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Abstract

Given a set of symmetric/antisymmetric filter vectors containing only regular multiresolution filters, the method we
present in this article can establish a balanced multiresolution scheme for images, allowing their balanced decom-
position and subsequent perfect reconstruction without the use of any extraordinary boundary filters. We define bal-
anced multiresolution such that it allows balanced decomposition i.e. decomposition of a high-resolution image into
a low-resolution image and corresponding details of equal size. Such a balanced decomposition makes on-demand
reconstruction of regions of interest efficient in both computational load and implementation aspects. We find this
balanced decomposition and perfect reconstruction based on an appropriate combination of symmetric/antisymmetric
extensions near the image and detail boundaries. In our method, exploiting such extensions correlates to perform-
ing sample (pixel/voxel) split operations. Our general approach is demonstrated for some commonly used symmet-
ric/antisymmetric multiresolution filters. We also show the application of such a balanced multiresolution scheme in
real-time focus+context visualization.

Keywords: multiresolution, reverse subdivision, balanced decomposition, perfect reconstruction, lossless
reconstruction, focus+context visualization, contextual close-up, symmetric extension, antisymmetric extension

1. Introduction

Applications that facilitate multiscale 2D and 3D image visualization and exploration (see [LHJ99, WSO05], for
example) benefit from multiresolution schemes that decompose high-resolution images into low-resolution approx-
imations and corresponding details (usually, wavelet coefficients). Several subsequent applications of such a de-
composition constructs the corresponding wavelet transform. This wavelet transform can then be used to derive
low-resolution approximations of the entire image, as well as high-resolution approximations of a region of interest
(ROI), on demand. Reconstructing the high-resolution approximation of a ROI involves locating the corresponding
details from a hierarchy of details within the wavelet transform. One such hierarchy of details resulting from only two
levels of decomposition of a 512x256 Blue Marble image [VENO2] is shown in Figure 1.

For the purpose of demonstration, we created the wavelet transform in Figure 1 using the short filters of quadratic
B-spline presented by Samavati et al. [SB04, SBOO07]. In practice, images that require multiscale visualization are
larger in size and may require more levels of decomposition. For each level of decomposition in this particular
example, the image was first decomposed heightwise and then widthwise. The rectangles that contain details are
numbered in the order of their creation during the two levels of decomposition.

Given such a hierarchy of details, if we need to reconstruct the high-resolution approximation of a ROI located
in the low-resolution (coarse) image shown in the top-left rectangle in Figure 1, we have to locate the corresponding
details in some or all of the rectangles that contain details (numbered 1.1, ...,2.2) depending on the expected level of
resolution. Locating these details will be straightforward if each of the heightwise and widthwise decomposition steps
decomposes an image into two halves of equal size — one half corresponding to the coarse image and the other half
corresponding to the details. Among B-spline wavelets, only the filters obtained from Haar wavelets provide such a
balance in decomposition [Haal0, SDS96]. However, because Haar wavelets and the associated scaling functions are
not continuous, it would be beneficial to achieve such a balanced decomposition for the filters obtained from higher
order scaling functions and their wavelets.
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Figure 1: Hierarchy of details in a wavelet transform resulting from two levels of decomposition of a 512x256 Blue Marble image.
The size of the image in this figure is not representative of its original size.

There exist many sets of local regular multiresolution filters obtained from higher order scaling functions and
their wavelets (see [SBO07, CDF92, Dau92, Mey90], for example). They require special treatments to handle image
and detail boundaries (such as the use of extraordinary boundary filters) and result in unequal numbers of coarse and
detail samples after decomposition. Therefore, in this article, we present a method to devise balanced multiresolution
schemes for such filters, using an appropriate combination of symmetric/antisymmetric extensions near the image and
detail boundaries, which correlate to sample split operations. To guarantee a perfect (lossless) reconstruction without
the use of any extraordinary boundary filters, our method requires each of the given decomposition and reconstruc-
tion filter vectors (kernels) to be either symmetric or antisymmetric about their centers. Many existing sets of local
regular multiresolution filters, such as those associated with the B-spline wavelets [SBO07], biorthogonal and reverse
biorthogonal wavelets [CDF92, Dau92], and Meyer wavelets [Mey90, Dau92], exhibit such symmetric/antisymmetric
structures. Additionally, we show the use of such a balanced multiresolution scheme in an application that exploits
real-time focus+context visualization.

This article is organized as follows. In section 2, we present the notations used throughout the article. Next,
we formulate the problem definition in section 3, which is followed by a brief survey of the existing related work
in section 4. Section 5 presents our method for devising a balanced multiresolution scheme accompanied by two
examples. We demonstrate the application of a balanced multiresolution scheme devised by our method in real-time
focus+context visualization with experimental results in section 6. In section 7, we discuss some characteristics of
our method with possible directions for future work. Finally, section 8 concludes the article. We also provide two
appendices with additional examples of balanced multiresolution schemes devised by our method.

2. Notation

In this article, we adopted the notations for representing multiresolution operations used by Samavati ef al. in
[SBO07]. Multiresolution operations are specified in terms of analysis filter matrices A¥ and B* and synthesis filter
matrices P and Q. Given a column vector of samples C*, a lower-resolution sample vector C*~! is obtained by the
application of a downsampling filter on C¥. This can be expressed by the matrix equation

= Afct.
The details D¥!, lost after downsampling, are captured using B¥ as follows:
D' =BtCh.

This process of obtaining the low-resolution sample vector C¥~! and the corresponding details D*~! from a given high-
resolution sample vector C¥ is known as decomposition. Note that the sequences of samples along each dimension of
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an image can be treated independently during decomposition. Therefore, any such sequence of samples can form the
column vector of samples C* for decomposition.

The process of recovering the original high-resolution sample vector C* from the previously obtained low-resolution
sample vector C¥~! and the corresponding details D*~! is known as reconstruction. The reconstruction process re-
quires the refinement of the low-resolution sample vector C¥~! and the corresponding details D*~! by the application
of synthesis filters P* and QF as follows:

Ck — Pka—l + Qka_l~

This equation reverses the prior application of A¥ and B¥ on the given high-resolution sample vector C¥. Therefore,
decomposition and reconstruction are inverse processes satisfying

B

If we recursively decompose a high-resolution sample vector C¥ into its coarser approximations C/, C"*!, ..., C*!
and details D!, D!, ..., D¥!, then the sequence C!, D!, D", ..., DF! is known as a wavelet transform. Here, | < k
and C! is the very coarse approximation of the dataset. Each of C I+l C*! C* can be reconstructed from the
wavelet transform C!, D!, D™, ... D1,

To simply the notations for the rest of this article, we may omit the superscript k for the kth level of resolution
assuming F = CK, C = CF', D = D¥', A = A¥, and B = B¥, P = P¥, and Q = Q. We further assume that the
matrices are of appropriate size to satisfy the following equations:

C = AF, (1
D = BF, )
F = PC+QD. 3)

Let a and b denote the filter vectors containing the nonzero entries in a representative row of A and B, respectively.
Similarly, let p and q stand for the filter vectors containing the nonzero entries in a representative column of P and Q,
respectively. Furthermore, let sizeo f(V) represent the number of elements in vector V and the widths of filter vectors
a and b be represented by w, and wy, respectively, i.e. sizeof(a) = w, and sizeof(b) = wy.

3. Problem

As mentioned earlier, the method we present in this article can be used to devise a balanced multiresolution scheme
for a given set of regular multiresolution filters comprised of filter vectors a, b, p, and q, such as the set given in (4).
If each of a, b, p, and q is either symmetric or antisymmetric, our method will guarantee a perfect reconstruction
without the use of any extraordinary boundary filters.

