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ABSTRACT 

A review of the problems and solutions that arise 

from the Lorentz-Dirac equation is presented. The tra-. 

jectories for both the non-relativistic and relativistic 

case are found for a particle influenced by external, 

orthogonal electric and magnetic fields constant in space 

and time. Energy losses for these particles are also 

calculated. Finally the limits to the applicability . 

of the classical theory presented are discussed. 
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CHAPTER I 

INTRODUCTION 

A) Toward an equation of motion for a radiating particle. 

A fundamental property of any charged particle under-

going acceleration in an applied external field is that it 

will radiate electromagnetic energy. This radiation of 

energy will, in turn, affect the motion of the particle. 

The interaction between the radiation reaction of the par-

ticle motion with the electrodynamics of the particle may 

be represented by the following diagram. 

Maxwell's equations 
,  

Applied external 
field 

Lorentz 

forces 

Particle 

dynamics 

Radiation 

field 

3 J 
Radiation reaction 

Figure 1-1. Schematic diagram representing the 
dynamics of a radiating charged particle. 

In Fig. 1-1, prodess 1 represents the effect of the 

external field on the trajectory of the charged particle; 

process 2 specifies the field produced by the accelerated 

charge and process 3 indicates the resultant effect of ra-

diation damping by the radiation field. The trajectory of 

a classical charged particle (effects due to quantum mech-

anics or possible finite size of the particle -are not con-

sidered) must be described by Maxwell's equations (which 

describe the field resulting from accelerated motion) and 
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by the equations of motion (which include the effects of 

both the external and self forces). In the case where the 

radiation reaction vanishes, the equations of motion should 

reduce to the Lorentz force equation. Dirac (1938) derived 

a relativistically covariant differential equation describ-

ing the trajectory of a relativistic classical charged 

particle emitting radiation while undergoing an acceleration: 

du e 
U"  

d-r mc ]N 
2e 2 du, 1 du du '. 
3mc 3 !F P c2uPE" F 

where e and m respectively represent the charge and mass 

of the particle, and F is the electromagnetic field tensor 

described by; 

F = 
PV 

O H -H E 
z y x 

-H 0 H E 
z x y 

H -H 0 E 
y. x z 

-E -E -E 0 
_x y z 

(1-2) 

and c is the speed of light. 

The following notation is used in this work: the four 

velocity, u is the derivative of the position with respect 

to proper time,T , 

dx 
U = 
1 dT (1-3) 

as. the velocity, v, is the derivative of the position with 

respect to ordinary time,t, 

V. = dxi 
3- dt (1-4) 

Proper time and ordinary time are connected by the following 



relation: 

dT - I v a - 2]½ - [1+ u2'½ 
c 2 j 

(1-5) 

where u2 and v2 represent the sums of the squares of the 

spatial components of the corresponding velocities. The 

coordinate system is chosen such that the interval, ds, 

is defined by: 

ds2 = cZdt2 dxZdyZ_dzZ (1-6) 

(i.e. xi=-x1=x, x2=-x2=y, x3=-x3=z, and x4=x4=ct). 

Derived from (1-6) the following relations (to be used 

later) are obtained: 

U  = c2 

V. 
uuO (1-7) 

.V. V.. 
uu -uu 

In the relativistic (four vector) equations, the dots 

over the variables indicate derivatives with respect to 

proper time; in non-relativistic (simple vector) equations 

they represent derivatives with respect to ordinary time. 

The Einstein summation convention is used for any repeated 

index. Quantities with Greek indicies are four vectors 

(include time components) where quantities with Latin in-

dicies represent only the spatial components of the four 

vectors. All relativistic quantities have the same dimen-

sions as their non-relativistic counterparts, i.e. u and 

T have the dimensions of velocity and time respectively. 
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In general, equation (1-1) is usually written in com-

ponent form. The fourth (time) component equation, though, 

is not an independent equation since it may be derived from 

the spatial component equations and relationships (1-7). 

When v/c<<l, the non-relativistic equations of motion 

obtained from (1-1) and (1-2) are found to be: 

dv1 2e 2 d 2  . e + N H 2e" 
+ dt =_Ei mc 3 (1-8) 

This is the familiar Abraham-Lorentz equation which may 

also be derived from a plausibility argument based upon 

the principle of energy conservation for a non-relativistic 

charged particle. (See Appendix A). 

Equations (1-1) and (1-8) are the exact equations of 

motion for an accelerated, radiating point charge within 

the framework of classical physics. Equation (1-1) known 

as the Dirac-Lorentz equation, is one of the most contro-

versial equations in the history of physics. A number of 

different approaches [e.g. Dirac (1938), Wheeler and Feyn-

man (1945) and Rohrlich (1965)] to the problem of radiating 

charges have resulted in the same equation, yet, the terms 

that represent the radiative reaction effects continue to 

present many physical difficulties. 

B) Runaway solutions and pre-acceleration. 

The obvious appearance of the third time derivative 

of the position in the Dirac-Lorentz equation sets the 

equation apart from all other classical dynamical equations 



5 

which determine completely the trajectory of a particle 

(given the initial position and velocity) . *  In order to 

obtain the exact trajectory of a radiating charged particle 

a third known condition must be introduced. 

Specification of say an initial acceleration is not 

the only problem resulting from the third time derivative 

term. So called "runaway" or "self-accelerated" solutions 

result from (1-1). Writing the non-relativistic equation 

in the familiar Abraham-Lorentz form (we use this equation 

since we are concerned only with the term 

4 
=mv-m'ry 

ext 0 
(1-9) 

(where 'r 0= and Fext represents the total force on the 

particle resulting from the external electromagnetic fields) 

and set the external force equal to zero, it becomes ob-

vious that the two possible solutions are: 

0 

t/T 

(1-10) 

where ao is the acceleration at time t0. 

Only the trivial solution is reasonable physically, 

* A new equation of motion in which the radiative reaction 
terms are dependent upon the applied external field and the 
particle acceleration has been suggested by, Mo and Pappas 
(1970). While the equation is of second order and the sol-
utions for certain cases are indistinguishable experiment-
ally from the solutions to the Dirac-Lorentz equation, it 
has yet to be shown that the radiative reaction term is 
expressed by [(2e3)/(3m)JF\) for all electromagnetic forces. 
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since it allows the velocity to be constant (this solution 

being a special case of the exponential solution when 

The second solution, in physical terms, is clearly absurd 

since both the velocity and acceleration grow exponentially 

without limit as t inäreases. This non physical solution 

states that even without external forces present, the part-

icle must gain energy only from itself. 

Runaway solutions may be overcome by introducing asymp-

totic conditions. One such condition is that as the charge 

of the particle tends toward zero, the radiative effects 

become negligible, since the self fields tend toward zero. 

The second condition and the .onemost often used is that in 

the limit of increasing time the acceleration must tend 

toward zero, or 

urn 
T i 11 ('r) = 0 

It must be remembered that these conditions are not arbit-

rarily imposed. They are statements of physical reality 

and therefore are an essential part of the description of 

charged particle motion. 

Defining the total force, K(t) as 

e v 2e 2 •' 
K (T) = —F u - - - u u u (1-12) 
P cpv 3c 

where the second term on the right hand side represents 

the rate at which the electromagnetic four momentum is 

emitted, equation (1-1) may be written.as: 

m(t-T 0ü) = K(T) (1-13) 

Multiplying (1-13) by the integrating factor eTT/'TO the 
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equation of motion may be rewritten as: 

d e "  • 1 e T Ou (T)I =- /TO K(T) 
a —T p J mT 

(1-14) 

Integrating (1-14) between the limits T and , the general 

solution for the force on the particle becomes 

T/T 0 0 - 

mu (T) =   j e K(T') dT' (1-15) 
p ° T 

The asymptotic condition (1-11) has been used to imply the 

weaker condition 

lim e_T'To 1i (-r) = 0 

The integro-differential equation of motion (1-15) 

differs from other equations of motion of classical mechanics 

in that the acceleration at time, T, depends upon the 

weighted average of the force overall future time, rather 

than on the instantaneous value of the acting force. The 

presence of the factor, exp -(T'-T)/T 0 indicates that time 

intervals of the order of To are involved. In order to more 

clearly view the behavior of the forces involved in the 

acceleration process, a new variable of integration will be 

introduced: 

= (T' - T). 

Equation (1-15) may then be written as: 

00 

m(T) = fo K 'P (T+aT 0 )e- Cr dcr (1-16) 

Equation (1-l6) can be regarded as a physically reasonable 
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equivalent to the Dirac-Lorentz equation, (1-1). All 

solutions of (1-16) satisfy (1-1), but, runaway solutions 

do not occur. A new difficulty, however, is introduced by 

(1-16) and this is the violation of the traditional concept 

of causality. It is evident that the acceleration at time 

T, depends upon the force acting at all times rather than 

atT only. Also if the force K 11 is zero at some time T1 , 

the particle still experiences an acceleration at times, 

less than T1 . Therefore the equation of motion (1-16) 

predicts a "pre-acceleration" of the particle 'before the 

time of the application of the force. 

