	Observed speed of Sound Versus pressure	
	for Argon Compared with the Data of	
	van Itterbeek et al. [2.36] and El-Hakeem	
	[2.24] at 273.15 K .	94
5.3.16	Observed Speed of Sound Versus Pressure	
	for Argon Compared with the Data of Lacam	
	[2.31] at 298.15 K. ..	95
5.3 .17	Observed Speed of Sound Versus Pressure	
	for Nitrogen Compared with the Data of	
	van Itterbeek et al. [2.21] and El-Hakeem	
	[2.24] at 273.15 K .	96
5.3.18	Observed Speed of Sound Versus Pressure	
	for Nitrogen Compared with the Data of	
	Lacam [2.31] and van Itterbeek et al.	
	[2.21] at 298.15 K .	97
5.4.1	Comparison of Observed Compressibility	
	Factors (Z) with those Derived from	
	Equations of State. For Carbon Dioxide	
	at 273.15 K .	128
5.4 .2	Comparison of Observed Compressibility	
	Factors (Z) with those Derived from	
	Equations of State. For Carbon Dioxide	
	at 298.15 K .	129
5.4 .3	Comparison of Observed Compressibility	
	Factors (Z) with those Derived from	
	Equations of State. For Argon	
	at 273.15 K ,	130
5.4 .4	Comparison of Observed Compressibility	
	Factors (Z) with those Derived from	
	Equations of State. For Argon	
	at 298.15 K.	131

IIST OF FIGURES (continued)

FIGURE	TITLE
5.4 .5	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 273.15 K .
5.4 .6	Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 298.15 K .
5.4 .7	Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K.
5.4 .8	Comparison of Observed Normalized Isothermal Compressibilities (k / κ°) with those Derived from Equations of state. For Carbon Dioxide at 298.15 K.
5.4 .9	Comparison of Observed Normalized Isothermal Compressibilities (k / k°) with those Derived from Equations of State. For Argon at 273.15 K .
5.4 .10	Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Argon at 298.15 K.
5.4.11	Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Nitrogen at 273.15 K .
5.4 .12	Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Nitrogen at 298.15 K.
5.4 .13	Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

LIST OF FIGURES (continued)

FIGURE	TITLE
5.4.14	Comparison of Obseryed Normalized Ratios of Specific Heats (γ / γ) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .
5.4.15	Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Argon at 273.15 K .
5.4.16	Comparison of Observed Normalized Ratios of Specific Heats $\left(\gamma / \gamma^{0}\right)$ with those Derived from Equations of State. For Argon at 298.15 K .
5.4 .17	Comparison of Observed Normalized Ratios of Specific Heats $\left(\gamma / \gamma^{\circ}\right)$ with those Derived from Equations of State. For Nitrogen at 273.15 K .
5.4.18	Comparison of Observed Normalized Ratios of Specific Heats $\left(\gamma / \gamma^{\circ}\right)$ with those Derived from Equations of State. For Nitrogen at 298.15 K .
5.4.19	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .
5.4.20	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .
5.4.21	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Argon at 273.15 K .
5.4.22	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Argon at 298.15 K .

FIGURE	TITLE	PAGE
5.4 .23	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Nitrogen at 273.15 K .	150
5.4 .24	Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Nitrogen at 298.15 K .	151
5.4 .25	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .	152
5.4.26	Comparison of Observed Values of the Property $\rho \partial \mathrm{Z} / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .	153
5.4 .27	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of state. For Argon at 273.15 K .	154
5.4 .28	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 298.15 K .	155
5.4.29	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 273.15 K .	156
5.4 .30	Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 298.15 K .	157
6.4 .1	Pressure Variation in the Decompression Tube Immediately after the Valve Connecting the Coil and the Decompression Tube is Opened; as seen on the Oscilloscope and Recorded by xy plotter.	172

LIST OF PLATES

PLATE TITLE PAGE
4.2.1 Photograph of the Apparatus. 42
4.2 .2 Closeup View of the Decompression Tube 44

a	speed of sound
$a_{\text {vdw }}$	Constant for van der Waals equation of state
a°	Speed of sound at ideal gas state
A	Constant for Benedict-Webb-Rubin equation of state
A_{0}	Constant for Benedict-Webb-Rubin equation of state
b_{h}	Force constant for hard molecule assumption; defined in Eq. (3.2.10)
b_{LJ}	```Force constant for Lennard-Jones (6-12) potential; defined in Eq. (3.2.12)```
$\mathrm{b}_{\text {vdw }}$	Constant for van der Waals Equation of state
B	Constant for Benedict-Webb-Rubin equation of state
B_{0}	Constant for Benedict-Webb-Rubin equation of state
B*	Reduced second virial coefficient
B_{n}^{*}	Temperature derivative of order n of reduced second virial coefficient multiplied by the reduced temperature T^{*} raised to the power n
c_{p}	Specific heat at constant pressure
C_{pR}	Deviation of specific heat at constant pressure from that of ideal gas state
$\mathrm{c}_{\mathrm{p}}^{0}$	Constant pressure specific heat at ideal gas state

*other symbols, with more localized use, are defined in the text.

NOMENCLATURE (continued)

SYMBOL	EXPLANATION
$c_{\text {v }}$	Specific heat at constant volume
$c_{\text {vR }}$	Deviation of specific heat at constant volume from that of ideal gas state
$\mathrm{c}_{\mathrm{V}}^{\mathrm{O}}$	Constant volume specific heat at ideal gas state
C	Constant for Benedict-Webb-Rubin equation of state
C_{0}	Constant for Benedict-Webb-Rubin equation of state
c*	Reduced third virial coefficient
c_{n}^{*}	Temperature derivative of order n of the reduced third virial coefficient multiplied by the reduced temperature T^{*} raised to the power n
k	Boltzmann's constant
M	Molecular weight
m	Mass
N	Avogadro's Number
p	Pressure
p_{C}	Critical pressure
R	Gas constant per unit mass
s	Specific entropy
t	Time
T	Absolute temperature
T_{C}	Absolute critical temperature
T_{r}	Reduced temperature; T / T_{C}
T^{*}	Reduced temperature; $\mathrm{T} / \mathrm{\theta}$
u	Velocity

	NOMENCLATURE (continued)
SYMBOL	EXPLANATION
v	Specific volume
v_{C}	Critical specific volume
V	Total volume
x	Displacement or distance
Z	Compressibility factor
Z_{C}	Compressibility factor at the critical point
α	Constant for Benedict-Webb-Rubin equation of state
β	Coefficient of volumetric expansion at constant pressure
γ	Ratio of specific heats or constant for Benedict-Webb-Rubin equation of state
γ°	Ratio of specific heats at ideal gas state
θ	Potential well depth temperature defined in Eq. (3.2.12)
ρ	Density
κ	Isothermal compressibility
κ°	Isothermal compressibility at ideal gas state
ε	Depth of potential well
σ_{h}	Collision diameter of the molecules for hard molecule potential
$\sigma_{L J}$	Force constant for Lennard-Jones (6-12) potential
ω_{h}	Dimensionless density for hard molecule potential
${ }^{\omega} \mathrm{LJ}$	Dimensionless density for Lennard-Jones (6-12) potential
$\omega_{v d w}$	Dimensionless density for van der Waals equation of state

I INTRODUCTION

The main purpose of this study is to measure the speed of sound in moderately dense gases and to use these measurements to evaluate certain thermal equations of state.

Quite often the equations of state, due to the bias arising from incorrect functional form, fail to predict slope properties even when they reproduce a satisfactory correlation among the thermal equation of state properties (p,p,T). It is thus necessary, while appraising an equation of state, to examine how well it predicts, not only the integral properties (p, ρ, T) but also the slope properties.

The speed of sound measurements are, therefore, supplemented by simultaneous measurement of isothermal compressibility coefficients and densities. Thus at each observed state the direct measured properties are: pressure (p), temperature (T), density (ρ), isothermal compressibility (k) and speed of sound (a). These observations allow direct deduction of the compressibility factor ($Z=p / \rho R T$), the ratio of specific heats $\left(\gamma=a^{2} \rho \kappa\right)$ and the property $\left[\rho(\partial Z / \partial \rho)_{T}=(1 / p k-1) Z\right]$. These slope properties a, k, γ and $\rho(\partial Z / \partial \rho)_{T}$ are particularly significant in that they are determined directly by measurement, i.e., not by differentiation, and are therefore free from bias. Finally
the equations of state are evaluated by comparing calculated properties with the measured properties and those directly derived from them.

Measurements are confined to three gases, namely, carbon dioxide, argon and nitrogen, to two isotherms, $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and to pressures up to 4.5 MPa in carbon dioxide and up to 35 MPa in argon and nitrogen.

Argon is chosen not only because it is monatomic and therefore described by spherically symmetric intermolecular potentials, but also because of the wealth of thermodynamic measurements on argon available for comparison with the measurements described here. Nitrogen is chosen to assess the possible deterioration of equation of state predictions for nitrogen relative to argon arising from the non-spherical shape of the nitrogen molecule. Carbon dioxide is chosen for its high critical temperature and therefore its strongly non-ideal behavior even at moderate pressures, at the temperatures concerned.

Due to the limitations of time, measurements are done only at two temperatures. The pressure range is limited to 35 MPa due to the cost of very high pressure equipment and instrumentation.

The equations of state chosen for evaluation are; 1) van der Waals equation, 2) Benedict-Webb-Rubin equation and 3) a virial equation. The van der waals equation is chosen because it is a two-constant equation having a simple analytic form and is used mainly for instructional purposes. The Benedict-Webb-Rubin equation is chosen because it is a popular and frequently-used equation of state, especially in oil and gas applications, and is claimed to be very accurate. The virial equation is chosen because it has a sound theoretical basis.

An apparatus is developed for simultaneous measurement of speed of sound, isothermal compressibility and density. The whole apparatus is immersed in a liquid bath to maintain constant temperature accurately. The temperature is measured at several points via calibrated thermocouples while the pressure is measured via static pressure transducers connected to digital read-out units.

The speed of sound is determined from the velocity of a decompression wave front. The high pressure gas is charged in a tube having a diaphragm at one end. A decompression wave is initiated by the rupture of the diaphragm. The travel time of the decompression wave is detected by several piezoelectric transient pressure transducers placed along the tube. The distance between two such transducers divided
by the travel time, provides the velocity of the decompression wave front which is equal to the velocity of sound in the charged gas at the particular pressure and temperature.

Before the diaphragm is ruptured, the high pressure gas is given access to a pre-evacuated small chamber. The ratio of the increase in volume to the decrease in pressure is used to determine the isothermal compressibility. The leaked gas in this small chamber is then expanded to a large pre-evacuated chamber making the gas so dilute that its mass can be computed using the ideal gas relation. This mass divided by the known volume of the small chamber, provides the gas density.

Various other experimental techniques have been used to measure the speed of sound in gases at various combinations of pressure and temperature covering low, moderate and high densities. Almost all of the measurements described in the literature were obtained using ultrasonic techniques.

However, the speed of sound measured by ultrasonic techniques is frequency-dependent and therefore requires correction before it can be said to represent the thermodynamic speed of sound. These corrections include that for Kirchoff's tube wall effect [l.l]* and absorption and boundary layer

[^0]effects [1.2]. "One must distinguish between the velocity of sound at zero frequency which is a thermodynamically defined quantity and the velocity at any other frequency which depends upon the relaxation time and other rate constants" [1.3,p369]. The speed of sound obtained from the decompression wave front velocity however, is free from such corrections and therefore represents the thermodynamic speed of sound.

In chapter 2, a review of literature on the thermodynamic properties of the gases concerned is given. Chapter 3 contains the required shock tube theory together with a detailed description of the equations of state chosen for evaluation. Experimental procedure is given in chapter 4. The results of the experiments are presented in chapter 5 which is followed by a discussion in chapter 6.

Among the numerous publications available in the literature, only those relevant to the thermodynamic properties and the range of pressures and temperatures studied in this research are'discussed here. In Sec. 2.1 the general references are discussed while topics covering measurements of ppT data are discussed in Sec. 2.2. Finally in Sec. 2.3, topics concerned with measurement of speed of sound are discussed. In this context, it should be noted that no suitable experimental data for isothermal compressibility (k) are available for comparison with the values measured in this study.

2.1 General References

An extensive bibliography on thermodynamic properties for several gases and their mixtures is given in [2.1 and 2.2], which serves as an excellent source of reference. The general references for the specific gases are as follows.
2.1.1 Carbon Dioxide. Empirical equations of state are developed in [2.3, 2.4 and 2.5] for carbon dioxide, for a wide range of pressures and temperatures, using available published property data. Tables of property data computed from the developed equations are also given in [2.3 and
2.4] along with an extensive bibliography on thermodynamic properties of carbon dioxide.
2.1.2 Argon. Empirical equations of state are also developed for argon in $[2.6$ and 2.7] for a wide range of temperatures and pressures using available published data. Tabulations of the property data computed by the developed equations along with an extensive bibliography on the thermodynamic properties of argon can also be found in [2.6 and 2.7]. A detailed bibliography on theoretical, experimental and compilation studies on the thermodynamic properties of argon as of 1964 can be found in [2.8].
2.1.3 Nitrogen. In [2.9] an empirical equation of state for nitrogen is reported for a temperature range of 63 K to 2000 K and pressures to 1000 MPa , determined by least-squares-fitting of published data. Reference [2.9] also contains tabulations of properties calculated by the fitted equation as well as an extensive bibliography on thermodynamic properties of nitrogen.

2.2 Measurement of pot Data

There are several standard techniques available for measuring ppT data in gases. Some of these are described in [2.1 and 2.2]. These techniques are compilations of various methods which have been used for measurement of pot
data and are not described here. Various sources from which poT data are collected for comparison with the observed data of this study are discussed below.
2.2.1 Carbon Dioxide. Michels et al. [2.10] measured ppT data of carbon dioxide between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and pressures from 16 to 250 atmospheres. MacCormack and Schneider [2.11] measured thermodynamic properties of gaseous carbon dioxide at temperatures from $0^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ and pressures up to 50 atmospheres. Vukalovich et al. [2.12] measured densities of carbon dioxide at temperatures from $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and pressures up to 30 MPa . The poT data collected from these three references are used for comparison of the observed data in this study. However, data for both $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ are reported only in [2.10]. In the other two papers, measurements are not reported for $25^{\circ} \mathrm{C}$.
2.2.2 Argon. Michels et al. [2.13] measured ppT data for argon between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and pressures up to 2900 atmospheres. Data for both $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ are reported in this paper and are taken for comparison. Kestin and Liedenfrost [2.14] measured densities of argon and several other gases over a range of pressures and temperatures to determine the viscosity of these gases. Their density data at $0^{\circ} \mathrm{C}$ (measurements at $25^{\circ} \mathrm{C}$ are not reported) are also taken for comparison.
2.2.3 Nitrogen. Smith and Taylor [2.15] measured ppT data to formulate an equation of state for pure nitrogen. Verschoyle [2.16] measured the ppT data of hydrogen, nitrogen and their mixtures at $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ up to a pressure of 220 atmospheres. Bartlett et al. [2.17] also measured the compressibility factors of hydrogen, nitrogen and of a 3:1 mixture of these gases at temperatures between $0^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ and pressures to 1000 atmospheres. Michels et al. [2.18 and 2.19] measured $\mathrm{p} \rho \mathrm{T}$ data for nitrogen between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and pressures from 20 to 3000 atmospheres. Density data from these papers are chosen for comparison. However, except for Michels et al., data for $25^{\circ} \mathrm{C}$ are not presented in the other three papers.

2.3 Measurement of Speed of Sound

As mentioned earlier, almost all previous investigators have called on ultrasonic techniques using an acoustic interferometer. In an acoustic interferometer, resonance is generated in a confined column of fluid. One end of the column is excited by an electronically driven vibrating transducer or crystal so as to produce plane sound waves. The known length of the resonating fluid column is an integral multiple of the half wavelength of the sound wave and the ultrasonic speed of sound is equal to the product of the
wavelength and the frequency of vibration. In some cases (variable path interferometry) resonance is established by varying the length of the column whereas in other cases (fixed path interferometry) the column length is fixed and the frequency of vibration is varied.

In 1937 Hodge [2.20] measured ultrasonic speeds of sound at $27^{\circ} \mathrm{C}$ in several gases over a pressure range of 1 to 100 atmospheres using a variable path acoustic interferometer and in 1957 van Itterbeek et al. [2.21] measured the speed of sound in high pressure gases using a similar interferometer of higher precision.

Improvements in precision accompanied advancements in electronics. In 1970 Gammon and Douslin [2.22] used a significantly improved variable path interferometer to measure, with high precision, speeds of sound in compressed helium for temperatures from $-175^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ and pressures from 10 to 150 atmospheres. In 1976 an even more precise variable path acoustic interferometer (0.002 per cent error) was used by Quinn et al. [1.2] to measure the speed of sound in argon at 273.16 K for a pressure range from 30 to 200 kPa.

In 1963 a different form of the variable path interferometer was developed by Lestz [2.23] based on the
principle that sound pressures at any two points are in phase provided that these two points are separated by a distance equal to an integral number of wavelengths. Phase is determined from simultaneous viewing of the input voltage to a loudspeaker at one end of the interferometer tube and of the output voltage from a movable microphone. The position of the microphone is adjusted until its output is in phase with the input to the speaker. The zero-phase difference condition is readily determined with a cathode ray oscilloscope. From the initial zero-phase position, the microphone is moved through one cycle until the two signals are again in phase. The distance traversed by the microphone is then equal to one wavelength, which, when multiplied by the input frequency of the loudspeaker, provides the speed of sound. In 1965 El-Hakeem [2.24] refined this and measured the speed of sound in nitrogen and argon for pressures up to 70 atmospheres.

In fixed path acoustic interferometry, two transducers are flush mounted at the end faces of a tube of accurately known length. One of the transducers acts as an input ultrasonic wave generator and the other one as the receiver. As the frequency of the input signal to the interferometer is varied, peaks are observed in the amplitude of the output signal corresponding to frequencies at which standing wave
resonance occurs. The speed of sound (a) is then calculated from $a=2 d \Delta f$, where (d) is the fixed distance between the transducers and (Δf) is the frequency difference between the successive resonances. Street and Constantino [2.25] used this technique for measuring speeds of sound in liquid argon at pressures up to 3400 atmospheres. The fixed path interferometer is particularly suited to high pressure applications since fewer adjustments are necessary. Liebenberg et al. [2.26] measured the speed of sound in argon at pressures up to 1300 MPa using this method and expressed the intention of extending these measurements to pressures up to 4000 MPa . In 1974, Garland and Williams [2.27] used a different variation of the fixed path interferometer. Instead of using the traditional longitudinal resonator, a transverse annular resonator was used in order to determine the resonant frequency in an azimuthal mode. An important feature of this method is the fact that low frequencies of the order of 1 kHz can be used.

The speed of sound in a gas can be measured most simply by sending a sound pulse through it and measuring its time of travel over a known distance. This method was used by Vereschagin et al. [2.28] in 1975. They developed an apparatus for adiabatically compressing a gas to high pressures (up to 3000 MPa) and high temperatures (>2000 K) for a period
of 1 to 2 milliseconds. A sound pulse is transmitted through this highly compressed gas and is detected by a transducer placed at a known distance from the emitter. However, accurate measurement of the time of travel has proved to be difficult and generally a repeating pulse technique is used which is similar to the fixed path interferometer. The difference is that in this case the emitting crystal or transducer sends an acoustic pulse which reflects between the receiving and emitting crystals several times which can be seen on an oscilloscope screen. By adjusting the repetition frequency of the input pulses, the acoustic pulse sequences belonging to different input pulses can be made to interfere constructively. When the time between consecutive input pulses is equal to the time required for an acoustic pulse to make a round trip from the detecting crystal to the emitting crystal and back, constructive interference of the received acoustic pulses occurs. The speed of sound (a) is then given by $a=2 d f$ where (d) is the distance between the crystal surfaces and (f) is the pulse repetition frequency. Younglove [2.29] measured the speed of sound in fluid para-hydrogen by this method in 1965. Also Tsumura and Starty [2.30] in 1977 used this method to measure the speed of sound in saturated and compressed fluid ethane.

