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1 Introduction

The purpose of this paper is to give an exposition of the theory of partial
combinatory algebras, models of the partial lambda calculus and various related
concepts from the point of view of restriction categories. We feel that restriction
categories not only simplify and clarify the presentation of the subject matter,
but also provide us with precisely the right type of logic to reason about the
structures involved.

One of the problems that one encounters when delving into the literature
on the subject is the lack of uniformity: there are various different logics for
reasoning about partiality, such as the logic of partial terms (LPT) and the
logic of partial elements (LPE). Similarly, there are various partial versions of
the lambda calculus. These logics are all related (for an excruciatingly detailed
account, see Moggi’s thesis), but the problem remains that in generalizing a
classical result to the partial world, one has to choose versions of the partial
analogues of the concepts involved, and these choices will often be governed
by practical considerations or personal taste rather than by a methodological
principle. In addition, most of the category-theoretic work that has been done
takes place in the setting of partial map categories, which are technically not
the most convenient setting to work in.

By taking the notion of a restriction category as fundamental we overcome
these issues; restriction categories (like any class of categories) come equipped
with a term logic, and this term logic will be the logic we use for reasoning about
partial structures. For example, the partial version of combinatory logic we
use is nothing but (an instantiation of) the term logic for cartesian restriction
categories. By adhering to this viewpoint, we obtain a clearer view of the
connections among the various concepts, and, in some cases, easier and/or more
perspicuous proofs.

But let us first describe the topic of this paper in a bit more detail. Classi-
cally, there are tight connections between the following concepts:

• Combinatory Logic

• Combinatory Algebras

• Lambda Calculus

• Lambda Algebras

• Turing Categories

• Reflexive objects in CCC’s (cartesian closed categories)

First of all, Combinatory Logic (CL) is an equational theory which aims to
capture a notion of abstract computation. Even though this is not immediately
clear from the axioms, the essential feature of the theory is that one can mimick
lambda abstraction and do some elementary recursion theory. The models of
this theory are precisely the Combinatory Algebras (CAs) which are, loosely
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speaking, sets equipped with an application map with the additional property
of combinatory completeness. This means that every algebraic (“polynomial”)
function is representable by an element.

The lambda calculus is essentially stronger than combinatory logic: there is
a sound translation from CL into the lambda calculus, but the translation going
the other way (which uses the fact that lambda abstraction can be mimicked in
CL) is not sound. This gap is bridged by adding axioms to CL, which makes
the theories equivalent. It is possible to do this using only a finite set of closed
equations, which, in the literature, go by the name Aβ . Now lambda algebras
are the models of the lambda calculus; in particular, a lambda algebra is a CA
in which some extra axioms hold.

Both classes of models have interesting connections with category theory. A
Turing category is a category in which one has a special object (called the Turing
object), which has the following two properties: every object is a retract of the

Turing object, and the Turing object has an application T × T
• // T such

that every map in the category is representable by an element of the Turing
object. The application map is sometimes called a Turing morphism, or a
Kleene-universal morphism. The collection of global elements of a Turing object
is a combinatory algebra, and every combinatory algebra can be realized as a
Turing object in a certain Turing category. For lambda algebras, more is true:
a reflexive object in a cartesian closed category is an object A for which the
exponential AA is a retract of A. The Scott-Koymans theorem states that every
such reflexive object gives rise to a lambda algebra, and that every lambda
algebra gives rise to a reflexive object. The construction of this reflexive object
is done by first forming a monoid of representable endofunctions, and then
formally splitting the idempotents in that monoid. The resulting category is a
cartesian closed Turing category with a reflexive Turing object.

Given the important role that partiality plays in various branches of com-
puter science and logic, it comes as no surprise that researchers have general-
ized some of the above concepts and connections to the partial setting. Just
to mention a few (more references will be given after each section): Partial
Combinatory Algebras (PCAs) have been studied as models of combinatory
logic, as a subject in itself (see, for example Inge Bethke’s thesis [Bet88]) and
as the key ingredient for realizability models [Lon94, Hof03]. Partial versions
of combinatory logic were defined by Beeson, and Scott. In his Ph. D. thesis,
Moggi introduced various formal frameworks for dealing with partiality and he
compared these frameworks with the existing ones from a proof-theoretic per-
spective. He did the same for the various extensions of the lambda calculus. A
generalization of the Scott-Koymans theorem was announced by R. Pino Pérez
and C. Even [Eve95], although a complete proof has not been published. The
same authors have obtained a finite axiomatization of (a version of) the partial
lambda calculus over (a version of) partial combinatory logic.

As stated before, our main aim in this expository paper is to provide a uniform
account of the above results. Aside from a clean presentation of these results in
a very general setting, we also obtain some improvements and strengthenings,
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and fill in some gaps in the literature. In the notes following each section, we
have indicated the origins of the results to the best of our knowledge.

It is our hope, that this material will be an accessible exposition to people with
a background in basic category theory; in particular, the notion of a cartesian
closed category will be used. Knowledge of the lambda calculus and combinatory
logic is a definite advantage, but the presentation is essentially self-contained.
We give most of the proofs in reasonable if not full detail; even when the proof
seems to be a straightforward adaptation from the total case, there are always
subtleties involved because of the partiality, and often these subtleties form
the key to understanding the matter. For the easy and straightforward results
which are not new, we give brief sketches, leaving the details as an exercise to
the interested and/or sceptical reader.
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2 Cartesian restriction categories and objects of
partial maps

In this section we introduce the categorical machinery necessary for the results.
First, we rehearse some standard facts about restriction categories. Then we
develop the theory of (partial) exponentials in a cartesian restriction category.
In the literature, partial function spaces in categories of partial maps have been
considered and have led to the notion of a partial cartesian closed category.
Here, we present the notion of a cartesian closed restriction category, which
coincides with the former notion in the case when all idempotents split.

2.1 Preliminaries on restriction categories

We start by giving a brief recapitulation of cartesian restriction categories. A
restriction category is a category C endowed with a combinator (−), sending
f : A→ B to f : A→ A, such that the following axioms are satisfied:

R.1 ff = f

R.2 fg = gf whenever dom(f) = dom(g)
R.3 gf = gg whenever dom(f) = dom(g)
R.4 gf = fgf whenever cod(f) = dom(g)

Maps of the form f are idempotents, and maps f such that f = f are called

restriction idempotents. The restriction idempotent associated to a map f
is to be thought of as (the idempotent capturing) the domain of f . A map f is
called total if f = 1. It easily follows from the axioms that every monomorphism
is total. Moreover, the total maps form a subcategory of C, which we will call
Tot(C).

One can also show that restriction categories are locally ordered; for maps
f, g : A → B, say that f ≤ g if f = gf . Informally, this means that the graph
of f is included in the graph of g.

An important example is Par, the category of sets and partial maps. More
generally, whenever a category D has a stable system of monics M, one can form
the partial map category Par(D,M), and this is a restriction category. Here, a
system of monics is said to be stable when it contains all isomorphisms, is closed
under composition and when the pullback of each monic in M (exists and) is
again in M. The partial map category Par(D,M) has the same objects as D,

but maps from A to B are now represented by a span A C
moo

f
// B ,

where m ∈ M and where f is arbitrary. Two such spans (m, f) and (m′, f ′)
are equivalent if there is an isomorphism g such that m′g = m, f ′g = f . Com-
position is given by pullback. Par(D,M) is a restriction category. A restriction
category is of this form when all the idempotents split. In fact, this condition
characterizes partial map categories amongst all restriction categories.

It is fairly common practice to take a restriction category C and formally
split a class E of idempotents. The resulting restriction category is then denoted
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KE(C); it has as objects pairs (X, e) where X is an object of C and e is an
idempotent on X is the class E. Its morphisms f : (X, e) → (X ′, e′) are maps
f : X → X ′ of C for which e′fe = f . The restriction of such a map is defined
to be fe (or, equivalently, one can take e′f). Of particular interest is the case
where one splits all restriction idempotents of C; we will use the notation Kr(C)
for that case. A restriction category in which all restriction idempotents split
is called effective.

An object > in a restriction category C is said to be a restriction terminal
object if for each object A there is a unique total map !A : A → >, such that
!> = 1>, and for each f : A→ B we have !Bf =!Af , as in the diagram below.

A

f

��

!A // >

B

!B

??~~~~~~~

A partial product of two objects A,B is an object A ⊗ B equipped with
total projections πA : A ⊗ B → A and πB : A ⊗ B → B, such that for each
C and each pair of maps f : C → A, g : C → B, there is a unique map
〈f, g〉 : C → A ⊗ B with the properties that πA〈f, g〉 ≤ f, πB〈f, g〉 ≤ g and
〈f, g〉 = fg.

C
f

||xxxxxxxxx
g

##FFFFFFFFF

〈f,g〉
��

A A⊗BπA

oo
πB

// B

A restriction category is said to be a cartesian restriction category if it
has a restriction terminal object and for every A,B a partial product A⊗B.

Partial products in a restriction category correspond to genuine products in
the total map category. That is, C is a cartesian restriction category if and only
if the category Tot(C) has finite products.

A functor F : C → D is called a restriction functor if it commutes with the
restrictions, i.e. if F (f) = F (f). A restriction functor is called cartesian when
it preserves partial products and the restriction terminal object. An important
example for us is the global sections functor: when C has a restriction terminal
object >, this is defined as Γt : C → Par, where Γt(C) = {f : > → C|f = 1}. In
the case that C is cartesian, it follows that the restriction functor Γt preserves
the cartesian structure.

2.2 Cartesian closedness for restriction categories

We now investigate the notion of exponent (“space of partial mappings”) in the
context of a cartesian restriction category. It turns out that there really are two
notions, which coincide when restriction idempotents split.
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Definition 2.1 (Restricted Exponential). Let A and B be two objects of C.
A restricted exponential for A,B is an object [A ⇀ B] together with a map
εA,B : A⊗ [A ⇀ B] → B, such that the following universal property holds:

Given a map f : A ⊗ X → B and a restriction idempotent e = e : X → X
satisfying f ◦ (1A ⊗ e) = f , there exists a unique map tr(f, e) : X → [A ⇀ B]
such that

A⊗ [A ⇀ B]
εA,B

// B

A⊗X

f

66lllllllllllllll
1A⊗tr(f,e)

OO

commutes, and tr(f, e) = e.

We refer to the map tr(f, e) as the transpose of f (relative to e).
An important special case is where B = >, the tensor unit. In that case, the

definition reduces to that of a partial map classifier for A. We can also consider
the case where A = >, which amounts to a power object for B. Here, of course,
“partial map classifier” and “power object” are to be taken in the appropriate
restriction category-theoretic sense.

If we remove the dependence of tr(f, e) on the idempotent e in the definition
we arrive at the usual definition of an exponential for a partial map category.

Definition 2.2 (Exponential). Let A,B be objects of C. An exponential for
A,B is an object [A ⇀ B] together with a map εA,B : A⊗[A ⇀ B] → B such that
for every map f : A⊗X → B there is a unique total map tr(f) : X → [A ⇀ B]
for which f = εA,B ◦ (1A ⊗ tr(f)).

The definition of a restricted exponential is such, that it becomes precisely
an exponential when we split restriction idempotents:

Lemma 2.3. Let A,B be objects of C. An object [A ⇀ B] is a restricted
exponential in C if and only if it is an exponential in Kr(C).

Proof. Consider an object (X, e) in Kr(C), where e is a restriction idempotent
on X. A map f : A ⊗ (X, e) → B is precisely a map A ⊗ X → B for which
f ◦ (1⊗ e) = f .

Thus we have a one-one correspondence between pairs (f : A⊗X → B, e =
e : X → X) in C for which f ◦ (1A ⊗ e) = f and maps f : A ⊗ (X, e) → B in
Kr(C).

Given a pair (f, e), a map tr(f, e) : X → [A ⇀ B] (which lives in C), such
that εA,B ◦ (1A ⊗ tr(f, e)) = f : A ⊗ X → B and tr(f, e) = e is also a map
in Kr(C), namely tr(f, e) : (X, e) → [A ⇀ B]. To see this, simply calculate
tr(f, e) ◦ e = tr(f, e)tr(f, e) = tr(f, e). Since tr(f, e) = e is the identity on
(X, e), the map tr(f, e) is total.

Thus, a morphism tr(f, e) : X → [A ⇀ B] for which the equalities εA,B ◦
(1A ⊗ tr(f, e)) = f : A⊗X → B and tr(f, e) = e hold, is precisely a morphism
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tr(f, e) : (X, e) → [A ⇀ B] in Kr(C) making the triangle

A⊗ [A ⇀ B]
εA,B

// B

A⊗ (X, e)
f

66mmmmmmmmmmmmmmm
1A⊗tr(f,e)

OO

commutative.
This shows that εA,B : A⊗ [A ⇀ B] → B is a restricted exponential in C if

and only if it is an exponential in Kr(C).

The following corollary is immediate from the previous lemma.

Corollary 2.4. Let C be an effective restriction category. Then an object [A ⇀
B] is an exponential if and only if it is a restricted exponential.

Proof. For an effective restriction category C, we have C ' Kr(C). Now apply
the lemma.

Alternatively, one can use the following direct proof. Let e : X → X be a
restriction idempotent with splitting e = nm, where m : X ′ → X. For any map
f : A⊗X → B with f(1⊗ e) = f , consider f ′ = f(1⊗m) : A⊗X ′ → B. Take
the transpose tr(f ′) : X ′ → [A ⇀ B] of f ′. It is now easily verified that the
composite tr(f ′) ◦ n : X → [A ⇀ B] is the transpose of f with respect to the
idempotent e.

We can strengthen Lemma 2.3 by replacing the class of restriction idempo-
tents by an arbitrary class of idempotents which contains the class of restriction
idempotents. To see this, note first that in an effective restriction category, ev-
ery idempotent e has a decomposition e = me′n, where e′ is a total idempotent
and where mn = e. Reasoning as in the proof of the previous lemma, we can
find the transpose of a map f with respect to an idempotent e as the composite
tr(f ′) ◦ n, where f ′ = f(1⊗m).

We summarize this in the following proposition.

Proposition 2.5. An object [A ⇀ B] is a restricted exponent in C if and only
if it is a restricted exponent in KE(C) for any class of idempotents E containing
the restriction idempotents.

2.3 Exponents in M-categories

Whenever one has a category D with a stable system of monics M, one can form
the associated partial map category Par(D,M). Our next task is to see what
structure in D corresponds to having exponents in the partial map category. As
we would hope, this is precisely the notion of an object of partial maps.

Definition 2.6 (Object of Partial Maps). Let D be a category with finite
limits equipped with a stable system of monics M, and let A,B be objects of D.
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Then an object of partial maps (relative to M) for A and B is an object
[A ⇀ B] and a partial map, represented by a span,

A× [A ⇀ B] DA,Boo
ηA,B

oo
evA,B

// B

subject to the requirement that for any partial map A×X Uoo
moo

f
// B

there exist unique maps (m, f)0 : X → [A ⇀ B] and (m, f)1 : U → DA,B, such
that in the diagram below the triangle commutes and the square is a pullback.

