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Abstract

What could a spammer or phisher do with a botnet of a thousand machines? a
hundred thousand? a million? “Send lots of email” is the least worrisome answer to
these questions. As anti-spam and anti-phishing defenses improve, there is more
than sufficient financial motivation for spammers and phishers to consider what
they can accomplish with enormous scale.

We begin by looking at a wide range of anti-spam defenses. Many of these, like
rate limiting and port 25 blocking, will simply no longer work against big botnets;
we explain why.

Further, the basic cryptographic assumptions underlying the implementation of
SSL certificates and DomainKeys/DKIM need re-examination in light of the mas-
sive computing power of big botnets. We describe possible attacks by spammers
and phishers, and the implications these attacks have in terms of defense.

1 Introduction

It is probably fair to say that a lot of spam, if not the majority of spam, is sent either by
or through compromised computers. These compromised computers, called “zombies”
or “bots,” are connected together into a network, usually referred to as a “botnet,” which
can be controlled from afar by a spammer.1

1For convenience, we generically use the term “spammer” in this paper to refer to spammers, phishers,
and malware authors propagating malware via spam.
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Some botnet researchers have begun to look at the threats posed by future botnets.
So far, this work has indicated that future botnets can be highly robust against defensive
measures [34, 35] and potentially massive, with multiple small botnets being joined
together into one large “super-botnet” [34].

This is the starting point for our work. We assume that a spammer has access to a
large botnet – how it is acquired does not matter, nor is it important whether or not the
spammer has created the botnet themselves. Whatis important is determining what the
spammer can do with it.

We consider a model with four parties involved:

1. Spammer. Obviously, the originator of the spam.

2. Target. The intended recipient of spam.

3. Zombie. A compromised computer the spammer can use to send spam to the
target.

4. Victim. The actual owner or user of a zombie computer. As pointed out in
previous work [2], the victim will have saved email that the zombie can use. The
saved email may not be stored on the zombie machine, e.g., a victim may be a
webmail user, but a zombie can simply steal the webmail password and peruse
the victim’s email at its leisure.

Normally the focus would be just on the spammer and the target, with the zombie as a
mere conduit for spam transmission. As we discuss below, zombies (and unwillingly,
their victims) play an important role in circumventing some anti-spam defenses. In the
next section, we look at a variety of these defenses that can be skirted by big botnets;
Section 3 examines some new attacks. Section 4 is the conclusion. We tried to make
Section 4 into the introduction again and turn this paper into a Möbius strip, but to no
avail.

2 Current Anti-Spam Techniques

We have grouped current anti-spam techniques based on their underlying assumption
about spammer behavior. We have added citations where available, but many of these
techniques are well-known; see [39] for a general reference.

Some of the ideas in this section with respect to authentication have been discussed
in [9], which unfortunately had no written record; other ideas were discussed in a
different context in [2]. This is, as far as we know, the first attempt to bring these ideas
together and categorize them.

2.1 Assumption: No Existing Relationship

These defenses operate on the assumption that there is no existing relationship between
the spammer and the target.

Whitelisting. The target only receives email from senders they know.
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Blacklisting. The target does not receive email from specific senders. Normally this
would be applied by the target’s email system to sending IP addresses, to refuse
email connections from known spam senders. Ideally, legitimate senders are not
blacklisted.

Spam traps. Spam traps are fake email addresses that are deliberately meant to the
harvested by spammers. Because they don’t correspond to real targets, any email
sent to spam traps can be considered spam.

Challenge/response.The target’s email system issues a challenge to a sender – le-
gitimate or spammer – and the sender’s email is not delivered to the target un-
til the challenge is correctly replied to. Senders who have passed the test are
whitelisted, at least for a while, to prevent a challenge being issued for each
exchange in an ongoing email conversation.

