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ABSTRACT

A review of the problems and solutions that arise
from the Lorentz-Dirac equation is presented. The tra- .
jectories for both the non—relétivistic and relativistic
' case are found for a particle influenced by external,
orthogonal electric and magnetic fields constant inzspace=
and time. Energy losses for these particles are also |
calculated. Finally the limits to the applicability

of the classical theory presented are discussed.
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CHAPTER I

INTRODUCTION

A) Toward an equation of motion for a radiating particle.
A fundamental property cf any:charged particle under-

going acceleration in an applied external field is that it

will radiate electromagnetic energy. This radiation of

energy will, in turn, affect the motion of the particle.

. The interaction between the radiation reaction of the par-

ticle motion with the electrodynamics of the particle may

be represented by the following diagram.

Maxwell's equations
- 2

Lorentz | Particle a Radiation‘

Applied external
field

forces dynamics ' field

-t 3

Radiation reaction

Figure 1-1. Schematic diagram representing the
dynamics of a radiating charged particle.

In Fig. 1-1, process 1l represents the effeéf of the
external field on the trajectory of the chéfgéa particle;
process 2 specifies the field produced by theaaccelérated
charge and process 3 indicates the resultant effect of ra-
diation damping by the radiation field. The trajectofy of
a classical charged particle (effects due to éuantum mech-
anics or poééible finite size of the partidle:aie ﬁét con-
sidered) must be described by Maxwell's equaﬁiohs (Which

describe the field resulting from accelerated motion) and
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by the equations of motion (which include the effects of
both the external and self forces). In the case Where the
radiation reaction vanishes, the equations of motion should
reduce to the Lorentz force equation. Diraé (1938) derived
a relativistically covariant differéntial equation describ-
ing the trajectory of a relativistic classical charged
particle emitting radiation whilerundergoing an acceleration:

— F

du, _ e v 2e? d?y, _ 1 duvduy _
dr. ~ mc Y * 3mcs| dte c2ugr dr (1-1)

where e and m respectively represent the charge and mass

of the particle, and F is the electromagnetic field tensor

Hv
described by;

0 , H, E,.
-H_ 0 H E ,
F = z X y (1-2)
My H  -H_ O E
vy X p/
-E, -E, -E, 0

and c¢ is the speed of light.
The following notation is used in this work: the four

velocity, u, is the derivative of the position with respect

U
to proper time,t ,
- w. = 9% |

H dt : S (1-3)
as. the velocity, Vi is the derivative of the position with

respect to ordinary time,t,

_ axy ,
Vi T ac o (1-a)

Proper time and ordinary time are connectedtby‘the fbllowing
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relation:
dr _ (- vi|% _ u?|% -
&~ [1- L)% - [ 8 (1-5)
where u? and v? represent the sums of the squares of the
spatial components of the corresponding velocities. The
coordinate system is chosen such that the interval, ds, -
is defined by:
ds? = c?dt?-dx?-dy?-dz? , ' (1-6)
(i.e. xl=—x1=x, x2=—x2=y, x3=-x3=2, and x4=xa=ct).
Derived from (1-6) the following relations (to be used
later) are obtained:
WwWu = c?
v ‘
Ve _ -
uu, = 0 (1-7)
oVe - Voo
uu, = mau,

In the relativistic (four vector) eqﬁations, the dots
over the variables indicate derivatives with respect to
proper time; in non-relativistic (simple vector) equations

they represent derivatives with respect to ordinary time.

'The Einstein summation convention is used for any repeated

index. OQuantities with Greek indicies are four vectors

(include time components) where quantities with Latin in-

dicies represent only the spatial components of the four

vectors. All relativistic quantities have the same dimen-
i

sions as their non-relativistic counterparts, i.e. u, and

T have the dimensions of velocity and time respectively.
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In general, equation (1-1) is usually written in com-
ponent form. The fourth (time) component equation, though,
is not an independent equation since it mgy be derived frﬁm
the spatial component equations and relationships (1—7)}
When v/c<<1l, the non-relativistic equations of motion

obtained from (1-1) and (1-2) are found to be:

%Lli = SE; + I%E(ijk—kaj) + %:;3 %—gi . (1-8)
This is the familiar Abraham;Lorentz equation which may
also be derived from a plausibility argument based upon
the principle of energy conservation for a non-relativistic
charged particle. (See Appendix A). |

Equations (1-1) and (1-8) are the exact equations of
motion for an accelerated, radiating point charge within
the framework of classical physics. Equatién (1-1) known
as the Dirac~Lorentz equation, is one of the mbst contro-
versial equations in the history of physics. A number of

different approaches [e.g. Dirac (1938), Wheeler and Feyn-

man (1945) and Rohrlich (l965ﬂ to the problem of radiating

" charges have resulted in the same equation, yet, the terms

that represent the radiative reaction effects continue to

present mahy physical difficulties.

B) Runaway solutions and pre-acceleration.
The obvious appearance of the third time derivative
of the position in the Dirac-Lorentz equation sets the

equation apart from all other classical dynamical equations



which determine completely the trajectory of a particlé
(given the initial position and velocity) . * In order to
obtain the exact trajectory of a radiating charged particle
a third known condition must be introduced.

Specification of say an iﬁitial acceleration is not
the only problem resulting from the ﬁhird time derivative
term. So called "runaway" or "self-accelerated" solutions
result from (l-1). Writing the non-relativistic equation -
in the familiar Abraham-Lorentz form (we use tﬁis equafion

since we are concerned only with the term ﬁv),
?ext = mv - mr,v ‘ (1-9)

2 e?

(where T,= 3. mas and F represents the total force on the

ext
particle resulting from the external electromagnetic fields)
and set the external force equal to zero, it becomes ob-

vious that the two possible solutions are:

. 0 .
V(t)= (1-10)
3oet/T°
where go is the acceleration at time t=0.

Only thé trivial solution is reasonable physically,

* A new equation of motion in which the radiative reaction
terms are dependent upon the applied external field and the
particle acceleration has been suggested by Mo and Pappas
(1970). While the equation is of second order and the sol-
utions for certain cases are indistinguishable experiment-
ally from the solutions to the Dirac-Lorentz equation, it
has yet to be shown that the radiative reaction term is
expressed by B2e3)/(3nQ]FuvﬁV for all electromagnetic forces.
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since it allows the velocity to be constant (this solution
being a special case of the exponential solution when 3O=0).
The second solution, in physical terms, is clearly absurd
since both the velocity and acceleration grow exponentially
without limit as t in¢reases. This non physical solution
states that even without external forces present, the part-
icle must gain energy only from itself.

Runaway solutions may be overcome by introducing asymp-
totic conditioﬁs. One such condition is that as the.charge
of the particle tends toward zero, the radiative effects
become negligible, since the self fields ténd toward zero.

The second condition and the .onemost often used is that in

the limit of increasing time the acceleration must tend

toward zero, or

lim
T-r®

ﬁu(r) =0 (1-11)
It must be remembered that these conditions are not arbit-
rarily imposed. They are statement; of physical reality
and therefore are an essential part of the description of
charged particle motion.

Defining the total force, KU(T) as

_ e v 2 e2sve
KU(T) = —F u 3 osU U

UV (1~-12)

v
where the second term on the right hand side represents
the rate af which the electromagnetic four momentum is
emitted, equation (1-1) may be written.as:

m(ﬁu—roﬁu) = KU(T) : (1-13)

Multiplying (1-13) by the integrating factor eTT/TO the
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equation of motion may be rewritten as:
d -t/ Tae 1 -1/t ‘
[l o) = e o K. - .
dT[e uu(r)] Mg e u(T) (1-14)

Integrating (1-14) between the limits T and «, the general

solution for the force on the particle becomes

T/T '
. _ e o -t/T . . _
muu(r) —?g- JTe 0 KU(T )y drt (1-15)

The asymptotic condition (1-11) has been used to imply the
weaker condition

lim
T+

e T 4 (1) = 0
u

The integro~differential equation of motion (1-15)
differs from other equations of motion of classical mechanics
in that the acceleration at time, T, depehds upon the
weighted average of the force overalj.futufe time, rather
than on the instantaneous value of the acting force. The
presence of the factor, exp -(t'-T)/T, indicates that time
intervals of the order of 1, are involved. 1In order to more
clearly view the behavior of the forces involved in the
acceleration process, a new variable of integrétion will be
introduced:
l
T

o = (t'-1).

Equation (1-15) may then be written as:

. (" ~0 —_—
muu(r) = JOKU(T+GTO)G dcr | (1-16)

Equation (1-16) can be regarded as a physically reasonable



equivalent to the Dirac-Lorentz equation, (1-1). All
solutions of (1-16) satisfy (1-1), but, ruhaway solutions
do not occur. A new difficulty, however, is introduced by
(1-16) and this is the violatiqn of the traditional concept
of causality. It is evident that the acceleration at time
7, depends upon the force acting at all times rather than
atT only. Also if the force K]J is zero at some time Tyr
the particle still experiences an acceleraﬁion at times
less than Tl' Therefore the equation of motion (1-16)
predicts a "pre-acceleration" of the particle‘before the
time of the application of the force.

