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Abstract

When using digital images or video. the amount of storage space or transmis-
sion bandwidth required can be quite large when the media is in its raw form. Re-
cently. there has been a dramatic increase in the usage of these digital media types.
Counsequently. there has also been an increase in the research devoted to reduce the
data required to represent these types of digital signals. In this thesis. a study is
presented of a method that uses adaptive sampling and interpolation for image and
video data compression. A recursive splitting method that creates an adaptive sam-
pling grid. is described. along with a discussion concerning the interpolation of these
samples for the reconstruction of the original image or video. lmplementation and
optimization issues concerning the presented image and video data compression al-
gorithms are discussed. Examples showing the effects of these methods are given and

compared to existing standard data compression techniques.
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Chapter 1

Introduction

Over the last few decades there has been a dramatic increase in digital image
and video usage. which has resulted in a similar increase in storage and transmission
requirements to accommodate the large amount of data associated with these types
of contents [1]. While it has been said that a picture is worth a thousand words. this
description is somewhat of an understatement. For a simple grevscale digital image
composed of 256 x 256 values. where each value is described by 8 bits (one character)
of data. this single image would require over 63000 characters to describe it. which is
much larger than 1000 words—even if very large words are used!

Digital video. which is simply composed of a sequence of images. requires even
more data for its representation because it has one added dimension: time. The
amount of data is directly proportional to the number of images (or frames) that are
in the sequence. and the number of images is equal to the length. in time. of the video
sequence multiplied by the frame rate. Thus. it is easy to see that if the temporal
sampling rate is doubled. so is the data required to represent the image sequence.

Whether the images. being alone or contained in an image sequence. are to

be stored or transmitted. this large amount of information can be quite undesirable.



Therefore. along with the increased use of digital images and video. there has also
heen an increased desire to reduce. or compress. the information requirements of these

tvpes of media [1].

1.1 Digital Image and Video Data Compression

Data compression techniques generally involve taking advantage of redundancy
within the input data to reduce the average number of bits per element required to
represent and properly reconstruct that data [2]. These elements are actually digitized
sampies of intensity values within the image or image sequence. For colour images or
video. each sample contains multiple inrensity values: one for each colour component.
[n order to represent grevscale images or video. each sample is simply one intensity
value indicating the brightness of the image or video at that particular point.

In general. there are two different classes of data compression methods: lossless
and lossy data compression [3]. Lossless data compression (or lossless data coding) is
defined as a svstem that reduces the number of bits used to represent a set of data
while allowing the data to be recovered perfectly by decompression. Conversely. lossy
data compression (or lossy data coding) actually removes some of the information
from the data set in order to further reduce the number of bits used to represent it.
This results in a difference occurring between the coder input and decoder output.
The information usually removed during lossy data compression is subjectively less
important to the output quality of the entire data set because it can be reasonably
recovered by using the remaining information [4]. Lossless coding is usually limited
to small compression ratios. On the contrary. the output file size resulting from
lossy coding is only limited by the amount of acceptable distortion present in the

reconstructed output.



Selection of lossy or lossless coding is based on the data itself and the require-
ments of the application using the data. For example. a text compression algorithm
must be lossless otherwise the decompressed (decoded) output could be meaningless
if distortion occurred. In image compression. the application determines what tyvpe of
coding is desired. For medical imaging. lossless coding may be required because any
distortion in the output image could lead to disastrous results like a misdiagnosis.
However. for compression of holiday snapshots. some distortion may be acceptable in
order to achieve smaller file sizes or less transmission bandwidth.

With the large amount of storage required for image and video data. there
have been many developments in image and video data compression. There are
many techniques. both lossless and lossy. based on a wide variety of algorithms and
requirements [1]. Generally. all these methods take advantage of certain redundancies
found in image and video data. [mage coding involves the exploitation of spatial
redundancies found within an image [5]. Video coding also does this on a per-frame
basis. which is also known as intra-frame coding. Furthermore. video coders may
also perform inter-frame coding which involves taking advantage of the similarities
between frames [5]. Both video and image coders. when coding colour images or
image sequences. can also use chromatic redundancy to their advantage [6]. As this
thesis deals mainly with grevscale images and image sequences. the exploitation of
chromatic redundancy will not be discussed.

A lossy coder/decoder (codec) system. by definition. will introduce distortion.
or what is known as visual artifacts. into the output. There are various types of
distortion caused by lossy coding. Certain distortion types can be seen in the output
of most codec systems. while some types of artifacts can be particular to an individual
codec. Some types of distortion caused by image coding are blockiness. texture and

fine pattern degradation, waviness in smooth areas and around edges, and blurring of



image features [7]. These artifacts can also be seen on a per-frame basis in the output
of various video codecs. However. when using video codecs. the above spatial effects
are not the only distortions visible. Video codecs can introduce a number of temporal
artifacts as well. Some of these temporal artifacts include blurring. ~ghosting”. and
removal of moving objects. In non-moving areas. such as a constant background.

defects such as jittering and intensity changes with time. can be seen.

1.1.1 Image and Video Coding Performance Metrics

[n order to evaluate the effectiveness of different digital image and video codecs.
some performance metrics must be defined. There are two general measurements that
are associated with data compression techniques: compression and quality.

Compression can be measured either by compression ratio or bits per element.
where the element is either a picture element (pixel) when image coding or a volume
element (voxel) when video coding. Compression ratio is a measurement that is
defined as the ratio between the input file size and the output file size. Since there
are various factors that can artificially inflate the compression ratio of an image or
video coder. such as the input file format or tricks with up-sampling [8]. comparing
methods solely based on compression ratio is not always best. A better compression
performance measurement that is widely used in image coding is the average number
of bits/pixel required to represent the output image. Knowing the number of pixels
within the image and the bits/pixel. it is also possible to calculate the compressed file
size. Due to the unambiguous nature of the bits/pixel measurement. digital image
compression will be measured in bits/pixel for the remainder of this thesis. For
video coding. a popular compression metric used is the bit rate of a video sequence.

which is the average number of bits per second required for the compressed data



stream [9]. This measurement can be somewhat deceptive because it depends on the
spatial resolution and the frame rate of the video sequence. However. it does define the
transmission bandwidth required for the compressed video data. A more independent
measurement is the number of bits/voxel. If bit rate is required. bits/voxel is easily
converted by multiplyving it by the number of pixels-per-frame and the frame rate of
the image sequence. Thus. in this thesis. bits/voxel will be the preferred measurement
for video compression performance.

When dealing with data compression. the concept of entropy is sometimes used.
Entropy is the theoretical minimum average number of bits per element —pixels or
voxels in the case of image or video compression—required to reversibly represent a
sequence of elements [2]. Entropy is based ou the statistical occurrence of elements
within a sequence. Suppose the input sequence is chosen from a set of .\ elements.
where. in the sequence. these elements occur with respective probabilities of p; for
r=1...... V. and so that ¥ p; = 1. Thus. the input sequence. on average. will require
at least

N
H=- Zp,« log, p; bits/element (1.1)
1=1
where H is the first-order entropy of the probability distribution. or more simply. the
entropy of the input sequence {2]. It can be seen that in the case of equiprobable
elements. with all p; = 1/.V. compression is not possible since H = log,.V. Thus.
a completely random sequence is not compressible. Conversely. for any other set of
p: (i-e. where at least one element is the same as another). a smaller entropy results.
allowing for possible compression.

Quality can be measured in many different ways. Since. in most cases. the

reconstructed images or imnage sequences are viewed by human eves, quality can be a

somewhat subjective measurement that can be hard to quantify. Some quality mea-



surements are based on complex Human Visual System (HV'S) models or use human
test subjects to rate the quality of reconstructed images or image sequences [10].
Other measurements which simply deal with reconstruction error are much more sim-
ple [10]. For lossless coding. quality is meaningless as the reconstructed image is
identical to the original. When lossy coding is performed. the visual artifacts or er-
rors that result. contribute to the loss of visual quality. These errors can be thought of
as noise introduced by the coding/decoding process. A simple and widely used qual-
ity measurement is Peak-Signal-to-Noise-Ratio (PSNR). measured in decibels (dB).
which relates the maximum signal power to the noise power. where the noise power

is simply the Mean Squared Error (MSE) [10]. PSNR is defined as [10]:

. . . 12
[maximum intensity value] (1.2)

PSNR = 10logy,
mean squared error

So for an 8-bit greyvscale signal (image or image sequence) composed of .\ elements.
the PSNR is

(255

' ? (1.3
Loty = r()) )

PSNR = 10 loglﬂ

where y(/) is the reconstructed signal and (i) is the original signal {11]. When used
as a measurement of perceptual image quality. PSNR tends to be somewhat image
dependent. However. for the same image. it does provide a good comparison when
relating different reconstruction qualities. Furthermore. it has been stated in [10]
that “coders that incorporate techniques to minimize the MSE are ranked at the top
in both perceptual and objective tests!” This means that PSNR can provide almost
as much insight into the quality of a reconstruction as some. more complex. HVS
models. For these reasons. PSNR will be used to measure the reconstructed quality

of both images and image sequences in this thesis.



1.2 Sample Image and Video Coding Standards

The goal of most digital image and video codecs is to reduce the storage or
transmission requirements of the data required to represent the image or video. while
maintaining a certain level of output quality. The following sections give a general

overview of a standard image codec and a standard video codec.

1.2.1 JPEG Image Compression

JPEG is a standard set of image coding algorithms used for the compression
of "natural” digital images. JPEG is an acronvmn for Joint Photographic Experts
Group. which is the name of the International Organization for Standardization (ISO)
committee that defined the image compression algorithms [12]. While the JPEG
standard consists of 16 different image coding algorithms. the simplest. or baseline.
algorithm is the most popular [7. 12. 13] and hereafter the baseline JPEG algorithm
will simply be referred to as JPEG.

The use of JPEG is very widespread. Anvone who has browsed the world-wide
web has experienced JPEG image coding. Usually. for both grevscale and colour im-
ages. the threshold of visible difference between the source and reconstructed images
is around [-2 bits/pixel [3].

At the core of the baseline JPEG algorithm lies the Discrete Cosine Trans-
form (DCT). which performs a spatial-domain to frequency-domain transformation.
The image is first subdivided into blocks of 8 x 8 pixels. Then a Block DCT is per-
formed on each of these blocks so that certain frequency components can be removed
or adjusted by the JPEG algorithm without affecting other components. This results
in each block having 64 frequency elements. ranging from DC (zero frequency) to

half the sampling frequency in each direction. Each of these frequency components is



then divided by a separate quantization coefficient. from a quantization table. and the
results are rounded to integers. Depending on how heavily the DCT coefficients are
quantized. there may be a large number of zero-valued AC (non-zero frequencies) co-
efficients. The AC coefficients are then run-length encoded in a zig-zag pattern across
each 8 x 8 block so that runs of zeros can be increased in length. The DC components
are difference encoded to take advantage of average intensity similarities between
neighboring blocks. Finally. all this information is coded using variable length codes
that exploit statistical redundancies to reduce the overall file size [1. 3. 13].

The JPEG algorithm. although computationally complex. works quite well for
natural “continuous tone” images. However. at high compression ratios artifacts such
as blockiness. corruption of textures and fine details. and waviness in smooth areas
and around edges. are easily detectable. Furthermore. JPEG performs quite poorly
on black-and-white and other two-toned images. This is due to the large amount of
high contrast edges found in these types of images [3. 7].

A video codec can also be implemented by using the JPEG algorithm by coding
an image sequence one frame at a time: when used in this fashion. it is called Motion
JPEG (MJPEG). It should be noted that NJPEG is not part of any “official™ video
coding standard [12]. The MJPEG frame-by-frame coding can be performed by any
image coder in order to implement a video coder. However. since each frame is
coded independently. these types of video codecs cannot take advantage of inter-

frame correlations. which limit their video compression performance.

1.2.2 MPEG, H.261, and H.263 Video Compression

MPEG. H.261. and H.263 are three very closely related video codecs. MPEG.

an acronvm that stands for Moving Picture Experts Group. is an international stan-



dard of the [SO. while H.261 and H.263 are recommendations of the International
Telecommunications Union (ITU) [9]. There have been multiple MPEG standards
defined or are in the process of standardization: MPEG 1. MPEG 2. MPEG 4 (ver-
sions 1 and 2). and MPEG 7. This discussion mainly concerns the more closely
related MPEG 1 and MPEG 2—hereafter referred to as MPEG. The MPEG codec
is based on H.261 and JPEG. while H.263 is based on H.261 and MPEG {8]. MPEG
is designed for the storage and playvback of high quality video and is can produce
VHS videotape quality or better when operating at around 1-2 Mbits/s (7. [1]. The
MPEG video codec is extremely popular and is used in many popular products such
as DBS (Direct Broadcast Satellite). D\'D (Digital Video Disc). and has been adopred
for use by the all-digital HDTV" (High Definition Television) consumer transmission
standard [9]. The other two codecs. H.261 and H.263. are intended for teleconferenc-
ing applications [7]: the target bit rate for H.261 is 64-2048 Kbits/s while H.263 has
a wider bit rate range of 10-2048 Kbits/s [L1].

These three image sequence codecs are based on the Block DCT. predicted
frames. and motion estimation. In a similar fashion to JPEG. each of rhese codecs
makes use of the Block DCT to encode frames. It is the predicted frames and motion
estimation that take advantage of the inter-frame correlation. so that these codecs
can provide better performance than MJPEG.

There are three different frame types: Intra (I). Predicted (P). and Bidirec-
tionally Predicted (B) [3]. I-frames are simply coded as a still image. not using any
past or future information. Since they can be decoded independently from any other
frame, they provide random access to the image sequence—decoding can begin at
any I-frame. P-frames are predicted using past information from the most recent I-
or P-frame. Lastly, B-frames are also a type of predicted frame. but they are pre-

dicted both in the forward and backward direction from the previous and next I-
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or P-frames [3]. Only MPEG and H.263 include the use of B-frames. H.261 does
not [7. 11]. It should be noted that if only I-frames are used. the coding performance
will be very similar to N[JPEG.

A predicted frame is a difference frame. which is the difference between the
current frame and a previously encoded and reconstructed frame. Usuallv. the dif-
ference values will be quite small over the entire image. except around the edges of
moving objects and where new objects are introduced. The small dyvnamic range of
the difference frame enables it to be encoded with a fewer number of bits.

Motion estimation is the estimation of translational object motion in the cur-
rent frame with respect to another frame. By using motion estimation. it is possible
to lower the energy in the frame difference (P- and B-frames) by moving pixels around
to simulate object motion [7]. The coder must then include a small amount of motion
information in the compressed data so that the decoder can replicate the pixel motion
exactly. The amount of motion information is kept low by only estimating motion for
blocks of pixels: 8 x 8 or 16 x 16.

As stated above. MPEG and H.263 make use of B-frames to enhance prediction
and motion estimation. B-frames use previous and next frames as predictors for
the current frame. which generally results in about one third the amount of data
required for a P-frame [7]. The use of future frames implies out-of-order encoding (and
decoding) because the coder can encode a B-frame only after encoding the required
previous and future frames. This significantly increases the codec complexity.

The Block DCT core of these complex video codecs can produce visual ar-
tifacts similar to the JPEG codec. These include blockiness and distortion around
the edges of objects. The artifacts are especially noticeable around scene changes
and fast moving objects. Another problem with these codecs is the large number of

computations required: the largest proportion of the calculations performed during
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motion estimation.

1.3 Motivation Behind Thesis

Both the above mentioned image and video codecs have undesirable properties
associated with them. When using JPEG or MPEG. artifacts related to the Block
DCT can sometimes be seen. especially at high compression ratios around sudden
jumps in intensity and. with MPEG. around fast moving objects. Furthermore. the
JPEG algorithm does not perform well on images with few greyscales or simple two-
toned images. Lossless coding is also not possible for MPEG or JPEG.

Coding and decoding complexity is also an issue. especially with MPEG. The
JPEG algorithm involves many steps and many Block DCT calculations. MPEG also
requires Block DCT calculations. possible out-of-order coding/decoding. and motion
estimation. which is very computationally demanding.

The combination of algorithm complexity and undesirable output artifacts cre-
ates the desire to implement codecs that reduce the computational complexity while
increasing the reconstructed output quality. Thus. it is the goal of this thesis to study
two closely related codecs that use adaptive sampling and interpolation for image and
video coding. Interpolation can be very simple and will not produce visible “ringing”
in the output. It has also been found that adaptive sampling methods can reconstruct
sharp edges well. make lossless coding possible. and do not have the blockiness in the
output that is associated with other fixed-block-size-based coders [14]. Furthermore.
by treating an image sequence as a 3-D volume of intensity values. the adaptive sam-
pling and interpolation method can be used to code and decode digital video—all

without the need for computationally expensive motion estimation.



1.4 Thesis Overview

This first chapter has presented the background and reasons behind the need
for digital image and image sequence data compression. Included was a discussion of
various image and video coding metrics used in measuring the quality and compres-
siont performance of various codecs. Also. an example of a current image compression
standard. JPEG. was described along with an overview of a closely related group of
digital image sequence codecs: MPEG. H.261. and H.263. The effects and disadvan-
tages of using these codecs have also been presenred: the undesirable effects being the
motivation behind the work presented in this thesis.

[n Chapter 2. interpolation in both one and two dimensions is described in
detail. This then leads to the description of an existing image coder that nses adaptive
sampling and 2-D interpolation [13]. In the image coder. bilinear interpolation is used
along with an adaptive sampling grid to reduce the data requirements of a digital
image.

The discussion in Chapter 3 focuses on implementation issues concerning the
image coder presented in Chapter 2. Included in this discussion is exactly how the
adaptive sampling grid can be efficiently generated and represented. as well as how
the samples themselves can be stored [15]. It is possible to increase the output image
quality by using a least-squares error minimization technique. which is also described
in this chapter [15. 16]. Some image coding results are also presented.

An extension of the 2-D image coder into 3-D image sequence coding is detailed
in Chapter 4. Trilinear interpolation. which is the basis of this video codec [17]. is
discussed along with implementation specifics of the system. A least-squares method
is introduced that reduces the trilinear interpolation error and increases the output

image sequence quality. Various image sequence coding results are also given.
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Finally. in Chapter 3 the performance of the image and video codecs are sum-
marized. along with their problems. and possible improvements. Some advice on

further research in this area is also given.



Chapter 2

Image Coding via Adaptive
Two-Dimensional Sampling and

Interpolation

This chapter will examine an image coding method that is based on the adap-
tive sub-sampling of a digital image and the reconstruction of the image from the
sub-sampled points by using bilinear interpolation. In Section 2.1. a brief overview of
the image coding method will be shown. Then. in order to have a proper introduction
to bilinear interpolation. Section 2.2 will describe linear interpolation in detail as well
its effects in the frequency domain. One-dimensional processes are examined in great
detail because working in one dimension is usually easier than multiple dimensions
and in this chapter most of the 2-D operations can be decomposed into multiple 1-D
operations. This is apparent in Section 2.3 where the bilinear interpolator is con-
structed from multiple linear interpolations. Also. a 2-D frequency analysis of the
bilinear interpolator will be given. To show how bilinear interpolation can be used

in image coding, Section 2.4 is an illustrative example describing how the bilinear

14
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interpolator can be used to reconstruct an image from a set of equi-spaced samples
generated by sub-sampling on a uniform 2-D grid. Following that. Section 2.5 in-
troduces an adaptive method for image sub-sampling on a non-uniform 2-D grid to

retain the output image quality without impacting compression performance.

2.1 Overview of the Image Coding Scheme

Interpolation has been extensively used in many [-D data compression tech-
niques. such as audio coding [4]. Compression can he achieved by reducing the the
total number of samples which represent the signal. Then. in order to reconstruct
the original sequence. the missing data sample values can be estimated using interpo-
lation. Depending on the complexity of the signal. it may be possible to reduce the
error due to estimation by using a higher-order interpolator. However. if the com-
plexity of the coding system is to remain low and/or high speed operation is needed.
then a low order interpolator would be a more suitable choice.