Lacam [2.31] used an optical method to measure the ultrasonic speed of sound in several gases for a wide range of pressures and temperatures. His method is based on the principle that if a fluid is subjected to a plane wave of frequency (f), planes of maximum and minimum density are produced in the fluid at any given instant and the distance between two consecutive planes of either maximum or minimum density is the wavelength. Thus, if a monochromatic parallel beam of light of wave length (λ) is passed through the fluid, fringes may be observed. When these fringes are photographed by a camera of focal length (d), the velocity of the ultrasonic wave is given by the relation $a=f \lambda d / i$ where (i) is the distance between two consecutive fringes on the photograph.

The determination of the speed of sound using decompression wave velocity has received little attention. In 1951 Glass [2.32] used it to measure the speed of sound in air, argon, carbon dioxide and helium at $0^{\circ} \mathrm{C}$, for a pressure range of 1 to 5 atmospheres. He used streak photography to determine the path of the head of the decompression wave travelling into the high pressure chamber of a shock tube. The image path is a straight line whose slope provides the velocity of the head of the decompression wave which is equated to the speed of sound. After Glass,
no significant application of this method was undertaken until 1978 by Groves et al. [2.33]. In an attempt to study the effect of sudden rupture of a gas pipe line carrying high pressure natural gas, the decompression wave velocity in natural gases, pure methane and argon at $25^{\circ} \mathrm{F}$ and 1250 psi was measured. The spontaneous rupturing of the pipe line was idealized by the rupturing of a diaphragm in a shock tube. The arrival of the decompression wave was sensed by transient pressure transducers. The ratio of the distance between two consecutive transducers to the travel time of the head of the decompression wave from one transducer to the other provided the velocity.

Groves' method of measuring the decompression wave front velocity is used in this study, with a few modifications, to obtain the speed of sound in gases.

Relevant references on speed of sound data are discussed below.
2.3.1 Carbon Dioxide. A detailed list of references on speed of sound data and on molecular absorption in carbon dioxide at high pressures is given in [2.3,pl4l]. There are also some references on speed of sound measurements in carbon dioxide in [2.4]. However, "almost all the studies on the speed of sound have been made in the critical region
and have been concerned with the physics of the propagation of sound under dispersive conditions rather than with the determination of speed of sound as a thermodynamic property" [2.4,p32]. The only available data for comparison with the measured values in this study are taken from [2.34 and 2.35]. These data are, however, for $25^{\circ} \mathrm{C}$ only. The data of Hodge [2.20] which are at a slightly higher temperature $\left(27^{\circ} \mathrm{C}\right)$, are also taken into consideration to show the consistency of the measured speed of sound at $25^{\circ} \mathrm{C}$. No suitable speed of sound data at $0^{\circ} \mathrm{C}$ are available for comparison.
2.3.2 Argon. Lacam [2.31] measured speeds of ultrasound in argon, nitrogen and other gases at temperatures from $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ and pressures to 1100 atmospheres. His data for argon at $25^{\circ} \mathrm{C}$ are taken for comparison. Speeds of sound in argon were also measured by van Itterbeek et al. [2.36] at $-98.9^{\circ} \mathrm{C},-44.4^{\circ} \mathrm{C},-36.7^{\circ} \mathrm{C},-24.9^{\circ} \mathrm{C}, 0.6^{\circ} \mathrm{C}$, and $26.6^{\circ} \mathrm{C}$ and for pressures up to 70 atmospheres. Their data for argon at $0.6^{\circ} \mathrm{C}$ are compared with the speed of sound in argon at $0^{\circ} \mathrm{C}$ measured in this study. El-Hakeem [2.24] measured speeds of sound in argon and nitrogen at $0^{\circ} \mathrm{C}$ and $21.11^{\circ} \mathrm{C}$ for pressures up to 70 atmospheres. His data for argon at $0^{\circ} \mathrm{C}$ are also taken for comparison.
2.3.3 Nitrogen. Lacam's [2.31] data for nitrogen at $25^{\circ} \mathrm{C}$ and El-Hakeem's data [2.24] for nitrogen at $0^{\circ} \mathrm{C}$ are
taken for comparison. Speeds of sound in nitrogen were also measured by van Itterbeek et al. [2.21] at $-44.0^{\circ} \mathrm{C}$, $-24.43^{\circ} \mathrm{C},-0.05^{\circ} \mathrm{C}$ and $25.57^{\circ} \mathrm{C}$ for pressures up to 65 atmospheres. Their data for $-0.05^{\circ} \mathrm{C}$ and $25.57^{\circ} \mathrm{C}$ are also taken for comparison with the measured speed of sound in nitrogen at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ of this study.

The decompression wave front velocity apparatus, to be described in detail in chapter 4 , is best appreciated by preliminary consideration of shock tubes. Accordingly, the shock tube theory and decompression wave theory are now reviewed. This is followed by a consideration of the equations of state used here to calculate the speed of sound and other thermodynamic properties for comparison with the values observed.

3.1 Shock Tube Theory

A simple shock tube [3.1,p8] is essentially a long straight tube of uniform cross section containing a thin diaphragm which separates a high pressure gas zone from a low pressure zone (Fig. 3.1.1). When the diaphragm is ruptured either by a cutter, or by increasing the gas pressure difference across it until it bursts spontaneously, a shock wave travels into the low pressure zone and a decompression wave fan travels into the high pressure zone.

In ideal shock tube theory the shock wave is assumed to form instantaneously and the waves are assumed to be plane, and to travel at uniform velocities within each of the uniform state regions (1), (2), (3) and (4) shown in

Fig. 3.1.1 The Wave System Produced by Bursting a Diaphragm in a Shock Tube.

Fig. 3.1.2 Pressure and Temperature Distribution in a Simple Shock Tube after Diaphragm is Ruptured.

Fig. 3.1.1 [2.32a]. The region covered by the rarefaction or decompression wave fan is the only region which is not uniform. At the head of the decompression wave the flow speed is zero and the thermodynamic properties are same as in region (4). At the tail of the decompression wave, after isentropic expansion, the gas acquires the steady velocity and thermodynamic properties of region (3).

The equation for conservation of mass for one-dimensional, unsteady, inviscid flow is given by;

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \tag{3.1.1}
\end{equation*}
$$

The equation for conservation of momentum is given by;
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0$

The speed of sound is defined by;

$$
\begin{equation*}
a^{2}=\left(\frac{\partial p}{\partial \rho}\right)_{s} \tag{3.1.3}
\end{equation*}
$$

where s is entropy so that for isentropic flow;

$$
\begin{equation*}
d p=a^{2} d \rho \tag{3.1,4}
\end{equation*}
$$

Using Eq.(3.1.4) the equation for conservation of momentum takes the form;

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{a^{2}}{\rho} \frac{\partial \rho}{\partial x}=0 \tag{3.1.5}
\end{equation*}
$$

Multiplying Eq. (3.1.1) by a / ρ and adding it to and subtracting it from Eq.(3.1.5) leads to the following two equations;

$$
\begin{aligned}
& \left(\frac{\partial u}{\partial t}+\frac{a}{\rho} \frac{\partial \rho}{\partial t}\right)+(u+a)\left(\frac{\partial u}{\partial x}+\frac{a}{\rho} \frac{\partial \rho}{\partial x}\right)=0 \\
& \left(\frac{\partial u}{\partial t}-\frac{a}{\rho} \frac{\partial \rho}{\partial t}\right)+(u-a)\left(\frac{\partial u}{\partial x}-\frac{a}{\rho} \frac{\partial \rho}{\partial x}\right)=0
\end{aligned}
$$

which may be rewritten in the form;

$$
\begin{align*}
& \frac{\partial}{\partial t}[u+g(\rho)]+(u+a) \frac{\partial}{\partial x}[u+g(\rho)]=0 \tag{3.1.6}\\
& \frac{\partial}{\partial E}[u-g(\rho)]+(u-a) \frac{\partial}{\partial x}[u-g(\rho)]=0 \tag{3.1.7}
\end{align*}
$$

where $g(\rho)=\rho_{\rho_{0}}^{\rho} \frac{a}{\rho} d \rho \quad$ is a thermodynamic property defined by ρ and s. The quantities $u+g(\rho)$ and. $u-g(\rho)$ are the Reimann invariants denoted by P and Q respectively [3.1,p35]. Eqs. (3.1.6) and (3.1.7) therefore take the form;

$$
\begin{align*}
& \frac{\partial P}{\partial t}+(u+a) \frac{\partial P}{\partial x}=0 \tag{3.1.8}\\
& \frac{\partial Q}{\partial t}+(u-a) \frac{\partial Q}{\partial x}=0 \tag{3.1.9}
\end{align*}
$$

These two equations define two families of special curves called the characteristic curves. If a curve exists in the distance-time (x, t) plane which has the slope $d x / d t=u+a$ then Eq. (3.1.8) can be written as;

$$
\frac{\partial P}{\partial t}+\frac{d x}{d t} \cdot \frac{\partial P}{\partial x}=0, \text { i.e., } \quad \frac{\partial P}{\partial t} d t+\frac{\partial P}{\partial x} d x=0
$$

which is an exact differential, i.e., $d P=0$ so that $\mathrm{P}=$ constant.

In other words, in the (x, t) plane the curves along which $P=u+g(\rho)$ is constant have the slope $d x / d t=u+a$. These are called the P characteristic curves and represent the motion of a compression wave.

Similarly it can be shown that there exists another set of curves in the (x, t) plane along which $Q=u-g(\rho)$ is constant which has the slope $d x / d t=u-a$. These are called the Q characteristic curves and represent the motion of a decompression wave. The rate of advance of these waves is given by $u+a$ and $u-a$ respectively so that this rate of propagation relative to the flow speed u at every point under consideration is given by $\pm a$, i.e., the front of such a characteristic travels at the speed of sound relative to the gas. These characteristic paths are therefore properly called sound waves, Mach waves or characteristic lines. In particular, the decompression waves shown to be travelling to the left in Fig. 3.1.1 represent Q characteristics whose slopes are equal to u-a [3.1 and 3.2]. The first characteristic line (head of the decompression wave) travelling into the gas at rest ($u=0$) therefore propagates at the speed of sound [2.32a,p4].

3.2 Dense Gas Equations of State

The two functional relations;
$p=p(\rho, T):($ thermal equation of state) $\ldots .$. (3.2.1)
$\mathrm{U}=\mathrm{U}(\rho, T)$: (caloric equation of state) \ldots.... (3.2.2)
taken together, constitute a complete equation of state for a pure substance, i.e., they are necessary and sufficient for the determination of all thermodynamic properties at the state (ρ, T). However, particularly for gases, it is common practice to refer to the thermal equation of state as the equation of state with the understanding that the internal energy relation [Eq. (3.2.2)] is well known.

The equation of state for a very dilute gas, i.e., the well known ideal gas law, may be taken as the starting point for the present discussion. Here;
$Z=p / \rho R T=1$: thermal equation of state
and $U=U^{\circ}(T) \quad$: caloric equation of state where $U^{\circ}(T)$ is the precisely known ideal gas state internal energy value supplied by statistical mechanics applied to spectroscopic measurements of the rotation, vibration and electronic excitation of the molecules of the gas. The function (Z) describing the compressibility factor constitutes the essential difference among the various dense (i.e., non-ideal) gas equations of state.

The equation of state for a dense gas may be expressed as;

$$
\begin{array}{ll}
p=\rho R T Z ; ~ & Z=Z(\rho, T) \\
U(\rho, T)=U^{O}(T)+U_{R}(\rho, T) & \text { : caloric equation }
\end{array}
$$

where $Z \neq 1$ except at one particular point on each (low temperature) isotherm while U° is the ideal gas state internal energy component and U_{R} is the real or additional internal energy component arising from intermolecular forces and from the finite size of the molecules, both of which are justifiably neglected in the ideal gas equation of state. The real component of the internal energy $\left(U_{R}\right)$ is determined from the general relation;

$$
\left(\frac{\partial U_{R}}{\partial v}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{\rho}-p=\rho \dot{R T}^{2}\left(\frac{\partial Z}{\partial T}\right)_{\rho}
$$

so that the calculated internal energy and other energy related properties such as speed of sound may be expected to be sensitive to the functional form of the equation of state $Z(\rho, T)$ even when the calculated values of $Z(\rho, T)$ accurately reflect observed values of Z.

Over the years, various equations of state have been developed, both analytically and empirically, for dense gases. However, no equation, regardless of its complexity, is wholly satisfactory for all conditions of temperature and density [3.3].

In this study three equations of state are chosen for comparison of the calculated thermodynamic properties with those observed here. These are;

1. The van der Waals equation of state
2. A virial equation of state
3. The Benedict-Webb-Rubin equation of state.

These equations and the expressions for calculation of the relevant thermodynamic properties are described below. The detailed procedure for computation of thermodynamic properties from these equations is given in appendix Al.
3.2.1 The van der Waals Equation of State. The van der Waals [3.4] equation may be written as;

$$
\begin{equation*}
\left(p+\frac{a^{v d w}}{v^{2}}\right)\left(v-b_{v d w}\right)=R T \tag{3.2.3}
\end{equation*}
$$

where $a_{v d w}$ and $b_{v d w}$ are constants accounting for the attractive forces among the molecules of the gas and the finite volume of the gas particles respectively. The constants $a_{v d w}$ and $b_{v d w}$ are determined from the p, v, T properties at the critical point using the definition of the critical point namely;

$$
\left(\frac{\partial p}{\partial v}\right)_{T=T}=0 \quad \text { and } \quad\left(\frac{\partial^{2} p}{\partial v^{2}}\right)_{T=T}=0
$$

From this condition it follows that;

$$
\left.\begin{array}{l}
a_{v d w}=(27 / 8) R T_{c} b_{v d w} \tag{3.2,4}\\
b_{v d w}=v_{c} / 3
\end{array}\right\}
$$

and the expression for the compressibility factor Z is seen to be;

$$
\begin{equation*}
z=\frac{p}{\rho R T}=\frac{1}{1-\omega_{v d w}}-\frac{27 / 8}{T_{r}} \omega_{v d w} \tag{3.2.5}
\end{equation*}
$$

where $\omega_{v d w}$ is a dimensionless density and is equal to $b_{v d w} / v$ and $T_{r}=T / T_{C}, T_{C}$ being the critical temperature.

The following relations can be derived from Eq. (3.2.5).

$$
\begin{align*}
& \left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{v}=\frac{R}{v} \frac{1}{1-\omega_{v d w}} \tag{3.2.6}\\
& \kappa=\frac{1}{\frac{p_{2}}{Z}\left[\frac{1}{\left(1-\omega_{v d w}\right)^{2}}-\frac{27}{4 \mathrm{~T}_{r}} \omega_{v d w}\right]} \tag{3.2.7}\\
& c_{v}=c_{v}^{0}(T) ; \quad c_{v R}=0 \tag{3.2.8}
\end{align*}
$$

Eqs. (3.2.5) through (3.2.8) can be used to calculate other desired thermodynamic properties.
3.2.2 Virial Equation of State. The experimental pv isotherm may be represented over wide ranges of pressures and temperatures by a power series relation;

$$
\begin{equation*}
\frac{p v}{R T}=z=1+\frac{B(T)}{v}+\frac{C(T)}{v^{2}}+\frac{D(T)}{v^{3}}+\cdots \tag{3.2.9}
\end{equation*}
$$

referred to as a virial equation of state. The temperature dependent functions $B(T), C(T), \ldots$ are called the second, third, ... virial coefficients. These coefficients have
functional forms determined by the nature of the assumed intermolecular potential energy function. The computation requires statistical mechanics and results in dimensionless (i.e., universal) functions. The unknown, constants are determined experimentally.

The range of validity of the virial expansion is limited by the convergence of the series, which diverges at about the density of the liquid. Hence the primary application of the virial equation of state is in the study of gases at low and moderate densities [1.3,pl32].

In the simplest case, molecules are assumed to be force-free rigid spheres. For this model virial coefficients up to the fifth have been known for several years [1.3, pl57]. The sixth and seventh virial coefficients also have now been calculated and the eighth virial coefficient has been estimated [2.1,pl86]. These hard molecule coefficients are;
$\left.\begin{array}{lll}\text { Second; } & B=\frac{2}{3} \pi N \sigma_{h}^{3}=b_{h} & {[1.3 \text { and 2.1] }} \\ \text { Third; } & C=0.625 b_{h}^{2} & {[1.3 \text { and 2.1] }} \\ \text { Fourth; } & D=0.2869 b_{h}^{3} & {[1.3]} \\ \text { Fifth; } & E=(0.115 \pm 0.005) b_{h}^{4} & {[1.3]} \\ \text { Fifth; } & E=(0.1104 \pm 0.00006) b_{h}^{4} & {[2.1]} \\ \text { Sixth; } & F=(0.0386 \pm 0.0004) b_{h}^{5} & {[2.1]} \\ \text { Seventh; } & G=(0.0138 \pm 0.0004) b_{h}^{6} & {[2.1]} \\ \text { Eighth; } & H \simeq 0.005 b_{h}^{7} & {[2.1]}\end{array}\right\} \ldots(3.2 .10)$
where N is the Avogadro's number and σ_{h} is the diameter of the hard molecule which can be obtained from kinetic theory of gases [1.3,pl5] or from experimental data. Stuart [3.5,p36] provides a listing of collision diameters for rigid spheres as determined from different types of experimental data. The virial coefficients for rigid molecules are, of course, independent of temperature. Thus, the rigid sphere approximation is good only at very high temperatures where the attraction between molecules becomes unimportant [1.3,pl57]. However, experimental values of the virial coefficients demonstrate temperature dependence and at low temperatures differ significantly from the hard molecule case. More sophisticated intermolecular potential energy functions which have been proposed include the square-well potential, the Sutherland potential, the Lennard-Jones potential and the Buckingham potential. For non-polar molecules, the most commonly used intermolecular potential function is the Lennard-Jones (6-12) potential;

$$
\begin{equation*}
\phi(r)=4 \varepsilon\left[\left(\sigma_{L J} / r\right)^{12} \cdot-\left(\sigma_{L J} / r\right)^{6}\right] \tag{3.2.11}
\end{equation*}
$$

where $\sigma_{\text {LJ }}$ is the low velocity collision diameter and is equal to the value of r for which $\phi(r)=0$, and ε is the maximum energy of attraction (or depth of potential well) which occurs at $r=2^{1 / 6} \sigma_{L J}$. The parameters $\sigma_{L J}$ and ε having the dimensions of length and energy respectively are
constants characteristic of the chemical species of the colliding molecules [1.3,p22]. A pictorial representation of the Lennard-Jones potential energy function along with the hard molecule or rigid sphere potential function is shown in Fig. (3.2.1). The generalized second and third virial coefficients and their temperature derivatives for the Lennard-Jones (6-12) potential, defined below, are tabulated in [1.3,pll14-1117].

$$
\begin{align*}
& B^{*}\left(T^{*}\right)=B(T) /\left(\frac{2}{3} N_{T J}^{3}\right)=B(T) / b_{L J} \\
& C^{*}\left(T^{*}\right)=C(T) / b_{L J}^{2} \\
& B_{n}^{*}\left(T^{*}\right)=T^{*}{ }^{*}\left(d^{n} B^{*} / d T^{*} n_{n}\right) \\
& C_{n}^{*}\left(T^{*}\right)=T^{*}{ }^{*}\left(d^{n} C^{*} / d^{*}{ }^{n}\right) \\
& T^{*}=T /(\varepsilon / k)=T / \theta
\end{align*}
$$

where k is the Boltzmann constant, $b_{L J}$ is the covolume and θ is the potential well depth temperature. The pair ($b_{L J}, \theta$) are the so called force constants and are determined from experimental $B(T)$ data $[2.1, p 250]$. Once found, this pair of constants fully determines the thermal equation of state. However, the analytical $C *\left(T^{*}\right)$ values do not agree well with observed values of $C(T) / b_{L J}^{2}[1.3, p 171$ and 2.1,p254].

