
When is an object not an object?

Mark Roseman
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4 (403) 220-3532

roseman@cpsc.ucalgary.ca

Abstract

This paper describes an approach to designing and
building Tcl extensions that can be flexibly and
dynamically changed using either Tcl or C. In
particular, extensions having an object-based interface
are considered. This extension approach seeks to avoid
the “chasm” found in migrating code from Tcl to C as it
matures by freely mixing Tcl and C to create an object’s
subcommands. The approach differs from traditional
Tcl object frameworks in that it retains familiar
mechanisms used to create new toplevel Tcl commands,
and emphasizes extensions holding much of their data at
the C level. A secondary goal is to illustrate how
extension authors can encourage rich customization, by
exposing object internals to change. To illustrate the
technique, a simple data structure is extended to support
sharing between multiple Tcl processes.

Introduction

The success of Tcl has been founded on its ease of
extension, leading to a large number of high quality
extensions. The core Tcl interpreter provides a single
mechanism — the library function Tcl_CreateCommand
— for extending the interpreter, whether directly to add a
new command written in C, or indirectly, using “proc”
to define a new command written in Tcl. While
providing sufficient power to provide for extensions, the
explosion of extension frameworks suggests the core
mechanism does not necessarily make it easy to create
the sorts of extensions developers want.

In particular, the core mechanism provides no support
for the ubiquitous “object-oriented” style found in
extensions such as Tk, where a single Tcl command
supports many methods or subcommands. Many of the
object oriented extension architectures — such as [incr
Tcl] — have arisen to make it easier to add new
subcommands to objects. These approaches tend to
result in objects which are used like other Tcl objects,
but creating these objects is fundamentally different
from creating toplevel Tcl commands. These
architectures also provide limited support for creating
extensions that are implemeted primarily at the C level.

This paper describes a complementary approach, which
leverages the familiarity and simplicity of the

Tcl_CreateCommand approach to defining object
oriented commands. While systems such as [incr Tcl]
tend to emphasize extensions whose data and operations
are primarily implemented at the Tcl level, the approach
here is more suitable for extensions whose
implementations are primarily at the C level. The goal
here is to allow users of extensions — even C-based
ones — to customize them as easily as they would [incr
Tcl] extensions, using either C or Tcl, and in a manner
analogous to creating toplevel Tcl commands. The
lessons here are also applicable to [incr Tcl]-type
extensions, suggesting how to design objects for easier
customization.

This is not presented as an extension itself — the paper
will argue why this is a poor idea — but rather as a set
of guidelines or considerations to keep in mind when
writing extensions. Keeping in mind that many people
find “meta” to be a four letter word, the paper is heavily
grounded in a particular extension which uses the
techniques described here.

Terminology

A quick note on my use of the word “object” is
appropriate here. As alluded to in the title, there are
differing uses of this term. Throughout the paper,
“object” and “object oriented” will normally refer to
objects in the Tcl sense [4], such as found in Tk. One
toplevel Tcl command (e.g. “button”) creates an object,
which results in the creation of another Tcl command
(e.g. “.mybutton”) having subcommands (e.g. “invoke”)
which perform operations on the object. I’m not
assuming anything about an object-oriented system in
the C++ or Smalltalk sense, where we have other
properties such as inheritance.

Motivation

This section examines some relevant work to better
understand the approach taken in this paper. Current
Tcl object frameworks are briefly examined to highlight
their strengths and weaknesses. A case is made that the
transition from Tcl to C code is far too difficult and
heavyweight at the moment. Finally, some work in
computational reflection suggests some promising
strategies for exposing the internals of objects to
customization.

Why Allow Users to Customize Extensions?

A basic tenet of this paper is that there are often cases
where it is valuable to customize an extension. That no
extension will suit every need should be obvious.
Often however a user’s needs can be better met by small
changes or additions to an existing extension rather than
coding from scratch. I would argue that extension
authors can actively support this sort of customization,
rather than leaving users with the often grim prospect of
mucking in the extension’s source code.