Image data compression involves the coding of a 2-D signal. where the signal is
composed of discrete intensity samples or values. which are also known as pixels. In
the hierarchical image coding method described in [13] and which is further detailed
in this chapter. a 2-D interpolation of intensity samples on a plane is required by
the decoder to fill in samples removed by the coder. For fast computation. a simple
bilinear interpolator is selected to fulfill this task. which basically involves filling in
values between four known points that lie on a rectangle in two dimensions.

In Figure 2.1 an overview of the image coder is shown. In the coder a recursive
block coding algorithm is used to split the original image into smaller blocks that share
common corner pixels and lie on a non-uniform grid. Each block. when split, results in

four smaller blocks. This splitting information, which is crucial in the reconstruction
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- — LZW Coder

|
|1
Original Image DPCM-Huffman
Coder

Grid Vertex Values

Figure 2.1: Block diagram of the image coder.

stage. is stored in a tree structure where a block that is split (represented by a black
node in the figure) becomes the “parent™ node for four new sub-blocks. The splitting
process is performed until the coder determines that the bilinear interpolation error
for each block is smaller than a given threshold. It is possible to retain all the
image information by setting the error threshold to zero. That is. ~lossless™ coding
is possible.

After the image has been subdivided and the splitting tree generated. the
information stored in the tree structure is compressed via the use of a Lempel-Ziv
Welch (LZW) coder [18]. The intensity values that lie on the non-uniform grid vertices
resulting from the splitting process are retained while all other samples are discarded.
This is the main information removal step. The amount of data required to store the
retained grid vertex values is compressed further by using a Differential Pulse Code
Modulation (DPCM) algorithm followed by a Huffman entropy coder [2. 15. 17].

The image decoder shown in Figure 2.2 is quite similar to the image coding
system but their operations are more or less reversed and the decoder requires less

of a the computational load than is required by the coder. In order to reconstruct



LZW Decoder —

Splitting Information

DPCM-Huffman Bilinear

Decoder

—

Interpolator

Grid Vertex Values Reconstructed
Image

Figure 2.2: Block diagram of the image decoder.

the image using the bilinear interpolator. the decoder must first replicate the non-
uniform sampling grid so as to have rectangles with known corner values to perform
bilinear interpolation on. Since the structure of the sampling grid. including block
sizes and positions. is contained in the splitting tree. the decoder must first decode the
LZW coded data that represents the splitting tree. Then. by knowing the original
image dimensions and how it was subdivided by the coder. the sampling grid can
be reconstructed. With the sampling grid established. the decoder can Huffman-
DPCAMI decode the vertex values and place them into their proper locations within
the grid. Finally. with the intensity values retained by the coder in place, the decoder
can reconstruct the image by traversing the splitting tree and filling in unknown
intensity values within child blocks (i.e. blocks that have not been split) through
bilinear interpolation [13].

The major advantages of this image codec syvstem over other image coding

techniques are
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Figure 2.-:: Example of 1-D linear interpolation (a) Up-sampled signal p(n). (b) Linear
interpolating filter impulse response A.(n). (¢) Linear interpolated signal ¢{n).

all others are zero (which constitutes an up-sampled signal). and y(n) is the piecewise
linear interpolated output. The linear interpolating filter. hyv(n). has a non-causal
sawtooth impulse response of the form [14]:

if n < |V

1"
-5

hvin) =

A
<
(™)

—

0 otherwise
Thus. the interpolated signal. y(n). is produced by convolving the input signal. r(n).
with the impulse response of the linear interpolating filter given in Equation 2.2. That
is. the piecewise linear interpolated output of the filter is:

y(n) = hy(n)*rin) (2.3)
x<
= Y hy(ieln—i)

I=—-
and since hy (i) has a limited region of support. i.e. hy(i) # 0. for =V < i < V.
then

N-1
yn)= 3 hy(i)x(n - i) (2.4)
i=—(N-1)
For example. the sequence p(n) in Figure 2.4(a) requires interpolation to fill

in every second sample value (note the zero values at n = 1. 3, and 3). Using a

linear interpolating filter with an impulse response hs(n) shown in Figure 2.4(b), the
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missing samples are replaced by interpolated values. The resulting output. g(n). is

calculated using Equation 2.4 so that:
q(n) = ha(n) * p(n) (2.3)

and is shown in Figure 2.4(c¢).
It should be noted that for the same input sequence. Equations 2.1 and 2.4 are

equivalent:
Z,=yn). foro<n< N {2.6)

For piecewise linear interpolation. the two calculation methods will have identical

output within the input signal’s domain.

2.2.1 Frequency Response of the Linear Interpolating Filter

With the impulse response of the linear interpolating filter defined in Equa-
tion 2.4. it is possible to calculate the frequency response of hy(n) and gain insight
into how linear interpolation affects a signal in the frequency domain. especially an

up-sampled signal. Taking the Fourier Transform of s y(n) vields:

Hy(e™) = 3 e™Fhy(k)
k=—-c
N—{ A. .
= Z (1 - V ) E—ka (27)
k=—=(N-1I) -

Since hy(k) is symmetrical about k& = 0. this can be further simplified so that:

_ N-1 k
Hy(e?“)=1+2 Z (1 — —) cos kw (2.8)
k=1 Al

This shows that Hy(e/¥) is a zero-phase lowpass filter with its bandwidth inversely

proportional to V. Figure 2.5 shows Hy(e/*) for various values of V.
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Figure 2.6: Frequency spectrum of (a) a lowpass signal and (b) the signal afrer up-
sampling by a factor of vV = 3.

2.2.1.1 Analysis of the Up-Sampling Process

Up-sampling by a factor .V involves the insertion of .\ — 1 zero valued samples
between each sample of the input signal. The input output relationship for the up-

sampling process is

r (%) ifn=multof N

I(n) = (2.9)
0 otherwise

The effect of this stretching in the time domain results in a compression in the fre-
quency domain and is demonstrated in Figure 2.6 for .V = 3. The figure shows that
in the frequency domain the up-sampled signal is composed of NV — 1 replicas of the
original signal, in the same frequency range, shrunken in bandwidth by a factor of .V.

The transform domain relationship between input and output is quite simple and is
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Unwanted Spectral Images
Figure 2.7: Removal of unwanted spectral images for .V = 3.

given by [19]:
V() = X () (2.10)
If the goal is to recover the original signal. the unwanted frequency replicas
introduced by up-sampling must be removed. This is done by using a simple bandpass
(or lowpass) filter centred around the desired replica that will reject the unwanted
frequency replicas while retaining the one that lies within the bandwidth of the filter.
In this image data compression scheme the desired frequency replica lies on
the origin so a lowpass filter is needed. However. as seen in Section 2.2.1. the linear
interpolator acts as a lowpass filter that decreases in bandwidth with an increase in
.V. So the linear interpolator is an ideal choice for removing the unwanted spectral
images from the up-sampled signal both for its frequency selectivity and especially

its simplicity. For example. in Figure 2.7. the removal of unwanted spectral images

by a bilinear interpolating filter is shown.



f;

T
s
1 AHS 2T

¥
4

(a)

Figure 2.8: Two step. two dimensional bilinear interpolation [15]: (a) original block.
(b) interpolation of top and bottom rows. (¢) interpolation of each column.

2.3 Two-Dimensional Bilinear Interpolation

Bilinear interpolation is an operation that involves separate linear interpola-
tions (defined in Equation 2.1). in both spatial directions of the 2-D domain [15].
Thus. given a 2-D signal Z, ,. with i. j € [0....\V]. and known corner values. a bilinear
interpolation is simply achieved by linear interpolating. first in the horizontal direc-
tion. between the pairs of values Zy,. Zy y and Zy 4. Zv.v. and then by vertically
interpolating the values between the pairs of points Z,, - Zx, with j € [0...V].
Figure 2.8 demonstrates how bilinear interpolation can be performed using a series
of 1-D linear interpolations. The two step process involves the linear interpolation of
the top and bottom rows which is then followed by the interpolation of each column
between the top and bottom rows. The two-step bilinear interpolation is equivalent
if instead the left and right columns are linear interpolated first and then the rows
between them are interpolated.

So. given a rectangular block of size (V; + 1) x (N, + 1) and the four corner
values (Zo0. 2oy, Zn, 0. ZN,.N,) are known. the interpolation of a generic point Z; ;

can be calculated as follows [17}:



1. compute the value of the point Z,, (which is a linear interpolation of Z,y and

Zo.x. )
Zo. = M i+ Zoo (2.11)
2. compute the value of the point Zy, , (linear interpolation of Zy, y and Zy, x.):
Ly = Z"\'l"\-z.\: 2N 4 7y (2.12)

3. compute the value of the point Z, , (linear interpolation of Z, , and Zy,, from

equations 2.11 and 2.12):

Z, = Z"—J\Tz"—i i+ Zy,
_ (Zy n + Zu.o).“ !Z.\'[.t) + Zo.xa) PP
NV,
(Zy, u\‘l- Zoy) P+ (Zo,.\i_..\:-l Zoy) J+ Zoo (2.13)
= Ay+Bj+Ci+ D (2.14)

Looking at equation 2.14. it should be noted that the bilinear interpolation
function. although easy to compute using a series of linear interpolations. is not a
simple first order interpolator but a second order 2-D spline function.

Now. if given a 2-D signal in which known sample values lie on a regular
grid. that is everv .V th sample in the horizontal direction and every .N,th sample
in the vertical direction are known. Equation 2.13 can be used to piecewise bilinear
interpolate the signal. However. as in Section 2.2. it is useful to consider the bilinear
interpolation process as a 2-D filter in order to examine its characteristics.

In order to create a bilinear interpolating filter for horizontal and vertical up-
sampling factors of .V, and .V,, respectively, a filtering operation with an impulse
response, as in Equation 2.2, is performed in both the horizontal and vertical di-

rections. These separate filtering operations can be combined into a single filter.
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Figure 2.9: Signal-based bilinear interpolation svstem.

Figure 2.9 shows the input being interpolated by two different linear interpolators in
each direction which is equivalent to a single bilinear interpolator.

The overall impulse response of the system in Figure 2.9 is the 2-D convolution
of the two impulse responses. first converting Ay, (1) and hy,(n,) to the 2-D domain.

That is.

Ay, vo(niona) = hy(ngong) *hy,(ng.ons)
= (hy, () d(ny)) = (8(ny) - hy,(no))

b (ny) - by, (na) (2.13)

and substituting in the definitions for hy, (n,) and hy,(n,) results in:

1 - %‘; — —".:,i + % if |n1| < -Vl and Ill-g' < .Vg
hyy vy (ny-n2) = (2.16)
0 otherwise

As an example, the impulse response of the bilinear interpolating filter with

Ny =5 and N; =35 is shown in Figure 2.10
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Figure 2.10: Impulse response of the bilinear interpolating filter h; ;.

Thus. the result of filtering a two dimensional signal. »(n,. n.). with the bilinear
interpolating filter of Equation 2.16 is a 2-D convolution of the input signal with the

impulse response of the filter:

ylnyona) = hy vy(ny.on) * r(ng.n,)

x x
= Y Y hvowligieln i —j) (2.17)
I=—x j=—-Xx

and since hy, v,(i.j) has a limited region of support.

Ny —1 No~-1

y(npona) = ) > hvwalij)z(ng —iony — j) (2.18)

i==(N1=1) j=—(Na—1)

As with the 1-D case. for identical 2-D input sequences. Equations 2.13 and 2.18

will produce the same output:
Znins =Yy ng) for0<n < NVNand0<n, <N (2.19)

As well. for piecewise bilinear interpolation, the two calculation methods will have

identical output within the input signal’s domain.



2.3.1 Frequency Response of the Bilinear Interpolating

Filter

In order to determine the frequency response of the bilinear interpolating filter.
the Fourier Transform could be applied to the impulse response described in Equa-
tion 2.18. However. since the row filter and column tilter are cascaded. the overall
frequency response of the system in Figure 2.9 is the product of the two individual

frequency responses:
H‘\.l--\.'_‘ (F.Id-'l . eJ-l-".’ ) — H.\.l (PJ-"'X . (;J-t-".' ) . H\-’ ((,J*'l . (,J.‘-"_’ } (2.20)

Knowing that Hy (el ¢/+*) = H(e/¥) and the definition of Hy, (e/<') from Equa-

tion 2.8. the frequency response of the bilinear interpolator becomes:

Ni-1 &
Hy (e ey = |1 +2 Z (1 - —-) Cos hu'y
L k=1 '\l
[ Na—1 /
1+2 (l - —) cos (wh (2.21)
L (=1 AL

This is plotted for .Vy = .V, = 3 in Figure 2.11.

From Section 2.2.1 it is known that the 1-D linear interpolator has a lowpass
frequency response. Since the bilinear interpolating filter is a separable filter con-
sisting of two 1-D linear interpolators. it is reasonable to expect Hy, y,(e/*!. e/*?)
to exhibit lowpass behavior as well. As can be seen from Figure 2.11. the bilinear
interpolator is indeed a 2-D lowpass filter. With an increase in .V;. the bandwidth
in the w, direction decreases. Similarly. an increase in .V, causes a decrease of the
bandwidth in the w- direction.

The lowpass frequency response of the filter is crucial in the removal of un-
wanted spectral images caused by the 2-D up-sampling of a compressed image. Similar

to the 1-D case (see Section 2.2.1.1) the up-sampling of image data along each axis
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Figure 2.11: Magnitude frequency response of hs5(ny. na).

results in a frequency spectrum composed of (.V; — 1) x (.V,— 1) replicas of the original
spectrum compressed by a factors .V, along the »| axis and by .V, along the ., axis.
The bilinear interpolating filter. Ay, v, (e/*'. e/~?). with its lowpass response removes

the unwanted frequency replicas and retains the replica centred around the origin.

2.4 Bilinear Interpolation of Sub-Sampled Image

Data

In order to demonstrate how image data can be compressed and reconstructed
using bilinear interpolation. an image is first sub-sampled along a regular grid. This
reduces the number of pixels in the entire image dramatically. Sub-sampling, in both

directions. by a factor of .V will reduce the information requirement by an order of
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Figure 2.12: Original 8 bits/pixel 257 x 257 image of Lena.

N?2. Then by DPC)I coding followed by entropy coding the remaining pixel values.
the image data can be compressed further.

For example. in Figure 2.12 is a 257 x 257 image of Lena sampled at 8 bits/pixel.
Sub-sampling this image by a factor of 2 in each direction removes approximately 3/4
of the pixels. The remaining samples in their proper locations that will be used
by the decoder are shown in Figure 2.13. The sub-sampling operation immediately
reduces the number of pixels from 66049 in the original image to 16641 pixels in the
sub-sampled version. So the sub-sampling alone is able to code the image at about
2 bits/pixel. Then by using a DPCM-Huffman coder. the data requirements can
be reduced further to 1.53 bits/pixel. Now, in order to see the effects of this data
compression. the image must be decompressed and compared to the original. The

decompression stage is heavily dependent on the bilinear interpolator to fill in the
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Figure 2.13: Image samples retained for bilinear interpolation.

missing pixel values resulting from the sub-sampling of the original image. First. in the
decompression of the image. the image information must be Huffman-DPCM! decoded.
After that. the bilinear interpolator can be used to generate the reconstructed image.
Figure 2.14 shows the bilinear interpolated resulting image which. when compared to

the original image of Lena. has a PSNR of 28.1 dB.

2.4.1 Disadvantages of a Fixed Sampling Grid

For image coding. the disadvantage of using a fixed sampling grid. that is. a
fixed sub-sampling factor. is due to the frequency content of the image being coded.
In order to understand the distortion caused by this image coding method. the sub-
sampling of the image data must be studied. Almost all of the distortion in the

output image is due to this step—the information removal step. Since the image



Figure 2.14: Bilinear interpolated output image (PSNR = 28.1dB).

manipulation techniques are fully separable. most of the following discussion will deal
with the 1-D operations. as thev are easier to visualize.

The input/output relationship for the sub-sampling process is:
y(n)=x(Mn) (2.22)

where the sub-sampling factor. ). is an integer. In the frequency domain. the sub-
sampling operation is [19]:

M—1

V) = = 3 X (e5) (2.23)
k=0

1
M
Since the sub-sampling is a compression in the time domain. the same operation
acts as an expansion (or stretching) in the frequency domain. This is confirmed in

Equation 2.23. It shows that the output frequency spectra consists of the summation

of shifted and expanded input spectra. This expansion of the frequency spectrum
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Figure 2.15: Aliasing due to a fixed sub-sampling factor (a) Original frequency spec-
trum (b) Aliasing due to sub-sampling by a factor of 2.
can cause overlapping in the frequency domain. or aliasing. Aliasing produces visible
errors the spatial domain. Figure 2.15(a) shows an initial lowpass signal. X'(e/~). [t is
then sub-sampled by a factor of 2 producing the signal Y (e/~) shown in Figure 2.15(b).
The shaded overlapping regions indicated where aliasing occurs. Thus. the original
signal can never be fully recovered due to the aliasing present.

To avoid aliasing when sub-sampling. the sub-sampling ratio must lie in the

range:

0< M< E%\— (2.24)

where BW is the bandwidth of the signal being sub-sampled and the sub-sampling
ratio, M. is an integer. If this range is not satisfied. aliasing will occur and high
frequency components will be lost. Since most natural images have a wide range of

frequency components. this constraint on M is difficult to satisfv. The main problem
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with using a fixed or uniform sampling grid is that the sub-sampling ratio must satisfy
the relationship in Equation 2.24 over the entire image. So if. in general. an image
consists of mostly low frequencies with a few sharp edges. a low sub-sampling factor
must be used over the entire image to properly handle the small number of high
frequency components caused by the sharp edges. This results in a low compression
ratio for the image because a large number of samples must be retained.

In general. the sub-sampling of an image along a fixed grid causes problems
due to the aliasing and loss of high frequency components because it must use a fixed
sub-sampling factor over the entire image and thus. local variations in frequency
components cannot be exploited. This removal of high frequency components by the
fixed sub-sampling ratio results in the visible blurriness and some blockiness of the

“Lena” output image. shown in Figure 2.14.

2.5 Adaptive Grid Generation

To avoid aliasing and loss of high frequency information due to sub-sampling
the input image. a more general non-uniform sampling grid can be emploved. The
advantages of using such a grid are two-fold. First. by only removing samples in low
frequency areas of the image. no loss of high frequency information occurs. that is
sharp edges and textures are retained. The bilinear interpolator can easily fill in the
missing low frequency information. Also. by reducing the sub-sampling factor for
high frequency areas of the image. errors due to aliasing are reduced or eliminated.

This is the basis of the image coding method presented: a set of points are
chosen at the crossings of a grid and then are transmitted or stored. The decoder
can then reconstruct the image by bilinear interpolation of these points. The points

chosen may belong to a uniform grid, however this does not take into account the
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spatial variance in frequency components of the image. As a result. uniform areas will
be better approximated than high frequency areas. If a non-uniform grid is chosen.
larger grid elements can be used for more uniform areas while smaller grid elements

can be used in high frequency portions of the image.

2.5.1 Grid Generation and Representation

A good way of generating and describing the grid of required sample points is
with a hierarchical structure. such as a quaternary tree (quadtree) structure. The grid
is generated by a recursive technique that examines the interpolation error within a
grid element and determines if smaller grid elements—a lower sub-sampling factor—
for that area is required. If the interpolation error is high the current block is split
into four smaller blocks of approximarely equal size. The process repeats until either
the error is small enough or a preset minimum block dimensions are reached. This
way. if the error tolerance is set to zero and the minimum block dimensions are set
to 2 pixels. lossless coding of the image is possible.

The splitting of a “parent™ block with the dimensions (2V + 1) x (2 + 1).
results in four smaller “child™ blocks of size (2V-! +1) x (28! +1). When a block is
split. five new vertices are created and shared amongst the four new ~child™ blocks.
It is this overlap that allows smooth transitions from one block to another to occur
and helps to eliminate unwanted “blockiness™ in the output image that other image
block-coding methods suffer from.