The time interval over which this pre-acceleration 

occurs for an electron is of the order of T0=6.27X10 24 

sec., which is the time that it takes light to travel 

two-thirds of the classical "radius" of the electron. (For 

other particles t0 would be smaller since the mass appears 

in the denominator). Such a short time interval is defin-

itely beyond the limits of measurement, and, while micro-

scopic causality is violated by the solutions to the 

integrodifferential equation, macroscopic causality is 

still satisfied since it is impossible to apply an ex-

ternal force within a time interval as short as r0. 

The subject of pre-acceleration has been discussed 

in detail by Wheeler and Feynman (1945) who find that 

over time intervals of the order of 10- 24 sec. it is not 

possible to distinguish between the advanced and retarded 
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interactions between particles in the universe. However, 

over longer time intervals the usual relations of physics 

(which contain only retarded reactions) are valid. 

All of the shortcomings of the equation of motion 

for radiating classical charged particles have been studied 

extensively. Excellent reviews of the problems occuring 

in the radiative reaction equations may be found in Rohr-

lich (1965) , Erber (1971) and Hughes (1971). It is fair 

to say that in the realm of classical electrodynamics the 

Dirac-Lorentz equation is "probably" the exact equation 

of motion for a point charge. Usage of the term "probably" 

is applied because the microscopic results of this equation 

have yet to be tested experimentally. 

In the remainder of this thesis, further theoretical 

arguments in favor or against (1-1) will not be presented, 

but rather it will be treated (perhaps naively) as the 

basic equation describing the motion of a charged particle 

undergoing radiation reaction. From this assumption we 

shall proceed to derive observable results that may pos-

sibly be found experimentally. An analysis of both the 

non-relativistic and relativistic particle motions in 

orthogonal, uniform, static magnetic 

is made. The motivation behind such 

Firstly, from the experimental point 

developments in particle accelerator 

and electric fields 

a choice is two-fold. 

of view, recent 

technology make pos-

sible the generation of magnetic fields of the order of 
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1O 7 gauss in the laboratory allowing electron beams of 

energies reaching to a few hundred GeV to be soon available 

[Herlach (1968), Herlach, et. al. (1971)]. Secondly, , 

synchrotron radiation plays an important role in astro-

physical applications, and the Dirac-Lorentz equation is 

the basis for describing this cosmic phenomenon [Sokolov 

and Ternov (1968)]. There are however limits to the 

applicability of classical theory and these will be dis-

cussed later. 



CHAPTER II 

SOME SOLUTIONS TO THE DIRAC-LORENTZ EQUATION 

A) Existence and uniqueness of solutions 

Having seen in Chapter I that the equations of motion 

for a charged particle give a number of solutions that 

are meaningless in physical terms, the major problem 

with the Dirac-Lorentz equation becomes one of isolating 

the physically valid solutions from the infinite number of 

non-physical solutions. It is therefore necessary to en-

quire into the existence and uniqueness of the solutions 

to the equations before attempting to solve them. More 

precisely, we are interested in the conditions that allow 

us to solve the Dirac-Lorentz equation meaningfully and 

whether our solutions are unique for the physically rea-

sonable initial conditions that are specified. 

The proof for the existence of the solutions (for 

certain weak conditions) was presented by Hale and Stokes 

(1962) who used extremely complicated mathematical tech-

niques well beyond the exposition of this thesis. Only 

the essential features of their results will be presented. 

The starting point of the proof is with the third order 

differential equation of motion (1.-i) together with the 

asymptotic condition (1-11). Here in lies the difficulty. 

If the asymptotic condition did not have to be satisfied 

the existence-and uniqueness of the solutions to equation 

(1-1) would simply follow the standard theorems of ordin-
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ary differential equations. Being a third order differen-

tial equation, the Dirac-Lorentz equation will have a 

unique solution over any finite time interval when the 

three initial values, x 11 (0), u(0), and a(0) arespecified 

and certain analyticity conditions are satisfied. Since 

there is a need to specify the initial acceleration, there 

is an indication that equation (1-1) cannot be an equation 

of motion. In Newtonian mechanics such equations provide 

knowledge of the acceleration at all times. The asymptotic 

condition is exactly what is needed to eliminate this 

difficulty. It has already been shown that the third 

order differential equation, together with the asymptotic 

condition is equivalent to the second order equation (1-16). 

Therefore only those initial accelerations that give sol-

utions that satisfy (1-11) are the only admissable ones 

among all .the possible initial accelerations. This is the 

much more difficult problem of the existence of solutions 

to the equations of motion with specific asympotic con-. 

ditions. 

The most important results obtained by Hale and 

Stokes concerning the existence of solutions to equation 

(1-1) with the asymptotic condition (1-11) can be stated 

in the following two theorems. liere the position, x, is 

defined by the relation; fixil = (x,x11 )½. 

Theorem 1. There exists a solution x(T) (O'r< co) of 

the equation of motion (1-16) which satisfies the asymp-

totic condition (1-11) for any initial set x(0) and u(0) 
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provided: 

(a) Hx(0)H < (b)IIF(x,u,T)Q< 41) (T) is continuous 

f "') (c) (T)O for T-4°° (d) I(T)dT <o 

Theorem 2. There exists a solution x(T) (TT<oO ) of 

the equation of motion (1-16) which satisfies the asymptotic 

condition (1-11) for any initial set x(T 1) and u(T) pro-

vided: 

(a) JIF(x,u,T)Ij≤ p+qljujj where p≥O, q≥0, r>l 

here Ijull = (y2+y2u i u1)½ = (2 -y2-1) >1 

(b) Ti is such that 

jf JIX(Tj) + U(Ti) (T—T i) (p+q 11 u(Tj)Jf 

T>T T T I Iii-T/T J 

where = l/(ri-l) Ti ri-i 

and T T, o (p+q)IIu(T)II[Hu(T)fJ +(p+qIIu(T)If )J >T0 

Theorem 1 admits all forces that are integrable and 

bounded. Theorem 2 admits a larger class of forces but 

puts restrictions on the initial time, the initial velocity, 

and the initial position. Solutions satisfying more gen-

eral conditions presumably exist, but these theorems never-

theless seem general enough to include all cases of phys-

ical interest. 

The next general question concerns the uniqueness of 

of solutions. To  physicist it may seem intuitively ob-

vious that, given certain initial condition's x(T 1 ) and u(-r) 
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the solutions of any equation of motion are unique due to 

the principle of causality (causality here implying not only 

prediction but retrodiction as well). Yet, to remain math-

ematically consistant it is essential to have a proof of a 

solution's uniqueness. To date no such proof exists [Grandy 

(1970)]. The uniqueness problem must be considered one of 

the most important unsolved problems concerning the-Dirac-

Lorentz equation. 

B) Non-relativistic solutions. 

In most problems where a known external force is 

applied, an exact solution to the Dirac-Lorentz equation 

is impossible to obtain. For this reason approximation 

methods for obtaining the solutions must be used. The 

simplest and easiest approximation that can be made is 

to deal with a non-relativistic particle. In the lower 

velocity limit (v/c <<1) equation (1-1) becomes a simple 

vector equation (1-8). Since (1-8) does not contain the 

non-linear terms but only the second time derivative of 

the velocity, the non-relativistic equation may be solved 

using well-known techniques for solving ordinary, linear 

differential equations. 

Equation (1-8) is applicable only to the extent that 

the damping force is small compared with the force exerted 

on the charge by the external field. The physical mean-

ing of this condition (within the framework of classical 
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electrodynamics) may be clarified as follows: The second 

time derivative of the velocity in the system of reference 

in which the charge is at rest at any given moment, (and 

neglecting the damping force) may be set to 

- e- e v = - E + - vXH 
m mc (2-1) 

In the second term substituting v=jE ( to the same order 

of accuracy) one obtains: 

m m2c (2-2) 

For the non-relativistic equation of motion the damping 

force is simply described by; 

2 2 _2e dv 
3 mc 3 dt 2 (2-3) 

Therefore the damping force (2-3), using equation (2-2) 

may be written (to the first order) as: 

e  

3 mc 3 3 m2c 
4+ 
EXH 

If one defines a frequency of motion, Q, then is pro-

portional to and, consequently, the first term becomes 

of the order e 3E while the second term is of the order 
mc 

e'EH  
m2ct Therefore, if the damping force is> to be small 

compared-to the external force exerted on the charge (Of 

the order eE), the following condition mustho1d: 

<<1 or introducing a wavelength,A. -c/a 

A >> e2 - 

mc2 
(2-4) 

Thus relation (2-4) states that the radiation damping 
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in the non-relativistic case is applicable only when the 

wavelength of radiation incident on the charge is large 

compared to the classical radius of the particle. Here 

the classical limit e2/mc 2 appears as the value where 

classical electrodynamics leads to internal contradictions. 