A zombie can extract out email addresses from a victim’s address book and from
saved email, and send the spammer’s message to those targets. Effectively the spam
travels along social networks, and the spammer exploits the preexisting relationship
between victim and target. Challenge/response systems present slightly more of a chal-
lenge to a spammer – the spam must be sent to a target where the victim has already
replied to the challenge and been temporarily whitelisted. If this is a concern, the zom-
bie would have to limit the search for email addresses to recent entries in saved email.

2.2 Assumption: Spam Sent in High Volumes

The assumption here is that spammers send large amounts of email.

Rate limiting. The number of emails sent within a given span of time can be throt-
tled [37], which may not prevent spam but can slow it down. A related idea in-
volves limiting the number of concurrent outbound connections to port 25 from
a computer, rather than preventing them entirely [23].

Tarpits. A tarpit is a mail system that responds very slowly, to try and bog down spam
transmission.

Proof of work. One of several suggestions to add some kind of cost to sending email,
proof of work systems require an email sender to solve a computationally-intensive
but tractable problem for each piece of email sent [7].

Challenge/response.Appearing twice, the challenges of C/R systems are presumed to
be hard enough that a human being must solve them. If so, this limits the volume
that a spammer can send, or at least changes the economics if humans have to be
paid to solve challenges.

This assumption is endemic even in recent work, e.g., [3]. With large botnets,
though, each zombie need only send a small amount of spam to produce the same
overall amount of spam. In addition, large botnets allow the computational problems
of proof-of-work to be solved using what is effectively a compute farm. It also opens
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up ways to trick humans into solving challenges: for example, a zombie could intercept
a victim’s browser, telling the victim they have to solve the presented challenge before
they can visit a web page.2

(As an aside, proof-of-work has also been criticized elsewhere [15], although they
too make the assumption about high spam volumes.)

2.3 Assumption: Legitimate Mail System Not Used

Other defenses assume that spammers do not send email using “legitimate” mail sys-
tems, opting instead to send in quick-and-dirty ways like direct-to-MX transmission.

Blacklisting. Blacklisting also appears here, because zombies sending email directly
are frequent occupants of RBL lists. By contrast, much if not most legitimate
email is sent via an ISP’s mail system rather then directly.3

Greylisting. Initial attempts at email delivery, regardless of sender, are told try-again-
later by a target’s email system, on the belief that spammers will not retry trans-
mission [16].

Verification. Verification has two flavors. First, it can be verified that a message came
from where it says it did, and that it hasn’t been altered in transit (DKIM/DomainKeys [1,
6]). Second, it can be verified that a sending machine is authorized to send mail
for a domain (SPF [38]).

Reputation systems.Reputation systems classify email based on a sending machine’s
past spam-sending behavior; the email content is of secondary importance [28].

Port 25 blocking. Outgoing port 25 (SMTP) connections can be blocked by an ISP
to force the use of their legitimate email system, and completely prevent direct
email delivery by zombies.

Simulated tarpits. Recent work suggests simulating the behavior of a tarpit, expect-
ing real spammers to time out quickly and give up, whereas legitimate mail sys-
tems will persist long enough to overcome the initial slowness. Connections that
stick around long enough are ramped back up to full speed [8].

A zombie can simply piggyback on their victim’s legitimate email system, transmit-
ting spam through it instead of directly. In the case of reputation systems, the victim’s
reputation (or that of the victim’s ISP) is inherited by the zombie.

2.4 Assumption: Many Emails, Same Content

Checksumming. Checksums of incoming email messages are computed and com-
pared against the checksums of known spam messages. Done in large scale,

2Note that this is distinct from the “porn proxy attack” because the spammer does not have to establish
an enticing website.

3The comments about ISPs in this paper can also be taken to apply to corporate networks, or any large
enterprise network.
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this also permits the ability to detect patterns, like the same piece of email being
sent to thousands of people.

Techniques to try to evade checksumming have been around for some time, from
simple random number “hashbusters” to more recent random alterations of image spam
(e.g., [25]). This has opened up yet another anti-spam front, where checksumming
algorithms are tweaked to be tolerant to random changes. There is no reason why
spam cannot be customized extensively by each zombie in a botnet, either randomly or
based on content on the victim’s machine; in many ways, this is the spam equivalent of
polymorphic viruses, creating millions of different variants of a single spam message.