The resulting 2-D grid. which is represented by the quadtree structure. is
easily represented by a string of bits. Figure 2.16 shows a simple grid. the associated
quadtree structure. and the string of bits that represent them both. The root tree

node represents a block that is the size of the starting image. It is then subdivided
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tree code: 4 &

101011000001000000000

Figure 2.16: Two dimensional non-uniform grid and the representative tree struc-
ture {15].

into smaller and smaller blocks as needed. Each node or leaf (nodes with no children)
in the tree is described by a single bit. A ~1” indicates a split while a “0" indicates
no split. However. the tree leaves that are of the minimum block size require no bits
to represent them because thev are never split. The decoder then must be informed
of the minimum block size in order to properly reconstruct the quadtree.

When lossless coding of the image is the goal and the above splitting process
is used there will be limitations on the dimensions of the original image. This is due
to the inflexibility of the quad-splitting process when a minimum block dimension
is reached. That is. when a block that has one side that is less than or equal to
the minimum block dimension in length does not meet the error criterion it cannot
be split into four because of the minimum block dimension limitation. Even if the
minimum block dimension is set to 2 pixels, if a block size is (2 x A') where A > 2
it cannot be split further and brought down to the pixel level. The interpolation

error then may not be zero and lossless coding may not possible. Even if the original
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image has an aspect ratio (width to height) of 1:1 (i.e. it is square). this problem
still will occur unless the image has the specific dimensions of (2V + 1) x (2V + 1).
This happens because. although odd dimensions can be split exactly into equal parts.
odd sized blocks may be split into even sizes which cannot be split again into equal
overlapping parts. Only dimensions of 2% + 1 can be recursivelv split down to the
pixel level—down to block sizes of 2 x 2. For example. the four blocks created from
splitting a 23 x 23 block will all have sizes of 12 x 12. Recursive splitting of this
block will then result in blocks of 3 x 2. 2 x 3. and 2 x 2 in size. Since interpolation
must be done on the 3 x 2 and 2 x 3 sized blocks. some interpolation error may
oceur and lossless coding may not be possible. As the aspect ratio of the original
image varies from 1:1. this effect will be magnified. Since the input image size is
rarelv (2V + 1) x (2 + 1). lossless coding cannot be guaranteed by setting the error
tolerance to zero and having a minimum block dimension of 2.

This method is best used as a lossy image coder. so perfect reconstruction is
not usually a requirement. The unsplittable blocks are usually quite small in one
direction. depending on the minimum block dimension. and so. the error introduced
by this is quite small. If lossless coding is important. a small modification can be made
to the tree structure. so there are no limitations to the image dimensions or aspect
ratio. However. this modification tends to have a negative impact on the compression
performance. In Section 3.2. this splitting method modification is discussed in greater

detail.



Chapter 3

Implementation of and
Improvements to the Adaptive

Interpolation Image Codec

In this chapter. some of the specific implementation issues concerning the adap-
tive interpolation image codec svstem will be discussed as well as some of the possible
choices made during implementation. Also some extensions and improvements to the
basic bilinear interpolation image coder will be given. Section 3.1 describes various
algorithms for implementing the bilinear interpolator along with their advantages and
disadvantages. Then. some specifics are given on the sub-sampling grid generation
and its representation in Section 3.2. Section 3.3 then shows how the vertex values
can be stored by using an 8-bit DPCM coding algorithm along with scalar quantiza-
tion. After that. Section 3.4 contains a discussion into how the bilinear interpolation
reconstruction error can be reduced without increasing the information requirements
by using a method of least-squares. Furthermore. a way of optimizing the calculation

and storage requirements of the least-squares method is also shown. Finally. some
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results. including input/output examples. are discussed in Section 3.5.

3.1 Bilinear Interpolation

In Section 2.3 the bilinear interpolation function was identified along with the
bilinear interpolating filter. In a practical image coding application the use of the 2-D
filter is not feasible. The calculation of the filter coefficients would be extremely time
consuming and even if calculated off-line. the storage requirements would be very
large to take into account all paossible block sizes. Also. the filter operation would
require the use of large amounts of floating-point computations for the interpolation
process. The introduction of the bilinear interpolating filter was only used to examine
the frequency characteristics of bilinear interpolation. which was accomplished in
Section 2.3.1.

The preferred method of bilinear interpolation in this image coding application
is the two step method shown in Figure 2.8 which involves multiple one dimensional
linear interpolations. It is equivalent to the one-step method shown in Equation 2.13.
however it is less complex and requires fewer computations per pixel. The bilinear
interpolation of a (.V| x .V,)) sized block requires at least .V,.V, — 2 linear interpolated
values. The 1-D linear interpolation described in Equation 2.1 can be calculated
directly for each pixel. This involves 2 additions. 1 multiplication. and 1 division and
can be done by using either fixed- or floating-point arithmetic.

[t is well known that divisions and multiplications. whether theyv are performed
in floating- or fixed-point. are expensive either in time consumption or hardware
complexity. By using an incremental algorithm, the need for multiplications can be

eliminated and the number of divisions can be drastically reduced. This can be done
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by noting that the linear interpolated value at  + 1 is

Zioy, = miu+D)+Zy=mi+2Zy+m

= Z;+m (3.1)

where m = 23220 Thus. the value of the next pixel can be calculated by adding m
to the current pixel value. So multiplication is not required at all. and only one divide
for the entire row or column is needed—in order ro calculate the constant difference
m. Then. for each sample starting with Z,. the next interpolated value is equal to
the sum of the current value and the constant difference. This algorithm is often
referred to as a Digital Differential Analyzer (DDA) [20]. Accuracy is important in
this incremental algorithm because any error in the value of . will be amplified with
each successive addition. So an accurate integer representation of m is not usually
possible.

Before going further. a brief review of number formats might be required.
There are many formats for representing numerical values—three of which are of use
in this section. They are: floating-point. fixed-point. and integer number formats.
Shown in Figure 3.1 are some various implementations of these number formats using
a 32-bit word. The floating-point format can represent a wide range of values because
it makes use of an exponent. However. because of the added exponent field and sign
bit. operations on floating-point values are quite complex and require specialized
hardware and/or additional time to compute. Conversely. the plain integer format
is very simple and easy to perform computations on—all microprocessors support
direct operations on this type. The main drawback is the smaller range of values
that can be represented. Furthermore, the integer format cannot represent fractional
values. In between the two number formats is the fixed-point format. In fact an

integer is actually a specific fixed-point representation with no fractional part. A
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Floating-Point Format

Sign—* Exponent Fraction

3130 2322 0
Fixed-Point Format

Integer Fraction

3130 2322 0
Integer Format
Integer

31 0

Figure 3.1: Formats of various number representations.

fixed-point format is assigned a pre-determined number of bits to the integer and
fraction parts of a number. [t has less range than an integer format because it has
fewer bits to represent the integer part. However. it can represent fractional numbers.
Furthermore. operations on fixed-point numbers can be performed almost as easily
as integer formatted numbers. In fact. fixed-point numbers can be added together
using integer operations and can be multiplied together using an integer multiplier
combined with bit shifts. Actually. bit shifts are not required if multiplying an integer
with a fixed-point value.

Above. in the description of the DDA. the constant value m is used to increment

the pixel intensity across a row or column of pixels. Since m is calculated from the

fraction 332

. an exact integer format representation is not generally possible. Using
a floating-point value is the most flexible representation.

Implementation of a fixed-point DDA is possible and thus integer calculations
can be used which should be somewhat faster than floating-point calculations. The

fixed-point DDA uses fixed-point arithmetic to compute floating-point values. It
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QO Starting vertices (A,B)

A+B )
2
A+X

o)

@ Primary interpolated mid-point (e.g.: X =

)

@ Secondary interpolated mid-point (e.g.: Y =
(a)

O Stanting vertices (A,B.C,D)

A+B
o)

@ Interpolated mid-points (e.g.: X = )

@ Interpolated central point (e.g.: Y = ____A"'B:C*D )

(b)

Figure 3.2: Recursive interpolation: (a) 1-D linear interpolation (b) 2-D bilinear
interpolation.

or divisions is based on a recursive interpolation implementation (derived from the
recursive trilinear interpolation method introduced in [17]). This method calculates
the midpoint pixel value by averaging the end-point pixel values together. This
involves only an integer addition and a bit shift (which is a division by two). Then
the midpoint is used as end-point value for the calculation of two new midpoint
values lying on each side of the old midpoint. This process is repeated until all pixel
values are filled in. The 1-D recursive linear interpolation method is illustrated in

Figure 3.2(a). The value at point X is calculated from the end-points A and B. Then
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the secondary mid-points. such as point Y. are calculated in the same manner (except
point Y is calculated using the end-points A and X). Similar to the other linear
interpolators. this recursive method can be used to implement a two-step bilinear
interpolator by first interpolating in one direction followed by interpolations in the
second direction.

It is possible to extend this recursive method to implement a one-step 2-D
bilinear interpolator. This is shown in Figure 3.2(b). Using the four starting corner
points. the interior midpoints and centre point can be calculated using additions and
bit shifts. Then the interior midpoints and centre points of the interior blocks can be
calculated all using simple integer arithmetic.

The advantage of using floating-point operations is the accuracy obtained by
their use. When using integer division. the result is rounded. and in the two part bi-
linear interpolation. that will introduce an unwanted quantization step in between the
two operations. Over large block sizes. the quantization effect is noticeable because
the bilinear interpolated transition between the four corner points is not as smooth
as when floating-point calculations are used throughout. Table 3.1 summarizes the
Mean Squared Error (MSE) between the output of different bilinear interpolation
methods and the actual one-step 2-D bilinear interpolator of Equation 2.13. The
mean squared errors are averaged over 100 512 x 512 blocks with random corner val-
ues. Since the output of the various bilinear interpolators consists of 8-bit values (in
order for a display device to properly show the pixels). another MSE measurement is
needed: a comparison between the 8-bit quantized output of Equation 2.13 and the
output of the other bilinear interpolators. This MSE measurement is also included
in Table 3.1. From the table. the most accurate methods are the ones which employv
floating-point operations and result in no error at all while the least accurate of the

methods is the integer divide method. The precision of the fixed-point DDA calcula-
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Table 3.1: Comparison between the average mean squared error of different bilinear
interpolation methods over 100 random 512 x 512 blocks.

e Average \MSE
Interpolation Method Method vs. Actual | Method vs. Quantized Actual
Floating Point Divide 0.083 0.0
Floating Point DDA 0.083 0.0
Fixed Point DDA 0.083 1.9 x 1077
Bresenham 0.14 0.20
Integer Divide 0.52 0.66
Recursive 2-D¢ 3.8 3.9 !
Recursive 1-D 3.3 5.3 i

“QOne-step interpolation

tions are almost equal to that of Hoating-point calculations. This is possible because
the quantization that would normally happen between the first and second step of the
bilinear interpolation process when using integer values. can be removed. The results
of the first linear interpolation step can be remporarily stored using the fixed-point
DDA output values. which are then used as input for the next interpolation step. It
should be noted that the larger the block to be interpolated. the less accurate the
methods tend to be. In practice though. block sizes as large as 512 x 512 are never
used so the errors shown in Table 3.1 are more representative of a worst case scenario.

Based on the error performance of the bilinear interpolators. the floating-point
methods work best. followed closely by the fixed-point DDA method. On average.
when used in this image coder. interpolation error tends not to affect the image coding
performance because the coder adapts to the interpolation error during the splitting
process. If the coder meets the required error criterion by recursive splitting. the
decoder will meet the error criterion as well. However. the performance of the overall
coder/decoder system will be affected if the same interpolator is not used in both the

coder and the coder. Operations on floating-point values are usually very complex
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and can be time consuming. so it is desirable to avoid relving on them.

Another point to address is the order of operations in computing the two-
step bilinear interpolation. As stated previously. the order of the two-step bilinear
interpolation. whether it is rows or columuns first. makes no difference in the output.
However. from a hardware perspective. the speed of operation may be affected if a
microprocessor with a data cache is emploved. For example. if the pixels in each row
of the image are stored in consecutive memory addresses linear interpolation along the
rows will have better cache performance than column interpolation. The left and right
columns should be interpolated first. followed by the row-wise interpolation. This will
improve performance assuming there are more than two rows in the block (i.e. the
number of row interpolations is greater than the number of column interpolations).

To illustrate the processing times required for the various interpolation algo-
rithms. different sized blocks were bilinear interpolated using the foating-point divi-
sion. floating-point DDA. fixed-point division. Bresenham. and the fixed-point DDA
methods. Since each size of block contains different numbers of pixels. smaller blocks
need to be interpolated more than once to keep the number of interpolated pixels
constant. For each block size. 26214400 pixel values were interpolated. Table 3.2
shows the timing results results for 100 512 x 312 blocks. 6400 64 x 64 blocks. and
1638400 4 x 4 blocks. The processing times are based on a 166MHz Intel Pentium
processor. From the table. it can be seen that the set up time for each method be-
comes more critical for smaller block sizes. The Bresenham method suffers severely
due to its more complex set up requirements. The recursive methods need virtually
no set up and so they perform well on small blocks while performing quite slowly
on larger ones due to the large amount of recursion required. In this image codec.
smaller blocks are more common than large ones. so the 4 x 4 block timings are the

most important.
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Table 3.2: Processing times of different block sizes (containing the same number of
pixels) for various bilinear interpolation methods.

Time (seconds)

Interpolation Method 100 blocks | 6400 blocks | 1638400 blocks

(312 x 312) | (G4 x G4) (4 x 4)
Actual (Equation 2.13) 29.49 29.24 25.99 1
Bresenham S.94 13.33 191.15
Floating Point Divide 13.45 13.62 16.48
[nteger Divide 10.31 10.62 13.94
Floating Point DDA 1.76 1.89 3.58
Recursive 1-D 11.22 10.87 8.3)
Recursive 2-D 13.22 12.30 $.82
Fixed Point DDA 1.21 } 1.38 2.70

[t is clear that the fixed-point DDA method requires the least amount of time
to compute. Because of this and its low bilinear interpolation error. the fixed-point

DDA interpolator becomes the best choice for implementing this image codec.

3.2 Grid Generation and Representation

3.2.1 Minimum and Maximum Block Dimensions

During the encoding process the decision whether or not to split a block is
based on the block interpolation error. and the minimum and maximum block di-
mensions. These dimensions have to be carefully chosen based on compression and
speed considerations. The maximum block dimension. D,... is the starting block
size of the splitting process. All blocks larger than D,,.. are unconditionally split
and so interpolation and MSE calculations can be saved. The minimum block size.
Dnin, governs the maximum resolution of the reconstructed image. Usually. it is not

useful to reach the pixel resolution (i.e. in order to have lossless image coding when
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the interpolation error threshold is set to zero). for the data reducing performance
of the interpolators becomes non-existent. making other lossless image compression
techniques more attractive. However. it is sometimes useful to have a single algorithm
provide lossless and lossy coding. Typical values for a medium-resolution natural im-
age (512 x 512 for example) are Dy, = 32 x 32 and D,,;n, = 3 x 3. Choosing a larger
starting size is generally useless. because almost all blocks of this size will need to be

split. thus notably increasing the computational load [14].

3.2.2 Tree Structure

[n Section 2.5.1 it was stated that lossless coding was only possible for images
that have specific dimensions of (2 + 1) x (2 + 1). There is a couple of ways that
this problem can be remedied if lossless image coding is required. However. these
solutions do result in slightly larger output file sizes.

The first solution is to change the structure of the tree to a quaternary-binary
tree. This would enable the image coder to split in half—horizontally or vertically —
or to split into quarters. The representation of this type of tree would be more
complex. as more than one bit would be required for each type of split. One type of
representation could have "0” chosen for no split (a leaf node). “117 for a quad-split.
~100" for a horizontal split. and 101" for a vertical split. With this structure. it is
possible to split previously unsplittable blocks when one dimension of the block is
too small to be split. Lossless image coding becomes possible since splitting can be
performed down to the pixel level. Even if lossless coding is not a requirement. the
tree may be optimized to produce less error as it may be possible that a horizontal

or vertical split may be more advantageous than a quad-split (split into four). The

disadvantage to this solution is that the tree code becomes more complex and harder
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Figure 3.3: Quaternary-Binary tree structure.

to compress. In Figure 3.3, an example of a quaternarv-binary tree is shown along
with the resulting splitting diagram and bit string,.

The second solution would have the same structure as described in Section 2.5.1.
except the minimum block dimension parameter would be used differently. Blocks
that can no longer be quad-split due to one side being less than or equal to the min-
imum block dimension still would have the option to split horizontally or vertically
depending on which side still can be split. So a Quaternarv-Binary Tree would be
used but its representation still would require only 1 bit per node. Similar to the tree
representation described in Section 2.5.1. the bits representing leaves that have both
sides smaller than the minimum dimension can be omitted from storage assuming
the decoder is informed of the minimum block size so that the tree can be properly

reconstructed.



3.2.3 Compression of Tree Information

The quadtree (or quad-binary tree) structure is represented by a string of bits
that indicate the tvpe of node. It can be seen in the bit string representing the tree
a (see Figure 2.16 for example) there are large numbers of repeated patterns and
birs. This indicates that rhe tree code data can be compressed further by the use of
a lossless data compression algorithm. The algorithm must be lossless as the image
decoding depends on an uncorrupted tree in order to generate the sampling grid. Due
to the small alphabet size of the bit string (2 svmbols). an entropy coder would not
perform well. So a data compression algorithm that uses repeated patterns in the
string to reduce the data consumption would be more appropriate. The Lempel-Ziv
Welch (LZW) compression algorithm uses a dictionary based approach for taking
advantage of repetitive patterns within a data stream [18]. This is the lossless data
compression algorithm thar will be used for compressing the bit string which describes
the quadtree. [t will be shown that the average number of bits per tree node can be

reduced to below 1 bits/node.

3.2.4 Interpolation Discontinuities

When the bilinear interpolation has to be performed on the global tree struc-
ture (for reconstruction of the image) some interpolation discontinuities may arise.
This is due to the fact that a tree structure may arise in which some vertex locations
will not match those of the neighboring blocks. Figure 3.4 is an example of such a
case. It can be seen that an interpolation discontinuity will happen where point .\’
lies. If the shaded block is interpolated only by vertices A. B. C. and D. an artifact
may appear in the neighboring block. due to the presence of point .\

One solution is to accept small interpolation discontinuities and save on compu-



Figure 3.4: Example of a vertex orientation leading to interpolation discontinu-
ities [14].

tation. The effects of the discontinuities can be reduced by the way the splitting tree is
traversed when performing the bilinear interpolations. A top-down {or breadth-first)
traversal is the best choice when compared to a recursive (or depth-first) rraversal.
The top-down approach will interpolate. in order. each size of block starting with the
largest sized block. That way. in Figure 3.4. the shaded block would be interpolated
first and then when interpolating the smaller blocks the edge between pixels 4 and D
would be replaced by the values interpolated in the smaller blocks that contain pixel
X. Some pixel values will be calculated twice. however a separate tree traversal is
not necessary and the coder and decoder can be better matched.

An alternative solution via block size equalization (BSE) has been suggested
in [14]. The discontinuity problem can be solved by applying a top-down iterative
algorithm in the reconstruction phase: for each level of the tree. the midpoint pixel
on each of the four block sides and the central point of each block are calculated. if
thev are not present. on the basis of the four block corners. The newly calculated
pixels then serve as new block corners that are common with all neighboring blocks.
This recursion can be performed so that all leaves in the splitting tree are on the same

level (i.e. all the blocks have the same size). Bilinear interpolation is then performed
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over all these blocks so that interpolation continuity is maintained. Although this
does remove all interpolation discontinuities. the newly calculated 8-bit corner points.
may be slightlv quantized from a true midpoint calculation and these errors will
propagate over the entire block. As stated in Section 3.1. small errors in bilinear
interpolation are not a significant problem if the coder and decoder are matched.
This solution. however. does cause a slight mismatch in the coder and decoder. It
would be possible for the coder to implement this as well. however it would result in
a larger computational load so it is most efficient to implement on the decoder only.