Due to the regularity present in an image structure, the multiresolution methods applicable to curves and regular
meshes are also applicable to images (see subsection 4). For end point and boundary interpolations, extraordinary
filters (as opposed to regular filters) are used in multiresolution methods for curves and regular meshes, respectively.
However, the use of extraordinary filters at image boundaries for boundary interpolation assigns incongruous im-
portance to the image boundaries. So for 2D or 3D image decomposition, the general practice is to use symmetric
extensions near the image boundaries to avoid boundary case evaluations using extraordinary filters [SBO07].

However, an arbitrary choice of symmetric extension for decomposition while using a given set of multiresolution
filters may eventually lead to the use of extraordinary boundary filters for a perfect reconstruction. This can also
make on-demand reconstruction of image parts corresponding to a ROI computationally untidy near the image bound-
aries. Therefore, a careful setup of symmetric/antisymmetric extensions for both decomposition and reconstruction is
required, which can be obtained by our presented method. Hence, we define our problem statement as follows.

Problem definition. Given a set of regular multiresolution filters in the form of symmetric/antisymmetric filter vectors
a, b, p, and q, devise a balanced multiresolution scheme applicable to a high-resolution column vector of samples F
that satisfies:



(i) C = AF’ and D = BF"’, analogous to equations (1) and (2), where F' — F’ through symmetric extensions at its
boundaries and the nonzero entries in each row of A and B correspond to the regular filters in the given filter
vectors a and b, respectively;

(i1) sizeof(C) = sizeof(D) i.e. a balanced decomposition;

(iii) sizeof(C) + sizeof(D) = sizeof(F) i.e. a compact representation of the resulting wavelet transform, hereafter
referred to as a balanced wavelet transform; and

(iv) F = PC’ + QD’, analogous to equation (3), where C — C’ and D — D’ through symmetric/antisymmetric
extensions at their boundaries and the nonzero entries in each column of P and Q correspond to the regular
filters in the given filter vectors p and q, respectively.

4. Related Work

In the next three subsections, we review the existing related work within the following three categories: multires-
olution, symmetric and antisymmetric extensions, and focus+context visualization.

4.1. Multiresolution

Regular meshes. Here we review the multiresolution methods applicable to curves and tensor-product meshes (sur-
faces and volumes) given their applicability to multidimensional images due to their regular structure.

Hierarchical representation of multiresolution tensor-product surfaces was made possible due to the pioneering
work of Forsey and Bartels [FB88]. They localized the editing effect in a desired manner on tensor-product surfaces
through hierarchically controlled subdivisions. This was done by adding finer sets of B-splines onto existing coarse
sets. However, it resulted in an over-representation because the union of the sets of basis functions from different
resolutions did not form a set of basis functions. Adding complementary basis functions to the coarse set of basis
functions is a possible way to resolve the problem of over-representation. This means of supporting multiresolution
is closely aligned to the wavelet theory approach to multiresolution [SDS96]. Wavelet representations of details may,
however, introduce undesired undulations, as pointed out by Gortler and Cohen [GC95]. Furthermore, under this
approach, optimizing the behaviour of the analysis (decomposition) using least squares is difficult due to the need to
support interactive mesh manipulations [ZSS97].

Samavati and Bartels pioneered in their work on a mathematically clean and efficient approach to multiresolution
based on reverse subdivision [SB99, BS00, BGS06, BS11]. Under this approach, during the analysis, each coarse
vertex is obtained by efficiently solving a local least squares optimization problem. The use of least squares optimiza-
tion reduces the undesired undulations. Additionally, the resulting wavelets provide a much more compact support
compared to the conventional wavelets for curves and regular surfaces. Some of the examples demonstrating the appli-
cation of our proposed method use multiresolution filters resulting from this approach (see the examples in section 5,
for instance).

Images. Notable existing approaches obtaining a multiresolution representation supporting context-aware visualiza-
tion of 3D images include the wavelet tree [WS05], segmentation of texture-space into an octree [LHJ99, PTCFO02,
PHFO7], octree-based tensor approximation hierarchy [SGM*11], and trilinear resampling on the Graphics Processing
Unit (GPU) coupled with the deformation of regularly partitioned image regions [WWLMI11]. For 4D images, the
wavelet-based time-space partitioning (WTSP) tree was proposed in [WS05]. In [WS05], Haar [Haal0, SDS96] and
Daubechies’s D4 [Dau88] wavelets were used to construct the wavelet transforms in each node of the wavelet and
WTSP trees.

4.2. Symmetric and Antisymmetric Extensions

As mentioned earlier, we achieve balanced decomposition and subsequent perfect reconstruction based on the use
of an appropriate combination of symmetric and antisymmetric extensions near the image and detail boundaries. In the
literature, symmetric and antisymmetric extensions were used in the context of various types of wavelet transforms
[LLOO, KZT02, AWO03, LS08]. In contrast, our proposed method allows the construction of a balanced wavelet
transform.

Figure 2 shows three types of extensions as defined in [KNI94]. Consider a sequence of n samples (fi, f>, ..., fu),

corresponding to a column vector of samples [ i fHoooo fa ]T, where n € Nand n > 3. Figure 2(a), 2(b), and 2(c)



(a) Half-sample symmetry.

(b) Whole-sample symmetry.

(c) Half-sample antisymmetry.

Figure 2: Symmetric and antisymmetric extensions.

show the extended sequences obtained through half-sample symmetric, whole-sample symmetric, and half-sample
antisymmetric extensions, respectively, at both ends of (fi, f2,..., f,). Whole-sample antisymmetry, not shown in
Figure 2, can be obtained by negating the samples in the extensions of Figure 2(b). Note that in real applications,
the types of extensions at both ends of a sequence do not necessarily have to be the same (as used in Figure 11, for
example).

To be consistent with the coloring used in Figure 2, from this point forward in this article, notations and figures
may use red, purple, and green to denote the samples introduced by half-sample symmetric, whole-sample symmetric,
and half-sample antisymmetric extensions, respectively.

4.3. Focus+Context Visualization
Because we chose to demonstrate the use of a balanced multiresolution scheme resulting from our method in a
real-time focus+context visualization application, here we review some of the notable related work.
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(a) A circular ROIL. (b) A rectangular ROI.

Figure 3: Traditional focus+context visualization in medical illustrations. (a) Thrombosis in human brain. Copyright Fairman
Studios, LLC. Used with permission. (b) Aneurysm in human brain. Copyright University of Washington Medicine Stroke Center.

In many visualization tasks, it is useful to simultaneously visualize both the local and global views of the data,
possibly at different scales, which is known as focus+context visualization. One approach to implement focus-+context
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is to use the metaphor of lenses [TSS*06, WWLMI11, HMC11]. This metaphor is inspired by techniques used in
traditional medical (see Figure 3), technical, and scientific illustrations [Hod03].

Our implemented approach to focus+context visualization of multidimensional images is closest to the technique
presented by Taerum et al. for the visualization of small-scale clinical volumetric datasets [TSS*06]. In their approach,
the resolution of a given 3D image is reduced by one level using reverse subdivision [SB99, BS00], which is rendered
during user interactions to achieve interactive frame rates. The 3D image is rendered in the original resolution while
there is no user-interaction. The ROI identified by a query window is enlarged by the application of B-spline subdi-
vision to allow different levels of smoothness. Therefore, the authors used only three different levels of resolution. In
contrast, our implementation for multiresolution visualization of images provides a true multiresolution framework,
where the resolutions of both the coarse image (providing context information) and the enlarged ROI (providing focus
information) can be controlled by the user.

5. Methodology: Balanced Multiresolution

In this section, we explain and demonstrate by examples how our method achieves balanced decomposition and
subsequent perfect reconstruction by choosing an appropriate combination of symmetric and antisymmetric extensions
near the image and detail boundaries.