B

U

f

55kkkkkkkkkkkkkkkkkkk
��

m

��

(m,f)1
// DA,B

ηA,B

��

evA,B

OO

A×X
1A×(m,f)0

// A× [A ⇀ B]

Intuitively, the object DA,B is the set {(a, f)|f(a) ↓}. In this definition, all
partial maps are, of course, partial maps relative to M, but we are going to
stop mentioning that everywhere.

Lemma 2.7. Let A,B be objects in a partial map category Par(C,M), and write
D = Tot(Par(C,M)). Then [A ⇀ B] is an exponential in Par(C,M) if and only
if it is an object of partial maps in D.

Proof. Consider a span A× [A ⇀ B] DA,Boo
ηA,B

oo
evA,B

// B . This is the same
as a map εA,B : A× [A ⇀ B] → B in the partial map category.

For a fixed span (m, f) as in the definition, commutative diagrams in Par(C,M)
of the form

A⊗ [A ⇀ B]
εA,B

// B

A⊗X
f

66llllllllllll
1A⊗(m,f)0

OO

correspond to diagrams in D of the form

U
(m,f)1

''OOOOOOOOOO
m

wwnnnnnnnnnn

A×X
1

yysss
sss

ss 1A⊗(m,f)0

''OOOOOOOOO DA,B
ηA,B

wwpppppppp evA,B

!!DDDDDD

A×X A× [A ⇀ B] B

where the square is a pullback and evA,B ◦ (m, f)1 = f .

Combining this with Proposition 2.5, we get:
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Proposition 2.8. Let A,B be objects of a cartesian restriction category C.
Then [A ⇀ B] is a restricted exponential in C if and only if it is an object of
partial maps in Tot(KE(C)) for any class of idempotents E which contains the
restriction idempotents.

2.4 Cartesian closed restriction categories

Next, we look at functoriality. We work in the cartesian restriction category
C and assume that for all objects A,B the restricted exponential [A ⇀ B]
exists. (We assume that we have chosen and fixed, for each A,B, the structure
εA,B : A⊗ [A ⇀ B] → B.) We will summarize this situation by calling C a ccrc,
a cartesian closed restriction category.

Suppose maps α : A′ → A and β : B → B′ are given. Consider the diagram

A⊗ [A ⇀ B]
1A⊗[α⇀B]

//______

α⊗1

��

A⊗ [A ⇀ B]

εA,B

��

A′ ⊗ [A′ ⇀ B]
εA′,B

// B

which shows that there is a unique total map [α ⇀ B] making the assignment
A 7→ [A ⇀ B] into a contravariant functor [−⇀ B] : Cop → Tot(C).

Similarly, the diagram

A⊗ [A ⇀ B]

εA,B

��

1A⊗[A⇀β]
//______ A⊗ [A ⇀ B′]

εA,B′

��

B
β

// B′

shows that A 7→ [A ⇀ B] is a covariant functor C → Tot(C).
Combining the two, we have a bifunctor

[−⇀ −] : Cop × C → Tot(C).

We could also have defined the two components in one step, namely by means
of the diagram

A′ ⊗ [A ⇀ B]
1⊗[α⇀β]

//_______

α⊗1

��

A′ ⊗ [A′ ⇀ B′]

εA′,B′

��

A⊗ [A ⇀ B]
εA,B

// B
β

// B′.

It is easily verified that this gives the same result, i.e.

[α ⇀ B] ◦ [A ⇀ β] = [α ⇀ β] = [A ⇀ β] ◦ [α ⇀ B].

We are now going to prove that if C is a ccrc, then so is KE(C), under certain
conditions on the class E. First, we will prove a few lemmas:
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Lemma 2.9. If e0 is any idempotent on X, then we have 1 ⊗ [e0 ⇀ Y ] =
(e0 ⊗ 1) ◦ (1⊗ [e0 ⇀ Y ]) = (1⊗ [e0 ⇀ Y ]) ◦ (e0 ⊗ 1).

Proof. Observe that both squares are commutative in the diagram below:

X ⊗ [X ⇀ Y ]

e0⊗1

��

e0⊗1
// X ⊗ [X ⇀ Y ]

e0⊗1

��

1⊗[e0⇀Y ]
//______

e0⊗1

��

X ⊗ [X ⇀ Y ]

εX,Y

��

X ⊗ [X ⇀ Y ] 1 // X ⊗ [X ⇀ Y ]
εX,Y

// Y

Therefore, the whole diagram commutes and by unicity of the top map we have
(1 ⊗ [e0 ⇀ Y ]) ◦ (e0 ⊗ 1) = 1 ⊗ [e0 ⇀ Y ]. The other identities are obvious
now.

Lemma 2.10. Let e0 again be any idempotent on X, and let e1 be any idem-
potent on Y . Then we have

(e0 ⊗ 1) ◦ (1⊗ [e0 ⇀ e1]) = 1⊗ [e0 ⇀ e1] = (1⊗ [e0 ⇀ e1]) ◦ (e0 ⊗ 1).

Proof. We have the following equalities:

(e0 ⊗ 1) ◦ (1⊗ [e0 ⇀ e1]) = (e0 ⊗ 1) ◦ (1⊗ [e0 ⇀ Y ]) ◦ (1⊗ [X ⇀ e1])
= (1⊗ [e0 ⇀ Y ]) ◦ (1⊗ [X ⇀ e1])
= (1⊗ [e0 ⇀ e1])
= (1⊗ [X ⇀ e1]) ◦ (1⊗ [e0 ⇀ Y ])
= (1⊗ [X ⇀ e1]) ◦ (1⊗ [e0 ⇀ Y ]) ◦ (e0 ⊗ 1)
= (1⊗ [e0 ⇀ e1]) ◦ (e0 ⊗ 1).

Now we are ready for the construction of general exponentials in KE(C).

Proposition 2.11. Let C be a ccrc and let E be a class of idempotents which
contains all restriction idempotents and is closed under taking exponents. Then
all exponentials exist in KE(C).

Proof. Take (X, e0) and (Y, e1) where e0 is a restriction idempotent on X and
e1 is a restriction idempotent on Y . We are going to show that the object
([X ⇀ Y ], [e0 ⇀ e1]) is the desired exponential. By assumption on the class E,
the idempotent [e0 ⇀ e1] is in E, so that the object ([X ⇀ Y ], [e0 ⇀ e1]) is
indeed an object of KE(C).

Define the evaluation map to be the composite

X ⊗ [X ⇀ Y ]
e0⊗1

// X ⊗ [X ⇀ Y ]
εX,Y

// Y
e1 // Y.
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We will denote this map by EV = EVe0,e1 . Let us first verify that EV is indeed
a map in the category Kr(C). That is, we calculate

e1 ◦ EV ◦ (e0 ⊗ [e0 ⇀ e1]) = e1 ◦ (e1 ◦ εX,Y ◦ (e0 ⊗ 1)) ◦ (e0 ⊗ [e0 ⇀ e1])
= e1 ◦ εX,Y ◦ (1⊗ [e0 ⇀ e1]) ◦ (e0 ⊗ 1)
= e1 ◦ εX,Y ◦ (e0 ⊗ 1)
= EV.

Here, the second equality is a repeated application of Lemma 2.10, and the third
equality holds because of the commutativity of the following diagram:

X ⊗ [X ⇀ Y ]
e0⊗1

//

e0⊗1
((QQQQQQQQQQQQ

X ⊗ [X ⇀ Y ]
1⊗[e0⇀e1]

//_______

e0⊗1

��

X ⊗ [X ⇀ Y ]

εX,Y

��

X ⊗ [X ⇀ Y ]
εX,Y

// Y
e1 //

e1
%%LLLLLLLLLLLL Y

e1

��

Y.

Next, we have to verify the universal property of EV . It is sufficient to
show that it holds for objects (Z, e2), where e2 is a restriction idempotent on
Z, because we work in an effective restriction category. So, let f : (X, e0) ⊗
(Z, e2) → (Y, e1) be any map, that is, e1 ◦ f ◦ (e0 ⊗ e2) = f . We have to find a
unique total map tr(f) : (Z, e2) → ([X ⇀ Y ], [e0 ⇀ e1]) such that the triangle

(X, e0)⊗ ([X ⇀ Y ], [e0 ⇀ e1])
EV // (Y, e1)

(X, e0)⊗ (Z, e2)

1⊗tr(f)

OO

f

44hhhhhhhhhhhhhhhhhhhh

is commutative.
Since f = f ◦ (1⊗ e2), we let tr(f) be the map tr(f, e2) obtained from the

diagram

X ⊗ [X ⇀ Y ]
εX,Y

// Y

X ⊗ Z

1⊗tr(f,e2)

OO

f

66llllllllllllllll

X ⊗ Z

1⊗e2

OO

That is, we have equalities tr(f) = tr(f, e2) = e2 and f = εX,Y ◦ (1⊗ tr(f)).
We first need to verify that the map tr(f) obtained in this way is indeed a

map (Z, e2) → ([X ⇀ Y ], [e0 ⇀ e1]). We have tr(f) ◦ e2 = tr(f), so it remains

13



to be seen that [e0 ⇀ e1] ◦ tr(f) = tr(f). Note first that since e1 ◦ f = f , we
obtain

e1 ◦ εX,Y ◦ (1⊗ tr(f)) = εX,Y ◦ (1⊗ tr(f)). (1)

To prove that [e0 ⇀ e1] ◦ tr(f) = tr(f), it suffices to see that the diagram

X ⊗ Z

1⊗tr(f)

��

1⊗tr(f)
// X ⊗ [X ⇀ Y ]

εX,Y

��

X ⊗ [X ⇀ Y ]

e0⊗1

��

X ⊗ [X ⇀ Y ]
εX,Y

// Y
e1 // Y

commutes: for clearly replacing the top arrow with (1⊗ [e0 ⇀ e1]) ◦ (1⊗ tr(f))
makes the diagram commute, and by uniqueness of transposes it will follow
that tr(f) = [e0 ⇀ e1] ◦ tr(f). But the equality f ◦ (e0 ⊗ 1) = f implies
εX,Y ◦ (e0 ⊗ tr(f)) = εX,Y ◦ (1⊗ tr(f)); combine this with Equation 1 and we
get

εX,Y ◦ (e0 ⊗ tr(f)) = e1 ◦ εX,Y ◦ (1⊗ tr(f))

which says exactly that the diagram commutes.
Next, note that tr(f) is total (as a map (Z, e2) → ([X ⇀ Y ], [e0 ⇀ e1])

in Kr(C)), simply because the restriction of tr(f) in Kr(C) is constructed as
tr(f) ◦ e2 = e2.

Then we calculate:

EV ◦ (1⊗ tr(f)) = e1 ◦ εX,Y ◦ (e0 ⊗ 1) ◦ (1⊗ tr(f))
= e1 ◦ εX,Y ◦ (1⊗ tr(f))
= εX,Y ◦ (1⊗ tr(f))
= f.

which shows that tr(f) indeed makes the relevant triangle commute.
Finally, we have to prove that tr(f) is unique with this property. But this is

simply seen by tracing back along the above equations; if a map g : X ⊗Z → Y
satisfies the equations

[e0 ⇀ e1] ◦ g ◦ (e0 ⊗ e2) = g, EV ◦ (1⊗ g) = f,

then we first derive 1 ⊗ g = (1 ⊗ g) ◦ (e0 ⊗ 1). On the other hand, we get
[X ⇀ e1]◦g = g, from which we get the equation e1◦εX,Y ◦(1⊗g) = εX,Y ◦(1⊗g).
This means that εX,Y ◦ (1⊗ g) = f in C, so that tr(f) = g. This completes the
proof.

Corollary 2.12. For a cartesian restriction category C and a class of idem-
potents E which contains all restriction idempotents and is closed under taking
exponents, the following statements are equivalent:
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1. C is a cartesian closed restriction category;

2. Tot(KE(C)) has all objects of partial maps.

2.5 Notes and references

The basic theory of restriction categories is described in detail in [Coc02], and
limits in restriction categories have been studied in [Coc04]. The notion of an
exponential in a category of partial maps has been developed by Curien and
Obtulowicz in their paper [Cur87], where the authors obtain a characterization
of toposes in terms of their associated partial map categories. Along these lines,
we should also mention the recent paper by Schröder [Sch04], where various
properties of partial cartesian closed categories are investigated. In the context
of restriction categories, no complete account of exponentials has been presented
previously, although the material in [Coc03] contains the development of partial
map classifiers in restriction categories..
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3 Partial combinatory logic and the partial λ-
calculus

Classically, combinatory algebras are precisely models of a certain equational
theory, called combinatory logic (CL for short). There are translations from
CL to the lambda calculus and back, but CL is essentially weaker than the
lambda calculus: CL can be soundly interpreted in the lambda calculus, but
not vice versa. The theories can be made equivalent by adding five axioms to
CL, which in the literature go by the name Aβ . A combinatory algebra satisfying
these extra axioms admits a sound interpretation of the lambda calculus and is
therefore called a lambda algebra.

In this section, we present analogues in the partial world of combinatory
logic and the lambda calculus. We define translations between partial CL and
the partial lambda calculus and indicate (a proof is in the appendix) that the
partial lambda calculus can be axiomatized over partial CL by means of a finite
set of closed axioms.

3.1 Partial lambda calculus

We define a partial variant of the classical lambda calculus, which differs from
the ordinary lambda calculus in that terms can be restricted to other terms.
First, we take care of term formation. Throughout, we fix a countably infinite
set V ar = {x0, x1, . . .} of variables.