The resulting output images produced by block size equalization are of a higher
visual ¢uality and. on average have an overall lower MSE (see Section 3.3). The only
disadvantage is that the decoding phase can be slowed dramatically if the block sizes
are equalized down to the pixel level. [t should also be noted that the decoder should
not split bevond the minimum block dimensions used by the image coder as this

usually results in a higher MSE and a greater computational load.

3.3 Vertex Representation

The samples at the grid vertices are required by the decoder as corner values
for the bilinear interpolation operation. As mentioned in Section 2.4. the data re-
quired by the vertices can be reduced by using DPC)M followed by a Huffman coder.
Any correlation that exists between adjacent sample values is taken advantage of by
the DPCM process. In DPCM. the error between the current sample and the value
predicted by a weighted sum of previous samples is encoded. The error signal usually
has a smaller dynamic range than the original signal and also has a probability distri-
bution function with a smaller variance [1]. This decrease in the variance results in a

corresponding decrease in the entropy of the signal. The Huffman entropy coder that
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Figure 3.3: Prediction of #(/. j) on a uniform sampling grid.

follows. takes advantage of this lower entropy to encode the DPCM output using.
on average. fewer bits per sample than the original vertices. The effectiveness of the
DPCM process is dependent on the accuracy of the predictor. The more accurate the
prediction process is. the lower the entropy of the error signal becomes.

Normally. when performing DPCM coding on a uniform sampling grid. a 2-D
predictor will use previous samples from above the current sample and samples di-
rectly to the left of the current sample (see Figure 3.5)—assuming that the coding
of the image is done from top to bottom and left to right. No other sample values
can be used for the prediction because the decoder will only have access to previously
decoded sample values. The predicted value. Z(:. j). of the pixel r(i. ) is calculated

using the equation
N N N
r(i.j)= Z Con L(i.j —n) + z Z Cmn (i —m.j —n) (3.2)
n=1 m=1 n=—N

where c,, , are the prediction coefficients and .V is the order of the predictor. Usually

the ¢, coefficients are chosen so that 3 ¢, , = 1. In this image coding application.



no vertices above this vertex

Figure 3.6: Vertex with no above neighboring vertices.

only the immediate samples surrounding the predicted sample are used. so vV = 1.
This simplifies Equation 3.2, which results in
(i) = eqpr(icj =L+ eti =L+ 1)+
(3.3)
crgr(t= L1y +erli =1 j—1)
A reasonable first order predictor will simply set ¢y = ¢ =g =01 = IT so that
the predicted value is simply the average of the four previous surrounding values.
When DPCM coding values on a non-uniform grid. there may not always be
vertices above and/or to the left of the current vertex. and the inter-sample spac-
ing can vary as well. This is apparent in Figure 3.6 where the specified vertex has
no neighboring vertex directly above it. To take into account the possibility of un-
available and varying distances between vertices. the prediction process is modified.
Varving distances between vertices is handled by searching horizontally or vertically
for the nearest vertex. A horizontal search is performed to find the closest vertex to
the left while for the x(i — 1.+ 1). x(¢ — 1.J). and z(¢ — 1.j — 1) values required
in Equation 3.3. vertical searching is performed. Since the prediction coefficients are

all equal and the prediction is simply the average of the surrounding vertex values,

having unavailable vertices is not too much of a problem. If a vertex is not available,



it ts simply removed from the calculation of the average.

After the DPC)I coding of the vertex values is performed. a Huffman entropy
coder replaces the DPCM! difference values with variable length codes. The Huffman
codes used to represent each DPCMI value are based on the probability of that value
occurring within the data stream so. on average. the number of bits per vertex is
reduced.

To further reduce the information required by the grid vertex values. the val-
nes can be quantized before DPCM coding [21]. That is. divide each value by some
constant quantization factor. (). and rounding the result. This reduces the number
of possible values which in turn reduces the entropy of the data. During the recon-
struction stage. the decoder simply multiplies the vertex values by Q to reverse the
scaling performed by the coder—with some loss of precision.

An example of vertex quantization can be shown: starting with a vector con-

taining the vertex values
v = 123 3 125 121 3 7 100 235 237 232

where all the values are 8-bit integers. if the coder divides this vector by the constant

Q@ = 8 and rounds each number to an integer value. the resulting vector will be
VQ=[15115150012312929]

As can be seen. the dynamic range of the values has been reduced which also results
in some repeated values. Now. these numbers can be represented by 3-bit integers.
Furthermore. the increased occurrence of certain values will make data compression
easier when using the Huffman entropy coder. By increasing @. the entropy can be
decreased further. which will result in less data required for the vertex values after

DPCM-Huffman coding. In the decoder, to obtain an approximation of the original



vertex values. multiplication by Q = 8 is performed that results in the vector
v = 120 8 120 120 0 0 96 248 232 232

From this example. it can be seen that the reconstructed vector. v. is similar to—but
15 not an exact replica of—the original: there is some quantization error present.
The larger ) is. the higher the quantization error will be. However. the quan-
tization of the vertex values does not dramatically affect the reconstructed image
quality since the interpolation is performed using 256 levels (for 8 bits/pixel) and
re-creates intermediate values. thus avoiding visual artifacts such as the “onion ring”

effect usually caused by quantization.

3.3.1 Improvement in Huffman Encoding of DPCM Data

DPCM coding itself does not reduce the bit rate of a data stream. In fact.
the bits per svimbol must actually increase when DPCM coding is performed. This
is due to the increase in dynamic range that the differential operation produces. For
example. when coding 8-bit unsigned data. such as pixel values. the original svmbols
can represent values from 0 to 255. When calculating the difference between any two
of these 8-bit values. the new range of possible values is —255 to 255 and thus requires
a signed 9-bit value to be properly represented. This extra bit is required to carry
the sign information.

Traditionally. a 9-bit entropy coder is used in order to compress the 9-bit
DPCM coded data. However. using unsigned 8-bit arithmetic it is possible to output
8-bit data from the DPCM coder while still ensuring proper reconstruction in the
decoder [22]. The resulting 8-bit data will possibly have less entropy than a 9-bit
data stream created from the same original signal or in the worst case the entropy

will be the same. Furthermore, the entropy coder required for the 8-bit data stream
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Figure 3.7: Unsigned 8-bit number circle.

will have to contend with less data throughput. use less memory. and be slightly less
complex than a 9-bit entropy encoder.

By using the wrap-around nature of unsigned 8-hit arithmetic shown in Fig-
ure 3.7. an extra bit is not required to convev the sign information in the DPCM
data. Thus. the addition of a negative number. —r. (i.e. subtraction by r) is equiva-
lent to the addition of 2% — r in an N-bit system. For example. if the current value
being DPCM coded is 50 and given that the previous sample value is 63. the differ-
ence between the two is —13. The corresponding 8-bit DPCM output is 241. When
decoding the value. the addition of 65 from the previous sample and 241 from the
DPC)MI output will be 306 and will cause a wrap-around in the unsigned 8-bit number
system resulting in a value of 50 which is the original value before DPCM coding.

Performing the unsigned 8-bit arithmetic is very easy when using a micropro-
cessor that uses two's compliment representation for negative values. When calculat-
ing the difference between two 8-bit values. simply remove the top bit of the resulting
9-bit output value. This will be the 8-bit DPCM output value. Decoding is performed

in exactly the same way: addition and truncation to 8-bits.



(a) (b)

Figure 3.8: Interpolation of a block crossed by a high contrast edge: (a) original block.
(b) corresponding block after being reconstructed via bilinear interpolation [13].

3.4 Least-Squares Bilinear Interpolation (LSBI)

The major drawback to the bilinecar interpolation discussed previously is the
fact that values lving in between and within the grid points are not at all raken into
account. In the presence of noise rhis may cause problems because the error related
to a corner point chosen for the interpolation affects all the neighboring blocks. Fur-
thermore. in the presence of high contrast edges. the value at one vertex of a uniform
block may be entirely different from the other vertex values. This is illustrated in
Figure 3.8 where the upper-right vertex belongs to a different object in the image.
When the image is reconstructed via bilinear interpolation the contrasting corner
value is spread across the entire block.

The above problem can be alleviated by the use of a least-squares bilinear
interpolator. Instead of using the actual pixel values of the original image that lie
on the sampling grid, the intensity values transmitted to the decoder for the block
corners are computed to minimize the MSE of the overall block. After performing
the quadtree segmentation. the information provided by the corners of small blocks

adjacent to larger ones can be used to improve the interpolation which will result in
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better reconstruction. The combination of the spatially adaptive splitting along with
LSBI is denoted as the Adaptive Least-Squares Bilinear Interpolation (ALSBI) image
coding algorithm [16].

The optimal solution in the MSE sense can be achieved by solving the equation

from [15]:
Ax >~y (3.4)

where x is the vector containing all the unknown corner values. y is the vector of the
image data. and A is a rectangular matrix. Matrix A can be calculated from the
coefficients of the bilinear interpolation for all the image pixels. as a function of their
positions only. [t can be shown that the vector x that minimizes the MSE between
the approximate points. AX. and the original ones. y. can be calculated from the

following equation. which satisfies the least-squares approximation:
FaAY ' AT q =
x=(A"A) ATy (3.5)

where T denotes matrix transposition (see Appendix A for a complete derivation).
Even though A is a very sparse matrix. because only a small number of corner pixels
contribute to the local approximation. for an image of size 312 x 512. for example. the
computation and storage requirements become overbearing. To overcome this prob-
lem a suboptimal solution has been developed by [15] which allows the interpolation
error to be noticeably reduced (under the same splitting conditions) and provides
more accurate edge reconstruction.

This suboptimal solution is based on a local solution of the least-squares prob-
lem which is computed for each block. Thus. for each block the following equation is

solved:

Bx~y (3.6)
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where x is a vector of the four corner pixel values. y is the vector of the original
block values. and B is analogous to the matrix A for the block being considered. The
solution to this formula is identical to the global solution given in Equation 3.5 with
B in place of A:
x = (B™B) BTy
(3.7)
= Sy

The resulting interpolation scheme can still be optimal in the least-squares
sense provided that the four least-squares optimized corner values are retained for
each block. This is quite impractical because it leads to a large increase in the storage
requirements since the four corner values are no longer shared with neighboring blocks.
This aiso can heavily reduce the intensity continuity between adjacent blocks. In
order to overcome these problems a suboptimal criterion. as suggested in [13]. can
be followed: the new value for each shared corner pixel is calculated by averaging
the optimal values. Although this solution is quite simple. it does provide a higher
quality reconstructed image.

A further improvement to the reconstructed quality can be made by using a
weighted average calculation on the shared optimal corner values instead of a simple
average. A corner pixel can be shared bv up to four neighboring blocks. It quite
possible that these neighboring blocks may contain different numbers of pixels due to
varyving areas covered by each block. This means that the optimized corner point for
a larger block should be given more weight than a point from a smaller neighboring
block because during the reconstruction interpolation. the corner point for the larger
block will affect a larger area of the image. If this is done. the larger blocks will have
less error than their smaller neighbors which results in an overall higher PSNR of the

output image. Thus. a weighted average. where the weights are proportional to the
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area covered by each block. should be used to compute the vertex values that are to
be stored or transmitted to the decoder.

It should be noted that. when using this LSBI optimization. no extra calcula-
tions are required when decoding and no changes to the decoder are needed. All that
is needed is the addition of a post-processing step to the encoder in order to compute
the LSBI optimized vertices.

An alternative method for the ALSBI coder has been described in [16]. It
calculates the inverse to a least-squares matrix formulation similar to Equation 3.4
via an iterative gradient descent algorithm (e.g. Gauss-Jacobi algorithm [2]). [t fur-
ther suggests that the LSBI should be performed during the splitting process. The
quadtree is generated on a level-by-level (breadth first) basis. For each level. LSBI is
performed and the MSE is calculated for all blocks. The blocks for which the MSE
is above the threshold are further split. After each splitting iteration. rhe optimized
corner vertices from the previous step remain unchanged only if they do not belong
to a split block. The computational load is quite high because the LSBI must be
computed before each decision to split is made. Also. large blocks which neighbor
smaller blocks will not have all optimal corner pixel values since the least-squares
calculation is done based on a smaller block size.

The disadvantage to using the LSBI method is the least-squares error min-
imization matrix calculation performed in Equation 3.7. As can be seen. the cal-
culation of the optimization matrix. S. involves many matrix multiplications and a
matrix inversion. These are very costly operations to compute—especially the matrix
inversion—which can severely slow down the eucoding process. To overcome this. it
is possible to pre-calculate and store S for all possible block sizes. Then when the

LSBI optimization is required. only one vector-matrix multiplication is required.



3.4.1 Reducing Coefficient Storage Requirements

The large number of calculations required for the LSBI approach make it some-
what unattractive. if high speed encoding is desired. Even if the optimization matrices
are computed off-line. the memory storage requirements become quite large. as there
are many possible block sizes —especially for images with non-unity aspect ratios.
Given a M x N block. the matrix Sy, .+ will have 4 rows and M.\ columns for a
total of 43/.V elements. Using 4 byte Hoating point values. that results in a total
of 16.1/.V bytes. That means that a block of size 16 x 16. would require 4096 bvtes
of memory--and that is just for one possible block size! Given D, = 32 x 32.
495 S matrices are needed (the matrix Sy .y can be constructed by re-ordering the
matrix 8yy. v which halves the storage space). That means a grand total of 2313280
bytes {over 2.2MB) required for storage of the coefficients.

To reduce the calculation and possible memory requirements of the LSBI al-
gorithm. it is useful to study exactly what the least-squares optimization matrix
does. It can be thought of as four 2-D finite impulse response (FIR) filters (or con-
volution masks) having identical magnitude-frequency responses with differing phase
responses. each one acting on a different corner.

Now. examining the 1-D case for a moment. the least-squares linear inter-
polation (LSLI) optimization is derived in the exact same manner as for the LSBI
optimization. The only difference is the dimensions of the matrices. The vector x
in Equation 3.6 contains the two end-point values while y is a vector of the original
values. It follows that the least-squares optimization matrix contains 2 rows and as
many columns as there are original values. The 1-D LSLI optimization matrix S can
also be interpreted as a series of FIR filters that each output one of the optimized

end-points. It is then possible to construct the corresponding 2-D LSBI optimization
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filters via the same method that the bilinear interpolating filter was created from the
linear interpolating filter: row filtering followed by column filtering. The two LSLI
filters when combined with one another results in the four LSBI filters required for
the 2-D optimization.

To illustrate this. the following example is presented. Given a 4 x 3 block. the
LSLI optimization is computed for a linear interpolation across 4 elements and across

5 elements. This results in the optimization matrices:

N _ ‘
S 1 T4 L =2
sit -2 1 4 7
- -
st 1 32 1 0 -1
S; = =z
siR l-1 012 3

where R indicates a reversal of the vector values. The first row of each matrix contains
the weighting factors for the first end-point and the second row {which is a reversed
version of the first row) is used to compute the optimized second end-point. Now. the
four 2-D convolution masks required for LSBI can be created by multiplving together
every combination of the four vectors s,. s¥. s; and s&. So. the 2-D filter required
to optimize the upper left vertex value is simply created bv row filtering with s; and

column filtering with s;. That is.

-

1 4
H14x5=545§=ﬁ': [3 2 1 0 -1

21 1

-9

The other three required masks are created in a similar fashion. These calculations
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result in the four LSBI optimization convolution masks:

21 14 T 0 -7 -7 0 T4 21

12 8 4 0 —4 -4 0 4 8§ 12
H14»<5 = % H2-l:<:') = %

3 2 1 0 -1 -1 0 1 2 3

-6 -1 =2 0 2 20 -2 -4 —¢

-6 -4 =20 2 20 -2 —1 -6 [(3.8)

3 2 I 0 -1 -1 0 l 2 3
H3‘ 5 = -_)% H4; s = %

2 8 40 -4 -4 0 4 8 12

21 14 T 0 -7 -7 0 T4 21

which when put into a single matrix (one row for each mask) is identical to the
Si.s matrix that would be calculated using the 2-D LSBI optimization described in
Section 3.4. Due to the symmetry of the s and s® vectors. the mask for anv corner can
be created from any other corner mask by way of flipping the mask values horizontally.
vertically. or both.

By constructing the 2-D LSBI convolution masks from the 1-D LSLI filters.
a large amount of space can be saved by only storing the short LSLI optimization
filters. So with D, = 32 x 32. only 31 vectors that require 527 elements of storage.
which when using 4 byte floating-point values. results in 2108 bytes. This amount is
miniscule (over 1000 times less storage) when compared to the 2313280 byvtes required
for storing all the required 2-D LSBI arrays! In fact. by storing these values using 2
bvte integer values with a 2 byte scaling factor for each vector would result in 1116
bytes of storage. Also. by doing this. floating-point operations are no longer required

to perform the LSBI optimization.
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Figure 3.9: LSBI magnitude-frequency respounse for a 4 x 5 block.
3.4.2 Examination of the LSBI Frequency Characteristics

[n Section 2.4.1 it was stated that in order to eliminate aliasing when sub-

sampling the bandwidth of the signal must satisfv the inequality

BW < + (3.9)

where M is the sub-sampling factor. In order to reduce the effects of aliasing. the
signal can be filtered to remove higher frequency components before sub-sampling.
This is exactly what the least-squares optimization does. The optimization for each
corner pixel is. in fact. a 2-D low-pass filter designed to remove frequency components
above J; in each dimension which in turn reduces unwanted effects caused by aliasing.

Figure 3.9 demonstrates this by showing the magnitude-frequency response of the

H1,,; filter in Equation 3.8.
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3.5 Results and Discussion

With an understanding of the basic image coding system. along with some
possible modifications. various comparisons can be drawn. These comparisons are
based on the storage requirements of the coded image (in bits/pixel) and the quality
of the reconstructed image output by the decoder measured via PSNR.

[n Section 2.4 an example of simple bilinear interpolation across a fixed grid was
shown. The only required parameter was simply the grid spacing (or sub-sampling
factor) in each direction. This parameter does not provide much control over the
quality of the output image and for large sub-sampling factors the image can become
unrecognizahle. In the example. the image of Lena was coded at 1.533 bits/pixel and
the output had a PSNR of 28.1 dB. This base result will be used to demonstrate the
effect of the various modifications to the image coding method.

The spatially adaptive sub-sampling modification improves upon the basic
method. Given the same image of Lena and using a minimum block size of 3 x 3. the
adaptive coder can achieve a PSNR of 31.7 dB at the same bit rate of 1.53 bits/pixel.
This improvement of 3dB is caused by strategically located samples in areas where
they are most needed. It is then possible to remove more information from the entire
image without decreasing the quality. Figure 3.10(a) demonstrates that where high
frequency components are located. more samples are allocated to that area. Areas
such as edges and the feathers in her hat have large numbers of samples while more
uniform areas such as the wall have fewer samples. From Figure 3.10(b). the output
image after bilinear interpolation shows finer details than possible by simple fixed grid
sub-sampling. In this example the splitting tree contained 15793 tree nodes (11845 of
which were leaves) that were coded at 0.067 bits/node by the LZW coder. The com-

pressed image also included 14300 vertices that were coded at 6.98 bits/vertex. This
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(a)

Figure 3.10: Spatially adaptive sub-sampling: (a) image samples retained. (b) recon-
structed image (PSNR = 31.7dB).

is somewhat less than the 16641 vertices required by the fixed 3 x 3 grid sub-sampling
method.

In Section 3.2.4 the problem of discontinuities arose due to differing block sizes
between neighboring blocks. After performing the block size equalization algorithm
discussed in that section. the decoder produces a slightly higher quality image which
is shown in Figure 3.11. The increase in PSNR is only 0.4dB. however the effects
of the visible discontinuities have been reduced and the output is more pleasing to
the eyve. The only drawback is that the decoding time in this example increased
by a factor of 4. The time increase has been somewhat amplified due to the small
minimum block size of 2 x 2.