2.5 Assumption: High Spammy Content

Statistical filtering. Emails can be classified as spam or ham based on whether or not
their words (for some definition of what a “word” is) look “spammy” compared
to past emails. Words that have not been seen previously are assigned a neutral
score, and these filters can learn through retraining.

Spammers who randomly add words (“word salad” [12]), excerpts from online
sources, or news articles to their spam can be seen to be hashbusting. It can also be
seen as trying to skew statistical filters away from a spam classification. This is not very
sophisticated or directed yet, and the opinion has been expressed that attacks against
statistical filters would be too hard to mount [11, 39]. However, we argue that a zombie
can perform a directed attack automatically: ham words that pass through a target’s
filter are sitting in the victim’s saved email.

2.6 Assumption: Mail is Spam or Ham

One final assumption about spammer behavior is that a spammer only sends spam,
and email can be correspondingly classified in a binary way, as either spam or ham.
Research has demonstrated that this need not be the case in two scenarios, where a
single email can be both hamandspam. Zombies play a part in both of these.

First, parasitic spam relies on a zombie to tag a brief spam signature onto the vic-
tim’s legitimate email, or changes URLs in legitimate email to malicious ones [26, 27].
The ham portion is legitimate, although possibly altered, and the message cannot be
filtered out completely as a result.

Second, “more effective spam” is where a zombie custom-tailors email to a target,
using the victim’s saved email and (optionally) legitimate incoming email from the
target [2]. Again classification is not straightforward, because real ham messages are
mixed with the spam content. However, in this case, the ham is a red herring and the
entire message can be flagged as spam without loss of legitimate content.

2.7 Discussion

The bad news is that all the applications of zombies we have presented scale to big bot-
nets. Big botnets just present more opportunities for spammers: more social networks
to exploit, more saved email, more targets.
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The good news is that these uses of big botnets by spammers drive more spam
through ISPs’ mail systems, creating more potential for ISP filtering of outbound email.
It also allows the zombies to be discovered in two ways. First, a zombie sending spam
using a victim’s account can be traced. Second, sending spam along social networks
should increase the number of victims who are notified about zombie infestations from
their friends and colleagues.

However, we would urge caution. With enough zombies, a spammer can potentially
have enough to send spam, lose zombies to detection,and infect enough new machines
to maintain the botnet’s size. The assumption that the spammer fears detection of their
zombies may be incorrect at a large scale.

3 New Attacks

The cryptographic assumptions underlying some defenses against spam (DKIM/DomainKeys)
and phishing (SSL certificates) are not often questioned. However, considering the po-
tential size of spammers’ botnets, it is prudent to re-examine these ideas; spammers
may possess enough computing power for new forms of attacks.

3.1 Fake Certificate Authority

This first attack can be performed without a big botnet, but serves to illustrate that
certificates are not a silver bullet, and attacks involving them can occur. As a simple
example of an attack on certificates, consider the following scenario:

1. A worm is released whose payload installs a new root certificate for the spammer
in a victim’s browser or, alternatively, a zombie installs one. Once the certificate
is installed, the malware can remove itself, as it is no longer needed for the attack.

2. Phishing emails can now be sent by the spammer to a victim. When victims go
to the spammer’s web site, they are greeted by a valid SSL connection with no
warning messages from the browser. The spammer’s root certificate allows them
to create real SSL certificates, a process that can continue until the spammer’s
root certificate is removed.

We tested this attack by creating a root certificate for the fictitious “Verı́Sign Trust
Network” (note the accent over the “i”) and inserted it into our Firefox installation.

In this case, we used a pharming attack in conjunction with the root certificate,
redirecting DNS lookups forwww.bank.com on our machine to another machine we
had access to – call itexample.com. For pharming, we simply inserted an appropriate
entry into/etc/hosts, but other techniques are possible [19, 32].