Secondly, comparing the external field with the second 

term in the radiative force, sets the condition for the 

size of the magnetic field: 

H <<mc  

Having set limits on the physical quantities for 

which the Abraham-Lorentz is valid, the solutions to 

(2-5) 

equation (1-8) may now be found. Plass (1961) has shown 

that as long as the applied external forces are both 

finite and continuous, analytic solutions to the non-

relativisic equation of motion exist. Using a number of 

special cases Plass was able to obtain the trajectories 

of particles subjected to different applied forces.' One 

such case was that for a charged particle moving in a 

constant magnetic 

Assuming the 

the z-axis in the 

field. 

magnetic field to be directed along 

normal Cartesian coordinate system, the 

equations of motion (1-8) may be written in component 

form as: 

dvx T d 2  wv - 

dt o dt 2 y 

dv d2v 
- T0 Ei = - Wv 
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— T - 0 
dt 0dt 2 

(2-6) 

where w=eH/(mc) is the cyclotron frequency of the particle. 

The exact non-divergent solution to these' equations may be 

written in the form: 

Vx(t) = v(0) ea1t cos c2t 

V  = v(0) ea1t sin cx2t 

v(t) = v(0) (2-7) 

where the phase factor is chosen such that v(t=O)v(0) 

and v(tO)=O. The values of the constants .al and c2 were 

determined by substituting the solutions back into the 

original equations: 

a,t =  T {[ ½±½(l+l6Tw) 
= TO_ i 0, 

The 

½]½ 

The solutions above describe a motion that is an 

exponentially damped circular motion about the magnetic 

field,. 
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ed function function of proper time, exact solutions to 

the Dirac-Lorentz equation may be obtained. 

Since the exact solutions to the three dimensional 

equations are, in most cases not known, the solutions must 

be obtained in an approximate form. The most obvious and cer-

tainly the most often used method is the perturbation 

series approximation. This method uses the integrodif-

ferential equation (1-16) and begins with the fact that 

the characteristic time is small compared to our proper 

time scale, T, and thus a Taylor series expansion about 

T is made. If the force is slowly varying in time, the 

series may be expected to converge rapidly. 

CO 
(i T0 )" d 

K(T±'ro) = n K(T) 

n=O 

(2-9) 

Assuming also that the integral in (l-l6) is abso-

lutely and uniformly convergent, then the summation and 

integration processes are interchangable. Substituting 

(2-9) into (1-16) we obtain: 

T0   dn (cc 

n! dTh mu(T) 0 - K1 (T)ja e d = 

n=O, 
dTn .11 

(2-10) 

Using, the definition (1-12) and defining the total radi-

ation rate, R, as 

R = 

equation (2-10) may be written (keeping only the first 

few terms) as: 
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- F d R(T)  
u T _ U  = V R(T) o[ TcF IVudT ( 2 )]• P mc liv U  C 2 J U+  

+ O{T 02} (2-11) 

Therefore the non-local second order equation (1-16) is 

equivalent to the local equation (2-10) with an infinite 

number of derivatives. Equation (2-10) in the zeroth 

order (i.e. neglecting the radiation terms) reduces to the 

well-known Lorentz force equation, 

u = e V—F u (2-12) 
P mc pv - 

The first order approximation is: - 

=-F u'_!2Ru+T_-[ u"vP+ F (2-13) 
mcp c p omc pv pv 

This equation includes all terms of the order T0 (since R 

is of the.. order of 'r 0, it must not be neglected). Unless 

the force varies rapidly in time, this approximation is 

the most often used due to the small magnitude of 

Succesive terms of higher orders of T may be added but 

these are extremely small and. add only minute corrections 

to the effects of radiation damping. In classical physics 

the expansion of equation (1-16) beyond terms of the order 

of T is not very interesting since there seems to be no 

classical process by which terms beyond the first order may 

be observed. Furthermore, it is well known that equations 

(2-12) and (2-13) are excellent approximations for the 

motion of a charged particle in an electromagnetic field. 

(Terms of the order 1 2 have been included in the solutions 

obtained by Chand (1971) to describe the effects of radi-
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ation reaction on an energy spectrum of oscillating elec-

trons as a means of illustrating the perturbation technique 

in classical physics.) 

Gernet (1966) making use of equation (2-13) solved 

for the motion of an electron in a constant, static magnet-

ic field. Since the field was constant in space and time 

the term representing the change in the magnetic field was 

neglected and the soldtions were found to be (to the first 

order of T ) 
0 

= u(0)e-aT sin, (WT+O) 

U (r) = u(0)eTsin (WT+00) (2-14) 

2 eH2 2 
where a= -- 5 w T0. Gernet also made the assumption that 

WT  <<1 (i.e. the damping term was extremely small). 

Similar results have been obtained by Herrara (1973) 

who obtained the solutions to the sixth order of T0 using 

the same approximation of the equation of motion that Gernet 

used. From the results of these authors it is quite ob-

vious that the motion of a relativistic point charge in a 

constant, static magnetic field will be represented by 

an exponentially damped spiral and the damping is directly 

dependent upon the magnetic field strength squared. 

Shen (1972) used the fact that extremely relativist-

ic velocities and with strong radiation damping (w'r 0 l) 

the dominant radiative term is 2Ru [See Landau and 
C Ti 

Lifshitz (1965)] . One simplifying approximation that 
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can be made is that for this case is that v 2-,c. 

Writing the equations of motion in the rest frame 

of the particle, (which would then travel under the in-

fluence of an "electric field"of the order yH) Shen ob-

tained the following solutions: 

- c (T) 
u = ue cos 

-c 
u = u0e (T)cos 

U = u cos 

a2 (-c) sin 

a2 (T) sin 

(2-15) 

where is the angle between the initial velocity, u0 

and the magnetic field H at T=O. Also, 

W2T  ++  W2T  

2y 0. 

a2(T) =  W -r o 11+ w2r  
lo I.. YO 

YO  (1-u02/c2 )-½ 

+ o{T 0 2 }J 

W2T2 [.!'!!_T OT-4yoln 
YO 2 YO 

l+w 2T0Ty 0 '  
W2T 0 (l+(T 0 W) 1 ) )) 

In these solutions, Shen maintained terms of the 

order of (W2-E02) suggesting that those terms of the order 

of WT 0 are nearly of the same magnitude as the terms des-

cribing the external Lorentz forces. The magnetic fields 

used were constsant in both space and time., 

In 1971 Mitchell, et. al. (1971) solved the first 

order approximation equation for a particle influenced 

by constant aligned magnetic and electric fields. The 

equations of motion were written in the following- form: 

c =  w(uy  - Euu Xu) 

uy  = w(-u x - Cu z u - y Xu) 
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1z WX( 1_uz 2) (2-16) 

where c= E/H is the field strength and the dimensionless 

quantity x' is defined as X=W(1+C2)T0. 

Since u could be solved for independently, and then 

substituted into the equations for u and u, the sol-

utions maybe obtained as follows: 

u u(0)e_ Tsin(wTô + 0) sech(WXT ± 

u= u(0)eTcos(wTQ + 0 ) sech(WXT + c) 

u z = u 11 (0) tanh(w-r + (2-17) 

where eo and are constants to be determined from the 

initial conditions. Equations (2-17) show that u and uy 

decay expotientially with proper time while the electric 

field accelerates the particle along the field line. 

What one would observe would be a particle travelling in 

a helical motion with and exponentially damped radius and 

with a decreasing pitch. 

The problem of radiating charges travelling in or-

thogonal magnetic and electric fields has not yet been 

studied, and yet there exist a number of physical sit-

uations where this field configuration exists. The re-

mainder of this thesis will therefore deal with the sol-

utions to the equation of motion (1-1) in which the 

magnetic and electric fields are constant in space and 

time and are perpendicular to each other. 



CHAPTER III 

THE ABRAHAM-LORENTZ EQUATION FOR A CHARGE 

IN ORTHOGONAL MAGNETIC AND ELECTRIC FIELDS 

This. chapter will deal with the solutions to the 

non-relativistic equations of motion for a charged par-

ticle moving in orthogonal magnetic and electric fields 

that remain constant in space and time. Since the vel-

ocities are assumed to be much less than the speed of 

light, equation (1-8) may be applied to this problem. 

Observing that (1-8) is linear, the solutions may be 

found analytically. The spatial component equations 

obtained from (1-8) will not be linearly independent 

since they involve the cross-product of the velocity 

with the magnetic field, nor will the equations be homo-

geneous since the non-homogeneity is introduced by the 

addition of an electric field. Therefore (1-8) may be 

solved as a system of non-homogeneous second-order dif-

ferential equations for the parameter, t. 

Using a Cartesian coordinate system, the direc-

tion of the magnetic field will be chosen to be in the 

positive z-direction with magnitude H, while the elec-

tric field will be directed along,, the x-axis with mag-

nitude E. 