In the compressed image. the vertices require the largest amount of storage.
This is because they are stored in a lossless fashion which always requires more storage
space than lossy coding. To remedy this, the vertices can be quantized as per Sec-

tion 3.3. With a lower bits/vertex requirement. a higher resolution can be achieved at
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Figure 3.12: Output image using quantized vertices (PSNR = 34.8dB).

Figure 3.13: Output images resulting from ALSBI coding: (a) non-quantized vertices
(PSNR = 33.2dB), (b) quantized vertices (PSNR = 35.7dB).
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Table 3.3: Block sizes created by image coder (“Lena” coded at 1.53 bits/pixel).

Quantized Block Sizes
Figures Vertices {33 x33]17x17 [ 9x9!5x3[3x3[2x2
3.14° no 0 0 0 0 | 16331] O
3.11. 3.13(a) no 3 35 255 | 1006 | 2664 | 7872
3.12. 3.13(b) ves 1 3H 178 | 1047 | 3381 | 14140

*Non-adaptive. fixed <ampling grid method from Seection 2.4

Table 3.4: Effect of vertex quantization and LSBI on PSNR ("Lena™ coded at
1.53 bits/pixel).

Quantized PSNR ’
Figure Vertices | LSBI | (dB) |
2.14¢ no 1o 28.1
3.11 no no 321
3.13(a) 10 ves 33.2
3.12 ves 1o 31.8
3.13(b) ves ves 35.7

“Non-adaptive. fixed sampling grid method
from Section 2.4

by performing the LSBI optimization when coding the image using non-quantized
vertices (Figure 3.13(a) vs. Figure 3.11).

Tables 3.3 and 3.4 show the effects of spatial adaptivity. vertex quantization.
and LSBI on PSNR and block size.  From the tables it can be seen that vertex
quantization enables smaller block sizes to be realized using the same bit rate. This
results in a higher PSNR. The PSNR is increased even further by performing the
LSBI optimization on the vertices before quantization.

In order to look at how the compression method works over a range of bits/pixel.
the coding parameters can be varied and the resulits observed. Due to the number of
parameters (splitting error tolerance. minimum block size. vertex quantization fac-

tor. block size equalization, and LSBI optimization) the complete behavior can not
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Figure 3.14: Effects of varving the splitting MSE threshold on bits/pixel and PSNR
for various vertex quantization factors (Q).

be visualized on one graph. To maintain continuity for all the results. the same im-
age of Lena is used to observe the effects of the image coder. The “Lena™ image is
a standard test image used for many image processing applications because it is a
“natural” image and has a wide variety of textures distributed throughout.

Figure 3.14 shows the relationship between PSNR and bits/pixel as the split-
ting MSE threshold is varied. As the threshold is raised. output image quality as well
as the bits/pixel are reduced. To illustrate the effect of vertex quantization. the graph
contains traccs corresponding to different quantization values (@ = 1.2. 4. and 8). As
can be seen. when Q = 1. perfect reconstruction (PSNR = ) is possible. At lower
bits/pixel it is advantageous tn increase the quantization factor in order to increase
the reconstructed image quality.

In Figure 3.15, the effects of the quantization factor are shown while holding
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Figure 3.15: Effects of varving the vertex quantization factor on bits/pixel and PSNR
for various splitting MSE threshold.

various splitting MSE thresholds constant. The points on each graph trace correspond
to quantization values of 1. 2. 4. 8. 16. 32. 64. and 128. As the quantization factor is
increased. more information is lost which results in a reduction of both the bits/pixel
and the PSNR. However. the quality does not begin to drop sharply until Q@ > 4
which makes @ = 4 a good choice to provide a compromise between quality and
compression.

The minimum block size (D) can also be changed to affect the PSNR-
bits/pixel relationship. Figure 3.16 again shows the effects of sweeping the splitting
MSE threshold for various minimum block sizes. As the minimum block size is raised.
the output image quality is diminished. [t can be seen. at higher splitting error thresh-
olds. the behavior is identical for different values of D,,;, because the error threshold

becomes so high that splitting stops before Dy, is reached. Another interesting ef-
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Figure 3.16: Effects of varving the minimum block size (Dy,,,) on bits/pixel and
PSNR for various splitting MSE threshold.
fect of increasing the minimum block size is that the available range of bits/pixel is

reduced when the splitting error threshold is varied.

3.5.1 Comparison of Adaptive Interpolation and Block DCT
Coding

To gain a better insight into the performance of the Adaptive Interpolation
coder. a comparison can be drawn between it and a Block Discrete Cosine Trans-
form (DCT) image coder which is a popular method for the coding of image data
and has been used for many vears [23]. The JPEG baseline image compression stan-
dard [13] makes extensive use of the Block DCT in order to decorrelate the input

image data before entropy coding.
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The Block DCT coder used in this comparison first starts by segmenting the
input image into 8 x 8 blocks and performs the 2-D DCT on each block. Then the
DCT coefficients are quantized using a quantization matrix scaled by a “quality”
parameter. The base quantization matrix used is that of the de facto quantization
matrix that is used in the JPEG image coding algorithm. After quantization. zig-
zag run length coding is performed to remove the large number of zero coefficients
resulting from quantization. Finally. the output of the run length coder is entropy
coded usitig a Huffman coder.

Figure 3.17 shows how the ALSBI image coder performance compares to that
of the Block DCT coder while (a) sweeping the splitting MSE tolerance and (b)
sweeping the vertex quantization factor. From the figure it can be seen that there
are certain places on the PSNR-bits/pixel graph ALSBI maintains a higher qualiry
with the same number of bits/pixel. This occurs between 1 and 5 bits/pixel in
Figure 3.17(a) and between 1 and 3 bits/pixel in Figure 3.17(b) for small values of
Q (i.e. Q = 1.2.4.8). Figure 3.17(a) also shows that at extremely low PSNRs. the
ALSBI coder can represent the “Lena” image with slightly fewer bits/pixel than the
Block DCT coder. However. this region of the PSNR-bits/pixel graph is not very
useful in image coding due to the visually poor output image quality. To illustrate
this point. Figure 3.18 shows two output images with PSNR =~ 21 dB—one from the
Block DCT coder and one from the ALSBI image coder. The ALSBI coder is able
to code the image with slightly fewer bits/pixel than the Block DCT coder (0.106
bits/pixel vs. 0.130 bits/pixel).

From the Block DCT output image two types of distortion are visible. First the
“blockiness™ of the output is due to the discontinuities between adjacent 8 x 8 blocks.
In order to achieve such low bits/pixel the DCT coefficients are heavily quantized

which frequently leaves the DC coefficient the only non-zero coefficient. Thus, every
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Figure 3.17: Comparison between the ALSBI image coder and a Block DCT im-
age coder by (a) sweeping the splitting MSE threshold and (b) sweeping the vertex
quantization factor.



(a)

Figure 3.18: Output images at low PSNR (a) Block DCT (PSNR = 20.6dB. 0.130
bits/pixel). (b) ALSBI (PSNR = 20.7 dB. 0.106 bits/pixel).

pixel value in the reconstructed 8 x 8 block is the quantized average of the input block
pixel values. The quantization also leads to the second type of distortion visible. that
is the quantized or limited number of grevscale values present.

[n the ALSBI output image. grevscale quantization is not very apparent as the
bilinear interpolation fills in intermediate values between the quantized vertex values.
The most visible distortion is the blurring or smearing in areas of the image where
few vertices are present. [n areas containing smaller blocks and thus more vertices
the quality increases dramatically.

The number of bits/pixel required for the image in Figure 3.18(b) can further
be decreased by increasing the splitting MSE threshold. However. the plot in Fig-
ure 3.17(a) shows that the output image quality degrades rapidly when the number

of bits/pixel is reduced in this region.



3.5.1.1 Comparison for Coding of Bi-level Images

[t has been previously stated in Section 1.2.1. that JPEG (Block DCT) does
not perform well on two-toned images [3]. Therefore. a comparison of Block DCT
coding and of how the adaptive interpolation image codec performs on bi-level images.

Bi-level or black-and-white images are not used as frequently as grevscale or
colour images. but they are extensively used in Fax (Facsimile) transmission and are
sometimes used as “preview” images. in order to save storage space or transmission
bandwidth. [n its raw form. a bi-level image only requires | bit/pixel for representa-
tion. which can be reduced further by using an algorithm. such as the JBIG (Joint
Bi-level Image experts Group) algorithm [3]. that specializes in black-and-white im-
ages. However. this results in having to change the image codec for different image
tvpes.

Figure 3.20 shows a black-and-white version of the “Lena”™ image. In the image.
pixels are only have the values 0 or 255. By coding and decoding this image multiple
times. with the adaptive interpolation method. while changing the MSE splitting
threshold. the plots for Q = 1 and Q = 255 in Figure 3.19 are created. In the same
figure. the PSNR vs. bits/pixel relationship for the Block DCT coder. operating on
the same image. is also shown. As can be seen from the figure. the Block DCT
coder does not perform well on the two-toned image of Lena. Although the Adaptive
Interpolator with Q = 1 does not perform much better. there is some improvement.
When @ is given a maximum value of Q = 255 a remarkable improvement is seen.

To illustrate further. an output image coded at 1.4 bits/pixel by each codec
is shown in Figure 3.21. The output of the Block DCT coder. Figure 3.21(a). shows
more distortion than the output of the Adaptive Interpolation coder. Figure 3.21(b).

In a PSNR comparison, the difference is considerable: over 18 dB. Visually. the main
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Figure 3.19: PSNR vs. bits/pixel comparisons for bi-level image coding with the Block
DCT coder and the Adaptive Interpolation coder with Q = 1 and Q = 255.

Figure 3.20: Black-and-white image of Lena.



Figure 3.21: Block DCT and Adaptive Interpolation black-and-white image coding
at 1.4 bits/pixel: (a) Block DCT (PSNR = 8.8dB) and (b) Adaptive Interpolation
(PSNR =27.6dB).

difference is the “noise™ seen over the entire Block DCT coded image. The Block DCT
coder performs badly since it has difficulty with the large changes in pixel values that
result in large numbers of high frequency components in the DCT.

It should be noted that neither codec system. Block DCT or Adaptive Inter-
polation. is able to code the black-and-white image of “Lena™ at less than 1 bit/pixel
very well. However. this example does show that the Adaptive Interpolation method
does perform better on less “continuous toned” images than the Block DCT coder—

black-and-white images being an extreme case of less “continuous toned” images.



Chapter 4

Adaptive Three-Dimensional
Sampling and Interpolation for

Image Sequence Coding

[n Chapter 2 the basic theory behind a two dimensional image codec was
discussed. It was shown how an image could be sub-sampled along a non-uniform
grid and reconstructed via bilinear interpolation. Then in Chapter 3 some specific
issues were discussed concerning the implementation of this adaptive interpolation
coder/decoder system.

This chapter is an extension of the 2-D image coder system into three dimen-
sions (two spatial dimensions and one temporal dimension) so that image sequence
data compression can be achieved. The main difference between 2-D and 3-D coding
is. obviously. the addition of the temporal dimension (or time axis). As for images.
the domain of the two spatial dimensions is limited. However. the temporal domain
can stretch to infinity (i.e. there can be no limit to the number of frames in an image

sequence). The large number of frames in digitized video results in huge amounts of
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data to be stored or transmitted. Usually. the volume of data is so vast that the raw
or uncompressed storage of the video is impossible or very impractical. So in most
cases. digitized video data is compressed before storage or transmission.

Since the image coding technique discussed in Chapter 2 treats the image as
a two dimensional plane of data. the three dimensional volume of data in an image
sequence can be coded using the same basic ideas. A general overview of the video
codec is provided in Section 2.1. Then. trilinear interpolation. the most important
aspect of the svstem. is detailed in Section 4.2 —both in theory and implementation.
Following that. in Section 4.3. the generation of the 3-D adaptive sampling grid is
presented. The storage of the grid structure and the coding of the grid vertices will
also be discussed. Then. analogous to Section 3.4, an improvement to the codec
svstem. based on the optimization of the vertex values using a least-squares error
method. is presented in Section 4.4. Finallv. Section 4.5 contains various results
achieved with this video coder and also includes a discussion regarding these results.
In this chapter. special attention will be given to areas where the 3-D methods differ

from their 2-D counterparts described previously.

4.1 Overview of the Video Codec System

The video codec system is quite similar to the image codec described in Sec-
tion 2.1. It has the same order of operations except that the operations are performed
on a 3-D volume of data instead of a 2-D plane. In Figure 4.1 the basic structure
of the coder and decoder is shown: the video codec is quite similar to the image
codec of Chapters 2 and 3. In the coder. the original sequence is recursively split
spatially and/or temporally. The splitting information is stored in a tree structure

that is compressed by a LZW-based coder. The remaining sample points lying on the
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Figure 4.1: Block diagram of the image coder/decoder system.
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splitting grid vertices are DPCM-Huffman coded. The splitting information and the
grid vertices are then either stored. to be decoded later. or transmitted directly to
the decoder. In the decoder. the process is basically reversed. The LZW coded split-
ting tree is decoded and then used to DPCM-Huffman decode the values at the grid
vertices. Then it is simply a matter of interpolating the grid vertices to reconstruct
the voxel values Iving between grid points.

[t is possible to simply perform 2-D coding on each frame of an image se-
quence (intra-frame coding). which uses spatial redundancy to achieve data com-
pression. However. in an image sequence. there can be large amounts of temporal
redundancy —especially for stationary objects or backgrounds within the sequence.
A large amount of transmission bandwidth {or storage space) can be saved by ex-
plotting these temporal similarities (inter-frame coding). So by treating the video
data as a 3-D volume of data. inter- and intra-frame coding can be performed at the
same time,

The advantages gained by using the previously described 2-D image coder can

be translated to advantages for the 3-D video coder. These advantages are:

—

. the absence (or near-absence) of floating point calculation requirements.

[EV]

the possibility of high speed operation in both the coding and decoding stages.

3. the absence of edge effects and blockiness associated with some other video

coding techniques.

4. and the possibility for lossless coding of an image sequence—depending on im-

plementation and the spatial dimensions of the image sequence.

Furthermore, an advantage that this method has over some other video coding systems

is that there is no need for computationally expensive motion estimation for the
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utilization of temporal redundancies. Overall. these properties result in an attractive

video coder/decoder systen..

4.2 Three Dimensional Trilinear Interpolation

The video coder described in this chapter is based on the volumetric interpo-
lation of a rectangular parallelepiped (a prism having all rectangular faces [24]) using
eight corner points. The simplest interpolator that fulfills this requirement ——one that
is a first order interpolator in each dimension—is the trilinear interpolator. It is used
both in the video coder and decoder.

Just as the bilinear interpolator can be constructed via multiple 1-D linear
interpolations. so can the trilinear interpolator. Separate linear interpolations. as
defined in Equation 2.1. need to be performed in both spatial dimensions as well as
the temporal dimension. Thus. given a three dimensional signal. Z, ;. with known
corner values lving on a rectangular parallelepiped. trilinear interpolation can be
achieved by bilinear interpolation of the front and back faces (which is performed
by cascading multiple linear interpolations) and linear interpolating between those
faces. This three step process involving interpolating in each of the three dimensions
is shown in Figure 4.2.

To calculate the trilinear interpolation function. an analytical combination of
the separate linear interpolations can be performed. Given an (\V; +1) x (\V, +1) x
(T + 1) block with the eight corner values known. the trilinear interpolation of a

generic point Z;  is calculated as such [17]:



(b)

(c) (d)

Figure 4.2: Three step. three dimensional trilinear interpolation: (a) original block.
(b) interpolation of top and bottom rows on the front and back faces. (c) interpolation
of each column on the front and back faces, and (d) interpolation between the front
and back faces [17. 25, 26].
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1. compute the value of the point Zy, o (which is a linear interpolation between

Zooo and Zy v, 0):

[V

Zxy.Na0):

Zo.xa0 — Zooo
A

Zojo = J + Zyow (4.1)

compute the value of the point Zy, ; (linear interpolation between Zy, o, and

ZxiNao — ZN1 00
N,

Zy jo= J+Zxo0 (4.2)

3. compute the value of the point Z, ;¢ (linear interpolation of Zy,o and Zy 4

from equations 4.1 and 4.2):

Zt._/.U

4. repeat steps 1

Zi.J.T

Zx, 30— Zo,0

= \_l L+ ZO._J.()
_ (Zyxeo + Zooa) - (Zxy.00 + Zo.xaw) .
- AT J
N (Z .00 - Zyou) i+ (Zo.xs0 - Zy.00) i+ Zoow
A A
= .'-llf._}' + .-1-_1_} + Aqr + .'l.; (43)
to 3 to calculate the point Z;
Zvar=Toat ;. 7,
_ (Zyvor + Zoor) = (Znio1 + ZovaT) .
o NV,
vioT — Zoot) . (Zox.t — ZoorT) .
. (Zxo1 = Zoo.T) P+ (Zo.NoT : 0.0.T) i+ Zoor
v, N
= Byij+ Baj+ Bsi + By (4.4)

5. calculate the value of Z; ;x (which is a linear interpolation of Z, jo and Z; ;1

Zijk

— Zi.J.T; Zi.j.O k + Zi.j,O (45)
(Bi—4) .., (Ba—4d3) . (By—dj)
—7 ijk + T Jjk + T ik
-4
+ (—B‘*———l) k+ .'ill] + :lgj + :131: + ."L; (4.6)

T
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The trilinear interpolating function of Equation 4.6 was calculated by interpo-

lation in the horizontal. vertical. and then the temporal directions. It can be shown

that the order of the interpolations does not matter—Equation 4.6 will always be

the result. Even though the trilinear interpolator is composed of multiple linear op-

erations. it no longer a simple linear function but is a third order three dimensional

spline function.

The trilinear interpolator can also be realized as a 3-D FIR filter. Using the

linear filter defined in Equation 2.2 it is possible to perform horizontal. vertical. and
|

then temporal linear interpolations. The impulse response of the trilinear interpo-

lating filter is equal to the convolution of the three 1-D impulse responses hy, (ny).

hy,(na). and hp(t) in three dimensions. That is.

hayxor(ngona t) = hy(npne )y« by, (nyonact) « heng.na. t)
= [hy (ny) - 3(ny) - 3(8)] % [y, (na) - d(ny) - S(+)]

* [hr(#) - d(ny) - 3(ny))

= hy,(ny)-hy,(n2) - hpe(t) (4.7)
and substituting the definitions for hy, (n). kv, (n2). and hy(t) vields:
=i %] 14
L= 8 = %7+
’ ll ‘t- , if ‘Illl <.V Illg‘ < .\-i_).
“ n 712
$5| - e+ ,
and t| < T
th.N'_v.T(nl? na. t} = 9 \_nil%%{
(4.8)
0 otherwise
\

As can be seen. the impulse response of the trilinear interpolating filter.

hw, n, (N1, N2, t), has a region of support that is a (N} +1) x (Ny + 1) x

rectangular parallelepiped.

(T +1)
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Figure 4.3: Impulse response of the trilinear interpolating filter /iy, ,.

The visualization of 3-D signals can be somewhat difficult because four dimen-
sions are required: each of the three independent variables and the one dependent
variable requires an axis. This can be remedied by using three axis for the dependent
variables and varying the colour {or greyscale) within the three dimensional space in
order to represent different values of the dependent variable. This is demonstrated
in Figure 1.3. where the impulse response hy; 4 is shown using lighter shades of grey
representing larger values. In order to properly see the various shades within the
3-D volume. the figure shows the greyscale values lying on planar slices through the
volume.

Given a 3-D input signal, z(n,ns.t), having been up-sampled by factors vy,
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V. and T in the vertical. horizontal. and temporal directions respectively. interme-
diate values can be interpolated via the trilinear interpolating filter. This is done by
simply performing a 3-D convolution of the input signal with the impulse response of

the filter:

ylnyonaty = ki vorlnena ) = oing . nat)

= Z Z Z hyx ol jokyring —iny—j ot —k)y (4.9

1I=—X J=-xX k=—-x

Furthermore. the limited region of support of Ay, v, r(i. j. k) results in the simpler

equation
Ni-1 No-1 T-1
ylr.ng ) = Z Z Z by, ol joklrtng —iony — jot — k)
==Np~1ly==No=~1k=-T~1

(4.10)
Again. as with the 1-D and 2-D cases. Equations 4.6 and 4.10 will result in

identical output given the same input. That is.