5.1. Balanced Decomposition

We defined balanced decomposition as the task of decomposing a high-resolution image into a low-resolution
image and corresponding details of equal size. Balanced decomposition of a 3D image of dimensions 2w Xx2h X 2s
results in an image of dimensions wxh X s after one level of widthwise, heightwise, and depthwise decomposition.
To allow I levels of balanced decomposition, we need the following conditions to be satisfied: 2w = 2/m, 2h = 2/n,
and 2s = 2'p, where m,n, p € Z*. Disregarding the third dimension infers the same idea for a 2D image. Once the
ideal dimensions are known, the high-resolution image should be uniformly resampled to those dimensions before the
application of our balanced decomposition procedure.

Given the decomposition filter vectors a and b, to achieve a balanced decomposition of a column vector containing
an even number of fine samples F, we first decide on the type of symmetric extension to use for decomposition based
on the parity of w, and w,. Then an extended column vector of fine samples F’ is obtained from F, through the
chosen type of symmetric extension, such that sizeof(F”) ensures the generation of sizeo f(F)/2 coarse samples and
sizeof(F)/2 detail samples by a subsequent application of filter vectors a and b on F’, respectively.

Demonstration by example. Before we outline the general construction for the balanced decomposition process,
here we demonstrate how it works for a given set of decomposition filter vectors. In this example, we consider the
decomposition filter vectors a and b from following set of local regular multiresolution filters [SB04, SBO07]:

a= [t i)
b= 43 i) “
b=l 4t i)
a=[-4-3 3 i)

The filter vectors in (4) are known as the short filters of quadratic (third order) B-spline [SBOO07] and were constructed
by reversing Chaikin subdivision [Cha74]. Recall from section 2 that filter vectors a and b contain the nonzero entries

in a representative row of analysis filter matrices A and B, respectively.
T

k]

For the purpose of demonstration, assume that we are given a fine column vector of 8 samples F = [ fi oo B ]
on which we have to perform a balanced decomposition. Provided sizeof(F) = 8, a balanced decomposition should

T T
result in column vectors of coarse samples C = [ Cl € C3 C4 ] and detail samples D = [ dy dy d3 dy ] .
In Figure 4, we present one possible setup to obtain such a balanced decomposition. It shows the application of

T
equations C = AF’ and D = BF’, analogous to equations (1) and (2), where F’ = [ A A £ o B f ] . First,
note that F’ was obtained by extending the given sample vector F' by 2 extra samples. In general, when the dilation
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Figure 4: Balanced decomposition of 8 fine samples.
factor is 2, a given column vector of fine samples F, with sizeo f(F) = 2n for n € Z*, does not have enough samples to

accommodate n shifts of both a and b for generating n coarse and n detail samples, respectively. The number of extra
samples x, required for a balanced decomposition can be obtained by the general formula:

X max(wa, wp) +2(n—1) —2n %)

= x = max(wy, wp) — 2. (6)

Here we explain how equation 5 evaluates x. We need at least max(w,, wy,) fine samples to obtain both ¢; and d;, which
explains the first term on the right-hand side of equation 5. Next, because the dilation factor is 2, every 2 additional
samples will guarantee the generation of an additional pair of ¢; and d;. Here, i € {2,...,n} because we want to
generate [{2,...,n}| = n— 1 more coarse samples and n — 1 more detail samples to achieve a balanced decomposition.
This indicates the need for an additional 2(n — 1) fine samples, justifying the addition of the second term on the right-
hand side of equation 5. Therefore, subtracting 27 i.e. the sizeof(F) in the third term gives us the required number of
extra samples.

For the families of multiresolution filters we consider in this article, w, and wy, are either both even or both odd.
For example, see the decomposition filter vectors obtained from B-spline wavelets [SBOO07], biorthogonal and reverse
biorthogonal wavelets [CDF92, Dau92], and Meyer wavelets [Mey90, Dau92]. The multiresolution filter vectors
obtained from most such wavelets and their scaling functions are available in commonly used mathematical software
packages such as MATLAB [MAT14]. For the given filter vectors a and b in (4), because both w, and wy, are even,
observe that the extension of F' by 2 extra samples to obtain F’ was achieved by half-sample symmetric extension
at both ends of F. Here we would have used whole-sample symmetric extension instead if both w, and wy, were
odd. Use of an appropriate type of symmetric extension is required to avoid the use of any extraordinary boundary
filters for a perfect reconstruction. We justify our choice of symmetric extension for a balanced decomposition later
in subsection 5.3.

Finally, as shown in Figure 4, the filter vectors a and b in (4) are applied to the samples in F”’ to obtain C and D

in order to complete the balanced decomposition process. For instance, the coarse sample c¢; and the detail sample d;
are computed from the first 4 samples in F’ as follows:

¢ = —3fi+3f+3h- 15

i 3 3 1 )
d = 3fi—-3h+31H- 15



Note that the total contribution of f; in the construction of ¢y is % fi, written as —% A+ % f1 in (7) through an implicit
sample split operation. A similar sample split is observed in the construction of d, as shown in (7). Therefore, the
symmetric extensions at both ends of F implicitly lead to a number of sample split operations during decomposition.

Therefore, for n € Z*, a balanced multiresolution scheme based on the short filters of quadratic B-spline given in
(4) can make use of the matrix equations

F
L33 Ly o o f;
¢ 4 4 4 4 f
2
C
2-lo o -1 3 3 1 :
: 4 4 4 4 ;
Cn : : : 2n-1
on
L f2n _
and
F
133 1 4 o o f;
] 4 4 4 4 f
2
2llo o 1 323 1, :
: 4 4 4 4
d : . : : f2n—1
' f2n
L f2n n

for the decomposition process, analogous to equations (1) and (2).

General construction. Now we present our general approach for achieving a balanced decomposition. Given the
symmetric/antisymmetric decomposition filter vectors a and b containing only regular filters, carry out the following
steps to achieve a balanced decomposition of a fine column vector of samples F', where sizeof(F) = 2n for a suitably
large n € Z™.

1. Determine x, the number of extra samples required for a balanced decomposition using equation (6).

2. If both w, and w, are even, extend F with x extra samples using half-sample symmetric extension to obtain
F’. Use whole-sample symmetric extension instead if both w, and w, are odd. Justification of our choice
of symmetric extension can be found in subsection 5.3. To avoid giving inconsistent importance to any end
(boundary) of F:

(a) If x is even, introduce x/2 samples at each end of F'.

(b) If x is odd, introduce | x/2| samples at one end and | x/2] + 1 samples at the other end of F. Let us refer to
the end at which | x/2] + 1 samples are introduced as the odd end. Alternate between the ends of F as the
choice of the odd end during multiple levels of decomposition.

3. To obtain C and D such that sizeof(C) = sizeof(D), use equations C = AF’ and D = BF’, analogous to
equations (1) and (2).

5.2. Perfect Reconstruction

Given the reconstruction filter vectors p and q that can reverse the application of the decomposition filter vectors a
and b, to achieve a perfect reconstruction of the column vector of fine samples F' from its prior balanced decomposition
into C and D, we first reconstruct as many interior samples of F' as possible by the application of p and q on C and
D, using equation (3). To evaluate the samples near each boundary (end) of F, we form a square system of linear
equations based on the prior construction of corresponding boundary samples in C and D, where the unknowns
constitute the boundary samples of F yet to be reconstructed. Symbolically solving two such square systems for the
two boundaries of F reveals the extended versions of C and D (denoted by C’ and D’, respectively) required for a
perfect reconstruction by the application of p and q using equation F = PC’ + QD’, analogous to equation (3).