The equation of motion (1-8) may then be written in 

vector form as; 

4- e -'- e + -* 2 e2 -- 
V - E + - vxH + — 3v 

m mc 3mc 
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Written in component form (1-8) becomes: 

=—Hv 2e 2 .. 
X. mc m 

. -e 2 e2 
v —Hv +--v 
y mc x 3mc 3 y 

2e 2 .. 
V =--V 
z 3mc 3 z 

where the dots above the 

resent derivatives taken 

(in the non-relativistic 

time are equivalent). 

The third equation 

(3-1) 

velocity components now rep-

with respect to ordinary time 

case proper time and ordinary 

is seen to de-couple from the 

equations involving the x and y components of the velocity. 

Solutions to the z component equationhave already been 

discussed in Chapter I. Only the physically meaningful 

solution i.e. v(t)=constant will be accepted. The con-

stant will be chosen from the initial conditions for 

In the case at hand if v0 is the magnitude of v (t) at 

t=O and 0 is the angle between the velocity and the 

magnetic field vector at the initial time, then the, 

constant equals v0cos O. The solution that results in 

the exponential runaway has been discarded. Therefore, 

the velocity component directed parallel to the magnetic 

will be constant and consequently not be influenced by 

any external forces. 

The equations concerned with the x and y components 

of the velocity must be solved as a system of equations., 

Firstly, the equation must be solved exactly neglecting 
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the inhomogeneous term and then secondly using a var-

iation of parameter technique, a particular solution 

may be obtained for the inhomogeneous system. Combining 

the exact non-divergent general solution of the homo-

geneous equation with the particuir solution will allow 

the velocity and hence the trajectory of the particle to 

,be calculated, at all times, t. 

The homogeneous system of equations may be written as: 

x 
- WO V x + wwo V y = 0 

V  - WQVy - ww0v = 0 (3-2) 

where w0=x'=(3/2) and w= eH are the fundamental radimc 
o e2 

 frequency and the Larmor frequency respectively. 

Introducing two new variables, a and a, (which 

may be thought of in physical term as the. x and y com— 

ponents of the acceleration) defined by: , 

S 

a =v a =v 
x x y 

the system of two second-order differential equations 

(3-2) may be written as a system of four first-order 

differential equations. Since a good deal of linear 

algebra will be employed, another simplifying proceed-

ure will be to rename the velocity and acceleration com-

ponents as follows: , 

u1a u v 
2 x 

ua u'=v 
3 y 4y 

(3-3) 

(3-4) 

The system of equations (3-2) may now be, written as: 
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- u1 = 0 

13 - w0u1 - ww0u2 = 0 

u4 - U3 = 0 (3-5) 

Assuming that each u is a solution of the exponential 

form: mlm eAmt = u and substituting these back into 

the system (3-5) each Am may be found. Writng the equa-

tions out fully, is tedious but the proceedure may be 

simplified by writing the determinant of the coefficients 

of the linear equations in (3-5) as 

mWo) 0 0 WW 0 

1 Am 0 0 

o 0 (A m-w 0 ) 0 

o 1 0 1 -A 

=0 

or, X  - 2WoAm2 + w 2A 2 + w 0 2w2 = 0 (3-6) 

From (3-6) the values of Am may be obtained. This may be 

accomplished by the substitution Xmwm+0 in which case 

(3r6) may be rewritten as: 

Wm  - 2wm 2 + + (WWO) 2 =0 (3-7) 
16 

Solutios'to (3-7) are the complex numbers: 

WO 
wm •= 2 

± (wwo)t 

defining =(+ ww)½ and ww0i)½ one obtains 

w1= w2= w3 w4=- (3-8) 

The constants andrmay be determined easily from 

simple trignometric applications (see Appendix B) as: 



=1 16 (WW 0) 2 
(A) 0 2 

/W 0  (ww0) 2 

+ [+  w o 2  ½ 

8Vw2/16+(ww)2 ] 
and ii is the complex conjugate of . Since A =w m m2 

+ 
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'(3-9) 

, 

the values 'for the decay constants have now been found. 

The determinant of the coefficients, Knm will be found by 

another substitution of the assumed solution into (3-5). 

One then obtains from (3-5) 

M_  + WW O K4m = 0 

K lm- XmK2m = 0 

_WWoK2m+ m Wo)K3m = 0 

K3m ?m1<4m = 0 (3-10) 

Since the determinant of 'these equations is zero, the exists 

(according to Cramer's rule) non-unique solutions for the 

coefficients. Therefore an arbitrary choice for the value 

of one coefficient will determine the remaining coeffic-

ients. Choosing K4m=i the remaining coefficients become; 

K3 = A 

K2m = m Wom1'0 

Kim m which leads to (3-li) 

K 4 = m w o )2 Xm 2 /(WwO) 2= 1 is the same expres-

sion as eq. (3-6). Solving explicitly for each coefficient 

Knm (by substituting the appropriate values of Am into the 

expressions above) give the following result: 
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K 
nm 

I +) i  W 11 +rì) -i('0 —ii) 

1 1 -i -•1 

+ri) (Wo —ii) 

1 1 . 

(3-12) 

The general solutions to the homogeneous equation have now 

been obtained. The constants of integration, k nmr are to 

be determined from the initial conditions on the velocities 

(and accelerations if needed). 

ul = a = kim (_1),P Ammt 

U2 = = iX k (_1) P eXmt 

U3  = k3X emt 

u4 =v 
y m 4m (3-13) 

O when m=1,2 
where p satisfies the condition p= (3-13a) 

11 'when m=3,4 

Since the solutions (3-13) are the parametric ex-

pressions for the trajectory of a particle travelling 

under the influence of an external constant magnetic 

field at non-relativistic velocities, the velocity com-

ponents should be similar to those obtainedby Plass(1961). 

Using (3-13) and (3-8) the velocity components may 

simply be written: 

v(t)= ? e01'2)tfet+et_ _e._nt] sin 
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v (t)= !Q. eo/'2)t ( t t flt flt 
4 +e +e +e j sin 00 

(3-14) -

where v0=v(t=O) and eo is theinitial angle between the 

velocity and magnetic field vectors. 

UpOn defining = 16 + (ww) 2 and then define thequan-

tities, ai and a2 as 

a1 = '½ w02 ½ 
8 

2 ½ w and a2 = 8 (3-15) 

equation (3-9) may be written as; 

= a1 + l.a2 

therefore (3-14) becomes 

a1 

fl = a1 - 

v(t)= v   e 
eo/2)t ea1t_e a1t [2t_ ] e_ta2t] isiñ 8 
0 [ 2 0 

= .v0eo'2)t sinh(ct1t) sin(cx2t) sin 00 

Y.  1a1t_a1tJ[ta2ta2t V (t)= e (Wo/2)t e +e  e +e  ) 1. sinO 2 0 

(w /2)t 
= v0e 0 cosh(a lt) cos (ap t) sin 80 (3-16), 

In order to compare these results with those of Plass, 

and a2 will be written in terms of wand w0 . Using 

(3-15) and remembering that Towo =1: 

a1 
½. 

= 0 I1(l+l6T 2w2) . 2] 

2 2 2 

12 a2 = 0[_(1+l6 T 2w2 )½] (3-17) 

Equation (3-16) is the most general solution to (3-2) 

and therefore will contain "runaway" solutions as well 

since the asymptotic condition (1-11) is not included in 
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the equations of motion (3-1). Picking out the non-diver--

gent terms gives as the physically valid solution; 

v(t) = ye-w1t sin (w2t) sin 00 

v y (t) = v0e w1t cos (w 2t) sin 00 

where w1=c 1- w0/2 and W2 - 2 

(3-18) 

Equation (3-18) is found to agree with the results of 

Plass in that it also describes an exponentially damped 

circular motion about the magnetic field. 

The effect of the orthogonal electric field on the 

particle trajectory must now be accounted for,' and it was 

this field that introduced the inhomogeneityinto the equa-

tions of motion. Therefore using a variation of parameter 

technique, a particular solution for the inhornogeneous 

system of equations may be found. 

Substituting functions of the parameter, t, in place 

of the constants of integration in the general solution, 

will give one a particular solution to the inhomogeneous 

system of differential equations. These functions are 

chosen in such a way that they satisfy the following system 

of equations: 

(.. 1) P X e Aflt - eEw0 

f (t) (1) P eX1t = 0 
n 

k(t) A et=0 
n 

fc (t) eXnt =0 
n n 
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where n runs from one to four and p satisfies the condition 

(3-13a) and i(t)= d k(t). The determinant of the above 

system of equations is 

A1eX1t eX2t Lk 3e)3t ix 4eX4t 

eX1t eX2t !eX3 eX4t 

X1 e Xlt A2eA2t eX3t A4eX4t 

eXit eA2t eA3t e 4t 

or 

ID = 4(X2-X1) (X3_A4)e2w0t 

Here the fact that (Al2+A 3+A 4)= 2w0 has been used. 