Zyimag=ylnnt) for0<n S NVLO<m <Ny and0<t<T
(4.11)
Also. when using these two methods for piecewise trilinear interpolation of a 3-D up-

sampled signal. they will produce the same output within the input signal’s domain.

4.2.1 Frequency Response

Using the equation for the impulse response of the trilinear interpolating filter
(Equation 4.10). it is possible to calculate the three dimensional frequency response.
However. as in Section 2.3.1. the frequency response can be more easily calculated by
using the 1-D frequency response of the linear interpolating filter. Due to the trilinear
interpolating filter having been created by filtering in the horizontal. vertical, and

temporal directions separately, the 3-D frequency response is simply the product of
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the 1-D responses:

HNl NaT (el=1. el*2, ejd:a) = H.\'l (ed<1, pw )
< Hy, (40 o2, o052 (4.12)

cHrp(e?= e el+?)

Again. knowing that Hy(e/<'. e/? ¢/%?) = Hy(e/*) and the definition of Hy(e/<)

from Equation 2.8. the frequency response of the trilinear interpolator is then

Ny-1
Hy, vor(e?t e/ el=0) = 142 z (1 - ——-—) cos [uy
=1

Na-1

1+2 Z (1—,\,—1)(osmwj (4.13)

m=1 2

[+2 Z (l - —) Cos iu-_:]

n=1

[t may not be directly evident from Equation 4.13. but the trilinear interpolator is
a 3-D lowpass filter. This follows from the fact that it is separable into three [-D
lowpass filters. The bandwidth in the w. . and &y directions can be adjusted
by changing the values of V). NV,. and T respectively. Increasing these parameter
values results in decreasing the bandwidth of the filter in their respective directions.
Showing the frequency response of the filter graphically is somewhat difficult to do
directly. so the volumetric slice method. as used to show the 3-D impulse response. is
used to depict the magnitude frequency response. An example showing the frequency
response. M, (e/*'.e/¥?. e/=3). of the trilinear interpolating filter A4, is shown in
Figure 4.4. The lowpass behavior is somewhat evident as shown by the bright centre
lobe: the side lobes of the response are also visible. Comparing the 3-D magnitude
frequency response with the 1-D response h, shown in Figure 2.5(c), the similarities
(i.e. lowpass behavior and side lobes) between the two are evident.

The trilinear interpolator, having an easily adjustable lowpass behavior in
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Figure 4.4: Magnitude frequency response of hy y ((n,. n,.t).
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three dimensions. is useful for removing unwanted spectral images resulting from
up-sampling a 3-D signal. Just as in Section 2.2.1.1. where it was shown that up-
sampling by a factor V results in the same number of spectral images. up-sampling
a 3-D signal by factors V. .V,. and T in the n;. n,. and t directions. respectively.
results in .V|.V, T spectral images—where .V, VoT — 1 of these images are unwanted.
These unwanted spectral copies can be removed by the trilinear interpolator Ay, v, r
while the desired spectral component of the signal that lies near the origin can be

retained—all because of the frequency characteristics of the filter.

4.2.2 Implementation

Implementation of the 3-D trilinear interpolator involves many of the same
ideas that were presented in Section 3.1. However. there are some specific issues that
are somewhat different from the 2-D implementation. The basic implementation is
based on the trilinear interpolation function defined in Equation 1.6 instead of the
trilinear interpolating filter of Equation 4.8. This is mainlyv due to the computational
load required by the filter and the storage needs of the filter coefficients (or the
computational needs of the coefficients if calculated as required). The filter. however.
was useful in examining the frequency characteristics of the trilinear interpolator.

Trilinear interpolation can be performed directly by using the 3-D function
in Equation 4.6. However. doing this results in a large number of calculations per
voxel: for each volume element. 26 additions. 13 multiplications. and 13 divisions are
required. To reduce the computational load. the calculation can be done (or approxi-
mated) by a number of other methods—mostly consisting of multi-step interpolations.
The methods covered here are similar to the ones discussed in Chapter 3. The three

step (as seen in Figure 4.2) interpolation methods examined are: The Bresenham,



93

floating point divide. integer divide. floating point DDA. fixed point DDA. and recur-
sive 1-D methods. There is also a recursive 3-D trilinear interpolation method that
will be examined.

The two step bilinear interpolation methods discussed in Chapter 3 can easilv
be extended into three dimensions in order to implement a trilinear interpolator. In-
dividual linear interpolations are used to interpolate the top and bottom rows of the
first and last frame. Then they are used again to interpolate between the top and
bottom rows in the end frames. Finally. linear interpolations are used to calculate
the values between the first and last frame within the volume. Using the three step
method vastly reduces the number of calculations over the one step direct method
(Equation 4.6}. Depending on the implementation of the 1-D linear interpolator. the
computational load can be reduced further. However. with a decrease in the com-
putational complexity. the error between the resulting 3-D interpolation and actual
trilinear interpolation can increase.

A recursive method shown in [17] and [25] can be also be used to perform the
trilinear interpolation—similar to the one step recursive 2-D bilinear interpolator de-
scribed in Section 3.1. By using only integer additions and bit shifts. the voxels within
the 3-D volume can easily be calculated. The operation of the recursive 3-D inter-
polator is shown in Figure 4.53. After the centre and mid-points are calculated. eight
new blocks are created to which the algorithm is applied again. This is recursively
performed until the voxel level is reached.

As mentioned before. there can be some trade offs between accuracy and speed.
In Section 3.1 the advantages and disadvantages of each linear interpolation imple-
mentation were discussed. As all the trilinear interpolation implementations (except
the recursive 3-D method) make use of multiple 1-D interpolations these advantages

and disadvantages still apply.



C  Starting vertices (A,B,C,D,E,F,G,H)
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@ Interpolated block’s central point (e.g.: Z = 3

Figure 1.5: Recursive 3-D trilinear interpolation [17. 23].
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Table 4.1: Comparison between the average mean squared error of different trilinear
interpolation methods over 100 random 64 x 64 x 64 blocks.

o Average MSE
Interpolation Method Method vs. Actual | Method vs. Quantized Actunal
Floating Point Divide 0.083 0.0
Floating Point DDA 0.083 | 0.0
Fixed Point DDA 0.083 6.9 x 1077
Bresenham 0.40 0.48
Integer Divide .68 0.74
Recursive 3-D* 2.8 2.8
Recursive 1-D , 5.0 1.8 [

*One-step interpolation

To observe the accuracy of the various trilinear interpolation methods. 100
64 x 6 x 6+ blocks having random corner values were interpolated and compared with
the actual trilinear interpolated values generated by Equation 4.6. Table 4.1 shows
the average MSE of the different trilinear interpolators. \When using an interpolator.
the output is quantized (to 8 bits/voxel in this discussion) in order to view on a
display device. Also. the originating sequence is usually quantized and represented
by a fixed number of bits/voxel. A slightly different error measurement uses the 8-bit
output values of the trilinear interpolators and compares it to the 8-bit quantized
output of Equation 4.6. The average MSE based on this measurement is also shown
in Table 4.1.

The calculation speed of the trilinear interpolator is also important. The cal-
culation times for the different interpolation methods of a fixed number of voxels
contained in various block sizes are shown in Table 4.2. These processing times were
based on a Pentium CPU running at 166 MHz.

As can be seen from Tables 4.1 and 4.2. the different trilinear interpolation

implementations perform relatively similar to the bilinear methods in MSE perfor-
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Table 4.2: Processing times of different block sizes (containing the same number of
voxels) for various trilinear interpolation methods.

Time (seconds)
Interpolation Method 100 blocks 6400 blocks | 409600 blocks
(64 x 64 x64) | (L6 x 16 x 16) | (4 x4 x4)

Actual (Equation 4.6} 70.80 68.28 60.02
Bresenham 12.37 36.84 199.59
Floating Point Divide 13.65 14.36 18.25
Integer Divide 10.99 12.06 17.06
Recursive 1-D 12.60 12.35 1141
Recursive 3-D 13.83 L1.44 G.14
Floating Point DDA 3.53 G.12 10.43
Fixed Point DDA 2.56 3.18 T.13 t

mance and speed of operation. Again. it can be seen that the most accurate methods
are the floating point ones. followed closely by the fixed point DDA method. With
regards to computation speed. it can bhe seen that some methods are dominated by
their setup time versus their computation time. The Bresenhani method is a prime
example of this. For a large number of small blocks. its calculation time is very slow.
The calculation times for the actual trilinear interpolator make it obvious why it is
not the most desirable method: even though it is the most accurate method. it is also
the slowest. Overall. the fixed point DDA is still the fastest method. It should be
noted that the recursive 3-D method works slightly faster on smaller blocks. However.
it also performs quite poorly in the MSE sense. These results show that the three

step fixed point DDA is the best choice for implementing the trilinear interpolator.

4.3 Adaptive 3-D Sampling Grid

Given a three dimensional signal it is possible to reduce the number of samples

representing the signal by simply sub-sampling the signal by a constant factor in each
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direction. Then. when reconstructing the signal. the signal must be up-sampled by
the same factors followed by trilinear interpolation to fill in values between the trans-
mitted/stored sample values. This simple codec can significantly reduce the required
number of bits/voxel. However. as with the 2-D case discussed in Section 2.4.1. using
this 3-D fixed sampling grid results in frequency aliasing effects and the loss of high

frequency components in both of the spatial directions and the temporal direction.

4.3.1 Non-Uniform Grid Generation

To overcome the problems associated with a fixed sampling grid. a non-uniform
sampling grid can be used. With a non-uniform sampling grid. volumes that contain
high frequency components can be assigned more voxels than volumes having low
frequencies. In this wav. rhe localized sub-sampling factors can be adjusted to reduce
the amount of aliasing or to avoid aliasing altogether.

The generation of the adaptive non-uniform 3-D sampling grid is similar to
the 2-D grid grid generation method described in Section 2.5. However. the addi-
tion of the temporal dimension requires some modifications and also allows some
optimizations to be made. An image sequence. in general. is not constrained in the
temporal direction (or at least the temporal length of the sequence is much larger
than the spatial lengths) so when coding. it is not possible to look at the entire im-
age sequence. Thus. the coder processes groups of frames (frame stacks) in order
to accommodate the large temporal sizes. The non-uniform 3-D grid contains larger
number of vertices in regions containing intense activity—spatial (edges. textures)
or temporal (movement). The frame stack is first subdivided into blocks of maxi-
mum dimension: Dy, = (2°+1) x (2° + 1) x (2¢ +1). Then. starting with a block

of maximum dimensions with only eight vertices, the algorithm recursively subdivides
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the volume in the spatial or temporal domain. guided by the calculation of an error
measurement {17]. When a spatial split is made. four equi-sized sub-blocks are cre-
ated with the dimensions (2°7! + 1) x (2°7! + 1) x (2! + 1): consequently. ten new
vertices are generated by the spatial split. A remporal split results in the generation
of two equally sized sub-blocks having dimensions (2* +1) x (2°+1) x (2! +1) and
creates four new vertices. Splitting in this fashion alwavs results in vertices that are
shared with neighboring blocks.

Starting with a block with dimensions (2% + 1) x (2% + 1) x (2" + 1). it is
possible to recursively split it down to the voxel level. That is. the final block sizes
will all be 2 x 2 x 2. Lossless coding is then possible. as there will be no error
introduced by trilinear interpolation. Actually. in this case. no interpolation would
even be necessary. In practice. the spatial dimensions of the original frame stack
sequence will rarely fit the pattern (2° 4+ 1) x (2° + 1). So cleaving the block into four
identically sized sub-blocks is not possible and approximately equi-sized sub-blocks
have to be acceptable. Splitting down to the voxel level is then not possible using the
above splitting method hecause one length along its spatial dimension will reach its
minimum size before the other dimension will. This is not a major problem. as there
is less demand for lossless video coding than for lossless image coding. However. if
lossless coding is a requirement. the splitting process can be modified to a method
similar to the one described in Section 3.2.2 where spatial splits are performed by
bisection rather than splitting into four parts.

By breaking the subdivision process into separate temporal and spatial splits.
as opposed to splitting each block into eight sub-blocks. the computational require-
ments of the error evaluation function can be reduced significantly because a complete
approximation of the block is not necessary. When deciding if a spatial split has to

be performed, only one frame of the block has to be interpolated. To decide if a
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temporal split is necessary. only the linear interpolations of the four pairs of corre-
sponding vertices in the time direction are required. These valuable simplifications

as suggested in [17] are justified by the following considerations:

1. Assuming there is no movement in the block. the first face can be considered
to be representative of the entire block. so decisions for spatial splitting can be

based entirely on it.

2. If the block is spatially smooth (i.e. there are no high frequencies in the spa-
tial directions). the four corner vertices of each frame within the block can be
considered representative of the entire frame. so the temporal splitting decision

can be made based only on these vertices.

4.3.2 Grid Representation

[n order to reconstruct the image sequence. the decoder must be able to recreate
the splitting process performed by the coder. Thus. the splitting information must
be represented in an efficient manner that is able to be stored or transmitted. The
splitting hierarchy lends itself well to a tree structure. Starting with a node that
represents the current frame stack. if a split is necessary within the current node. the
node becomes a parent to multiple child nodes which represent the sub-blocks. The
number of children depends on the type of split: four child nodes for a spatial split
and two child nodes for a temporal split. This results in a quaternary-binary tree.
After all the splitting is performed. the nodes that have not been split will have no
children—they are leaf nodes of the tree—and it is the sub-blocks that are represented
by these children that are to be interpolated when reconstruction occurs.

Just as in the 2-D image coder, the nodes in the tree can be described by a

code that is a variable length string of bits. The entire tree can then be represented
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tree code:
11111010000000000

Figure 4.6: A three dimensional non-uniform grid and its representative tree struc-
ture [L7. 25. 26. 27].
by a large string of bits made by the concatenation of the bits for each node through
a traversal of the tree. The individual node bits can be chosen to reduce the length
of the tree string. It can be seen that the leaf nodes are always the most abundant
in the tree. Therefore. by representing the leaves by the shortest code. an overall
savings in storage can be achieved. Figure 4.6 shows a subdivided block along with
the quaternarv-binary tree and the corresponding bit string that represents it. In
the tree code. which was created through a depth-first traversal of the tree. a "0”
indicates no split (a leaf node) while a ~1" followed by a ~1" or a "0 indicates
a spatial or a temporal split respectively. Some of the bits in the tree code can
be removed for further data savings. If a leaf size is equal or less than the minimum
dimensions parameter. the “0” indicating that there is no split is not required because
the decoder knows that the block cannot be split any further and does not need to
be informed explicitly.

By observing the bit string representing the tree in Figure 4.6. it can be seen

that there are many repeated patterns of digits. Thus. the entire tree code can be



101

compressed further by compressing the information stored in the bit string with the
dictionary based LZ\W coder—exactly as was done to compress the tree in the bilinear
interpolation based image coder. Again. a lossless information compressor must be
used since the tree information is crucial to the reconstruction of the image sequence.
The combination of the variable length node codes along with the LZW compressor
results in a tree representation that is. on average. much less than 1 bits per tree
node.

If the frame stack does not have spatial dimensions that are of the form
(2° + 1) x (2° + 1). lossless coding of the sequence is not possible. Usually lossless
coding is not a requirement for video coding as the amount of information can still
be quite tormidable. [f lossy coding is not acceptable. the quaternarv-binary tree can
be replaced by a binary tree in which the split nodes can be either representing splits
in the n;. ny. or t directions. In this wav. final block sizes of 2 x 2 can alwavs be
realized and lossless coding is possible. Using this modification will result in a larger
splitting tree since more splits will be necessary. Also. the number of bits required to
represent each tree node will increase since there are more types of nodes: no split.
horizontal split. vertical split. and temporal split. Thus. lossless coding of an image

sequence is possible if a gain in the overall bits/voxel is acceptable.

4.3.3 Interpolation Discontinuities

When the reconstructing the image sequence across the whole grid some prob-
lems may arise. It is noted in [17]. [23]. and [27] that a tree structure may arise
in which some vertex locations do not match with those of the neighboring blocks
which can cause discontinuities in the interpolated output. This problem may ad-

versely affect the visual qualitv of the image sequence if not handled correctly. In
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discontinuity caused discontinuity caused
by spatial split by temporal split

(b)

Figure 4.7: Examples of possible grid interpolation discontinuities: (a) discontinuity
caused by a spatial split and (b) discontinuity caused by a temporal split [17. 25. 26.
27].

general. interpolation discontinuities between larger blocks are more visually appar-
ent than discontinuities between small blocks. In Figure 4.7 two typical examples of
interpolation discontinuity points.

When the global interpolation is performed. a breadth-first traversal of the
tree is preferred because large blocks will be interpolated before smaller neighboring
blocks. The higher detail along the edges of the smaller blocks will overwrite the low
detailed edges of the neighboring large blocks. This results in a higher PSNR and
can somewhat reduce the effects of interpolation discontinuities.

To completely remove the effects of interpolation discontinuities. the image
sequence decoder can perform the block size equalization (BSE) procedure shown for
the 2-D image decoder in Section 3.2.4. Before performing the global interpolation
using the tree structure. the decoder must perform a top-down iterative algorithm
that splits larger blocks and computes the necessary centre and mid-points via inter-
polation for the new sub-blocks. This can be done until all leaf nodes are at the same
level in the tree which results in sub-blocks that are all approximately the same size.

Then. when the global interpolation is performed, no interpolation discontinuities will
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occur.

To remove all discontinuity points. block size equalization must ensure that all
blocks are split down to the minimum block dimensions specified by the coder. This
can result in a large computational load because of the potentially large number of
blocks and voxels to be considered within a frame stack—much larger than for the
2-D BSE algorithm. So it is recommended that the equalization is only performed so
far down the tree that too much processing time is not required. Since discontinuities
occurring between large blocks are much more noticeable. the sub-optimal block size
equalization procedure can be sufficient. If decoding time is very crucial and the
small visual defects caused by interpolation discontinuities are acceptable. the block

size equalization step can be skipped altogether.

4.3.4 Vertex Representation

The sample points lving on the grid vertices are required by the decoder as
corner points for the trilinear interpolation process. Therefore. they must be stored
and sent to the decoder along with the information describing the splitting tree.
Since the splitting tree contains the structure of the image sequence and the vertices
only contain intensities. the vertices can be coded in a lossy manner to increase the
compression ratio with onlyv minor effects to the reconstructed video quality.

The DPCM-Huffman coder described in Section 3.3 is used again to code the
3-D vertex values—with some modifications. The DPCM coder takes advantage of
anyv correlation that exists between adjacent samples and attempts to reduce the
dvnamic range of the signal. This then can result in an entropy reduction that
can be exploited by the Huffinan entropy coder to reduce the overall information

requirements of the vertex values further. The prediction performed by the DPCM
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coder is crucial to its performance: the better the prediction is. the lower the output
entropy of the signal can be. The 2-D DPCMI coder uses samples from above and
to the left of the current position in the image to generate a predicted value (see
Figure 3.3). Only these samples can be used in prediction because all other values
will be unavailable to the decoder. For 3-D DPCMI coding. samples above and to the
left. as well as samples from previous frames can be used in the prediction process.
Thus. the prediction. #(i. j. k). of the value (i J. k) is computed by the N-th order
3-D predictor:

N
g k) = Z Cono Ll j—n k)

n=1

NN
+ Z Z Conw TE =m0 = n k) (-1.1-4)

m=1n=-\

N N N
+ Z z Z Crn.p xr(e— . j =it k= p)
p=1

m=-Nnz -\
where ¢y, ., are the prediction coefficients. For minimum prediction error. the pre-
diction coefficients are chosen so that 3 ¢ n, = L.