Demonstration by example. Here we demonstrate how we perform a perfect reconstruction of F following its
balanced decomposition to C and D by means of an example, before giving the general construction for our perfect
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reconstruction process. In this example, we consider the reconstruction filter vectors p and q given in (4). Recall from
section 2 that filter vectors p and q contain the nonzero entries in a representative column of synthesis filter matrices
P and Q, respectively.

This example to demonstrate our perfect reconstruction process is an extension of the example shown in Figure 4.

T T
So, from the resulting column vectors coarse samples C = [ Cl € C3 C4 ] and detail samples D = [ dy dy d3 dy ]

T
in subsection 5.1, we now want to reconstruct the corresponding column vector of fine samples F' = [ i o fs ] .

0000000

E=]

3 5 1 3
4 4 4 4
5 B 3 [
4 4 4 4
i * 0B
4 4 4 4
3 Hfs 3 [I
4 4 4 4
3 Js I B
4 4 4
S

Figure 5: Reconstruction of 6 of the 8 fine samples.

In Figure 5, we show the application of the filter vectors p and q to the samples in C and D, respectively. For
instance, the fine sample f, is reconstructed from the first two coarse samples and the first two detail samples as

follows: 3 : 3 |
f2 = ZC] + ZCQ + Zdl - Zdz

Note that the application of the filter vectors p and q to the samples in C and D in Figure 5 left two samples, fi and
fs, near the two ends of F not reconstructed. Note that having two samples near the boundaries of F' yet to reconstruct
is specific to this example. The example in subsection 5.4 receives 5 samples yet to reconstruct at this stage. Now, to
reconstruct f}, we form the following 1x1 system of linear equations based on the prior construction of ¢; (as shown
in Figure 4) to which f; made some contribution during decomposition:

1

1
e = ~3h+2fit 2k ®)

3 1
=f = 201—§.f2+§f3

3(3 1 3 1
:>fl = 261—5(1C1+ZCQ+Zd|—Zd2)

1(1 3 1 3
+§ (ch + ZCZ + Zdl - Zdz)
=fi = a-—d. )
Although it appears from equation (9) that f; is not reconstructed using regular filters, our prior appropriate choice
of symmetric extension to obtain F’ from F (justified later in subsection 5.3) guarantees that we can rewrite f| using

the regular filter values from p and q in (4). This is achieved by a rearrangement of the right-hand side of equation (9),
which is implicitly equivalent to performing two sample split operations:

fi = Yei+3c+ 1(=dy) - 3dy. (10)
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Figure 6: Perfect reconstruction of 8 fine samples.

This rewriting step is important because it allows the reconstruction of fine samples near the boundaries of F without
the use of any extraordinary boundary filters. Equation (10) now yields the introduction of one extra coarse sample
through half-sample symmetric extension and one extra detail sample through half-sample antisymmetric extension
for the reconstruction of fi, as shown in Figure 6. We use a similar approach to determine how to reconstruct the
boundary sample f3, resulting in

an

fs = Fea+jea+ 3dy — §(=dy),

as reflected in Figure 6. This concludes the perfect reconstruction process.
Therefore, based on our findings from (10) and (11), for a given column vector of 2n fine samples for a suitably
large n € Z*, we get

3
N rer+ 3c + 3(=dy) - 34y,

f2n = %(_dn)

So a balanced multiresolution scheme based on the short filters of quadratic B-spline given in (4) will make use of the

3 1 3
7Cn + 1Cn + Zd" -

matrix equation

for the reconstruction process, analogous to equation (3).

13459 0 00 L3 49 o 0 0 0
4 4 4 4
0o 31y 000 o 3 1 0 0 O
4 4 4 4
o 23 ooo__01—§o 0 0 O
4 4 ¢ 4 4 —d,
] 1o 0o 21 00ofc|llo o 2 % 0 0 o0 4
; 4 4 4 4 d
2 1 3 |, 1 3 :
: o0 = = 0 0 0l :[]0 i — 0 0 o0 :
4 4 4 4
f,, o SR S o d,
Cn _dn
0 00O S Lol o 0 0 o 31
4 4 4 4
0 00O 13, 0 0 0 O L3
4 4 4 4
0000 0o 31 0 0 0 O o 3 1
L 4 4] L 4 4
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General construction. Now we describe our general approach to achieve perfect reconstruction. Given the symmet-
ric/antisymmetric reconstruction filter vectors p and q containing only regular filters that can reverse the application
of the decomposition filter vectors a and b, carry out the following steps to perfectly reconstruct the column vector of
fine samples F from its prior balanced decomposition into C and D.

T

1. Assume that F = [ FT F,T FT ] , where F; and F, respectively contain some samples at the left and right
boundaries of F, and F,, contains the remaining interior samples of F. To reconstruct the samples in F,,, use
the equation F,, = PC + QD, analogous to equation (3). The samples in F; and F, are yet to be reconstructed.

(In the example above, we had F; = [fi], Fi = [f2 o f ]T, and F, = [fg]. Note that F; and F, may
contain more samples; for instance, the F; and F, encountered in 5.4 have 2 and 3 samples, respectively.)
2. To reconstruct the samples in F:

(a) Form a system of linear equations based on the prior construction of some coarse and detail boundary
samples, to which the fine samples in F; made some contributions during the decomposition process. It
should be a gx g system, where g = sizeof(F;) and the unknowns are the samples of F;.

(For example, see the 1x1 system formed by equation (8) and the 2x2 system formed by the two equations
in (19).)

(b) Solving the system formed in step 2(a) symbolically will evaluate the samples in F; as a linear combination
of some samples from C and D.

(For example, see equation (9) and the two equations in (20).)

(c) Rewrite the linear combination(s) of coarse and detail samples on the right-hand side(s) of the equation(s)
obtained in step 2(b) using the regular filter values from the filter vectors p and q as coefficients. Such
rewriting of fine samples here correlates to performing sample split operations. This will reveal the fol-
lowing two pieces of information applicable to the left boundaries of C and D for a perfect reconstruction:
(i) the type of symmetric/antisymmetric extension that must be used and (ii) the number of extra samples
that must be to introduced.

(For example, see equation (10) and the equations in (21).)
3. Use an approach similar to that in step 2 to reconstruct the samples in F,.

Note that steps 2-3 above allow the generation of C” and D’ respectively from C and D, such that condition (iv) of
the problem definition given in section 3 is satisfied.

5.3. Choice of Symmetric Extension for Decomposition

Claim. For a given set of symmetric/antisymmetric multiresolution filter vectors a, b, p, and q, even values of w,
and wy, imply the use of half-sample symmetric extensions at the image boundaries during a balanced decomposition
to ensure a perfect reconstruction only using the regular reconstruction filters from p and q. On the other hand, odd
values of w, and w,, imply the use of whole-sample symmetric extensions instead.

Proof outline. We outline the proof by means of an example that makes use of the filter vectors containing only
regular filters,

a = [ an a1 ar @ ]
b = [b,z by by b ] (12)
p = [ p-2 pP-1 Pt P2 ]

a = |92 a1 @ @l
The widths of the filter vectors a, b, p, and q in (12) are assumed to be 4 as in the case of the filter vectors containing
the short filters of quadratic B-spline in (4). So, here w, and w, are even. Next, two possible balanced decompositions

T
of a fine column vector of 8 samples F' = [ i Lo fs ] are shown by the use of half-sample and whole-sample
symmetric extensions at its boundaries in Figures 7(a) and 7(b), respectively.
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(a) Balanced decomposition using half-sample symmetric extension. (b) Balanced decomposition using whole-sample symmetric exten-

sion.