Therefore by Cramer's Rule; 

]: =DlwOeE  
1 in 

]: - ID1 w(,eE 
2 m 

= D1 w0eE  
3 m 

= D1 weE  

1 -1 -1 
A2 A3 A4 

1 1 1 

A1 A3 A4 

1 1 1 

A1 A4 

1 1 1 

A1 A2 A4 

1 1 1 

e(2Woi)t - 
let exp(-Xi.t)  

2m(A 2-A 1) 

e(2W02)t - -teE exp(-A 2t)  
2m (A2 -A 1) 

'2 -A - -éEexp(-A 3t)  
• w 3)t 2m(A-A 3) 

e (2W04)t -  teE exp(-At)  
2m (A t-X 3) 

integrating the expressions above with respect to time' 

gives the following functions: 

w6eE exp( -A1t) -  eE exp(-A 2t)  
k1 (t) m 2A 1 (X 2-X 1) k2 (t) rn 2X 2 (Xi-X2) 



32 

= w0eE exp(-A 3t) w0eE exp(-Xt)  
k3 (t) m 2A 3 (A-A 3) k4 (t) -  m 2X(A-A 3) 

The particular solutions may then he obtained by sub-

stituting the expressions for k(t) into the general sol-

ution expressions (3-13) as follows. 

Ul t = k(t) (_1) P Ae)1t = 0 

U2t k (t) (_1) P eAnt = 0 
n 

U3art k (t) A e t = o = n n  

k (t) e t = 
U4t =n n Nc 

(3-19) 

The particular solution appears in the y component of 

the velocity only and is a constant proportional to the 

ratio of the electric field to the magnetic field. As ex-

pected the particular solutions for the acceleration com-

ponents are zero since as t+co the acceleration components 

must approach zero. It will be noted that the constant 

velocity, c, is simply the "drift" velocity of a particle 

travelling in orthogonal electric and magnetic fields and 

is perpendicular to the plane in which the fields lie. 

Since the particle undergoes damped motion as a result 

of the magnetic field only, the trajectory of the particle 

will be a damped trochoid. Integrating the velocity com-

ponents from (3-18) and (3-19) over time gives the para-

metric expression for the position of the particle at time, 

t. The expressions therefore are: 

-v0 sin 0e -w1t 
X(t) 2 0  (w 1 sin(w 2t) + w2 sin(w 2t)) 

Wi W 2 2 



33 

Vç,Sifl 0 e  sin(w 2t) + w1 cos(w 2t)) + y(t) = 
Wi2 + W2 2 

+ ct (3-20) 

The damped trochoid motion may be described in three 

different forms; prolate (or looping trajectory), curtate. 

(or smoothly rounded), or cycloidal depending upon the 

rate at which energy is lost by the particle. Since the 

rate of energy loss is dependent upon the field strengths, 

the type of particle trajectory will also be specified by 

the size of the electromagnetic field. A more detailed 

description of particle trajectories and energy losses 

under varying field configuratipns and strengths will be 

handled in Chapter V. 



CHAPTER IV 

THE DIRAC-LORENTZ EQUATION FOR A CHARGE 

IN ORTHOGONAL MAGNETIC AND ELECTRIC FIELDS 

The relativistic equations of motion (1-i) cannot 

be solved exactly, since they involve the cross products 

between the different velocity components. Non-linear 

expressions are therefore introduced into the radiative reac-

tion and approximation techniques must be relied upon in 

order to obtain a solution to the equations of motion. 

Thus far two different methods have been used. Plass (1961) 

using Picard's method assumed the non-linear terms (which 

are of the same order as the third time derivative of the 

velocity components) to be small compared with the vel-

ocities, and the first and second time derivatives of the 

velocities. This method of successively approximating the 

solution to a quasi-linear differential equation in powers 

of T0, allowed Plass to obtain approximate solutions to 

the equation (1-1) whiôh were very similar to the solutions 

to the non-relativistic equations of motion. Once again, 

motion was restricted to being in a uniform, static mag-

netic field. The second method of solution, the pertur-

bation series approximation of the equation of motion, has 

already been described in Chapter II. 

Upon treating the motion of a relativistic charged 

particle in orthogonal electric and magnetic fields, the 

latter method shall be used to obtain approximate sol-
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utions to equation (1-1). Since terms of the order T 0 2 and 

cannot be observed classically, the first order approxim-

ation, (2-13), of equation (1-1) will be used as the equa-

tion that fully describes the trajectory of a radiating 

particle. It will be remembered also that equation (2-13) 

was derived using the asymptotic condition (1-il) and 

therefbre solutions to (2-13) will not contain the diver-

gent terms that appeared in the solutions found in the 

previous chapter. 

In order to write equation (2-13) in a usable form, the 

assumption that WT 0<<l must be employed. Since T is such 

a small quantity the magnetic fields that require WTo= 1 

are of the order lO 15 Gauss and therefore the assumption 

that the Larmor frequency, w, is much smaller than the fun-

damental radiation frequency, w,, is valid physically. 

Writing equation (1-1) in the form 

where 

e V 
u =—F u 
p mc pv 

11 3  j 3 U2 upuVu 

vector which describes the 

Abraham four vector may be 

(making use of (2-12)) as 

r 1J = 

1-I 
(4-1) 

is known as the Abraham four 

radiative damping force. The 

written, to the first order 

e (Vd 
T0 1u - FV +F -2Ru 

mc 11 P\ )-c  p 
(4-2) 

Applying the condition wT o<< 1 allows the acceleration 

to be of the same 

particle's mass. 

order as the Lorentz force divided by the 

Equation (4-2) then becomes: 

F=T e — 2 u f_ u F +—F vA 2 e 2 To A )u 
P 0 mc dx pv mc uJ 3 mc5 (F X)) ( ' u 

(4-3) 
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where the definition of the four velocity uXdT and 

the chain rule have been employed. Equation (4-3) has 

also been obtained in a different manner by Landau and Lif-

shitz (1965). The first term vanishes only if the field is 

constant in both space and time due to the interdependency 

of space and time in relativistic theory. 

Both the electric and magnetic fields considered in 

this problem will be constant in space and time, therefore 

the first order approximation of equation (1-1) may be 

written as, 

= —F UV_T e2 ,vX e2 
P mc pv O 5 pA 

(4-4) 

Upon choosing the directions of the electric and mag-

fields to be along the z and x axes respectively', the spa-

tial components of equation (4-4) become (see Appendix 'C); 

2e e ___ 

x mc y 3m 2 Uxt3 (H 2 (ux 2+uy 2)+e 2E2 ,(1+ux )+2eEHuy )ux u = —Hu -  

+ (e/m)E 

-eHu+ 2e 2 (H 2( u 2+u 2)+e 2E2 (1+u )+2eEHu Ju + 
u j 3m2c 3 x y x y x 

_(EH4jsH2)Uy (4-5) 2C mc 

While the first order equation does not involve the 

second time derivatives of the velocity components, it does 

remain complicated by the presence of the squares and cross 

products of the velocity components thenmselves. Equation 

(4-5) may be further simplified if a Lorentz transformation 

to a moving frame in which the electric field vanishes is 

made and equation (4-5) is written in that frame. 
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Since the quantities E H and E2-H 2 are invariant un-

der all Lorentz transformations and in the particular 

problem at hand •i=O, there must exist a Lorentz frame in 

which either of the fields vanishes. The present problem 

also restricts the quantity E2-H 2 to be less than zero, 

hence the only field that would be allowed to vanish would 

be the electric field. Using the well known Lorentz tran-

formation formulae for electromagnetic fields and setting 

the transformed electric field to zero gives as the vel-

ocity of the moving frame: 

ExH  
=   c (4-6) 

which is the "drift" velocity of a particle in an orthog-

onal electric and magnetic field configuration and is di-

rected perpendicular to the plane described by the electro-

magnetic fields. Applying the field transformation equa-

tions to the magnetic field, the transformed magnetic field 

becomes: 

[H 2 _E 2 )½  • = 
H 2  YO 

(4-7) 

(All quantities measured in the Lorentz frame travelling 

with the drift velocity are represented by the primed 

quantities). In the moving frame the only field acting 

on the particle is a static magnetic field which has the 

same direction as the magnetic field in the laboratory 

frame but is reduced by a factor of y o - 1 Thus the motion 

of the particle in the drifting frame will be thought of 

as occuring in a static magnetic field only. Setting EtO 
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equation (4-5) may be written in the moving frame as; 

U=WU' + Tow '2 (1-' 2y2)U' 

U  y ' W'U x + T 0 y w'2(1-'2y2)u I (4-&) 

where '2=u' 2/c 2 and w is the Larmor frequency of the 

particle in the moving frame. The assumption that the 

energy does not change appreciably- over one cycle ( approx-

imately 2'rr/w) can be made easily as long WT 0<<l. Energy 

losses in this case are extremely small (i.e. a variation 

in y of 10-2 would occur for 100 cycles for a magnetic 

field strength of 1 Gauss ) and the trajectory of the par-

ticle is not altered drastically. Calculation of the 

trajectory may be easily made by assuming that y remains 

constant over one cycle. Subsequent cycles may be ob-

tained by calculating the small energy change that occur-

red in the previous cycle and then using that value as the 

initial 'y' for the following cycle.. This method of suc-

cessive approximation of the trajectory works quite well 

when the magnetic field is as large as lO 13G (see Chapter 

V). All previous work dealing with the relativistic equa-

tions of motion with the exception of that by Shen (1972) 

have maintained that y will remain constant indefinitely. 