The time interval over which this pre-acceleration
occurs for an electron is of the order ofiro;6.27xlo—24:
sec., which is the time tﬁat it takes light to travel
two-thirds of the classical "radius" of the electron. (For
other particles 1, would be smaller since the mass appears
in the denominator). Such a short time intervél is defin-
itely beyond the limits of meésurement, and, while micro-
scopic causality is violated by the solutions to the
integrodifferéntial equation, macroscopic causality is

still satisfied since it is impossible to apply an ex-

ternal force within a time interval as short as Toe

The subject of pre-acceleration has been discussed

in detail by Wheeler and Feynman (1945) who find that

24

over time intervals of the order of 10~ sec. it is not

possible to distinguish between the advanced and retarded



interactions between particles in the universe. However,
over longer time intervals the usual relations of physics
(which contain only retarded reactions) are valid.

All of the shortcomings of tﬂe equation of motion
for radiating classical charged particles have been studied
extensively. Excellent reviews of the problems occuring
in the radiative reaction equations may be found in Rohr-
lich (1965), Erber (1971) and Hughes (1971). It is fair
to say that in the realm of classical electrodynamics the
Dirac-Lorentz equation is "probably" the exact equation
of motion for a point charge. Usage of the term "probably"
is applied because the microscopic results of this equation
have yet to be tested experimentally.

In the remainder of this thesis, further theoretical
arguments in favor or against (l—l)‘will hot be presenﬁed,
but rather it will be treated (pe;haps naively) as the
basic equatidn describing the motion of a charged particle
undergoing radiation reaction. From this assumption we
shall proceed to derive observable results that may pos-
sibly be foﬁnd experimentally. An analysis,of‘both the
non-relativistic and relativistic particle motions in
orthogonal, uniform, static magnetic and electric fields
is made. The motivation behind such a choice is two-fold.
Firstly, from the experimental point of view, redent
developments in particle accelerator technology make pos-

sible the generation of magnetic fields of the order of
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107 gauss:in the laboratory ailowing electron beams of
energies reaéhing to a few hundred GeV to be‘soonravailabie
[Herlach (1968) , Herlach, et. al. (1971)]. Secondly,:
synchrotron radiation plays an important role in astro-
physical applications, and the Dirac—Lorentz equation is
the basis fér describing this cosmic phenoméhon[?okolov |
and Ternov (l968)]. There are however limits:to the
applicability of classical theory and théserwill be dis-

cussed lateﬁ.



CHAPTER II

SOME SOLUTIONS TO THE DIRAC-LORENTZ EQUATION

A) Existence and unigqueness of solutions

Having seen in Chapter I that the equations of motion
for a charged particle give a number of solutions that
are meaningless in physical terms, the major problem
with the Dirac-Lorentz equation becomes one of isolating
the physically valid solutions from the infinité number of
non—physical solutions. It is therefore necessary to en-
quire into the existence and uniqueness of the soiutions
to the equationé before attempting to solve them. More
precisely, we are interested in the conditions that allow
us to solve the Dirac-Lorentz‘equaﬁion meaningfully and
whether our.solutions are unigque for the éhysicaliy rea-
sonable initial conditions that are specified. |

The proof for the exisﬁence of the solutions (for
certain weak conditions) was presented by Hale and Stokes
(1962) who used extremely complicated mathgmatical tech;
niques well beyond the exposition of this thesis. Only
the essential features of their results will be presented.
The starting point of the proof is with the third order
differential equation of motion (1-1) together with the
asymptotic ‘condition (1-11). Here in lies the difficu}ty.
If the asymptotic condition did not have to bé satisfied
the exisﬁence'and uniqueness of the solu%idnsrtozequation

(1-1) would simply follow the standard theorems of ordin-
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ary differential equations. Being a third order differen-
tial equation, the Dirac-Lorentz equation will have a
unique solution over any finite time interval when the
three initial values, xu(O), uu(O), and au(O) are specified
and certain analyticity conditions are satisfied. Since
there is a need to specify the initial acceleration, there
is an indication that equation (i—l) cannot be an equation
of motion. In Newtonian mechanics such equations provide
knowledge of the acceleration at all times. The asymptotlc
condition is exactly what is needed to eliminate thls
difficulty. It has already been shown that the third
order differential equation, together with the asymptotic
condition is equivalent to the second order‘equatien (1-16) .
Therefore only those 1n1t1al accelerations that glve sol-
utions that satisfy (1 ll) are the only admissable ones
among all the possible initial accelerations.” This is the
much more difficult problem of the existence of solutions
to the equations of motion with specific asympotic con-.
ditions. | |

The most importaht results obtained by Hale and
Stokes coneefning the existence of solutione to equation
(1-1) with the asymptotic condition (1-11) can besstated
in the following two theorems. Here the position, x, is
defined by the relation; x|l = (xuxu)%.

Theorem 1. There exists a solution x(1) (0S7T< «) of

the equation of motion (1-16) which satisfies the asymp-

totic condition (1-11) for any initial set x(0) and u(0)
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provided:
(a) lIx (0 < (b) IF (x,u, 1)Ko (1) is continuous

(¢) 2(t)>0 for T=w (a) fo d(t)dr <w

Theorém 2. There exists a solution x(T) (1481<> ) of
the equation of motion (1-16) which satisfies the asymptotic

condition (1-11) for any initial set X(Ti) and u(Ti) pro-

vided: .
(a) IF(x,u,t)]< p+q”E|’ where p20, g20, r>1
fIx ,
_ 2 2 i;i 2
here yull = (y*+y u.u ) = (2y°-1) >1

(b) Ts is such that

th

in

HX(Ti) 4 u(Ty) (T-T4)
T T

T>T.,
1

1/n
> a(p+quu(rinlr+LE§E§%J

where g‘=rl/(n—l) Tin_l

n
| J— T4
and To = Tprq) W (t N i () FE (Faia (T )]

>TO

Theorem 1 admits all forces that are integréble and
bounded. Theorem 2 admits a larger class of forces but
puts restrictions on the initial time, the initial velocity,
and the initial position. Solutions satisfying more gen-
eral conditions presumably exist, but these gheorems never-
theless seem general enough to include all cases of phys~-
ical intereét. |

The next general question concerns the uniqueness of
of solutions. To a physicist it may seem infuitively ob—

vious that given certain initial‘conditions'x{ri) and u(Ti)
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the solutions of any equation of motion are unique due to
the priﬁciple of causality (causality here implying not only
prediction but retrodiction as well). Yet, to remain math—‘
ematically consistant it is essential to héve a proof éf a
solutions uniqueness. To date no such proof exists [Grandy
(1970)]. The uniqueness problem must be considered one of
the most important unsolved problems concerning the Dirac-

Lorentz equation.

B) Non-relativistic solutions.

In most problems where a known external force is
app;ied, an exact solution to the Dirac—Lorentz‘equation'
is impossible to obtain. For this reason approximation
methods for‘obtaining the solutions must be used. The
simplest and easiest approximation that can be made is
to deal with a non-relativistic particle. In the lower
velocity limit (v/c <<1) equation‘(l-l) becomes a simple
vector equation (1-8). Sincg (1-8) does not contain the
non-linear terms but only the second time derivative of
the velocity, the non-relativistic equation may be solved
using well-known techniques for solving brdinary;zlineér
differential equations.

Equatidn (1-8) is applicable only to the extent that
the damping force is small compafed with thé force exerted
on the charge by the external field. The‘physical mean-

ing of this condition (within the framework of classical
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‘electrodynamics) may be clarified as follows: The second

time derivative of the velocity in the system of reference
in which the charge is at rest at any given moment, (and

neglecting the damping force) may be set to-

Ve

._;.

e e
Vo= — 4+
mE

vxH - (2-1) -
mc ﬂ
3 ' . .
In the second term substituting v=§§ ( to the same order

of accuracy) one obtains:

v=2F + - BE L (2-2)

m m2c

For the non-relativistic equation of motion the damping
force is simply described by:;

2.2’ 4%
3

mc3 dtz (2-3)
Therefore the damping force (2—3); using equation (2;2)

may be written (to the first order) as:
y_2¢e 3,2 e 2o
~ 3 mc3 3 m2c* ~
If one defines a frequency of motion, §, then E is pro-
portional«to‘ﬂﬁ, and, consequently, the first term becomes

edQE

of the ordér g while the second term is of the order

4 , o B ,
%7%%. Therefore, if the damping force is. to be small

compared to the external force exerted on'tﬁe‘charQer(éf A
the order eE)‘the following condition must hold:

eZ

—=38 <<l or introducing a waveléngth,A,~c/Q

» - :
A >> ma2 . ) \, (2-4)

Thus relation (2%4)'states that the radiétion'damping
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in the non-relativistic case is applicable ohly when the
wavelength of radiation incident on the charge is large
compared to‘the classical radius of the particle. Here
the classical limit e?/mc? appears as the value where
classical electrodynamics leads to internal contradictions.