Here are a few examples of customization scenarios:

• Can I change how [incr Tcl] inherits objects?
• Can a certain data structure be made persistant?
• Dump a Tk canvas as a GIF rather than Postscript?
• Have Tcl-DP use a different transport protocol?
• Make Tk work on a Mac?

The traditional approach is all too often to either toss
out or severely modify the extension’s internals. The
approach here suggests that with good design and open
implementations, it may be possible to anticipate and
provide for such future changes and new uses.

Traditional Object Extensions

A number of object extensions have appeared over the
last couple of years as a way to create object oriented
Tcl commands. For reasons of brevity, I’ll focus on
Michael McLennan’s excellent [incr Tcl] system as an
exemplar of the approach [3].

The system is modeled after the style of objects found
in C++, where object classes are defined, containing
state information (fields or instance variables) and
behaviors (methods or member functions). Classes can
inherit (subclass) from other classes, allowing changes
or extensions to be made to a class. Once a class is
defined, instances of the class can be created containing
the fields and methods described by the class. Classes,
their fields and methods, are described by Tcl scripts.

The advantage to these frameworks is the added structure
they add to Tcl programs, which is necessary for
building larger programs. The frameworks add methods
or subcommands through the class definition
mechanism, which is somewhat more heavyweight than
the traditional method of defining new Tcl commands.
While still not preventing very interactive prototyping,
it can be more difficult. As well, the frameworks do
promote a different mental model of a program than
found in standard Tcl.

Current Tcl object frameworks emphasize systems
whose data and methods are usually stored at the Tcl
level, though some, such as the newest version of [incr
Tcl], support defining methods in C. For Tcl-based

extensions particularly, they provide a rich means of
customization, though implementing it through the
“different” paradigm of classes and inheritance.

The Extension Chasm

The other main approach to extensions is of course to
“roll your own” using the core mechanisms directly
provided by Tcl — define toplevel commands at either
the C or Tcl level. C level extensions tend to be better
when there is a larger amount of possibly complex data
or computation involved. Observations of Tcl
development practice suggest that doing a C extension
in this manner is particularly heavyweight. Extensions
at this level have tended to be notoriously difficult to
extend or customize — a point returned to shortly.

Additionally, C level extensions encapsulated in a
toplevel “object oriented” command tend to be an “all or
nothing” affair, where most, if not all of the extension
is done in C at once. As many extensions seem to
begin life as Tcl-based prototypes, it can be a daunting
task to move from a Tcl-based implementation to a C
based one, even when it becomes far too complex to
realistically maintain in Tcl. Some of the
“megawidget” extensions are good examples of this.

Ideally, one would like to be able to more incrementally
move an extension from Tcl to C, as performance and
other requirements dictate. It is completely reasonable
that an extension — including one providing object
oriented commands — could be implemented in a fluid
mixture of both Tcl and C, using both as appropriate.
This level of integration, analogous to the smooth
mixture of C and Tcl toplevel commands, is not found
in current extension writing practice.

Open Implementations

There has been a great deal of work in the
computational reflection community on better
understanding the role of abstraction in software
development. This community has been concerned with
meta-level architectures in highly dynamic
programming languages such as CLOS and Dylan.
This section describes some of the tenets held by that
community, in the hopes of understanding how to create
more flexible, extensible and dynamic extensions in
Tcl. Material here draws heavily from Kiczales [2].

Fundamentally, we use abstraction to manage
complexity in systems. Under an object-oriented
metaphor, objects are the method for representing
abstraction. Objects reduce complexity by allowing
their clients to deal with only the “necessary”
functionality of the object, while hiding the details of
the implementation. Conventional views of abstraction
hold that a client need not and cannot care about the
object’s implementation, just its interface.