The fourth and higher virial coefficients for the Lennard-Jones (6-12) potential have also been calculated [3.6.3.7] but their experimental verification is so far
incomplete. Accordingly, since the fourth and fifth virial coefficients are well established for the rigid sphere potential, Groves [3.8] has designed a hybrid virial equation of state which takes the soft molecule terms of the virial equation using the Lennard-Jones (6-12) potential with the hard molecule terms from the hard molecule virial. In this hybrid virial equation the second and third virial coefficients are taken from the Lennard-Jones (6-12) potential and the fourth and fifth virial coefficients are taken from the hard molecule assumption. Thus the hybrid virial equation of state is given by;

$$
\begin{align*}
Z=\frac{p v}{R T} & =I+\frac{B^{*}\left(T^{*}\right) b_{L J}}{v}+\frac{C^{*}\left(T^{*}\right) b_{L J}^{2}}{v^{2}}+\frac{0.2869 b_{h}^{3}}{v^{3}}+\frac{0.115 b_{h}^{4}}{v^{4}} \\
& =1+B^{*}\left(T^{*}\right) \omega_{L J}+C^{*}\left(T^{*}\right) \omega_{L J}^{2}+0.2869 \omega_{h}^{3}+0.115 \omega_{h}^{4} \tag{3.2.13}
\end{align*}
$$

where $\omega_{L J}$ is a dimensionless density for Lennard-Jones (6-12) potential defined by $\omega_{L J}=b_{L J} / v$ and ω_{h} is a dimensionless density for hard molecules defined by $\omega_{h}=b_{h} / v$. This hybrid virial is found to predict satisfactory values of the compressibility factor at the critical point (Z_{C}). It can be shown that for the hard molecule virial the internal energy is the same as the ideal gas value. On the other hand the compressibility factor Z obtained from the truncated Lennard-Jones (6-12) virial is significantly lower than the
observed values. The hybrid equation takes advantage of the contribution to the internal energy by the soft Lennard-Jones (6-12) molecules and partly corrects the too low value of z given by the truncated Lennard-Jones (6-12) virial. The diameter σ_{h} may be defined to be the distance of closest approach in a collision having the average collision energy $k T$ [1.3,pl57]. Thus, with reference to Fig. 3.2.2, σ_{h} is the value of r at which the potential function $\phi(r)=k T$. Thus;

$$
\mathrm{kT}=4 \varepsilon\left[\left(\sigma_{\mathrm{LJ}} / \sigma_{\mathrm{h}}\right)^{12}-\left(\sigma_{\mathrm{LJ}} / \sigma_{\mathrm{h}}\right)^{6}\right]
$$

From which;

$$
\begin{equation*}
\frac{\sigma_{h}}{\sigma_{L J}}=\left[\frac{2}{1+\sqrt{ }\left(1+T^{*}\right)}\right]^{1 / 6} \tag{3.2.14}
\end{equation*}
$$

and therefore;

$$
\begin{equation*}
\frac{\omega_{h}}{\omega_{L J}}=\frac{b_{h}}{b_{L J}}=\left({\frac{\sigma}{\sigma_{L J}}}_{\sigma_{L J}}\right)^{3}=\left[\frac{2}{1+\sqrt{ }\left(1+T^{*}\right)}\right]^{1 / 2} \tag{3.2.15}
\end{equation*}
$$

i.e. $b_{h}=b_{L J}\left[\frac{2}{1+\sqrt{\left(1+T^{*}\right)}}\right]^{1 / 2}$
where an average temperature over the temperature range concerned may be used to define a fixed value of b_{h} for Eq. (3.2.15).

Fig. 3.2.1 Pictorial Representation of Hard Molecule or Rigid Sphere and Lennard-Jones (6-12) Potential. Energy Function.

Fig. 3.2.2 Illustration of σ_{h} as the Value of r at which $\phi(r)=k T$ for Lennard-Jones Potential.

The following relations can be derived from Eq. (3.2.13);

$$
\begin{align*}
& \left(\frac{\partial \mathrm{P}}{\partial T}\right)_{v}=\mathrm{ZR} \frac{\omega_{L J}}{\delta_{L J}}+\frac{R}{b_{L J}}\left(B_{I}^{*} \omega_{L J}^{2}+C_{1}^{*} \omega_{L J}^{3}\right) \tag{3.2.16}\\
& k=\frac{1}{p\left[1+(1 / Z)\left(B^{*} \omega_{L J}+2 C^{*} \omega_{L J}^{2}+3 \times 0.2869 \omega_{h}^{3}+4 \times 0.115 \omega_{h}^{4}\right)\right]} \ldots \tag{3.2.17}\\
& c_{V R}=-R \omega_{L J}\left[\left(2 B_{1}^{*}+B_{2}^{*}\right)+\left(\frac{\omega_{L J}}{2}\right)\left(2 C_{1}^{*}+C_{2}^{*}\right)\right] \ldots \ldots \ldots \ldots \ldots \ldots \tag{3.2.18}
\end{align*}
$$

Eqs. (3.2.16) through (3.2.18) and Eq. (3.2.13) are used to calculate other desired thermodynamic properties. The Lennard-Jones (6-12) potential constants for the gases used are given in Table Al.2.l.
3.2.3 The Benedict-Webb-Rubin Equation of State. This is an empirical equation with eight constants obtained by fitting the equation to experimental values. When expressed as a virial it has the form;

$$
\begin{align*}
Z=\frac{p V}{R T}= & 1+\left(B_{0}-\frac{A_{0}}{R T}-\frac{C_{0}}{R T^{3}}\right) \rho+\left(B-\frac{A}{R T}+\frac{C}{R T^{3}} e^{-\gamma \rho^{2}}\right) \rho^{2} \\
& +\left(\gamma \frac{C}{R T^{3}}\right) e^{-\gamma \rho^{2}} \rho^{4}+\alpha \frac{A}{R T}^{2} \quad \cdots \ldots \ldots \ldots \ldots \tag{3.2.19}
\end{align*}
$$

where the eight constants $A, A_{o}, B, B_{O}, C_{r}, C_{o}, \alpha$ and γ are determined from pure gas data. The constants for the gases used are taken from [3.9] and presented in Table Al.2.2. The following relations can be derived from Eq. (3.2.19)
which are used to compute the desired thermodynamic properties;

$$
\begin{align*}
& \left(\frac{\partial \rho}{\partial T}\right)_{v}=R \rho\left[I+\left(B_{0}+\frac{2 C_{O}}{R T^{3}}\right) \rho+\left(B-\frac{2 C}{R T^{3}} e^{-\gamma \rho^{2}}\right) \rho^{2}-\gamma \frac{2 C}{R T^{3}} e^{-\gamma \rho^{2}} \rho^{4}\right] \ldots(3.2 .20) \\
& \kappa=\frac{1}{\frac{P}{Z}\left[1+2\left(B_{0}-\frac{A_{0}}{R T}-\frac{C_{o}}{R T^{3}}\right) \rho+3\left(B-\frac{A}{R T}+\frac{C}{R T^{3}} e^{-\gamma \rho^{2}}\right) \rho^{2}\right.} \\
& \left.+3\left(\gamma \frac{C}{R T^{3}}\right) e^{-\gamma \rho_{\rho}^{2}} \rho_{i}^{4}+6 \alpha \frac{A}{R T} \rho^{5}-2 \gamma^{2} \frac{C}{R T^{3}} e^{-\gamma \rho^{2}} \rho\right] \tag{3.2.21}\\
& c_{V R}=\frac{1}{R T^{3}}\left[6 C_{0} \rho+3 C e^{-\gamma \rho^{2}} \rho^{2}+6 \frac{C}{\gamma}\left(e^{-\gamma \rho^{2}}-1\right)\right] \tag{3.2.22}
\end{align*}
$$

4.1 Outline of the Method

4.1.1 Measurement of Decompression Wave Front Velocity. The decompression wave is generated by bursting a diaphragm in a tube filled with the chosen gas at a known pressure and temperature. The front of the wave travels from the rupture point at the speed of sound in the undisturbed gas and is detected by piezoelectric transducers*. A typical set of pressure-time signals from these transducers is shown in Fig. 4.l.l. These signals are recorded on magnetic tape. These records are digitized by an analog-to-digital converter and the digitized data are transferred directly to a computer (desk-top 48 K Apple II) for analysis. A digitizing interval of 1 microsecond was adopted.

For the purpose of analysis every signal is divided into two zones as shown in Fig. 4.l.2. The first is the constant pressure zone where the pressure is seen to remain essentially constant (except for noise and drift) until the decompression wave front arrives. The second demonstrates a decaying pressure signal which describes the pressure of the decompression wave fan as it traverses the transducer.
*"Kistler" quartz transducers, type 601A

Fig. 4.1.1 A Typical Set of Pressure (Voltage) - Time Signal from the Piezoelectric Transducers; as Viewed on the Oscillascope Screen and Recorded by xy Plotter.

Fig. 4.1.2 Signal Description.

The digitized record from the constant pressure zone is fitted by a straight line. The decaying zone signal is fitted by a second degree polynomial. This particular polynomial was chosen from the examination of standard deviations of the fits of a variety of candidate fitting functions $p(t)$ when applied to several data sets. These candidate equations included first, second and third degree polynomials, exponentials, power functions and a logarithmic second degree polynomial [of the form $\left.\ln p=C_{0}+C_{I}(\ln t)+C_{2}(\ln t)^{2}\right]$.

In order to determine the time of arrival (t_{1}) of the head of the decompression wave at a particular transducer position, the signal is first displayed on an oscilloscope from which an initial estimate of t_{1} (see Fig. 4.1.2) is obtained. The digitized $p(t)$ data from t_{0} to t_{l} are fitted by least squares to obtain the linear equation in the constant pressure zone; $p(t)=b_{0}+b_{1} t$. A time t_{2}, also chosen from the oscilloscope display, defines the time beyond which the decaying signal ceases to be smooth. The digitized data from t_{1} to t_{2} are fitted to obtain the pressure-time polynomial; $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$. The intersection of these two curves is taken to be the improved arrival time $\left(t_{1}\right)$ of the head
of the decompression wave. Thus;

$$
\begin{aligned}
p\left(t_{1}\right) & =b_{0}+b_{1} t_{1}=a_{0}+a_{1} t_{1}+a_{2} t_{1}^{2} \\
\text { i.e., } \quad t_{1} & =\frac{-\left(a_{1}-b_{1}\right) \pm V\left\{\left(a_{1}-b_{1}\right)^{2}-4 a_{2}\left(a_{0}-b_{0}\right)\right\}}{2 a_{2}} \quad \ldots \quad \text { (4.1.1) }
\end{aligned}
$$

Using this improved value of t_{1}, the process is repeated until no significant change in t_{1} occurs. This final t_{l} is taken to be the arrival time of the head of the decompression wave at the particular transducer position concerned. The velocity of the head of the decompression wave (i.e., the speed of sound) is then taken to be $\Delta x / \Delta t$ where Δx is the distance between two transducers and Δt is the difference in times of arrival of the decompression wave at these two transducers.
4.1.2 Measurement of the Isothermal Compressibility. The isothermal compressibility k may be defined by;

$$
\begin{equation*}
K=-(1 / v)(\partial v / \partial p)_{T} \tag{4.1.2}
\end{equation*}
$$

In the measurement of k, the gas at pressure P_{li} in the decompression tube is leaked into a relatively small pre-evacuated chamber of accurately known volume V_{2}. After thermal equilibrium is established with the surrounding liquid bath in which the apparatus is immersed, decrease Δp in pressure is noted. The value of κ is therefore given by;

$$
\begin{equation*}
\kappa\left(p_{k}, T\right)=-\frac{1}{V_{1}+V_{2} / 2} \frac{v_{2}}{\Delta p} ; p_{K}=p_{1 i}-\frac{\Delta p}{2} \tag{4.1.3}
\end{equation*}
$$

where V_{1} is the original volume of the gas and T is the temperature of the isotherm, i.e., of the bath.
4.1.3 Measurement of Density. Gas density is measured by expanding the mass of the gas previously leaked into the space of known volume V_{2} (see above) into an additional large volume V_{3}. Since the gas is now very dilute, the ideal gas equation of state may be applied in order to determine the mass (m) of the gas which was originally leaked into the small chamber. The gas density is therefore m / V_{2}.

4.2 Apparatus

A schematic diagram of the apparatus is given in Fig. 4.2.1 and a photographic view is given in Plate 4.2.1. The apparatus consists of (i) a decompression wave tube equipped with pressure and temperature sensors designed to measure the speed of sound in the contained gas; (ii) a coil made of $1 / 8$ inch $O D$ stainless steel tubing used as the expansion chamber in the measurement of isothermal compressibility; (iii) a large cylindrical vessel designed to aid in the measurement of the gas density; (iv) a constant-temperature bath in which these gas-containing components are immersed; (v) high pressure gas bottles and (vi) electronic recording, - display and analysing equipment.

Fig. 4.2.1 Schematic Diagram of the Apparatus.

The decompression wave tube, 7.798 mm ID and 10.287 mm OD is made from 316 stainless steel (1/8 inch nominal size pipe of schedule 10 is used). As shown in Plate 4.2.2, this tube is shaped like an inverted T with a diaphragm-clamp at the top of the vertical section. The diaphragm is designed according to Gaydon [4.1] and the details are shown in Fig. 4.2.2. The vertical section of the tube is welded to the middle of the horizontal section. A transducer (designated T_{M}) is mounted flush with the tube wall in the horizontal section of this T-junction normal to the axis of the vertical section. Two other transducers (designated T_{L} and T_{R}) are mounted flush with the end faces of the horizontal section of the tube.

This arrangement of transducers in the T-shaped decompression tube facilitates high accuracy in the measurement of decompression wave front velocity. When the diaphragm is ruptured a decompression wave travels down the vertical section of the tube, undergoes a normal reflection at the front surface of the transducer T_{M} and then splits into two decompression waves moving left and right along the horizontal section where normal reflection occurs again at the front surfaces of the transducers T_{L} and T_{R}. Thus each encounter of the wave with a transducer is essentially head on, so that all parts of the sensitive element of the

Fig. 4.2.2 Details of the Diaphragm Clamp.
transducers experience the same pressure simultaneously. This not only allows precise definition of the effective distance between transducers but also enables precise determination of the arrival time of the front of the decompression wave (indicated by an abrupt decrease in the pressure signal from the transducers). This abruptness (and therefore the determination of time of arrival) is further enhanced by the doubling effect of normal reflection on pressure decrease in the gas adjacent to the transducer elements.

The gas is drawn from the high pressure supply through 1/8 inch OD stainless steel tubing. This is fed to both sides of the diaphragm through ports in the vertical section of the tube. The coil-shaped expansion chamber, mentioned above, has an internal volume of only about 10% of the main tube. One end of this is connected to the vertical section of the T-tube and the other end is connected through a valve to the large cylinder which has an internal volume about 1000 times that of the internal volume of the coil.

As shown in Fig. 4.2.1, seven high pressure valves VI through V7 are connected to the tubing for operation and control, thermocouples $T 1$ through $T 7$ are used to measure the temperature at seven chosen points and two static pressure
transducers Pl and P2 are used to measure the static pressures in the decompression wave tube and the large tank respectively.

For measurement on a chosen isotherm all gas-containing chambers within the diaphragm are immersed in a temperature controlled liquid bath.

The connecting tubing and the valves Vl through V6 are rated for 100 MPa and hydraulic tests show the decompression tube to have a rating of at least 60 MPa .

Three gases are studied namely; carbon dioxide, argon and nitrogen. These gases, of 99.998% purity, were supplied by Matheson Gas Co in gas cylinders. Argon and nitrogen were supplied at pressures of about 40 MPa while carbon dioxide was supplied at pressures of about 5.5 MPa.

4.3 Procedure

The diaphragm is emplaced. Then the entire system including the connected tubing and the large chamber is evacuated. Here, the valves V1 and V4 are closed and all other valves are open. The system is then flushed by repeatedly introducing a small amount of gas (via VI) and then evacuating. The final post-evacuation pressure $\mathrm{p}_{2 i}$ registered by transducer P2 (generally $\quad \mathrm{kPa}$) is noted. The gas is then loaded into the decompression tube until the desired pressure is reached (Vl opened, V5 closed). With valve Vl now closed,
the gas is fully contained. Thermal equilibrium with the bath is reached within 10 minutes. When this has been attained the pressure $p_{1 i}$ registered by the transducer $P l$ is noted. This is the initial pressure inside the decompression tube. With valve V6 closed, V5 is opened so that a small fraction of the gas leaks into the expansion coil. After about 5 minutes, thermal equilibrium is established and the pressure Plf registered by transducer $P 1$ is noted. Valve V6 is now opened (with V5, V7 closed) so that the high pressure gas in the coil expands into the large chamber. After a few minutes, when thermal equilibrium is established the pressure $p_{2 f}$ exhibited by transducer $P 2$ is noted.

The decompression wave is now initiated by opening valve V4 sharply (with V2 closed). As a result the pressure on the outer side of the diaphragm decreases so that a strong pressure difference across the diaphragm is rapidly established. Accordingly, the diaphragm (a thin sheet of mylar about 0.025 mm thick) bursts abruptly and a decompression wave travels downward along the vertical section of the tube as described earlier. The signal from the transducers T_{M}, T_{L} and T_{R} are recorded on a magnetic tape at a speed of 60 in/sec for later analysis.

4.4 Measurement Details

4.4.1 Temperature Measurement. Temperatures are measured via J-type (iron/constantan) thermocouples. Seven thermocouples are used for this purpose. Gas temperatures within the left and right arms of the horizontal section of the T-tube are obtained via thermocouples $T 1$ and $T 2$. The gas temperature in the coil and in the large cylinder are measured via thermocouples $T 3$ and $T 5$ respectively, while the temperature of the bath is measured via $T 6$ and room temperature is measured via T7. The temperature of the gas external to the diaphragm is measured via T4. These thermocouples are connected to a "Fluke 2240B" data-logger which provides digital temperature read-out with a resolution of $0.1^{\circ} \mathrm{C}$.

The thermocouples are calibrated against a high-precision quartz thermometer in a variable temperature oven over the range $-45^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$. These observations are fitted by a linear relation using the method of least squares to obtain the coefficients of the linear calibration relation;

$$
\begin{equation*}
T=C_{0}+C_{1} T^{\prime} \tag{4.4.1}
\end{equation*}
$$

where T^{\prime} is the apparent temperature registered by a thermocouple and T is the corrected temperature. These coefficients are given in Table 4.4.1.

Table 4.4.1	Thermocouple-Calibration Coefficients.	
Thermocouple	C $_{0}$	C $_{1}$
	O $_{\text {C }}$	
T1	-0.568149	1.02296
T2	0.295812	1.01473
T3	0.156424	1.03290
T4	-0.135006	0.99783
T5	-0.534654	1.01942
T6	-0.446854	0.99839
T7	-1.080440	1.00003

Observations are made only at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. The $0^{\circ} \mathrm{C}$ isotherm is maintained by melting ice in distilled water (in the bath) while the $25^{\circ} \mathrm{C}$ isotherm is maintained by a "Thermomix" temperature-controller equiped with a heating element and a thermostat, using a 60 \% (by weight) solution of ethylene glycol in distilled water.

For each gas-load, the temperature ascribed to the gas is taken to be the average of the corrected temperatures given by the thermocouples immersed in the bath namely; $T 1$, T2, T3, T5 and T6. This average temperature is seen to vary for different sets of readings for the same isotherm. The maximum variation for the $0^{\circ} \mathrm{C}$ isotherm is $\pm 0.1^{\circ} \mathrm{C}$ and that for the $25^{\circ} \mathrm{C}$ isotherm is $\pm 0.2^{\circ} \mathrm{C}$. This variation is due in part to round-off of temperature readings presented by the data-logger.
4.4.2 Pressure Measurement. The pressure in the main tube is measured using a "Sensotech TJE" pressure transducer (PI), having a range of 0 to $15,000 \mathrm{psig}$ with accuracy rated to within 0.1%, connected to a "Sensotech 450D" signal conditioner which provides digital readings of pressure in psig units with a resolution of 1 psi.

The pressure in the large (low pressure) chamber is measured using a "Validyne DP15-42" differential pressure transducer (P2), having a range of $\pm 140 \mathrm{kPa}$ with a rated accuracy of 0.25%, connected to a "Validyne CD223" digital transducer indicator which provides digital pressure readings in kPa units with a resolution of 0.01 kPa .

Atmospheric pressure is measured using a "Penwalt-FAll2150" precision aneroid dial type barometer (located near the apparatus) having a resolution of 0.05 kPa.
4.4.3 Volume Measurements. Precise values of the internal volume of the main decompression tube, the coil and the large low pressure chamber and the connected tubing are required in order to determine accurate values of gas density and isothermal compressibility. For convenience, the internal volume of the main tube along with the tubing, i.e., the volume from valve VI to V5 (Fig.4.2.1), is designated as V_{1}; the internal volume of the coil, i.e., the volume
from valve V5 to $V 6$, is designated V_{2} while the volume of the large cylinder, from valve $V 6$ to $V 7$, is designated V_{3}.