Secohdly, comparing the external field with the second
term in the radiative force, sets the condition for the:

size of the magnetic field:

2 4

m<c
H << ~ 7 (2~5)

Having set limits on the physical quantities for
which the Abraham-Lorentz is valid, the solutions to
equation (1-8) may now be found. Plass (1961) has shown
that as long as the applied external forces are both |
finite andgcontiﬁuous, analytic solutions to thefnon—
relativistic equation of motion exist. Using a number of
special cases Plass was able to obtain theAtrajectofies
of particles subjected to different applied forces. One
such case was that for a charged particle moving in a
constant magnetic field.

Assuming the magnetic field # to be directed along
the z~axis in the normal Cartesian coordinate system, the

equations of motion (1-8) may be written in component

form as:
dv d?v
ey QU = X =
dt To dtz WVy
g’.l’.y -— dzvy = -3V
at To Jt2 WV
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avy _ ’v, _ 7 - |
at. "o gez = 9 (2-6)
where w=eH/(mc) is the cyclotron frequency of the particle.

The exact non-divergent solution to these  equations may be

written in the form:

‘vx(t) = VX(O) e—art cos a.t
v, (£) = v, (0) et gin a,t
v, (6) = v (0) (27

where the phaée factor is chosen such that vX(t=0)=vX(0)
and vy(t=0)=0. The values of the constants a; and a, were

determined by substituting the solutions back into the

%‘
-1
S (PSRN IS L
T, | s (L Toff):)h

original equations:

S5 1

- ‘ 1)
T, 1.{[ %+%(1+16Téw?)2]

(2-8).

Qo =

The sQlutiohs above describe a motion that is an
exponentially damped circular motion about the magnetic

field.

C) Relativistic solutions.

It is not possible to solve the relati&istic equations
(other than in oﬁe dimension) exactly sinceithey involve 
the cross products between the different Velocity compon-
ents. For the one-dimensional case Plass_(l961) and thr;
lich (1965), using different methods have shown that as

long as the external force is known explicitly as a bound-

S
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ed function function of proper time, exact‘sdlutions to
the Dirac-Lorentz equation may be thaiﬂed.

Since the exact solutions to the three dimensional
equations are, in most cases not known, the solutions'musﬁ

be obtained in an approximate form. The most obvious and cer-

tainly the most often used method is the perturbation :

series approximation; This method uses thé’integrodif4
ferential equation (1-16) and begins with tﬁé fact that
the characteristic time'Q)is small compared to our proper
time scale, T; and thus a Taylor series expansion about'
T is made. If the force is slowly varying in time, the_

series may be expected to cohverge rapidly.

’ % n .
KU(T+0T0) =y (Unfql ‘%%n KU(T) (2-9)
s n=0 !

Assuming also that the integral in ;lﬁ%G)His abség
lutely and unifofmly convergent, then_the,suﬁmation“and
integration processes are interchangable. ,Substituting ;
(2-9) into (1-16) we obtains f |
| ' 5 an

do = § 1" S Ko(T)
n=0 dti "t

. ® 7T
mu, (T)= )
H n=0

Tt gl
n: drnh

KU(T)JOOne'G
(2-10)

Uéipg,the definition (1-12) and definingrthé total radi-

ation rate; R, as ‘ | |

2. \){1
3 v

= 2 .
Rh— 3 u

o [¢]

equation (2-10) may be written (keeping on;YTthe first

few terms) as:
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. _ e
4 ()= 2o F u + T (T

v_ R(1) d re . vy_d (R(T)
mc ~uv cz ut Tolarime v ) dT( uu) +

+ 0{1o%} L (2-11)
Therefore the non-local second order equation (1-16) is
equivalent to the local equation (2-10) with an infinite
number of derivatives. Equation (2-10) in the zeroth
order (i.e. neglecting the radiation terms) reduces to the
well-known Lorentz force equation,

- _ e v o _
ulJ = nG Fuvu (2 12)

The first order approximation is:

* e v 1 e Ve Y
= = - —— F +
u F oou cZRuu+ To c{u v Fuvu

(2-13)
This equation includes all terms of the orderTb (since R
is of the order of Tyr it must not be neglected). ~Unless
the force varies rapidly in time, this approximation is
the most often used due to the small magnitude of Tye
Succesive terms of higher orders of To may be added but
these are extremely small and. add only miﬁute corrections
to the effects of radiation damping. 1In classical physics
the expansion of equation (1-16) beyond terms of the order
of T, is not very interesting since there'seems to be nor
classicél‘process by which terms beyond the first order may
be observed. Furthermore, it is well known that equations
(2-12) and (2-13) are excellent approximations for the
motion of a cha;ged particle in an electromagnetic field.

(Terms of the order 102 have been included in the solutions

obtained by Chand (1971) to describe the effects of radi-
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ation reaction on an energy spectrum of oscillating elec-
trons as a means of illustrating the perturbation technique
in classical physics.)

Gernet (1966) making use of equation (2-13) solved
for the motion of an electron in a conséant, static magnet-
ic field. Since the field was constant in space and time -
the term representing the change in the magnetic field was
neglected and the solutions Were found to be (to the first

order of TO):

- -aT_,
u, (1) = u(0)e sin (wt+0 )
u (1) = u(0)e *Tsin (wt+0 ) (2-14)
y * 0
_ 2 e"‘Hz_ 2 .
where a= T mios W T,e Gernet also made the assumption that

wT <<1 (i.e. the damping terﬁ was extremely small).
Similar results have been obtained by Herrara (1973)
who obtained the solutions to the sixth order of T using
the same approximation of the equation of motion that Gernet
used. From the results of these authors it is quite ob-
vious that the motion of é relativistic point charge in a
constant, static magnetic field will be represented by
an exponentially damped spiral and the damping is directly
dependent upon the maénetic field strength squared.
Shen (1972) used the fact that extremely relativist-
ic velocities and with strong radiation damping (wTo =1)
the dominant radiative term is %zRuu [See Landau and

Lifshitz (l965ﬂ . One simplifying approximation that
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can be -made is that for this case is that véc.
Writing the equations of motion in the rest frame
of the particle, (which would then travel under the in-
fluence of an "electric field" of the order YH) Shen ob-
tained the following solutions:
u = u e %1 {Tygg o, (T)sin ¢
X o o
u, = uoe-al(T%os oy (T)sin ¢
u, = u  cos ¢o (2-15)
where ¢o is the angle between the initial Velocity, u,
and the magnetic field H at T=0. Also,
_ w?to | w? Ty 2
o1 (1)= Ve T[1+ oyt oft, }]
T (= Uy HHU N |

Yo = (l-u ?/c? )7

In these solutions, Shen maintained terms of the
order of (@?Tg) suggesting that those terms of fhé order
of wty, are nearly of the same magnitude as the terms desF
cribing the external Lorentz forces. The magnetic fields
used were constsant in both space and time.

In 1971 Mitchell, et. al. (1971) solved the first

order approximation equation for a particle influenced

by constant aligned magnetic and electric fields. The

equations of motion were written in the following form:

u, = w(uy L Xux)

u_ = w(—ux - euzuy - Xuy)
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a, = wx(l-u,?) | ' (2~16)

where e= E/H is the field strength and the diménsionless
quantity y, is defined as X=w(l+€2)To.

Since u, could be solved for independently, and then
substituted into the equations for ux(and uy’ the sol—-

utions may be obtained as follows:

u=u (0)e XTsin(wry + 6,) sech(wyxt + ¢o)

u,= u, (0)e “XTcos (wt, + 8,) sech(wxt + ¢o)

u,= u (0) tanh(wxt + ¢o) ' (2-17)

where 6o and ¢, are constants to be determined from the

~initial conditions. Equations (2-17) show that u# and u

decay expohentially with proper time while the electric
field accelerates the particle along the field line.

What one would obsefve would be a particle travelling in
a helical motion with and exponentially damped radius and
with a decreasing pitch.

The problem of radiating charges travelling in or-
thogonal magnetic and electric fields has not yet been
studied, and yet there exist a number of physical sit-
uations where this field configuration exists. The re-

mainder of this thesis will therefore dealkwith the sol-

utions to the equation of motion (1-1) in which the

magnetic and electric fields are constant in space and

time and are perpendicular to each other.



CHAPTER IIIX
THE ABRAHAM-LORENTZ EQUATION FOR A CHARGE

IN ORTHOGONAL MAGNETIC AND ELECTRIC FIELDS

This chapter will deal with the solutions to the
non-relativistic equations of motion for a charged par-
ticle moving in orthogonal magnetic and electric fields
that remain constant in space and time. Sihce'the vel-
ocities are assumed to be much less than the speed of
light, equation (1-8) may be applied to thishproblem.
Observing that (1-8) is linear, the solutions may be
found analytiéally. The spatial component equationsj
obtained from (1-8) will not be linearly independent
since they involve the cross-product of the Qelocify
with the magnetic field, nor will the equations be homo-
geneous since the non-homogeneity is introduced by the
addition of ‘an electric field. Therefore (1-8) may be
solved as a system of non-homogeneous second-order dif-
ferential equations for‘the parameter, t.