The reflection community holds that this view of
abstraction is not sufficient in practice. Kiczales uses
the example of creating a view of a 100x100 cell
spreadsheet object, by using the window system to
create a sub-window for each cell. Though this is
faithful to the abstraction provided by most, this
solution is likely to be far too slow on most window
systems. Important information about the design of a
window system — that it is optimized for a relatively
small number of windows — is hidden from the
developer using the window system. The developer is
forced to “work around” the abstraction to solve the
problem, an all too common scenario. The abstraction
fails by hiding relevant implementation internals behind
its interface, making them inaccessible.

This is not to say that abstraction has no value, but
instead that it is important to be able to “get inside” the
abstraction when necessary, for performance or other
reasons. Rather than defining only a single interface to
an abstraction, two interfaces can be defined. The
second, an adjustment interface, allows for examining
and changing the internal workings of the object, which
are hidden from view under a traditional view of
abstraction. While the first interface allows the
developer to ignore details of the implementation, the
second interface provides a recourse in the case when
abstraction breaks down.

Defining this adjustment interface is somewhat
complementary to the process of actually implementing
it. Object inheritance and subclassing is one method,
but subclassing does not ensure a good adjustment
interface. Computational reflection is founded on the
premises that the design of the implementation should
be as modular and well thought out as the design of the
interface, and that an adjustment interface should be
available to the abstraction’s clients to permit
examining and changing the implementation when
necessary.

Goals of this Work

The remainder of this paper presents an approach to
building Tcl extensions having an object-oriented
interface that are easily customized by their users. The
approach illustrates two main points:

1. An extension whose core data and operations exist
largely at the C-level can be changed at least as
easily as one implemented using a Tcl-based
object framework.

2. Careful design is necessary to ensure an easily
customized extension; this applies to extensions
written using the approach here as well as with
other approaches.

In achieving these goals, the approach describes how to
build extensions having the following properties:

1. Objects can be easily extended in either Tcl or C,
by adding to or replacing existing methods.

2. Objects can be individually extended at runtime for
greater customizing, i.e. extension is instance-
based, not class-based.

3. The internals of objects are exposed and may be
changed by users of an object, resulting in
dramatic changes of behavior.

4. Extending objects should be done in a manner
analogous to creating new toplevel commands.

Again, the focus of this work is a set of design
principles for building customizable extensions that
have an object-oriented interface — it is not itself an
object-oriented extension. I believe the range of
possibilities this approach applies to are far greater than
could be encapsulated with a single extension.

An Example Scenario

To ground this approach in the concrete, the paper draws
on an example found in GroupKit, a Tcl extension that
helps developers create real-time groupware applications
[5]. In real-time groupware, applications run across
different machines, permitting, for example, a drawing
program to be shared by users across a network, all
contributing to a single drawing. In GroupKit, this is
accomplished by having copies of the application
running on each machine, exchanging messages with
each other (using the Tcl-DP extension [6]).

GroupKit uses a data structure called an “environment”
(for historical reasons) to keep track of a lot of
information such as what users are active in a session
and what they are doing. Environments are hierarchical
data structures where any node can hold either a value or
have other nodes as children. Nodes are referred to by a
key, using a “.” as a hierarchy delimiter, e.g.
“users.5.name”. Environments bear a strong
resemblance to Extended Tcl’s keyed lists, which served
as the basis for the earlier implementations.

Environments are a very simple example of an object;
they can be created and destroyed, and methods are
provided to add, delete and inspect nodes in the
environment. Table 1 summarizes some of the
operations available in environments. In GroupKit, we
wanted to be able to maintain this simplicity while
permitting environments to be shared between GroupKit
processes. Ideally, just by changing a node in the local
copy of an environment, the change would be
appropriately propagated to environments in the other
processes. Under normal circumstances, application
developers should not need to know how this occurs.