Definition 3.1 (Partial lambda terms). The set of partial lambda terms is
denoted ΛR and is inductively defined as follows:

• V ar ⊆ ΛR

• M,N ∈ ΛR =⇒ (MN) ∈ ΛR

• M ∈ ΛR, x ∈ V ar =⇒ (λx.M) ∈ ΛR

• M,D ∈ ΛR =⇒M|D ∈ ΛR

Clearly, the first three formation rules are exactly those of the classical
lambda calculus. The fourth rule says that if we have a term M and another
term D, then we can form M|D, which we think of as M restricted to the domain
of D. We don’t distinguish notationally between restrictions consisting of one
term, consisting of a sequence of terms, or a finite set of terms; the restriction
operation is assumed to be associating on the left, so by M|D1,...Dn

we mean
(. . . (M|D1)|D2...)|Dn

.
We adopt the standard conventions of avoiding variable clashes and of iden-

tifying terms modulo alpha-conversion. The usual notion of substitution is
extended with the clause

M|D[x := N ] = M [x := N ]|D[x:=N ]
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L.1 M = M
L.2 M = N =⇒ N = M
L.3 M = N,N = P =⇒M = P
L.4 M = N =⇒MZ = NZ
L.5 M = N =⇒ ZM = ZN
L.6 M|M = M
L.7 M|(N|D) = M|D,N
L.8 M|DN|E = (MN)|D,E
L.9 M|λx.N = M abstractions are total
L.10 M|x = M variables are total
L.11 (λx.M)N = (M [x := N ])|N restricted β − reduction
L.12 M = N =⇒ λx.M = λx.N ξ − rule

Table 1: Axioms and rules of λR

where D[x := N ] is shorthand for {P [x := N ]|P ∈ D}.
The formulas of the theoryλR are of the form M = N , where M,N are in

ΛR. The axioms and rules are displayed in Table 1.
The first five of these axioms are the same as for the ordinary lambda calculus

and need no explanation. Axiom 6 says that restricting a term to itself does
not change the term, since all the information about the domain of the term is
already present. Axioms 7 and 8 say that repeated restriction can be flattened,
that is, we can collect all the restrictions in one restriction bag. Restictions
behave well with respect to application, according to axiom 8. Axiom 9 states
that lambda abstractions are total (in the remaining variables). Also, variables
are total, but axiom 10 has to be read with the understanding that this doesn’t
mean we can simply forget about restrictions to variables: the equation stated
is still an equation within the context of the variable x. See the substitution
properties for more on this. The β-conversion axiom is the most important
one: if we substitute N for x, we have to keep track of the definedness of N
by putting N in our restriction bag. Finally, just as in the ordinary lambda
calculus, we have the ξ-rule.

Remark. One could also define the partial lambda calculus with constants,
by adding a constant ca to the set of terms for each element a of some fixed
set A. We will not need this construction, even though in many treatments of
the subject, it is an essential ingredient. See the notes after section 5 for an
explanation.

Lemma 3.2. The theory λR has the following properties:

1. M = N =⇒M|D = N|D

2. U = V =⇒M|U = M|V

3. If x = x|D then M|D = N|D implies M = N
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4. (λy.M)[x := N ] ≡ λy.M [x := N ]

5. Provable equality respects substitution, in the sense that

λR `M = N =⇒ λR `M [x := Q]|Q = N [x := Q]|Q.

6. If M contains an occurrence of x which is not within the scope of a lambda
abstraction, then M [x := Q]|Q = M [x := Q]

Proof. We use the rules and calculate:

1. If M = N , then by rule ξ, we have λx.M = λx.N where x does not occur
in M,N . Now M|D1 = (λx.M)D1 = (λx.N)D1 = N|D1 . By induction on
the number of elements Di ∈ D the result follows.

2. If U = V , then again M|U = (λx.M)U = (λx.M)V = M|V .

3. M = (λx.x)M = (λx.x|D)M = M|D = N|D = (λx.x|D)N = (λx.x)N =
N .

4. Induction on the structure of M .

5. Induction on the proof of M = N . When we look at the case M|x = M , we
observe that substitution gives M [x := N ]|N = M [x := N ], which is not
a valid equation if x is not free in M and N is not total. The restriction
to N is precisely to overcome this problem.

6. Induction on the structure of M .

The next lemma will not be used in the sequel, but may still be of some
interest. It says that any term can be flattened, i.e. is provably equal to a term
without restrictions.

Lemma 3.3. For any term M , there is a term M ′ with M = M ′ such that M ′

does not contain the symbol | in any of its subterms

Proof. Induction on the structure of M , the crucial case being M = N|D, which
is equal to (λu.N)D, where u is fresh.

There is also a “dual” result, saying that every term M can be saturated by
adding each subterm of M to the restriction. These facts are useful when one
wants to study the proof theory of the partial lambda calculus, see [Mog88].

To close this section, we mention that the theory λR is consistent. A cheap
and uninformative way of seeing this is by adding the axiom M|N = M for
all terms M,N , which amounts to saying that restrictions are irrelevant, or to
saying that every term is total. Then we can translate λR into λ by simply
forgetting restrictions. For the fact that the theory does not already prove
M|N = M for all M,N , the reader is referred to the models we exhibit in
later sections. In these models, the restriction will be non-trivial, showing that
there are models of the partial lambda calculus which are not at the same time
models of the total lambda calculus, and thus that the partial lambda calculus
is genuinely different from the total lambda calculus.
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3.2 Partial combinatory logic

We now describe a partial variant of combinatory logic. In essence, this is a
special instance of a term logic for cartesian restriction categories. The theory
will be equational, but terms can be partial, and the equality symbol will denote
Kleene equality1. Also, terms can be restricted, as in the partial lambda calcu-
lus. Just as in that theory, it is important to keep in mind that terms really are
terms in a variable context, as are equations. In the notation, however, we do
not keep track of all this information, since we work in a single-sorted system.

Definition 3.4 (Partial CL terms). Let V ar = {x0, x1, . . .} be a countably
infinite set of variables. The collection of terms of partial combinatory logic is
denoted by CLR and is inductively defined by:

• V ar ⊆ CLR

• k, s ∈ CLR

• M,N ∈ CLR =⇒ (MN) ∈ CLR

• M ∈ CLR, D ∈ CLR =⇒M|D ∈ CLR

We use the same conventions for restrictions as in the partial lambda calcu-
lus, so that the restriction of a term can be any finite set of terms.

The notion of substitution is extended by defining

M|D[x := N ] = M [x := N ]|D[x:=N ],

just as in the partial lambda calculus.
The theory CLR has equality judgements of the form M = N , where M,N

are CLR-terms. The axioms and rules are listed in Table 2.
Note that in the axiom for k, we don’t just throw Q away, but put it in the

restriction bag, preserving the information about its domain. The last axiom
says that s is total in the first two variables.

An easy consequence of the axioms is the following rule:

M = N,A = B =⇒M|A = N|B .

To see why this is true, observe that M = N implies kM = kN , and thus
M|A = kMA = kNB = N|B .

Lemma 3.5. Let M be a CLR-term. Then M|N = M for every subterm N of
M . Moreover, if y occurs in M , then M [y := N ] = M [y := N ]|N .

Proof. By induction on the structure of M . The statement is clear when M is a
constant, a variable or one of k, s. If M = PQ then we need to check the M|P =
M and M|Q = M . But M|P = (PQ)|P = P|PQ = PQ = M = PQ|Q = M|Q. If

1Traditionally, Kleene equality of terms t, t′ is denoted by t ' t′, and is interpreted as:
“When one of t, t′ is defined, so is the other, in which case they are equal”. Here, we will not
use the symbol ', but write = for equality of partial terms.
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CL.1 M = M
CL.2 M = N =⇒ N = M
CL.3 M = N,N = P =⇒M = P
CL.4 M = N =⇒MZ = NZ
CL.5 M = N =⇒ ZM = ZN
CL.6 M|M = M
CL.7 M|(N|D) = M|D,N
CL.8 M|DN|E = (MN)|D,E
CL.9 M|x = M variables are total
CL.10 M|k = M|s = M k, s are total
CL.11 kPQ = P|Q reduction for k
CL.12 sPQR = PR(QR) reduction for s
CL.13 M|sPQ = M|P,Q s total in two arguments

Table 2: Axioms and rules for CLR

M = N|D then we have M|N = M and for every X ∈ D we have M|X = M , so
by induction we are done.

For the second claim, simply observe that if y occurs in M , then N is a
subterm of M [y := N ], and apply the first part of the lemma.

In the total version of CL, provable equality is invariant under substitution.
In the partial situation, we have to be a bit careful, since substituting for vari-
ables which do not occur in a term would result in a loss of information about
the partiality of the term. The appropriate formulation is:

Lemma 3.6. The theory CLR satisfies the following restricted substitution
properties:

1. M = N =⇒M [x := A]|A = N [x := A]|A

2. A = B =⇒M [x := A] = M [x := B]

3. M = N,A = B =⇒M [x := A]|A = N [x := B]|B.

Proof. The first item is proved by induction on the proof of M = N ; the second
by induction on the structure ofM , and the third by combining the first two.

Remark. Just as for the partial lambda calculus, consistency of the theory
CLR is easily seen by adding the axiom M|N = M ; this essentially gives back
ordinary combinatory logic. Non-trivial non-total models will be discussed in
section 6.

3.3 Lambda abstraction and combinatory completeness

When first confronted with combinatory logic (or a partial version thereof), the
axioms look cryptic and unintuitive. The point of the combinators k and s, how-
ever, is, that they form a basis for the key property of CL, namely combinatory
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completeness. An essential ingredient is the fact that in partial combinatory
logic one can mimick lambda abstraction. Formally, we define, for each variable
x and for each CLR-term M , a new term λ∗x.M . This is the content of the
following definition.

Definition 3.7. Let M be a CLR-term and x a variable. Define λ∗x.M by
induction on the structure of M :

• λ∗x.x = skk

• λ∗x.P = kP if P is either k, s or a variable different from x

• λ∗x.(MN) = s(λ∗x.M)(λ∗x.N)

• λ∗x.M|D = s(s(kk)(λ∗x.M))(λ∗x.D)

In the last clause, we assume that the restriction consists of a single term; if
it consists of several terms, just iterate the construction. Thus, λ∗x.M|D,E =
λ∗x.(M|D)|E.

The following proposition sums up the virtues of the term just defined.

Proposition 3.8. For a term M and a variable x we have:

1. FV (λ∗x.M) = FV (M)− {x}

2. λ∗x.M is total

3. (λ∗x.M)N = M [x := N ]|N

Proof. The first two items are a straightforward structural induction. For the
third item, we show how to handle the new clause involving restriction. Let us
verify that (λ∗x.M|D)N = (M|D[x := N ])|N .

(λ∗x.M|D)N = (s(s(kk)(λ∗x.M))(λ∗x.D))N
= s(kk)(λ∗x.M)N((λ∗x.D)N)
= (kk)N((λ∗x.M)N)((λ∗x.D)N)
= k|N ((λ∗x.M)N)((λ∗x.D)N)
= k|NM [x := N ]|ND[x := N ]|N
= kM [x := N ]D[x := N ]|N
= (M [x := N ]|N )|D[x:=N ]|N

= M [x := N ]|D[x:=N ],N

= (M|D[x := N ])|N .

Some remarks are in order. First of all, the reader who is familiar with
ordinary combinatory logic may wonder at this point why we don’t define the
clause λ∗x.P = kP whenever x does not occur in P . The reason is, that the
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second item of the Proposition would fail. Indeed, take elements a, b such that
ab is not total. Then k(ab) is not total either. Since in the partial lambda
calculus all lambda abstractions are total, we wish to have a corresponding
property for the lambda abstraction operation in CL, and thus need to define
this more complicated translation. For the relation between both translations,
see the Appendix.

Second, the operation λ∗x is not well-behaved with respect to substitution.
(This is the price one has to pay for using the more complicated translation.)
That is, we don’t have (λ∗x.M)[y := N ] = λ∗x.M [y := N ], even if y does occur
in M .

In spite of its shortcomings, the lambda abstraction is still very powerful, as
it allows us to prove combinatory completeness:

Proposition 3.9 (Combinatory completeness of partial CL). For every
term M of CLR with FV (M) ⊆ {x1, . . . xn+1} there is a term M ′ such that M ′

is closed, total in the first n arguments, and

M ′N1 · · ·Nn+1 = M [xi := Ni]

for all terms N1, . . . Nn+1.

Proof. Take M ′ = λ∗x1 · · ·λ∗xn+1.M .

3.4 Relation between CLR and the partial λ-calculus

Having the lambda abstraction operation at our disposal, we get back to the
relation between partial CL and the partial lambda calculus. The translations
between the two are set up in the following definition.

Definition 3.10. For a CLR-term M , define a partial lambda term Mλ by
induction on the structure of M .

• (x)λ = x

• (MN)λ = MλNλ

• (M|D)λ = (Mλ)|Dλ

• (k)λ = S := λxy.x

• (s)λ = K := λxyz.xz(yz)

For a partial lambda term P , define a CLR-term PCL by induction on the struc-
ture of P :

• (x)CL = x

• (MN)CL = MCLNCL

• (M|D)CL = (MCL)|DCL
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• (λx.M)CL = λ∗x.MCL

Lemma 3.11. The interpretation of CLR in ΛR is sound, i.e.

CLR `M = N =⇒ λR `Mλ = Nλ.

Proof. Straightforward induction on the proof of M = N . For the totality of s,
use the fact that lambda abstractions are total.

Lemma 3.12. For all CLR-terms λR ` PCL,λ = P .

Proof. We show first that (λ∗x.M)λ = λx.Mλ. This is done by induction on
the structure of M . The crucial case is M = N|D. We calculate:

(λ∗x.N|D)λ = (s(s(kk)(λ∗x.N))(λ∗x.D))λ
= S(S(KK)(λx.Nλ))(λx.Dλ)
= λz.S(KK)(λx.Nλ)z((λx.Dλ)z)
= λz.K(λx.Nλ)z((λx.Dλ)z)
= λz.K(Nλ[x := z])(Dλ[x := z])
= λz.Nλ[x := z]|Dλ[x:=z]

= λx.Nλ|Dλ
.

We can specify a finite set of closed equations ARβ , such that when these
are added to CLR, the above translations constitute an equivalence of theories.
More precisely,

Theorem 3.13. The theories CLR+ARβ and λR are equivalent, in the following
sense:

1. λR `M = MCL,λ

2. CLR +ARβ ` N = Nλ,CL

3. λR `M = N ⇔ CLR +ARβ `MCL = NCL

4. CLR +ARβ ` P = Q⇔ λR ` Pλ = Qλ.

Because of its technical nature, the proof of this theorem (and, indeed, the
formulation of the axiom set ARβ ) is relegated to the appendix.

3.5 Notes and references

Moggi’s Ph. D. thesis [Mog88] is the main reference for logics and calculi for par-
tiality. Among the various partial versions of the lambda calculus, the lambda
calculus with a restriction operation is presented (there called the λp-calculus).
This is essentially the system we presented here (although Moggi generally as-
sumes the η-rule to be present, which we do not want here).
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Our version of partial combinatory logic is, as mentioned in the text, nothing
but an instance of the term logic for cartesian restriction categories. In Moggi’s
thesis one finds the precise connections between logics which are based on re-
strictions of terms and other formalisms for handling partiality, such as Beeson’s
logic of partial terms LPT (see [Bee85]) or Scott’s logic of partial elements LPE
(see [Sco79]).

Just as there is a correspondence between cartesian closed categories and
typed lambda calculi (see [Lam86]), there is a correspondence between typed
partial lambda calculi and partial cartesian closed categories (for a recent discus-
sion, see [Sch04]. This can be extended to cartesian closed restriction categories,
making precise in which sense (typed) partial lambda calculi are logics of ccrc’s.