In this video coder. a first order predictor is used because of the potential
large number of calculations required for a higher order. more complex. predictor.
This results in 13 prediction coefficients: 1 to the left of the current position. 3 above.
and 9 in the previous frame. The simplest prediction coefficient selection is also made:
all the coefficients are made equal to ﬁ This makes the predicted value simply the
average of its neighboring values.

There is one major problem with DPCM coding of the vertices on the non-
uniform grid. Samples above. to the left. and on the previous frame will not always be
available and may also be different distances away from the current sample. If a vertex

does not exist immediately next to the current location. the nearest neighboring vertex

in that direction is used instead. However, if no suitable replacement can be found,
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that value can be omitted and the prediction coefficients can be adjusted (i.e. the
value is simply removed from the calculation of the average surrounding vertices).
The above describes results in lossless coding of the vertices. The overall bit
rate required for the vertices can be reduced further by first quantizing the vertex
values before DPCM-Huffman coding. For moderate quantization factors the number
of bits per vertex can be reduced dramatically while the effects of vertex quantization
are not noticeable. Visual artifacts. such as the ~onion ring” effect. that are usually
noticeable when quantizing images or image sequences. are avoided when quantizing
the vertex values because the trilinear interpolation performed by the decoder fills in
intermediate values at the maximum precision provided by the interpolator and are

not fixed at the same precision as output by the vertex quantizer.

4.4 Least-Squares Trilinear Interpolation (LSTI)

When coding an image sequence using the above method. voxel values that lie
within a block to be interpolated are not taken into account during interpolation. This
can cause an increase in the overall error of the reconstructed outpur for a number
of reasons. If there is any noise present in the original image sequence. the noise
imposed on a vertex. when interpolated. will be spread across all neighboring blocks.
Furthermore. when a high contrast spatial or temporal edge cuts through a block and
only affects one or two vertices. it results in the edge being smeared throughout the
entire block.

The image sequence coder can bring about a higher PSNR in the decoded
image sequence by performing an optimization that minimizes. in the least-squares
sense. the trilinear interpolation error by modifving the corner values of each block

to be interpolated. Furthermore, since the optimization is performed by the coder.
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there is no change required to the decoder and no extra calculations are required in
the decoding stage. This least-squares trilinear interpolation (LSTI) method is quite
similar to the LSBI method described in Chapter 3. except a third dimension is added
into the calculation.

In Section 3.4 the sub-optimal least-squares optimization that is performed on
a per-block basis was shown to have the solution

x = (B'™B) BTy
(4.15)

= Sy

where x is a vector containing the optimized corner values. B is the interpolation
matrix. and y contains all the original values in the image block. The formulation of
Equation 4.15 is not dimension specific. Therefore. the optimization is also equally
valid for a three dimensional block of samples. This means that for LSTI. the vector
x will contain the eight optimized corner points to be used by the decoder instead of

the values found in the original image sequence.

The LSTI method is optimal in the least-squared sense if all eight optimized
corner points can be retained for each block. This is not desirable for image sequence
data compression since it will result in a huge increase in the number of vertices to be
transmitted or stored. As with the LSBI method. the LSTI optimized corner values
can be averaged with the optimized values from neighboring blocks. This results
in a higher quality reconstruction without increasing the amount of data storage
or transmission bandwidth. For an even more accurate reconstruction. a weighted
average based on the volume of the blocks that share common corners can be used to
calculate the optimized output corner values. When this is done. for a given vertex
location, the LSTI optimized corner value from a large block will be given a larger

weight than the LSTT optimized value from a smaller neighboring block. Thus, the
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actual value that is output will be closer to the optimized corner value calculated from
the large block. After reconstruction. the larger blocks will have less interpolation
error which results in an overall higher PSNR for the entire image sequence. This
combination of LSTI and adaptive sub-sampling will be denoted as Adaptive Least-
Squares Trilinear Interpolation (ALSTI).

An example illustrating the differences between two reconstructed frames from
the “Miss America” sequence. one with and one without LSTI optimization. is shown
in Figure 4.8. The images show a point in the sequence where the high contrasr edge
between her hair and face moves through a block just above her left eve. When no
LSTI optimization is performed. the output is as shown in Figure -1.8(a). However.
after LSTI optimization is done. a higher quality reconstruction results. as seen by
the frame in Figure 1.8(b). The reconstructed output not only improves visually but
also in terms of PSNR. In this case there is over a 1 dB increase in PSNR when the
LSTI optimization is used (35.97 dB with LSTI versus 34.76 (B without).

[n order for the image sequence coder to perform the LSTI optimization. the
coefficients in the S matrix must either be calculated during the coding stage or
calculated off-line and read into memory. Calculating the coefficients as needed is
very computationally expensive and not practical. If the S matrix coeflicients are pre-
calculated. a very large amount of storage space is required—a fact that is amplified
even further because coefficients are required for three dimensions.

This storage problem can be alleviated by treating the LSTI optimization as
multiple 1-D LSLI optimizations. just as was done for the LSBI optimization in Sec-
tion 3.4.1. Then. the coefficients can be stored treated and stored as 1-D FIR filter
coefficients. In fact. the coefficients required for the LSTTI calculations are exactly the
same as those needed for the LSBI optimization because of the separation into 1-D op-

erations (i.e. the same 1-D FIR filters are used in LSLI. LSBI, and LSTI optimization).
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(b)

Figure 4.8: Reduction of interpolation error using LSTI. (a) Without LSTI inter-
polation artifacts are introduced when a high contrast edge cuts through a block.
(b) With LSTI the effect of the edge on the reconstructed output is diminished.
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4.5 Results and Discussion

Now that the operation of the image sequence codec has been described. the
effects of the various parameters on the reconstructed output can be shown and
discussed. The quality of the reconstructed output is based on a PSNR comparison
between the output and the original image sequence. A commonly used measurement
of coding efficiency is the number of bits per second required to transmit the sequence
from coder to decoder. This measurement can sometimes be misleading as it is
dependent on the frame rate of the original sequence. Therefore the information
compression ability of the videu coder is the average number of bits per voxel required
to code the image sequence. Given the frame rate. it is simple to convert between
bits/voxel and bits/second.

As shown in this chapter. there are many parameters involved in this particular
coding method of image sequence data. Each parameter affects the quality. compres-
sion ratio. or computational speed in different ways. These parameters and their

effects will be discussed and output examples will be shown in the following sections.

4.5.1 Effects of Spatial and Temporal Block Sizes

The minimum spatial block size and spatial MSE splitting tolerance will. ob-
viously. affect the spatial quality while the corresponding temporal parameters affect
the output quality in the temporal direction. In general. a low MSE splitting toler-
ance (i.e. splitting will occur even for small interpolation errors across a block) will
result in large numbers of small blocks to be interpolated by the decoder.

To show and example of how large temporal and large spatial block sizes (or
large temporal or spatial interpolation error) affect the interpolated output. the “foot-

ball” image sequence is coded first using a large error tolerance for splitting in the
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Figure 4.9: An original frame from the “football” image sequence.

spatial dimensions while keeping the temporal error tolerance small. The sequence is
then coded again with low spatial error tolerance and high temporal error tolerance.
Figure -1.9 shows an original frame of the “football” sequence. This sequence provides
many challenges to a video codec system as it contains a large amount of motion as
well as sharp edges (the lettering on the players® jersevs) and detailed textures (the
grass). Figure 4.10 shows frames from the reconstructed “football” sequence when
large spatial errors are allowed and large temporal errors are allowed. For a proper
comparison. both sequences were coded at the same bit rate (1.69 bits/voxel).

As can be seen in Figure 4.10(a). the large spatial block sizes remove most of the
high frequency information in each frame giving it a blurred appearance. However. it
does contain large numbers of samples in the temporal direction. Even small amounts
of motion can be seen from frame to frame. To contrast this case, Figure 4.10(b)

shows how large temporal block sizes produce blurriness in the temporal direction
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(b)

Figure 4.10: Example showing the effects of (a) large spatial and (b) temporal block
sizes.
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while small spatial block dimensions enable small details to be seen in each frame.
The temporal blurriness is somewhat interesting as details from surrounding frames
can be seen in the current frame giving it a somewhat cluttered appearance as moving
objects fade in and out of view over a number of frames.

These are some extreme cases of large block sizes. The PSNR is quite low
for both output sequences: 23.7dB and 22.8dB for the sequences represented by
Figures 4.10(a) and 4.10(b) respectively. In practice. a balance between spatial and
temporal error can produce a more pleasing output at a similar bit rate.

To illustrate the effects of the spatial and temporal MSE splitting thresholds.
an image sequence can be coded and decoded multiple times with different threshold
values. In Figure 4.11. the spatial MSE splitting threshold is swept across various
values for each coding and decoding of the “western™ sequence while holding the
remporal splitting MSE constant. The “western” sequence has somewhat less motion
and high frequency textures than the ~football” sequence but is more complex than
the ~Miss America” sequence. This makes it a good sequence of average complexity to
code and decode. Furthermore. it has spatial dimensions of 256 x 256 which somewhat
eliminates the need for the modified splitting method described in Section 4.3.2.

The effects of the temporal MSE splitting threshold are shown in a similar
manner: the temporal threshold is changed for each coding/decoding operation while
the spatial threshold is held constant. For the “western” sequence. the resulting PSNR
vs. bits/voxel curve for this operation is shown in Figure 4.12 for various spatial MSE
threshold values.

It is easy to observe that as the splitting threshold (temporal or spatial) is
increased, the quality of the image decreases along with a corresponding decrease in
the number of bits/voxel. Both of these effects occur because when using a higher

error tolerance, less splitting is performed resulting in larger blocks to be encoded.
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Figure 4.11: The “western” image sequence PSNR vs. bits/voxel during a sweep of
the spatial MSE splitting threshold while the temporal splitting threshold is held
constant.
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Figure 4.12: The “western” image sequence PSNR vs. bits/voxel during a sweep of
the temporal MSE splitting threshold while the spatial splitting threshold is held
constant.
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Larger blocks—and consequently. fewer blocks—generally result in a larger interpo-

lation error and because there are fewer blocks. a lower bit rate can be achieved.

4.5.2 Effects of Interpolation Discontinuities

In Section 4.3.3 it was discussed how discontinuities in interpolation can arise
at temporal and spatial block boundaries. It was also shown how the effects of
these discontinuities can be minimized by block size equalization during the decoding
process. This results in a higher quality outpur image sequence. For example. in
Figure 4.13 two output frames are shown: one decoded normally while the other
is decoded using BSE. From the output images. it is apparent that the block size
equalization method improves the output quality: a gain of over 2dB in PSNR is
achieved.

[n general. unless the minimum splitting dimensions have been globally reached.
the BSE algorithm will improve the quality of the reconstruction. Figure 4.14 shows
the results of BSE over a wide variety of combined temporal and spatial splitting
thresholds when coding the “western”™ image sequence. As can be seen. when oper-
ating at the same bit rate. the PSNR is higher for the coder using BSE than the one
that does not.

Since this algorithm can increase the memory and computational demands. the
decoder can select various levels of recursion. or no recursion at all. for the equalization
process. A lower level of recursion into the tree. until the minimum block size has been
reached. will result in a higher quality output. Thus. if quick decoding is necessary.
a trade off between quality and speed must be done. It is useful to note that this
algorithm is done solely by the decoder. No change is required to the coder or the

format of the compressed data.
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Figure 4.13: Example showing the effects of block size equalization. Shown are recon-
structed frames from the “western” sequence coded at 0.32 bits/voxel and decoded
(a) without using and (b) using block size equalization. The resulting outputs have
a PSNR of (a) 28.4dB and (b) 30.8dB.
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Figure 4.14: PSNR vs. bits/voxel during a sweep of the splitting MSE threshold for
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4.5.3 Effects of LSTI Optimization

Similar to the 2-D case. the least-squares trilinear interpolation optimization
can be performed by the coder to result in a more accurate reconstruction by the
decoder. This makes it possible to off-load some of the computations on to the coder
which is desirable since fast decoding time is usually more often required than fast
coding. Furthermore. no changes are needed to be made to the decoder or the bit
stream format. enabling the decision to perform LSTI optimization entirely up to the
coder and independent to the rest of the syvstem.

As mentioned previously. the LSTI optimization does not drastically change
the bits/voxel requirements of the image sequence: usually the changes are miniscule
or even non-existent. Since the optimization is performed on a 3-D block of voxels. it
improves both the spatial quality and the temporal quality of the reconstructed image
sequence. [t is difficult to show the temporal quality on a 2-D medium (i.e. this page).
however the spatial quality improvement can be easily shown. One example showing
the results of LSTI optimization has already been shown in Figure 4.8. To illustrate
this further. Figure 4.15 contains an LSTI optimized output frame. the same frame
number as shown in Figure 4.13 and it is coded at the same bit rate (0.32 bits/voxel).
The resulting image sequence reconstruction has a PSNR of 29.4 dB—an increase of
1 decibel.

In general. by using the LSTI optimization. one can expect to improve the
PSNR of the reconstructed output by around 1dB. This can depend somewhat on
the image sequence and cases of extreme splitting MSE thresholds. Figure 4.16 shows
how LSTI optimization can provide an improvement over a wide range of splitting
thresholds. For the “western” sequence. it can be seen that there is an improvement

in PSNR over the entire range of bit rates when the LSTI optimization is performed
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Figure 4.15: A reconstructed frame from the “western” image sequence, coded at
0.32 bits/voxel. showing the resulting improvements (over Figure 4.13(a)) from LSTI
optimization. An improvement in PSNR of 1 dB (resulting in a PSNR of 29.4dB) is

achieved over non-LSTI coding.
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Figure 4.16: PSNR vs. bits/voxel for the “western” image sequence during a sweep
of the splitting MSE threshold for a coder that uses LSTI optimization and one that
does not.
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by the coder. In fact. for most of the bits/voxel range. the increase is around 1dB.
With this improvement in mind and the fact that there are no required changes to the
decoder or any significant increase in the bit rate. using an LSTI coder is a simple way
to increase the reconstructed quality of the image sequence. The only disadvantage

is the extra coding time required.

4.5.4 Effects of Frame Stack Size Selection

Tlie selection of the frame stack size also has an effect on the PSNR vs. bits/vox-
el relationship. Temporal redundancies can be more easily exploited when a larger
frame stack is used. For example. if a scene within an image sequence contains a
stationary background with relativelyv little motion. very long blocks in the temporal
direction can be created while still maintaining low interpolation error. At the same
time. these temporally long blocks can have small spatial dimensions in order to re-
construct small spatial details in the static parts of the scene. A good example of
this type of scene is in the ~Miss America” sequence in which there is very little mo-
tion. The bits/voxel requirements of this tvpe of image sequence can be significantly
lowered by increasing the size of the frame stack.

The effects of frame stack size are shown in Figure 4.17 where the PSNR
vs. bits/voxel is shown while the stack size is gradually changed from 2 to 33 frames
while holding all other parameters constant. As the stack size is increased. the number
of bits/voxel decreases while the PSNR only varies slightly. It should be noticed in the
plot that the sequences with fewer motion components benefit more from an increased
stack size and are more easilv compressed.

The benefit of a large stack size is apparent. A very large frame stack wouid

seem to be the best choice. This would provide the best compression performance,
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Figure 4.17: PSNR vs bits/voxel showing the effects of the frame stack size.

however it may not always be feasible to use such a large stack size. \With an increased
stack size. the memory requirements for both the coding and decoding algorithm can
become quite large. Not only do the extra frames have to be stored in memory during
the processing. but the splitting tree size will also need to be expanded. Therefore. a

balance between memory usage and stack size must be made.

4.5.5 Effects of Vertex Quantization

In the compressed bit stream. the vertex values require the largest amount of
information. Even with DPCM-Huffman coding, the number of bits/vertex can still
be on the order of 5 to 7. Compounded with the possibility of a large number of
vertices in an image sequence. it is easy to see why the vertex values take up the most

information. As found in Section 3.3 for the 2-D case. one of the simplest solutions.
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Figure 4.18: PSNR vs bits/voxel showing the effects of vertex quantization. Q is
swept from 1 to 128.
which turns out to be one of the best solutions. is to quantize the vertex values before
DPCM-Huffman coding. By simply dividing each vertex value by the constant factor
@ and truncating the result. the bits/vertex can be reduced significantly depending on
the value of Q. During the reconstruction stage. the decoder simply multiplies every
vertex by Q before using as a corner value for trilinear interpolation. Furthermore.
since the interpolation is performed using full arithmetic precision. the “onion ring”
effect. commonly seen resulting from the quantization of image or video data. is
avoided.

To see how various values of @ affect the coding and output quality of an image
sequence. a plot illustrating this is shown in Figure 1.18. In the figure. the points on
the graph correspond to quantization coefficient values of @ = 1. 2, 4, 8, 16, 32, 64,

and 128. From the plot, it can be seen that as @ is increased (i.e. the vertex values
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Figure 4.19: Spatial MSE splitting tolerance sweeps for the “football” image sequence
using vertex quantization factors (Q) of 1 and 4.

are more heavily quantized). the number of bits/voxel is reduced. For changes in
while it is small (1 < Q < 8). the resulting change in PSNR is negligible which is
quite useful as the bits/voxel can be reduced with little effect on PSNR. It can also
be seen from the figure that for image sequenced that have more vertices to code
have the most to gain by vertex quantization. This is well illustrated by the PSNR
vs. bits/voxel trace for the “football” scquence.

Since the number of bits/vertex can be reduced. a denser sampling grid can
be emploved to retain more vertices. Therefore. at the same bit rate. the quality
of a reconstructed sequence can actually be increased by vertex quantization. This
is shown for the “football” sequence in Figure 4.19 where the spatial MSE splitting
tolerance is gradually changed with vertex quantization factors of 1 and 4. The

improvement in PSNR can be seen over the entire range of splitting tolerances. For
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example. at around 2.5 bits/voxel there is an improvement in PSNR of 3.3dB for the
coder using ( = 4. Thus. a radical improvement can be gained by quantizing the

vertex values so that more vertices can be included at the same bit rate.

4.5.6 Arbitrary Spatial Dimensions

In Section 4.3.2. it was shown how the non-uniform sampling grid can be
generated for a given 3-D block. It was also mentioned that if the spatial dimensions
of the block are not of the form (2" + 1) x (2" + 1). fairly large block sizes can remain
after subdivision that cannot be spatially spit further. This problem escalates when
the aspect ratio of the image sequence deviates from 1 : 1.

The problem of arbitrary spatial dimensions can be alleviated by modifving
the coder and decoder to allow horizontal or vertical splits when required. When
a block has one side that cannot be subdivided further. an indication to split will
be interpreted as a subdivision into two blocks along the axis that can support the
split. This will result in a somewhat larger splitting tree that will increase the average
number of bits/voxel of the compressed image sequence. However. it can result in a
higher qualityv reconstruction.

In Figure 4.20 the effect of the arbitrary image sequence dimension allowance
is shown for the coding and decoding of the “football” sequence. This sequence
has spatial dimensions of 350 x 240. which vields an aspect ratio of 1.46 : 1. With
large amounts of recursive splitting, blocks of size 4 x 2 (in the spatial dimensions)
may result. These blocks can no longer be quad-split. A single vertical split would
cleave this size of block into two blocks: 3 x 2 and 2 x 2. In the figure, the spatial
and temporal MSE threshold is swept using the regular splitting method and the

splitting method that allows for arbitrary spatial dimensions. The effects are also
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Figure 4.20: Combined spatial and temporal MSE splitting tolerance sweeps for the
“football” image sequence using vertex quantization factors of @ = | and Q = 4.
with and without arbitrary spatial dimensions allowance.
demonstrated for a vertex quantization factor of Q = 4. It can be seen that the coder
which is designed to accommodate arbitrary spatial dimensions can code the image
sequence with a wider range of bits/voxel and PSNR. At higher bit rates. higher
quality reconstruction is possible since smaller blocks (more vertices) can be used.
However. for low quality coding. the figure clearly shows that the arbitrary spatial
dimensions allowance increases the bits/voxel slightly because more bits are required
to represent the splitting tree.