We knew from our earlier work [1] that it would not be
sufficient to provide a single method for doing
concurrency control or replication. A wide variety of
choices are possible, and these can have dramatic effects

Operation Description
gk_env envName create an environment and its

command
envName set node value set the value of node in the

environment to value
envName get node get the value of a particular

node; if the node has children,
return a keyed list representing
the structure of the subtree
rooted at node

envName delete node delete the indicated node, or
subtree

envName keys ?node? return the list of direct children
of the given node

envName option ?args..? get or set environment
options, specified by key and
value, the same as the
environment’s data

envName destroy destroy the environment and
its command

Table 1. Core operations on environments.

on the user interfaces of the highly interactive multi-
user applications built with GroupKit. See Table 2 for
examples of some of the customization possibilities. A
better approach was to provide a core object that could
be easily extended by either ourselves or application
developers to support different strategies as needed for a
particular application.

The Extension Approach

This section describes how to design and build these
open and extensible Tcl objects, using the GroupKit
environments as an example of one possible
implementation.

Object Creation

A single toplevel Tcl command (e.g. “gk_env”) is
defined in C and registered with the Tcl interpreter.
When invoked with an object name, this command
performs the following operations:

1. Create and initialize any necessary internal core
data structures.

2. Create a table of subcommands (e.g. a hash table)
and fill in with a set of default operations.

3. Register a toplevel Tcl command to handle the
object’s instance command.

Defining Core Data and Operations

Despite the possibility for potentially radical change, a
core set of data structures and operations are usually
provided. This does two things. First, it defines the
base level capabilities of the object, which will likely
be shared by all or most extensions made to the object.
Second, this provides a default implementation,
hopefully suitable for use by a number of extensions.

For environments, the core data structure provided is a
n-ary tree, where each node holds either a pointer to a
value string or a pointer to a linked list of children,
themselves nodes. A root tree is created, along with a
node for holding a “data” subtree, and a node for holding
an “option” subtree. Core operations including those
necessary to get/set/delete values in either subtree.
These are wrapped into “builtin” handlers for
subcommands like “get” and “set” (which may be
overridden, see below).

Defining these data structures and primitive
subcommands provides the necessary building blocks
you’d need for extending environments. Fundamentally,
these are the sorts of things any environment will want
to do, though it might accomplish these operations in
different ways. As well, this allows the possibility of
extensions that replace the internal data representation if
necessary, by building a new structure and specifying
new primitives to replace the builtins.

Subcommand Dispatch

As mentioned above, when an object is created, one of
the internal data structures it contains is a table of
subcommands. The environment’s instance command
(analogous to a Tk widget command), searches through
this table when an instance command is invoked to find
a handler for the subcommand.

Handlers can consist of either a Tcl script or a C
function. For the former, a Tcl command string is
created by appending the script handler with the name of
the environment as well as any additional arguments
passed by the caller. The resulting command is then
executed via Tcl_Eval. For a handler implemented as a
C function, the function is called directly, passing the
original arguments, and the environment as the
clientData.

If a subcommand does not exist in the table, the
subcommand dispatcher looks for the existence of a
subcommand named “unknown” and will execute that if
present. This allows for extensions such as the
“implicit get/set” syntax extension described in Table 2.
The subcommand dispatch process is illustrated by the
following pseudo-code:

cmd = FindHashEntry(env->cmds, argv[1])
if (cmd==NULL)
 cmd = FindHashEntry(env->cmds, “unknown”)
if (cmd==NULL) error
if (cmd->type==C_SUBCMD)
 cmd->func(clientData, interp, argc, argv)
else
 Tcl_Eval(interp,
 concat(cmd->script,argv))

Concurrency control
 none (default) * Changes (e.g. set, delete) affect only the local copy; changes are not reflected in copies of

environments in other processes.

 no concurrency * Changes made locally are broadcast to other copies of the environment, but changes from
multiple processes may arrive in different places in different orders, leading to inconsistent states
[Note: for some groupware cases, this is perfectly acceptable].

 centralized server * All local changes are sent to a central copy of the environment, which serializes the changes
(guaranteeing consistency) and sends them back to all copies, at which point changes take effect.
[Note: can be substantial time lag depending on network].

 locking A portion of the environment must be locked before making changes, so a lock must be received
before a change takes effect. [Note: potentially faster than centralized server if using the same
part of the environment multiple times; locks can be implemented using many strategies].

 optimistic locking Like locking, but immediately make the change under the assumption you’ll probably get a lock.
[Note: must be able to deal later on with having the data revert back to its original value if the
lock is denied.]