In [Eve92], the authors prove that the partial lambda calculus (in a for-
mulation which is almost the same as the one presented here) can be finitely
axiomatized over combinatory logic with partial elements. Since our version of
partial CL is more similar to the partial lambda calculus, in the sense that both
are based on restriction, the comparison of the theories is a bit more smooth
and perspicuous, since the translations are more straightforward. The proof of
the finite axiomatization remains quite a bit of technical work, although in our
setup, we can directly adapt the classical proof (for an account of these matters,
see [Bar84]).
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4 Combinatory structures in a restriction cate-
gory

In this section we formulate the notion of a partial combinatory algebra inside a
cartesian restriction category. Just as a total combinatory algebra is precisely a
model of combinatory logic, a PCA in a restriction category is precisely a model
of CLR. An analogue of the classical observation that every total combinatory
algebra is a Turing object in a certain category of representable maps (and vice
versa) is obtained. We also define a notion of a partial lambda algebra in a
restriction category. For the case where the restriction category is the category
Par of sets and partial maps, this gives a strengthening of the notion of a PCA,
just as the notion of a lambda algebra strengthens that of a combinatory algebra.

From now on, we will work in restriction categories, which have a built-in
notion of partiality, and partiality will be the norm. Therefore, we will drop the
qualifier “partial” in all of our definitions, and assume that everything we speak
of is partial by default. For example, when we say “applicative structure” (see
the next definition) we mean “partial applicative structure”. In order to refer
to the limiting case where there is no nontrivial partiality, we use the adjective
“total”. Thus, for example, by a “total combinatory algebra” we will understand
what is ordinarily known as a combinatory algebra (or, slightly uncomfortably,
a total PCA).

4.1 Combinatory Algebras

In a cartesian restriction category an applicative structure A = (A, •) is

an object A together with a map A⊗A
• // A called application. The

applicative system is said to be total if application is a total map.
This map give a series of maps

A
•0=1A // A

A⊗A
•1=• // A

...

A⊗
n+2 ⊗A

•n+1=(•n⊗1)•
// A.

Thus, application is understood to be associating to the left. Since the arity
of the operation can be recovered from the rest of the notation, we sometimes
simply write A⊗

n+1 • // A for •n.

Definition 4.1. Let A = (A, •) be an applicative system in C.

1. A map f : A⊗
n → A is A-computable (or simply computable when A

is understood) in case there is a total element af : > → A such that the
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following diagram commutes:

A⊗
n

af⊗1

��

f
// A

A⊗A⊗
n

•

;;wwwwwwwww

Moreover, af is required to be total in its first n− 1 arguments.

2. A map f : A⊗
n → A⊗

m

is A-computable in case f = 〈g1, .., gm〉 and
each gi : A⊗

n → A is A-computable.

In case m = 0, this is supposed to be understood as saying that the unique
total map into the terminal object is computable. In case n = 0, the definition
merely states that the computable elements 1 → A are precisely the total ones.

Definition 4.2. A map A⊗n → A is called algebraic if it can be built from
projections and elements of A using application and compositions. This is ex-
tended coordinatewise to maps A⊗n → A⊗m. An applicative system is called
combinatory complete if the algebraic maps are exactly the computable ones.

As usual, combinatory completeness follows from two of its instances. An
applicative system in a restriction category is a combinatory algebra in case
it has two total elements k, s : > → A which satisfy:

1. (k • x) • y = x

2. (s • x) • y) • z = (x • z) • (y • z)

3. (s⊗ 1⊗ 1)•2 = 1

In this definition, the x, y are variables, so that the first two conditions can
be expressed by commutativity of the diagrams:

A⊗A

k⊗1

��

π0 // A A⊗
3

s⊗1

��

1⊗1⊗∆
// A⊗

4
σ0,2,1,3

// A⊗
4 •⊗•

// A⊗A
• // A

A⊗A⊗A

•

::uuuuuuuuuu
A⊗

2

•

22fffffffffffffffffffffffffffffffffffff

The top composite first duplicates the third argument, then permutes the
second and third argument and then applies. Informally, the composite acts as
(x, y, z) 7→ (x, y, z, z) 7→ (x, z, y, z) 7→ (xz, yz) 7→ (xz)(yz).

The following proposition is now easily obtained using the methods from
section 3.3.

Proposition 4.3. An applicative system (A, •) is combinatory complete if and
only if there are elements k, s making (A, •) into a combinatory algebra.
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Thus, the only difference (in our terminology) between a combinatory com-
plete applicative system and a combinatory algebra is that in the latter a specific
choice for the combinators k and s has been made. Such a choice is, in general,
far from unique. An applicative system for which there is only one possible way
of choosing k and s is sometimes called a categorical combinatory algebra,
mainly by people who are in a particularly model-theoretic mindset.

It is important to note that a combinatory algebra in the restriction category
Par of sets and partial functions is precisely a PCA in the traditional sense.
Another useful observation, which follows from the fact that all definitions only
make use of cartesian restriction-theoretic concepts, is the following lemma,
stating that cartesian restriction functors preserve combinatory algebras.

Lemma 4.4. If A is an applicative system in a cartesian restriction category C
and F : C → D is a cartesian restriction functor, then F induces an applicative
structure on F (A) in D. If A is a combinatory algebra, then so is F (A).

Concretely, the application on F (A) is the map F (•) : F (A)⊗F (A) → F (A),
and the combinators are F (k), F (s).

An important example arises from observing that the total elements functor
is cartesian, so that every combinatory algebra A in C gives rise to a combinatory
algebra Γt(A) in the category Par, which in turn gives an ordinary PCA in Set.

4.2 Turing Objects

By definition, every combinatory algebra lives in some restriction category. We
now wish to understand in which sense there can be different restriction cate-
gories housing the same combinatory algebra.

So let C be a cartesian restriction category and A an applicative system A
in C. We say that A is a Turing Object in C if every map A⊗n → A⊗m is
A-computable. If, in addition, every object in C is a retract of A, then we call C
a Turing Category. The central property of Turing objects is the following.

Proposition 4.5. Let C be a category with Turing object A. Then A is combi-
natory complete.

Proof. One constructs algebraic maps corresponding to k and s as in the defini-
tion of a combinatory algebra, and concludes from the assumption that they are
computable that representing elements k, s with the desired properties exist.

Thus, every Turing object is a combinatory algebra. However, not every
combinatory algebra is a Turing object, because of the fact that there may be
too many maps from A to A. For an example, just look at combinatory algebras
in Par, where the requirement that each partial function A→ A is computable
fails for cardinality reasons.

The following definition shows that we can always view a combinatory alge-
bra as a Turing object in a certain Turing category.

Definition 4.6. Let A be an applicative system in C. Then Comp(C, A) is the
graph having as objects all powers of A and as maps the computable maps.

27



In general, this graph will not have any good properties; for example, iden-
tities will not be present and maps will not compose. The following proposition
relates properties of Comp(C, A) to properties of A.

Proposition 4.7. The structure Comp(C, A) is a Turing category with Turing
object A if and only if A is combinatory complete.

Proof. By definition of Comp(C, A), every map A⊗n → A⊗m is A-computable.
Combinatory completeness ensures that such maps are closed under composition
and that identities are present. To show that every object A⊗

n

is a retract of
A, use suitable pairing functions (for the case n = 0, use a constant function).
In addition, we have to show that Comp(C, A) is a restriction category. So let
f : A → A be a computable map. We can define its restriction f : A → A to
be the algebraic map given by kx(fx). It is straightforward to extend this to
multiple variables.

The category Comp(C, A) comes equipped with an inclusion functor i =
iC,A : Comp(C, A) ↪→ C. This functor is cartesian, and therefore sends the
Turing object A of Comp(C, A) to a combinatory algebra iA in C. It is eas-
ily verified that this combinatory algebra is equal to the original combinatory
algebra A that we started with.

Together, this shows that every combinatory algebra is a Turing object in a
suitable category of computable maps. In a way that we will now make precise,
Comp(C, A) is the universal solution to the problem of finding a Turing category
in which A is a Turing object.

First, we define a category CA− Cat, where the objects are pairs (C, A)
consisting of a cartesian restriction category C and a combinatory algebra A in
C. A morphism (C, A) → (D, B) is a cartesian restriction functor F : C → D
such that FA = B. Two objects in the same path component are thought of as
housing the same combinatory algebra.

We also define a category T− Cat which is the full subcategory of CA− Cat
on the objects (C, A), where C is a Turing category with Turing object A. There
is an evident inclusion functor

I : T− Cat → CA− Cat.

It is easily verified that when (C, A) is a category with a combinatory algebra
(Turing category), K(C, A) = (K(C), A) is again a category with a combinatory
algebra (Turing category). We write CA− Cats for the subcategory of CA− Cat
on the split categories, and T− Cats for the full subcategory of T− Cat on the
split Turing categories.

We can view the operation A 7→ Comp(C, A) as a functor in the variable C.
Indeed, if we have a cartesian restriction functor F : C → D, then we get an
induced map Comp(F, A) : Comp(C, A) → Comp(D, FA) by sending an object
A⊗

n

to FA⊗
n

, and a computable map f : A⊗
n → A⊗

m

to the map Ff , which
is then again computable: if a represents f , then Fa represents Ff . Note that
the inclusion Comp(C, A) → C is in fact part of a natural transformation from
the functor Comp to the identity.
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Proposition 4.8. The functor K ◦ Comp is right adjoint to the inclusion I :
T− Cats → CA− Cats. Here, K denotes the splitting of idempotents.

Proof. The adjointness is induced by the inclusion functor K(Comp(D, B)) ↪→
(D, B). If we have a morphism F from a Turing category (C, A) to an arbitrary
(D, B), then we factor it through this inclusion by defining a cartesian restriction
functor F̂ : (C, A) → Comp(K(D), B), as follows. For an arbitrary objectX of C,
we know thatX is a retract of A. Thus there is an inclusion mapm : X → A and
a retraction r : A→ X, and the composite idempotent mr on A is computable.
Therefore, the map F (mr) is computable in D, so that we can view it as a
morphism in Comp(D, B). When we split idempotents in the latter category,
F̂ (X) := F (mr) becomes an object in the Turing category K(Comp(D, B)).
This defines F̂ on objects; extension to morphisms is easy.

4.3 Combinatory algebras as models

In the previous section we formulated partial combinatory logic CLR, and men-
tioned that it was in fact a special instance of a term logic for cartesian re-
striction categories. Therefore, it makes sense to speak of models of CLR in a
restriction category. Not surprisingly, this results in:

Proposition 4.9. A model of CLR in a cartesian restriction category C is the
same as a combinatory algebra in C.

The proof of this result is an immediate consequence of the fact that in an
interpretation, variables are interpreted as projections, constants as elements,
and restrictions as restriction idempotents.

We also mention that one can form a syntactical cartesian restriction cat-
egory G(CLR) containing a generic combinatory algebra. By this, we mean
that there is a correspondence between combinatory algebras in C (models of
CLR) and cartesian restriction functors G(CLR) → C. In fact, G(CLR) will be
a Turing category.

4.4 Partial lambda algebras

Let (A, •) be an applicative system in C. We wish to define when A is a (partial)
lambda algebra. Of course, the results from the previous section allow us to
do this, simply by requiring that it should be a model of the theory CLR +
ARβ . (Remember that the axioms ARβ made the theories CLR and the partial
lambda calculus equivalent.) However, that requirement would not only be very
awkward to verify in practice, but also be missing the point, since we wish to
think of a partial lambda algebra as a model of the partial lambda calculus.
Therefore, we make an alternative definition in two steps. First, we say what
it means to have an interpretation of the partial lambda calculus in A. Then,
A is said to be a partial lambda algebra when this interpretation is sound, i.e.
when provably equal terms get identified under the interpretation.
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So, what should an interpretation of the partial lambda calculus in A be?
We take a slightly more categorical approach than most authors, who typically,
define when an applicative system in Set is a lambda algebra. See the notes for
some of the differences.

First some basic notation: when ∆ is a set of variables, say ∆ = {x1, . . . , xn},
we writeA∆ forA⊗

n

, the n-fold product ofA with itself. For two sets of variables
∆ ⊆ Θ, we write πΘ

∆ for the canonical projection AΘ → A∆. In case ∆ = {x},
we simply write πΘ

x : AΘ → A. Finally, if • : A ⊗ A → A is the application,
then for any pair of maps α, β : X → A, we write α • β for the composite
• ◦ 〈α, β〉 : X → A.

Consider an assignment J−K∆ (for each variable context ∆) from partial
lambda terms to maps in C, where JMK∆ : A∆ → A for all M with FV (M) ⊆ ∆.
In words, a term M in variable context ∆ is interpreted as a morphism with
codomain A, and where the domain is a product of A, with a copy of A for each
variable in the context. We define J−K to be an interpretation if the following
conditions are satisfied:

1. JxK∆ = π∆
x : A∆ → A when x ∈ ∆

2. JPQK∆ = JP K∆ • JQK∆

3. Jλx.P K∆ • JMK∆ = JP K∆,x ◦ 〈π∆,x
∆ , JMK∆〉

4. JMK∆ = JMKΘ ◦ πΘ
∆ for ∆ ⊂ Θ

5. JM|DK∆ = JMK∆ ◦ JDK∆

The first clause says that variables are interpreted as projections, as is com-
mon in categorical logic. Next, application in the lambda calculus should be
interpreted using the partial application map • on A, as stated in the second
clause. We don’t have a direct way of stating how the lambda abstraction of a
term should be interpreted (because of the fact that we don’t work in a carte-
sian closed setting we don’t have transposes available), but instead we say how
it should behave. Indeed, when applying (the interpretation of) a term λx.P
to (the interpretation of) another term M , the result should be the same as
interpreting P in the context augmented by x, and then substituting M for x,
where substitution is handled by means of composition. The fourth clause tells
us how dummy variables should be handled: if we know how to interpret M in
context ∆, and ∆ ⊆ Θ, then the interpretation of M in context Θ is obtained
by first projecting onto the A∆ and then doing the interpretation in context
∆. Finally, the fifth clause says that restrictions of terms are to be interpreted
using restriction idempotents.

Now we can state the key definition.

Definition 4.10. Let (A, •) be an applicative structure with interpretation J−K.
Then (A, •, J−K) is called a (partial) lambda algebra if λR `M = N implies
JMK = JNK.
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The condition in the definition is also expressed by saying that the interpre-
tation of the partial lambda calculus is sound. The following proposition tells
us that lambda algebras are indeed a strengthening of combinatory algebras,
just as in the total case.

Proposition 4.11. If (A, •, J−K) is a lambda algebra, then A is combinatory
complete.

Proof. As expected, put k = Jλxy.xK and s = Jλxyz.xz(yz)K. Soundness guar-
antees that kab = a and sabc = ac(bc). The fact that the interpretation of
a lambda abstraction is always total ensures that s is total in the first two
variables.

We postpone giving examples of lambda algebras in the partial setting, since
this will be easier once we have the main results from the next section at our
disposal. However, it is worth noting here that there are some important ex-
amples which distinguish PCAs from partial lambda algebras in the category of
sets, such as Kleene’s PCA of natural numbers with partial recursive applica-
tion. Also, the generic model in the syntactic category G(CLR) does not allow
for a sound interpretation of the partial lambda calculus. Note that in order
to even state these observations, we have to view these PCAs as combinatory
algebras in restriction categories.