For these cases the requirement that WTO<<lmust be ad- - 

hered to rigidly and therefore the radiative reaction' 

will have little effect upon the particle dynamics. Over 

the period of one revolution for which the initial energy 

is represented by y the equations of motion in the drift. 

frame are: . . 
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U '= W'U '+ T 
0 x y 

' W 'U '+ T 0 W '22 U 
y x y 

(4-9) 

The solutions to equations (4-9) may be found very 

simply by using the same technique as employed in Chapter 

III for the non-relativistic equations. Equations (4-9) 

are two first order homogeneous equations. Assuming solu-

tions of the form: 

XlT 
U 1 = u = 11e +K 12eX2T 

U2 = u'= K21eAlT+K22eA2T 

and substituting these back into (4-9) allows one to solve, 

for the exponential arguements, which are complex. 

X=y 2w' 2t+iw' 2t+v (4-10) 

The solutions for the coefficients are not unique, 

therefore assuming without loss of generality that K21 l 

the remaining coefficients become: 

(4-li) 21 22= 

Having solved for the coefficients above, the most general 

solutions for the equations of motion (4-9) are: 

U 1 = a1 1exp (y2wt2T +w')T +a 2 exp _(y 2 wt 2T_wI)T 

= a1exp _(y2wt2TO+w!)T +a2 exp _(y 2 w 2 T Q _wT) T (4-12) 

where the integration factors, , a1 and a2 are arbitrary 

constants to be determined from initial conditions. 

Rewriting. the exponential terms with the complex ar-

guments in terms of trignometric functions and specifying 
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the initial value of the velocity vector to be u0 and 

at an initial angle e to the magnetic field vector, the 

equations of motion have the solution; 

= u0exp -(y 2w' 2T0 )T sin w'T sin 00 

u,' = u0exp -(y 2w' 2T0 )T sin W'T sin 0 (4-13) 

In the moving reference frame the particle executes 

a spiral trajectory resulting from the exponential damping 

of the original circular motion that arises without radi-

ative reaction present. This motion is exactly the same 

that occurs for a particle moving in a static constant 

magnetic field under the influence of radiation damping. 

In the non-moving frame, the solutions are much more 

complicated since a Lorentz transformation must be made 

to express the velocity in terms of the quantities in that 

frame. The solutions to the equations of motion in the 

observer's frame then become; 

= 1u0 (H 2_E 2 )½ sin(WT/y 0 ) sin 00 x 

x(H exp(y 2w2T0T/y)+Eu0cos(WTtY 0) sin e) 

u = yu0H cos(WT/Y 0 ) sin- 00 >< 

1 

x(H exp(y 2w2T0T/y 0 2)+Eu000S(WT/1 0) sin o) + 

+ E —(H-yu0exp -(y 2 2 w T0T/YQ 2 ) cos(WT/y 0 ) sin o) 

(4-14) 

These equations represent the exact solutions to the first 

order relativistic equations of motion for a charged par-

ticle undergoing radiative reaction in orthogonal magnetic 

and electric fields. 
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Writing the velocity components.in a Taylor series 

2 vu 
form in powers of the denominator, (l+vuy/c ) where I--YI<l 

equations (4-14) may be approximated to: 

U = u0 y/y 0 exp(-y 2u2T0T/'y 0 2)cos(WT/y 0 )sin 0 x 

'y exp(-y 2w2ToT/1 0 2)sin(wT/y 0 )sin 0 0+....) 

Uy = (u0y/y 0 exp(-y 2w2T0T/y 0 2)sin(wT/y 0 )sin 00 11 +c) 

x(1 exp(-y 2w2T0T/y 0 2)sin(w't/y 0 )sin o+...) 

(4-15) 

The non-relativistic solutions may be represented by 

the first term in the expansion and by setting y and to 

unity. These equations then reduce to equations (3-18). 

By setting E=O, equation (4-15) becomes equivalent to the 

first order expression for the relativistic solutions to 

the Lorentz-Dirac equation obtained by Shen (1972). 

An extremely important result of the solutions to the 

relativistic equations of motion deals with the velocity 

component parallel to the magnetic field vector. In Chap-

ter III it was shown that the longitudinal velocity com-

ponent remains constant. This would be even so in the 

reference frame moving with the drift velocity, but, as a 

result of the Lorentz transformation (i.e. in effect, a 

result of of the Doppler shift) the z component will not 

remain constant. Applying the Lorentz transformation of 

velocities to the z component of the velocity in the drift 

frame the velocity component in the observer's frame 

becomes: 
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1u,(H 2_E 2 cos 0  
U H+u0yE exp(- w2T0T/y 0 2)cos((,T/y 0)sin 00 

(4-16) 

Therefore unlike the non-relativistic particle for 

which the radiation gathers its energy from the trans-

verse components of the velocity only, the relativistic 

particle will lose energy from both the transverse and 

longitudinal velocity components. 

This result is a consequence of the drift motion of, 

the particle since the electric field plays an important 

part in the longitudinal energy loss. Setting the electric 

field to zero in equation (4-16) results in u=u0Cos 00 

which is a constant. This was the same result obtained 

from the non-relativistic problem. The implications of 

(4-16) in terms of the radiative energy loss and the 

trajectory of the particle will be discussed more fully in 

Chapter V. 

Computation of the actual trajectories of the rel-

ativistic particle is more complex than that for the non-

relativistic particle. The velocities above are written 

in terms of proper time, T, and in order to obtain the 

trajectory of the particle for ordinary time, t, one must, 

integrate equation (1-5) over all past time' in order to 

determine the passage of ordinary time. This is a much 

more involved process than simply varying the 'parameter 

in the velocity expressions. But, in the problem at hand 

if y remains constant for at least one revolution the 
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relationship between the intervals of ordinary and proper 

time is linear and the transformation may be made more 

easily. 

Qualitatively though, the trajectories will be similar 

to the non-relativistic trajectories. Departures resulting 

from the Lorents transformation from the drifting frame to 

the observer's frame will occur, and these will be noticed 

especially in the longitudinal velocity component already 

discussed. Further discussion of the relativistic effects 

will be reserved for the next chapter. 



CHAPTER V 

PHYSICAL IMPLICATIONS OF THE THEORY 

A) Trajectories and energy losses 

In Chapters 11,111, and. IV detailed calculations on 

the solutions of the equations of motion for a radiating 

charged particle have been presented. The details have 

been mainly of a mathematical nature and physical inter-

pretations have been made in passing. This chapter will be 

devoted to the applicabilty of the equations of motion of 

certain physical situations to the solutions obtained in 

previous chapters. Trajectories of individual particles 

and energy losses will also be discussed in this chapter. 

Two parameters which are crucial in a study of physical 

applicability of. the equations of motion are the initial 

energy and the magnetic field strength. As wIll be shown 

later, the strength of the electric field becomes an im-

portant factor in there1ativistic case. 

The non-relativistic equations will be studied first 

since these solutions give the gross behaviok of the par-

ticle. For most practical problems the magnetic field 

strengths are sufficiently small enough that the Larmor 

frequency will be smaller than the fundamental frequency 

of radiation, w0 , or in other words, WT 0<<l. The argu-

ments al and a2 (3-17) of the exponential and trignometric 

functions in Chapter III may be written as a Taylor series 

in powers of wt 0 . These become: 
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a1 = w0 (½ + T0 2W2 - 5T 0 1w + 42T 0 6W6 +.. .) 

a2 = w(1 - 2T 02W2 + l4T01w 4 +.. .) 

Since the argument of the exponential decay is 

this constant becomes: 

= TW 2 (l - 5T 0 2w 2 + 42T 0 w +...) 

(5-1) 

(5-2) 

Therefore -w1 which determines the exponential decay 

of the motion increases in the first approximation as the 

square of the Larinor frequency. Beyond this first order 

approximation, the actual frequency of circular motion, 

described by equation (3-17) diminshes by powers of T 0 2 and 

and higher orders. Thus to the first order, the parametric 

expressions for the velocities become; 

-T w 2 t 
v (t) = v e 0 sin wt sin 0 
x 0 0 
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v (t) = v e_T0,W2tsin wt sin oo-4c 
y 0 

(5-3) 

These equations may also be obtained from the first terms 

of (4-15) by setting y and y to one and equating proper 

and ordinary time. 