The internal volumes V_{1}, V_{2} and V_{3} are determined by disconnecting each segment (including valves) and weighing them first empty and then filled with distilled water at a known temperature. The difference in mass divided by the density of water at the temperature concerned gives the volume. Weights are obtained using a (digital) balance and the density of the distilled water is obtained by interpolation using recent data [4.2,p6-10]. The procedure is repeated several times for each segment resulting in the average values given below;
(T-tube) $\quad V_{1}=55.2234 \mathrm{ml} \pm 0.053 \mathrm{ml}$ at $22.0^{\circ} \mathrm{C}$ (Coil) $\quad V_{2}=6.5146 \mathrm{ml} \pm 0.005 \mathrm{ml}$ at $18.1^{\circ} \mathrm{C}$ (Large Chamber) $\mathrm{V}_{3}=5106.5407 \mathrm{ml} \pm 5.240 \mathrm{mI}$ at $19.5^{\circ} \mathrm{C}$

4.5 Working Formulae for Deriving Density, Isothermal Compressibility and Decompression Wave Front Velocity

4.5.1 Nomenclature.
$P_{1 i}:$ pressure in the main tube after the gas is loaded (and before valve V5 is opened).
$\mathrm{P}_{\text {If }}:$ pressure in the main tube and the expansion coil (after the valve V5 is opened with V6 closed).
$p_{2 i}$: initial (vacuum) pressure in the coil and the large chamber (before valve V5 is opened).
$\mathrm{p}_{2 f}:$ final pressure in the large chamber and coil after the high pressure contents of the coil are shared with the large chamber (after valve V6 is opened with V5 closed).
$p_{\text {atm }}$: atmospheric pressure
$m_{2 i}$: initial mass of gas (at pressure $p_{1 f}$) in the coil.
$m_{2 f}$: final mass of gas (at pressure $p_{2 f}$) in the coil after the high pressure contents of the coil are shared with the large chamber.
$m_{3 i}$: initial mass of gas (at pressure $p_{2 i}$) in the large chamber.
$m_{3 f}$: final mass of gas (at pressure $p_{2 f}$) in the large chamber after the high pressure contents of the coil are shared with the large chamber.

T: absolute temperature of the gas.
ρ : gas density in the coil before discharge to the large chamber which is also the density of the gas in the main tube at pressure $\mathrm{p}_{\text {If }}$.

R : gas constant per unit mass.
X_{ML} : distance of the face of the left hand transducer from the center of the middle transducer.
x_{MR} : distance of the face of the right hand
transducer from the center of the middle transducer.
t_{M} : time of arrival of the wave front at the middle transducer with respect to some arbitrary reference time.
t_{L} : time of arrival of the wave front at the left hand transducer with respect to the same reference time.
t_{R} : time of arrival of the wave front at the right hand transducer with respect to the same reference time.
V_{ML} : the average velocity of the decompression wave front from the middle to the left hand transducer.
V_{MR} : the average velocity of the decompression wave front from the middle to the right hand transducer.
4.5.2 Density of the Gas . The volume of the large chamber was chosen sufficiently large so that the ideal gas law can be applied with high accuracy throughout. Accordingly, the ideal gas equation of state applies to the contents of V_{3} throughout. It also applies to the residual mass $m_{2 f}$ in V_{2} 。

Since;

$$
m_{2 i}+m_{3 i}=m_{2 f}+m_{3 f}
$$

then

$$
\begin{aligned}
m_{2 i} & =\left(m_{3 f}-m_{3 i}\right)+m_{2 f} \\
& =(1 / R T)\left[v_{3}\left(p_{2 f}-p_{2 i}\right)+v_{2} p_{2 f}\right]
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
\rho & =m_{2 i} / V_{2} \\
& =(1 / R T)\left[\left(1+V_{3} / V_{2}\right)\left(p_{2 f}-p_{2 i}\right)+p_{2 i}\right]
\end{aligned}
$$

so that for the values of V_{2} and V_{3} given above

$$
\rho\left(p_{1 f}, T\right)=(1 / R T)\left[784.861\left(p_{2 f}-p_{2 i}\right)+p_{2 i}\right] \ldots(4.5 .1)
$$

4.5.3 Isothermal Compressibility. The isothermal compressibility is given by Eq. (4.1.2). Since $V_{2} / V_{1} \simeq 0.1$, according to Eq. (4.1.3) K is approximated by;

$$
\kappa=-\frac{1}{v_{1}+v_{2} / 2} \frac{v_{2}}{p_{I f}-p_{1 i}}
$$

which is taken to be applicable at the average pressure $\left(p_{l f}+p_{l i}\right) / 2$. Accordingly, for the values V_{1} and V_{2} given earlier;

$$
K\left(p_{K}, T\right)=-16.1567 /\left(p_{1 f}-p_{I i}\right) M P a^{-1} \ldots(4.5 .2)
$$

4.5.4 Decompression Wave Front Velocity. Distances x_{ML} and $X_{M R}$ are measured accurately by a vernier calliper having a resolution of 0.03 mm . The average values from several measurements are;

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{ML}}=300.16 \mathrm{~mm} \\
& \mathrm{x}_{\mathrm{MR}}=300.25 \mathrm{~mm}
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
& v_{M L}=x_{M L} /\left(t_{L}-t_{M}\right) \\
& v_{M R}=x_{M R} /\left(t_{R}-t_{M}\right)
\end{aligned}
$$

From signal analysis the values of t_{M}, t_{L} and t_{R} are obtained in microsecond units while the distances are in millimeter units. Accordingly;

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{ML}}=300.16 \times 10^{3} /\left(t_{\mathrm{L}}-t_{M}\right) \mathrm{m} \mathrm{~s}^{-1} \\
& \mathrm{v}_{\mathrm{MR}}=300.25 \times 10^{3} /\left(t_{\mathrm{R}}-t_{M}\right) \mathrm{ms}^{-1}
\end{aligned}
$$

The average of $v_{M L}$ and $v_{M R}$ is taken to be the velocity of the decompression wave front ,i.e., to be the speed of sound (a) at the particular pressure and temperature, i.e.;

$$
a\left(p_{l f}, T\right)=\left(v_{M L}+v_{M R}\right) / 2 \mathrm{~ms}^{-1} \ldots \ldots(4.5 .3)
$$

5.1 Preliminary Measurements of Sound speed

The measurement technique is first calibrated by measuring decompression wave front velocities at ideal gas states in the gases concerned and in air. The velocities obtained are required to be very nearly equal to ideal gas state speeds of sound, namely to;

$$
\begin{equation*}
a^{0}=\left(\gamma^{0}{ }_{R T}\right)^{1 / 2} \tag{5.1.1}
\end{equation*}
$$

Measurements are made at "room temperatures" so that the observed speed of sound values are pertinent to a range of temperatures from $20^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$. The results of these measurements for air, nitrogen, carbon dioxide and argon for pressures up to 350 kPa are given in Table 5.1.1 and plotted in Fig. 5.l.l. Since the temperature varies slightly, only normalized values of the speed of sound (obtained by dividing the observed speed of sound by the ideal gas value at the same temperature) are given in the Table. This mode of presentation eliminates the spurious effect of variation in room temperature.

For carbon dioxide, the speed of sound is also measured at room temperatures for higher pressures (up to 4.5 MPa)
and the observed normalized values of speed of sound are given in Table 5.1.2 and plotted in Fig. 5.1.2.
5.2 Primary Observations

All primary observations of the experimental readings for the three gases and the two isotherms concerned are presented in Tables 5.2.1 through 5.2.6. These readings are used to derive the observed values of density, isothermal compressibility and speed of sound using Eqs. (4.5.1), (4.5.2) and (4.5.3) respectively.
5.3 Observed Thermodynamic Properties

The observed density, isothermal compressibility and speed of sound along with the fitted values (obtained by least squares fitting) are given in Tables 5.2.l through 5.2.6.

For density data it is found that, a third degree polynomial;

$$
\begin{equation*}
\rho=\sum_{j=0}^{3} C_{\rho j}{ }^{j} \tag{}
\end{equation*}
$$

best fits to the observed values. The constants $C_{\rho j}$ and the standard deviations of the fit are presented in Table 5.3.7.

Similarly, for speed of sound, a third degree polynomial;

$$
\begin{equation*}
a=\sum_{j=0}^{3} C_{a j} p^{j} \tag{5.3.2}
\end{equation*}
$$

is found to give the best fit to the observed values. The constants $C_{a j}$ and the standard deviations of the fit are presented in Table 5.3.8.

However, for isothermal compressibility a simple polynomial in pressure is not suitable as a fitting function because isothermal compressibility is inversely proportional to the pressure and equals the inverse of pressure at the ideal gas state. Accordingly, a logarithmic polynomial;

$$
\ln k=\sum_{j=0}^{5} C_{k j}(\ln p)^{j}
$$

is adopted. The constants $C_{K j}$ and the standard deviations of the fit are presented in Table 5.3.9.

The primary observed properties ($\rho, k, a)$ are plotted in Figs. 5.3.1 through 5.3.18 relative to pressures together with their fitted values and the comparable data available.

The fitted values of the observed properties are used to derive the compressibility factor Z, the ratio of specific heats γ and the property $\rho \partial Z / \partial \rho$ at corresponding pressures
using the relations;

$$
\begin{array}{lll}
\mathrm{Z}=\mathrm{p} / \rho \mathrm{RT} & \ldots \ldots & (5.3 .4) \\
\gamma=\mathrm{a}^{2} \rho \kappa & \ldots \ldots & (5.3 .5) \\
\rho \partial Z / \partial \rho=(1 / \mathrm{pK}-1) Z & \ldots \ldots & (5.3 .6)
\end{array}
$$

The values of Z and $\rho \partial Z / \partial \rho$ and the normalized values a / a°, κ / K° and γ / γ° are presented in Tables 5.4.1 through 5.4.30 and plotted in Figs. 5.4.1 through 5.4.30.

5.4 Comparison with Equations of State

The observed thermodynamic properties of particular interest such as $Z, K / K^{\circ}, \gamma / \gamma^{\circ}, a / a^{\circ}$ and $\rho \partial Z / \partial \rho$ are compared to calculated values using the van der waals, the hybrid virial and the Benedict-Webb-Rubin equations of state. A comparison of these calculated values with the observed (fitted) values at corresponding pressures is given in Tables 5.4.1 through 5.4.30. In these tables, observed and calculated quantities are given together with the percentage deviations of calculated values from observed values. In regard to the property $\rho \partial Z / \partial \rho$, the deviations (rather than the percentage deviation) from the observed values are given because the percentage deviation tends to infinity as the observed value of $\rho \partial Z / \partial \rho$ tends to zero. Similar comparisons are presented in Figs. 5.4.1 through 5.4.30.

Table 5.1.1 The Ratio of Observed to Ideal Gas State Speed of Sound (a / a^{0}) for Various Gases at Low Pressure and Room Temperatures.

Gas	$\begin{gathered} \text { Pressure } \\ \text { kPa } \end{gathered}$	Temperature K	a / a°	Percent Deviation $\left(a-a^{\circ}\right) / a^{\circ} \times 100$
Air	156.85	295.00	1.0070	0.70
	187.50	294.20	0.9924	-0.76
	191.58	294.55	1.0003	0.03
	212.50	294.30	0.9983	-0.17
	225.70	294.65	0.9961	-0.39
	237.50	294.00	0.9907	-0.03
	260.48	294.40	1.0026	0.26
	262.50	294.40	0.9915	-0.85
	287.50	294.50	1.0049	0.49
	313.80	294.70	0.9963	-0.37
	338.80	294.70	0.9971	-0.29
Nitrogen	189.00	294.40	1.0015	0.15
	214.00	294.20	1.0083	0.83
	225.50	294.45	0.9954	-0.46
	238.90	294.10	0.9975	-0.25
	259.68	294.75	1.0099	0.99
	263.90	293.90	1.0018	0.18
	295.25	294.15	0.9917	-0.83
	313.90	294.20	1.0055	0.55
	364.10	294.40	0.9960	-0.40
Carbon Dioxide	157.65	295.55	1. 0012	0.12
	188.60	295.40	0.9929	-0.71
	192.53	294.30	1.0052	0.52
	212.90	295.30	1.0097	- 0.97
	226.60	293.30	0.9961	-0.39
	237.90	295.30	1.0024	0.24
	263.70	295.60	0.9938	-0.62
	288.70	294.50	0.9974	-0.26
	295.55	295.00	0.9936	-0.64
	313.70	294.50	0.9944	-0.56
	338.60	295.20	0.9914	-0.86
	. 350.71	295.30	0.9910	-0.90
Argon	152.15	294.29	1.0013	0.13
	167.39	295.00	1.0021	0.21
	173.28	295.12	0.9982	-0.18
	192.36	294.83	1.0056	0.56
	221.92	294.83	1.0044	0.44
	239.40	294.83	0.9976	-0.24
	263.56	295.02	0.9942	-0.58
	294.49	295.10	0.9928	-0.72
	313.62	294.21	1.0024	0.24
	. 338.19	294.35	1.0012	0.12
	356.53	294.55	0.9997	-0.03

Fig. 5.1.1 Percent Deviation of Observed from Ideal Gas State Speed of Sound for Several Gases at Low Pressures and Room Temperatures ($293 \mathrm{~K}-295 \mathrm{~K}$).

Table 5.1.2 The Ratio of Observed to Ideal Gas state speed of Sound (a / a°) for Carbon Dioxide at Room Temperatures and Pressures upto 4.5 MPa .

Pressure MPa	Temperature K
0.6388	294.10
0.7778	294.20
0.9145	294.60
1.0524	294.40
1.1904	294.40
1.3652	294.00
1.6048	293.50
1.8792	294.30
2.1564	293.90
2.5009	294.20
2.8460	294.30
3.1908	294.60
3.5355	294.80
3.8804	295.50
4.2253	295.00
4.5701	295.50
	0.96742

Fig. 5.1.2 Ratio of Observed to Ideal Gas State Speed of Sound for Carbon Dioxide at Room Temperatures ($293 \mathrm{~K}-295 \mathrm{~K}$).

Table 5.2.1 Primary Observations for Carbon Dioxide at 273.15 K .

$\mathrm{p}_{1 \mathrm{i}}$	$\mathrm{p}_{1 f}$	$\mathrm{P}_{2 i}$	$\mathrm{p}_{2 f}$	$\mathrm{P}_{\text {atm }}$	t_{M}	t_{L}	t_{R}
psig	psig	kPag	kPag	kPa	μs	$\mu \mathrm{s}$	μs
142.0	132.0	-88.73	-87.36	90.19	252.1	1457.8	1460.2
180.0	160.0	-88.69	-87.04	90.17	258.2	1480.1	1483.4
215.0	191.0	-88.70	-86.69	90.17	245.3	1476.8	1472.2
241.0	218.0	-88.68	-86.36	90.18	250.6	1493.8	1494.2
278.0	252.0	-88.69	-85.99	90.21	251.7	1513.6	1516.9
312.0	284.0	-88.68	-85.63	90.20	244.6	1518.8	1521.2
343.0	313.0	-88.67	-85.20	90.20	242.8	1532.5	1532.9
379.0	346.0	-88.68	-84.71	90.19	243.3	1555.1	1558.5
404.0	372.0	-88.68	-84.40	90.16	239.7	1560.0	1564.4
437.0	401.0	-88.64	-83.88	90.16	240.0	1583.6	1587.0

Note: $p_{1 i}, P_{1 f}, p_{2 i}, P_{2 f}, p_{\text {atm }}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.2.2 Primary Observations for Carbon Dioxide at 298.15 K .

$p_{1 i}$	$\mathrm{p}_{1 f}$	$\mathrm{p}_{2 i}$	$\mathrm{p}_{2 f}$	$\mathrm{P}_{\mathrm{atm}}$	t_{M}	t_{L}	t_{R}
psig	psig	kPag	kPag	kPa	$\mu \mathrm{s}$	$\mu \mathrm{s}$	$\mu \mathrm{s}$
151.0	135.0	-87.63	-86.27	88.48	219.5	1367.0	1367.7
168.0	151.0	-87.63	-86.10	88.48	223.4	1374.3	1374.7
223.0	199.0	-87.63	-85.63	88.48	219.6	1383.0	1384.3
276.0	248.0	-87.64	-85.13	88.48	224.5	1402.1	1400.5
334.0	303.0	-87.61	-84.50	88.49	220.2	1411.8	1412.1
391.0	355.0	-87.63	-83.82	88.49	212.3	1421.1	1421.0
437.0	398.0	-87.64	-83.29	88.49	213.0	1436.1	1436.3
493.0	451.0	-87.59	-82.61	88.50	224.6	1464.9	1465.3
546.0	502.0	-87.63	-81.90	88.50	231.8	1490.3	1490.8
608.0	562.0	-87.60	-80.90	88.50	202.1	1484.8	1485.2
656.0	609.0	-87.65	-80.13	88.50	218.9	1521.2	1522.6
700.0	653.0	-87.64	-79.39	88.51	202.3	1529.3	1530.0

Note: ' $p_{1 i}, p_{1 f}, p_{2 i}, p_{2 f}, p_{a t m}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.2.3 Primary Observations for Argon at 273.15 K .

$\mathrm{p}_{1 \mathrm{i}}$ psig	$\mathrm{p}_{\text {If }}$ psig	$\mathrm{p}_{2 i}$ kPag	$\mathrm{P}_{2 f} \mathrm{f}$ kPag	$\mathrm{P}_{\text {atm }}$ kPa	t_{M} μs	t_{L} μs	t_{R} μs
163.0	144.0	-87.09	-85.70	87.49	200.2	1170.1	1175.4
225.0	201.0	-87.12	-85.21	87.49	201.3	1175.0	1175.3
282.0	252.0	-87.06	-84.73	87.49	198.3	1169.6	1174.9
349.0	312.0	-87.10	-84.19	87.45	210.5	1184.0	1182.3
409.0	363.0	-87.09	-83.69	87.46	205.2	1174.1	1174.4
452.0	405.0	-87.12	-83.35	87.46	195.4	1163.8	1164.1
502.0	450.0	-87.13	-82.90	87.44	202.7	1164.7	1170.0
575.0	511.0	-87.16	-82.35	87.59	212.9	1178.1	1182.4
693.0	619.0	-87.13	-81.39	87.57	203.8	1168.5	1168.8
780.0	708.0	-87.12	-80.50	87.83	197.9	1154.9	1153.2
890.0	799.0	-87.14	-79.70	87.83	196.8	1159.7	1156.0
1002.0	895.0	-87.15	-78.64	87.81	199.9	1156.5	1159.8
1110.0	1003.0	-87.21	-77.74	87.82	194.3	1142.9	1148.2
1493.0	1342.0	-87.20	-74.28	87.89	200.1	1138.8	1145.0
1802.0	1621.0	-87.22	-71.69	87.80	202.1	1126.5	1126.8
2121.0	1896.0	-87.19	-68.83	87.80	193.4	1101.4	1101.7
2464.0	2216.0	-87.21	-65.67	87.81	190.2	1075.4	1078.7
2827.0	2523.0	-87.21	-62.87	87.80	186.8	1051.0	1051.2
3160.0	2802.0	-87.20	-60.02	87.89	188.4	1030.2	1034.5
3489.0	3085.0	-87.25	-57.29	87.87	200.2	1015.4	1019.6
3851.0	3394.0	-87.23	-54.76	87.90	191.3	985.2	983.5
4236.0	3712.0	-87.21	-52.11	87.89	189.2	962.1	968.3
4637.0	4015.0	-87.16	-49.49	87.81	190.1	930.2	934.4
5060.0	4329.0	-87.20	-47.62	87.80	188.2	909.0	909.2
5489.0	4672.0	-87.22	-45.09	87.81	189.7	886.2	886.4

Note: $p_{1 i}, p_{1 f}, p_{2 i}, p_{2 f}, p_{a t m}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.2.4 Primary Observations for Argon at 298.15 K.