A more visual example is portrayed in Figure 4.21. Shown is a reconstructed
frame from (a) the regular coder and one from (b) the arbitrary dimensions coder.
These sequences were coded with approximately the same number of bits/voxel: (a)

at 2.68 bits/voxel and (b) at 2.67 bits/voxel. Normal splitting tends to result in small
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rectangular shaped blocks. This is quite noticeable when looking at the lettering on
the plavers’ jerseyvs or the stripes on the plavers’ pants. This happens because the
resolution in the horizontal direction is limited where the unsplittable 4 x 2 or 3 x 2
blocks are situated. In Figure 4.21(b) this problem is fixed by the arbitrary dimensions
allowance. It is interesting to note that the increase in PSNR is negligible (0.08 dB)
but the increase in visual quality is quite apparent.

Unless very low bit rate video coding is required. it is advantageous to imple-
ment the modified subdivision process that allows for arbitrary image dimensions.
The codec system can then realize wider ranges of bit rates and (ualities. and can

perform lossless coding of an image sequence.

4.5.7 Comparison Between ALSTI and MPEG Video Coding

Now that the effects of all the coding parameters of the ALSTI coder have been
explored. a proper comparison can be made with an existing video coder: the MPEG
video coder. From the previous sections. it was seen that the ALSTI coder performs
best by using a combination of LSTI. BSE. and a moderate quantization coefficient of
1 < Q < 8. Furthermore. for sequences with arbitrary spatial dimensions. it is useful
to include the arbitrary dimensions allowance modification to the splitting process.
[t was also shown that a large frame stack size is advantageous—if the memory
requirements do not become too great. A general overview of the MPEG video codec
was given in Section 1.2.2. In this section. the MPEG coder and decoder used are
the “Berkeley MPEG-1 Video Encoder™ [28] and the “Berkeley MPEG Plaver™ [29]
respectively.

By using the “football” and “Miss America” sequences, a good comparison

between the ALSTI coder and the MPEG coder can be made since the two image



Figure 4.21: Example showing the effects of arbitrary dimensions allowance on the
“football” image sequence: (a) Normal coding and (b) coding with allowances for
arbitrary image dimenstons.
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Figure 4.22: Comparison between ALSTI and MPEG video coding using the
“football™ image sequence.

sequences are of drastically different tvpes: the “foothall” sequence contains high
spatial frequencies and fast motion. while the ~\iss America” sequence contains
fairly simple slow moving objects. Therefore. best case and worst case comparisons
can be drawn. Figures 4.22 and 4.23 show the ALSTI vs. MPEG comparisons for
both the “football” and ~Miss America” image sequences. In the figures. the ALSTI
traces are a result of sweeping the combined spatial and temporal MSE splitting
tolerances so that a wide range of vales can be seen. The PSNR vs. bits/voxel values
for the MPEG codec are obtained by using various allowable combinations of I-. P-,
and B-frames. as well as varving the Block DCT quantization factors. It should be
noted that the highest bit rate shown for the MPEG coded sequences also represents
the highest quality possible. This was achieved by using only I-frames and the lowest

possible quantization values.
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Figure 4.23: Comparison between ALSTI and MPEG video coding using the
“Miss America” image sequence,

When examining Figure 4.22 it is clear that over its entire range of bits/voxel.
the MPEG codec achieves superior PSNR values to the ALSTI codec with Q = 1.
The ALSTI codec with Q = 4 is also outperformed by the MPEG codec. except in the
region of high splitting: the ALSTI codec (Q = 4) can produce a higher quality output
than MPEG. Furthermore. the MPEG codec cannot produce any higher PSNR than
shown. where the ALSTI codec with @ = 1 can perform lossless coding of the image
sequence to produce an infinite PSNR.

For the simpler “Miss America” image sequence. a more similar performance
between the ALSTI and MPEG codecs can be seen. In fact. at around 0.5 bits/voxel.
the performance is virtually identical. Furthermore. as seen with the “football” se-
quence, the ALSTI codec with @ = 1 can produce a higher quality output than is

possible with the MPEG codec. Also, in the extremely low bit rate range, the sharp
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drop in quality for the MPEG codec suggests that if the bit rate is reduced further.

the ALSTT codec may achieve better coding performance.



Chapter 5

Conclusions and Further Research

5.1 Summary of Thesis

The work presented in this thesis has primarily dealt with the information
compression of digital images and video. The methods described in detail were based
on an adaptive sampling and interpolation scheme. In Chapter 1. the reasons behind
digital image and video compression were given. along with the definitions of some
common image and video coding performance metrics. Then. a commonly used image
codec. JPEG. and a family of video codecs. MPEG. H.261. and H.263. were described.
along with their advantages and shortcomings: it was these shortcomings that were
the motivation behind the work presented in this thesis.

The adaptive interpolation algorithm for image coding was described in Chap-
ter 2. starting with a detailed background of linear and bilinear interpolation. It was
then shown how an image can be adaptively subdivided in to smaller sub-blocks. and
how the size and position information of these sub-blocks can be efficiently stored in
a quaternary tree structure.

In Chapter 3. issues concerning the implementation of the adaptive interpo-
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lation image coder were discussed. Various bilinear interpolation methods were in-
troduced and and compared. Based on interpolation accuracy and speed. it was
found that the DDA implementation was the best choice. The efficient storage of the
adaptive splitting tree. based on bit patterns and LZW compression. was discussed.
[t was also found that images having arbitrary dimensions could not be subdivided
down to the pixel level so that lossless coding could not be performed. A solution.
hased on a modification to the tree structure. was given in order to alleviate this
problem with only a minor degradation to the compression performance. In Chap-
ter 3. it was also shown how the effects of interpolation discontinuities. arising from
different sized blocks lving adjacent to one another. could be reduced by a block
size equalization algorithm that is performed during the image reconstruction. The
storage of the vertices lving on the adaptive sampling grid was also addressed and
an example showing how vertex quantization can be used to further compress the
information required for these vertices. The vertices were stored by a 2-D DPCM
algorithm followed by Huffman coding. By using unsigned 8-bit arithmetic. it was
shown how the DPCM-Huffman coding could be made more efficient. The Least-
Squares Bilinear Interpolation optimization was then described. It was shown how
this optimization could be performed by the coder to result in a higher quality re-
construction. The problem of LSBI coefficient storage was also solved by describing
how the LSBI optimization is simply a series of 1-D LSLI operations. Finally. re-
sults of using the Adaptive Interpolation image coder were shown and a comparison
between the ALSBI and Block DCT image coders was given. It was found that the
ALSBI coder performed quite similarly to the Block DCT coder in most cases and
outperformed the Block DCT coder in two-toned image compression.

The discussion in Chapter 4 was devoted to the description and implementation

of a digital video codec based on an extension to the Adaptive Interpolation method
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into three dimensions. Trilinear interpolation—the basis of this video coder—was
discussed in detail. Just as in the 2-D case. it was found that. based on accuracy and
speed. the best trilinear interpolation implementation was the DDA method. The
generation and representation of the adaptive sampling grid was also described. For
a 3-D video signal which has the added dimension of time. the concept of temporal
splitting was introduced and the splitting tree was changed to a quaternarv-binary
tree where quad-splits were performed in the spatial dimensions and binarv-splits
were done in the temporal dimension. [t was shown that this method of splitting can
result in significant computational savings in the coder because the interpolation error
over an entire block does not have to be evaluated: only the front and back taces need
to be examined for spatial splitting. and for remporal splitting. only the four edges
extending into the temporal direction need examining. [t was also shown that if the
spatial dimensions of the image sequence are not of the form (2" — 1) x (2" - 1). lossless
coding of the sequence is not possible without modifications made to the splitting
process to allow arbitrary spatial dimensions. The method for block size equalization
was reviewed in order to reduce the effects of interpolation discontinuities in three
dimensions. The 3-D DPCM-Huffman coding of the vertex values was described
and vertex quantization was revisited. Then. the concept of Least-Squares Trilinear
Interpolation was introduced and an example was shown into how it can be used by
the video coder to increase the visual quality of a reconstructed image sequence. It
was also shown that the LSTI coefficients required no more storage space than the
1-D LSLI. or 2-D LSBI coefficients. Finally. the effects of varving the ALSTI coding
parameters were shown and discussed along with a comparison between ALSTI and

MPEG video coding.



134

5.2 Conclusions

5.2.1 ALSBI Image Coding

In general the ALSBI image codec performs quite comparably to the Block
DCT coder. Many of the disadvantages associated with Block DCT coding. such as
blockiness. waviness or “ringing” around edges. and poor coding performance with
images containing many high contrast edges and/or low numbers of grevscales. can be
avoided at the same level of compression. Blockiness is avoided because the ALSBI
coder is not. in the strict sense. a block-based coder. [t usually uses many different
block sizes where the blocks are not usually visible due to the sharing of common
corner points and bilinear interpolation. The Block DCT coder has problems with
edges. sometimes producing waviness in the output. This is also the reason behind its
poor performance with images onlv having low numbers of grevscales (or two-toned
images) as well as images containing many high contrast edges. The ALSBI coder
avoids this problem by simply allocating more samples around edges. allowing for a
higher quality reconstruction.

The ALSBI coder does not use any transform based coding. Thus. a (poten-
tially) computationally intensive transform is avoided in both the coder and decoder.
When compared to the DCT. this is not too much of an advantage. since the DCT has
been highly optimized over the years [23]—especially for fixed sized blocks. In fact.
the ALSBI image coder requires more computations for higher quality reconstructions
than for low quality reconstructions because more splits and interpolation error cal-
culations are required. Furthermore. optimizations for improving the output quality.
such as the LSBI optimization performed by the coder and block size equalization
performed by the decoder, require additional calculation time and system resources.

However. for most images and output qualities, the ALSBI coder and decoder do not
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require much more time to compute than their Block DCT counterparts.

Lossless image compression can also be performed by the ALSBI codec. This is
a great advantage because the Block DCT coder cannot achieve lossless compression.
In the JPEG standard. there does exist a lossless JPEG compression method [12].
However. it is a completely different algorithm and is not verv popular. With the
ALSBI codec. lossless image coding can be achieved without having to change the
algorithm used.

Overall. the ALSBI coder avoids Block DCT artifacts. performs reasonably
well on images having reduced numbers of grevscales. is comparable in computational
complexity. and can achieve lossless image compression. This makes it a much more
flexible image coder that can achieve approximately the same quality and compression

as a Block DCT coder.

5.2.2 ALSTI Video Coding

The ALSTI video codec. being based on the same principals as the ALSBI
image codec. also does not suffer from Block DCT artifacts in the spatial domain.
So. unlike the MPEG codec at low bit rates. the ALSTI video coder will not exhibit
blockiness. and “ringing ~ around edges and moving objects. Furthermore. the ALSTI
video codec does not require any motion estimation. which is essential to MPEG video
coding. This makes it quite attractive because of its low computational complexity.
However. due to the recursive nature of the ALSTI method. higher quality recon-
struction requires more calculations than for lower quality reconstruction: the codec
is fastest on medium to low output qualities. Thus, as was seen when coding the
highly complex “football” sequence, ALSTI with @ = 4 did perform better in PSNR

at around 4 bits/voxel (see Figure 4.22), however this was encoded with a high degree
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of splitting. which resulted in slower operation. especially for the coder.

Although the ALSTI codec can produce a higher PSNR than the MPEG video
codec. it does so at the expense of higher bits/voxel. For the “football” image se-
quence. within the MPEG codec’s range of bits/voxel. MPEG easily outperforms
ALSTI by up to 53.53dB. However. outside this bits/voxel range. ALSTI can encode
the video sequence in a lossless manner—something the MPEG coder cannot do. For
less complex image sequences. such as the ~Miss America™ sequence. the ALSTI codec
rivals —but does not exceed—the performance of NIPEG. Therefore. ALSTI would
best seem suited for coding image sequences of low complexity —video conferencing.
for example. Overall. the ALSTI codec is a more versatile codec which can produce
wider ranges of bits/voxel and PSNR than MPEG. However. when operating at the

same bit rate. MPEG usuallv will outperform ALSTI in PSNR.

5.3 Recommendations for Further Research

5.3.1 ALSBI Image Coding

In order to investigate improvements to the ALSBI image coder. a few sug-
gested ideas can be given. It was shown in Section 3.5 that the vertex values require
the largest amount of information to encode. If the number of bits/vertex could be
reduced further. the overall bits/pixel required by the coded image could also be re-
duced. One course of investigation could be into the vector quantization of the vertex
values or perhaps another type of error minimizing quantizer—one of which may lead
to better results than the scalar quantization used in this thesis. It may also be pos-
sible to change the quantization level for different areas within the image. This could

be used to increase the quality of important details while allowing unimportant areas



137

of the image to be coded with fewer bits. The bits/vertex may also be reduced by
replacing the Huffman coder with a more optimized entropy coder. such as an arith-
metic coder [2} or a Huffman coder with fixed output codes that are optimized for a
large number of images (so that the Huffman decoding table does not have to be sent
to the decoder). Another avenue of approach into reducing the storage requirements
of the vertices would be the investigation into a lossy DPCM coding algorithm for
coding of the vertex values.

Another interesting improvement would be to somehow commbine the LSBI op-
timization along with vertex quantization. This may not decrease the bits/vertex.
but it might increase the reconstructed image quality. Furthermore. the LSBI solu-
tion (shown in Equation 3.3) does not merely have to be applied to one block ar a
time. [t is possible to use Equation 3.5 to optimize multiple blocks of varving sizes
at once which would result in a lower interpolation error. It is even possible to op-
timize over the entire splitting grid. However. the computational costs of doing so
would be impractical. So. it mayv be possible to perform the LSBI optimization over
regions of the image instead of just optimizing individual blocks. This would reduce
the reconstruction error further.

Splitting an image into rectangular blocks might not be the optimum subdi-
vision method for image coding. It has been suggested in [30]. that it is possible to
subdivide images into triangular sections. This may lead to more efficient coding be-
cause fewer vertices are required to represent each triangular section. However. since
fewer vertices are used. triangular subdivision might require a deeper level of recursion
(i.e. more splits) to achieve the same amount of detail as rectangular subdivision.

The speed of the bilinear interpolator might also be increased by using a
hardware-based interpolator. In computer graphics. bilinear interpolation is used in

Gouraud shading of arbitrary polygons [20]. Since most personal computer graphics
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accelerators include hardware support for Gouraud shading. they would also perform
bilinear interpolation verv quickly. For Adaptive Interpolation image coding. the
polyvgons that require interpolation are simple rectangles. Some accelerator imple-
mentations may require that arbitrary polygons be converted to triangles. This is a
trivial operation when the polvgons are rectangles. So. by using a graphics acceler-
ator to perform quick bilinear interpolations. the time required for both coding and
decoding could be reduced.

Finally. it has been suggested in [16] and {14] that the ALSBI image com-
pression scheme can be supplemented by applying a Block DCT coder to the image
reconstruction error (i.e. the difference between the actual and ALSBI decoded im-
age). which is also known as the residual error. In this way. the output image quality
can be improved by the addition of the decoded residual values to the ALSBI decoded
pixel values. This becomes somewhat similar to a sub-band decomposition scheme.
where the ALSBI channel contains mostly low frequency components. while the Block
DCT channel contains high frequencies. The only disadvantage is the large amount
of data required to store the DCT coefficients. So. if an alternate method could be
developed to store the residual error without requiring large amounts ot data. the

reconstructed image quality could be vastly improved.

5.3.2 ALSTI Video Coding

Most of the same recommendations given for the ALSBI image codec could
also benefit the ALSTI video codec. The vertices lyving on the 3-D non-uniform
sampling grid also require the largest amount of information for their representation.
Thus. a more efficient representation would greatly benefit the video codec. The

LSTI optimization could also be expanded to 3-D regions of a frame stack instead of
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individual blocks. The use of a graphics accelerator could also speed up the trilinear
interpolation process. Since Gouraud shading only uses 2-D bilinear interpolation
for 2-D polvgons. the graphics accelerator could not perform trilinear interpolation
directly. However. the first two steps of a three-step trilinear interpolation method
(1.e. the bilinear interpolation of the front and back faces) could. at least. be performed
in hardware. Alternately. by first performing linear interpolation of the four corner
values in the temporal direction. each frame within the 3-D block could be separately
bilinear interpolated.

To lower the bit rate and/or increase the output quality further. it may be
possible to use a form of motion estimation with the ALSTI video coder. This would
dramatically increase the computational load for the coder but the gains in quality
and/or compression may be well worth it. A combination between motion estimation
and ALSTI coding was attempted. during the research for this thesis. by subdividing
a frame stack into rhombohedrons (parallelepipeds bounded by six congruent rhom-
buses [24]) having rectangular faces contained in the spatial planes. There was great
difficulty in ensuring that the entire frame stack was covered by the rhombohedrons.
Furthermore. the information required for the representation of the splitting pro-
cess hbecame quite large since a simple splitting tree was not enough to describe the
rhombohedrons covering the frame stack. Although this approach did not work well.
there still may be a method that can successfully combine ALSTI coding and motion

estimation for increased compression and/or reconstructed quality.
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Appendix A

Least-Squares Interpolation

A.1 Derivation of the Least-Squares Interpolation
Equation

The purpose of interpolation is to approximate a large set of values from a
smaller set of known values. In a coding application (1-D. 2-D. or 3-D) the large set
of values to be approximated belongs to the original data set while the smaller set is
given to the decoder in order to reconstruct the original set. Mathematically. this is

equivalent to

AxX~>y (A.1)
or

Ax=y (A.2)

where x is the small set of data to be interpolated. A is the interpolation matrix.
and y is a vector containing the original sample values or as in Equation A.2 ¥

represents the approximation to the original values created through interpolation.
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These equations can also be expressed as
Ax=y+e (A3)

where e is the interpolation error (i.e. the error between the interpolated output values
and the original values).

[n order to minimize the magnitude of the interpolation error (jje||) in the least-
squares sense. the values in x can be modified by using the interpolation matrix and
the original values contained in y. First. the squared magnitude of the interpolation

error vector must be calculated:

el = e'e

el y-¥'y-y'y+y'y (A4)

I
<

Now. since y'y = §'y. Equation A.4 becomes
lel*=5"'y -2§5'y - y'y (A5)
Then. substitution of ¥ with Ax (from Equation A.2) results in
lell* = xTATAx - 2x"TATy —y'y (A.6)

In order to calculate the optimal x vector that will minimize the interpolation
error. the above equation must be minimized with respect to x. This is accomplished

by first taking the derivative of Equation A.6 with respect to x:
12
ddiel®) _ 2ATAx -2 Ay (A7)
dx

At the minimum squared error magnitude, the derivative will be zero. Then the

vector X that results in the minimum squared error is found by solving the equation

2ATAX-2ATy=0 (A.8)
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This results in a solution for the vector % that will result in the mirimum squared

error magnitude—which will also result in the minimum mean squared error:
. -1 ,
x=(ATA) Ay (A.9)

[t should be noted that the solution of Equation A.8 can also result in a maxi-
mum value because the first derivative of any function is equal to zero at maxima and
minima. To ensure that X results in a minimum squared error. the second derivative

of Equation A.6 with respect to x is taken:

M =2ATA (A.10)
d*x
Now. since
A,>0 Yi.j (A1)

and the columns of A are non-orthogonal with each other. it follows that ATA > 0

and thus.

g2

d ([lel]*)” :

~L,,— >0 (A.12)

d*x

which means that the squared error caused by interpolating % will be a minimum—not
a maximum.

The equation for x (Equation A.9) is the result used in Sections 3.4 and 4.4

and is identical to the equation given in {15].

A.2 Minimum Least-Squares Interpolation Error

It is possible to calculate the resulting interpolation error when using A to
interpolate the optimized vector X. This is done by using the definitions for X and

the squared error ||e||? given in Equations A.4 and A.9. Thus, the minimum squared
gt q
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error resulting from the interpolation of X by A can be simplified into a number of

different forms:

lellfy, = XATAX-2yTAx+y'y (A.13)
" . . -1 .
el = ¥"[1-A(aTA) " AT]y (A1)

lellfy, = ¥Y'y-y A% (A.15)