The only requirement placed upon the electric field 

is that IEI<IHI in order to ensure that the drift velocity 

does not exceed the velocity of light. For the drift to 

be non-relativistic the electric field strength must be 

atleast one order of magnitude smaller than the magnetic 

field strength. 

For a complete understanding of the dependence of 

the solutions upon the magnetic field, it is also instruc-
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tive to consider the limiting value when WT 0>>1. In this 

case; 

(A)1 =2 = V'W 0 W (5-4) 

the decay constant and the frequency of motion are equal. 

The particle will then radiate most of its energy in a 

single revolution, and will then travel with a constant 

velocity depending upon the drift rate and the magnitude 

of the z velocity component. 

Before describing the energy losses, it will be help-

ful to view the trajectories in the limiting cases discussed 

above. The concept of the center of gyration will be used 

to simplify matters. This point is the instantaneous cen-

ter of circular motion see Alfven and Faltharnmar (1963) 

and moves with a velocity vg=vJ. +v i where v1 represents the 

drift velocity of the particle and v1, represents the vel-

ocity due to the radiative reaction. In the case where 

only the Lorentz force acts (i.e. radiation reaction is 

negligible) the velocity of the center of gyration is: 

vg = Vd. = Ec/H 

The radius of curvature about this point at any time, 

t, will be given by; 

vosin 0  
Pg(t) = (u12+w22) exp(-w1t) (5-5) 

Since the radius of cuvature is decreasing in time, 

the motion of the particle will tend to follow a curve 

that becomes increasingly curtate as time increases (i.e. 
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the oscillations about the line describing the motion of 

the center of gyration will decrease). The form of cycloid-

al motion will depend upon the radius of curvature per rev-

olution to the drift velocity. A critical time defined as 

the time at which the motion is simply cycloidal (i.e.' the 

time when this ratio is unity) can be found from (5-5) to 

be; 

t = 
—1 U) ln  Ec  [W1 2 +w2 2Y 

o '2 (5-6) 

When t<tc the motion will be prolate, and curtaté when 

t>tc . Should tc<O, the prolate motion will be unable to 

occur. In the case where WT O >> 1, t will be of the order 

To and therefore the damping (proportional to the inverse 

of tc) will be very large. 

In Figure (5-1) the trajectory of a single electron 

in the x-y plane is represented for the cases where the 

parameter WT is greater than, less than, and approximately 

equal to unity. It can be seen quite readily that even in 

the intermediate case of WT 0 =O.937 the particle loses an 

appreciable amount of its initial energy in one period, 

2ir/w2. 

For the case WT0<< 1, the motion of the particle de-

viates only slightly from the motion of a particle in-

fluenced by the Lorentz-forces only. 

The energy loss per unit time may be calculated, read-

ily from the expressions for the velocity: 
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I 

t=O.498 LOZ ' 

h) (1yr 0=6x10 5 t0=l.6x10'° )2_1 

I 

x 

x 

a) 0JT 0 0.937 

1 2 Y 

C) WT 0 4X10 2 t -1 .5 j2 1 

Figure (5-i). Various trajectories of a radiating clas-
ical particle in orthogonal electric and magnetic fields 
for different values of the parameter, WTO. The units of• 
distance are chosen such that the initialtundampe'd' posi-
tion is unity. The path of the trajectory is represented 
by the solid line and the motion of the center of gyration 
is represented by the dashed line. 
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= 2w 1V 2e2W1t sin 20 
a—t (5-7) 

In the two extreme cases the energy loss per unit time 

becomes; 

dE 22 
- - V U) T0 5in 20 WT 0<<l 

For the case 

= -V  2(2WW)½ s1n 20 exp(_(2ww )½t) : WT >>l 0 

U)T0 <<1 

familiar form; 

(5-8) 

the energy loss may be written in the 

(Z1c 9 (22 , 

= Hv 0 sin 26o (5-9) 

which is just the non-relativistic energy loss expression 

for a particle losing energy in a constant, static mag-

netic field. On the other hand when U)T 0>>1 the energy 

of the particle is lost in a time of the order of To 

and the particle will then move with a constant velocity 

neither gaining or losing energy. 

Finally it will be observed that the pitch angle of 

the particle motion will decrease to a constant value: 

limO - 11 Ec  
t-)-co t vocos Oo 'i = tan I (5-10) 

J 

due to the decrease in the transverse component of the vel-

ocity. The decay of the pitch angle is dependent simply 

upon the exponential damping term and its rapidity of decay 

depends inversely upon the value of WTO. 

The relativistic problem is not as simple as that dis-

cussed above. The Lorentz transformation from the drifting 

frame to the laboratory frame introduces departures from 



the trajectories of the non-relativistic particle , 

The instantaneous radiation rate for the non-'rel-

ativistic particle may be obtained from the time-like 

component of equation (4-4), since u4 yc: 

di - -T 0e2 Ic(T) 2 eEu, 
dT - mc3 mczj (H 2 (u 2+u 2).-E2) +2EHu 

(5-11) 

Substituting equations (4-15) into (5-11), the first order 

relativistic energy loss per unit rest mass per unit time 

for a single charged particle becomes; 

di - 2 e2 
jj2 M2C4 H2u0 4 exp(-2Y 4w4ToT/Y  2)sin 200 + 

6(T) 2 

+ u01 exp(-y 2w2T0T/y 0 2)sin 00 x 
io 

x [•!E côs(WT/y0)-2T0 e2MC 3 EH sin(WT/y (5-12) 

In the absense of the electric field and in the case 

where the magnetic field strength is extremely small, the 

energy loss of the particle is simply the ordinary syn— 

chrotron radiation loss expression. Successive terms for 

the instantaneous radiation rate are of the order (wTo/yo) 2 

and modify the energy loss only slightly if the Larmor 

frequency is not too large. 

The non-constancy of the. "drift" velocity complicates 

the trajectory of the particle since the velocity of the 

center of gyration is affected by the Lorentz transformations. 

With a center of gyration velocity component perpendicular 

to the magnetic field and increasing with time, the traj-

ectory of the particle in the relativistic case will be 
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flatter than those depicted in Figure (5-1). The damping 

of the circular motion therefore becomes slightly more 

pronounced for the relativistic particle. 

Another difference between the relativistic and non-

relativistic cases is that the pitch angle in the relativ-

istic case decreases more rapidly than in the non-relativ-

istic case. Firstly, the damping of the transverse, com-

ponent of velocity is more rapid. The decrease of the 

velocity components goes as 

lexp(Y,W,TOT/yo,) + u0ycoS (WT/yo) Sin O] 

relativistically where as non-relativistically the decrease 

(for WT 0<<l) is exp(-w 2T0T). In most cases this effect is 

small if E<<H. Secondly the overall increase in the longit-

udinal velocity component to the-value Ec/H also causes a 

more rapid decrease in the pitch angle. However the lim-

iting value of the pitch angle (5-10) still remains the 

same. It must be remembered that these relativistic ef-

fects are generally quite small and add only minor cor-

rections to the motion described non-relativisticallyas 

long as E<<H and w-r 0<<l. Only in this case can the per-

turbation method used give meaningful results. 

B) The applicability of the classical theory 

Thus far very loose limits have been placed upon the 

applicability of the' classical theory of radiation from 

acceleratedcharges used in the previous chapters. One 

must enquire whether certain astrophysical or laboratory 
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conditions are satisfied by this theory. First quantum 

mechanical effects will become important when the deBro-

glie wavelength of the electron is of the same order as 

the characteristic length described by the Larmor radius. 

Therefore in order to treat the electron as a point charge 

in a well defined orbit without wave interference; 

mc 2Y >> h  
eH ymc13 or 

2 ;eh 2  
>> •- 1H 3 (5-13) 

where y(1_ 2) and h is Planck's constant. Here the 

factor 2/3 has been introduced without disturbing the order 

of magnitude estimation. In a quantum mechanical treatment 

of the radiative reaction using a modified Dirac equation, 

Sokolov, Klepikov, and Ternov (1952) have shown that the 

parameter, - (where Hq= M  G) eh - 4.4x10 13 must satis-

fy even more clemai-iaing requirements than those of (5-13). 

Their results show that quantum mechanical effects occur at 

lower energies and thus the limiting requirement on clas-

ical theory is: 

(5-14) 

rather than criterion (5-13). Experimental evidence ob-' 

tamed from particle accelerator work [see Sokolov and 

Ternov (1968)] has shown that (5-14) is a much better es-

timate to the limits of classical theory. 