Using a Cartesian coordinate system,{the direc-
tion of the magnetic field will be chosen to be in the
positive z—direction with magnitude H, while the elec-
tric fieid will be directed along the x-axis with mag-
nitude E. |

The equation of motion (1-8) may thén.bé.writteﬁ in

vector form as;

N

3
v

=110]
=y
+
<4
X
oy
+

wjto
<

al°
Ik
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Written in component form (1-8) becomes:
g =S gy + 2S5 4+ &g
X nc vy 3 med'x m
. _ -e 2 e? .
Vy T e Hvy + 3 mcsVy
. _ 2 e? .
Va T 3 moez (3-1)

where the dots above the velocity components now rep-
resent derivatives taken with respect to ordinary time
(in the non-relativistic case proper time and ordinaty
time are equivalent).

The third equation is seen to de-couple from the

equations involving the x and y components of the velocity.

Solutions to the z component equation have already been
discussed in Chapter I. Only the physically meaningful
solution i.e. vz(t)=constant will be accepted. The con-
stant will be chosen from the initial conditions for v,
In the case at hand if v, is the magnitude of $(t) at
t=0 and 6, is the angle between the velocity and the
magnetic field vector at the initial time, then the.
constant equals v cos 6 . The solution that results in
the exponenﬁial runaway has been discarded. Therefére,
the velocity component directed parallel to £he magnetic
w}ll bg constant and‘consequently not be inflqeﬁced by
any exterhal forces. E

The equations concerned with the x and yAcomponents
of the veléciﬁy must be solved as a system of eéuations.g

Firstly, the equation must be solved exactly neglecting
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the inhomogeneous term and then secondly using a var-
iation of parameter technique, a particular solution
may be obtained for the inhomogeneous system. Combining
the exact non-divergent general solution pf,the homo-
geneous equation with the particulr solution will allow

the velocity and hence the trajectory of the patticle to

+be calculated at all times, t.

»

The homogeneous system of equations may be written as:.

- eV, t+t ww. v, =0
X 0 x o'y

VY - woéy - ww v, =0 7' ' (3-2)

where wo=rglf(3/2)2%3 and w=%% are the fundamental radif

ation frequency and the Larmor fregquency fespectively.>
Introducing two new variables, a, and‘a?, (which

may be thought of in physical term as thefxland y com- -

ponents of fhe acceleration) defined by:

a, = Vg ay =’vy 1 (3-3)

the system of two second-order differential equations
(3-2) may be written as a system of four fifst—ordér
differential equations. Since a good deél of linear
algebra will be employed, another simplifying proceea—
ure will be to rename the velocity and acceleration com-
ponents as follows:

u,=a

U=V, u3=ay u,= “ (3—4)

b4 4 'y

The system of equations (3-2) may now be written as:

 gl - woul + wwou4 = 0
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ﬁz -uy = 0
ﬁ3 - wouy - e u, =0
ﬁ4 -u,; =0 | (3—5)'
Assuming that each u, is a solution of the exponential
form: milKnm e>‘th = u, and substituting these back into

the system (3~5) each Am may be found. Writng the equa—
tions out fully, is tedious but the proceedure may be
simplified by writing the determinant of the coefficients

of the linear equations in (3-5) as

(Am‘wo) 0 | 0 w0
1 —Am 0 0 =0
0 ~ww (Am—wo) 0
0 0 1 —Am
i 2 2y 2 2,2 - (3-
or, Am ZwOAm + W, Am + W, oW 0 (3-6)

From (3-6) the values oﬁlkm may be obtained. This may be
accomplished by the substitution Am=wm+%° in which case

(3+6) maynbe rewritten as:

w. 't o~ QQZW 2 4 QQH + (wwo)? =0 (3=7)
m 2 "m 16 0 '

Solutions tpo (3-7) are the complex humbers:

= 9&2 +
W T 1 % (wwo) 1

« . (1)2 o\ 1 Ll)z ’lv .
deflnlng‘£=(zﬂ + wwol)z and n=(—4:Q + wwpt)? one obtains

wq=g Wo==E Wa=n W,="N (3-8)
The constants & andn.may be determined easily from

simple trignpmetrié applications (see Appendix B) as:
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& % ( 2 1%
£ o= | L2 +(ow,)? 1y Wo
16 0 2 8/ +
\ Wyt 16+ (wwo) 2 |
( 1
iz wo . (3-9)
)
N 8"/EO /lG'*'(wwo) 2 )

and n is the complex conjugate of £. Since Am=wm+%° ’

the values for the decay constants have now been found.
The determinant of the coefficients, kpp will be found by
another substitution of the assumed solution ihto (3-5).
One then obtains from (3-5)
(A~ Wolkyy, + wwok, =0

- AmK = 0

Klm 2m

—ww0K2m+ (Am— wo)K3m = 0

Ka = A_K = 0 (3~10)
m

3m 4dn
Since the determinant of these equations is zero, the exists
(according to Cramer's rulef non-unique solutions for the
coefficients. Therefore an arbitrary choice for the value

of one coefficient will determine the remaining coeffic-

ients. Choosing K4m=l, the remaining coefficients become;

K3m = xm

Kom = A~ wo)km/wwo

Kim = (g~ wo)A*/ww, which leads to (3-11)
Kgm = -(Am— wo)zkmz/(wwo)2= 1 is the same expres-

sion as eq. (3-6). Solving explicitly for each coefficient

K nm (by substituting the appropriate values of - into the

expressions above) give the following result:
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Lge +p) PG -a) -ige ) -G -m
{ i - -
K =
o (5 +E) (5% -8) (32 +n) (52 =n)
1 1 1 1
(3~-12)

The general solutions to the homogeneous equatioh have now
been obtained. The constants of "integration, knm’ are to
be determined from the initialrconditions on the velocities

(and accelerations if needed).

- - 1\ P Amt
u; = a, = t% Kig (F1)7 Age
_ — T - P Amt
u, = v, = 1% ko (F1)7 e
R Apt
uy = ag = % Kam Ap ©
- - ‘ Ant ,
uy = v, = ke (3-13)
0 when m=1,2 .
where p satisfies the condition p= o . (3-13a)
) ' 1 when m=3,4

Since‘the solutions (3-13) are the parémeﬁric ex-
pressions for the trajeétory of a particle travelling
under the ihfluence of an external constaﬁf magnétic
field atrnon—relativistic velocities, the“velocity coﬁ;,
poﬁents sﬁould be similar to those obtainédlby Plass (1961).

Using (3-13) and (3—8) the velocity‘cqmponents may
simply be written: |

vx(t)= %Q e(wO/Z)t[egt+e—£t—ent—éfnt]i sinQb
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vy(t)= %Q e (Wo/2)t e£t+e~gt+ent+e"nt]sineo
(3~-14)
where voiv(t=0) and 8, is theinitial angle between the |
velocity and magnetic field vectors.
_Upon defining v= %%h+ kwwo)2 and then define the quan-

tities, a; and a, as

. ‘
= (Y5, wo®y % o, = (XL woyE o
oy = ( 5 T 5 ) and o = ( 5 5 ) (3-15)
equation (3-9) may be written as;
E = o1 + 10, n =oa; - 10,

therefore (3-14) becomes

' t -ot {azt ‘—{azt
_ (wo/2)t [e*1t-e %2t o .
vx(t)—'voe — 5 :1s1? 8o
= _Voe(wo/Z)t sinh(a:t) sin(ast) sin eo
; t, =0 ty ( i02t, —la,t
- (wo/2)t [e%1T4e™ %2 e +e: .
Vy(t)f_voe‘ 5 PR sin eo
= voe(mo/z)t cosh(a;t) cos(a,t) sin eo © (3-16)

In order to compare these results with those of Plass,
a; and dz will be written in terms of wand Wo. Using
(3-15) and remembering that T Wo =1:

__ulol_]; 2 2y%5]|7
o = 3 [§+2(l+16T0 W) ]

i

o= Wof l,1 2,2y%|”
Equation (3-~16) is the most general solution to (3-2)
and therefore will contain "runaway" solutions as wéll

since the asymptotic condition (1-11) is not included in
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the equations of motion (3-1). Picking out the non-diver-
gent terms gives as the physically valid solution;

v (t) = v e % gin (wst) sin ©

b4 o o)
v. (t) =v e_wltrdos (wot) sin 8 (3-18)
Y 0 0

where w;=0;— wy/2 and w2=0z.

Equation (3-18) is found to agree with the results of
Plass in that it also describes an exponentially damped
circular motion about the magnetic field.

The effect of the orthogonal electric field on the
particle trajectory must now be accounted for, and it was
this field that introduced the inhomogeneity“into the equa-
tions of motion. Therefore using a variation of parameter
technique, a particular solution for the inhcmogeneous
system of equations may be found.