$\mathrm{p}_{1 \mathrm{i}}$	p_{15}	$\mathrm{P}_{2 i}$	$\mathrm{p}_{2 \mathrm{f}}$	Patm	t_{M}	t_{L}	t_{R}
psig	psig	kPag	kP ag	kPa	μs	μs	μs
179.0	159.0	-87.94	-86.41	89.27	192.2	1121.6	1122.9
236.0	208.0	-87.95	-85.96	89.27	213.5	1146.6	1148.9
350.0	313.0	-88.12	-85.24	89.27	202.6	1124.0	1123.2
439.0	393.0	-88.17	-84.52	89.30	190.7	1113.2	1114.5
548.0	489.0	-88.08	-83.56	89.35	197.3	1124.4	1126.7
652.0	586.0	-88.18	-82.79	89.27	190.8	1111.5	1110.8
768.0	688.0	-88.06	-81.74	89.25	199.0	1110.9	1118.1
899.0	803.0	-88.07	-80.69	89.25	212.3	1135.4	1139.6
1002.0	902.0	-87.68	-79.39	88.69	208.2	1120.5	1120.8
1075.0	963.0	-87.63	-78.70	88.69	207.3	1109.1	1113.4
1445.0	1286.0	-87.62	-75.62	88.64	205.6	1108.6	1105.8
1577.0	1415.0	-87.62	-74.47	88.60	206.4	1106.0	1106.3
1770.0	1595.0	-87.70	-72.72	88.89	204.8	1090.2	1090.4
2008.0	1800.0	-87.76	-70.79	88.80	203.1	1070.2	1078.4
2232.0	1997.0	-87.59	-68.98	88.73	205.4	1075.4	1072.6
2610.0	2363.0	-87.58	-65.58	88.71	200.9	1040.5	1044.7
2953.0	2630.0	-87.62	-63.32	88.70	199.4	1022.7	1028.9
3289.0	2882.0	-87.84	-61.19	88.96	198.3	1018.8	1013.0
3548.0	3183.0	-87.90	-58.53	88.96	200.1	994.1	996.4
3994.0	3516.0	-87.94	-55.53	88.92	198.3	968.9	977.1
4375.0	3789.0	-87.93	-53.39	88.92	195.2	951.2	951.4
4708.0	4126.0	-87.92	-50.87	88.92	196.9	933.5	930.8
5047.0	4381.0	-87.94	-49.05	88.93	194.7	905.7	913.0
5473.0	4688.0	-87.91	-46.89	88.90	193.1	890.7	895.9

Note: $p_{1 i}, p_{1 f}, p_{2 i}, p_{2 f}, p_{a t m}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.2.5 Primary Observations for Nitrogen at 273.15 K .

$\mathrm{p}_{1 \mathrm{i}}$	$\mathrm{P}_{\text {If }}$	$\mathrm{P}_{2 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{f}}$	$\mathrm{P}_{\text {atm }}$	t_{M}	t_{L}	t_{R}
psig	psig	kPag	kPag	kPa	μs	μs	μs
206.0	184.0	-87.28	-85.53	88.59	235.3	1120.7	1123.9
275.0	244.0	-87.32	-85.05	88.56	234.9	1122.2	1119.4
337.0	300.0	-87.29	-84.51	88.45	230.7	1113.5	1113.8
399.0	357.0	-87. 29	-84.00	88.44	243.8	1127.8	1128.0
452.0	399.0	-87.29	-83.65	88.43	229.5	1110.0	1110.2
517.0	461.0	-87.39	-83.14	88.84	211.7	1084.9	1088.2
560.0	500.0	-87.58	-83.01	88.86	225.4	1102.3	1105.5
782.0	697.0	-87.67	-81.31	88.88	220.7	1089.3	1089.5
1025.0	907.0	-87.80	-79.51	88.88	222.0	1085.4	1081.6
1408.0	1267.0	-87.83	-76.19	88.94	219.6	1059.1	1063.3
1718.0	1531.0	-87.83	-74.16	88.95	212.2	1034.4	1034.7
2035.0	1808.0	-87.79	-71.64	88.95	209.3	1010.1	1012.3
2379.0	2102.0	-87.76	-69.16	88.89	208.4	991.8	994.0
2719.0	2396.0	-87.78	-66.87	88.85	215.6	979.4	976.7
2975.0	2617.0	-87.84	-65.11	88.83	207.8	951.8	952.1
3311.0	2902.0	-87.80	-63.02	88.84	195.2	915.5	918.8
3698.0	3213.0	-87.81	-60.98	88.85	199.8	899.8	897.0
4046.0	3496.0	-87.76	-58.94	88.85	207.1	887.1	887.3
4425.0	3792.0	-87.83	-57.05	88.85	195.2	856.9	859.1
4843.0	4132.0	-87.78	-54.45	88.89	198.6	833.2	835.4
5218.0	4416.0	-87.80	-53.52	88.82	200.1	820.4	820.5
5479.0	4601.0	-87.81	-52.95	88.83	201.2	810.7	810.9

Note: $p_{1 i}, p_{1 f}, p_{2 i}, p_{2 f}, p_{a t m}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.2.6 Primary Observations for Nitrogen at 298.15 K .

Note: $p_{1 i}, p_{\text {If }}, p_{2 i}, p_{2 f}, p_{a t m}, t_{M}, t_{L}$ and t_{R} are defined in Sec. 4.5.1.

Table 5.3.1 Observed Thermodynamic Properties along with the Fitted Values for Carbon Dioxide at 273.15 K .

Note: (I) The observed properties are derived from the primary observations of Table 5.2 .1 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{K} is defined in Eq. (4.5.2).

Table 5.3.2 Observed Thermodynamic Properties along with the Fitted Values for Carbon Dioxide at 298.15 K .

Note: (1) The observed properties are derived from the primary observations of Table 5.2.2 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{k} is defined in Eq. (4.5.2).

Table 5.3.3. Observed Thermodynamic Properties along with the Fitted Values for Argon at 273.15 K .

Note: (1) The observed properties are derived from the primary observations of Table 5.2 .3 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{K} is defined in Eq. (4.5.2).

Table 5.3.4 Observed Thermodynamic Properties along with the Fitted Values for Argon at 298.15 K .

Note: (1) The observed properties are derived from the primary observations of Table 5.2 .4 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{K} is defined in Eq. (4.5.2).

Table 5.3.5 Observed Thermodynamic Properties along with the Fitted Values for Nitrogen at 273.15 k .

Pressure		De	ity	$!$	Speed of	Sound		ssure	1	erma	
	$!$			$!$!		!Compressibility		
p	$!$				a			P_{K}			
	!			!					1 K		
				$!$				MPa			
MPa											
		Observed ! Fitted			Observed	! Fitted			! Observed		d
1.3572	!	16.9582	16.7698	!	338.4396	38.6944	$!$. 4331	! 0.7344		0.7279
1.7709	$!$	21.9882	22.0456	!	338.8597	! 339.1903	$!$	1.8777	! 0.5212	$!$	0.5369
2.1569	!	26.9319	26.9664	.	339.9909	! 339.7152	$!$	2.2844	$!0.4367$	$!$	0.4341
2.5498	$!$	31.8699	31.9728	.	339.5487	! 340.3104	!	2.6946	$!0.3847$,	0.3650
2.8394	$!$	35.2534	35.6609	!	340.8983	! 340.7878	!	3.0221	$!0.3049$!	0.3245
3.2673	$!$	41.1596	41.1062	!	343.1400	! 341.5525	$!$	3.4603	$!0.2885$	$!$	0.2832
3.5362	!	44.2619	44.5254	$!$	341.7142	$!342.0688$	$!$	3.7431	! 0.2693	$!$	0.2620
4.8945	!	61.5870	61.7534	!	345.5681	! 345.0875	!	5.1875	$!0.1901$	$!$	0.1904
6.3424	$!$	80.2581	$!80.0107$	$!$	348.4580	! 349.0292	$!$	6.7492	$!0.1369$	$!$	0.1472
8.8245	!	112.6854	$!110.9374$!	356.6977	! 357.3969	!	9.3106	! 0.1146	$!$	0.1063
10.6447	!	132.3550	! 133.2190	!	365.0453	! 364.7147	!	11. 2894	! 0.0864	!	0.0864
12.5546	$!$	156.3882	$!156.1387$!	374.3553	$!373.3588$	$!$	13.3371	$!0.0712$	$!$	0.0715
14.5815	!	180.0832	! 179.8457	1	382.6584	! 383.5003	!	15.5365	! 0.0583	1	0.0596
16.6086	!	202.4756	! 202.8113	$!$	393.7255	! 394.5186	!	17.7220	! 0.0500	!	0.0505
18.1323	$!$	220.0479	! 219.5173	!	403.4066	! 403.3027	!	19.3664	$!0.0451$	$!$	0.0449
20.0973	$!$	239.9831	! 240.2730	$!$	415.8134	! 415.1735	$!$	21.5072	! 0.0395	!	0.0389
22.2415	!	259.7193	! 261.7978	1	429.7112	! 428.7016	$!$	23.9135	! 0.0333	!	0.0334
24.1927	$!$	279.0037	! 280.2590	$!$	441.3983	! 441.4136	,	26.0888	! 0.0294	!	0.0294
26.2336	!	297.9982	! 298.3099	!	452.9206	! 454.9959	$!$	28.4157	$!0.0255$	$!$	0.0258
28.5778	$!$	322.6622	! 317.3107	1	472.2288	! 470.7965		31.0289	! 0.0227	$!$	0.0224
30.5358	!	331.8575	331.6430	!	483.9123	! 484.0256	!	33.3006	! 0.0201	!	0.0200
31.8113	$!$	337.5220	$!340.1755$	$!$	492.4459	1492.6021	,	34.8381	! 0.0184	.	0.0185

Note: (1) The observed properties are derived from the primary observations of Table 5.2 .5 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{K} is defined in Eq. (4.5.2).

Table 5.3.6 Observed Thermodynamic Properties along with the Fitted Values for Nitrogen at 298.15 K .

Note: (1) The observed properties are derived from the primary observations of Table 5.2 .6 by Eqs. (4.5.1) through (4.5.3) and the fitted values are calculated by Eqs. (5.3.1) through (5.3.3).
(2) The pressure p_{k} is defined in Eq. (4.5.2).

Table 5.3.7 Density-Fitting Polynomial Coefficients and Standard Deviations of the Fit.

Gas	Temp K	$\begin{gathered} C_{\rho 0} \\ \mathrm{~kg} \mathrm{~m}^{-3} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{\rho 1}} \\ \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{MPa}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{\rho} 2} \\ \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{MPa}^{-2} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\rho 3} \\ \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{MPa}^{-3} \end{gathered}$	Standard Deviation of $\begin{array}{r} \rho_{o b s}-\rho_{f i t} \\ \mathrm{~kg} \mathrm{mi}^{-3} \end{array}$
Carbon	273.15	-2.5608	24.4870	-2.0416	0.9327	0.3646
Dioxide						
Carbon	298.15	-0.0900	17.9870	0.4837	0.2335	0.4170
Dioxide						
Argon	273.15	-0.0824	17.5770	0.2067	-0.0060.	- 1.2145
Argon	298.15	-0.1101	16.2130	0.1074	-0.0035	1.0326
Nitrogen	273.15	-0.5394	12.7490	0.0063	-0.0022	1. 4880
Nitrogen	298.15	-0.8127	11.8130	-0.0323	-0.0011	1.5051

Table 5.3.8 Sound Speed-Fitting Polynomial Coefficients and Standard Deviations of the Fit.

Gas	Temp K	$\begin{gathered} C_{a 0} \\ m s^{-1} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{al}} \\ \mathrm{~m} \mathrm{~s}^{-1} \mathrm{MPa}^{-1} \end{gathered}$	$\mathrm{m}^{\mathrm{C}} \mathrm{~s}^{-1} \mathrm{MPa}^{-2}$	$\begin{gathered} \mathrm{C} \mathrm{a}^{2} \\ \mathrm{~s}^{-1} \mathrm{MPa}^{-3} \end{gathered}$	Standard Deviation of $\begin{gathered} a_{o b s}-a_{f i t} \\ m s^{-1} \end{gathered}$
	273.15	260.26	-11.8840	0.3593	-0.2560	0.5144
Dioxide			-8.8079	0.3462	-0.1124	0.1548
Carbon Dioxide	298.15	270.38	-8.8079	0.3462	-0.1124	0.1548
Argon	273.15	309.01	-0.2026	0.1547	-0.0010	1.0983
Argon	298.15	322.50	0.2774	0.1167	-0.0007	1.5239 0.8398
Nitrogen Nitrogen	273.15 298.15	$\begin{aligned} & 337.56 \\ & 353.21 \end{aligned}$	0.5454 1.0196	0.2147 0.1738	-0.0025 -0.0021	0.8669

Table 5.3.9 Isothermal Compressibility-Fitting Polynomial Coefficients and Standard Deviations of the Fit.

Gas	Temp K	C_{kg}	$\mathrm{C}_{\text {:K1 }}$	$C_{K 2}$	$\mathrm{C}_{\mathrm{k} 3}$	$\mathrm{C}_{\text {i }} \times$	$\mathrm{C}_{\mathrm{K} 5}$	Standard Deviation of $\begin{aligned} & \mathrm{K}_{\mathrm{obs}}-\mathrm{K}_{\mathrm{ffit}} \\ & \mathrm{MPa}^{-1} \end{aligned}$
Carbon	273.15	0.7426	-8.4853	26.6090	-41.2540	30.0230	-8.3503	0.0174
Dioxide								
Carbon	298.15	0.0804	-0.6529.	-2.2577	4.4877	-3.3433	0.8806	0.0127
Dioxide								
Argon	273.15	-0.0554	-0.6366	-0.5599	0.3644	-0.0959	0.0078	0.0090
Argon	298.15	0.0396	-1.3239	0.6079	-0.4317	0.1377	-0.0167	0.0088
Nitrogen	273.15	0.1023	-1.1762	-0.0039	0.0970	-0.0397	0.0037	0.0079
Nitrogen	298.15	-0.3763	0.4418	-1.7276	0.9136	-0.2209	0.0193	0.0081

Fig. 5.3.1 Observed Density Versus Pressure for Carbon Dioxide Compared with the Data of Michels et al. [2.10], Vukalovich et al. [2.12] and MacCormack and Schneider [2.11] at 273.15 K .

Fig. 5.3.2 Observed Density Versus Pressure for Carbon Dioxide Compared with the Data of Michels et al. [2.10] at 298.15 K .

Fig. 5.3.3 Observed Density Versus Pressure for Argon Compared with the Data of Michels et al. [2.13] at 273.15 K .

Fig. 5.3.4 Observed Density Versus Pressure for Argon Compared with the Data of Michels et al. [2.13] and Kestin and Liedenfrost [2.14] at 298.15 K .

Fig. 5.3.5 Observed Density Versus Pressure for Nitrogen Compared with the Data of Michels et al. [2.18,2.19], Verschyole [2.16], Bartlett et al. [2.17] and Smith and Taylor [2.15] at 273.15 K.

Fig. 5.3.6 Observed Density Versus Pressure for Nitrogen Compared with the Data of Michels et al. [2.18,2.19] at 298.15 K .

Fig. 5.3.7 Observed Isothermal Compressibility Versus Pressure for Carbon Dioxide at 273.15 K .

Fig. 5.3.8 Observed Isothermal Compressibility Versus Pressure for Carbon Dioxide at 298.15 K .

Fig. 5.3.9 Observed Isothermal Compressibility Versus Pressure for Argon at 273.15 K .

$\begin{array}{ll}\text { Fig. 5.3.10 } & \begin{array}{l}\text { Observed Isothermal Compressibility Versus Pressure for Argon } \\ \text { at } 298.15 \mathrm{~K} .\end{array}\end{array}$

Fig. 5.3.11 Observed Isothermal Compressibility Versus Pressure for Nitrogen at 273.15 K .

Fig 5.3.12 Observed Isothermal Compressibility Versus Pressure for Nitrogen at 298.15 K .

Fig. 5.3.13 Observed Speed of Sound Versus Pressure for Carbon Dioxide at 273.15 K .

Fig. 5.3.14 Observed Speed of Sound Versus Pressure for Carbon Dioxide Compared with the Data of Novikov and Trelin [2.34,2.35] and Hodge [2.20] at 298.15 K .

Fig. 5.3.15 Observed Speed of Sound Versus Pressure for Argon Compared with the Data of van Itterbeek et al. [2.36] and E1-Hakeem [2.24] at 273.15 K .

Fig. 5.3.16 Observed Speed of Sound Versus Pressure for Argon Compared with the Data of Lacam [2.31] at 298.15 K .

Fig. 5.3.17 Observed Speed of Sound Versus Pressure for Nitrogen Compared with the Data of van Itterbeek et a1. [2.21] and E1-Hakeem [2.24] at 273.15 K .

Fig. 5.3.18 Observed Speed of Sound Versus Pressure for Nitrogen Compared with the Data of Lacam [2.31] and van,Itterbeek et al. [2.21] at 298.15 K .

Table 5.4.1 Comparison of Observed Compressibility Factors (Z) with those Der ived from Equations of State. For Carbon Dioxide at 273.15 K .

Table 5.4.2 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

Table 5.4.3 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Argon at 273.15 K .

Table 5.4.4 Comparison of Observed Compressibility Factors (Z) with those Der ived from Equations of State. For Argon at 298.15 K .

Table 5.4.5 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 273.15 K .

Table 5.4.6 Comparison of Observed Compressibility Factors (Z) with those Der ived from Equations of State. For Nitrogen at 298.15 K.

Pressure!			van der Waals			Hybrid Virial			! Benedict-Webb-Rubin				
	Observed		lculated	! Percent			Calculated	d!	Percent		alculated	!	Percent
MPa	z	$!$	Z	! Deviation		z		Deviation		I		Deviatio	
!		$!$		1 fr	!				!				
!		$!$! Observed	!			bserved					
1373!	0.9934	!	. 9942	51	!	79	!	0.4553	!	0.9976		0.4266	
$1.5302!$	0.9926	$!$	0.9923	! -0.0287	$!$	0.9973	!	0.4743	!	0.9969		0.4357	
2.0128!	0.9919	$!$	0.9900	-0.1891	$!$	0.9967	!	0.4878		0.9962	!	0.4323	
2.6326!	0.9912	$!$	0.9872	! -0.4061	$!$	0.9961	!	0.4983	!	0.9954		0.4250	
3.1635!	0.9907	$!$	0.9849	! -0.5895	!	0.9958	!	0.5109	!	0.9950	!	0.4325	
3.5772!	0.9905	$!$	0.9831	! -0.7483	$!$	0.9956	!	0.5148	!	0.9947		0.4221	
3.9564 !	0.9904	$!$	0.9815	-0.9014	$!$	0.9955	!	0.5149	$!$	0.9946	!	0.4192	
$4.5080!$	0.9904	$!$	0.9793	-1.1222	$!$	0.9955	!	0.5149	$!$	0.9944	!	0.4064	
4.9975!	0.9906	$!$	0.9774	! -1.3293	$!$	0.9957	!	0.5105	!	0.9945	!	0.3973	
$6.2316!$	0.9916	$!$	0.9732	! -1.8555	!	0.9966	!	0.5067	$!$	0.9953		0.3699	
7.0801!	0.9929	$!$	0.9706	-2.2500	$!$	0.9978	!	0.4942	!	0.9961	!	0.3267	
8.1282!	0.9950	!	0.9678	! -2.7377	$!$	0.9999	!	0.4936	$!$	0.9979		0.2903	
$8.9279!$	0.9970	$!$	0.9660	! -3.1112	$!$	1.0019	!	0.4928	!	0.9996	!	0.2622	
10.1276!	1.0007	!	0.9639	! -3.6771	$!$	1.0056	!	0.4854	$!$	1.0028		0.2072	
$11.2790!$	1.0049	$!$	0.9625	! -4.2223	$!$	1.0100	!	0.5058	!	1.0064	!	0.1517	
12.2236!	1.0089	!	0.9619	! -4.6610	1	1.0141	$!$	0.5166	$!$	1.0099	$!$	0.1029	
$13.3681!$	1.0144	!	0.9618	! -5.1867	1	1.0198	!	0.5281	$!$	1.0147	1	0.0250	
14.6919:	1.0214	!	0.9626	! -5.7606	$!$	1.0273	!	0.5748	!	1.0209	-	-0.0503	
$15.8226!$	1.0281	$!$	0.9640	! -6.2352	$!$	1.0343	!	0.6042	$!$	1.0267	-	-0.1331	
17.0775 !	1.0361	!	0.9664	! -6.7242	$!$	1.0429	!	0.6583	$!$	1.0339	!	-0.2132	
$18.8287!$	1.0484	$!$	0.9713	! -7.3497	$!$	1.0561	!	0.7306	!	1.0447	!	-0.3514	
20.3249 !	1.0599	$!$	0.9768	! -7.8407	$!$	1.0683	!	0.7920	$!$	1.0549	!	-0.4724	
21.7797!	1.0719	$!$	0.9833	$!-8.2697$	$!$	1.0810	!	0.8531	!	1.0654	!	-0.6100	
23.1862 !	1.0841	1	0.9906	! -8.6206	$!$	1.0940	!	0.9178	!	1.0761	!	-0.7336	
24.1583!	1.0930	!	0.9963	! -8.8511	!	1.1034	!	0.9506	!	1.0839	!	-0.8336	
25.2615 !	1.1034	$!$	1.0032	! -9.0804	$!$	1.1143	!	0.9868	!	1.0929	!	-0.9499	
$26.4404!$	1.1149	$!$	1.0112	! -9.3054	$!$	1.1263	!	1.0225	!	1.1030	!	-1.0700	
$27.8124!$	1.1288	$!$	1.0211	! -9.5442	$!$	1.1407	!	1.0525	$!$	1.1151	!	-1.2178	
$29.1637!$	1.1429	$!$	1.0317	! -9.7272	!	1.1553	!	1.0813	$!$	1.1273	!	-1.3609	
30.5289 !	1.1577	$!$	1.0430	! -9.9059	$!$	1.1702	$!$	1.0837	!	1.1400		-1.5248	
31.9285!	1.1732	!	1.0552	1-10.0573	!	1.1860	!	1.0906	!	1.1534		-1.6861	

Table 5.4.8 Comparison of Observed Normalized Isothermal Compressibilities $\left(k / k^{\circ}\right)$ with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

Table 5.4.9 Comparison of Observed Normalized Isothermal Compressibilities (κ / k°) with those Derived from Equations of State. For Argon at 273.15 K .