Having placed .a maximum value upon the magnetic field 

(i.e. 6.6x1013 G in the non-relativistic case) one must 

determine the limits to the energies that may be described 



53 

by classical theory. Returning to equation (1-1), it 

can be seen that the order of magnitude of the three terms 

on the right hand side (in terms of the Lorentz force) is 

given by the ratio, l:WT 0 :1 2 13 2 &Yr0. Since the radiation re-

action is described by the sum of the last two 'terms, the 

overall magnitude of the radiation reaction force in terms 

of the Lorentz force is given by the parameter, Y 2 WTQ. The 

theory presented in Chapters II, III, and IV holds on the 

condition that this prameter is less than unity (i.e. the 

radiation reaction forces are smaller in magnitude than the 

applied forces from the external field) or that; 

- 2' 
2 mc 15 y H << e3 - Hc = 6x10 G (5-15) 

Figure (5-2) is a plot of the range of validity of-

different radiative reaction theOries determined by criteria 

(5-14) and (5-15). Obviously astrophysical situations deal-

ing with synchrotron radiation fall well within the applic-

ability of. the theory presented. Many laboratory situations 

including the recent megagauss experiments with the Stanford 

Linear Accelerator [Herlach, et. al. (1971)] also may be 

described by the first order relativistic theory. The 

intense magnetic fields and high particle energies Associat-

ed with pulsars, however, must he describedby all levels of 

radiative reaction theories and therefore cannot he solely 

explained classically.  

An application of the relativistic theory presented 

in Chapter IV has been carried out by Bland and Hobill (1974) 
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for an idealized inf±n±të'iy thin neutral sheet (thereby 

implying orthgonl'electrjc and magnetic fields). Par-

tides with energies ranging from y=102 to 10 5 were in-

troduced into neutral sheets with magnetic field strenghths 

ranging from IO to 10 gausá. The' instantaneous posi-

tion and energy of the particle were calculated by updating 

the value of y over each period and this was accomplished 

for times of the order of 10 1 sec. The relation between 

proper and ordinary time was assumed to he linear , there-

fore allowing a direct correlation between these two times. 

Since the order of magnitude change of y over 50 revolutions 

was only 10 -2 , y was assumed to remain constant' for fewer 

revolutions. ' 

It wa found that not only is there a noticable de-

crease in the pitch angle, but that there is also along 

with this, after an initial energy loss, an appreciable 

acceleration resulting from a stronger coupling of the elec-

tric field. The reversal of the magnetic field at' theneu-

tral sheet is just what is needed to overcome, the energy 

losses that would occur in a simple orthogonal field sit-

uation. This reversal of fields also produces a gradient 

of the magnetic field at the boundary which along .with the 

electric field serves to accelerate the particle. Assuming 

that the magnetic fields described above exist at neutral 

sheets associated with the Crab Nebula, this process of 

accelerating electrons may describe the infia-red spectrum 

of the Crab. 
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APPENDIX A 

RADIATION REACTION FORCE FROM CONSERVATION OF ENERGY 

The following plausibility argument is not a rigorous 

proof but is only used as an example of the origin of a 

radiative reaction force obtained from the principle of 

energy conservation. In concidering only' the non-relativ-

istic limit, it is known that if an .external force is 

exerted upon 'a particle, it accelerates according to 

Newton's equation of motion. 

.4- 

my = 
ext 

(A-i) 

Since the particle is accelerated, the Larmor power 

formula will give the total instantaneous power radiated 

by the chargé.- ' 

2e 2 
P(t) = (v) (A-2) 

To account for this energy loss, the existence of a 

radiative force, 'rad' is assumed and Newtons second 

law becomes; 

mv = Ft + rad 
(A-3) 

Now equating the radiatve energy loss 'to the action 

of the radiative forc'e over a time interval, t1<t <t 2 -one 

obtains: 

(t 
2 2 

I 2 e2 • 2 
-- —3v dt = -I F • rad dt (A-4) 
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Where the work done by Frad is the negative of the energy 

radiated in the same time interval. The first integral may 

be integrated by parts to yield: 

1 t2 2 e 2 [• -. 

. = . •3 VV 

ti 

t2 t2•:;. 

- v•vdt 

ti ti 

t2 

= F •vdt 
rad 

ti 

(A-5) 

If the motion is periodic and t2-t 1 is some multiple 

4. 
of the period, or if .(t 1)=4(t 2) for reason's other than 

mentioned above, or if the average value of vo v,over some 

appropriate time scale is zero then 

2 e2-'-
.. .3v.v 

t 

=0 
ti 

and equaton (A-5) becomes 

t2 rr 2 rae32T .; dt 

ti 

(A-6) 

Equation (A-6) is satisfied if the integrnd is zero, 

+ 2e 2 -
F =--3v 
rad 3c 

(A-7) 

which leads to equation (1-9). 

Obviously two flaws exist in the above reasoning; 1) 

sufficient justificaion for eliminating v •v.has not been 

provided, and 2) even if . vanishes the radiation reaction 
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component perpendicular to v has not been found since only 

the parallel component arises from the dot product in 

equation (A'-6). 
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APPENDIX B 

DETERMINATION OF THE PARAMETERS, E AND n 

Writing the complex numbers E2 and n2 in exponential 

form, one obtains from De Moive's theorem; 

= CO0 + ww0i = pe10 = p(cosO + i sinO) 

4 

2 iG 
Ti = 0 - ,WW 0 J. = pe = p(cosO + i sinO) 

.4-

Taking the square root of each of these gives: 

(B-i) 

½ 0 0 ½( 0 i . . 0 
±=±p (cos+isin) ; 2 2 -  = - + cos- sin) 

(B-2) 

To deermine the trignometric functions of e , cosO must 

be found from Fig. B-i. 

imaginaryA 
,/•• (w/4,ww0) 

/ 

. (w/41-ww0)=ri 

real 

Fig. B-i. Representation of the imaginary numbers, and Ti 

on a Cartesian co-ordinate system. 

Therefore if p = 0 + 2 

16 
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then cosO = { 4  19 

Using the identities: 

0 0 cos- = i/½(1+coso) and sin - = v'½(1-cosO) 

and substituting these into (B-2) one obtains: 

+ (WWQ) 2 ) ;4 + 

9 

8v'w/16 +(ww0) 2 

8/w/16 +(ww0)2 

I X2- 

(B-3) 

and ii is simply the complex conjugate of equation (.B-3) 
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APPENDIX C 

DETERMINATION OF THE FIRST APPROXIMATION OF 

THE LORENTZ-DIRAC EQUATION IN COMPONENT FORM 

The first approximation of the Lorentz-Dirac equation 

may be written in tensor form as (see Chapter IV); 

ü = e F e2 vX e2 fF FfluXU 1 u F F U+T-5 
p pv Toj-i'3 iiX v 0m C ,.flj P 

mc 

(C-i) 

The anti-symmetric electromagnetic field tenor F \, may be 

written as follows ( assuming H to be directed, along the 

z-axis and E along the x-axis): 

F = 

o H 0 E 

-H 0 0 0 

o 0 0 0 

-E 0 0 0 

Therefore the. contravariant tensor, F becomes: 

FUV = 

o H 0 -E 

-H 0 0 0 

o 0 0 0 

E 0 0 0 

(C-2) 

(C-3) 

To determine the contribution from the Lorentz force we find 

O H 0 IT —u 

v -H 0 0 0 u 
F u= 2 

1_ky 0 0 0 u3 

-E ,0 0 0 

H,u 2+Eu 1 

-Hu 1 

0 

-Eu 1 

1_ky 
V. (C-4) 

In other words the distinction between the covariant and 

contravariant tensor products for the Lorentz force vanishes 

except for the sign. 
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Now the second term on the right hand side of (C-i) must 

be evaluated. First the mixed tensor F 11 A Fis found to be 

E2 H2 o 0 

F FVA = 0 -H 2 0 EH (C -5) 

pX 0 0 0 0 

0 -EH 0 E2 

Multiplying (C-5) by the vector u V one obtains: 

(E 2-H 2 )u 1 - 

Flix F VX u = -H2u2+EHuk 

0 

(C-6) 

-EHu +E 2U 
2 

Finally the product FvXFuAu may be written as IF VX, 12 

since FAu' =_F VX u X so that I F AFuxufl] u becomes after 

using (C-4) 

1x u  = 2+H 2u+E 2uJ j(HU 2+EU4 

U 1 

U 2 

U 3 

u  

(C-7) 

Now all that is needed is to choose the appropriate components 

from (C-4), (C-6), and (c-7) and substitute them into (C-i). 

The first order Lorentz-Dirac equation may be written in, 

component form as: 

u1  e I —Hmc u2+EuJ ) _'0 3 - u l_T omc5 Hu 2 Eu) 2 +H2u+E 2u]u 1  e2 {E 2 H 2] e2y  

e2y2 E!  T0291 12 H2u2 ]_ T0 1(Hu 2+Eu 2 +H 2u+E 2U]U 2 

e2y2 
3 T0 ((HU 2+EU k )2+H 2u+E 2U)U 3 

2 e2 y 2 
= _EUi+Tomc3(E u-EHu 2)- T05 1(Hu2+Eu) 2 +H 2u+E 2uj u 