An important fact is that cartesian restriction functors preserve partial
lambda algebras.

Proposition 4.12. Let F : C → D be a cartesian restriction functor and let A
be a lambda algebra in C. Then F (C) is a lambda algebra.

Proof. We already saw that cartesian restriction functors preserve combinatory
algebras, and that the combinatory algebra structure on F (A) is given by ap-
plying F to the structure on A. That is, the k-combinator is given by F (k), s
is given by F (s), and application by F (•).

From Theorem 3.13 we know that a lambda algebra is a combinatory algebra
which satisfies a finite number of extra axioms. It is therefore sufficient to show
that F preserves the validity of these axioms. All the axioms are closed, that
is, are of the form M = N where M,N are simply words in k and s. As a
consequence, the axioms of ARβ correspond to equalities of elements 1 → A built
from k, s and •. Since k, s, and application are preserved by F , so is the validity
of the axioms.

Of course, it is possible to give an ad hoc proof of this proposition, by directly
constructing the interpretation of lambda terms in F (A), but this would be a
lot more work.

4.5 Notes and references

For a good exposition of PCAs, basic properties, examples and constructions,
see [Bet88]. For a different viewpoint, see Longley’s thesis [Lon94].
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There are some subtleties concerning the definition of a PCA and its meaning
in categories different from Set. First of all, it depends on one’s point of view
whether one wants the combinators k and s as part of the structure, or whether
one wants the existence of these as a property. Typically, when considering
PCAs as models of the theory of combinatory logic, one takes the structural
point of view, and when PCAs are used for realizability purposes, one takes the
property of combinatory completeness as fundamental. In the presence of the
axiom of choice, one can, of course, always make a choice of combinators, but
such a choice is usually far from unique. One possible objection to our (hybrid)
definition could therefore be, that it assumes a certain amount of choice, and
that it therefore excludes PCAs in toposes where even weak forms of choice fail.
We can but hope that the offended reader is sufficiently compensated by the
advantages given by our definition, such as the fact that only cartesian logic is
needed and that, as a consequence, the quite useful result on preservation of
PCAs and lambda algebras by cartesian functors comes for free.

For the total case, Turing categories and their connection to total combi-
natory algebras can be found in [Lon90]. Our notion of Turing category is a
restriction category-theoretic version of the notion presented there, and some of
the results presented here are straightforward partial versions of the results in
loc. cit.

In their paper [Pao86], Di Paolo and Heller define the notion of a recursion
category, which is similar to the Turing categories presented here, but not quite
the same. For one thing, in a recursive category all objects are assumed to be
isomorphic, whereas in a Turing category it is only required that every object
is a retract of a universal object.

Partial lambda algebras already occur in Moggi’s thesis [Mog88], and have
been studied by Christian Even and Ramon Pino Pérez in their paper [Eve92].
Again, up to the choice of formal system to work in, our notion is essentially
the same as theirs. For an overview of the theory of total lambda algebras,
see [Bar84].

Typically, one defines a lambda algebra as an applicative system A with a
sound interpretation of the lambda calculus. Our approach follows this general
strategy, but our notion of interpretation is slightly different. Traditionally, one
would consider lambda terms with constants from A, and interpret such lambda
terms. Of course, one then requires that such constants are interpreted by the
elements one started out with. Second, one usually handles variables using
valuations. We use the fact that every applicative system lives in a category,
and that we can use the logic of that category to interpret variables. Therefore,
there is no need to consider the elements separately, and we have obtained an
easy way to define a lambda algebra in any cartesian restriction category.

One aspect of the theory of models of the lambda calculus that we have not
mentioned yet and will only touch upon later is the distinction between lambda
algebras and lambda models, and the axiom of weak extensionality. See the
remarks in section 5.3 and the references following that section.
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5 Reflexive objects in a restriction category

In this section we present the generalization of the Scott-Koymans Theorem,
which says that (i) every reflexive object in a cartesian closed category gives
rise to a lambda algebra structure on the set of points, that (ii) every lambda
algebra gives rise to a cartesian closed category with a reflexive object and
that (iii) the lambda algebra induced by this reflexive object is isomorphic to
the lambda algebra one started with. The generalization to partial ccc’s first
appeared in [Eve95], although a different formulation of partial combinatory
logic and the partial lambda calculus was used there. The presentation below is
a slight improvement in two respects: first, we are not confined to partial map
categories. Second, we give a more informative analysis by making better use
of the notion of a combinatory object inside a restriction category.

We start by explaining how every reflexive object in a cartesian closed re-
striction category C is a partial lambda algebra in C, and, as a consequence,
that the total points form a partial lambda algebra in Par.

Next, we start with a lambda algebra in any cartesian restriction category
C, and construct a ccrc with reflexive object and a cartesian functor to K(C)
such that the partial lambda algebra structure on the reflexive object is, up to
isomorphism, mapped by this functor to the original lambda algebra.

Most of the developments in this section follow the exposition in [Bar84],
and many of the proofs given here are straightforward adaptations of the ones
given in there.

5.1 Reflexive objects

We consider an object U in a ccrc C, such that [U ⇀ U ] is a total retract of U .
That is, we have a diagram

[U ⇀ U ]
G

// U,
Foo

F ◦G = 1[U⇀U ]

in which the map F is total. In this situation, we say that U is a reflexive
object in C.

In this situation, we can define a map • : U ⊗ U → U as the composite
ε ◦ (G⊗ Id), as in

U ⊗ U
G⊗Id

// [U ⇀ U ]⊗ U
ε // U.

Here, ε is the evaluation map. For maps f, g : X → U , we will again write f • g
for the composite • ◦ 〈f, g〉. The following property of the application map will
be used later.

Lemma 5.1. Let f, f ′ : X → U be arbitrary maps, and let e, e′ be restriction
idempotents on X. Then

(f ◦ e) • (f ′ ◦ e′) = (f • f ′) ◦ e ◦ e′.
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Proof. Calculate: 〈fe, f ′e′〉 = (f ⊗ f ′) ◦ (e⊗ e′) ◦ δ = (f ⊗ f ′) ◦ δ ◦ e ◦ e′, where
the maps δ denote diagonals.

5.2 Interpretation of partial lambda terms

Traditionally, one shows that when U is a reflexive object in C, the set Γ(U)
of elements of U is a lambda algebra. One would expect that we are going
to generalize this by saying that a reflexive object U in a ccrc makes Γt(U),
the set of total elements of U into a partial lambda algebra. However, because
we defined the notion of a partial lambda algebra inside a cartesian restriction
category, we can now take a more direct line: we will show that such a U is
a partial lambda algebra in the ambient category C. The fact that Γt(U) is
then a lambda algebra now is a simple consequence of the fact that cartesian
restriction functors preserve lambda algebras.

To start, we need an interpretation of partial lambda terms. For FV (M) =
{x1, . . . , xn} ⊆ ∆, we will define

JMK∆ : U∆ → U,

where U∆ stands for U⊗m

if ∆ = {x1, . . . , xm}. This will be done by induction
on the structure of the term M :

• JxiK∆ = π∆
i : U∆ → U

• JMNK∆ = JMK∆ • JNK∆

• Jλx.MK∆ = U∆
tr(JMKδ,x)

// [U ⇀ U ] G // U

• JM|DK∆ = JMK∆ ◦ JDK∆

In the third clause, tr(JMKδ,x) denotes the exponential transpose of JMKδ,x :
U∆,x = U∆ ⊗ U → U .

We note that the interpretation of a variable is always a total map, since the
projections in a ccrc are total. It is also easy to see that the interpretation of a
lambda abstraction λx.M is always total, since it is the composite of G and a
transpose.

In order to prove that this defines an interpretation, note that the only
condition which is not obvious from the definition is dealt with in the following
lemma.

Lemma 5.2. Let FV (M) ⊆ ∆ ⊆ Θ. Then JMKΘ = JMK∆ ◦ πΘ
∆.

Proof. By induction on the structure of M .

• If M = x then JMKΘ = JxKΘ = πΘ
x = π∆

x ◦ πΘ
∆ = JxK∆ ◦ πΘ

∆.
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• If M = M1M2, then

JM1M2KΘ = ε ◦ (G⊗ 1) ◦ 〈JM1KΘ, JM2KΘ〉
= ε ◦ (G⊗ 1) ◦ 〈JM1K∆, JM2K∆〉 ◦ πΘ

∆ by IH
= JM1M2K∆ ◦ πΘ

∆.

• If M = λx.N , then by induction hypothesis we have JNKΘ,x = JNK∆,x ◦
πΘ,x

∆,x. Therefore tr(JNKΘ,x) = tr(JNK∆,x) ◦ πΘ
∆, so that

Jλx.NK∆ = G ◦ tr(JNKΘ,x) = G ◦ tr(JNK∆,x) ◦ πΘ
∆ = Jλx.NKΘ ◦ πΘ

∆.

• If M = N|D, then (assuming without loss of generality that D consists of
one term only) we have

JM|DKΘ = JMKΘ ◦ JDKΘ

= JMK∆ ◦ πΘ
∆ ◦ JDK∆ ◦ πΘ

∆ by IH

= JMK∆ ◦ JDK∆ ◦ πΘ
∆

= JM|DK∆ ◦ πΘ
∆.

Now that we know that J−K is indeed an interpretation of partial lambda
terms, we wish to establish that this interpretation is sound. This requires some
technicalities with regard to substitution.

Lemma 5.3. Let FV (M) ⊆ ∆ = (x1, . . . , xn), let N1, . . . Nn fit in x1, . . . xn,
and FV (N1, . . . Nn) ⊆ Θ. Then

JM [~x := ~N ]KΘ ◦ JN1KΘ ◦ · · · ◦ JNnKΘ = JMK∆ ◦ 〈JN1KΘ, . . . JNnKΘ〉.

In particular,

JM [~x := ~N ]KΘ ≥ JMK∆ ◦ 〈JN1KΘ, . . . JNnKΘ〉.

Proof. Again induction on the structure of M .

• If M = xi ∈ ∆, then JMK∆ = π∆
i , and M [~x := ~N ] = Ni, so that

JM [~x := ~N ]KΘ = JNiKΘ = JNiKFV (Ni) ◦ πΘ
FV (Ni)

, by the previous lemma.
Now we have:

JM [~x := ~N ]KΘ ◦ JN1KΘ ◦ JNnKΘ = JNiKΘ ◦ JN1KΘ ◦ · · · ◦ JNnKΘ
= π∆

i ◦ 〈JN1KΘ, . . . , JNnKΘ〉
= JxiK∆ ◦ 〈JN1KΘ, . . . , JNnKΘ〉.

The first equation is precisely the defining property of the pairing in a
cartesian restriction category.
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• If M = M1M2 then, using the notation 〈JNiKΘ〉 = 〈JN1KΘ, . . . , JNnKΘ〉
and JNiKΘ = JN1KΘ ◦ · · · ◦ JNnKΘ:

JM [~x := ~N ]KΘ ◦ JNiKΘ
= JM1M2[~x := ~N ]KΘ ◦ JNiKΘ
= JM1[~x := ~N ]M2[~x := ~N ]KΘ ◦ JNiKΘ
= (JM1[~x := ~N ]K • JM2[~x := ~N ]K) ◦ JNiKΘ
= ε ◦ 〈F ◦ JM1[~x := ~N ]K, JM2[~x := ~N ]K〉 ◦ JNiKΘ
= ε ◦ 〈F ◦ JM1[~x := ~N ]K ◦ JNiKΘ, JM2[~x := ~N ]K ◦ JNiKΘ〉
= ε ◦ 〈F ◦ JM1K∆ ◦ 〈JNiKΘ〉, JM2K∆ ◦ 〈JNiKΘ〉〉 by IH
= ε ◦ 〈F ◦ JM1K∆, JM2K∆〉 ◦ 〈JNiKΘ〉
= (JM1K∆ • JM2K∆) ◦ 〈JNiKΘ〉
= JM1M2K∆ ◦ 〈JNiKΘ〉.

• If M = λy.N , then

J(λy.P )[~x := ~N ]KΘ ◦ JNiKΘ
= J(λy.P )[~x := ~N, y := y]KΘ ◦ JNiKΘ

= G ◦ tr
(
JP [~x := ~N, y := y]KΘ,y

)
◦ JNiKΘ

= G ◦ tr
(
JP [~x := ~N, y := y]KΘ,y ◦ (JNiKΘ ⊗ 1)

)
◦ JNiKΘ

= G ◦ tr
(
JP [~x := ~N, y := y]KΘ,y ◦ (JNiKΘ ⊗ JyKy)

)
◦ JNiKΘ

= G ◦ tr
(
JP [~x := ~N, y := y]KΘ,y ◦ (JNiKΘ,y ◦ JyKΘ,y)

)
◦ JNiKΘ

= G ◦ tr
(
JP K∆,y ◦ 〈JNiKΘ,y, JyKΘ,y〉

)
◦ JNiKΘ by IH

= G ◦ tr
(
JP K∆,y ◦ (〈JNiKΘ〉 ⊗ 1)

)
◦ JNiKΘ

= G ◦ tr
(
JP K∆,y

)
◦ 〈JNiKΘ〉 ◦ JNiKΘ

= G ◦ tr
(
JP K∆,y

)
◦ 〈JNiKΘ〉

= Jλy.P K∆ ◦ 〈JNiKΘ〉.

Here we used that from the equations 〈JNiKΘ,y, JyKΘ,y〉 = 〈JNiKΘ〉⊗ 1 and
JyKy = 1 it follows that 〈JNiKΘ,y, JyKΘ,y〉 = JNiKΘ ⊗ 1.

• Finally, take M = P|D. We can again assume that D consists of a single
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term, since then we can do an induction on the number of elements of D.

JM [~x := ~N ]|D[~x:= ~N ]KΘ ◦ J ~NKΘ

= JM [~x := ~N ]KΘ ◦ JD[~x := ~N ]KΘ ◦ J ~NKΘ

= JM [~x := ~N ]KΘ ◦ J ~NKΘ ◦ JD[~x := ~N ]KΘ ◦ J ~NKΘ

= JM [~x := ~N ]KΘ ◦ J ~NKΘ ◦ JD[~x := ~N ]KΘ ◦ J ~NKΘ

= JMK∆ ◦ 〈J ~NKΘ〉 ◦ JDKΘ ◦ 〈J ~NKΘ〉 by IH

= JMK∆ ◦ JDK∆ ◦ 〈J ~NKΘ〉
= JM|DK∆ ◦ 〈J ~NKΘ〉.

Lemma 5.4. Let FV (λx.M) ⊆ ∆, FV ((λx.M)N) ⊆ Θ and ∆ ⊆ Θ. Then

JM [x := N ]KΘ ◦ JNKΘ = JMK∆,x ◦ 〈πΘ
∆, JNKΘ〉.