Table 5.4.10 Comparison of Observed Normalized Isothermal Compressibilities (κ / K°) with those Derived from Equations of State. For Argon at 298.15 K .

$\begin{aligned} & ! \\ & ! \end{aligned}$!	van der	Waals	$!$	Hybrid	Virial	! Benedict-Webb-Rubin		
								! Calculated! Percent		
Pressure! Observed		d! Ca	alculat	!Percent		calculat	! Percent			
MPa !	$\kappa /{ }^{\circ}$!	κ / κ°	! Deviation		κ / κ°	! Deviatio		$\kappa /{ }^{\circ}$!Deviation
!		$!$!from	$!$!from	$!$!fro
!		$!$		LObserved	!		! Observed	!		! Observed
5!	1.0070	!	1.0087	0.1686		寿2	! 0.0242	!	1.0	$!0.0899$
$1.5234!$	1.0108	!	1.0111	! 0.0315	!	1.0092	! -0.1570	!	1.0099	! -0.0858
$2.2473!$	1.0181	$!$	1.0162	! -0.1847	$!$	1.0132	! -0.4764	$!$	1.0141	! -0.3927
2.79891	1.0232	!	1.0200	! -0.3085	$!$	1.0161	! -0.6937	$!$	1.0170	1-0.6016
3.4609!	1.0287	$!$	1.0245	-0.4106	$!$	1.0192	! -0.9213	$!$	1.0202	! -0.8262
$4.1296!$	1.0335	!	1.0288	! -0.4546	!	1.0221	-1. 1000	!	1.0230	! -1.0163
4.8328!	1.0379	!	1.0332	! -0.4555	$!$	1.0249	! -1. 2549	!	1.0255	! -1.1905
5.62571	1.0420	$!$	1.0378	! -0.4010	$!$	1.0274	! -1.4004	!	1.0277	-1.3692
6.30771	1.0448	!	1.0415	! -0.3196	$!$	1.0291	! -1.5040	$!$	1.0292	! -1.4977
$6.7283!$	1.0462	$!$	1.0436	! -0.2515	$!$	1.0300	! -1.5467	$!$	1.0298	! -1.5708
8.9552!	1.0497	$!$	1.0527	0.2863	$!$	1.0312	! -1.7619	$!$	1.0296	! -1.9172
$9.8446!$	1.0493	!	1.0550	0.5452	$!$	1.0301	! -1.8258	$!$	1.0279	-2.0389
11.0859 !	1.0470	!	1.0567	0.9257	1	1.0270	-1.9136	$!$	1.0239	-2. 2050
12.4993!	1.0422	!	1.0564	1.3599	$!$	1.0208	! -2.0517	!	1.0172	! -2.4000
13.8574 !	1.0354	!	1.0534	1.7432	$!$	1.0125	! -2.2100	$!$	1.0085	! -2.5962
$16.3809!$	1.0175	!	1.0404	2.2458	!	0.9908	! -2.6271	!	0.9874	! -2.9542
18.2218!	1.0004	!	1.0244	2.3971	$!$	0.9705	-2.9920	$!$	0.9684	! -3.1967
19.9595 !	0.9813	!	1.0042	2.3348	$!$	0.9485	! -3.3455	$!$	0.9483	! -3.3669
$22.0348!$	0.9551	$!$	0.9746	2.0430	$!$	0.9195	! -3.7261	$!$	0.9222	! -3.4432
24.33071	0.9223	!	0.9364	1.5317	$!$	0.8855	! -3.9932	$!$	0.8917	! -3.3139
26.2129!	0.8926	!	0.9022	1.0752	$!$	0.8570	! -3.9847	$!$	0.8661	! -2.9633
28.5365 !	0.8530	!	0.8582	0.6104	$!$	0.8222	! -3.6059	$!$	0.8346	! -2.1550
30.2946!	0.8212	$!$	0.8247	0.4299	$!$	0.7967	! -2.9860	!	0.8111	! -1.2278
32.4113!	0.7809	!	0.7853	0.5612	1	0.7671	! -1.7632	!	0.7837	0.3569

Table 5.4.11 Comparison of Observed Normalized Isothermal Compressibilities (k / K°) with those Derived from Equations of State. For Nitrogen at 273.25 K .

Table 5.4.12 Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Nitrogen at 298.15 K .

		$!$	van der	Waals	!	Hybr id	Virial	! Benedict-Webb-Rubin		
								!Calculated! Percent		
Pressure! Observed!			lculated	al Percent		Calculated	d! Percent			
MPa	κ / κ°	!	k / κ°	! Deviation		κ / κ°	! Deviation		k / κ°	! Deviation
$!$		$!$!from	$!$!from	$!$		
!		$!$! Observed	!		! Observed	!		! Observed
1.1373!	1.0072	!	1.0056	-0.1611	!	1.0017	-0.5424	.	1.0020	
$1.5302!$	1.0093	$!$	1.0074	! -0.1872	!	1.0021	! -0.7138	!	1.0024	1-0.6802
2.0128!	1.0115	$!$	1.0095	! -0.1988	$!$	1.0022	! -0.9170	$!$	1.0027	-0.8700
$2.6326!$	1.0137	!	1.0120	! -0.1693	!	1.0021	! -1.1417	!	1.0027	! -1.0851
$3.1635!$	1.0149	$!$	1.0139	! -0.0983	$!$	1.0017	! -1.2961	$!$	1.0023	! -1.2430
3.5772 !	1.0155	!	1.0152	! -0.0258	$!$	1.0011	! -1.4183	$!$	1.0019	! -1.3401
$3.9564!$	1.0158	$!$	1.0164	0.0617	$!$	1.0004	! -1.5156	!	1.0012	! -1.4415
4.5080 !	1.0158	!	1.0178	0.1980	$!$	0.9991	! -1.6432	$!$	1.0000	! -1.5549
4.9975 !	1.0154	!	1.0189	0.3431	!	0.9976	! -1.7534	$!$	0.9987	1-1.6475
$6.2316!$	1.0125	!	1.0206	0.8015	!	0.9927	! -1.9553	!	0.9943	1-1.7986
7.0801!	1.0092	!	1.0210	1.1663	$!$	0.9882	! -2.0839	$!$	0.9903	! -1.8683
8.1282!	1.0037	!	1.0204	1.6611	$!$	0.9815	! -2.2153	$!$	0.9844	! -1.9193
8.9279 !	0.9986	!	1.0190	2.0425	$!$	0.9755	! -2.3115	$!$	0.9793	! -1.9322
$10.1276!$	0.9894	$!$	1.0156	2.6438	$!$	0.9652	! -2.4411	$!$	0.9705	! -1.9073
11.2790 !	0.9791	$!$	1.0105	3.2060	$!$	0.9540	! -2.5618	$!$	0.9611	-1.8362
12.2236!	0.9697	!	1.0051	3.6480	$!$	0.9440	! -2.6553	$!$	0.9527	! -1.7486
13.3681!	0.9572	$!$	0.9969	4.1501	!	0.9309	! -2.7521	$!$	0.9418	! -1.6061
$14.6919!$	0.9416	$!$	0.9854	4.6539	$!$	0.9145	! -2.8728	$!$	0.9284	! -1.4022
15.8226!	0.9275	!	0.9739	5.0070	!	0.8999	! -2.9742	$!$	0.9163	! -1.2036
17.0775 !	0.9110	$!$	0.9593	5.3065	$!$	0.8832	! -3.0540	$!$	0.9025	$1-0.9349$
$18.8287!$	0.8872	$!$	0.9365	5.5519	$!$	0.8592	!-3.1547	$!$	0.8825	! -0.5352
20.3249 !	0.8665	!	0.9149	5.5833	$!$	0.8385	! -3.2318	$!$	0.8650	1-0.1768
$21.7797!$	0.8463	$!$	0.8926	5.4722	$!$	0.8185	! -3.2799	$!$	0.8478	0.1715
23.1862!	0.8271	!	0.8701	5.1971	$!$	0.7996	! -3.3302	$!$	0.8311	0.4831
24.1583!	0.8142	!	0.8542	! 4.9151	$!$	0.7867	! -3.3829	$!$	0.8196	0.6668
25.2615!	0.8000	!	0.8361	! 4.5087	$!$	0.7723	! -3.4564	$!$	0.8067	0.8400
$26.4404!$	0.7856	!	0.8166	3.9515	$!$	0.7575	! -3.5832	$!$	0.7929	0.9326
27.8124!	0.7699	!	0.7941	3.1489	$!$	0.7407	! -3.7971	!	0.7772	0.9468
29.1637!	0.7560	!	0.7724	2.1642	$!$	0.7247	! -4.1346	$!$	0.7619	0.7766
30.5289 !	0.7436	$!$	0.7509	0.9781	$!$	0.7094	! -4.6026	!	0.7467	0.4214
31.9285!	0.7331	!	0.7294	! -0.5046	$!$	0.6942	! -5.3072	!	0.7315	! -0.2157

Table 5.4.13 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

$!$		$!$	van der	Waals	!	Hybrid	Virial	! Benedict-Vebb-Rubin			
Pressure! Observed		! Calcu lated! Percent			! Calculated!Percent !			! Calculated!			Percent
MPa	γ / γ°	!	γ / γ°	! Deviation	!	γ / γ°	! Deviation		γ / γ°		eviation
!		!		!from	!		!from	$!$			rom
$!$		$!$! Observed	!		! Observed	!			bserved
1.0003!	1.0563	!	1.0274	! -2.7326	$!$	1.0554	! -0.0826	!	1.0736	!	1.6354
1.1933!	1.0770	!	1.0335	! -4.0350	!	1.0688	! -0.7571	!	1.0918	!	1.3730
1.4071!	1.0994	$!$	1.0407	! -5.3356	$!$	1.0849	! -1.3144	!	1.1139	!	1.3234
1.5932 !	1.1195	!	1.0474	! -6.4431	$!$	1.1003	! -1.7176	!	1.1353	!	1.4121
$1.8277!$	1.1468	$!$	1.0562	! -7.8973	$!$	1.1216	! -2.2015	!	1.1654	!	1.6261
$2.0483!$	1.1760	!	1.0652	! -9.4204	$!$	1.1439	! -2.7300	!	1.1979	$!$	1.8610
2.24821	1.2065	!	1.0739	1-10.9938	!	1.1664	! -3.3225	!	1.2315	!	2.0726
2.4758 !	1.2473	$!$	1.0845	!-13.0524	$!$	1.1952	! -4.1747	$!$	1.2758	!	2.2880
2.6550!	1.2850	$!$	1.0935	!-14.9036	$!$	1.2207	! -5.0029	$!$	1.3166		2.4573
2.8549!	1.3338	!	1.1041	1-17.2181	,	1.2529	! -6.0668	.	1.3699	.	2.7075

Table 5.4.14 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

		!	van der Waals			Hybrid Virial		! Benedict-Wehb-Rubin			
								- Benedict-nenb-Rubin			
Pressure	Observed		Cal	!Percent	! C	1 cu	nt		1 c		Percent
$\mathrm{MPa}!$	γ / γ°	$!$	γ / γ	! Deviation		γ / γ	! Deviation		γ / γ		viatio
!		$!$		$!$ f	!		! fro	$!$			rom
		!		! Observed	!		! Observed	!			Observed
$1.0193!$	1.0433	!	1.0222	! -2.0202	$!$	1.0426	! -0.0637	!	1.0528		0.
.1296!	1.0502	!	1.0249	! -2.4122	!	1.0480	! -0.2072	!	1.0595		0.8889
1.4605!	1.0729	$!$	1.0333	! -3.6929	!	1.0652	: -0.7132	$!$	1.0812		0.7704
$1.7984!$	1.0996	$!$	1.0426	! -5.1881	!	1.0847	! -1.3513	!	1.1059		0.5704
2.1776!	1.1348	$!$	1.0539	! -7.1317	!	1.1094	! -2.2398		1.1374		0.2267
$2.5361!$	1.1744	$!$	1.0656	! -9.2656	$!$	1.1356	$!-3.3017$!	1.1717		-0.2279
2.8326!	1.2126	1	1.0761	!-11.2554	!	1.1601	! -4.3269	!	1.2043		-0.6841
$3.1980!$	1.2674	$!$	1.0903	1-13.9770	!	1.1943	! -5.7692	1	1.2510		-1.2954
$3.5496!$	1.3291	$!$	1.1054	!-16.8336	$!$	1.2323	! -7.2856	!	1.3046		-1.8469
3.9633!	! 1.4145	!	1.1253	!-20.4485	$!$	1.2848	! -9.1661	!	1.3827		-2. 2452
4.2874 !	! 1.4919	1	1.1427	!-23.4041	$!$	1.3336	!-10.6132	$!$	1.4598		-2.1540
4.5907!	1.5735	!	1.1609	!-26.2224	!	1.3865	!-11.8845		1.5503	!	-1.4755

Table 5.4.15 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Argon at 273.15 K .

Table 5.4.16 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Argon at 298.15 K .

Table 5.4.17 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Nitrogen 273.15 K.

$\begin{aligned} & ! \\ & ! \end{aligned}$		$!$	van der	Waals	$!$	Hybrid	irial	!Benedict-Webb-Rubin		
Pressure! Observed!			! Calculated! Percent		! Calculated		a!Percent :	! Calculated! Percent		
MPa	r/	$!$! Deviation			! Deviation			! Deviatio
		$!$! from	!		!from			
				! Obser			! 0			
	1. 1.0233									
1.7709!	! 1.0309	!	1.0217	-0.8887	!	1.0283	-0.2519		1.0254	-0.5354
.1569!	1.0380	!	1.0267	-1.091	!	1.0346	-0.3286		1.0311	-0.665
2.5498!	! 1.0451	$!$	1.0318	-1.2706	!	1.0411	! -0.3868		1.0369	! -0.7838
2.8394!	! 1.0503	!	1.0356	-1.3961	$!$	1.0458	-0.4265		1.0412	-0.8655
3.2673!	! 1.0579	!	1.0413	-1.5680	$!$	1.0528	: -0.4799		1.0476	-0.9766
3.5362!	! 1.0626	$!$	1.0449	-1.6669	$!$	1.0572	-0.5049		1.0516	-1.037
4.8945!	! 1.0858	$!$	1.0636	-2.0404	$!$	1.0795	: -0.5796	!	1.0719	-1.2763
$6.3424!$! 1.1095	$!$	1.0842	! -2.2847	!	1.1028	! -0.6062	!	1.0936	-1.4305
8.8245!	! 1.1472	$!$	1.1199	-2.3796	$!$	1.1401	! -0.6173		1.1297	-1.5213
$10.6447!$	1.1725	$!$	1.1457	-2.2879	$!$	1.1643	! -0.7006		1.1546	1.527
$12.5546!$! 1.1967	$!$	1.1709	-2.1564	$!$	1.1861	-0.8879	!	1.1787	-1.5053
$14.5815!$! 1.2197	$!$	1.1946	-2.0577	!	1.2047	-1. 2299		1.2017	-1.4744
.6086!	! 1.2397	!	1.2141	-2.0646	!	1.2190	! -1.6695		1.2215	-1.4694
18.1323!	! 1.2528	$!$	1.2256	-2.1678	$!$	1.2270	-2.0565		1.2345	-1.4612
20.0973!	! 1.2669	$!$	1.2366	-2.3956	$!$	1.2345	! -2.5599	!	1.2485	-1.4517
22.2415!	! 1.2786	$!$	1.2432	! -2.7663	$!$	1.2395	! -3.0599	$!$	1.2607	-1.4029
24.1927!	! 1.2859	$!$	1.2456	! -3.1336	!	1.2420	! -3.4165	1	1.2692	-1.2991
$26.2336!$	1.2899	$!$	1.2449	-3.4894	!	1.2428	! -3.6483	!	1.2756	-1.1118
28.5778 !	! 1.2897	$!$	1.2410	-3.7778	$!$	1.2425	! -3.6596	!	1.2801	-0.7454
30.5358 !	! 1.2855	!	1.2361	! -3.8445	$!$	1.2414	! -3.4324	$!$	1.2818	-0.2899
31.8113!	! 1.2806	!	1.2323	1-3.7747	$!$	1.2404	1 -3.1370	!	1.2821	0.1137

Table 5.4.18 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Nitrogen at 298.15 K .

Table 5.4.20 Comparison of Observed Normalized Speeds of Sound ($\mathrm{a} / \mathrm{a}^{\circ}$) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

Table 5.4.21 Comparison of Observed Normalized Speeds of Sound (a/a ${ }^{\circ}$) with those Derived from Equations of State. For Argon at 273.15 K .

Table 5.4.22 Comparison of Observed Normalized Speeds of Sound ($\mathrm{a} / \mathrm{a}^{\circ}$) with those Der ived from Equations of State. For Argon at 298.15 K .

Table 5.4.23 Comparison of Observed Normalized Speeds of Sound (a / a°) with those Derived from Equations of State. For Nitrogen at 273.15 K .

Table 5.4.24 Comparison of Observed Normalized Speeds of Sound ($\mathrm{a} / \mathrm{a}^{\circ}$) with those Derived from Equations of State. For Nitrogen at 298.15 K .

Table 5.4.25 Comparison of Observed Values of the Property paZ/ap with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Table 5.4.26 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

Table 5.4.27 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 273.15 K .

Table 5.4.28 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 298.15 K .