Figure 7: Balanced decomposition of 8 fine samples.

i T
Now, our goal is to perfectly reconstruct F from the column vectors of coarse samples C = [ c] € €3 ¢4 ]

T
and detail samples D = [ d dy di d, ] using only the regular reconstruction filters vectors p and q from (12)

as shown in Figure 8.
@D@OE@@WE@H®®@

/i P
5
f
Ji
f5
Jo 4,
P fr 4
£

Figure 8: Perfect reconstruction of 8 fine samples.

We intend to evaluate the unknowns in Figure 8, which are ac; € {—cy,c(,—c2, ¢}, Bc; € {—c3,¢3,—cC4, ¢4}, ydi €
{-d,d,,—d>,d>}, and 8d; € {—d3, ds, —d4, ds} near the boundaries of C and D. Once evaluated, these will reveal the
type of symmetric/antisymmetric extensions to be used at the boundaries of C and D to ensure a perfect reconstruction
using only the regular reconstruction filters. Here a, 8, ¥, 6 € {+, —} represent the signs of ¢;, ¢}, di and dj, respectively.
When negative, they allow the representation of antisymmetric extensions.

Now, let us try to evaluate ac;. As shown in Figure 8, ac; contributes to the reconstruction of fi. If we con-
sider the balanced decomposition shown in Figure 7(a) and try to evaluate f; following our general approach from
subsection 5.2, we get

c asfi+aqfi+afy+afs
N f 1 a f ay f
= C —_ [
: a,+a : a,+a_ 2 a,+a_ 3

12



1 a

=>fi = 1 — (pic1 + pacy + qidy + q2d)
a_, +a_ a_, +a_
a
— (pact + poica + qody + q_1d>)
a,+a_;
1—ap; - —a1ps — axp-
S o= ( ap azpz)c1 +( ayp_y — ap 1)6_2
a_, +a_ a_, +a_
+(—a1q| - azqz)d1 N (—auq_z -y )dz. (13)
a_,+a_, a—p +a-;

Next, if we consider the balanced decomposition shown in Figure 7(b) and try to evaluate f; following our general
approach from subsection 5.2, we get

¢ = asxphtrasfitafh+taf
1 a_, +a, a
=>f = —a- f-—r
a_y —1 a_y
1 a_, + a
=f = —c- (pici + poacy + qidy + q_ods)

a_q a_y

a
+a_ (pac1 + poica + qody + q-1d>)
1

1—a_p — - —a_yps — —ap-
S = ( a_pi — aipi azpz)cl+( a_yp> — A1 P> — Ay .)cz
a_y a-y
+(—a_zq1 —aiq —azth)dl N (—a_zqz —ai1q, — arg- )dz. (14)
a-_ a-y

Let the filter values multiplied to ¢; and ¢; in the reconstruction of f; be denoted by w(c;) and w(c;), respectively.
In (13),

_  l-aipi-ap>
w(c1)) = — Lt
ot+a_;
15
— —aip-2—adrp-1 ( )
wle) = —a

which result from using half-sample symmetric extension at the left boundary F for a balanced decomposition. On
the other hand, in (14),

l-a_spi—aipi—ap>
w(c)) = T E—

(16)
—a-a2pr—aypr2—axp-i

wcy) = o

k)

which result from using whole-sample symmetric extension instead. Now, according to Figure 8, f] is reconstructed
as follows:

fi = palac) + p_ic1 + glady) — qg-1d;. 17

If we consider ac; = —c; in equation (17) for example, then w(cy) = —p, + p—1 and w(c;) = 0. If —c; is substituted in
Figure 8 in place of ac;, it would then reveal the need for half-sample antisymmetric extension for the left boundary
of C to be used during reconstruction. In this manner, Table 1 lists the sufficient conditions for all possible values of
ac;. Note that each possible value of ac; yields a particular type of extension (listed in Table 1) for the left boundary
of C.

Now, if we substitute the actual values of the corresponding regular filters of quadratic B-spline from (4) in (15)
and (16), we find that (15) only satisfies the sufficient conditions under case I (i.e. @c; = ¢1) in Table 1 and (16) does
not satisfy the sufficient conditions under any of the cases. Recall that (15) was obtained by the use of half-sample
symmetric extension on the left boundary of F' for a balanced decomposition. This implies that the use of half-sample
symmetric extension at the left boundary of F for a balanced decomposition will ensure the perfect reconstruction of
that boundary olely using regular reconstruction filters. Similarly, for the regular filters of quadratic B-spline from (4),
we can show that Sc; = ¢4, ydy = —d;, and 6d; = —d4; and they all require the use of half-sample symmetric extension
at the boundaries of F for a balanced decomposition.

13



Table 1: Sufficient conditions for symmetric and antisymmetric extensions.

Case | Sufficient Conditions ac; | Type of Extension
=pr+p-
I W) = p2t pa ¢ | Half-sample symmetry
w(cy) =0
=-pr+p-
1I wie) prvpa —c; | Half-sample antisymmetry
w(cy) =0
I W) = p-i ¢, | Whole-sample symmetry
w(c2) = p2
v W) = pi —c; | Whole-sample antisymmetry
w(c2) = —pa

In the above manner, we can show that for any set of symmetric/antisymmetric filter vectors a, b, p, and ¢, where
w, and wy, are even, half-sample symmetric extension can be used at the boundaries of a column vector of fine samples
for a balanced decomposition to ensure a perfect reconstruction only using the regular reconstruction filters from p
and q. A similar proof can be outlined to show that odd values of w, and wy, imply the use of whole-sample symmetric
extension instead.

5.4. Further Demonstration by Example

The example in this subsection illustrates the use of decomposition filter vectors of odd width for a balanced
decomposition as opposed to the even width of decomposition filter vectors in the previous example (subsections 5.1
and 5.2). Further examples are provided in Appendix A.

Balanced decomposition. Here we demonstrate our general approach described in subsection 5.1 using the decom-
position filter vectors a and b from following set of local regular multiresolution filters [BS00, SBO07]:

I N BN A |

b= [ 4 -1 4] "
e - [ 41tk

R ]

The filter vectors in (18) are known as the inverse powers of two filters of cubic (fourth order) B-spline [SBO07].
We explain the balanced decomposition process using the decomposition filter vectors in (18) through the example
shown in Figure 9. Similar to the previous example shown in Figure 4, here we have a column vector of 8§ fine

T .
samples F = [ h HL o ] that we want to decompose into the column vectors of coarse samples C =

[cr @ o o | anddetailsamplesD=| di & dy d |-

Figure 9 shows one possible balanced decomposition using our general approach presented in subsection 5.1. Step
1 of our general construction given in subsection 5.1 reveals that 5 extra samples are required to ensure a balanced
decomposition. As noted earlier, w, and wy, for the filter vectors in (18) are odd. So according to step 2, whole-sample

symmetric extension is used to introduce 2 extra samples at one end and 3 extra samples at the other end of F' to obtain
T .
the extended column vector of fine samples F”’ = [ Vi T D A A ] . Finally, according to

step 3, the filter vectors a and b from (18) are applied to F” to obtain C and D by means of the equations C = AF’
and D = BF’, analogous to equations (1) and (2).

Therefore, for n € Z*, a balanced multiresolution scheme based on the inverse powers of two filters of cubic
B-spline given in (18) can make use of the matrix equations

14
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Figure 9: Balanced decomposition of 8 fine samples.
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for the decomposition process, analogous to equations (1) and (2).

Perfect reconstruction. Here we demonstrate our general approach described in subsection 5.2 using the recon-
struction filter vectors p and q given in (18). They can reverse the application of the decomposition filters vec-

T
tors a and b from (18). Given the column vectors of coarse samples C = [ c1 ¢ 3 C4 ] and detail samples
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T . -
D= [ d d dy d, ] (obtained as shown in Figure 9), we now want to perfectly reconstruct the column vector

fine samplesF:[ i fH .. fs ]T.