Onexample.com, we started an HTTPS server which was equipped with a certifi-
cate attesting to it beingwww.bank.com, signed by our “VeŕıSign Trust Network.”

The result was as anticipated. When we pointed our copy of Firefox tohttps://www.bank.com/,
it went to our HTTPS server onexample.com. There were no certificate warnings
popped up, and all of Firefox’s secure connection indicators were present. Mousing
over the padlock icon produced a tooltip saying “Signed by Verı́Sign Trust Network”
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in a small enough font that the accent over the “i” was next to impossible to see with
a casual inspection. Even if a user had been trained to look for the secure connection
indicators, it would not have helped in this case. This suggests that security software
should be guarding certificates as well.

3.2 Certificate Forgery

In this section, we examine whether it is probable, or even possible, that spammers will
be able to use the processing power present in their botnets to take on a calculation-
heavy problem such as breaking the digital signature on a digital certificate. If success-
ful, spammers would be capable of creating SSL server certificates that are indistin-
guishable from the legitimate ones. The impact this would have on security in relation
to e-commerce and other online services is profound.

We consider X.509 certificates, the most common digital certificate standard in
use today. If a spammer is to successfully spoof a public key certificate, i.e., forge
a certificate that is indistinguishable from a legitimate certificate, then they need to
break the digital signature and recover the signing CA’s private key. If the spammer
accomplishes this, then they can, for example, make a phishing site,www.bank.com,
appear legitimate by creating a certificate that has the elements of the subject field
set accordingly, i.e.,CN=www.bank.com, O=BigBank, and then subsequently sign the
fabricated certificate with the recovered private key. Breaking the digital signature and
recovering the signing CA’s private key is, however, not trivial. The most widely-used
digital signature encryption algorithm in this context is RSA [20]. RSA is normally
used with 1024-bit keys so a brute force attack is not computationally feasible since
the key space is extremely large, 21024 > 1.8 × 10308. A number of attacks on RSA
have been proposed that are more advanced than brute-force approaches; [17] describes
some of them.

The problem with public key cryptography is that it is based on computational prob-
lems – factorization of integers in the case of RSA – and this makes it more vulnerable
to attacks. Here, the spammer would know the CA’s digital signature in the certificate,
and the CA’s public key. Based on this information, finding the CA’s private key is
computationally equivalent to the problem of factoringn, the modulus in the RSA al-
gorithm [17]. The best-known algorithm used to factorn, the number field sieve [4], is
very easy to distribute, and it is highly resilient to computing nodes going offline.

Since the security of the RSA algorithm rests on the difficulty of factoring large
values ofn, RSA Laboratories maintains a list of “RSA Challenge Numbers” [22].
Researchers are challenged to factor the numbers on the list for a symbolic cash reward.
Currently, the list consists of eight numbers of lengths from 576 bits to 2048 bits, each
chosen as if it were to be used as the modulusn in the RSA algorithm. The two smallest
numbers, RSA-576 and RSA-640, have both been factored. The latter was factored in
2005, and reputedly took approximately 30 2.2 GHz Opteron-CPU years [21].

In [18], a 2.6 GHz Opteron CPU was benchmarked, giving a result for CPU arith-
metic of 38,228 MIPS. We will thus use the conservative estimate of 35,000 MIPS for a
2.2 GHz Opteron CPU. Based on this estimate, the computing power required to factor
RSA-640 would correspond to 30× 35,000 = 1 × 106 MIPS-years. Table 1 summa-
rizes the MIPS-year estimates for four of the RSA challenge numbers. Note that the
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Number Bit length Factored MIPS years
RSA-140 256 Feb 1999 2× 103 [30]
RSA-155 512 Aug 1999 8× 103 [29]
RSA-640 640 Nov 2005 1× 106

RSA-1024 1024 not yet factored 5.6× 1010 [24]

Table 1: MIPS-year estimates for selected RSA challenges

estimates we have used here are older ones; we have deliberately chosen these to be
conservative, knowing that they do not take into account recent improvements in the
field.