Substituting functions of the parameter, t, in place
of the constants of integration in the general solution,
will give one a particular solution to the inhomogeneous’
system of differential equétions. These functions are
chosen in such a way that they satisfy the following system

of equations:

At _ eEwg

" -1\ P
k (6) (1P 2 e

SM.

m
]k (6) (-1)P Mt = o
n
> )\nt _
% k, (£) A e = 0
Y k_(t) e’nt = g
n n
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where n runs from one to four and p satisfies the condition

(3-13a) and kﬁ(t)=

system of equations is

Here

A
i

Al
il

Ae
]

integrating fhé'expressions above with respect to time

1A, e

A1t
1

{el;t
léxlt

e

‘A
At

the fact that (A1+A2+A

Therefore
D~1 wQeE
m
D-l wQeE'
m
D—1 wQeE
m
p~! wqeE
m

1A

A

‘Kzt
28
feh2t

Aot
2e

ekzt

d
at Xn

(t).

or

D = 4(0,=A1) (3= )e

by Cramer's Rule;

1

_Ie (2000—)\1) t =

1o (200-A2)t _

{é(2mo—>\3) t =

1o (200=A )t _

gives the following functions:

kl(t)r=

m

:_wdeE exp(-A;t) .
“ 2x1 (A2=23y)

k, (t)

{ex4t

X4t

4
ek4t

Z(Dot

has been used.

1eE exp(-Ait)

2m(Az2~-A1)

~-1eE exp(-A.t)

2'm()\2—>\1)

-1eE.exp (-Ast)

2m(Au=A3)

1eE exp (=Ayt) .

2m(Ay—A3)

The determinant of the above

Q@éE‘exp(—Azt)‘

m 2X2(A1=22)
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- woeE exp(-Ast) _ woeE exp(-Ayt)
k() = = e amds) a8 = T

The particular solutions may then be obtained by sub-
stituting the expressions for kn(t) into the general sol-

ution expressions (3-13) as follows.

Wpare = 1) Ky (8) (1P r et = o

Yopart ig kn(t)(_l)p ' = 0

u3part - g‘kn(t) Anexnt =0

Ypart g Ky (8) ein® - gc | ﬂ (3-19)

The particular solution appears in the y coﬁponent of
the velocity only and is a constant proportional to the
ratio of the electric field to the magnetic field. As ex-
pected the particular solutions for the acceleiation com-—
ponents are zero since as t+» the acceleration components
must approach zero. It will be noted that the constant
velocity, %c, is simply the "drift" wvelocity 6f'a particlé
travelling in brthogonal electric and magnetic fielas and
is perpendicular to the plane in which the fields lie.

Since the particle undergoes damﬁed motion as a result
of the magnetic field only, the trajectory of the particle
will be a damped tfochoid. Integrating the velocity:com~
ponents from (3—18) and (3-19) over time gives the para-
metric expression for the position of the particle at time,
t. The expressions therefore are:

. ~-w1t
~vo sin §,e

wi?% +wo?2

x(t) = (0; sin(wst) + w; sin(wat))
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. -wit
-vo sin 6, e !

(,012 + (1)22

v(t) = (w2 sin(wzt) + w; cos(wyt)) +

+ iEI—ct o (3-20)

The damped trochoid motion may be described in three
different forms; prolate (or lqoping trajectory), cuftate.
(or smoothly rounded), or cycloidal depending uponvthe
rate at which energy is lost by the particle. .Since the
rate of energy loss is dependeﬁt upon the field strengths,
the type of particle trajectory will also be specified by
the size of the electromagnetic field. A more detailed
description of particle trajectories and energy losses
under varying field configurations and strengths will be

handled in Chapter V.



CHAPTER IV

THE DIRAC-LORENTZ EQUATION FOR A CHARGE

IN ORTHOGONAL MAGNETIC AND ELECTRIC FIELDS

The relativistic equations of motion (141) cannot
be solved exactly, since they involve the cross products
between the different velocity components. Non-linear
expressions are therefore introduced into the radiative reac-
tion and approximation technigues must be relied upon in
order to obtain a solution to the equations of motion.
Thus far two different methods have been used. Plass (1961)
using Picard's method assumed the non-linear terms (which
are of the same order as the third time derivative of the
velocity components) to be small compared with‘the vel-
ocities, and the first and second time derivatives of the
velocities. This method of successively approximating the
solution to arquasi—linear differential equation in powers
of 1o, allowed Plass to obtain approximate solutions to
the equation (1-1) whic¢h were very similar to the solutions
to the non-relativistic equations of motion. Once again,
motion was restricted to being in a uniform, static mag-
netic field. The second method of solution, the pertur-
bation seriesrapproximation of the equation of motion, has
already been described in Chapter II.

Upon treating the motion of a relativiétic charged
particle in orthogonal electric and magnetic fields, the

latter method shall be used to obtain approximate sol-
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utions to equation (1-1). Since terms éf the order 102 and
cannot be observed classically, the first order approxim-
ation, (2-13), of equation (1-1) will be used as the equa-
tion that fully describes the trajectbry of a radiating
particle. It will be remembered also that equation (2-13)
was derived using the asymptotic condition (1-11) and
therefore solutions to (2-13) will not contain the diver-
gent terms that appeared in the solutions found in the
previous chapter.

In order to write equation (2-13) in a usable form, the
assumption that wty<<1 must be employed. Since Ty is such
a small quantity the magnetic fields that réquire wTo= 1
are of the order 10!°Gauss and therefore the assumption
that the Larmor frequency, w, is much smaller than the fun-
damental radiation frequency, w,, is valid physically.

Writing equation (1-1) in the form

. _ e v _
uu et Fuvu + Tu (4-1)
where T =2 e’ i -, u Y4 is known as the Abraham four
u 3 mc3u ¢ u Y .

vector which describes the radiative damping force. The
Abraham four vector may be written, to the first order
(making use of (2-12)) as

e v d

Ty = To me? [u a

V| 1
- A
Fuv +Fuvu ] czRuu (4-2)

Applying the condition wt,<< 1 allows the acceleration
to be of the same order as the Lorentz force divided by the

particle's mass. Equation (4-2) then becomes:

- & f_v,Ad e . VA ] 2 e?1, Ay rovn
I =T, mcz[ u’u dx)\Fuv+mcFu>\F v] 3 moe (Fopu) (FV ) uy,

(4-3)
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where the definition of the four velocity uk=%§x and
the chain rule have been employed. Equation (4-3) has
also been obtained in a different manner by Landau and Lif-
shitz (1965). The first term vanishes only if the field is
constant in béth space and time due to the interdependency
of space and timé in relativistic theory.

Both the electric and magnetic fields considered in
this problem will be constant in space'and time, therefore
the first order approximation of equation (1-1) may be
written as,

e? v 2

=S p Y e _(r PV )4 _
U, mcFuv T°m2c5FuAF uv+T0mcs(FvAF u un)uu (4-4)

Upon choosing the directions of the electric and mag-
fields to be along the z and x axes respectively, the spa-
tial components of equation (4-4) become (see Appendix C);

e .

< _ 2_ 2 2 22
U%™ mc Y ——_EiE H )ux+3m c"’(H (u Yy Yte E'(l+uX)+2eEHuy)u

+ (e/m)E

o= TSy 42831
Yy mc X 3m2c?3

2 2 2 2w 2 +
(8 (u,, +u,?) +e’E (1+ux)+2eEHuy)pX

-(% sguEH+% ﬁ§%5H2)uy ‘ . (4-5)
While the first order equation does not involve the
second time derivatives of the velocity components, it does
remain complicated by the presence of the squéres and cross
products of the velocity components thenmsel&es. Equation
(4-5) may be further simplified if a Lorentz £ranSformation

to a moving frame in which the electric field vanishes is

made and equation (4-5) is written in that frame.
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Since the quantities £.H and E2-H? are invariant un-
der all Lorentz transformations and in the particular
problem at hand ﬁ-ﬁ=0, there must exist a Lorentz frame in
which either of the fields vanishes. The present problem
also restricts the quantity E?-H? to be less than zero,
hence the only field that would be allowed to vanish would
be the electric field. Using the well known Lorentz tran-
formation formulae for electromagnetic fields and setting
the transformed electric field to zero gives as the vel-
ocity of the moving frame:

- ExH ‘
v = —-ﬁ—z- C (4"6)

which is the "drift" velocity of a particle in an orthog-
onal electric and magnetic field configuration and is di-
rected perpendicular‘to the plane described by the electro-
magnetic fields. Applying the field transformation equa-
tions to the magnetic field, the transformea magnetic field

becomes:

] ' (4-7)

e {Hz_Ez]% oL
H2 7 Yo
(All guantities measured in the Lorentz frame travelling
with the drift velocity are represented by the primedr
guantities). In the moving frame the only fieid acting
on the particle is a static magnetic field ﬁhichrhas the
same direction as the magnetic field in the labératory
frame but is reduced by a factor of y,~! .  Thus the motion

of the particle in the drifting frame will be thought of

as occuring in a static magnetic field only. Setting E'=0
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equation (4-5) may be written in the moving frame as;
v ' ' 12 (1pt2.,2 '
u, = e'ut o+ T (I-8"*y*)u_
A ' 12 (7_p12,2 1 -
u, w'u,' +oTow (1-8'2y )uy | (4-8)

where B'zéu'z/c2 and w' is the Larmor frequency of the
particle in the moving frame. The assumption that the
energy does not change appreciably over one cycle ( approx-
imately 2m/w) can be made easily as long wt,<<l. Energ&
losses in this case are extremely small (i.e. a variation
in y of 10-2 would occur for 100 cycles for a magnetic
field streﬁgth of 1 Gauss ) and the trajectdry of the par-
ticle is not altered drastically. Calculation of the
trajectory may be easily made by assuming that yrremains[
constant over one cycle. Subseéuent cycles may be ob-
tained by calculating the small energy change that occur-~
red in the previous cycle and then using>thét valﬁe as the
initial vy for fhe fellowing cyclé, This methédrof suc—
cessive approximation of the trajectory works quite well

when the magnetic field is as large as 1013

G'(see'Chaptef,
V). All previous work dealiﬁg with the £el§tivi§tic equé—
tions of motion with the exception of that'bf Shen (1972)
have maintained that y will remain constant indefinitelyi

For these cases the requirement that wTo<<lmﬁst be ad-

hered to rigidly and therefore the radiative reaction

will have little effect upon the particle dynémics. Over

. the period of one revolution for which the initial energy

is represented by Y the equations of motion in the drift.

frame are:



-a

.