@O@@OWOWDW

1 1 1 1
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Figure 10: Reconstruction of 3 of the 8 fine samples.

T
Figure 10 shows the reconstruction of F,, = [ B fs ] according to step 1 of our general construction

T T
given in subsection 5.2. F; = [ fi f ] and F, = [ fo 1 fs ] are yet to be reconstructed.

Next, following step 2(a) of our given general construction, we form the following system of 2 linear equations in
2 unknowns (f; and f> in F)):

1 1 3 3 1 1
sh—ah+3h+ Lh+3fi—afatghs
di = —3fi+3h-3ifi+3h-5h

The equations in (19) were obtained from Figure 9, which shows how ¢ and d; were computed during decomposition.
Note that in (19), we can replace f3, fi, and fs5 with the corresponding linear combinations of coarse and detail samples
from Figure 10. Then following step 2(b), solving the 2x2 system formed by the equations in (19) gives

fi

7 1 3 1 1
fz = gcl + 56‘2 + gdl + Edz + §d3.

ci
(19)

C1 - di+ dy,

(20)

Now, according to step 2(c), the equations in (20) can be rewritten as follows such that the coefficients of the coarse
and detail samples are all regular filters from (18):

h
fa

This rewriting required two implicit sample split operations on the right-hand side of each equation in (21).
Finally, following step 3 of our general construction to reconstruct F,, we form the following system of 3 linear
equations in 3 unknowns (fg, f7, and fg in F,):

1 1 1 1
5C1 + 5C1 + —d2 + (—l)dl + -dz,
2 2 2 2 (21)

1 3 1 1 3 3 1
g€l + 7€1 + gC2 + §d2 + §d1 + §d2 + §d3.

3

s = gh-sftifst fotifi- skt

s = sfs-e+if+ fi+ifi-ife+ifs (22)
i le 3441 i

di = —gfs+sfe—3f1+3/— 5/

The equations in (22) were obtained from Figure 9, which shows how c3, ¢4, and d4 were evaluated during decompo-
sition. Observe that in (22), we can replace f3, fy, and f5 with the corresponding linear combinations of coarse and
detail samples from Figure 10. Then solving the 3x3 system formed by the equations in (22) gives

1 3 1 1 3 1
f6 = §C2 + ZC3 + §C4 + gdz + §d3 + 5d4,
= je3+ 1% 1ds—1d (23)
f7 = 2C3+2C4 +2 3 7 U4,
1 3 1 3
fg = ZC3 + ZC4 + Zd3 + Zd4'
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Now, the equations in (23) can be rewritten as follows such that the coefficients of the coarse and detail samples are
all regular filters from (18):

1 3 1 1 3 3 1
f6 = ECZ + 4_163 + §C4 + §d2 + §d3 + §d4 + §d4,
1 1 1 1 2
f7 = §C3 + §C4 + §d3 + (—1)d4 + §d4, ( 4)
1 3 1 1 3 3 1
fg = §C3 + 4_104 + §C3 + §d3 + §d4 + §d4 + gdg
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Figure 11: Perfect reconstruction of 8 fine samples.

As we mentioned in the general construction given in subsection 5.2, note that the equations in (21) and (24) yield
a specific type of symmetric extension for each boundary of C and D as shown in Figure 11. Therefore, based on (21)
and (24), for a given column vector of 2n fine samples (n € Z*), we get

fi = %C1+%Cl+%d2+(—l)d1+%d2,

fa = le+3ci+io+id+idi+3id + L,

2 = g2t 301+ gCn+ gl + gdioy + 5+ gl
ot = et gen+ by + (D + 34,

So a balanced multiresolution scheme based on the inverse powers of two filters of cubic B-spline given in (18) can
make use of the matrix equation

11 45 .. 000 0 0 1 4,1 00 0 0 0|
2 2 2 2 d,
C
131 600 0 o0 . 1 331 00 0 0 ol d
(118 4 8 | |8 8 8 8 q
1 . . . . . . . . . . . . 2
f : : : : : C, : : : : : : : .
2 : :
= o+
: 0 0 0 o 131, 0 0 0 0 13 3 1 4lg,
f 8 4 8 c., 8 8 8 8 |
2n n
0 0 0 o0 XL ofl%llo 0 0 o o L a1l ofy
2 2 c . 2 2 n
L&n-1] d,
000 00 + 21 0 0 0 0 o = 3 3 Lpn
L 8 4 8] I 8 8 8 8]
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for the reconstruction process, analogous to equation (3).

6. Application in Focus+Context Visualization

Multiscale 2D and 3D image visualization applications often exploit query window-based focus+context visual-
ization for image exploration and navigation purposes. A low-resolution approximation is rendered to provide the
context and a selected portion of that low-resolution approximation defining the focus, also known as the RO, is ren-
dered as a close-up in high-resolution. While such visualization is supported by an underlying wavelet transform, it
is necessary to reconstruct the high-resolution approximation of the ROI on demand from the low-resolution approxi-
mation and corresponding details. Here the use of a balanced wavelet transform constructed by our proposed method
makes locating the details straightforward. For instance, observe the reconstruction of interior samples in Figures 5
and 10. If the first coarse sample for the reconstruction of a fine sample is c¢;, then first detail sample to use in the
reconstruction of that fine sample is d;. This may not have been the case if we had an unequal number of coarse and
detail samples from decomposition. Also, the only additional step required to reconstruct the fine samples near the
boundaries is the use of specific symmetric/antisymmetric extensions, because our method completely eliminates the
need for extraordinary boundary filters.

6.1. Overview of Visualization Tool

We have implemented a visualization tool prototype named Focus+Context Studio to test our presented balanced
multiresolution framework for images. It robustly allows real-time multilevel focus+context visualization of large-
scale 2D and 3D images, supported by multiple movable query windows defining ROIs at different resolutions. It
currently uses the balanced multiresolution scheme we devised using the short filters of quadratic B-spline in (4), as
described in the examples shown in subsections 5.1 and 5.2. At the moment, all the query windows are 32x32 samples
in dimension.

To facilitate focus+context visualization and exploration of a 3D image, our prototype currently allows the query
windows identifying the ROIs to move back and forth through sequential slices interactively by the use of mouse scroll
wheel and alternatively, the up and down arrow keys on the keyboard. When the query windows move from one slice
to another, the low-resolution approximation of the context and the high-resolution approximations of the ROIs are
updated on the fly in real-time. For 3D images, currently it only performs widthwise and heightwise decompositions,
which keeps the number of 2D slices intact for depthwise volume exploration.

6.2. Experimental Results

Here we present the experimental results produced by our Focus+Context Studio prototype. The n-tuples (n > 3)
used in the captions of Figures 12, 13 and 14 are defined as follows: (image dimensions, Cy, F'', F™?,..., F'), where
d is the number of levels of (widthwise and heightwise) decomposition for the context and r; (1 < i < m) is the
number of levels of reconstruction for deriving the high-resolution approximation of the ith ROI. F"i appears in the
n-tuple in a position determined by the left-to-right and top-to-bottom ordering of placement for the high-resolutions
approximations of the ROIs.

Figure 12 shows various scenarios for focus+context visualization of 2D images using our prototype. Figures 12(a)
and 12(b) show multilevel focus+context visualization of large-scale 2D images showing the topographic and bathy-
metric shading of northwestern North America and the topographic shading of Long Island, respectively. Similar
multilevel focus+context visualization is shown for a diseased leaf in Figure 12(c). Such multilevel focus+context
visualization is motivated by the need for more manageable utilization of screen space and visualization of the context
at a higher resolution while maintaining interactive frame rates.