$!$	$!$ van der Waals			1	Hybrid Virial			! Benedict-Webb-Rubin				
$!$												
Pressure! Observed! Calculated! Deviation! Calculated! Deviation! Calculated! Deviation												
MPa ! $\rho \partial Z / \partial \rho$!	$\rho \partial Z / \partial \rho$!from		$!$	$\rho \partial Z / \partial \rho$			$!$	$\rho \partial \mathrm{Z} / \partial \rho$		m
!	!		'Observed	$!$			served				served	
1.1855!-0.0077	$!$	-0.0085	! -0.0008	$!$	-0.0072	$!$	0.0005	!	-0.0077	!	0.0000	
1.5234 !-0.0108	!	-0.0108	$!0.0000$!	-0.0090	$!$	0.0018	!	-0.0097	$!$	0.0011	
2.2473!-0.0171	!	-0.0157	$!0.0014$	$!$	-0.0129	$!$	0.0042	$!$	-0.0137	!	0.0034	
2.7989!-0.0214	!	-0.0192	$!0.0022$	$!$	-0.0155	!	0.0059	$!$	-0.0164	$!$	0.0050	
3.4609!-0.0261	!	-0.0232	! 0.0029	$!$	-0.0185	!	0.0076	1	-0.0194	$!$	0.0067	
4.1296!-0.0304	$!$	-0.0271	$!0.0033$	$!$	-0.0212	$!$	0.0092	$!$	-0.0219	$!$	0.0085	
4.8328!-0.0343	!	-0.0310	$!0.0033$!	-0.0237	!	0.0106	$!$	-0.0241	!	0.0102	
5.6257!-0.0380	!	-0.0349	$!0.0031$	$!$	-0.0259	$!$	0.0121	$!$	-0.0261	$!$	0.0119	
6.3077!-0.0405	!	-0.0381	$!0.0024$	$!$	-0.0273	!	0.0132	!	-0.0272	$!$	0.0133	
6.7283!-0.0419	$!$	-0.0399	$!0.0020$	$!$	-0.0281	$!$	0.0138	$!$	-0.0277	!	0.0142	
8.9552!-0.0454	!	-0.0470	! -0.0016	!	-0.0289	!	0.0165	!	-0.0274	!	0.0180	
9.8446!-0.0452	$!$	-0.0488	! -0.0036	!	-0.0278	$!$	0.0174	!	-0.0258	!	0.0194	
11.0859!-0.0433	!	-0.0498	! -0.0065	!	-0.0249	!	0.0184	1	-0.0222	!	0.0211	
12.4993!-0.0390	$!$	-0.0493	! -0.0103	!	-0.0193	!	0.0197	$!$	-0.0160	!	0.0230	
13.8574!-0.0326	!	-0.0466	! -0.0140	$!$	-0.0117	$!$	0.0209	$!$	-0.0080		0.0246	
16.3809!-0.0150	$!$	-0.0353	! -0.0203	!	0.0088	!	0.0238	!	0.0121	$!$	0.0271	
18.2218! 0.0026	!	-0.0216	! -0.0242	!	0.0289	!	0.0263		0.0309	!	0.0283	
19.9595! 0.0228	!	-0.0038	! -0.0266	!	0.0516	$!$	0.0288	!	0.0519	$!$	0.0291	
22.0348! 0.0517	$!$	0.0237	! -0.0280	$!$	0.0837	!	0.0320	!	0.0807	$!$	0,0290	
24.3307! 0.0896	!	0.0619	! -0.0277	$!$	0.1249	!	0.0353	!	0.1172	$!$	0.0276	
26.2129! 0.1252	$!$	0.0994	! -0.0258	$!$	0.1625	$!$	0.0373	$!$	0.1505	.	0.0253	
28.5365! 0.1750	!	0.1532	! -0.0218	$!$	0.2135	$!$	0.0385	$!$	0.1954	$!$	0.0204	
30.2946! 0.2169	!	0.1986	! -0.0183	$!$	0.2551	!	0.0382	$!$	0.2320		0.0151	
32.4113! 0.2722	$!$	0.2591	! -0.0131	!	0.3078	!	0.0356	!	0.2790	!	0.0068	

Table 5.4.29 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 273.15 K .

Table 5.4.30 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 298.15 K .

Pressure, MPa
Fig. 5.4.1 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Fig. 5.4.2 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K.

Fig. 5.4.3 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Argon at 273.15 K .

Fig. 5.4.4 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Argon at 298.15 K .

Fig. 5.4.5 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 273.15 K .

Fig. 5.4.6 Comparison of Observed Compressibility Factors (Z) with those Derived from Equations of State. For Nitrogen at 298.15 K .

Fig. 5.4.7 Comparison of Observed Normalized Isothermal Compressibilities (k / k°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Fig. 5.4.8 Comparison of Observed Normalized Isothermal Compressibilities (κ / K°) with those Derived from Equations of State. For Carbon Dioxide at298.15 K.

Fig. 5.4.9 Comparison of Observed Normalized Isothermal Compressibilities (k / κ°) with those Derived from Equations of State. For Argon at 273.15 K .

Fig. 5.4.10 Comparison of Observed Normalized Isothermal Compressibilities at 298.15 K .

Fig. 5.4.11 Comparison of Observed Normalized Isothermal Compressibilities (κ / κ°) with those Derived from Equations of State. For Nitrogen at 273.15 K .

Fig. 5.4.12 Comparison of Observed Normalized Isothermal Compressibilities $\left(k / K^{\circ}\right)$ with those Derived from Equations of State. For Nitrogen at 298.15 K .

Fig. 5.4.13 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Fig. 5.4.14 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Carbon Dioxide at 298.15 K .

Fig. 5.4.15 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Argon at 273.15 K .

Fig. 5.4.16 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ^{0}) with those Derived from Equations of State. For Argon at 298.15 K .

Fig. 5.4.18 Comparison of Observed Normalized Ratios of Specific Heats (γ / γ°) with those Derived from Equations of State. For Nitrogen at 298.15 K .

Fig. 5.4.19 Comparison of Observed normalized Speeds of Sound (a/a ${ }^{0}$) with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Fig. 5.4.20 Comparison of Observed Normalized Speeds of Sound (a/a ${ }^{0}$) with those Derived from Equations of State. For Carbon Dioxide' at 298.15 K .

Fig. 5.4.21 Comparison of Observed Normalized Speeds of Sound (a/a ${ }^{0}$) with those Derived from Equations of State. For Argon at 273.15 K .

Fig. 5.4.22 Comparison of Observed Normalized Speeds of Sound ($\mathrm{a} / \mathrm{a}^{\mathrm{o}}$) with those Derived from Equations of State. For Argon at 298.15 K .

Fig. 5.4.23 Comparison of Observed Normalized Speeds of Sound ($\mathrm{a} / \mathrm{a}^{0}$) with those Derived from Equations of State. For Nitrogen at 273.15 K .

Fig. 5.4.24 Comparison of Observed Normalized Speeds of Sound (a/a ${ }^{\circ}$) with those Derived from Equations of State. For Nitrogen at 298.15 K .

Fig 5.4.25 Comparison of Observed Values of the Property $p \partial Z / \partial \rho$ with those Derived from Equations of State. For Carbon Dioxide at 273.15 K .

Fig. 5.4.26 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Cárbon Dioxide at 298.15 K .

Fig. 5.4.27 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 273.15 K .

Fig. 5.4.28 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Argon at 298.15 K .

Fig. 5.4.29 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 273.15 K .

Fig. 5.4.30 Comparison of Observed Values of the Property $\rho \partial Z / \partial \rho$ with those Derived from Equations of State. For Nitrogen at 298.15 K .

The present discussion is confined to the gases concerned at the thermodynamic states at which measurements were made, namely, to carbon dioxide, argon and nitrogen at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ only at pressures from 1 to 35 MPa in argon and nitrogen but in carbon dioxide confined to the range 1 to 3 MPa at $0^{\circ} \mathrm{C}$ and 1 to 4.5 MPa at $25^{\circ} \mathrm{C}$. The 35 MPa upper limit in the case of nitrogen and argon was determined by the gas cylinder delivery pressure. For carbon dioxide, whose critical temperature is $31.06^{\circ} \mathrm{C}$, the upper limit was determined by the dew-point line. The decision to limit pressures to not less than 1 MPa was determined by the relative unsuitability of the pressure sensors at lower pressures, by less consistent diaphragm rupturing at these pressures - both of which contribute to decreased accuracy - together with the fact that the low pressure region, being only slightly non-ideal, is of relatively low interest in this study.

In this chapter, measurement uncertainties are presented, agreement of the measured properties with other published data are discussed and relevant properties calculated by the van der Waals, the Benedict-Webb-Rubin and the hybrid virial equations of state are compared with those observed in an attempt to assess the validity of the equations.

6.1 Uncertainty Analysis of the Measurement System

The uncertainty w_{R} of a value $R=R\left(x_{1}, x_{2}, \ldots\right)$ deduced from a set of independent measurements x_{1}, x_{2}, etc. having independent uncertainties w_{1}, w_{2}, etc. is given by [6.1];

$$
\begin{equation*}
w_{R}= \pm\left[\left(\frac{\partial R}{\partial x_{1}} w_{1}\right)^{2}+\left(\frac{\partial R}{\partial x_{2}} w_{2}\right)^{2}+\ldots\right]^{1 / 2} \tag{6.1.1}
\end{equation*}
$$

This relation is used to estimate uncertainties in the density, isothermal compressibility and speed of sound data.
6.1.1 Uncertainty in Density Measurements. As mentioned in Sec. 4.5.2 the density is derived from the relation;

$$
\rho=(1 / R T)\left[\left(1+V_{3} / V_{2}\right)\left(p_{2 f}-p_{2 i}\right)+p_{2 i}\right]
$$

The pressure $p_{2 i}$ is found to be very small compared to the first term in the square bracket above and is neglected in the computation of uncertainty as is V_{2} in respect to V_{3} so that uncertainties in density may be determined adequately from the approximate relation;

$$
\begin{equation*}
\rho \simeq(1 / R T)\left(V_{3} / V_{2}\right) \Delta p \tag{6.1.2}
\end{equation*}
$$

where $\Delta p=p_{2 f}-p_{2 i}$. Uncertainties in temperatures, in the volumes $\left(V_{2}, V_{3}\right)$ and in the pressure difference (Δp) are known to be about 0.07%, 0.1%, and 0.35% respectively so that the uncertainty in measured densities is about 0.4\%. It may be noted that the main contributor to this uncertainty is that arising from pressure.
6.1.2 Uncertainty in Isothermal Compressibility Measurements. In the expression for isothermal compressibility;

$$
\kappa=-\frac{1}{1+\frac{v_{2} / 2}{v_{1}}} \frac{v_{2} / v_{1}}{p_{1 f}-p_{1 i}}
$$

the value $\left(V_{2} / 2\right) / V_{1}$ is only about 0.05 , so that ignoring it for simplicity, the uncertainty in κ may be determined acceptably using the approximate relation;

$$
\begin{equation*}
\kappa \simeq-\left(v_{2} / v_{1}\right) / \Delta p \tag{6.1.3}
\end{equation*}
$$

where $\Delta p=p_{\text {lf }}-p_{\text {li }}$. Uncertainties in volume are about 0.1% and the uncertainty in Δp is about 0.14% (for transducer Pl) so that the uncertainty in isothermal compressibility data is not more than 0.2%.

In addition an error in κ, rather than an uncertainty, arises from the approximation;

$$
K\left(p_{K}, T\right)=-\frac{1}{V\left(p_{K}\right)}\left(\frac{\partial V}{\partial p^{2}}\right)_{T} \text { at } p_{K} \simeq-\frac{1}{V_{1}+V_{2} / 2} \frac{V_{2}}{p_{1 f}-p_{1 i}}
$$

where $p_{K}=\left(p_{l f}+p_{l i}\right) / 2$. The error introduced by the approximation $(\partial V / \partial p)$ at $p_{K} \simeq V_{2} /\left(p_{l f}-p_{l i}\right)$ can be shown, by Taylor's theorem, to be very small (of the order of -0.01\% maximum). The error due to the approximation $V\left(p_{K}\right) \simeq V_{I}+V_{2} / 2$, increases sharply with pressure and is greater at the lower temperature (273.15 K). For carbon
dioxide it is only about -0.005% at the mid range and increases to about - 0.14% at maximum pressure (3 MPa). For argon and nitrogen (where the maximum pressure is much greater) the mid range error is only about 0.02% but increases to about 0.6% at the maximum pressure involved.
6.1.3 Uncertainty in Speed of Sound Measurements. The speed of sound is given by the relation;

$$
a=x_{M L} /\left(t_{L}-t_{M}\right) \text { or } x_{M R} /\left(t_{R}-t_{M}\right)
$$

which can be rewritten as;

$$
\begin{equation*}
a=x_{M L} / \Delta t \text { or } x_{M R} / \Delta t \tag{6.1.4}
\end{equation*}
$$

where $\Delta t=t_{L}-t_{M}$ or $t_{R}-t_{M}$. The uncertainty in $x_{M L}$ or $x_{M R}$ is about 0.17% and that in Δt is about 0.7% so that the uncertainty in speed of sound data is about 0.73\%. The main contributor to the uncertainty is obviously the uncertainty in time Δt. This is due mainly to the tape recorder.

At low pressures, the measured speed of sound should be very nearly equal to the calculated ideal gas state value. This expectation is realized within uncertainty limits by the speed of sound data given earlier. From Table 5.1.1 and Fig. 5.1.1 it may be seen that at low pressures (about 0.1 MPa to 0.35 MPa the maximum deviation of the measured speeds of sound from ideal gas state values is less than

1\%, while the deviation of the average [i.e., $1-\left(a / a^{\circ}\right)$ average] is not more than 0.2% for those gases (air, nitrogen, and argon) which are close to ideal at these temperatures and pressures. Since the ideal gas state sound speed is the thermodynamic equilibrium defined value, this close agreement provides effective experimental confirmation that a decompression wave front moves through still gas at a speed equal to the thermodynamic speed of sound in the gas ahead of the front. It also indicates that a similar accuracy in measured speeds of sound will apply at higher pressures as well.
6.2 Comparison of the Observations with Published Data

The available published data on the thermodynamic properties of interest are plotted in Figs. 5.3.1 through 5.3.18. It will be seen that in general, the observations agree very well with the data of other investigators and such deviations as exist, exhibit no coherent pattern. This supports the experimental procedure used in regard to precision and freedom from bias. Further support in regard to precision is provided by the fact that, in all cases, the standard deviation of the scatter of the observed data from the fitted curve is well within the limits of experimental uncertainty.
6.2.1 Density.
a) Carbon Dioxide: Figs. 5.3.1 and 5.3 .2 show a high degree agreement of the data of this study with those of other investigators. However, at 298.15 K , the data of Michels et al. [2.10] are slightly less than the observed data at higher pressures.
b) Argon: From Figs. 5.3.3 and 5.3.4 it is seen that the agreement of the observed data with those of other workers is excellent for both isotherms.
c) Nitrogen: Observed densities are again in excellent agreement with other data as may be seen from Figs. 5.3.5 and 5.3.6.
6.2.2 Isothermal Compressibility. As mentioned earlier, suitable published data of other investigators on isothermal compressibility are not available for comparison.
6.2.3 Speed of Sound.
a) Carbon Dioxide: No suitable published data are available for comparison with the speed of sound observations of this study for carbon dioxide at $0^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}$ the data of Novikov and Trelin [2.34.2.35] (see Fig. 5.3.14) are about $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ to $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ greater than the data of this study. Hodge's data [2.20] (at $27^{\circ} \mathrm{C}$) agree
better with Novikov and Trelin (at $25^{\circ} \mathrm{C}$). However, the data of this study are in close agreement with Hodge's values when the latter are adjusted to $25^{\circ} \mathrm{C}$.
b) Argon: Observed values of the speed of sound in argon at $0^{\circ} \mathrm{C}$ (see Fig. 5.3.15) are more scattered (around the fitted curve) at lower pressures. The data of van Itterbeek et al. [2.36] are about $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ higher than the corresponding values from the fitted curve. The reported temperature of van Itterbeek's data is however $0.6^{\circ} \mathrm{C}$ higher so that it is valid to conclude that van Itterbeek's data is in agreement. El-Hakeem's data [2.24] at $0^{\circ} \mathrm{C}$ agree well with the fitted curve. No other data at higher pressure are available for comparison. At $25^{\circ} \mathrm{C}$ Lacam's data [2.31] (see Fig. 5.3.16) are significantly lower (by about $2 \mathrm{~m} \mathrm{~s}^{-1}$ to $3 \mathrm{~ms}^{-1}$) than the values of the fittted curve at pressures from 5 to 20 MPa. At other pressures they agree well with the fitted curve. The low pressure scatter of the observed data is again evident.
c) Nitrogen: For nitrogen at $0^{\circ} \mathrm{C}$ (see Fig. 5.3.17) van Itterbeek's [2.21] data are slightly lower than the observed fitted values. El-Hakeem's data [2.24] however, agree well with the fitted curve. Comparable data at pressures higher than 8 MPa are not available. At $25^{\circ} \mathrm{C}$ (see Fig. 5.3.18) agreement of fitted observed values with the data of Lacam
[2.31] and van Itterbeek et al. [2.2l] is good. Here, scatter in the observations at low pressure is much less evident.

6.3 Comparison of the Observed Thermodynamic Properties with those Derived from Equations of State

This discussion is assisted by consideration of general relations for the foundation parameters, namely;

$$
\begin{align*}
& p=\rho R T Z(\rho, T) \tag{6.3.1}\\
& I / K=\rho R T\left[Z+\rho(\partial Z / \partial \rho)_{T}\right] \tag{6.3.2}\\
& \frac{\gamma-1}{\gamma^{0}-1}=\frac{c_{v}^{0}}{c_{V}} \frac{\left[Z+T(\partial Z / \partial T)_{\rho}\right]^{2}}{Z+\rho(\partial Z / \partial \rho)_{T}} \tag{6.3.3}\\
& a^{2} / R T=\left[Z+\rho(\partial Z / \partial \rho)_{T}\right]+\left(R / c_{V}\right)\left[Z+T(\partial Z / \partial T)_{\rho}\right]^{2} \tag{6.3.4}
\end{align*}
$$

6.3.1 The van der Waals Equation. The performance of this equation of state is significantly worse than the other two equations in regard to every property concerned for ail three gases and for both isotherms. In view of its simplicity, its total dependence on only two constants (the critical point values T_{C} and ρ_{C}) and its well known failure to provide a realistic value of Z even at the critical state which defines the equation, this is not surprising.
a) Compressibility Factor (Z): The values of Z calculated from this equation are worse for carbon dioxide
than for argon and nitrogen even at the same dimensionless density values (see Figs. 5.4.1 through 5.4.6). This appears to be due to the relatively high value of T_{C} for carbon dioxide (304.21 K) which enhances structural flaws in the temperature dependent term for carbon dioxide whereas for argon ($T_{C}=150.7 \mathrm{~K}$) and nitrogen ($T_{C}=126.3 \mathrm{~K}$) the deviation is much less significant. For carbon dioxide this equation provides the highest values of Z among both observed values and those calculated from other the two equations of state, while for argon and nitrogen this equation provides the lowest values of Z. The behaviour of other properties can be readily appreciated by this (Z) behaviour.
b) Normalized Isothermal Compressibility (K / κ^{0}): (See Figs. 5.4.7 through 5.4.12) The equation values of k / K^{0} for carbon dioxide are the lowest among those presented while for argon and nitrogen they are the highest (excepting the low pressure region for argon). This is completely consistent with the behaviour of Z and of $\rho(\partial Z / \partial \rho) T$ [refer to Eq. (6.3.2) and see Figs.5.4.25 through 5.4.30].
c) Normalized Ratio of Specific Heats ($\left.\gamma / \gamma^{0}\right)$: (See Figs. 5.4.13 through 5.4.18) The equation values of γ / γ° are less than those observed except for argon at moderately high pressures ($\geqslant 20 \mathrm{MPa}$). The agreement is best for argon (within 2% at all pressures) and is worst for carbon dioxide.

This can be appreciated by comparing with the virial equation, which exhibits the best performance in argon and nitrogen and is significantly better than the van der Waals equation in carbon dioxide. From Eq. (6.3.3) it is seen that the dominant term is that involving the gradient of TZ with temperature ($Z+T \partial Z / \partial T$). This term is independent of temperature and is too low by the van der wals equation at most state points concerned here. For the $0^{\circ} \mathrm{C}$ isotherm in carbon dioxide at a dimensionless density $\omega_{0}=0.1$ (about 2.24 MPa) an approximate calculation indicates $(\gamma-1)_{v d w} /(\gamma-1)_{v i r i a 1} \simeq 0.7$. On the same isotherm and at the same dimensionless density in nitrogen (about 3.4 MPa) a similar calculation gives $(\gamma-1)_{v d w} /(\gamma-1)_{v i r i a l} \simeq 0.96$. These rough values are in fair agreement with the plotted curves.
d) Normalized Speed of Sound (a/aO): (See Figs.5.4.19 through 5.4.24) The equation values of a / a° are very similar in behaviour to that of Z. This is to be expected since;

$$
a / a^{0}=\left[\left(\gamma / \gamma^{0}\right)\left(Z+\rho(\partial Z / \partial \rho)_{T}\right]^{1 / 2}\right.
$$

where z dominates in the range of interest. For carbon dioxide the equation values are as much as 6% too high. For argon the agreement is best (errors less than 3.5\%) while for nitrogen the errors are up to about 7\%.
6.3.2 The Hybrid Virial Equation. In general the agreement of the calculated properties with those observed, although not very good, is much better than van der Waals' equation. Comparison of the observed and calculated properties plotted in Figs. 5.4.1 through 5.4.30 indicates certain conclusions as to the validity of the hybrid virial equation and the pair of constants $\left(b_{L J},{ }^{\theta}\right)$ defining it for a given gas. These are;
a) The tabulated Lennard-Jones (6-12) potential-well-depth-temperature, for carbon dioxide ($\theta=205$ K) is probably too low. This deduction is consistent with (low pressure range) calculated values for carbon dioxide of Z (too high), absolute value of the slope of Z (too high), k / K° (too low) and a / a° (too high). For argon and nitrogen these errors are relatively insignificant at comparable pressures. A plot of second virial coefficients $B(T)$ for carbon dioxide against temperature, can be found in [1.3, 2 202] along with the experimental second virial coefficients of MacCormack and Schneider [2.11]. (The values of the force constants used here for carbon dioxide are taken from this reference). From this plot it may be seen that the calculated $B(T)$ is higher by about 5% or more than the experimental $B(T)$ of MacCormack and Schneider [2.11] around 350 K . This also explains the high values of calculated
Z and the large deviation of properties dominated by Z for carbon dioxide. Similar plots may also be found for argon and nitrogen in [1.3], from which it may be seen that the agreement of Lennard-Jones $B(T)$ values is quite good with experimental $B(T)$ values. This explains why properties calculated by the virial equation agree very well with observed properties at lower pressure ranges for nitrogen and argon. An additional important point is that observations in carbon dioxide were near to the critical point, where both the van der Waals and the virial equation are relatively inaccurate.
b) The application of this two-constant spherically-symmetric-potential-based equation to non-spherical molecules appears to be inaccurate at least in regard to the third virial coefficient, $C *$. The second virial coefficient is relatively insensible to molecular shape [1.3,p206]. The agreement of calculated Z with observed Z values is very good for (spherical) argon at all pressures. For (non-spherical) nitrogen, however, the error in Z is low at low pressures (where B^{*} is more influential) but steadily increases with increasing pressure (where C^{*} has greater influence). The same applies for other properties where z dominates.
6.3.3 The Benedict-Webb-Rubin Equation. Among the three equations studied, the agreement of properties calculated
by the Benedict-Webb-Rubin equation with observed values is best. For Z and properties dominated by Z the agreement is, in general, excellent. This is as expected because the Benedict-Webb-Rubin equation is purely an empirical equation (with eight adjustable constants) formulated by fitting to thermodynamic property data.