Notification
 none (default) * No notification when the environment changes

 global handler * A global (application-wide) handler is called to notify the application that the environment has
changed, potentially as a result of operations in a remote environment. [Note: in GroupKit, this
uses the same mechanism used by other events].

 binding table* Bind event handlers to the environment directly, in a way similar to how events are bound to Tk
widgets. The environment then deals with events directly.

Other
 implicit get/set * A syntax extension whereby if the environment subcommand is not one of the recognized

subcommands, it will attempt to map the command onto a get or set command, which is a very
convenient shorthand and useful in prototyping, e.g. “env foo” maps to “env get foo” and “env
foo bar” maps to “env set foo bar”.

 ignore errors * An extension whereby operations like “get” or “keys” on non-existent nodes in the environment
return an empty string rather than an error. [Note: potentially useful for prototyping, and in the
case of GroupKit, a way to achieve backwards compatibility with some questionable earlier design
choices].

Table 2. Potential extensions of environments. Extensions marked with a “*” have been implemented to date.

Defining Tcl Subcommands

Subcommands are specified as normal Tcl scripts and
then added to the object. For example, one
subcommand that might be built is an “exists”
subcommand for environments, which takes a single
node key and returns a 1 if a node with that key exists
in the environment, and a 0 if not. Assuming a “get”
subcommand already exists (one implementation is
supplied as a builtin), this subcommand could be
defined as follows:

proc _gkenv_exists {env cmd key} {
 set result [{catch $env get $key}]
 if {$result==0} {
 return 1 # no error - exists
 } else {
 return 0 # error - doesn’t exist
 }
}

The following code would be used to add this
subcommand to an existing environment (e.g.
“myEnv”):

myEnv command set exists “_gkenv_exists”

This command associates the “exists” subcommand
with the Tcl script “_gk_env_exists”. When invoked,
e.g. via “myEnv exists foo”, the _gk_env_exists proc
will be called by the environment as follows:

_gkenv_exists myEnv exists foo

Defining C Subcommands

Subcommands specified in C are defined in exactly the
same way that toplevel Tcl commands are defined. The
argument list passed to the subcommand handler is
copied verbatim from the argument list passed to the
toplevel instance command. The clientData parameter
holds a pointer to the object’s internal representation
(i.e. its core data structure described earlier).

We might define the “exists” subcommand from above
instead in C as follows. Note that in this and other
examples, error checking code has been omitted for
purposes of clarity.

envName command set subcmd proc
Set the subcommand handler for subcmd to proc

envName command get subcmd
Return the Tcl script for the subcommand subcmd,
or <builtin> for subcommand handlers written in
C

envName command delete subcmd
Remove the subcommand subcmd from the object

envName command list
List the subcommands in the object

envName command rename oldcmd newcmd
Register the same subcommand handler for
newcmd as is registered for oldcmd

Table 3. Operation of “command” subcommand.

int GkEnv_ExistsCmd(ClientData clientData,
 Tcl_Interp* interp, int argc,
 char *argv[])
{
 char *newArgs[3]; int result;
 Environment *env =
 (Environment*)clientData;
 Subcommand *subcmd =
 FindSubcommand(env, “get”);
 newArgs[0] = argv[0]; newArgs[1] = “get”;
 newArgs[2] = argv[2];
 result = ExecSubcommand(env, interp,
 subcmd, 3, newArgs);
 if (result==0)
 Tcl_SetResult(interp, “1”, TCL_STATIC);
 else
 Tcl_SetResult(interp, “0”, TCL_STATIC);
 return TCL_OK;
}