39

S o w'2v2y !
u'= o' WAy

Tt T v - 12,2 ' ) -
u,'= rw'a, + tow' Yy u, (4-9)

The solutions to equations (4-9) may be found‘ver&:
simply by‘usihg the same technique as empléyed in Chapter
ITII for the non-relativistic equations. Equations (4-9) |
are two first brder homogeneous equations. :ASSumingrsolu—
tions of the form:

AT

- _ AlT
U = u K11® = *Kppe

u, = uy'= K216A1T+K22eA2T
and substituting’these back into (4-9) allows one to solve,
for the exponential arguements, which are complex.
Ay==v20' trotin | Ay==Y?w'?T +iw'  (4-10)
The solutions for the coefficients are not unique,
therefore assumiﬁg without loss of generality that K21=i
the remaining coefficients becéme:

=1 =1

K11 K12 ' -
K21=l | ' Koop=1 ! (4711)
Having solved for the coefficients above, the most general

solutions for the equations of motion (4-9) are:

u, = al{exp ?(yzw'2ro+{w')r +a,exp —(Yzw'zrof{w')T

5 = ajexp ;(Yzw'zro+{w')r +a2{exp —(Yzw'zTo—{w')T | (4-12)
where the integration factors,‘al and a, afe éfbit}ary‘
constants to be determined from initial conditions.

Rewriting the exponential terms with the complex ar-

guments in terms of trignometric functions and specifyiﬁg
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the initial value of the velocity vector to be u, and
at an initial angle 6, to the magnetic field vector, the

equations of motion have the solution;

o
It

« u, exp -(Y2w'2%21,)T sin w't sin 8,

u,’ u_ exp -(Y?w'?1,)T sin w't sin 6, (4-13)

y .
In the moving reference frame the particle.éxécutes
a spiral trajectory resulting from the exponenéiai dampiné
of the original circular motion that ariées without radi-
ative reaction present. This motion is exactly the same
that occurs for a particle moving in a static constant
magnetic field under the influence of radiation damping.
In the non-moving frame, the solutions are much more
complicated since a Lorentz transformation must be made
to express the velocityin terms of the quantities in that
frame. The solutions to the equations of motion in the
observer's frame then become;

. ;‘
— 2 2472 . .
u, = Yuo(H fE )? sin(wt/Yy) sin 6, X 1

x (B exp(y2w?to1/v§) +Eu_cos (wT/Y,) sin 0,)

Uy, = Yu,H cos (WT/Y ) sin 0, X
-1

x (H exp(YszToT/Y02)+Euocos(wr/yo) sin 0,) +

E .
+ E(H—yuoexp -(YZwZToT/YOZ),cos(wT/Yo) sin 6o)

(4-14)
These equations represent the exact solutions to the first
order relativistic equations of motion for a charged par-
ticle undergoing radiative reaction in orthogonal magnetic

and electric fields.

-1
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Writing the velocity components.in a Taylor series
form in powers of the denominator, (l+vuy/c?) where |%%Y|<l
iequations (4~14) may be approximated to:
u = U Y/Yo exp(-yY?w?to1/Y0") cos(wT/Ys) sin 6 x
X(1~3%Ey exp(—Yzwzde/&oz)sin(wr/yo)sin eo+;..]

u, = (uoy/yo exP(_YzszoT/Yoz)sin(wT/Yo)sin 60+%c)x
X(l~E%Ey exp (-y2w?1,1/v,2) sin(w1/Y,) sin BoFe.s)
| (4-15)
The non-relativistic solutioné may be representéd by
‘the first term in the expansion and by setting y and vy, to
unity. These equations then reduce to equations (3—18).
By setting E=0, equation (4-15) becomes equivalent to the
first order expression for the relativistic solutionsAto
the Lorentz-Dirac equation obtained by Shen (197é). |
An extremely important result of the solutions to'thér
relativistic eguations of motion deals with the Velocity
component parailel to the magnetic field veétor. In Chép—
ter III it was shown that the longitudinal velocity com-
ponent remains constant. This would be even so in:thé‘
reference frame moving with therdrift velocitf, but, as a -
result of thé Lérentz transformation (i.e. inreffect, a
result 6f of the Doppler shift) the z componeht will not
remain constant. Applying the Lorentz transformation of
velocities‘to‘ﬁhe z componeﬂt of the velocify'in the drift
frame the wvelocity component in the observeffs-frame

beconmes:
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u = YuO(HZ—EZ)% cos 0, ‘
z H+u YE exp(-Y?w?1o1/Yo?)cos (wt/yo)sin 8,

(4-16)
Therefbre unlike the non-relativistic particle for
which the radiation gathers its energy from'ﬁhe trans{
verse components of the velocity only, the relatiﬁistid
parficle will lose energy from both the ﬁransvsrssraﬁd
longitudinal velocity components.

This résﬁlt is a consequence of the drift motion of
the particle since the electric‘field plays an impbrtant
part in the longitudinal enefgy loss. Setting'the electric
field to zero in equation (4-16) resulss in u,=u_ cos 60
which is a constant. This was the same result obtained
from the non-relativistic probiem5 The imﬁiications of
(4-16) in te?ms of the radiative energy loss and the
trajectory of the particle will be discussed morerful;yrin
Chapter V. |

Computation of the actuél trajectories of the rel-
ativistic parficle is more complex than thaé for the non-
relativistic particle. The velocities abové are writfen
in terms of propsr time, 1, and in order to obtain the :
trajectory of the particle for ordinary time; t, one must
integrate equafion (1-5) over all past time in order to-
determine fhe’passage of ordinary time. This is a mﬁch
more involved process than simply“varyingthé‘parameter
in the velocity expressions. But, in the problem at hsnd

if vy remains constant for at least one revolution the -
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relationship between the intervals of ordinary ahd proper
time is linear and the transformation may be made more
easily.

Qualitatively though, the trajectorieSinll be similar
to the non-relativistic trajectorles. Departures resulting
from the Lorents transformation from the drifting frame to
the observer's frame will occur, and these will be noticed
especially in the longitudinal velocity component already
discussed. Further discussion of the relativistic effects

will be reserved for.the next- chapter.



CHAPTER V

PHYSICAL IMPLICATIONS OF THE THEORY

A) Trajectories and energy losses

In Chapters II, III, and. IV detailed caleulations on
the solutions of the equations of motion for a radiating
charged particle ﬁave beenrpresented. The details have
been,mainly of‘a mathematical nature and physicai inter-
pretations have been made in éassing. This chapter wiil'be
devoted‘to the applicabilty of the equations of motion of
certainphysicélsituations to the solutions obtained in
previous chapters. Trajectories of individual particles
and energy losses will also be discussed in thlS chapter.
Two parameters Wthh are crucial in a study of physical
appllcablllty pf‘the equations of motion are the 1n1t1a1
energy and the magnetic field strength. AS'Qill be sheWn
later, the strength of the electric field beeOmes an im-
portant factor in the relativistic case.

The non-relativistic equations will be!etudied first
since these‘solutions give the gross behaviorﬁof'the par-
ticle. For most practical probleﬁé the magnetic field
strengths are sufficiently small enough that the Larmor

- frequency will be smaller thah the fundamenta;‘frequency
of radiation, wd, or in other words, wTo<<l:'rThe argu-
ments o3 and a2‘(3-17) of the exponential aad trignometric
functions in Chapter‘III may be written as a Taylor éeries"

in powers of wto. These become:



45
Ay = wolk + Tow? - 5Ty"w! + 42745°%0° +...)
0y = w(l - 2T02w2 + 14To“w“ +...) (5-1)
Since the argument of the exponential aecay is
wl=al—wo/2 ﬁhis constant becomes: .
0y = Tew? (L = 5T, %07 + 42t et bl - (5-2)

Therefore -w, which determines the exponential decay

1

of the motion increases in the first approximation as the
square of the Larmor frequency. Beyond this first order
approximation, the actual frequency of circular motion,-

described by equation (3-17) diminshes by powers of T and

2
o
and higher orders. Thus to the first order, the parametric

expressions for the velocities become;

~T w3t

ve ©0
0

vx(t)

QS

vy (®)

sin wt sin 60

2
-Tow“t
e ©O7

v

o sin wt sin eo¥gc (5-3)

H
These equations may also be obtained from thé firs£ terms
of (4-15) by setting y and Yo to one and equating proper
and ordinafy time. |
The only requirement placed upon the electric fie;d
is that [E|<|H| in order to ensure that the drift velocity
does not exceed the velocity of light. For thé drift to
be non-relativistic the electric field strength must bé
atleast one order of magnitude smaller than’the magnetic
field strength. |
For a complefe understanding of the dependence of

the solutions upon the magnetic field, it is also instruc-
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tive to consider the limiting value when wT >>1. In this

casey

w, = Viwow (5-4)

the decay constant and the frequency of motion are equal.
The particle will then radiate most of its énefgy in a
single revolution, and will then travel with a constant
velocity depending upon the drift rate and the magnitude
of the z velocity component.