From the comparison presented in Figs. 5.4.1 through 5.4.30, it may be seen that, among the three gases, the agreement of the slope properties for argon is not as good as for the other two gases. The large number of constants makes this difficult to explain. Argon is a non polar spherically symmetric molecule and it is therefore quite unexpected that predictions for argon are not as good as those for carbon dioxide and nitrogen. However, since the Benedict-Webb-Rubin equation is a fit to data, insensitivity to molecular shape is to be expected.

It may also be mentioned that in properties where temperature derivatives of $T Z$ dominate, like $\left(\cdot \gamma / \gamma^{\circ}\right)$ and to some extent, a / a°, the agreement of the Benedict-Webb-Rubin equation is considerably poorer than that of the virial equation. A flaw in one or more temperature terms in this equation is therefore indicated.

6.4 Recommendations for Further Study

1. Measurements at higher pressure ranges are needed to study the deviations of equation of state predictions from experimental values at very high pressures. The present apparatus is designed for pressures up to 40 MPa . It can be redesigned and modified for measuring properties at much higher pressure ranges.
2. Measurements at several closely spaced isotherms are required to obtain observed temperature-derivative properties such as $(\partial \mathrm{p} / \partial \mathrm{T})_{\rho},(\partial \rho / \partial T)_{\mathrm{p}},(\partial \mathrm{Z} / \partial T)_{\rho}$ etc.
3. During the measurement of isothermal compressibility (by expanding the gas in the T-tube into the small chamber coil), the pressure quickly falls to a minimum as the valve is opened, and then rises slowly to the equilibrium pressure as demonstrated in Fig. 6.4.1. The initial decrease in pressure is due to adiabatic expansion. Measurement of this minimum pressure should provide an independent estimate of γ.
4. The bias error in the measurement of isothermal compressibility at higher pressure ranges can be reduced significantly using a smaller expansion chamber at these pressures.

Fig. 6.4.1 Pressure Variation in the Decompression Tube Immediately after the valve connecting the Coil and the Decompression Tube is Opened; as seen on the oscilloscope and recorded by xy plotter.

REFERENCES

l.l Kirchoff, G. R., Ann. Physik, Leipzig, l34, 177, 1868.
l. 2 Quinn, T. J., Colclough, A. R., and Chandler, T. R., 'A New Determination of the Gas Constant by an Acoustical Method', Phil. Trans., Roy. Soc., London, A283, 367, 1976.
1.3 Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., 'Molecular Theory of Gases and Liquids', Wiley, 1964.
2.1 Mason, E. A. and Spurling, T. H., 'The Virial Equation of State', The International Encyclopedia of Physical Chemistry and Chemical Physics, Topic 10, Volume 2, Pergamon, 1969.
2.2 Comings, E. W., 'High Pressure Technology', McGraw-Hill, 1956.
2.3 Vukalovich, M. P. and Altunin, V. V., 'Thermophysical Properties of Carbon Dioxide', Collet's, London, 1968.
2.4 Angus, S., Armstrong, B. and de Reuck, K. M., International Thermodynamic Tables of the Fluid State Carbon Dioxide', Pergamon, Oxford, 1976.
2.5 Sandri, R. and Wong, J. K. S., 'An Empirical Equation of State for Carbon Dioxide Covering a Wide Range of Temperature and Pressure', National Research Council of Canada, NRC No. 9855, 1967.
2.6 Gosman, A. L., McCarty, R. D. and Hust, J. G., 'Thermodynamic Properties of Argon from the Tripple Point to 300 K at Pressures to 1000 Atmospheres', U. S. National Bureau of Standards, National Standard Reference Data Series, No. 27, 1969.
2.7 Angus, S. and Armstrong, B., 'International Thermodynamic Tables of the Fluid State Argon', Butterworths, 1972.
2.8 Hall, L. A., Hust, J. G. and Gosman, A. L., 'A Bibliography of Thermodynamical Properties of Argon from 0 to $300 \mathrm{~K}^{\prime}$, U. S. National Bureau of Standards, Technical Note No. 217, 1964.
2.9 Jacobsen, R. T. and Stewart, R. B. 'Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases
from 63 K to 2000 K with Pressures to 10000 Bar', J. Phy. Chem. Ref. Data, v2, n4, 757, 1973.
2.10 Michels, A. and Michels, C., 'Isotherm of Carbon Dioxide between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and Pressures from 16 to 250 Atmospheres (Amagat Densities 18 - 206)', Proc. Roy. Soc. London, Al53, 201, 1935.
2.11 MacCormack, K. E. and Schneider, W. G.,'Thermodynamic Propeties of Gaseous Carbon Dioxide at Temperatures from $0^{\circ} \mathrm{C}-600^{\circ} \mathrm{C}$ and Pressures up to 50 Atmospheres, J. Chem. Phys. 18, 1273, 1950.
2.12 Vukalovich, M. P., Kobelov, V. P. and Timoshenko, N. I., 'Experimental Investigation of Carbon Dioxide Densities at Temperatures from $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and pressures up to 300 Bar', Thermal Engineering, 15, 4, 103, 1968.
2.13 Michels, A., Wijker, H. and Wijker, H. K., 'Isotherms of Argon between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and Pressures up to 2900 Atmospheres', Physica, 15, 627, 1949.
2.14 Kestin, J. and Liedenfrost, W., 'An Absolute Determination of the Viscosity of Eleven Gases over a Range of Pressures', Physica, 25 ,1033, 1959.
2.15 Smith, L. B. and Taylor, R. S., 'The Equation of State for Pure Nitrogen, Gas Phase', J. Am. Soc. 45, 2107, 1923.
2.16 Verschoyle, T. T. H., 'Isotherms of Hydrogen, of Nitrogen and of Hydrogen-Nitrogen Mixtures at $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ up to a Pressure of 200 Atmospheres', Proc. Roy. Soc. London , Alll, 552, 1926
2.17 Bartlett, E. P., Cupples, H. L. Tremearne, T. H., 'The Compressibility Isotherm of Hydrogen , Nitrogen and a 3:1 Mixture of these Gases at Temperatures between $0^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ and Pressures to 1000 Atmospheres', J. Am. Chem. Soc., 50, 1275, 1928.
2.18 Michels, A., Wouters, H. and de Boer, J., 'Isotherms of Nitrogen between $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and at Presures from 20 to 80 Atmospheres', Physica, l, 587, 1934.
2.19 Michels, A., Wouters, H. and de Boer, J., 'Isotherms of Nitrogen between 200 and 3000 Atmospheres and $0^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}^{\prime}$, Physica, $3,585,1936$.
2. 20 Hodge, A. H., 'An Experimental Determination of Ultrasonic Velocity in Several Gases at Pressures
between 1 and 100 Atmospheres', J. Chem. Phys., 5, 974, 1937.
2.21 van Itterbeek, A., de Rop, W. and Forrez, G., 'Measurements on the Velocity of Sound in Nitrogen under High Pressure', Appl. Sci. Res., A6, 421, 1957.
2.22 Gammon, B. E. and Douslin, D. R., 'A System for Measuring the Velocity of Sound in Compressed Fluids and its Application to Helium between $-175^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$, Proc. of the Fifth Sympos. Thermophysical props., pl07, 1970.
2.23 Lestz, S. S., 'A Method for Measuring Sound Wavelength in Gases', Am. J. Phys., 3l, 96, 1963.
2.24 El-Hakeem, A. S., 'Velocity of Sound in Nitrogen and Argon at High Pressure', J. Chem. Phys., 42, 3132, 1965.
2.25 Street, W. B. and Constantino, M. S., 'Measurements of the Velocity of Sound in Liquid Argon from 90 to 160 K and Pressures to 3400 Atmospheres', Physica, 75, 283, 1974.
2.26 Liebenberg, D. H., Mills, R. L. and Bronson, J. C., 'High Pressure Apparatus for Simultaneous Adiabatic and Isothermal Compressibility Measurements : Data on Argon to $13 \mathrm{kBar'}$, J. Appl. Phys., 45, 2, 741, 1974.
2.27 Garland, C. W. and Williams, R. D., 'Low-frequency Sound Velocity Near the Critical Point of Xenon', Phys. Rev., Al0, 4, l328, 1974.
2.28 Vershchagin, L. F., Pitaevskaya, L. L., Bilevich, A. V., Minin, A. R., Novikov, A. R. and Voronov, F. F., 'Apparatus for Adiabetic Compression of Gases up to 30 kBar', High Temperatures High Pressures, 7, 279, 1975.
2.29 Yonglove, B. A., 'Speed of Sound in Fluid Para-Hydrogen', J. Acoust. Soc. Am., 38, 433, 1965.
2.30 Tsumura, R. and Starty, G. C., 'Speed of Sound in Saturated and Compressed Fluid Ethane', Cryogenics, 17, 4, 195, 1977.
2.31 Lacam, A., 'Etude Experimentale de la Propagation des Ultrasons Dans Les Fluides', Journal des Researches du C.N.R.S., No. 34, p25, 1956.
2.32a Glass, I. I., 'An Experimental Determination of the Speed of Sound in Gases from Head of a Rarefaction Wave', Univ. of Toronto Inst. of Aerophys., Report No. 9, 1951.
2.32b Glass, I. I., 'On the speed of Sound in Gases', J. Aeronautical Sci., 19, 4, 286, 1952.
2.33 Groves, T. K., Bishnoi, P. R. and Wallbridge, J. M. E., 'Decompression Wave Velocities in Natural Gases in Pipe Lines', Canadian J. Chem. Engg., $56,664,1978$.
2.34 Novikov, I. I. and Trelin, Y. S., Teploenergetica, No. 2, p81, 1962.
2.35 Novikov, I. I. and Trelin, Y. S., Zh. Prikl. Mekh. Tekh. Fiz., No. 2, pll2, 1960.
2.36 van Itterbeek, A., van Dael, W. and Grevendonk, W., 'Measurement on the Velocity of Sound in Argon under High Pressure', Physica, 25, 640, 1959.
3.1 Bradley, J. N., 'Shock Waves in Chemistry and Physics', Methuen and Co., London, 1962.
3.2 Glass, I. I., 'Theory and Performance of Simple Shock Tubes', Univ. of Toronto Inst. of Aerophys., Review No. 12r 1958.
3.3 Doolittle, J.S. and Hale, F. J., 'Thermodynamics for Engineers', Wiley, 1983.
3.4 van der Waals, Sr., J. D. Doctoral Dissertation, Leiden, 1873.
3.5 Stuart, H. A., Molekulstruktur, Springer, 1934.
3.6 Barker, J. A., Lennard P. J. and Pompe, A., J. Chem. Phys., 44, 4206, 1966.
3.7 Rowlinson, J. S., Mol. Phys., 6, 429, 1963.
3.8 Groves, T. K., Ph.D. Thesis, Mech. Engg. Dept., University of McGill, 1966.
3.9 Reid, R. C., Prausnitz, J. M. and Sherwood, T. K., 'Thé Properties of Gases and Liquids', McGraw-Hill, New York, 1977.
4.1 Gaydon, A. G. and Hurle, I. R., 'The Shock Tube in High Temperature Chemical Physics', Chapman and Hall, London, 1963.
4.2 Marks' Standard Handbook for Mechanical Engineers, Eighth Edition, McGraw-Hill, 1979.
6.1 Kline, J. S. and McClintock, F. A., 'Describing Uncertainties in Single-sample Experiments', Mech. Eng., p3, January, 1953.

APPENDIX A1

Al.1 Details of Computation of Thermodynamic Properties by Equations of State

The computation of the desired thermodynamic properties are done by computer. The SI units are used throughout. The stepwise procedure for computation is given below.

1. Read the required constants for the particular equation, eg., molecular weight M in general; $b_{I J}, \theta$ and b_{h} (estimated by Eq. (3.2.15) for an average temperature over the temperature range concerned) for hybrid virial equation; v_{C} and T_{C} for van der waals equation ($b_{v d w}=v_{C} / 3$); A, A_{o}, $B, B_{O}, C, C_{O}, \alpha$ and γ for Benedict-Webb-Rubin equation.
2. Compute gas constant $R=\bar{R} / M, \bar{R}$ is the universal gas constant.
3. Read the temperature at which the computation is to be done.
4. For hybrid virial equation compute $T^{*}=T / \theta$ and interpolate the values of $B^{*}, B_{1}^{*}, B_{2}^{*}, C^{*}, C_{1}^{*}$ and C_{2}^{*} from the tabulated values [1.3,plll4-1117] at the computed T^{*}. For van der Waals equation compute $T_{r}=T / T_{C}$.
5. Interpolate c_{p}^{O} from the tabulated values (Table Al.2.3) for the given temperature.
6. Compute $c_{v}^{0}=c_{p}^{0}-R$
7. Compute $\gamma^{0}=c_{p}^{0} / c_{v}^{0}$
8. Compute $a^{\circ}=\left(\gamma^{\circ} \mathrm{RT}\right)^{1 / 2}$
9. Assume an initial density ρ
10. Compute ω (for hybrid virial equation $\omega_{L J}=\rho b_{L J}$ and $\omega_{h}=\rho b_{h}$; for van der Waals equation $\omega_{v a w}=\rho v_{C} / 3$; for Benedict-Webb-Rubin equation computation of ω is not required).
11. Compute Z
12. Compute $p=\rho R T Z=(\omega / b) R T Z$
13. Compute k and $(\partial p / \partial T)_{V}$
14. Compute volume expansivity $\beta=\kappa(\partial \mathrm{p} / \partial \mathrm{T})_{v}$
15. Compute c_{VR}
16. Compute $c_{v}=c_{v}^{0}+c_{v R}$
17. Compute $c_{p}=c_{v}+T \beta^{2} / \rho K$
18. Compute $\gamma=c_{p} / c_{v}$
19. Compute a $=\gamma / \rho \kappa$
20. Compute $\rho(\partial Z / \partial \rho)_{T}=(1 / p \kappa-1) Z$
21. Compute $\kappa^{\circ}=1 / p$
22. Compute k / κ°
23. Compute γ / γ°
24. Compute a / a°
25. Increase ρ by some suitable step.
26. Repeat from step 10 until desired range of density or pressure is covered.
27. Read new T and repeat from step 4.

The expressions for $Z,(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}, \kappa$, and c_{VR} for the equations used are given in Sec. 3.2.

Al. 2 Tables of Necessary Constants and Properties
Universal gas constant $R=8314.3 \mathrm{~J} \mathrm{kmol}^{-1} \mathrm{~K}^{-1}$ Avogadro's number $\quad N=6.0225 \times 10^{26}$ molecules kmol^{-1} Boltzmann's constant $k=1.3803 \times 10^{-23} \mathrm{~J}$ molecule $\mathrm{e}^{-1} \mathrm{~K}^{-1}$

Table Al.2.1 Molecular Weights, Critical Constants and Force Constants for the Gases used.

Gas	Molecular Weight M	$\begin{aligned} & \mathrm{p}_{\mathrm{c}} \\ & \mathrm{~Pa} \end{aligned}$	$\mathrm{m}^{3} \mathrm{~kg}^{\mathrm{c}} \mathrm{kg}^{-1}$	T K	$\mathrm{m}^{3} \mathrm{~kg}^{-1}$	$\begin{aligned} & \theta^{\star} \\ & k \end{aligned}$
Carbon Dioxide	44.0100	7383500.0	0.0021552	304.21	0.0019325	205.0
Argon	39.9480	4865000.0	0.0019493	150.70	0.0012466	119.8
Nitrogen	28.0134	3417000.0	0.0032206	126.30	0.0022996	95.9

values are taken from [1.3]
and reported after unit conversion.

Table Al. 2.2 Benedict-Webb-Rubin Equation of state Constants for the Gases Used*

Constants	Carbon Dioxide	Argon	Nitrogen
A (m $\left.\mathrm{kg}^{-1}\right)^{3} \mathrm{~Pa}$	0.162630 E 00	$0.458340 \mathrm{E}-01$	0.115704 E 00
$\mathrm{A}_{0}\left(\mathrm{~m}^{3} \mathrm{~kg}^{-1}\right)^{2} \cdots \mathrm{~Pa}$	0.143211 E 03	0.522663 E 02	0.136050 E 03
B $\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)^{2}$	$0.212920 \mathrm{E}-05$	$0.134907 \mathrm{E}-05$	$0.296617 \mathrm{E}-05$
$B_{0}\left(\mathrm{~m}^{3} \mathrm{~kg}^{-1}\right)$	$0.113383 \mathrm{E}-02$	0.557800 E-03	$0.145440 \mathrm{E}-02$
C $\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)^{3} \mathrm{~K}^{2} \mathrm{~Pa}$	0.177335 E 05	0.125448 E 04	0.335750 E 04
$\mathrm{C}_{0}\left(\mathrm{~m}^{3} \mathrm{~kg}^{-1}\right)^{2} \mathrm{~K}^{2} \mathrm{~Pa}$	0.724928 E 07	0.834404 E 06	0.104061 E 07
$\alpha\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)^{3}$	$0.993641 \mathrm{E-09}$	$0.558252 \mathrm{E}-09$	$0.578615 \mathrm{E}-08$
$\gamma\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)^{2}$	0.278489 E-05	$0.146524 \mathrm{E}-07$	$0.675374 \mathrm{E}-05$

Temperature K	$\mathrm{J} \mathrm{~kg}_{\mathrm{p}}^{\mathrm{c}_{\mathrm{p}}^{\mathrm{o}}} \mathrm{~K}^{-1}$		
	Carbon Dioxide ${ }^{\text {a }}$	Argon ${ }^{\text {b }}$	Nitrogen ${ }^{\text {c }}$
220.00	757.33	522.32	661.06
230.00	768.92		661.06
240.00	780.28		661.06
250.00	791.41		661.08
260.00	802.54		661.10
270.00	813.45		661.12
273.15	816.86		661.14
280.00	824.36		661.18
290.00	835.04		661.23
298.15	843.67		651.31
300.00	845.49		661.33
310.00	855.71		661.42
320.00	865.94		661.55
330.00	875.94		661.72
340.00	885.48		661.93
350.00	895.02		662.16
360.00	904.34		662.44
370.00	913.20		662.74
380.00	922.06		663.12
390.00	930.70		663.52
400.00	939.10		663.99
a values are taken from [2.4] and tabulated after unit conversion.			
b for Argon c_{p}° is virtually constant for the temperature range concerned and the reported value is taken from [2.7].			
c values are taken from [2.9] and tabulated after unit conversion.			

[^0]: *Numbers in the square bracket represents reference numbers