In particular,
JM [x := N ]KΘ ≥ JMK∆,x ◦ 〈πΘ

∆, JNKΘ〉.

Proof. Put Θ = (∆, x) and ~y = ∆. Then M [x := N ] = M [x := N, ~y := ~y].
Apply the previous lemma to find

JM [x := N, ~y := ~y]KΘ ◦ JNKΘ = JM [x := N, ~y := ~y]KΘ ◦ JNKΘ ◦ J~yKΘ
= JMKΘ ◦ 〈J~yKΘ, JNKΘ〉
= JMKΘ ◦ 〈πΘ

y1 , . . . , π
Θ
yn
, JNKΘ〉

= JMKΘ ◦ 〈πΘ
∆, JNKΘ〉.

We can now prove that the interpretation J−K is sound for the partial lambda
calculus.

Proposition 5.5 (Soundness). The interpretation J−K is sound for the partial
lambda calculus, meaning that λR ` M = N implies JMK∆ = JNK∆ whenever
FV (MN) ⊆ ∆.

Proof. We do this by induction on the proof of λR ` M = N . Soundness is
obvious for the first three axioms, which state that = is an equivalence relation.
Axioms 4 and 5 go through because of the way application is defined. Axioms
6, 7 and 8 translate into obvious truisms about idempotents. Soundness of
axiom 9 follows from Lemma 5.1; The interpretation of a lambda abstraction is
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a transpose and therefore total. As for β-reduction, we calculate

J(λx.P )QK∆ =
(
G ◦ tr

(
JP K∆,x

))
◦ JQK∆

= ε ◦ 〈F ◦G ◦ tr
(
JP K∆,x

)
, JQK∆〉

= ε ◦ 〈tr
(
JP K∆,x

)
, JQK∆〉

= ε ◦
(
tr

(
JP K∆,x

)
⊗ 1

)
◦ 〈1, JQK∆〉

= JP K∆,x ◦ 〈1, JQK∆〉
= JP [x := Q]K∆ ◦ JQK∆ by the previous lemma.

Finally, the interpretation is sound for the ξ-rule because

JP K∆ = JQK∆ ⇒ JP K∆ ◦ π∆,x
∆ = JQK∆ ◦ π∆,x

∆

⇒ JP K∆,x = JQK∆,x
⇒ Jλx.P K∆ = Jλx.QK∆.

Our soundness theorem gives at once:

Theorem 5.6. Every reflexive object U in a cartesian closed restriction category
is a lambda algebra.

As a corollary, we obtain:

Corollary 5.7. The set of total points Γt(U) is a lambda algebra in the category
Par of sets and partial functions.

Proof. The object U is a lambda algebra, and Γt is a cartesian restriction func-
tor, so by Proposition 4.12, the object Γt(U) is a lambda algebra.

5.3 From partial lambda algebras to reflexive objects

We now embark on the generalization of the construction of a reflexive object
from a lambda algebra. Given a PCA A for which the interpretation of lambda
calculus is sound in the restricted sense described above, we can define, for any
two elements a, b ∈ A:

a � b = Jλx.a(bx)K.

This should not be confused with either the notation ◦, which denotes arrow
composition, or •, which denotes partial application. When we write a juxtapo-
sition, this is shorthand for application. Also, we will stop writing Scott-brackets
everywhere in order to lighten up on the notation.

Note that a � b is always total, since interpretations of lambda abstraction
terms are total. The following is now standard.

Lemma 5.8. The set M(A) = {a ∈ A|Jλx.axK = a} is a monoid under �, with
unit I.
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Proof. Use the soundness lemma and the rules for the partial lambda calculus.

But M(A) is more than just a monoid. When A is not total, M(A) has a
nontrivial restriction structure, given by

a = λx.x|ax.

Clearly, ax ↓ if and only if ax ↓, in which case ax = x.

Lemma 5.9. The assignment a 7→ a defines a restriction on M(A).

Proof. This is a straightforward application of the soundness theorem. Observe
that ax = x|ax, and that bx = bx.

For axiom (R.1), we calculate:

a � a = λx.a(ax) = λx.a(x|ax) = λx.ax|ax = λx.ax = a.

For axiom (R.2), we have:

a � b = λx.a(bx) = λx.(λy.y|ay)(bx) = λx.bx|abx = λx.x|ax,bx,

which, by symmetry, must equal b � a.

To check the validity of axiom (R.3), consider:

a � b = λx.a(bx)
= λx.x|ax|bx

= λx.x|(λz.az|bz)x

= λx.ax|bx

= λx.a(x|bx)

= λx.a(bx)

= a � b.

Finally we check axiom (R.4):

a � b = λx.a(bx)
= λx.(λz.z|az)(bx)
= λx.bx|a(bx)

= λx.b(x|a(bx))
= λx.b((λz.z|a(bz))x)

= λx.b((a � b)x)
= b � a � b.
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Now define C(A) to be the restriction category obtained by splitting all
idempotents in M(A). In this category, an object is an element a = 1a such
that a � a = a, i.e. λx.a(ax) = λx.ax = a. A morphism f : a→ b is an element
f = 1f such that b � f � a = f , i.e. λx.a(f(bx)) = f . For such a morphism
f : a→ b, the restriction is defined to be f � a, i.e. λx.ax|f(ax).

We will make use of the following auxiliary notions. First, there is a combi-
nator Pair in A, which is defined as Pair = λxyz.zyx. For terms or elements
M,N , we write

[M,N ] = PairMN = (λz.zMN)|M,N .

Note that this is the usual pairing, but restricted to the domains of the terms
M and N . There are unpairings, defined by

π0 = λx.xTrue, π1 = λx.xFalse.

Here, True := λxy.x and False := λxy.y, These have the property that
π0[M,N ] = M|N and π1[M,N ] = N|M . We will often abbreviate πi(x) = xi.
Also, we note that [M|N , N|M ] = [M,N ].

Lemma 5.10. The category C(A) is a cartesian restriction category.

Proof. We start by exhibiting the terminal object. This is the idempotent
False = λxy.y. If f is a map a→ False then f = False�f�a = λu.False(f(au)) =
λuy.y|f(au) = λuy.y|fu, and therefore f must be a restriction of False. Hence,
⊥ is the unique total map a→ False.

Next, we show that binary partial products exist. Given two idempotents
a, b, define

a⊗ b = λz.[az0, bz1], p0 = a � π0 � (a⊗ b), p1 = b � π1 � (a⊗ b).

To verify that (a⊗ b) is indeed an idempotent, note that

(a⊗ b) � (a⊗ b) = λx.(λz.[az0, bz1])[ax0, bx1]
= λx.[a(ax0)|bx1 , b(bx1)|ax0 ]
= λx.[ax0|bx1 , bx1|ax0 ]
= λx.[ax0, bx1]
= a⊗ b.

It is obvious that p0 and p1, as defined, are maps between idempotents. We
verify that they are total:

p0 = a � π0 � (a⊗ b)
= λx.a(π0[ax0, bx1])
= λx.a(ax0)|bx1

= λx.ax0|bx1 ,
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so that

p0 � (a⊗ b) = λx.p0[ax0, bx0]
= λx.(λy.y|ay0,by1)[ax0, bx1]
= λx.[ax0, bx1]|ax0|bx1 ,bx1|ax0

= λx.[ax0, bx1]|ax0,bx1

= a⊗ b

and similarly for p1.
Then, given maps f : c→ a and g : c→ b, define

〈f, g〉 = λz.[fz, gz].

We have

〈f, g〉 � c = λx.〈f, g〉(cx)
= λx.[f(cx), g(cx)]|cx
= λx.[f(cx), g(cx)]
= λx.[fx, gx]

where we have used f(cx)|cx = f(cx) to get rid of the restriction. Also, we have

(a⊗ b) � 〈f, g〉 = λx.(λz.[az0, bz1])[fx, gx]
= λx.[a(fx)|gx, b(gx)|fx]
= λx.[a(fx), b(gx)]
= λx.[fx, gx]
= 〈f, g〉.

Thus, the map 〈f, g〉 is indeed a map c→ a⊗ b.
To see that the map 〈f, g〉 has the correct domain, we calculate

〈f, g〉 � c = λu.cu|[f(cu),g(cu)]

= λu.cu|f(cu),g(cu).

Because f � c = λu.cu|f(cu) and g � c = λu, cu|g(cu), we see that the domain of
〈f, g〉 is indeed the intersection of the domains of f and g.

Finally, we have

p0 � 〈f, g〉 = a � π0 � (a⊗ b) � 〈f, g〉
= a � π0 � 〈f, g〉
= λx.a(π0[fx, gx])
= λx.a(fx|gx)
= λx.a(fx)|gx
= λx.fx|gx.
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Lemma 5.11. The category C(A) is a cartesian closed restriction category.

Proof. Define the exponent of a and b as

[a ⇀ b] = λx.a � x � b

and the evaluation map εa,b : [a ⇀ b]⊗ a→ b as

εa,b = λx.b(x0(ax1)).

If f : c⊗ a→ b, then define the transpose of f to be

tr(f) = λxy.f [x, y] : c→ [a ⇀ b].

Note that tr(f) is total in x. The verifications that these definitions are correct
don’t contain any difficulties and are left to the reader.

Now we can state the anticipated result.

Theorem 5.12. The object I = λx.x is a reflexive object in C(A).

Proof. We have [I ⇀ I] = λx.I � x � I = λxy.I(x(Iy)) = λxy.xy = 1, which
is an idempotent (on the unique object) and therefore a retract (of the unique
object) in the category C(A). Moreover, the retraction map 1 : I → 1 is total,
as required.

How does the reflexive object in C(A) relate to the original lambda algebra
A in C? The following diagram clarifies the situation:

M(A) //

Q

��

K(M(A)) = C(A)

K(Q)

��

Comp(C, A) //

��

K(Comp(C, A))

��

C // K(C)

The three horizontal maps are the inclusions of M(A), Comp(C, A) and C
in the corresponding split categories. Remember that Comp(C, A) is the (non-
full) subcategory of C on the powers of A and the computable maps, and that,
by construction, this inclusion is a cartesian functor. Therefore it induces a
cartesian functor on the level of split categories, making the bottom square
commutative.

The functor Q is defined by sending the unique object of M(A) to A, and
by sending an element a of the monoid to the map represented by a, which we
will denote by Q(a) = a • −. This is functorial, since the map (a � b) • − =
λx.a(bx) • − = a(b−) is indeed the composite of a • − and b • −. However, the
monoid M(A) is generally not cartesian as a restriction category (essentially
because pairing need not be surjective), and therefore it makes no sense to ask
for more properties of Q. But since K(M(A)) is cartesian, we can look at the
induced restriction functor K(Q) and prove:
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Theorem 5.13. The functor K(Q) is cartesian, and induces an isomorphism
of lambda algebras K(Q)(A, I) ∼= A in the category K(Comp(C, A)), and hence
also in the category K(C).

Proof. We first show that the functor K(Q) preserves products. Given two
idempotents a, b, we have the objects (A, a • −) and (A, b • −), and we have to
show that their product is isomorphic to (A, (a⊗ b) • −).

It is clear that the two projections p0 : a ⊗ b → a and p1 : a ⊗ b → b
represent a map (A, (a ⊗ b) • −) → (A, a • −) ⊗ (A, b • −). We will show that
the map γ = γa,b = λxy.[ax, by] represents an inverse to this map. Note first
that (a ⊗ b)(γxy) = (λz.[az0, bz1])[ax, by] = [aax|by, bby|ax] = [ax, by] = γxy,
and that p0x = (a � π0 � a⊗ b)x = a(π0[ax0, bx1]) = ax0|bx1 and p1x = bx1|ax0 .
Now

γ • (p0x) • (p1x) = [p0x, p1x] = [ax0, bx1] = (a⊗ b)x.

Also,
p0(γxy) = a(π0(a⊗ b[ax, by])) = a(π0[ax, by]) = aax|by,

so that 〈γ(p0 • −), γ(p1 • −)〉 = 〈ax • −, by • −〉. This shows that γ indeed
represents a two-sided inverse to 〈p0 • −, p1 • −〉. This isomorphism is readily
extended to multiple factors.

There is also an isomorphism (A,⊥) ∼= >, showing that the terminal object
is preserved. To see this, observe that a map u : > → (A,⊥) must satisfy
u(∗) = (λxy.y)u(∗) = I, whence u is unique and gives an inverse to the map
(A,⊥) → >.

Next, in the category K(M(A)) we have an application Ap on I, given by

I ⊗ I
1⊗I

// [I ⇀ I]⊗ I
ε // I.

Unwinding the definitions gives

Ap = ε � (1⊗ I) = λx.ε((1⊗ I)(x)) = λx.ε[1x0, x1] = λx.(1x0)(x1) = λx.x0x1.

Thus we have a commutative diagram in Comp(C, A):

(A, I)⊗ (A, I) • //

γ ∼=
��

(A, I)

(A, I ⊗ I)
(1⊗I)•−

// (A, 1⊗ I)

ε•−

OO

which shows that K(Q)(I) is the same applicative structure as (A, I). Finally,
the interpretation of lambda terms is essentially the same, in the sense that for
each term M ∈ ΛR(A), we have a commutative diagram

(A, I)⊗ · · · ⊗ (A, I)
JMK∆

//

γ

��

(A, I)

(A, I ⊗ · · · ⊗ I)

K(Q)(JMK∆)

55jjjjjjjjjjjjjjjjj
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Here, we have written JMK twice, once for the interpretation of M in the original
lambda algebra A, and then for the interpretation of M in the reflexive object I
in the category K(M(A)). The proof of this fact is by induction on the structure
of M .

Alternatively, one can invoke Proposition 4.12.

It is important to note the role that the composite I
1 // [I ⇀ I] 1 // I

plays: Since 1 � 1 = 1, we derive that I ∼= [I ⇀ I] precisely when 1 = I, that is,
when for each element a we have a = 1a.

We end the section with another illustration of the usefulness of the focus
on the restriction functors. One says that a lambda algebra is a lambda model
if the so-called Meyer-Scott axiom holds:

if ax = bx for all x : 1 → A then 1a = 1b.

Proposition 5.14. In the situation of the previous theorem, the following state-
ments are equivalent:

1. A is a lambda model

2. the category C(A) has enough points

3. the functor K(Q) is an equivalence of categories

Proof. We only prove the equivalence between the first and the third condition,
referring to [Bar84] or [Koy84] for detailed proofs. The functor K(Q) is always
full on arrows and essentially surjective, regardless of whether A is a lambda
model or not. If A is a lambda model, then consider two maps in C(A), given
by elements a, b. If these are sent by K(Q) to the same morphism, that means
that they represent the same function, i.e. that ax = bx for all elements x.
Now the Meyer-Scott axiom implies that 1a = 1b, but by assumption on the
elements from which we built M(A) and hence C(A), this implies a = b, so
that K(Q) is faithful. Conversely, if K(Q) is faithful, then any two elements of
M(A) representing the same function must be equal.