Next, for a 2D image, Figures 12(d) and 12(e) show different levels of decomposition for the context and different
levels of reconstruction for the high-resolution approximation of the ROI using our developed tool. The 2D image
used in this example is an abdomen slice from the male from the Visible Human Project [NLM12]. One advantage
of allowing multiple query windows corresponding to multiple ROIs is the ability to draw comparisons between
similar ROIs when required. Figure 12(f) shows such a comparison scenario between the tropical storm Parma (on
the left) and typhoon Melor (on the right). Another such scenario comparing the ice near the coasts of Greenland and
Alexander Island is shown in Figure 12(g).
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(a) Topographic and bathymetric shading of northwestern North America: (c) Frangipani rust:
(4672x12800, Cs, F*, F°, F3, F?, F?). (10496x3328, C, FO, F3, F1).

(f) Comparison of Parma (on the left) and Melor (on the right): (g) Comparison of ice near the coasts of Greenland and Alexander Island on
(10240x7680, Cs, F3, F3). a Blue Marble image: (15360x7680, Cs, F3, F3, F3, F3).

Figure 12: Focus+context visualization of 2D images at various resolutions.
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Figure 13: Focus+context visualization of time-lapse imagery — monthly global images: (5440x2752x 12, Cy, F*).
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Figure 14: Focus-+context visualization of a 3D image (1056x 1528 x 150, C3, F*, F3).
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Our developed prototype is also suitable for the visualization and exploration of time-lapse imagery. For instance,
Figure 13 shows 12 unique frames from the interactive transition through the 12 slices of monthly global images.
The order of frames is shown by directions marked on the curved-arrow in the middle. The ROI covers most of
northwestern North America and shows the transition from one winter to the following winter.

Figure 14 shows an example of visualization and exploration of a 3D image in our prototype. For the purpose of
demonstration, the transition through 10 of the 150 slices that the query windows were constrained to move back and
forth through are shown in Figure 14. The original dataset corresponds to the head of the female from the Visible
Human Project [NLM12]. This head dataset contains a total of 1477 2D slices, each of dimensions 1056x1528, among
which 150 sequential slices were loaded into our prototype for this example.

7. Discussion and Future Work

Our method can be used to devise a balanced multiresolution scheme for any set of given regular multiresolution
filter vectors. However, if the scheme would only make use of regular reconstruction filters is determined by the
properties of the given multiresolution filter vectors. If the given filter vectors are symmetric/antisymmetric, then our
method can devise a balanced multiresolution scheme that only uses regular filters. Otherwise, some extraordinary
boundary reconstruction filters are introduced (see Appendix B, for instance).

The balanced multiresolution schemes devised by our approach can also be applied to open curves and tensor
product meshes (surfaces and volumes) in applications where boundary interpolation is not important but a balanced
decomposition is preferred, for reasons such as partitioning the curve or the mesh into even and odd vertices. Such
a partitioning allows the storage of coarse vertices and details in even and odd vertices, respectively, as proposed in
[OSBO7]. However, some of the devised balanced multiresolution schemes may support boundary interpolation only
in the context of subdivision i.e. when we only consider the result of PC” in order to increase the resolution of C. For
example, the filters of second order B-spline in (A.1) and the short filters of third order B-spline in (4) lead to such
boundary interpolating subdivisions.

There is a number of directions for future research. In this article, we covered the commonly used types of
symmetric and antisymmetric extensions. It would be useful to investigate and develop extension types that can be
utilized to devise balanced multiresolution schemes for near symmetric and asymmetric filter vectors in order to ensure
a perfect reconstruction solely by the use of regular filters. To start with, the devised balanced multiresolution scheme
given in Appendix B for Daubechies’ asymmetric D4 filters may provide some insights.

In addition, further investigations are needed for an in-depth understanding of the relations between the sym-
metry/antisymmetry exhibited by the filter vectors, parity of their widths, and the determined types of symmet-
ric/antisymmetric extensions required for a perfect reconstruction using only regular filters. For instance, compare
the multiresolution filter vectors containing the inverse powers of two filters of fourth order B-spline in (18) and the
wide and optimal filters of fourth order B-spline in (A.3). In these two sets, the corresponding filter vectors have the
same widths and they are all symmetric. Now, observe that the two balanced multiresolution schemes we devised
using these two sets of filter vectors suggest exactly the same type of symmetric extensions for the column vectors
of fine, coarse, and detail samples. Therefore, the determined types of symmetric/antisymmetric extensions are not
dependant on actual filter values. Several other such scenarios are shown in Table A.2.

8. Conclusion

In this article, we presented a novel method for devising a balanced multiresolution scheme, primarily applicable
to images, using a given a set of symmetric/antisymmetric filter vectors containing regular multiresolution filters. A
balanced multiresolution scheme resulting from our method allows balanced decomposition and subsequent perfect
reconstruction of images without using any extraordinary boundary filters. This is achieved by the use of an ap-
propriate combination of symmetric and antisymmetric extensions at the image and detail boundaries, correlating to
implicit sample split operations. Balanced decomposition of an image makes locating the details corresponding to a
ROI straightforward in a hierarchy of details within the wavelet transform representation of that image.

In order to support smooth multiresolution representations of images beyond Haar wavelets and the associated
scaling functions, and still exploit the advantages of a balanced decomposition, we used our method to devise balanced
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multiresolution schemes for some commonly used sets of local multiresolution filters obtained from higher order
scaling functions and their wavelets. Any such balanced multiresolution scheme can be used to generate a balanced
wavelet transform representation of a multidimensional image in a preprocessing phase, which can then be utilized to
support its focus+context visualization in an efficient manner.

We also presented a set of experimental results produced using our developed Focus+Context Studio prototype that
allows focus+context visualization of large-scale 2D and 3D images. It exploits the balanced multiresolution scheme
we devised from the short filters of quadratic B-spline in (4). We envision the integration of the key functionalities of
our prototype in visualization systems and application programming interfaces (APIs) to enable users to visualize and
explore the contents of complex imagery such as large-scale satellite images, clinical data, seismic data, etc.
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Appendix A. Further Examples with Symmetric/Antisymmetric Filter Vectors

Our first example here involves the multiresolution filter vectors containing the local regular filters of second order
B-spline,

a=l-h 43 4

b:[_l 1_1],

- i i (A.1)
p—[ 7 1 2]’

a=[--4 314

derived by Sadeghi [Sad11] by reversing Faber subdivision [Fab09] based on the construction procedure presented by
Samavati and Bartels in [SB99, BS00]. For the filter vectors in (A.1), the matrix equations for a balanced multireso-
lution scheme we devised using our method for n € Z* are
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analogous to equations (1), (2), and (3), respectively.
The next example involves the following multiresolution filter vectors containing the local regular filters of cubic

(fourth order) B-spline from [SBO07]:
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(A.2)

The filter vectors in (A.2) are called the short filters of cubic B-spline. For these filter vectors, the matrix equations
for a balanced multiresolution scheme we devised using our method for n € Z* are
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analogous to equations (1), (2), and (3), respectively.
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Our last example uses the following multiresolution filter vectors containing the local regular filters of cubic B-
spline from [SBOO7]:

a = [ 2B B 9 52 9 _23 2]
196 49 28 49 28 49 19 J°
b = [ 13 _26 39 _26 E]
98 49 49 49 98 I’ (A3)
= [ L1 3 1 1] ’
P 8§ 2 4 12 3
:[_ﬁ B _6 | _63 _23 _2]
q 208 52 208 208 52 208 |I°