The subcommand would be registered with the
environment as follows:

Env_AddSubcommand(env, “exists”,
 GkEnv_ExistsCmd,NULL);

Note that this command simply locates the “get”
subcommand in the environment and executes it,
completely analogous to the Tcl version. This has the
advantage of working even if the implementation of the
underlying data structure changes, requiring only the
“get” subcommand be reimplemented if the data
structure changes. This is generally preferable.
However, the “get” operation can be expensive,
particularly when retrieving a large subtree which must
be converted into a keyed list representation. The
following implementation for “exists” could be
substituted that uses an internal procedure to get the
node of a tree, but would require reimplementation if the
underlying data structure changed:

int GkEnv_ExistsCmd(ClientData clientData,
 Tcl_Interp* interp, int argc,
 char *argv[])
{
 Environment *env =
 (Environment*)clientData;
 EnvNode *node =
 Env_FindNode(env,argv[2]);
 if (node!=NULL)
 Tcl_SetResult(interp, “1”, TCL_STATIC);
 else
 Tcl_SetResult(interp, “0”, TCL_STATIC);
 return TCL_OK;
}

Manipulating Subcommands

One of the key features of these objects is the ability to
manipulate the available list of subcommands. This
can be achieved at the C level by changing the Tcl hash
table holding the commands (via Tcl library functions,

or wrappers like Env_AddSubcommand). At the Tcl
level, a “command” subcommand is provided, described
in Table 3.

The “command rename” subcommand is especially
useful, since it allows you to wrap an exiting
subcommand to provide additional functionality. This
is equivalent to extending an inherited method in a full
object oriented system. For example, to generate an
event when a node is deleted from the environment, the
following code could be used:

myEnv command rename delete _olddelete
myEnv command set delete notifyDelete

proc notifyDelete {env cmd node} {
 $env _olddelete $node
 generateDeleteEvent $node
}

Having the convention of an underscore to preface
“internal” commands is useful. Objects can also inspect
their own commands to generate new names via
“command list”. This allows such commands to be
composed, as will be illustrated in the later section on
packaging objects and extensions.

Note that since objects can manipulate even their built-
in commands it is possible to “lock” an object
(preventing changes at the Tcl level) with the
following:

myEnv command delete command

Packaging an Object and Default Extensions

It is useful to package together an object and a set of
optional extensions. For example, in GroupKit we
provide a command called “gk_newenv” which invokes
“gk_env” internally. Depending on options passed to
“gk_newenv”, different commands are added to the
environment. For example, application developers can

specify “-notify” or “-share” (or both) for an
environment. Typically, sets of changes are packaged
together. This section walks through an example.

The following Tcl procedure is the normal procedure
invoked to create an environment. It parses through the
arguments looking for “-notify” and “-share” flags, and
picks out the name of the environment from the end of
the argument list. It creates the environment, and then
calls routines to add in notification and sharing if the
appropriate flags are set.

proc gk_newenv {args} {
 set notify no; set share no
 foreach i $args {
 if {$i==“-notify”} {set notify yes}
 if {$i==“-share”} {set share yes}
 }
 set env [lindex $args \
 [expr [llength $args]-1]]
 gk_env $env

 if {$notify==“yes”} \
 {_gkenv_initNotify $env}
 if {$share==“yes”} \
 {_gkenv_initShare $env}
}

Next is the “notification” extension, which replaces the
set and delete commands with routines that generate
events in addition to making the requested changes.
Note that this package also adds an internal “_notify”
subcommand, which may be used by other extensions
to do notifications if desired. These extensions can
detect the presence of this subcommand by inspecting
the list of available subcommands. It also allows new
methods of notification to be devised, without
repatching the set and delete commands.