As a consequence, we get the characterization of extensionality:

Corollary 5.15. In the situation of the previous theorem, the following state-
ments are equivalent:

1. A is extensional (meaning that ax = bx for all x implies a = b)

2. the map 1 : I → [I ⇀ I] is an isomorphism in C(A) and the functor K(Q)
is an equivalence of categories

Proof. If A is extensional, then it is also weakly extensional, since a = b implies
1a = 1b. Moreover, extensionality implies that 1 = I, because 1xy = Ixy
for all x, y (using extensionality twice). Conversely, if 1 = I and A is weakly
extensional, then ax = bx for all x implies 1a = 1b, whence Ia = Ib, and
therefore a = b, so that A is extensional.
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5.4 Notes and references

For detailed expositions of the original Scott-Koymans Theorem see Koymans’
thesis [Koy84] or Barendregt’s [Bar84]. In these texts, one also finds more on
the various ways of presenting and characterizing lambda models.

Even and Pino Pérez were the first to extend the theorem to a partial setting;
they announce the result in an abstract [Eve95], but it seems that a complete
proof has not been published.

It should be noted that the analysis given here is both more detailed and
more informative, even when restricted to the total case; as far as we aware, it
has never been explained in the literature that a reflexive object already is a
lambda algebra, and that the fact that its set of points is a lambda algebra is
a consequence of this. Also, the use of the comparison functor K(Q) seems to
be new, as well as the fact that this functor being an equivalence amounts to
having a lambda model.

We have not explicitly mentioned C-monoids; essentially, these are one-
object ccc’s, and are discussed in [Lam86]. Their role in the Scott-Koymans
theorem is worked out in detail in [Koy84]. The restriction monoid M(A) that
we constructed from a PCA A could be called a restriction C-monoid, and one
could work out a theory of such objects and their relation to partial lambda
algebras, just as this has been done in the total case.
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6 Examples

It is now time for some examples of partial lambda algebras. We present two
(classes of) examples here, both living in the category of directed complete
posets. The first is a modification of the D∞ models. The second is a partial
variation on Engeler’s Graph Algebras.

6.1 Directed Complete Partial Orders

Let us begin by describing the restriction category in which we will work. We
will outline all constructions, leaving the details to the reader.

Let A = (A,≤) be a poset. We say that A is directed complete if for each
nonempty, directed subset A′ ⊆ A there exists a supremum

∨
A′ ∈ A. (Recall

that a subset A′ is called directed if for every pair a, b ∈ A′ there exists an
element c ∈ A′ with a ≤ c, b ≤ c.) Typically, one also insists on having a
supremum for the empty set, which is the same as a bottom element, but we do
not impose this condition here. From now on, when we say “directed subset”,
we will mean “nonempty directed subset”, and similarly for derived notions.

Every such directed complete poset A (abbreviated DCPO) comes equipped
with the Scott-topology; a subset X ⊆ A is open if and only if it is upwards
closed and has the property that for each directed A′ ⊆ A, if

∨
A′ ∈ X, then

A ⊆ X 6= ∅.
The category DCPO has as objects the DCPO’s, and as morphisms partial

continuous functions with open domain. Concretely, a partial function f : A→
B is a morphism if f is orderpreserving and if for each directed A′ with

∨
A′ ∈

dom(f), we have
f(

∨
A′) =

∨
(A′ ∩ dom(f)).

This is a restriction category, where the restriction of such f is given by the
open inclusion dom(f) ↪→ A.

The category DCPO is cartesian: both products and the terminal object
are constructed as in the category of posets (caveat: the Scott-topology on the
product need not coincide with the product topology).

Given two DCPOs A and B, their exponential [A ⇀ B] can be formed,
by taking as underlying set the set DCPO(A,B), that is, the set of all partial
continuous functions with open domain from A to B. This set has a partial
ordering via

f ≤ g ⇔ ∀x ∈ dom(f) : x ∈ dom(g) and f(x) ≤ g(x).

Suprema of directed subsets are computed pointwise. More precisely, given a
directed family fi : A→ B, the supremum

∨
fi is defined at a ∈ A when there

exists an index i for which fi(a) is defined. In this case, we put

(
∨
fi)(a) =

∨
{fi(a)|fi(a)↓}.

This indicates that DCPO is a cartesian closed restriction category; details
are omitted.
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6.2 The D∞-construction

We can now start looking for reflexive objects in the restriction category DCPO.
Classically (working in DCPO’s with total maps, and hence with ordinary ex-
ponentials) this problem was solved by Dana Scott; in fact, he constructed a
lattice D∞ with the property that D∞ ∼= DD∞

∞ . We follow his construction, but
replace the total function spaces in the construction by partial function spaces.

We start with an arbitrary DCPO D, which has a bottom element ⊥. We
then define inductively:

D0 = D, Dn+1 = [Dn ⇀ Dn].

There are canonical maps φ0 : D0 → D1 and ψ0 : D1 → D0, given by φ0(d) =
λx.d (the constant function with value d) and ψ0(f) = f(⊥) (evaluation at the
bottom element). Note that φ0 is total, but ψ0 is not. These induce φn : Dn →
Dn+1 and ψn : Dn+1 → Dn, given by

φn(x) = φn−1 ◦ x ◦ ψn−1; ψn(y) = ψn−1 ◦ y ◦ φn−1.

By induction on n, one shows that φn and ψn are continuous maps and that
they satisfy the relations ψn ◦ φn = 1 and φn ◦ ψn ≤ 1. Observe also that for
n > 0, all φn and ψn are total maps.

We have a diagram

D0
φ0 // D1

φ1 // D2
φ2 // . . .

and we can form the colimit of this diagram. The vertex will be called D∞, and
has the following explicit description.

An element of D∞ is a partial function α : N →
⋃
n∈N Dn such that

• α(n)↓ ⇒ α(n+ 1)↓ and α(n) = ψn(α(n+ 1));

• α(1)↓.

Two such elements α, β of D∞ are ordered via:

α ≤ β ⇔ ∀n ∈ dom(α) : β(n) ↓ and α(n) ≤ β(n).

Suprema of directed subsets of D∞ are computed pointwise, in the sense that

(
∨
{αi|i ∈ I})(n) =

∨
{αi(n)|i ∈ I}

where the left-hand side is defined whenever there exists i ∈ I for which αi(n)
is defined. We leave as an exercise the verification that this indeed has the
required properties.

A remark is in order here: we computed the colimit of the ascending chain

D0
φ0 // D1

φ1 // . . . , but formulated this in terms of the maps ψn. In the
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total case (meaning: in the category of DPCOs with total maps), one has limit-

colimit coincidence here: the limit of the diagram D0 D1
ψ0oo . . .ψ1oo is

isomorphic to the colimit of the chain D0
φ0 // D1

φ1 // . . . . However, this
breaks down in the partial setting. There are two reasons: first, the fact that
the map ψ0 is not total, and second, the fact that in a restriction category limits
and colimits behave quite differently.

Without verifying the details, we state the main result:

Proposition 6.1. The object D∞ is a reflexive object in the cartesian closed
restriction category DCPO. In fact, D∞ ∼= [D∞ ⇀ D∞], so that D∞ is an
extensional lambda model.

The proof follows the proof for the total case, see the references below. The
claim about extensionality follows from the observation that the category DCPO
has enough points.

Note that nothing prevents us from starting with D = D0 = {⊥}, the trivial
DCPO with bottom element. In the total case, we would get Dn = {⊥} for all
n, but now that we work with partial function spaces we get a nontrivial object
D∞. In a certain way, this is the smallest nontrivial solution to the problem of
finding a reflexive object in DCPO.

6.3 Graph algebras and trees

Our second example also resides in the restriction category DCPO. It is essen-
tially a reformulation of Engeler’s construction of a graph algebra from a set A,
which then has been made partial.

We start by fixing a set A, which will serve as a set of atoms. By a tree with
leaves labelled in A, we mean a finite planar tree t together with an assignment
Leaf(t) → A, which associates to each leaf of t and element of A. The collection
of such trees with leafs in A is denoted by T (A).

A typical finite tree over A looks like:

•

jjjjjjjjjjj
@@

@@
@@

@@

•
��

�� >>
>>
>>

>>
•

��
�� @@

@@
@@

@@

a b c • e.

d

We always draw the rightmost outgoing edges double, since we wish to think
of the distinguished edge as output and of the others as input. Therefore, a
tree can be thought of as an instruction. The inputs and output of such an
instruction are subtrees, and therefore are instructions themselves. If a node
has only one outgoing edge (such as the one ending in d in the example), then
this node is an instruction which doesn’t need any input to produce its output.
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If a node has no outgoing edges at all (i.e. is a leaf), then it cannot produce
any output. Note also that the order of the input tree matters, as well as their
multiplicity. A tree t with input branches t1, . . . , t1 and output r will sometimes
be written t = 〈t1, . . . , tn; r〉.

Definition 6.2. A forest of trees labelled in A is a nonempty set of trees.
We write F(A) = P6=∅(T (A)) for the collection of such forests.

In order to avoid confusion, we stress that F(A) consists of (possibly infinite)
forests, of which the trees are finite. The set of forests F(A) is partially ordered
by inclusion and forms a DCPO when we take the supremum operation to be the
union. As a DCPO, it is algebraic, meaning that every element is a supremum
of compact (finite) elements. As a consequence, a continuous map on F(A) is
determined by what it does on finite forests.

We will show that F(A) is in fact a reflexive object. First, there is a partial
application on F(A): given two forests Φ,Ψ, define

Φ •Ψ = {r ∈ T (A)|∃〈t1, . . . tn; r〉 ∈ Φ.t1, . . . , tn ∈ Ψ},

where the left-hand side is defined whenever the set on the right-hand side is
nonempty. Note as an aside that if we would have included the empty forest,
then the above definition of application would still work and be total, by replac-
ing “undefined” by the empty forest. Since this is an exposition about partial
structures, however, we will not look further into this and get back to the partial
setting.

Every forest Φ gives rise to a partial function Φ • −, which is easily seen to
be determined by its action on finite forests and is therefore partial continuous.
By the definition of definedness, it is also immediate that it has open domain.
Explicitly, the domain of Φ • − is the upwards closure of the collection of finite
forests of the form {t1, . . . , tn} for 〈t1, . . . tn; r〉 ∈ Φ.

On the other hand, given a partial continuous function f : F(A) → F(A),
we can construct a forest Φf by defining

Φf = {〈t1, . . . , tn; r〉|r ∈ f({t1, . . . , tn}).

Then Φf represents the function f , in the sense that for each forest Ψ, we have
f(Ψ) = Φ •Ψ.

This defines maps F(A) → [F(A) ⇀ F(A)] and [F(A) ⇀ F(A)] → F(A),
which are continuous (exercise). Therefore, F(A) is a reflexive object.

As an illustration of how certain combinators can be constructed in this
model, we look at the combinator k. One example of a forest playing the role
of this combinator may be taken to be the set

k =


•

}}
}}}}
}} BB

BB

t •

t

|t ∈ T (A).

 .
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This is by no means the only possible choice for k; in fact, if one would
unpack the meaning of Jλxy.xK in the model, one would end up with a larger
set of trees.

6.4 Notes and references

The partial map category of DPCOs and partial continuous maps has been
studied by Plotkin *unpublished work) as a framework for domain theory. There
is an alternative way of viewing this category, namely by considering DCPOs
with a bottom element, and bottom-preserving continuous maps between them.
The bottom element then represents “undefined”.

The construction of the D∞ model in the partial setting is most likely known
to several insiders, but, as far as we know, has not been published. For a de-
tailed account of the total case, see either Scott’s paper [Sco72] or Barendregt’s
exposition [Bar84].

Engeler’s graph algebra (see [Eng81]) was intended as a code-free version
of Scott’s graph model Pω, and the tree model we presented here is a slight
modification of the graph algebra. The relation is as follows. Where we deal
with trees 〈t1, . . . , tn; r〉, Engeler deals with pairs ({t1, . . . , tn}, r). Therefore,
we have introduced some extra structure on our objects. As a consequence,
there are several forests representing the same element of the graph algebra. In
addition, we have omitted the empty forest and made the application partial.

The tree model allows for some curious variations: for example, one can drop
the requirement that trees be finite, and replace it by the requirement that trees
be finitely branching at each node. A discussion of how such models behave will
be presented in [Hof05].
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7 Appendix

In this appendix, we formulate the axioms ARβ and prove that when these axioms
are added to CLR, the resulting theory is equivalent to the partial lambda
calculus. The axiom set will be finite, and the axioms will be closed and total.

We will try to follow the proofs for the total case as given in [Bar84] as
closely as possible, but the reader is warned that quite a few extensions and
adaptations will have to be made. The reason for this is partly that the old
axioms Aβ have to be adapted in order to make sense in the partial setting, but
also that we have to take care of all the axioms from CLR that deal with the
restriction.

First, we present a set of axiom schemes, which serve as an intermediate step.
We show that when these axiom schemes are added to CLR, the λ∗-operator
in the resulting theory is sufficiently well-behaved (especially with respect to
substitutions) and that the ξ-rule is valid. These axiom schemes, however, are
not closed and are not finite. The second step, therefore, consists of showing
that all these schemes follow from the finite set of closed axioms ARβ , which are
essentially suitable abstractions of the axiom schemes.

The axioms of ARβ are not very intuitive when spelled out in terms of the
combinators k and s; for this reason, we introduce some shorthand notation,
which, hopefully, provides the reader with a better grasp of the thrust of the
axioms.

It will be easy to show that the axioms ARβ are valid when translated into the
lambda calculus; moreover, we can prove that the translation from the lambda
calculus to CLR becomes sound when we add these axioms. Then we have our
main result (Theorem 3.13), which we repeat here for convenience:

Theorem 7.1. The theories CLR + ARβ and λR are equivalent (via the trans-
lations (−)CL and (−)λ), in the sense that:

1. λR `M = MCL,λ

2. CLR +ARβ ` N = Nλ,CL

3. λR `M = N ⇔ CLR +ARβ `MCL = NCL

4. CLR +ARβ ` P = Q⇔ λR ` Pλ = Qλ

In Table 3, we have listed the auxiliary axiom schemes. The first two axioms
(which are already closed), are precisely what is needed to achieve the second
item of the theorem:

Lemma 7.2. For any term P we have:

CLR + P1 + P2 `M = Mλ,CL.