The filter vectors in (A.3) are known as the wide and optimal filters of cubic B-spline. For these filter vectors, the
matrix equations for a balanced multiresolution scheme we devised using our method for n € Z* are

fp T
f2
fl
c 23 23 9 52 9 23 23 0 0 0 £
1 - - - - - - — 2
196 49 28 49 28 49 196 .
2= 23 23 9 5 9 23 23 ’
: 0 o0 = —— —= — — -—— — 0 fons
196 49 28 49 28 49 196
C, : : : : : : : fon
onl
er\Z
7f2n 3
f 1]
fZ
d, 1B 26 39 _26 13 0 0 0 f,
d 98 49 49 49 98 f
2| 2
o o 1B omomom o |
98 49 49 49 98
d, : : : : : fons
f2r|
_fznfl_
and
l l o 0 0 0 7§ 1 7§ 0 0 0 0 0 0 _
2 2 L] s 52 d,
G
3 00 0 0, .23 63 63 23 0 0 0 0 0 d,
1 8 4 1 208 208 208 208 d
J1 T [ c : : : : : : 2
. . . 2 . . . . . .
L 1 3 1 e 23 63 63 23 :
: 0 o - 2 -0 0 0 0 0 - = = = = 0 |4,/
8 4 8 ¢ 208 208 208 208 ;
Fon 1 1 c 23 23 "
0 0 0 = — ol % 0 0 0 0 o = 1 == 0 |y
2 2 ‘| 52 52 !
- d
0 0 0 31 0 0 0 0 0 223 63 63 23 L9
L 8 4 8] L 208 208 208 208 |

analogous to equations (1), (2), and (3), respectively.

In Table A.2, we summarize all the balanced multiresolution schemes presented in this article so far, in addition to
six other sets of symmetric/antisymmetric regular multiresolution filters. The biorthogonal and reverse biorthogonal
filters [CDF92, Dau92] we referred to in the table are available in MATLAB [MAT14]. g in the first column of the
table denotes the reversed filter vector q. The second through fifth columns specify the symmetric (S)/antisymmetric
(A) structure of the a, b, p, and q filter vectors, respectively, for each set of filters in the table. The next column
mentions the parity of w, and wy, based on which we decide on the type of symmetric extension to use for F'.

For n € Z*, the second-to-last column of Table A.2 illustrates the proposed extended vector of fine sample F’ and
the construction of the first coarse sample c¢; and detail sample d;, applicable to one possible balanced multiresolution
scheme for each set of filters in the table. Here, we only give the construction of ¢; and d; because the remaining pairs
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of coarse and detail samples can be obtained by subsequent shifts of the filter vectors a and b by two fine samples

along F’ (as shown in Figure 9, for example). Finally, the last column shows the corresponding extended vectors

of coarse samples C’ and detail samples D’, in addition to the reconstruction of the fine samples in F; and F, as

defined in subsection 5.2. In this column, filter vectors of odd and even width are assumed to have formats similar to
. Vp Vop Vo VI Vo ... ] and [ R VIS VS IR VS ], respectively.

Appendix B. An Example with Asymmetric Filter Vectors

An attempt to apply our general approach for devising a balanced multiresolution scheme described in section 5
to Daubechies’ asymmetic D4 filters [Dau88, SDS96],

1+V3  3+V3 3-V3  1-

a:p:[m a2 42 4
b—qz[l_ﬁ “34V3 3+V3 -l-

ﬁ

ﬁﬁ

(B.1)

- 4V2 4V2 42 42 ]
produces the balanced multiresolution setup shown in Figure B.15. Note that it introduces two extraordinary boundary

filter values, —2:;2\6 and 28 in the reconstruction of fi and f3, respectively. Because the filter vectors in (B.1) are

not symmetric/antisymmetric, the rewriting task suggested in step 2(c) and that of step 3 in our general construction
given in subsection 5.2 were not entirely successful. Therefore, our approach could not ensure a perfect reconstruction
using only the regular filters from (B.1).
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(a) Balanced decomposition. (b) Perfect reconstruction.

Figure B.15: Balanced decomposition and perfect reconstruction of 8 fine samples.

As shown in Figure B.15(b), this particular example does not require any extraordinary boundary filters for the
subdivision matrix P. This may not always be the case while using other asymmetric filter vectors.
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Table A.2: Balanced multiresolution schemes.

Filters W, wy, | Decomposition: F’, ¢, d, Reconstruction: C’, D', f; € [F,T F,T]T
Filters of second order 0dd F'=[fifi o fon P le,fz]T, C=[cic...ci)", D=l[drd, ...d,d,]",
B-spline (A.1 . .
pline (A1 c1 = asfr+taifi+af fi = pici+ pac + qads + qodi + qads,
Biorthogonal 2."2 filters +afs+afs, Jono1 = picut + poicy + qadyy + qod, + gad,,
(a,b,p,and q in
[MAT14]) dy = b_ifr+bofi +bifa Son = pocu +qid, + q_1d,.
Short filters of quadratic Even |F =[fi fi ... fu ful’s C'=lcici...cpe)), D=[~did ...d,~d,]",
B-spline (4) .
Biorthogonal 3.1 filters ¢ = anfita,fitafitafs, { h = paci +pocr + qa(=dy) + g_1dy,
(a,b,p,and ¢f in di = bofi+b.ifi+bfr+bfs. S = preg+ pacy + qidy + qo(=d,).
[MAT14])
Reverse biorthogonal
3.1 filters (a, b, p, and q®
in [MAT14])
Wide filters of quadratic Even |F' =[ffofifi o fonfon ot frna)W| € =lercr oo cacdls D' =[~dy~di d ... d,~d, ~d, 1",
B-spline (a, b, p, and
in [gBOO7]) P 4 ¢ = aufs+asfh+anfi+asifi N = paci + poici + qa(—dr) + qo(=dy) + g_1dy + q_3ds,
+arfh+arfs +asfys+dafs, h = pici +poacr + q3(=dy) + qidy + qody + quds,
Biorthogonal 3.3 filters di = bfi+b_1fi +bifa+byfs. 5 = paci +poicy +qa(=dy) + gady + q_1ds + q_3ds,
(a,b,p,and ¢f in Sona = prcay + poacy + @adus + qid,y + qody + q_s(=d,),
[MAT14]) f2n71 = P2Cn-1 + P-1Cn + q4d1172 + qunfl + qfldn + 61—3(—61,;),
S = preat pacy + @adu + qudy + qa—dy + qoa(—d, ).
Short filters of cubic odd | F' =[f fi -or fou ot o]’ C=lerer ...l D=[dd ... d)1,
B-spline (A.2 .
pline (A.2) ¢ = aqfhtrafi +afs, h = Dacy + poci + paca + qidy + qoydy,
Reverse biorthogonal .
2.2 filters (a, b,i and q dy = bofh+bfi +bofs Jon-1 = Pacucy + PoCa + paCy + qidyy + q-id,,
in [MAT14]) +bifs + bafs. Jan = pica+ poicy + qody.
Inverse powers OffWO Odd F’ = [j; /2 ﬁ coe on /‘Zu—l \/i/(—Z f_’?u—}]T, C’ = [Cl Cl ... Cy ('H—I]Tv D, = [(]2 dl e dn dﬂ (]”7]]7‘,
filters of cubic B-spline . .
(18) P ¢l = assfs+ansf+a i fi +ach fi = pici+pojer +qads + qody + qads,
+afs +arfy+asfs, h = paci + poC1 + P2y + qady + qidy + g_1dy + q_3ds,

Wide and optimal filters
of cubic B-spline (A.3)

di = bofs+b.1fr+bofi
+b1f2 +b2f:z.

f2n72 = P2Cy—2 + PoCp-1 + P2Cyp + q}dan + qldnfl + qfldn + q*3d/1’

on—l = PiCp-1 t p-1Cp + q2dn—l + q()dn + q—Zdn,

fon = PaCu1 + PoCa + PaCuy + qa3dny + qidy + goydy + qad, .
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