Before describing the energy losses, it will be help-

ful to view the trajectories in the limiting cases discussed

above. The concept of the center of gyration will be used
to simplify matters. This point is the instantaneous cen-
ter of circular motion see Alfven and Falthammar (1963)
and moves with a velocity Vg=Vi+W. where v, represents the
drift velocity of the particle and v, represents tﬁe vel-
ocity due to the radiative reaction. In the case where
only the Lorentz force acts (i.e. radiation reaction is
negligible) the velocity of the center of gyration is:

Vg = Vg T Ec/H

The radius of curvature about this point at any time,
t, will be given by;

_ Vosin 6o _ _
pg(t) W) exp ( wlt) (5-5)

Since the radius of cuvature is decreasing in time,
the motion of the particle will tend to follow a curve

that becomes increasingly curtate as time increases (i.e.
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the oscillations about the line describing the motion Qf
the center of gyration will decrease). The form of cycloid-
al motion will depend upon the radius of curvature per rev-
olution to the drift velocity. A critical time defined as
the time at which the motion is simply cycloidal (i;é.‘the
time when this ratio is unity) can be found from (5-5) to

be;

- Ec [w12+w22]%
1 (5-6)

c “2 1n vosSin 8, wp*
When t<te the motion will be prolate, and cuftate when
t>t,. Should tc<0, the prolate motion will be unable to
occur. In the case where WTqg>> l,\tc will be of the order
To and therefore the damping (proportional to the inverse
of t¢) will be very large.

In Figure (5-1) the trajectory of a single electron
in the x~-y plane is represented for the cases where the
parameter ytg isAgreater than, less than, and'approximately

equal to unity. It can be seen quite readily that even in

the intermediate case of w1,=0.937 the particle loses an

appreciable amount of its initial energy in one period,

21/ w3y .

For the case wto<< 1, the motion of the particle de-
viates only slightly from the motion of a particle in-
fluenced by the Lorentz-forces only.

The energy loss per unit time may be calculated, read-

ily from the expressions for the velocity:



48 -

a) wTe=0.937 to=0.498 w2"!

b) wt,=6x%07° te=1.6%x101°% @,~*

Y
/

e o e p s e e

c) wry=4x102 te=-1.5 wp"!

Figure (5-1). Various trajectories of a radiating clas-
ical particle in orthogonal electric and magnetic fields
for different values of the parameter, wto . ~ The units of -
distance are chosen such that the'initial'undampéd' posi- -
tion is unity. The path of the trajectory is represented

: by the solid line and the motion of the center of qyratlon

is represented by the dashed line.
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de _ 2,"2w1t . 2 -
at = 2wyv,’e sin®0 _ (5-7)
In the two extreme cases the energy loss per unit time
becomes;
de _ _, 2,20 sin? :
It V, W To sin eo : wTo<<l
de _ __ 2 % ain? - % .
3€ = "V, (wao) sin®6 exp ( (2wwo) t) Wt >>1
(5-8)

For the case wtp<<l the energy loss may be written in the

familiar form;

_@=2[ez
at - 3

£ HETJszvozsinzeo (5-9)
which is just the non-relativistic energy loss expression
for a particle losihg energy in a constant, static mag-
netic field. On the other hand when wty>>1 the-energy
of the particle is lost in a time of the order of to
and the particle will then move with a constant velocity
neither gaining or losing energy.

Finally it will be observed that the pitch angle of

the particle motion will decrease to a constant value:

lim & _ -1 Ec -
tse 2N [Hvocos 60] (5-10)

due to the decrease in the transverse component of the wvel-
ocity. The decay of the pitch angle is dependent simply
upon the exponential damping term and its rapidity of decay
depends inversely upon the value of wTo.

The relativistié problem is not as simple as that dis-

cussed above. The Lorentz transformation from the drifting

frame to the laboratory frame introduces departures from
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the trajectories of the nén—relativistic particle,
The instantaneous radiation rate for the non-rels
ativistic particle may be obtained from the time-like

component of equation (4-4), since u,=yc:

dy _ -Toez[e(r)

N mc 2 U MYy , '

dr mc3 Y H
(5-11)

Substituting éqﬁations (4-15) into (5-11), the first order

relativistic energy loss per unit rest masé per unit time

for a single charged particle becomes;

ay 2 e? e ()2

(3% T T3 mer Tmeov 9o eRP (217w tot/v, ) sin®e,

UgY .
+ —%g exp (-vY?w?ToT/Yo?) sin 0o X

. N 2 " ° - V
X [ﬁE cos (wt/vg) =27, %EE' EH 51n(wT/Yo)]' (5-12)

In the'ébsense of the electric field and in the case

‘where the magnetic field strength is extremely small, the

energy loss of the particle is simply. the drdinary éyn—i
chrotron rgdiation loss expression. Successive terms fo#
the instantaneous radiation rate are of the oraer (wTo/Yo) ?
and modify ﬁhe energy loss only slightly if the Larmor
frequenéy is not too large.

The‘noﬁ—constancy of thej"drift" velociﬁyxcompliéates

the trajectory of the particle since the velocity of the .

center of gyration is affected by the Lorentz transformations.

With a center of gyration velocity component perpendicular
to the magnetic field and increasing with time, the traj-

ectory of the particle in the relativistic case will be
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flatter thanﬁthose depicted in Figure (5-1). The damping
of the circular motion therefore becomes slightly more
prohounced for the relativistic particle.

Another difference between the relativistic and non-
relativistic cases is that the pitch angle in the relativ-
istic case decreases more rapidiy than in the non-relativ-
istic case."Firstly, the damping of the transverse com-
ponent of velocity is more rapid. The‘decrease of the
velocity compohents goes as

-1

[exp(yszTOT/Yoz) + %uoycos(wr/yo)sin eo]
relativistically where as non-relativistically the decrease
(fof wT,<<l) is exp(-w?t1,7). In most céses this effect is
small if E<<H. Secbndly the overall increaée'in the longit-
udinal velocity component to the-valﬁe Ec/H also causes a
more rapid decrease in the pitch angle. HoweVerﬁtherlim—
iting valueAOf'the pitch angle (5-10) still remains the
same. It must be remembered that these relafivistic ef-
fects are.generally quite small and add only minor cor-
rections to the motion described non-relativistically as

o)

long as E<<H and wt.<<l. Only in this case can the per-

turbation method used give meaningful results.’

B) The applicability of the classical theory

Thus féi very loose limits have been plaéed upon thé
applicability of the-classiqal theory of radiation from
accelerateakchérges used in the previoﬁs:chapters. One

must enquire whether certain astrophysical or laboratory
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conditions are satisfied by this theory. First quantum
mechanical effects will become important when the deBro-
glie wavelength of the electron is of the same order as
the characteristic length described by the Larmor'rhdius.
Therefore in order to treat the electron as a poinﬁ charge
in a well défined orbit without wave interfefence;‘

mc?YR h
cH > Ymcp or

V32 > g YH= ,‘ez_h._ : (5-13)

' -1

where B=%, y=(1-82) ? and h is Planck's constant. Here the
factor 2/3 has_been introduced without disturbing the order
of magnitude .estimation. 1In a quantum mechanical treaﬁment

of the radiative reaction u51nq a modlfled Dirac equatlon,

Sokolov, Klepikov, and Ternov (1952) have shown that the
2 yH _ m’c?
parameter, 3 Hq (where Hg= oh

fy even more demanding requirements than those of (5-13).

=4.4x101'3 G) must satis~-

Their results show that quantum mgchanical effécts occur at
lower energies and thus the limiting requirement on clas-

ical theory is:

2 yH : ,
3 Hq << 1 (5714?
rather thaniériterion (5-13). Experimental evidence ob~

tained from‘particle accelerator WOrk'[see Sokolov and
Ternov (1968)] has shown that (5-14) is a muchhhetter es-
timate to the limits of classical theory. |

Having placed a maximum value-upon'thévmagnetic field
(i.e. 6.6%x10!'% G in the non-relativistic Caée);one must

determine the limits to the energies that may be described
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by classical theory. Returning to equation (1~i), it

can be seen that the order of magnitude of the three terms
on the right hand side (in terms of the Lorentz force) is
given by the ratio, l:wTo:YszwTo. Since the radiation re-
action is described by the sum of the last two terms, the
overall magnitude of the radiation reaction force in terms
of the Lorentz force is given by the parameter, Y2wTo. The
theory presented in Chapters II, III, and IV holds énrthe
condition that this parameter is less than unity (i.e. the
radiation reaction forces are smallér in magnitﬁde than the

applied forces from the external field) or that;

2 .4

o m-c
YPH << =53

= H, = 6x10'G  (5-15)

Figure (5-2) is a plot of the range of validity of-
different radiative reaction theéries determined by criteria
(5-14) and (5-15). Obviously astrophyéical situétiohs deal-
ing with synchrotron radiation fall well withinithe applic-
ability of the theory presented. Many laboratory situations
including the recent megagauss experiments with the,Stanford
Linear Accelerator [Herlach, et. al. (1971)]“also may be
described by the first order relafivistic theory.: The
intense magnetic fields and high particle energies associat-
ed with pulsars, however, must be describedby*all levels of
radiative rédction t+heories and therefore Canﬁot be:soiely
explained,claséically.