proc _gkenv_initNotify env {
 $env command rename set _set
 $env command set set _gkenv_notifySet
 $env command rename delete _delete
 $env command set delete _gkenv_notifyDel
 $env command set _notify \
 _gkenv_genEvent
}

proc _gkenv_notifySet {env cmd node val} {
 $env _set $node $val
 $env _notify set $node
}

proc _gkenv_notifyDel {env cmd node} {
 $env _delete $node
 $env _notify delete $node
}

proc _gkenv_genEvent {env cmd event node} {
 # however notifications are done...
}

Next is the “sharing” extension, which implements a
simple form of sharing that ignores concurrency
control. Changes in a local copy of the environment
are echoed in remote copies of the environment. The
GroupKit command “gk_toAll” command is used to
execute a command on all the GroupKit processes.

proc _gkenv_initShare env {
 $env command rename set _doset
 $env command set set _gkenv_shareSet
 $env command rename delete _dodelete
 $env command set delete _gkenv_shareDel
}

proc _gkenv_shareSet {env cmd node val} {
 gk_toAll $env _doset $node $val
}

proc _gkenv_shareDel {env cmd node} {
 gk_toAll $env _dodelete $node
}

The current version of GroupKit provides six different
extensions to the core environment data structure, many
of them reusing not only the implementation of the
core environment, but also the implementation of other
extensions. Due to the implementation structure of the
core environments, the amount of code to implement
each addition is trivial.

Defining packages of extensions in this way is similar
to the use of “mixin” classes in C++. The advantage
here is that to allow developers to freely intermix n
different customizations of the basic object, there is no
need to create 2n instantiable classes. Extensions to
basic objects are composed rather than inherited here.
The approach here is arguably cleaner and easier to
understand than multiple inheritance.

Conclusions

This paper has presented an approach to building Tcl
object-oriented extensions that can be easily extended in
either Tcl or C. The approach brings a level of
customization usually found only in Tcl-based
extensions to those implemented largely in C. The
description of open implementations and the case study
should suggest ways that extensions built using either
approach can be made more customizable. Rather than
relying on a different paradigm, the implementation of
these extensions reflects both the familiar structural
aspects and the high level of dynamic programming
available when creating top level Tcl commands. This
lightweight approach to customization is intended to
complement the more heavyweight approach found in
conventional Tcl object frameworks.

Ideas from computational reflection were evidenced in
the approach, which exposes much of the internal object
representation to inspection and change, yet does so in a

controlled way so that casual users of the objects need
not be concerned with the internal complexity. The
techniques described here were illustrated using
GroupKit’s environments, showing how a simple data
structure was extended to support notification and data
sharing between replicated processes.

The strength of Tcl is its simplicity of extension and
customization; using the approach described here can
help extension writers capture the same simplicity in
their own work.

Acknowledgements

This paper benefited from feedback provided by Rob
Kremer, Earle Lowe and Saul Greenberg, and
discussions with Michael McLennan. Ted O’Grady and
Paul Dourish, both of whom would cringe to find their
names in a paper about Tcl, convinced me of the value
of meta-level architectures. Financial support was
provided by the National Science and Engineering
Research Council and Intel Corporation.

References

1. Greenberg, S. and Marwood, D. (1994). Real Time
Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface. Proceedings
of CSCW ‘94.

2. Kiczales, G. (1992). Towards a New Model of
Abstraction in the Engineering of Software.
Proceedings of IMSA ‘92.

3. McLennan, M. (1993). [incr Tcl] — Object-
Oriented Programming in Tcl. Proceedings of the
1993 Tcl workshop.

4. Ousterhout, J. (1994). Tcl and the Tk Toolkit.
Addison-Wesley, pp. 283-284.

5. Roseman, M. (1993). Tcl/Tk as a basis for
groupware. Proceedings of the 1993 Tcl workshop.

6. Smith, B., Rowe, L. and Yen, S. (1993). Tcl
Distributed Programming. Proceedings of the 1993
Tcl workshop.