Proof. Induction on the structure of M . The case where M is a variable is
trivial. If M is k or s then we use P1 or P2. Both translations (−)λ and
(−)CL commute with application and restriction, so that the inductive steps
are clear.
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P1 k = λ∗xy.x P7 λ∗x.x|kx = λ∗x.x
P2 s = λ∗xyz.xz(yz) P8 λ∗x.M|x = λ∗x.M
P3 s(kP )(kQ)|PQ = k(PQ) P9 λ∗.x.M|M = λ∗x.M
P4 λ∗x.kPQ = λ∗x.(P|Q) P10 λ∗x.M|(N|D) = λ∗x.M|N,D
P5 λ∗x.sPQR = λ∗x.PR(QR) P11 λ∗x.M|DN|E = λ∗x.(MN)|D,E
P6 λ∗x.M|sPQ = λ∗x.M|P,Q

Table 3: Auxiliary schemes

Axiom scheme P3 gives us the following result about the λ∗ operator. Recall
that in the total case, lambda abstraction can be simplified by defining λ+x.M
as λ∗x.M , but by adding the clause λ+x.P = kP when x 6∈ FV (P ). This is
simpler, since this allows one to skip inductive steps when x does not occur
in P . In the total case one prefers λ+ over λ∗ because it behaves better with
respect to substitution. However, using λ+ in the partial case would lead to
the undesirable consequence that λ+.P is not necessarily total anymore. Now
axiom P3 relates both translations.

Lemma 7.3. Using P3, we have:

CL+ P3 ` λ+x.P = (λ∗x.P )|D

where D is the set of subterms of P not containing x.

Proof. Induction on P , the crucial case being P = MN . Assume that x occurs
in MN . Then:

λ+x.MN = s(λ+x.M)(λ+x.N)
= s(λ∗x.M)(λ∗x.N)|D by IH
= (λ∗x.MN)|D

where D is the set of subterms of MN not containing x.

In particular, when the variable x is not free in P , we have that (λ∗x.P )|P =
kP .

The main point here, and thus one of the reasons for considering axiom
scheme P3, is the following substitution lemma.

Lemma 7.4. Let P be a CLR-term, x, y distinct variables, and M a term not
containing x. Then

CLR + P3 ` (λ∗x.P [y := M ])|M = (λ∗x.P )[y := M ]|M .

Proof. Induction on P . If P = x, or P is a constant, then the statement is
true even without restricting to M . If P = y, then the left hand side becomes
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(λ∗x.M)|M and the right hand side becomes (kM)|M , which are equal, using
the previous lemma. When P = AB, the calculation goes as follows:

(λ∗x.AB[y := M ])|M = (λ∗x.A[y := M ]B[y := M ])|M
= s(λ∗x.A[y := M ])(λ∗x.B[y := M ])|M
= s(λ∗x.A[y := M ])|M (λ∗x.B[y := M ])|M
= s((λ∗x.A)[y := M ])((λ∗x.B)[y := M ])|M by IH
= s(λ∗x.A)(λ∗x.B)[y := M ]|M
= (λ∗x.AB)[y := M ]|M .

The case P = A|D is similar.

The function of the schemes P3, . . . , P8 is to make sure that the operation
λ∗ in CLR satisfies the following technical property.

Lemma 7.5. For any term M with u not occurring free in M , we have

CLR + P3 + P4 + P5 + P6 + P7 + P8 ` λ∗u.(λ∗x.M)u = λ∗x.M.

Proof. This is induction on M .
Case M = x:

λ∗u.(λ∗x.M)u = λ∗u.(skk)u
= λ∗u.ku(ku) by P5

= λ∗u.u|ku by P4

= λ∗u.u by P6

≡ λ∗x.x

Case M = c, where c is either a constant or a variable different from x:

λ∗u.(λ∗x.M)u = λ∗u.(kc)u
= λ∗u.c|u

= λ∗u.c.

The last step follows from axiom P8 using P3: applying both sides to c gives
λ∗u.c|u =def s(s(kk)(λ∗u.c))(λ∗u.u) = s(s(kk)(kc))(skk) = s(s(kc))(skk) =
kc = λ∗u.c.

Case M = PQ:

λ∗u.(λ∗x.M)u = λ∗u.s(λ∗x.P )(λ∗x.Q)u
= λ∗u.(λ∗x.P )u((λ∗x.Q)u)
= s(λ∗u.((λ∗x.P )u))(λ∗u.((λ∗x.Q)u))
= s(λ∗x.P )(λ∗x.Q) by IH
= λ∗x.PQ.
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Case M = P|Q:

λ∗u.(λ∗x.P|Q)u = λ∗u.(s(s(kk)(λ∗x.P ))(λ∗x.Q))u by definition of λ∗x
= λ∗u.(s(kk)(λ∗x.P ))u((λ∗x.Q)u) using P5

= s(λ∗u.s(kk)(λ∗x.P )u)(λ∗u.(λ∗x.Q)u) by definition of λ∗u
= s(λ∗u.kku((λ∗x.P )u))((λ∗u.(λ∗x.Q)u)) using P5

= s(λ∗u.k((λ∗x.P )u))((λ∗u.Q)u) using P4

= s(s(λ∗u.k)(λ∗u.(λ∗x.P )u))(λ∗u.(λ∗x.Q)u) definition of λ∗u
= s(s(λ∗u.k)(λ∗x.P ))(λ∗x.Q) by IH
= s(s(kk)(λ∗x.P ))(λ∗x.Q)
= λ∗x.P|Q

In fact, we can prove the stronger

CLR+P3+· · ·+P8 ` λ∗v.[(λ∗x.M)v]|(λ∗x.N)v = λ∗x.M|N , v not free in M,N.

This is true, since

λ∗v.[(λ∗x.M)v]|(λ∗x.N)v = s(s(kk)(λ∗v.(λ∗x.M)v))(λ∗v.(λ∗x.N)v)
= s(s(kk)(λ∗x.M))(λ∗x.N)
= λ∗x.M|N .

The second step is an application of the lemma.

Next, we turn attention to the ξ-rule. First, let us agree to call an equation
M = N total if both M and N are total, i.e. P|M = P = P|N for all P . We wish
to show that for any set S of total, closed equations, if CLR + S ` P3, . . . , P11,
then CLR + S is closed under the ξ-rule.

The axioms of CLR governing equality are trivial. For the rule M =
N =⇒ MZ = NZ, we observe that λ∗x.(MZ) = s(λ∗x.M)(λ∗x.Z) =IH

s(λ∗x.N)(λ∗x.Z) = λ∗x.(NZ), and similarly for the dual rule.
For every other axiom of CLR, there is a corresponding scheme stating that

applying λ∗ on both sides preserves validity.
Finally, if we have an axiom M = N from S, then we have λ∗x.M =

(λ∗x.M)|M = kM = kN = (λ∗x.N)|N = λ∗x.N , using that x 6∈ FV (M,N)
and that M,N are total.

We now solve the problem of replacing the given schemes by closed axioms.
One of the problems here is, that the axioms would become very large when
spelled out in terms of k and s only, to the extent that they would be incom-
prehensible. Therefore we introduce some shorthand notation, which will help
us to state the axioms in a convenient way, as well as show that they satisfy the
right properties.
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Definition 7.6. Let M be a term, and let u, ~x be variables, where u is not
equal to any of the ~x. By induction on the structure of M , we define a term
Θu(M ; ~x):

• Θu(x; ~x) = 1x if x is one of the ~x

• Θu(P ; ~x) = λ∗u.P if none of the ~x occur in P

• Θu(PQ; ~x) = s(Θu(P ; ~x))(Θu(Q; ~x))

• Θu(P|Q; ~x) = s(s(kk)Θu(P ; ~x))(Θu(Q; ~x))

Finally, we put
Λu(M ; ~x) = λ∗~x.Θu(M ; ~x).

The idea is, that Θu(M ; ~x) is like λ∗u.M , but with the occurrences of λ∗u.x
replaced by 1x. The point of the definition is the following lemma.

Lemma 7.7. Let M be a term, ~x, u variables with u distinct from the ~x, and
let ~N be arbitrary terms fitting in ~x. Then

CLR + P3 + · · ·+ P8 ` [Λu(M ; ~x)](λ∗u.N1) · · · (λ∗u.Nk) = λ∗u.M [~x := ~N ].

Proof. We first observe that 1(λ∗u.M) = λ∗u.M , using Lemma 7.5. Now we do
an induction on the structure of M . If M = xi, where x is one of the ~x, then
we obtain (λ∗~x.1x)(λ∗u.N1) · · · (λ∗u.Nn) = 1(λ∗u.Ni) = λ∗u.Ni, as required.

If M is ~x-free, then (λ∗~x.λ∗u.M)(λ∗u.N1) · · · (λ∗u.Nn) = λ∗u.M .
If M = PQ, then

Λu(PQ; ~x)(λ∗u. ~N) = [λ∗~x.s(Θu(P ; ~x))(Θu(Q;−→x ))](λ∗u. ~N)

= s(Θu(P ; ~x)[−→x := λ∗u. ~N ])(Θu(Q; ~x)[~x := λ∗u. ~N ])

= s(λ∗u.P [~x := ~N ])(λ∗u.Q[~x := ~N ]) by IH

= λ∗u.PQ[~x := ~N ].

The case M = P|Q is similar.

Note that if all of the free variables of M are among u, ~x, the term Λu(M ; ~x)
is closed and total.

We are now ready to state the axiom set ARβ , which is displayed in table 4.
The first five of these axioms are almost the same as for the total case; the only
difference is that in the third and the fifth axiom we have to add a suitable
restriction. The other axioms are those which will generate the schemes which
we used to get the validity of the ξ-rule.

We first show that all the auxiliary schemes follow from the axioms ARβ .
Scheme P3 follows by applying axiom A.3 to P and Q. Scheme P5 follows from
A.5 by applying both sides to λ∗x.P, λ∗x.Q and λ∗x.R.

Scheme P6 is obtained by applying A.9 to λ∗u.P, λ∗u.Q and λ∗u.R, using
Lemma 7.7. Schemes P7 − P11 follow in a similar fashion.
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A.1 k = λ∗xy.kxy
A.2 s = λ∗xyz.sxyz
A.3 λ∗xy.s(kx)(ky)|xy = λ∗xy.k(xy)
A.4 λ∗xy.s(s(kk)x)y = λ∗xyz.xz|yz
A.5 λ∗xyz.s(s(s(ks)x)y)z = λ∗xyz.s(sxz)(syz)
A.6 Λu(x|x;x) = Λu(x;x)
A.7 Λu(x|u;x) = Λu(x;x)
A.8 Λu(x|kx;x) = Λu(x;x)
A.9 Λu(x|syz;x, y, z) = Λu(x|y,z)
A.10 Λu(x|yu|v;x, y, u, v) = Λu((xu)|yv;x, y, u, v)
A.11 Λu(x|y|z ;x, y, z) = Λu(x|y,z;x, y, z)

Table 4: Axioms ARβ

Now P1 and P2 are immediate from A.1 and A.2, and it remains to be proved
that P4 follows. Compute:

λ∗x.kPQ = s(λ∗x.kP )(λ∗x.Q)
= s(s(kk)(λ∗x.P ))(λ∗x.Q)
= (λ∗xy.s(s(kk)x)y)(λ∗x.P )(λ∗x.Q)
= (λ∗xyz.xz|yz)(λ∗x.P )(λ∗x.Q) by A.4
= λ∗z.(λ∗x.P )z|(λ∗x.Q)z

= λ∗x.P|Q by the substitution lemma.

Thus we have shown:

Proposition 7.8. The axiom schemes P1-P11 are derivable from the axioms
ARβ , i.e.

CLR +ARβ ` P1, . . . , P11.

Corollary 7.9. The theory CLR +ARβ is closed under the ξ-rule.

Next, we need:

Lemma 7.10. For each axiom M = N of ARβ , λR `Mλ = Nλ.

Proof. The first five axioms are proved in the same way as in the total case.
For the axioms involving the Λu-terms, observe that all axioms have the same
parameter variables. Therefore it is enough to show that the translations of the
corresponding Θu-terms give valid equations.

For example, the axiom A.6 is dealt with as follows. The left hand side
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reduces to:

(Θu(x|x;x))λ = (s(s(kk)(1x))(1x))λ
= S(S(KK)(λz.xz))(λz.xz)
= λw.S(KK)(λz.xz)w((λz.xz)w)
= λw.KKw((λz.xz)w)((λz.xz)w)
= λw.KKw(xw)(xw)
= λw.K(xw)(xw)
= λw.xw|xw

= λw.xw.

The last step uses the rule M|M = M (as well as the ξ-rule) in the λR-calculus.
Similarly the right hand side reduces to

(Θu(x;x))λ = (1x)λ
= (λ∗u.xu)λ
= λw.xw.

The other axioms are similar, only more elaborate.

Since λR proves the translations of all the ARβ -axioms, we now obtain:

CLR +ARβ `M = N =⇒ λR `Mλ = Nλ.

The remaining piece of the problem is to show that (−)CL is sound. In order
to show this, we need to show that the translation is well-behaved with respect
to substitution.

Lemma 7.11. For terms M,N , we have

CLR + P3 ` (M [y := N ]|N )CL = MCL[y := NCL]|NCL
.

Proof. Induction on the structure of M . Almost all cases are obvious (and hold
even without restrictions), and we only show the case where M = λx.P . There
are two subcases, namely when y ∈ FV (P ) and when y 6∈ FV (P ). The latter
case is easy, and we show only the former case here.

(λ∗x.(P [y := N ]CL))|NCL

= (λ∗x.(P [y := N ]|N )CL)NCL
since y ∈ FV (P )

= (λ∗x.(P [y := N ]CL)|NCL
)|NCL

rule ξ
= (λ∗x.PCL[y := NCL]|NCL

)|NCL
by IH

= (λ∗x.PCL[y := NCL])|NCL
again since y ∈ FV (P )

= (λ∗x.PCL)[y := NCL]|NCL
by Lemma 7.4

= (λx.P )CL[y := NCL]|NCL
.
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Now we are ready to put everything together and prove the main theorem:

Proof. (Of Theorem 3.13.) The first claim was already proved in Lemma 3.12.
The second claim is Lemma 7.2. We have also established that the interpretation
of CLR +ARβ into λR is sound, so it remains to be seen that the interpretation
of λR into CLR+ARβ is sound, for then the remaining implications follow using
the first two items.

So we have to prove that λR ` M = N implies CLR + ARβ ` MCL = NCL,
and we will do so by induction on the proof of M = N . Since the translation
M 7→MCL by definition commutes with application and restriction, axioms 1-9
of λR are immediate.

Axiom 10, M|λx.N = M , translates into (MCL)|λ∗x.NCL
= MCL, which holds

by Proposition 3.8, item (ii).
Since CLR + ARβ ` P1, . . . , P11 by Proposition 7.8, the theory CLR + ARβ

is closed under the ξ-rule by Corollary 7.9. The only axiom left to check is
β-reduction. We compute:

((λx.M)N)CL = (λx.M)CLNCL
= (λ∗x.MCL)NCL
= MCL[x := NCL]|NCL

by Proposition 3.8
= (M [x := N ]CL)NCL

= (M [x := N ]|N )CL.

This completes the proof.
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