An application of the relativistic theory presented

in Chapter IV.has been carried out by Bland and Hobill (1974)
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laboratory situations.

a)
b)
c)
d)
e)
£)
g)

cosmic ray electrons in the galaxy

relativistic electrons in the Crab Nebula
neutral sheet electrons [Bland and Hobill (1974ﬂ
synchrotron electron accelerators

SLAC electron beams [Herlach, et. al. (1971)] °
NAL electron beams (proposed)

pulsar electrodynamics
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for an idealized infinitéelky thin neutral sheet (thereby

implying orthogonal electric and magnetic fields). Par-

‘ticles with energies ranging from y=102 to 105 were in-

troduced into neutral sheets with magnetic field strenghths
réngiqg from 107% to 10~? gauss. The'instantaneous posi-
tion and energy of the particle were calculated by updating
the value of y over each period and this was‘accomplished
for times of the order of 107 sec. The relation betweeﬁ
proper and ordinary time was assumed to be linear , . there-
fore allowing a direct correlation between fhese,two times.
Since the order of magnitude change of y over 50 reyolutions
was only 10-2, v was assumed to remain‘constant'for fewer
revolutions. | |

Tt wag found that not only is there a noticable de-
crease in the pitch angle, but that there is also aloné
with this, affer an initial energy loss, an appreciable
acceleration resulting from a stronger coupling ofrthe elec~-
tric field. The reversal of the magnetic field at'the'ned—
tral sheet is jost what is needed to overcome the energy
losses that;would occur in a simple orthogonal field sit-
uation. This reversal of fieldsalso produces a gradient
of the magnetic field at the boundary which‘alongtwithmthe
electric field serves to accelerate the particle._ Assﬁming
that the magnetic fields described above exist at neutral
sheets a53001ated with the Crab Nebula, thlS process of

accelerating electrons may describe the 1nfra—red spectrum

of the Crab.
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APPENDIX A

RADIATION REACTION FORCE FROM CONSERVATION OF ENERGY

The following plausibility argument is not a rigorous
proof but is only used as an example of thé o¥igin of a
radiative reaction force‘obtained from the principle of
energy conservation. In concidering only the non-relativ-.
iséic 1imit,iit is known that if an .external force‘ié
exerted upon a particle, it accelerates éccording to

Newton's équation of motion.

. N

mv = ﬁext L (A-1)
Since the particle is accelerated, the Larmorrpower

formula will give the total instantaneous power radiated

by the charge.-

P (t) =%

Qjo

(V) 2 ' . (B=2)
To account for this energy loss, the existence of a

. . i =2 .
radiative force, Frad' is assumed and Newton's second

law becomes;
nv = + F “; , (A-3)

Now equating the radiatve energy loss ‘to the action
of the radiative force over a time interval,t1<t <t, one

obtains:

t t
2 9 e?3, 2 > ) )
3 gsvV dt = - F v dt (A-4)
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Where the work done by Frad is the negative of the energy
radiated in the same time interval. The first integral may

be integrated by parts to yield:

1t 2 e?3, 2 e?| » 3 i t2 > 3
[ 3 o3V dt = 3 o3| V'V - vev dt
t, t, ot
t.
= Fq'vat - (A-5)
t,

If the motion is periodic and t, -t, ié some multiple
. .5. L] .
of the period, or if §-v(t1)=$-$(t2) for reasons other than

. ’ . > = . }
mentioned above, or if the average value of vev over some

appropriate‘time scale is zero then

t?
2 e?> 3 | '
-3;' EaV'V = 0
ty
and equation (A-5) becomes
t, .- : .
J Fooq” %%ﬁ} ¥at = 0: (A-6)

Equation (A-6) is satisfied if the integrand—is Zero;

F
rad

D e - . .
2Sy% S @
which leads to equation (1-9).

Obv1ously two flaws exist in the above reasonlng, l)

sufflclent justlflcalon for eliminating v has not been

2
provided, and 2) even if v+v vanishes the radlatlon reactiqn
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]

component perpendicular to 3 has not been found since only
the parallel component arises from the dot product in

equation (A-6).
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APPENDIX B

DETERMINATION OF THE PARAMETERS, § AND n

[N

Writing the complex numbers &2 and n’? in exponential

form, one obtains from De Moivre's theorem;

2 i0

g2 = EO + wwal = pe = p(cosd + i sine) (B-1)
4 ‘ ,
2 .
n? = Y% - wwyi = 0el® = p(cose + i sine)
T

Taking the square root of each of these gives:

3 . . . .
+f = *p?(cos % + i sin % ) 7 In = ip%(COS % - 1 sin % )

(B-2)

To determine the trignometric functions of %, cos® must

be found from Fig. B-l.

imaginaryﬁ :
2 (wl/4,ww0) =E

//\ o _réél

o (W3/4,~wwgy)=n

Fig. B-1l. Representétion of the imaginary numbers, & and n

on a Cartesian co-ordinate system.

. W 2 |%
Therefore if p =|_20 + (wwg)
16



then cosf =

" Using the identities:

= JE(1¥cos0)

ol

cos-

and substituting these into

Y %
+g = | 72 +(wwo)? ] z
+ i %
L

and n is simply the complex

2 2 g
Wo w 2
70 | 18 *(wwo) ]

(B~-2) one obtains:

v 5
+ wg.
- 8/wg/16 +(wwo) ?
L
- wl -
8v/wl/16 +(wwo) © |

conjugate of equation
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" and sin % = J%({I=cose8)

(B-3)

(B—3)Q;
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APPENDIX C

DETERMINATION OF THE FIRST APPROXIMATION OF

THE LORENTZ-DIRAC EQUATION IN COMPONENT FORM

The first approximation of the Lorentz-Dirac equation

may be written in tensor form as (see Chapter 1V);

2 2 :
. v e VA e vn A
= - —_— T f— . -
Y %EFuvu TomzasTinF Uy Tom cs[kaF _u\un} ' (C‘l)
The anti-symmetric electromagnetic field tensor Fuv may be

written as follows ( assuming H to be directed. along the

z-axis and E along the x-—axis):

o m o0 E]
Po= |0 00 (c-2)
H 0 0 0
-E 0 0 0
L i
Therefore~the_contravariént tensor, F“V, beComeS:
0 H 0 —éﬂ
0 0 0 0
E 0 0 0

H 0 E Hu,+Eu,

0 Oﬁ 0 = “Hu, %rFEVuv_ (C-4)
o0 00 0 -

.0 0 0 —-Eu,

- In other words the distinction between the,dovariant and

contravariant tensor products for the Lorentz force vanishes

except for the sign.
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Now the second term on the right hand side of (C-1) must

be evaluated. First the mixed tensor F“AFVAis found to be
E’~H? 0 0 0
—-H2 ‘
FuAFvA - |0 H 0 EH (C=5)
0 0 0 0
0 -EE 0  E?

Multiplying (C-5) by the vector uv:one obtains:

(E2-H%)u, |
172
EUAkauv - H u2+EHuu (C—-6)
. 0
_ 2
_.EHu2+E ui
. n._A . ' A2
Finally the product vaF u un may be written as kau
\ ,
since F, ux =-vau so that F Fvnuxu +u - becomes after
VA A VA nj
using (C-4): '
11;
R 2u = ||Hu,+Eu 2+H2u2+E2u2 Uy :
VAT ) Twe 27 17T (c-7)
3 g

Now all that is needed is to choose the appropriate components
from (C-4), (C-6), and (C-7) and substitute them into (C-1).
The first order Lorentz-Dirac equation may be written in.

component form as:

2= & [mu +mu. |-1. 20 [B2-12 |0, ~ToSuL [(Hu,+Eu,) ® +H? 24202 u
U= ——|Hu,+Bu, -1 U, ~Topgs |(HuptEU, u? Tla,y

2

= “CHuy-T —o - g2 _ . eyt y 2 2.2 42,2
4,= goHus TOm2c3[EHu H%u, ] Tomas [(Hu2+Euq) +H u1+Eu1]u2

0= -1 2L [ (g, +Bu, ) 2+H2uZ+E 0’
Uy= -Tomgs u,+Eu, u’ u?lu,

4 = -Sgu_+1 —93 (E%?u -EHu, )~ T e’y* (Hu_ +Eu )2 +HZu?+E?u?| u
4 m 1 Om2¢cs 4 2 ong s 2 " 1 “1 b,