How much processing power could a spammer accumulate? We begin by quantify-
ing the average power of individual zombies in a botnet. In [31], the rating of a 2.8 GHz
Pentium 4 CPU is estimated at 6,775 MIPS. Since a 2.8 GHz Pentium 4 is probably still
high-end compared to an average PC, we take the average processing power of a single
zombie to be only 5,500 MIPS.

A zombie computer may not be able to join in the factoring process continuously,
due to:

• Availability. A zombie may not always be available to a spammer; a home PC
might only be powered on for brief periods every day, whereas a corporate com-
puter may be online 24/7. Here the availability is conservatively set to be 20%.

• Utilization. Even when online, zombies will not spend all their CPU cycles
factoring – the victims would undoubtedly notice the performance deterioration
and take steps to fix the problem. We take the utilization to be 25%, assuming
most users would not notice a one-quarter drop in CPU performance.

This gives us the following equation for an average zombie’s processing power,Pavg.

Pavg = processing power× availability× utilization

= 5,500 MIPS× 20%× 25%

= 275 MIPS

Now we simply need to multiplyPavg by the botnet’s size. [13] claims that some
botnets only have a few hundred zombies, so we take our “small” botnet to be of
size 300, giving 8.25× 104 MIPS. Some sources attest to botnets with over 100,000
zombies [5, 14, 33], and consequently our “large” botnet has 100,000 zombies with
2.75× 107 MIPS. Finally, to represent the “super” botnets of [34], we use 1,000,000
zombies yielding 2.75× 108 MIPS.

Table 2 gives the approximate time it would take to factor the RSA numbers given
in Table 1 using the different-sized botnets. Clearly at least a large botnet is required
for keys of length 640, although even small botnets could handle 512-bit keys. None
would be able to break a 1024-bit RSA key. Since no major CA uses a key less than
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Number Small botnet Large botnet Super-botnet
RSA-140 9 days 38 minutes 4 minutes
RSA-155 35 days 153 minutes 15 minutes
RSA-640 12 years 13 days 1.3 days
RSA-1024 6.8× 105 years 2036 years 204 years

Table 2: Estimated time for botnets to factor RSA numbers

1024 bits, we must conclude that this particular attack is practically infeasible given
current processor technology and cryptographic knowledge.4

3.3 DKIM /DomainKeys Forgery

Even if certificates are safe, perhaps there is some algorithm using RSA with shorter
keys, where 512-bit keys are required to be accepted, where relatively recent examples
of 512-bit keys in use have been seen. Like DKIM/DomainKeys.

Both DKIM and DomainKeys mandate support for 512-bit keys, although DKIM
requires at least 1024 bits for ‘long-lived keys’ [1, page 13]. A spammer who can use
their botnet’s computing power to recover an organization’s private key for DKIM/DomainKeys
can forge that organization’s signatures on email. Obviously 512-bit keys, even if per-
mitted, are not a wise choice in the face of big botnets.

3.4 Hash Collisions

Both certificates and DKIM/DomainKeys employ the SHA-1 cryptographic hash func-
tion. SHA-1 is currently in a weakened state, and increasingly better methods are being
discovered for finding collisions in it [36]. For now, this only means that two messages
can be found that result in the same hash value. What a spammer would want instead
is to be able to find message whose hash value matches aspecificlegitimate message’s
hash value; this is a stronger requirement. A spammer would then be able to substitute
their message for a legitimate one without having to crack RSA. The consensus seems
to be that it is only a matter of time before cryptography researchers are able to solve
this problem, necessitating a switch to a stronger hash function. The implications of
hash collision attacks are examined in [10].

4 Conclusion

Big botnets present a variety of challenges to spam and phishing defenses. A key part
of the problem, and the solution, is understanding the magnitude of the computing
power and information that these botnets put within reach of spammers.

4There are additional hurdles in terms of memory availability on the zombies [24], but the time require-
ments alone are enough to discount this attack.
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